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Chapter 1

Introduction

1.1 Motivation

On average, over a million earthquakes occur each year; of those more than one thousand register
five points or more measured by the Richter scale [1]. Between 2001 and 2011, the death toll related
to natural disasters was higher than 780 000, with 60% of these caused by earthquakes [16]. The
global trends in urbanization [41] expose millions of people to the threat of natural disasters, thus
increasing the need for rapid response and relief efforts. The advent of social media networks
has opened the opportunity of harnessing the help of crowds on social networks for early disaster
response [15]. For example, during mass emergency events (e.g., political crisis, elections, or natural
disasters), crowdsourced data can rapidly provide news ahead of official or traditional media [25].
Citizens, being a self-organizing and collective intelligence force, can play an essential role with
the support of social media services during relief efforts in emergencies due to natural disasters.
Critical aspects need to be addressed on social media services to leverage public collaboration, such
as analyzing quantity, quality, opinion drift, trustworthiness, and security of the information to
become an effective tool [105].

Microblogging data, such as reporting live during natural disasters from the affected zones or
neighboring cities, has been deemed unverifiable and untrustworthy by humanitarian relief organiza-
tions [130]. People are willing to provide help through activists and Non-governmental organizations
(NGOs) because of government efforts often insufficient to organize resources and coordinate relief
efforts in the early stages of the crisis events. However, several issues prevent social media platforms
from being a useful tool in these scenarios. Current limitations include categorization, cross-lingual
messages, report verification, automated report summarization, behavior prediction, scalability, and
safety [42]. By harnessing the power of crowdsourced social media services (e.g., Twitter, Facebook,
Google+), this work seeks to provide automated methods that can contribute to the relief efforts
led by NGOs and activists. For instance, in Ecuador, after the 7.8 earthquakes last April, among

1
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other initiatives, the twitter activist @KarlaMorales1 asked for life straws to purify water that was
very scarce in the affected areas. People started donating immediately, and international donors
were searching for ways to transport life straws to Ecuador, avoiding additional costs. A couple of
tweets from a conversation depict the situation:

KARLAMORALESR: Hay más de 50 life straws en Atlanta, DHL cobra tarifa regular por el envío ¿otra
vía para que lleguen?2.

ARIANNACEVALLOS: @KarlaMoralesR si logran enviarlos a Miami mañana sale un contenedor de Provex
desde ahí3.

Citizens are no longer passive information recipients, and they can build entire humanitarian
assistance structures in hours. Following a natural disaster, local activists working in emergency relief
operations can crowdsource, through social media, tasks related to water, sanitation, and hygiene,
shelter organization, health, nutrition, local experts’ transportation, among others. Additionally,
each task usually involves additional logistics, such as transportation of goods (e.g., medicines, food,
clothes, water) and local experts (e.g., doctors, chefs) to zones affected by natural disasters. Previous
works on disaster management analyze tweets, related to natural disasters, individually, loosing
useful context information such as the sequence of tweets in a conversation. Thus, applications and
automated tools can help local volunteers and NGOs in relief efforts by gathering and analyzing
user-generated data on social media.

1.2 Research Goals

The main goal is to develop a conversational model to help NGOs to cope with the overwhelming
amount of data in the form of conversations, enabling citizens to contribute more efficiently during
natural disasters. The specific research goals are to:

• Characterize crisis-related conversations.

• Design and evaluate a fine-grained taxonomy to classify crisis-related conversations.

• Design and evaluate cross-lingual models for crisis-related conversations.

• Design and evaluate semisupervised models for crisis-related conversations.

• Design and evaluate recommender models for users to join crisis-related conversations.
1https://twitter.com/KarlaMoralesR
2https://twitter.com/ariannacevallos/status/723234766653415425
3https://twitter.com/lapekepenia/status/723257439961927682

https://twitter.com/KarlaMoralesR
https://twitter.com/ariannacevallos/status/723234766653415425
https://twitter.com/lapekepenia/status/723257439961927682
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1.3 Research Questions

Most previous works focused only on analyzing individual sentences or phrases rather than whole
conversations [59, 136, 111, 87, 17]. Broadly, this thesis tackles the problem of Characterizing and
modeling crisis-related conversations occurring during natural disasters. This work seeks to answer
the following research questions:

• Characterizing crisis-related conversations:

– RQ1: What are the factors that ignite conversations?

– RQ2: Does current taxonomies account for crisis-related conversations?

• Modeling of crisis-related conversations:

– RQ3: How to deal with multiple languages that appear during a crisis event?

– RQ4: Does conversational context help in downstream tweets classification tasks?

– RQ5: How to leverage the massive amount of unlabeled social media data for supervised
tasks?

– RQ6: How to recommend users to join relevant conversations on social media?

1.4 Main Contributions

In this doctoral thesis, text data extracted from Twitter conversations regarding a natural disaster
is analyzed and modelled. In doing so, contributions in different areas emerge:: novel Twitter
conversation datasets, new tasks scenarios, machine learning models to automatically label the
data. In this section, such contributions are presented in detail:

1.4.1 New task scenarios

Crisis-related conversational for contextual characterization: This thesis augments traditional crisis-
related datasets with conversational context. The data collection process uses the Twitter
REST API and Cassandra [74] as distributed storage. This work introduces a new conver-
sational dataset about the earthquakes Ecuador 2016. The task scenario and datasets are
available at Github4.

New fine-grained classification for crisis-related events: This thesis investigates how to identify con-
versational acts (replies) to define outcomes that can be useful and relevant for crisis events.
In doing that, this work introduces a new multi-label conversational act annotated corpus for

4https://github.com/johnnytorres/twconvch

https://github.com/johnnytorres/twconvch
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disaster management on Twitter based on the novel, a fine-grained conversational act taxon-
omy. This new dataset enables single and multi-label classification tasks for individual tweets
as well as the conversations outcome. A few-shot learning approach allows to handle the large
number of labels with a long tail or few instances. The task scenario and dataset are available
at Github5.

Recommending user to join conversations: Recommendations are an essential component in down-
stream applications. As such, this thesis introduces a new large Twitter corpus (USERSEC)
containing 10K conversations from three popular users from Ecuador. The dataset contains
posts whose content is related to three domains: politics, sports, and crisis events activism.
Then, this work proposes two novel recommendation tasks: recommending users to join a
specific conversation and recommending a list of conversations to a particular user. The task
scenario and dataset are available at Github6.

1.4.2 Conversations characterizations

Relevance of factors igniting a conversation: This thesis investigates the importance of factors that
influence the engagement of users in conversations and propose a language-independent model
to identify seed tweets that have the potential to form conversations for different types of users.
The results indicate that factors such as users’ mentions and hashtags are predominant, and
often generate a response (reply) from other users. Also, the retweet factor of an influencer
usually triggers further interactions in conversations from users not in the followers graph of the
user that started the conversation. This contribution has been peer-reviewed and published in
the Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing,
Applications, and Technologies [133].

Context-aware classification of crisis-related conversations: This thesis analyzes the context of crisis-
related conversations on Twitter and how it can improve downstream NLP tasks such as
classification and categorization, especially in the case of unlabeled tweets in the sample con-
versation. Through the augmentation of previous crisis-related datasets, this work analyzes
labeled conversational tweets in the context of the conversations. The findings indicate that
the conversational context improves downstream NLP classification tasks. Furthermore, the
analysis determines what categories benefit the most from having a conversation context in
classification tasks. This contribution is under review at the International AAAI Conference
on Web and Social Media (ICWSM).

Cross-lingual crisis-related conversations This thesis investigates a multi-lingual scenario for crisis-
related conversations, which is often the case of crisis events. Specifically, this work conducted

5https://github.com/johnnytorres/crisis_conv_crosslingual
6https://github.com/johnnytorres/recsys_twconv_s2s

https://github.com/johnnytorres/crisis_conv_crosslingual
https://github.com/johnnytorres/recsys_twconv_s2s
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a study of crisis-related tweets about the earthquake that occurred in Ecuador in April 2016
for cross-lingual tweets. To that end, this work introduces a new annotated dataset in both
Spanish and English languages with approximately 8K tweets; half of them belong to con-
versations. Then, this research work evaluates a neural architecture to identify crisis-related
tweets across multiple languages. Also, this work characterizes the conversations from locals
and foreigners about the study case. This contribution has been peer-reviewed and published
in the Companion Proceedings of The 2019 World Wide Web Conference [135].

1.4.3 New machine learning models

Leveraging unlabeled data for short-text classification: This thesis proposes a semi-supervised ap-
proach to learn how to categorize short-texts in a multi-label taxonomy using a small set of
labeled data and leveraging the availability of large amounts of unlabeled data. Built upon
a neural semi-supervised k-means clustering, the proposed new model modifies the normal
objective function and adds a penalty term for labeled data. Then, it extended the neural
semi-supervised clustering and applied it to multi-label settings. This contribution has been
peer-reviewed and published in the Proceedings of the 2nd Workshop on Affective Content
Analysis (AffCon 2019) co-located with Thirty-Third AAAI Conference on Artificial Intelli-
gence (AAAI 2019) [132].

Recommending short-text conversations: This thesis proposes a neural learning architecture based
on a sequence-to-sequence model to tackle the task of recommending conversations using the
conversation context and the user’s history. This research evaluates several types of recurrent
neural networks that can be used in the proposed architecture and investigate their perfor-
mance. This contribution has been peer-reviewed and published in the Journal Expert Systems
with Applications [134].

1.5 Research outline

This thesis comprises of nine chapters. After a background chapter, there are six research chapters
containing core contributions of this work plus a concluding chapter:

Chapter 2 - Background: This chapter introduces the background for the following chapters. The
research in this thesis falls in the broader context of information retrieval and text mining for
the crisis informatics domain. After a brief outline of the field, and of social media mining
for crisis informatics, in particular, the chapter describes conversations characterization and
taxonomies, cross-lingual and contextual classification, semisupervised learning and recom-
mendations literature.
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Chapter 3 - Characterization conversations: This chapter characterizes and analyzes the rise of con-
versational interactions in Twitter with an emphasis on crisis-related events. The characteri-
zation focuses on identifying the properties of conversations. Such properties include the type
of conversations (wide or in-depth), the distribution of the replies, and the number of users
participating. Aditional, these chapter aspects propose a model that identifies when a tweet
could start a conversation by using user and tweet features.

