Faculty of Maritime Engineering and Marine Sciences

Ship Dynamics

Quiz 2 - Ship response in the vertical plane
July 09th, 2021

Open books (If you present Excel tables, they must be clearly explained)

1.- Why engineers place the origin of the reference system on midship section, despite the disadvantages that this brings?
2.- You are asked to analyze the response in regular waves, of a 80 m long ship with quadratic waterplane and vertical sides. Main dimensions are: $B: 14 \mathrm{~m}, D: 7 \mathrm{~m}$ and $T: 3.5 \mathrm{~m}$. Beam varies along the length of the ship, with x measured from midships, positive forward according to:

$$
B(x)=-0.00656 x^{2}-0.0875 x+14
$$

Using the reference system employed in class, calculate the static moment on the hull, when the ship rises 20 cm without rotation.
3.- Determine the non-dimensional damping coefficient ξ in pure heave of a box barge, that is with rectangular section along the length of the ship:

$$
\xi=\frac{B_{33}}{2 M^{\prime} \omega_{o}}
$$

where B_{33} is the damping coefficient, M^{\prime} is the virtual mass and ω_{o} is the natural frequency of oscillation. Main dimensions of the vessel are: $L: 60, B: 12, D: 4$, and, $T: 3$ meters, and null trim. Clearly show the dimensional handling of the problem.
4.- The Froude-Krylov component of the excitation force exerted by a regular wave train coming from the bow of the ship is:

$$
F_{3}^{F K}=\left[\rho g \varsigma_{o} \int_{-L / 2}^{L / 2} d x B(x) e^{-k T(x)} e^{i k x}\right] e^{i \omega t}
$$

where ρg is the specific weight of water, ζ_{o}, ω and k are the amplitude, frequency and number of the incident wave train, and, $B(x)$ and $T(x)$ are the beam and draft along the length of the ship.

Consider a box barge ($\mathrm{L}: 70 \mathrm{~m}, B: 14 \mathrm{~m}, D: 5 \mathrm{~m}$ and $T: 3.5 \mathrm{~m}$) receiving regular waves from the bow with an amplitude of 80 cm . If the ship advances with a velocity of 15 knots, determine the length of the waves for which the exciting force in heave is null; clearly show the dimensional handling of the problem. Comment on the result.