Chapter 4 - Hierarchical multi-label taxonomy: This chapter analyzes the classification tasks of in-
dividual tweets found in the literature, which do not have enough context and cannot provide
intuition on whether the interaction produces an outcome. This chapter introduces a new hi-
erarchical multi-label taxonomy to categorize individual tweets as well the whole conversation.

Chapter 5 - Cross-lingual classification: Often, users from different countries around the world can
interact in conversations about crisis events on social media. This chapter evaluates classifi-
cation models suitable for handling multi-lingual scenarios for crisis-related conversations.

Chapter 6 - Context-aware classification: Current classification approaches have focused on the anal-
ysis of individual tweets, which do not have enough context to disambiguate information. This
chapter analyzes conversations during several crisis events get insights into the use of conver-
sational context in NLP classification tasks.

Chapter 7 - Semisupervised learning: Supervised learning often requires a lot of feature engineering
or a significant amount of annotated data to achieve good results. This chapter introduces
a semi-supervised neural architecture for multi-label settings, that combines deep learning
representation and k-means clustering for text classification.

Chapter 8 - Recommending conversations: Since the amount of data on social media networks can
overwhelm users, recommending relevant content becomes an essential task. This chapter
describes a state-of-the-art recommendation model based on a sequence-to-sequence neural
architecture for recommendation users or conversations on social media.

Chapter 9 - Conclusions: This chapter summarizes the main findings in this thesis and points out
directions for future research.



Chapter 2

Background

This chapter provides the concepts and background needed in later chapters in this thesis. Sec-
tion 2.1 provides a brief introduction to conversations on social media, and specifically crisis-related
conversation on Twitter, which is the focus of this thesis. Section 2.2 introduces previous works on
the literature related to the categorization of tweets in the domain. Section 2.3 summarizes the multi-
lingual aspect of the crisis-related conversations on social media. Section 2.4 surveys background
material on context-aware classification. Section 2.5 discuss methods to overcome the problem of
low-resource languages because of the scarcity of labeled data. Section 2.6 detail preliminaries of
content recommendation on social media.

2.1 Characterizing Conversations on Social Media

Understanding human conversations have been extensively studied and continue attracting the
attention of researchers in the quest to achieve human-level reasoning and comprehension in ma-
chines. Conversation modeling has been studied previously using cellphone SMS corpus [53, 11],
IRC chat corpora [37], and blog datasets [152].

There are several research directions in modeling human conversations. Amongst them, iden-
tifying conversation acts1. Several applications rely on acts identification, such as: conversational
agents [147], dialogue systems [10], automated customer support service [103], virtual assistants [82],
among others.

Conceived as a medium to share short personal status, Twitter rapidly evolved as a platform
to interact with others with the novel use of ‘@’ as a way of targeting other users to reply to a
prior status or establish interactions in the form of conversations [51]. Prior work studied the use of
the retweet as a means of engaging in conversations, and how dealt with different aspects such as
authorship, attribution, and fidelity of the communication [21]. The authors found that in general,

1Known also as dialog acts.
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conversations are messy, even when the interactions take place in a bounded group by location,
timespan, and participant characteristics. In bounded groups, it is more likely to find cohesive
conversations with turns (a set of contiguous tweets that belong to the same user) and references
to previous messages, but that is unusual on unbounded groups where conversational structures are
missing.

The aspect of information diffusion on Twitter depends on the analysis of the retweet mechanism
on a large-scale analysis of the factors impacting the retweeting behavior for tweets [127]. This work
identified a strong correlation of retweet behavior with content features (e.g., URLs and hashtags),
as well as contextual features (e.g., number of followers and friends). Messages and breaking news on
tweets sometimes propagate outside of the group of the originator, i.e., not restricted to the followers
and depends on the user influence calculated by several metrics such as the number of followers,
replies, retweets [153]. The process of content diffusion on Twitter can take the form of cascades when
users reshare tweets. The study of the characterization and predictability of cascades of information
show the predictability of temporal and structural features. Moreover, breath propagation rather
than depth is a better indicator [28].

Previous works have studied the problem of predicting the popularity of messages [52]. Based
on the future number of retweets, and how those influence the content propagation, proposed clas-
sification models include several content-based, contextual, and temporal features extracted from
tweets. Additionally, models include network structure properties in its prediction model. Most
of the previous studies focus on measuring the popularity of content based on the propagation of
the content in the network. However, how a user writes a tweet can impact on its popularity and
propagation. Previous works measure this factor by taking pairs of tweets posted with similar URLs
and written by the same user but using different words. Previous findings indicate that some tweets
can have more influence and popularity than others, depending on the words’ choice [129].

In another aspect, some authors tackle the problem of predicting the popularity of the conver-
sations on Reddit Threads [46]. Although it is a different social network, the authors tackled the
problem of identifying the popularity of a conversation thread based on the content analysis using
deep reinforcement learning. These prior works are closely related to the study but differ in the task
and the metric used. This work focus on the number of replies received by tweets to predict whether
a given tweet will generate interactions from other users.

2.2 Fine Grained Taxonomy for Crisis-related Conversations

The analysis of data from social networks has become critical for many application areas [101, 78,
117]. Immediately after a crisis or natural disaster has occurred, people use social media platforms to
report the situation in the affected places, look for useful information, and request/offer help [57, 26].
Previous studies have analyzed the usefulness of extensive stream data from social media during crisis
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events. It can be instrumental during natural disasters to gain insight into the situation as it unfolds
for the relief efforts by organizations and activists [5, 120, 136].

Previous works implemented several systems to classify, extract, and summarize crisis-relevant
information from social media; for a detailed survey see [57]. For example, the implementation of
platforms for emergency awareness [24], using an SVM model to classify interesting tweets during
natural disasters. Also, Naive Bayes and MaxEnt classifiers help to find situational awareness tweets
from several crises [138]. Imran et al. implemented the AIDR platform to collect and classify Twitter
data streams during crises [58]. This platform uses a random forest classifier trained in an offline
setting. Although, after receiving every minibatch of 50 training examples, they update the older
model with a new one.

The classification tasks used by previous work use single label taxonomy [57, 62, 100], which miss
information in some tweets that refer to two or more labels at the same time. Moreover, previous
works do not consider the label of the conversation itself, such as the outcome of deep conversations.
This thesis proposed a new fine-grained taxonomy to account for hierarchical multi-label classification
at a tweet and conversation level.

2.3 Cross-lingual Crisis-related Conversations

Previous works analyze the usefulness of extensive stream data from social media during crisis
events. Immediately after a crisis or natural disaster has occurred, people use social media platforms
to report the situation in the affected places, look for useful information, and request/offer help [57,
26]. It can be crucial during natural disasters to gain insight into the situation as it unfolds for
the relief efforts by organizations and activists [120, 5, 136]. There are several datasets publicly
available for crisis events such as crisisNLP datasets2, which includes tweets from a large number
of crisis-related events, such as earthquakes, floods, hurricanes, and cyclones. In each event, users
often post tweets in their native language, where the event occurred. However, users from other
countries and languages can post for the same event, leading to multi-lingual datasets.

Previous works proposed several learning methods to classify and categorize crisis-related data
using single language approaches [138, 24, 57]. However, learning single language models means the
model requires retraining for a different language, and this is even more critical for low-resource
languages. Traditional classification approaches have several shortcomings due to the discrete word
representations and the dependency on the trained data for a specific event and language, so they
have poor performance classifying data for new events even more for new languages (out-of-event
data) [62]. Recent approaches use neural architectures to deal with the issue the out-of-event data,
specifically Convolutional Neural Networks (CNN) [100, 23] and semi-supervised learning [8, 7].
Social media reach worldwide audiences; therefore, learning methods have to deal with a myriad of

2http://crisisnlp.qcri.org/

http://crisisnlp.qcri.org/
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languages for user-generated data during crisis events. Other approaches evaluated several scenarios
of learning methods with cross-lingual data, e.g., using 30 cross-lingual datasets of crisis events where
the model is trained on one language and tested in another language [68]. Their approach uses an
SVM classifier with several semantic features in addition to the tweets’ text. This thesis leverages
the experimental setup proposed and evaluates an end-to-end multi-lingual model based on deep
contextual embeddings and neural architectures.

2.4 Context-aware Classification of Crisis-related Conversations

Previous studies have analyzed the use of user-generated data in online social networks (OSNs)
during crisis events. It can be instrumental during natural disasters to gain insight into the situation
as it unfolds for the relief efforts by organizations and activists [136]. Several systems proposed in the
literature perform tasks to classify, extract, and summarize crisis-relevant information from social
media; for a detailed survey see [57]. For example, the implementation of platforms for emergency
awareness [24], using the Support Vector Machine (SVM) model to classify interesting tweets during
natural disasters. Imran et al. implemented the Artificial Intelligence for Digital Response (AIDR)
platform to collect and classify Twitter data streams during crises [58]. This platform uses a random
forest classifier trained in an offline setting. After receiving every minibatch of 50 training examples,
they update the older model with a new one.

Traditional approaches require manually engineered features like cue words and TF-IDF vectors
for learning [57, 62]. In contrast, recent approaches based on deep neural networks tackle some of
the issues in traditional methods, such as the generalization error using word embeddings [100]. The
classification approaches in previous works use learning techniques with either a discrete (TF-IDF)
or dense (embeddings) representation of the text to classify crisis-related data. At the beginning of
a disaster event, there is little to no labeled data available for training the models. Minutes or even
hours later, the labeled data is ready in small batches depending on the availability of volunteers,
often geographically dispersed. Once trained, the learning algorithms are dependent on the labeled
data of the event for training. Due to the discrete word representations and the variety across events
from which the big crisis data is accessible, they have poor performance when trained on the data
from previous events (out-of-event data). Moreover, social media platforms allow users to interact
in conversations that provide a context. Previous works use individual labeled tweets but do not
consider the conversational context in their NLP approaches. This work aims to evaluate the effect
of using conversation contexts in classification tasks.
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2.5 Leveraging Unlabeled Data for Crisis-related Conversations

Traditional approaches to identifying conversation acts rely on manual human annotation. This
process includes collecting and labeling acts in the dataset following an annotation guide. Although
successful, this process can be very time consuming and costly to carry out and affects the analysis
and use of low-resource languages such as Spanish. There are several approaches to mitigate manual
annotation of the data. A straightforward approach is semisupervised learning to leverage the
massive amount of unlabeled data available on social media. Previous work on semi-supervised
clustering methods analyzes methods based on: constraints and representation. The constraint-
based approaches use a small percentage of labeled data to restrict the clustering process [33].
Instead, the representation-based methods first learn a data representation model that satisfies the
labeled data, and then use it to group both labeled and unlabeled data [13].

The hybrid approaches try to integrate both methods in a unified framework [18]. However,
the use of linear projection for learning by representation has limitations to achieve a reasonable
performance. In the last few years, several approaches use deep neural architectures to learn text
representations that overcome the limitation of linear models [150]. However, the separation of the
learning process of the data representation model and the clustering model restricts the benefits and
is more similar to the techniques representation-based. In this work, the proposed model builds on
an approach that combines into an integrated framework both the representation of deep learning
and the clustering method [144].

2.6 Recommending Crisis-related Conversations

As popular microblogs such as Twitter add new functionalities to their platforms, there are new
tasks to tackle on the field of social recommender systems (SRSs) and short-text analysis. A re-
cent survey provides insights into the trends of academic literature reviews in the proposed context
and presents a comparison of different research approaches [131]. They introduce a classification
framework to better understand the methodologies and trends used in the development of RSs for
microblogging. The authors identified nine types of recommendation: hashtags, mentions, news,
points-of-interest, profile classification, retweets, tweets, URLs, and whom to follow. Recently, a
related work proposed the task of recommending conversations to users, which is a slightly different
task to the outlined in this work. The work presented focuses on a novel classification task: recom-
mending users that might join a conversation. The task can help a user starting a conversation to
find other users that might be interested in joining that conversation to achieve a goal, e.g., provide
help during crisis events such as natural disasters.

There are various types of collaborative filtering (CF) techniques for RSs, dividing them into
four categories: feedback-based, trust-based, matrix factorization-based, and nearest neighbor-based
approaches [151]. Tweet-recommendation approaches use network, content, and retweet analyses for



CHAPTER 2. BACKGROUND 12

making recommendations of tweets. The main advantage of the tweet-recommendation method
is to recommend tweets that are not visible to the user through transitivity (friends-of-friends)
relationship can determine useful recommendations. However, the disadvantage is that not always
other users that might in the reach of the user’s ego-network [9]. Another model extends the
Word2Vec model to learn users and posts jointly representations [156]. The recommendation of
posts to users depends on the cosine similarity of users and posts vectors. The method is simple
but effective, and the method relies on a similar idea for similarity through vector representation
but using more complex recurrent neural networks on top of the Word2Vec representations [90].
Other approaches use recommendation models based on a hybrid approach (CF + Topic modeling)
that extract different aspects of the conversations. Although the empirical results show that the
model provides better performance to prior methods, the disadvantage is the scalability and the
generalization to new users or content [159].

In recent years, researchers have achieved substantial improvements in several machine learning
tasks in areas such as computer vision, speech recognition, and machine translation, among others.
These advances have been possible due to new deep learning architectures [77], sparked by the avail-
ability of massive datasets [34], increasing computational power [104], and the development of robust
frameworks for training neural architectures [2]. Neural architectures have proven successful in im-
proving RSs. For instance, incorporating deep learning techniques to existing CF methods improves
the performance of recommendations by extracting content-based features from items [141]. For
recommendations based on text content (e.g., news articles, blog posts, movie summaries, papers),
sequence models, such as RNN, improve session-based recommendations where matrix factoriza-
tion models are not accurate [49]. In conversational modeling, neural architectures require little
feature engineering and are capable of generalizing unseen conversations [48]. Conversational mod-
eling uses the ideas of statistical machine translation by learning phrase representations using RNN
encoder-decoder models [116, 125]. This type of architecture can generate the representations of
text sequences, such as conversation context and user profiles required for the tasks studied in this
thesis. Seq2Seq models use a recurrent network (i.e., RNN or LSTM) to encode the input to a
vector representation, and another sequence network to decode it in order to learn to rank [83]
or to generate responses [123]. Seq2Seq models yield to better results compared to prior methods
based on information retrieval for unstructured conversations [66]. This work presented in this thesis
leverages Seq2Seq architecture to learn the text representation of the conversation context and user
profiles for the task of recommending conversations.



Chapter 3

Characterizing Conversations

The previous chapter introduced the background material for this thesis. Starting in this chap-
ter, the research questions listed in Chapter 2 are the main focus. This chapter addresses RQ1,
which is concerned with characterization crisis-related conversations on Twitter and begins with an
introduction about the motivation for characterizing conversations in Section 3.1 In Section 3.2, the
characterization of conversations defines how to extract useful features and filter valid conversations,
and then proposed a predictive model for identifying conversations. Section 3.3 describe the experi-
mental settings and Section 3.4 presents the results. Finally, Section 3.5 outline the conclusions and
research directions. The work presented in this chapter was first published at the Fourth IEEE/ACM
International Conference on Big Data Computing, Applications, and Technologies [133].

3.1 Introduction

Amongst microblogging sites, Twitter has become one of the most popular worldwide. In this
social network, its users share content publicly via short texts named tweets. Although most tweets
generate little or no interaction with other users, sometimes the published content can ignite a long
chain of replies and interactions from other users. This thesis denotes as seed tweets those that
initiate conversations and seeks to understand the factors in seed tweets that contribute to igniting
replies from other users. The published content on social networks can have an impact on different
aspects of society, such as popular culture, brand communication, politics, activism, journalism,
crisis communication, among others [146]. As the content generated increases on social networks,
the factors that ignite conversations or discussions are of particular interest.

In the last decade, microblogging—specifically Twitter—has attracted the attention of the re-
search community due to the open data access through its public APIs1. Several aspects of Twitter
have been studied by researchers, including but not limited to its network structure, users’ behaviors,

1https://developer.twitter.com/en/docs

13

https://developer.twitter.com/en/docs


CHAPTER 3. CHARACTERIZING CONVERSATIONS 14

the content generated, and the infrastructure needed to handle its massive datasets. A particular
aspect that calls the attention of researchers is related to the nature of the interactions that occur
in this social network. Among the type of interaction are the conversations spontaneously occurring
among users. Even though initially the idea of Twitter was to allow users to post what they were
doing, soon, its users began to use @ symbol to interact with other users. This type of interaction
often evolves into natural conversations that blur the border between conversations in private chats
and public blogs [51].

In understanding human conversations, several aspects are essential. Some of them consist of
identifying the structure and intent of conversations [115]. Predicting whether content posted on
social networks will become popular or generate interest from users constitute another aspect in the
analysis of conversations. The latter could be useful in many applications in the area of recommender
systems (news feed, advertising placement). For instance, a user may be interested in reading several
articles on different topics, for which a real-time news recommendation system should show relevant
articles to fulfill users’ preferences or generate interest from the user. Similarly, ads published on
social networks, aim to generate attention (reading) or interactions (in the form of a like, retweet, or
replies) from its audience. The work presented in this chapter examines the factors that contribute
to sparking a conversation on Twitter, i.e., identifying whether a tweet that will generate replies
from other users. The hypothesis is that contextual and content features extracted from the tweets
can help to predict the likelihood of a tweet evolving into a conversation. The goal is not to predict
the popularity level, but instead, if a tweet will evolve into a conversation.

The main contribution of this chapter is to:

• Introduce a new corpus for social media conversations.

• Characterize tweets that ignite conversations.

• Design and implement a classification model to identify seed tweets.

3.2 Methodology

The methodology in this chapter performs an exploratory analysis of conversational data collected
from Twitter and then describes a predictive model for identifying when a tweet evolves into a
conversation. The analysis in this chapter uses a dataset related to the earthquake in Ecuador in
2016. The Appendix A details the data acquisition, storage, and processing of the dataset.

3.2.1 Characterization

This section determines the features that identify and filter tweets that belong to conversations.
This analysis helps to uncover features to filter out tweets that do not represent conversations
between two or more users. Thus, the predictive model in Section 3.2.5 uses only valid conversations.
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Like most human activities, short conversations are the bulk of the dataset, whereas there are few
very long conversations. Figure 3.1 shows that the number of tweets in conversations follows a power
law distribution [32].
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Figure 3.1: Distribution of the number of replies in conversations for the dataset.

Table 3.1 show that 64% of the tweets are non-conversational. Furthermore, the remaining tweets
constitute conversational threads containing two or more tweets (length of the conversation). For
conversational tweets (fourth column), 41% of them are short conversations (one tweet and one
reply), similar to the results found in [115]. Lastly, the number of conversations with more than 5

replies are marginal, as the distribution depicted in Figure 3.1.

# of conv. Length % tweets % conv.

1,747,374 1 0.64 0.00
401,274 2 0.15 0.41
144,078 3 0.05 0.15
86,512 4 0.03 0.09
61,935 5 0.02 0.06

Table 3.1: Conversations statistics.

Although, the majority of users in Twitter post tweets in one language, some users can use
multiple languages. The information provided by the Twitter API in each tweet’s metadata, specif-
ically the field lang, allows detecting the language of the tweets. There is a total of 44 different
languages detected, from which English and Spanish represent 85% of the tweets. The language was
not available for a small percentage of the tweets (7% approximately), which have an indicator of
undefined language. The content of tweets with undefined language is usually limited to mentions,
hashtags, URLs, emoticons, or multimedia (i.e., images, videos). In addition to English and Spanish
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languages, the further analysis includes the tweets marked as undefined when those are part of a
conversation. Table 3.2 shows the distribution of the number of languages used for conversations
in the dataset. The first column refers to the number of languages detected. The second column
indicates the number of conversations. The third indicates the percentage of conversations by lan-
guage, and the fourth the cumulative percentage. The majority of conversations contain tweets in
one language (75%), and there is a 25% of conversations with two or more languages. However,
up to three languages represent the cumulative 99% of the total number of conversations, which
indicates that it is rare to have conversations with more than three languages.

# of lang. # of conv. % of conv. cum. %

1 216,138 0.75 0.75
2 62,992 0.22 0.97
3 6,165 0.02 0.99

Table 3.2: Languages in conversations.

Geographically, this study focuses on countries in the American continent, but the interactions
reach places all over the world. The dataset has approximately 12% of tweets with geolocated
information associated, and 3.2% correspond to conversations. Although the geolocated tweets are
a small percentage, Figure 3.2 shows users posting tweets all over the world, mainly in English or
Spanish speaking countries.

Figure 3.2: Heatmap of geolocated tweets (12% in exploratory dataset). The markers, connected by
the geodetic line, represent a conversation between two users in very distant places.
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Although very distant conversations are not uncommon, conversations in the same point (zero
meters from the origin) may be an indicator that the same user is self-replying or creating a message
in multiple tweets. The analysis considers only conversations involving more than one user for further
analysis, to avoid selecting tweets in the same spot as conversations. The analysis of the duration of
conversations shows that the temporary distribution of tweets in conversations is uniform throughout
the week. Figure 3.3 shows the density slightly increasing at night on Tuesday and Wednesday, as
well as Friday morning, and it goes down the Saturday.
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Figure 3.3: Temporal distribution for tweets initiating conversations.

Another aspect of interest is the duration of the conversations, as shown in Table 3.3. Most of
the conversations are short-lived, i.e., have a duration of fewer than ten days. Also, the analysis
show that concise duration replies are usually self replies created by third-party apps. For instance,
the following tweets belong to the same user, created almost at the same time2:

tweet: 2017-07-12 21:00:24: @trendinaliaEC: ’1. #ExperienciasElectoralesEC 2. #NoALaVio-
lenciaDeGenero 3. Lula da Silva 4. #CPCCSMarcandoElCamino 5.Alfaro Moreno...’
reply: 2017-07-12 21:00:24: @trendinaliaEC: ’6. Roger Federer 7. #LeyEficienciaTramites 8.
Defensor del Pueblo 9.#EmergenciaCBQ 10. James Rodriguez.’

On the other hand, the increasing use of bots or spam accounts on Twitter can create noisy
2https://twitter.com/trendinaliaEC/status/885242460644888577

https://twitter.com/trendinaliaEC/status/885242460644888577
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conversations that span several years. The following tweets illustrate this case3:

tweet: 2009-03-07 @finkd: ’Yes; this is the real Mark Zuckerberg. Thanks for following me!’
reply: 2016-08-13 @oropesa555: ’SOS SOS @Pontifexes @YourAnonGlobal @finkd ...’

Despite these cases, there are valid conversations with long duration. Usually, new friends or
followers may visit tweets posted long ago and comment on them (using the reply option). For
instance, the following conversation4:

tweet: 2009-10-25 @NARSissist: ’Eaten alive by a mosquito... Not fun’
reply: 2017-01-08 @GigiFreireA: ’@NARSissist WTF NARS? xD’

This analysis filters out tweets that fall in the case of conversations containing sequential posts
created by the same user in a short period. The other cases are more challenging to identify, so the
analysis includes all tweets in long-duration conversations for further analysis.

Days > ≤ Conversations % cperc

0 10 277,222 0.97 0.97
10 20 4,548 0.02 0.98
20 30 1,138 0.00 0.99
30 40 627 0.00 0.99
40 50 379 0.00 0.99

Table 3.3: Duration of conversations.

The spatial and temporal analysis found that 80% of the conversations have two or more users
involved, as shown in Table 3.4. There are some conversations where all tweets belong to the same
user, therefore not included as valid conversations. For the conversations involving two users, the
median of the conversation length is two tweets. However, there are some outliers, e.g., some sports
journalists narrating football matches on Twitter using replies can from a conversation thread with
more than 500 tweets. The predictive analysis considers only conversations having two or more
users.

# Users # Conversations % cum. %

1 20,476 0.07 0.07
2 245,417 0.80 0.87
3 29,128 0.09 0.96
4 7,029 0.02 0.98
5 2,420 0.01 0.99

Table 3.4: Users in conversations.
3https://twitter.com/finkd/status/1293412597
4https://twitter.com/NARSissist/status/5157432533

https://twitter.com/finkd/status/1293412597
https://twitter.com/NARSissist/status/5157432533
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The next sections describe the predictive model for identifying seed tweets that evolve into
conversations.

3.2.2 Prediction dataset

The predictive analysis uses a subset of tweets that allows understanding the features that might
spark a conversation. The idea is to use this subset of tweets to extract the features, i.e., indepen-
dent variables. Then, the preprocessing defines whether a tweet is a part or not of a conversation
as the dependent variable in the model. From the exploratory dataset, the preprocessing selects
randomly 1000 tweets that initiated a conversation (parent tweet of a conversation), stratified by
the number of replies received. For these conversation tweets, the sample includes all replies. Then,
the preprocessing select randomly 1000 tweets that do not evolve into conversations, i.e., with no
replies. In total, the prediction dataset contains 10, 805 for tweets. Before further analysis, the pre-
processing applies a log transformation to features with large values (number of followers, friends,
tweets posted). These features usually follow a power-law distribution, while other features remain
with the original range of values.

3.2.3 Features extraction

The analysis pipeline in this study employs a feature extraction step before using the prediction
dataset in the conversational modeling. These features are content, contextual, and language-
invariant attributes present in the text and metadata of each tweet. Table 3.5 shows two types
of features: user-related and tweet related features. Those associated with the user level include
metadata from the user profile. The tweet related features are the metadata and tweet’s content
itself.

User level features

Statuses # of statuses
Followers # of followers
Friends # of friends
Favorites # of likes given to tweets by the user

Tweet level features

Retweets # of retweets received
Favorites # of likes received
Urls # of Urls in the tweet
Hashtags # of hashtags in the tweet
Mentions # of mentions in the tweet
Media If there are images or video in the tweet
Replies # of replies received

Table 3.5: Conversations features.
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The feature extraction considers contextual features at the user level (e.g., the number of statuses
posted, followers, friends, and favorites), and content features at the tweet level (e.g., the number of
URLs, hashtags, mentions, and multimedia references associated). Some tweet attributes indicate
the popularity of a tweet, such as the number of replies, retweets, and favorites. The focus of
this study is conversations, as suchthe number of replies, is the target variable to predict. The
feature extraction employs regular expressions for content attributes to identify words starting with
@ (mentions), # (hashtags), or URLs. For contextual features, the feature extraction uses the
tweets’ metadata; while, the target variable is the count of all the replies for each tweet. Before
the PCA and predictive analysis, the data cleansing of the dataset removes tweets with missing
user profile features, which correspond to a few cases (0.3% of tweets). For user-level features, the
feature extraction step applies log transformations to avoid large values dominating in the predictive
analysis.

3.2.4 Principal components analysis

The pipeline performs PCA to reduce dimensionality and find possibly correlated to features
shown in Table 3.5. PCA transforms the features into a small set of factors, identified as principal
components. This technique aims to reveal the underlying data structure, and the weights each
feature contributes to the data variance. Table 3.6 shows the principal components or factors in the
dataset presented in descending order of importance. The second column contains the eigenvalues,
i.e., the variance accounted by each factor. The third column shows the percentage of the eigenvalues
for each feature and the cumulative percentage in the last column.

Factor Eigenvalue % Variance % Cum. Var.

1 1.71 0.27 0.27
2 1.47 0.24 0.51
3 1.02 0.16 0.67
4 0.54 0.09 0.76
5 0.49 0.08 0.84
6 0.42 0.07 0.90
7 0.27 0.04 0.95
8 0.21 0.03 0.98
9 0.12 0.02 1.00

Table 3.6: Principal components analysis.

The number of factors used may influence the error variance if PCA retains too many factors
while retaining a few factors risk leaving out valuable common variance. A criterion to determine
the number of factors to retain is the Kaiser’s criterion, which is a rule of thumb to retain that
recommendation to retain the factor with eigenvalues greater than 1. The pipeline performs a scree
test to avoid overestimating by choosing factors before the flattening of the slope of eigenvalues.
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The pipeline uses the Kaiser’s criterion as well the scree test [154] to determine the number of
factors to retain. By combining the rules as mentioned earlier, PCA retains factors 1, 2, and 3 in
Table 3.6. Together these factors represent 67% of the total variance of the features. Table 3.7
shows factor loadings (correlations) between the original features in Table 3.5 and each of the three
factors retained in the previous step.

Feature Factor1 Factor2 Factor3

fav given 0.35 −0.09 −0.08
followers 0.50 −0.20 0.12
friends 0.52 −0.01 0.07

statuses 0.53 −0.20 0.04
tokens 0.04 −0.17 −0.06

urls 0.02 0.01 0.04
hashtags −0.02 0.25 0.95
mentions 0.27 0.91 −0.24

media 0.03 0.01 0.03

Table 3.7: PCA factors loadings.

To visualize the importance of each feature based on the correlation with factors, Figure 3.4
shows the factors in pairs. Factors represent the axis of the graphs, for instance, the factor vector
for feature mentions is represented in the first graph with coordinates (0.27, 0.91). Likewise, in
the second graph, the same feature is represented with coordinates (0.91,−0.24), illustrating the
correlation feature-factors. The interpretation for the first graph is that it represents the networking
and activity level of the user based on the high correlation with user profile features. The activity
level is related to the number of favorites the user has given to other tweets or the number of
tweets created. The networking level is related to user attributes that indicate network relationships
(followers, friends). Meanwhile, the second graph represents the content patterns of the user. There
is a slight negative correlation with the feature mentions. Other content-related features are slightly
positive (e.g., the number of URLs, media, or hashtags). Content features, such as the number of
tokens, have a negative correlation in the third factor. An important aspect is a fact that mentions
to other users often generate a response (reply). Factor vectors of users’ mentions and hashtags are
predominant in both graphs of Figure 3.4.

3.2.5 Prediction model

Based on the underlying structure extracted in PCA, the predictive model aims to determine
the likelihood of conversation arising for a given tweet, i.e. as binary classification task. To tackle
this problem, the pipeline train and evaluate a supervised classifier using the prediction dataset.
The classification model renders a set of prediction coefficients for each feature that predict the
probability of a tweet initiating a conversation. This study defines the dependent variable as binary:
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Figure 3.4: Factors mappings.

the tweet initiates or not a conversation, and transform the original feature number of replies (nr)
into a binary feature, as follows:

c(n) =

0 if nr = 0

1 if nr > 0
(3.1)

3.3 Experimental Settings

The classification pipeline consists of extract and standardizes the features, apply PCA, stratified
splitting cross-validation, and random grid search for hyper-parameters tuning. The pipeline uses two
input datasets: content features only and full (user + content features). The first dataset considers
only content features, i.e., tweet level features, while the second considers both users and content
level features. This study evaluates the following classifiers: a) Logistic Regression b) Support Vector
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Machine (SVM): RBF kernel c) Gaussian Naive Bayes (NB) d) Neural Net e) Naive Bayes

3.4 Results and Discussion

Table 3.8 shows the coefficients in the predictive model. These coefficients corroborate specific
findings of the importance of certain features revealed through PCA analysis. Mainly, those related
to the activity level (favorites granted, number of tweets posted), the interaction (mentions in tweets),
the network (followers), and content (tokens in tweets). Friends have a negative coefficient, i.e., little
influence in initiating conversations. Content features such as URLs or hashtags present in tweets
are less critical in conversation forming, while mentions are slightly more critical.

feat coef std err z P>|z|

intercept 0.185 0.082 2.254 0.024
fav given 0.771 0.087 8.832 0.000
followers 1.074 0.098 10.934 0.000
friends −0.214 0.070 −3.047 0.002

statuses −0.092 0.094 −0.973 0.331
tokens 0.449 0.083 5.409 0.000

urls −0.550 0.112 −4.906 0.000
hashtags −0.471 0.071 −6.650 0.000
mentions 0.088 0.047 1.893 0.058

media −0.046 0.137 −0.337 0.736

Table 3.8: Predictive model.

In Figure 3.5, the visualizations use the first two factors obtained in PCA. The results show
that Logistic Regression performs consistently using both datasets: content only features or all
features. Using all features, SVM has the best performance (0.80), followed by a Neural Net model
(0.79). Neural Net model shows promising results, moreover if future works want to include for more
complex tasks that involve analyzing textual and visual content.

Additionally, Figure 3.6 shows the performance of the best classifier by separating the dataset by
percentiles (10th, IQ, 90th). This study uses the three features with a higher coefficient in Table 3.8.
In the case of the feature number of followers, the classifier performs better for the 90th percentile
as those are users with high popularity, as their tweets are more likely to generate replies. The
feature favorites given that denote the activity level of the user for the 90th percentile has similar
behavior, but interestingly for users with few activities (10th percentile) performs better than for
average users. The number of tokens created by users has a similar behavior as favorites given., but
this could be because IQ percentile contains noisier tweets than other percentiles.
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Figure 3.5: Classification models for identifying seed conversation tweets.
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Figure 3.6: Classification comparison for different features percentiles.

3.5 Conclusion

This chapter analyzed the factors that may influence conversation forming from a given tweet.
The characterization highlights the difficulties of working with noisy data found on Twitter and help
to establish some considerations to avoid including noisy data in predictive analysis. For example,
language, duration, distance, and the number of users in conversations can help to filter irrelevant and
non-conversational tweets. The PCA analysis of both user and content features helped to establish
their correlation and their influence on predictive models. The predictive analysis shows that the
overall F1 score improves if the model uses both user profile features as well as tweets features.
Future work is to explore large-scale analysis for massive Twitter datasets using distributed machine
learning. Also, multimodal models can include additional features through the analysis of the textual
and visual content of the tweets.



Chapter 4

Hierarchical Multi-label Taxonomy

This chapter addresses RQ2, concerned with extending previous taxonomies to consider the
case of hierarchical multi-label settings. This chapter begins with an overview and motivation for
hierarchical multi-label taxonomy in Section 4.1. Next, Section 4.2 describes the methodology and
describes the conversation modeling framework. Then, Section 4.3 details the experimental settings
in and Section 4.4 show the empirical results. Finally, Section 4.5 outlines conclusions and research
directions.

4.1 Introduction

The content generated by users in social networks contains information that can be useful for
disaster relief. One of the limitations in the management of social network data during Crisis events
is related to the analysis of short and unstructured text messages, which are published by users
and are directly related to disasters and emergencies [57, 26]. The analysis of messages posted on
microblogging platforms such as Twitter can help humanitarian organizations (e.g., United Nations,
Red Cross) or activists during crisis events. Social media allow them to become aware of the
situation, know the urgent needs of affected people, assess critical damages in the infrastructure,
identify medical emergencies in different locations, or coordinate relief or rescue actions [5, 139].

The automatic classification of tweets to identify useful and relevant information is a challenging
task because: a) tweets are usually short text messages (limited to 140 characters1), which makes
it difficult to understand them without sufficient context; b) tweets often contain abbreviations,
informal (unstructured) language, misspellings, or present ambiguity; and, c) judging the relevance
and usefulness of a tweet become a subjective analysis.

In order to categorize tweets into different topical classes, previous works have run into some
issues because: a) tweets can contain information that belongs to one or more classes; b) choosing

1Twitter has doubled the number of characters in 2017 but this chapter analyses data from 2016.

25
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the dominant category is difficult, even human scorers differ in their judgment about whether or not
a tweet belongs to a specific category; and, c) the semantic ambiguity of the tweets, as well as the
idiomatic phrases, sometimes makes it difficult to interpret them. Given these difficulties in tweets,
text classification models generally do not score higher than the score in which human scorers agree
with each other. Despite recent advances in natural language processing (NLP), the interpretation of
the semantics of noisy short-texts remains a hard problem. Moreover, to extract useful information
from Twitter, models must also understand complex interactions such as conversations. Analyzing
the structure of a conversation regarding the different types of acts, such as statements or questions,
can provide valuable insights into the flow, aspects, and outcome. Understanding conversations can
be used as a first step to develop automated agents or support decision systems.

User Tweet Dialogs Act

miguelmomc02 Yo nunca siento nada, a mi solo me dicen corre . Emotional, Expressive Negative
Lenniszumba que maneraaaa Sarcasm
miguelmomc02 solo senti cuando ya la casa se caia y estaba abajo Infra Houses, Informative
Lenniszumba pero el terremoto si lo sentiste? O noooo Wh Question, Response Other
miguelmomc02 senti porque la casa se movia los postes todo y

mis pies temblaban de hay nunca siento
Response Other

Lenniszumba de leeey que si fue horribleeee que tragediaaaaas Emotional, Expressive Negative

Table 4.1: Twitter conversation occurred after the earthquake in Ecuador 2016.

However, in order to understand and analyze conversations in the context of crisis events, it is
necessary to extend previous coarse-grained or generic taxonomies. Table 4.1 shows an example of
a conversation between several users on Twitter, where occur alternating turns to complain about a
communication service. As shown in the dialogues, knowing that a turn is an act of type Statement or
Request based on generic taxonomies is not enough to extract useful information relevant to a crisis.
There is a need more detailed dialogue acts (labels), such as Informative Statement, Complaint,
Offers, or Requests to capture the intention of the participants. Similarly, turns often belongs to
multiple overlapping conversational acts, so that a multi-label approach is more precise than single
label approaches.

Conversational acts prediction provides a guide for automatic response generation systems and
to develop analysis tools for disaster management. Predicting conversational acts in real settings can
be leveraged by an automated agent to generate responses in future scenarios. Moreover, meaningful
patterns can emerge from the analysis of the fine-grained acts in conversations for a post-prediction
setting. For example, if a user does a follow-up with specific actions in response to an urgent need
request dialogue act, this could be seen as a successful relief outcome. The analysis of large numbers
of conversational act sequences allows correlate to specific outcomes and derive several rules, e.g.,
Requesting certain types of services or goods in a conversation often leads to a positive outcome.

This chapter seeks to predict conversational acts to identify outcomes that can be useful for crisis
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events. It addresses several challenges, such as: building a multi-label conversational act annotated
corpus, which to the best of the knowledge, is not available for disaster management on Twitter.
The task of conversational acts annotation is subjective, and existing taxonomies do not capture the
fine-grained information that would be helpful for the crisis domain. Although tweets are concise,
usually, human annotators can associate several overlapping conversational acts to the same tweet.

The contribution of the work is three-fold. First, design a fine-grained conversational act taxon-
omy. Second, build an annotated crisis-related corpus based on the proposed taxonomy for Spanish
tweets. A third, propose a deep learning architecture based on Convolutional Neural Networks for
multi-label for act prediction, as well as the conversation outcome.

This chapter first expands upon previous work about conversational act taxonomies [103] and
crisis domain [60]. Then, it develops a fine-grained set of conversational acts for crisis manage-
ment and conducts a systematic user study to identify conversational acts in the corpus containing
518 conversations about the Ecuador earthquake. The aim is to understand the conversation flow
between users using the proposed taxonomy through a neural architecture [100] to predict the fine-
grained conversational acts for a conversation as well as the potential outcomes, such as prevention,
situational awareness, and relief coordination.

4.2 Methodology

This chapter focuses on the crisis management domain on Twitter in the context of fine-grained
dialogue act classification. It provides recommendations about useful conversations, based on a
real scenario data. The underlying goal of this chapter is to show how a well-defined taxonomy
of dialogue acts to summarize semantic information about the flow of a conversation. The Fine-
grained taxonomy allows to derive meaningful insights into the outcome of the interaction and then
to extract actionable knowledge to the implementation of automated agents and tools. Figure 4.1
shows the methodology pipeline.

Data Collection

Taxonomy 
definition

Annotation

Conversation 
modeling Results 

Analysis

Figure 4.1: Methodology pipeline.
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1. Data Collection and Taxonomy Definition: Extend previous works by defining a taxonomy of
fine-grained dialogue acts suited to the crisis management domain and use this taxonomy to
gather annotations for crisis conversations on Twitter in an iterative process.

2. Conversation Modeling: Develop a neural model to identify the different dialogue acts in a
conversation during a crisis event and using a novel multi-label approach to capture different
intents contained in a conversational turn (reply). The evaluation compares the model perfor-
mance in different settings to better understand the differences between user interactions and
relief efforts.

3. Conversation Outcome Analysis: Use the model to provide actionable knowledge for the de-
velopment of support decision tools. The aim is to allow systems to answer questions such as,
What is the correlation between conversation flow concerning the dialogue acts used?, What is
the overall collaboration achievement for urgent needs/problems, and situational awareness?
or, What information can users extract from conversations during crisis events for automated
systems or support decision tools?

4.2.1 Taxonomy Definition

Proposed Fine-Grained Dialogue Act Taxonomy Crisis Informatics

People

Deaths
Wounded
Missing
Evacuated
Other

Infrastructure

Buildings
Roads
Houses
Business
Other

Request Help

Services
Goods
Info
Other

Offer Help

Services
Goods
Info
Other

Statement

Informative
Update
Precaution
Emotional
Positive
Negative
Complaint
Action
Promise
Sarcasm

Question

Yes-No ?
Wh- ?
Open ?
—–
Yes-Ans
No-Ans
Ack

Social Act

Hi
Bye
Thanks
Apology
Other

Figure 4.2: Proposed fine-grained dialogue act taxonomy for crisis-related conversations.

The coarse-grained nature of existing taxonomies presents several shortcomings concerning what
type of information the models can learn by performing classification with this type of taxonomy.
Although, the number of labels in existing taxonomies helps achieve good agreement between an-
notators. For instance, a kappa score of 0.87 between the three expert annotators [63]. However,
it is unable to offer deeper semantic insights toward specific intents of each act for many of the
categories. For example, the Informative act, which often comprises the most significant percentage
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of turns, is a broad category that fails to provide useful information from an analytical perspective.
Likewise, the Request or Offers categories do not specify any user intent behind the act, and there
is room for improving the analysis of social media data. For this purpose and motivated by previous
work seeking to develop conversational act taxonomies appropriate for different domains [64, 69],
and convert the list of conversational acts presented by the literature into a hierarchical taxonomy,
as shown in Figure 4.2.

This study builds upon prior taxonomy for instant messaging chat conversations [64, 69], but also
on conversational acts observed in the crisis management domain, including people, infraestructure,
and needs. The proposed taxonomy organizes labels into seven high-level conversational categories:
People, Infrastructure, Request Help, Offer Help, Statement, Question, and Social Act. Then, the
taxonomy includes subcategories iteratively through several iterations in the annotation process.
The proposed taxonomy does not restrict which party in the conversation may contribute to each
label. Some acts are more frequent or sometimes non-existent in usage, depending on whether the
speaker is a general user or an organization. For example, the Sarcasm category rarely shows up in
Government or NGO turns. The taxonomy includes Other acts as the broadest of the categories to
account for gaps in conversational act selections for annotators. While the proposed taxonomy fills
in many gaps from previous work in the domain, this study does not claim to cover all possible acts
in the crisis domain. The proposed taxonomy allows to identify the intent and motivation behind
each turn more closely, and ultimately extract knowledge from conversations.

4.2.2 Data and Annotation

The Appendix A details the data acquisition, storage, and processing of the dataset. The pre-
processing performs several steps, as described next. It filters out conversations non-alternating
users’ turns (single turn per user), has less than three or more than ten turns2. Also, it filters out
tweets that have less than 60 words in total, and if a turn in the Twitter conversation ends in ellipses
followed by a link (which indicates that the turn has been truncated due to length and spans another
tweet). After the preprocessing, the dataset contains 518 conversations, spanning 3,572 turns.

This study conducts the annotation study with three undergraduate students as annotators
and presenting them with data consisting of conversations between users during the crisis event.
The annotators use a definition of each of the conversational acts along with a sample annotated
conversation for reference. For each turn in a conversation, the annotators select as many labels
as required to characterize the intent of the conversational turns entirely. Additionally, annotators
have to answer three questions at the end of each conversation, stating that they agreed, disagreed,
or could not tell:

• By the end of the conversation, does the users acknowledge prevention action in anticipation
2The lower bound allows at least one turns per user. Then, it defines the upper-bound after finding that 98% of

the conversations had ten or fewer turns.
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of a crisis event or precaution about the current crisis?

• By the end of the conversation, does the users get situational awareness regarding the crisis?

• At any point in the conversation, does the users achieve collaboration to relief efforts (match
need-offers)?

The annotation process asks three students to annotate each conversation. The list of conversa-
tional acts (labels) for each tweet is the list of any acts that have received majority-vote labels (at
least 2 out of 3 annotations). It is important to point out that an important choice is how to handle
conversational acts tagging for each turn. This study found that each turn may contain more than
one dialogue act, and it is vital to give its full meaning. The lines differentiating these conversa-
tional acts are not very well defined, and applying segmentation would not necessarily help in clearly
separating each intent. Therefore, similar to previous works, there is no specific segmentation task
on the tweets due to the overall brevity of tweets in general and to avoid the overhead of requir-
ing annotators to provide segment boundaries, and instead ask for all appropriate conversational
acts. Also, contrary to previous works [85, 157], this study characterizes each tweet as a single unit
composed of different, often overlapping, conversational acts.

Label Example % Turns % Annot.

sarcasm pobre infeliz no e digas lo q no sientes. Preocupa [...] 27.09 20.44
informative no pero manifiestas que se tiene que volar sin ten [...] 22.89 17.27
response_other lo sé, yo también he pasado por algo similar y sí [...] 21.11 15.93
emotional Lo se, me lo imagino, y ojalá no vengan más réplic [...] 13.36 10.08
expressive_positive necesitamos cadena d oración x todo el país.Suplic [...] 9.12 6.88
wh_question vos estas bien? 7.16 5.40
complain ??!! Según Ud Ecuador paralizado si está de viaje [...] 5.24 3.96
expressive_negative Fue terrible, hay destrozos en varios lugares de G [...] 4.20 3.17
thanks Gracias hermanos. Hoy nos toca pasar momentos grav [...] 3.65 2.75
insult Aprenda a leer. *Imbécil* 2.92 2.20
All Others 15.78 11.91

Table 4.2: Detailed distribution of top 12 fine-grained conversations acts derived from annotations.

Figure 4.3 shows the distribution of the number of times each conversation act, selected by ma-
jority vote between the annotators. Table 4.2 shows a more detailed summary of the distribution of
the top 12 dialogue acts according to the annotation experiments, extended from the work presented
by Ivanovic et al [63]. The measurement of the agreement in the annotations uses different meth-
ods. Since each tweet in the annotation process can have multiple labels, the first method evaluates
an agreement metric that accounts for how frequently each annotator selects the acts that agree
with the majority selected labels for the turns they annotated. The second method measure Fleiss’
Kappa [39] agreement between annotators in two ways. First, by normalizing the annotation results
into binary-valued items indicating annotators’ votes for each label contain within each turn. The
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Fleiss-κ values for each label uses the categories defined by Landis and Koch to bin the speech acts
based on agreement [76]. Table 4.3 show that the per-label agreement varies from an almost perfect
agreement of κ = 0.871 for lexically defined categories such as Apology and Thanks, with the only
slight agreement of κ = 0.01− 0.2 for less clearly-defined categories, such Response other, Sarcasm,
Others).
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Figure 4.3: Distribution of annotated dialogue act labels.

The hypothesis is that tweet turns are often characterized by more than one distinct dialogue
act label by measuring the percentage overlap between frequent pairs of labels. Table 4.4 shows
the distribution percentage of the most frequent pairs, which highlights the feasibility of using the
multi-label approach as there are conversational acts that contain more than one label.

4.2.3 Conversation Modeling

This section describes the few-shot learning approach for modeling conversations on the data
collected and annotated on the proposed fine-grained taxonomy. The aim is to design an end-to-end
deep learning model with minimal feature engineering. Although the proposed taxonomy provide
more detailed information, new challenges arise given the large number of labels. Using all classes
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Agreement Dialog Act

(0.0, 0.2] Sarcasm, Insult
(0.2, 0.4] People Other, Response Ack, Response Other, Other Subcat
(0.4, 0.6] Infra Other, Request Other, Offer Other, Update, Yes Answer, No Answer, Apology
(0.6, 0.8] Outcome Prevention Ack, Outcome Situational Awareness, Outcome Relief Coordina-

tion, People Missing, People Evacuated, Infra Buildings, Request Info, Request Goods,
Request Services, Offer Info, Offer Goods, Offer Services, Informative, Expressive Pos-
itive, Expressive Negative, Complain, Suggest Action, Promise, Yes No Question, Wh
Question, Open Question, Opening Greeting, Closing Greeting, Thanks

(0.8, 1.0] Crisis Related, People Deaths, People Wounded, Infra Roads, Infra Houses, Infra Busi-
ness, Precaution, Emotional

Table 4.3: Dialogue act agreement in fleiss-κ bins.

Dialog Acts Pair % Turns

Emotional Expressive Positive 8.53
Emotional Expressive Negative 3.88
Sarcasm Response Other 3.19
Sarcasm Insult 2.42
Informative Emotional 1.69
Informative Expressive Positive 1.32
Wh Question Response Other 1.32
Informative Sarcasm 1.19
Emotional Response Other 1.14
Response Other Thanks 1.00

Table 4.4: Distribution of the 10 most frequent dialogue act pairs for turns with more than 1 label.

for a classification task in a real scenario, there is a large tail in the number of classes.
To overcome the long-tail problem, the proposed model uses few-shot learning approach base

on siamese networks [75]. Siamese networks have two or more identical sub-networks as depicted
in Figure 4.4. Siamese networks perform well on similarity tasks and have been used for tasks like
sentence semantic similarity, recognizing forged signatures and other tasks [95].

The tweets’ text are the inputs to the network, and are zero-padded sequences of word indices.
The inputs are vectors of fixed length, where the model ignores the zeros entries and the nonzeros
indices uniquely identify words. The input vectors are then fed into the embedding layer, which
looks up the corresponding embedding representation for each word and build a embeddings matrix.
The proposed model rely on the use of word embeddings based on FastText [89] which improve
Word2Vect [88] subwords learning approach that is more suitable for noisy microblogging data to
represent the syntactic and semantic irregularities . To further handle noisy data, the model use a
double channel for embeddings based on characters beside word embeddings.

The model have two embedded matrices that represent a candidate of two similar tweets that
belong to a same label. Then the model feed them into the LSTM and the final state of the LSTM
for each question is a n-dimensional vector (n = 300). It is trained to capture semantic similarity
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Conversation labels predictions
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Figure 4.4: CNN architecture for crisis-related conversational modeling.

between tweets that share the same label even if a label have a few instances in training. Then, the
two vectors that hold the semantic similarity of each tweet go through a similarity function:

sim (xl, xr) = exp (−∥f(xl)− f(xr)∥1) (4.1)

where sim ∈ [0, 1], sim ∈ [0, 1] is the L1 norm, and f is the function corresponding to the application
of the cloned sequential network to the left/right input. The exponent of the negative the output
(the prediction) will be between 0 and 1.

4.3 Experimental Settings

Data Preprocessing: The data preprocessing step normalizes all characters to their lower-cased forms,
truncate elongations to three characters, convert every digit to D, anonymize twitter usernames to
userID, and all URLs to HTTP. The tokenization of the tweets uses the NLTK toolkit [19], and
remove all punctuation marks except periods, semicolons, question, and exclamation marks.
Data Settings: This study focuses on a particular event: earthquake occurred in Ecuador in 2016.
The splitting strategy for the data is to use 80% for training (using 10-fold cross-validation for
parameter tuning) and hold out 20% of the data for tests. The splitting uses the ski-learn toolkit’s
module [107], which ensured that the class distribution remains balanced in each subset.
Feature Extraction: The feature extraction uses unigram features from the text of the tweets.
For non-neural models, the features are converted to TF-IDF vectors, considering each tweet as
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a document. For neural models, the feature extraction creates a dictionary of the vocabulary to
map pre-training embeddings. The features contains mainly Words: represented it as binary bag-
of-word (BOW) unigrams or dense embeddings, and Punctuation that is present in tweets as part
of the BOW or dense embedding. Punctuation features indicates the existence of a question mark
or exclamation mark in a turn, e.g., Questions or Greeting Dialog Acts.

4.3.1 Non-neural model settings

This category includes traditional algorithms such as Support Vector Machines (SVM) or Linear
Regression (LR), which uses sparse learning representation. The evaluation includes Logistic Re-
gression [38] to compare the neural models with the traditional approaches. The implementation
uses sci-kit-learn toolkit [107].

4.3.2 Neural Models Settings

The proposed model trains LSTM networks and optimizes the binary cross-entropy loss using the
gradient-based online learning algorithm [71]. The learning rate is the default value, as suggested
by the authors, and the number of epochs was set to 25 as the learning curve flattened out. The
model uses dropout [126] after embeddings and hidden units to avoid overfitting. A early stopping
occurs based on the accuracy of the validation set. The experiments evaluates several dropout
rates ({0.0, 0.2, 0.5}) and minibatch sizes ({32, 64, 128}), and consider the most common P% (P ∈
{80, 85, 90}) words in the training corpus to limit the vocabulary size (V ) . The initialization of
the word embeddings uses pre-trained embeddings. For the activation functions, the model uses
rectified linear units (ReLU) and filters (f) {100, 250, 500} with window size (L) of {3}. Then,
the model applies a pooling length (p) of {3}, and {250, 500} dense layer units. The experiments
include fine-tuning all the hyperparameters on the validation set. Beside the proposed model, the
experiments evaluate standard CNN and LSTM architectures for text classification.

4.3.3 Evaluation metrics

The evaluation compares non-neuronal models (with scattered text representation) and neural
models (with a distributed representation of text) using textual characteristics as inputs for both
models. The experiments use a multi-label configuration, given an overlapping of multiple dialogue
acts for each tweet. The experiments perform a binary classification task for each label depending
on the class sets defined in Section 4.2.3. For each class classification task N , the model predicts
each turn in the conversation as belonging to the label or not. This configuration assigns a binary
value to each turn in the conversation for each label (that is, for the experiment of 6 classes, each
shift receives a binary value indicating whether it belongs to each of the labels). Therefore, for each
class experiment N , there are N binary tags, for example, a turn can be Informative, Offer, Request.
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Next, the experiments aggregate the N binary predictions for each turn, then compare the
resultant prediction matrix for all turns to the majority-vote ground-truth labels, where at least 2
out of 3 annotators have selected a label to be valid for a given turn. The task difficulty increases as
the number of classes N increases due to the number of labels to learn. For instance, for the 6-class
problem, there are six classification tasks per turn, for the 8-class problem, there are 8, and so on
for 10-class and all-class problems). The experiments use weighted F-macro as an evaluation metric
to calculate the final scores to account for the inherent imbalance of label-distribution in the data
(Figure 4.3). For each feature set, F-macro finds the average of the metrics for each label weighted
by the number of actual instances for that label [108].

4.4 Results and Discussion

This section presents the experimental results and discusses the findings as detailed next.

4.4.1 Is this conversation related to a crisis event?

This question seeks to know if a given conversation is related to a crisis event, i.e. the experiments
only consider the label that indicates if the whole conversation is crisis-related. To that end, the
experiments perform a binary classification task using a specific label in the annotation taxonomy
that categorizes a conversation as crisis-related. Table 4.5 presents the results of binary classification
using baseline models as well as siamese LSTM neural architecture for few-shot learning. The results
show the standard LSTM is slightly better than LR and other neural models, while the proposed
model performs better that LR and CNN models. Although LSTM has a better overall F1 score,
the improvement is marginal over the proposed model. Due to the short and noisy nature of the
Twitter data, non-sequential models perform well for classification tasks, even although they do not
account for the order and sequential nature of the data.

Model Set Precision Recall F1

LR cv 65.47 62.31 63.24
LR test 63.67 61.05 61.90
CNN cv 66.61 66.02 66.28
CNN test 62.45 62.87 62.64
LSTM cv 65.89 67.05 66.28
LSTM test 66.04 66.51 66.25
LSTM-s2s cv 64.99 66.04 65.27
LSTM-s2s test 65.03 65.40 65.14

Table 4.5: Models performance for the task of identifying crisis-related conversations.

Additional experiments evaluate the ability of the models to identify whether a conversation is
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related to a crisis considering: only the initial tweet (root), only the replies, or the whole conver-
sation. This study hypothesizes that replies do not have enough context information to find out if
a conversation is related to a crisis event. Figure 4.5 supports the hypothesis that it is challenging
to try to find out if isolated tweets (replies) are crisis-related. For initial tweets is more feasible
as those usually give enough information or context to infer that it is a crisis related tweet. The
performance improves when the experiments consider all tweets.
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Figure 4.5: Identify crisis-related conversations.

4.4.2 Identifying more than one dialog acts per tweet

This study performs experiments to train models to learn to identify multiple dialogue acts per
tweet in the dataset. The experiments test each classifier on each of the four class sets and reporting
weighted F-macro for each experiment. The Table 4.6 shows the group of dialog acts or labels used
for the experiments. The grouping of the labels into categories si based on the distribution of label
observed as a result of the annotation process (Table 4.2). The binary category is an exception,
and this class indicates whether the conversation is related or not to a crisis. The top four classes
form the category 4 class, followed by 8 class which in addition to the previous 4 class include four
additional classes. The 12 class includes the four more classes, and the final category includes all
classes.

Figure 4.6 shows the results of the experiments and the performance drop as the number of



CHAPTER 4. HIERARCHICAL MULTI-LABEL TAXONOMY 37

Experiment Group Dialogue Acts

2 class (binary) Binary

4 classes (easy) Sarcasm
4 classes (easy) Informative
4 classes (easy) Response Other
4 classes (easy) Emotional

8 classes (medium) Expressive Positive
8 classes (medium) Wh Question
8 classes (medium) Complain
8 classes (medium) Expressive Negative

12 classes (hard) Thanks
12 classes (hard) Insult
12 classes (hard) Request Info
12 classes (hard) Opening Greeting

all classes (hard+) All others

Table 4.6: Dialogue acts used for experiments.

classes increases. For LSTM, the predictions improve for the all-Class setting. The performance
in the 8-Class category is steady because of the addition of lexically distinct classes Request and
Thanks with the addition Even with the addition of straightforward classes in 12-class category the
performance drops for all models but the proposed LSTMs2s. The results show the effectiveness of
few-shot learning approach for handling large number of labels.
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Figure 4.6: Multi-label classification of dialog acts for crisis-related conversations.
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Figure 4.7: Identify crisis-related conversations outcomes.

4.4.3 Conversation outcome analysis

The next set of experiments aims to show the ability of the models for dialogue act classification
as a method for inferring semantic intent in a conversation to derive insights to improve automated
systems or support decision tools for crisis events. The data used include the conversation context,
i.e. the whole conversation. The models predict on one of three problem outcomes: acknowledge
prevention, situational awareness, and relief coordination. Figure 4.7 shows the results for each out-
come, with neural architectures performing well for prevention and situational awareness outcomes,
but for relief coordination where there is still room for improvement due few instances.

4.4.4 Discussion

There are several issues in conducting experiments that are important to mention. Given the
conversational nature in the Twitter platform, the conversation might have several overlapping
conversations, i.e., conversations can have several branches, the experimental settings treat each
branch as a conversation, which can cause overlapping tweets. The labels are a scarcity in languages
other than English limit the capacity to use additional annotated data from other events to augment
the dataset. Also, increasing the number of labels bring difficulties for human annotator, which
causes the agreement score to drop.

The ambiguity in some tweets can be challenging to spot even for human annotators, and a
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limitation of the annotation process is the number of annotations per tweet compared to previous
works. Similar to previous works on classification tasks, the corpus has a long tail of classes after
the annotation process. Because of the size of the dataset and the labels imbalance, it is difficult
for models to learn to predict from very few instances for some classes. The proposed model help to
improve the performace of LSTM model to handle this situation.

The dataset splitting strategy uses random splitting of the tweets, but further experiments should
consider time-based splitting, as it is a more difficult scenario. In this sense, models should be
able to learn from incomplete conversations until more replies arrive. A final aspect that deserves
consideration is the models’ performance, as there is still room for improvement using different
architectures.

4.5 Conclusion

This chapter explores how to identify dialog acts in crisis-related conversations on Twitter and
extract insights concerning their outcomes. It introduced a novel taxonomy of fine-grained conversa-
tion acts tailored for the crisis management domain and gather annotations for Twitter conversations
in Spanish about the earthquake that occurred in Ecuador in 2016. The annotation process shows
that conversation acts are often semantically overlapping, and the experiments train a multi-label
classification model to predict labels for each turn under a different number of classes. To that end,
this chapter proposes a few-shot learning approach based on siamese neural architecture, and the
results show that outperforms baseline approaches in settings with large number of labels. Future
research directions include improving the performance of the models through the exploration of
different neural architectures and using recent improvements in learning representations.



Chapter 5

Crosslingual Classification

This chapter addresses RQ3 related to handling the scenario of multiple languages for a specific
crisis-related event. This chapter starts with an overview and motivation for cross-lingual classifica-
tion in Section 5.1. Next, Section 5.2 provides a description of the methodology and the cross-lingual
classification task evaluation. Then, Section 5.3 details the experimental settings in and Section 5.4
show the empirical results. Finally, Section 5.5 outlines conclusions and research directions. The
work presented in this chapter was first published at The 2019 World Wide Web Conference [135].

5.1 Introduction

During crisis events like earthquakes, user-generated data on social media can provide valuable
information to humanitarian organizations such as the United Nations, Red Cross, and also activists
working in the relief efforts. Social media leverage the power of the crowds to provide awareness of
the situation often faster than traditional media, allows them to respond quickly to the urgent needs
of affected people, assess damages in the buildings and infrastructure, identify medical emergencies,
or coordinate relief actions [57, 26]. With the worldwide reach of social media, users from different
countries and languages can react and interact in any crisis event. This chapter aims to identify the
crisis-related tweets in a multi-lingual scenario and characterize them in the context of conversations.
To that end, this chapter introduces a new annotated dataset about the earthquake that occurred
in Ecuador on April 16, 2016. The corpus contains 8360 tweets annotated for English and Spanish
languages. Table 5.1 shows an example of a conversation between several users on Twitter. Based on
the metadata (in-reply-to-status-id field) provided by Twitter, it is possible to collect all the tweets
that belong to conversations.

Despite recent progress in natural language processing (NLP), the semantic interpretation of
noisy short-texts remains a hard problem. A multi-lingual scenario complicates, even more, the
task of natural language understanding. For instance, prior annotation taxonomies [60] define that

40
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User Tweet In reply to

BBCBreaking Ecuador declares state of emergency in six provinces after powerful
earthquake kills at least people.

RNexists is the current count! BBCBreaking

MaJoJovi The current count is , I’m from Ecuador. Please pray for us. Rnexists

1SHeRA1 I am and will, my dear. I hope we can help in some concrete ways as
well.

MaJoJovi

MaJoJovi we need all the help we can get. Your prayers helps too. Thank you. 1SHeRA1

Table 5.1: A sample conversation about the 2016 earthquake in Ecuador initiated by an organiza-
tion’s Twitter account.

a tweet can belong to one of several categories such as: statistics about affected people, emotional
support, or helping through donations, goods, or volunteers. To categorize tweets, human annotators
have to deal with some issues associated with social media data that include: a) associating a tweet
to a category can be difficult due to ambiguity, even human annotators may differ in their judgment
about whether or not a tweet belongs to a specific category, b) the noisy nature of the tweets, as
well as the idiomatic phrases, can make it difficult to train models and infer across languages.

This chapter evaluates neural architectures to identify crisis-related tweets across multiple lan-
guages and it uses the Ecuadorian earthquake as study case. The contribution of the work is as
follows. a) introduce an annotated corpus of crisis-related tweets for Spanish and English language,
b) evaluate deep contextual neural architectures for the multi-lingual classification task at hand,
and c) characterize the conversations from locals and foreigners about the study case earthquake.
The dataset and the code are available at Github1.

5.2 Methodology

5.2.1 Data

The Appendix A details the data acquisition, storage, and processing of the dataset. The Ta-
ble 5.2 summarizes some statistics about the dataset. The first section shows all the tweets in the
dataset split by language: Spanish, English, and other languages.

The conversations row refers to the number of conversations by language, identifying each con-
versation by its initial tweet. In total, 55% of the tweets in the dataset belong to a conversation.
Although the average of the number of replies and users vary across languages, the median resulted
similar for all languages (num replies = 3 and num users = 2) (the minimum is due to the constraint
in the preprocessing of the conversations. The average is far from the median for the number of

1https://github.com/johnnytorres/crisis_conv_crosslingual

https://github.com/johnnytorres/crisis_conv_crosslingual
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Spanish English Other Total

Tweets 93,405 38,533 20,331 152,269
Users 50,758 25,880 10,387 87,025
Avg. tweets 1.84 1.49 1.96 1.75

Conversations 4,632 1,092 377 6,101
Replies 50,747 17,989 9,506 78,242
Tweets 55,379 19,081 9,883 84,343
Avg. replies 11.96 17.47 26.21 13.82
Avg. users 8.34 13.65 16.36 9.79

Table 5.2: Statistics of the tweets by language. The first section refers to all tweets in the dataset.
The second section refers to the tweets that belong to conversations with at least one reply.
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Figure 5.1: Distribution of the number of replies by language for the dataset.

replies and users, indicating some outliers (i.e., some popular conversations often initiated by in-
fluencers). The average of other languages is higher than Spanish or English due to outliers in the
number of replies to a specific type of conversation (e.g., games or sports). Although tweets in other
languages belong mostly to conversations in English, the initial tweet contains multimedia (images
or video) or limited text that difficult language detection by the Twitter API. Figure 5.1 depicts the
distribution of the number of replies on the conversations.

Further analysis performs several steps of preprocessing to the conversations, e.g., filtering out
conversations with non-alternating users’ tweets, i.e., replies from different users. Also, filtering out
conversations with less than 3 tweets and more than 10 tweets2. After the preprocessing, the dataset
contains 518 Spanish and 172 English conversations.

2The lower bound allow at least two replies in the conversation, and the upper-bound is replies ≤ 10 which accounts
for 84% of the conversations.
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5.2.2 Annotation

The annotation task uses 518 Spanish, and 172 English conversations, including the replies,
account in total 2193 and 730 tweets Spanish and English, respectively. The annotation task relies
on the multi-class taxonomy [60] where each tweet can belong to one of the following categories:
a) Injured or dead people b) Missing, trapped or found people c) Displaced people and evacuations
d) Infrastructure and utility damage e) Donation needs or offers or volunteering services f) Caution
and advice g) Sympathy and emotional support h) Other useful information, and i) Not related or
irrelevant

The annotation task involves two undergraduate students as human annotators and presented
them with the tweets selected for annotation. The annotators have instructions describing each of
the categories and associated examples. For each tweet, the annotators select only one category for
each tweet-based taxonomy. A third annotator resolves the discrepancies or disagreements between
the two annotators. Similar to annotation procedures in previous works [60], the annotator to make
judgments based on the text only, even if Twitter APIs truncated the text during the data collection.
The annotators are not allowed to open any link inside the text of the tweets as the experiments
seek to use only the available text for training the machine learning models.

The annotation quality analysis uses the percentage of agreement (po) between the two annotators
is an average of the coincidences because each tweet in the annotation process can have only one
label. Additionally, the annotation process uses Fleiss’ Kappa (κ) [39] to measure the quality of
the annotations, defined as κ = (po − pe)/(1 − pe) , where po define the empirical probability
of agreement (i.e. the observed agreement percentage), and pe accounts for a random agreement
between annotators. Table 5.3 shows that the per-label agreement varies from κ = 0.75 for lexically
well-defined categories (such as caution and advice and infrastructure damage) and agreement κ =

0.45 for less clearly-defined categories ( e.g., displaced and evacuations). The categories with few
instances often have low scores because of an error in the annotation effects by a large margin of
the agreement score. Also, in cases where tweets belong to several categories, the agreement score
might decrease even for categories with a large number of instances.

5.2.3 Model

This section evaluates different approaches for modeling crisis-related tweets on multi-lingual
settings for the annotated corpus. First, it describes the learning representation for the tweets, then
the neural architecture for classification used, and finally, the experimental settings.

For tweets’ text representation, traditional approaches require manually engineered features like
cue words or sparse vector representation such as TF-IDF used in previous works [57]. This chapter
relies on the use of dense representation such as word embeddings Word2Vec [88]. [88] proposed an
unsupervised language model using two log-linear models for computing dense representations from
large (unlabeled) corpus efficiently: a) bag-of-words model CBOW that predicts the current word
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Spanish English
Category N po pe κ N po pe κ

Injured or dead people 624 0.69 0.12 0.65 1,165 0.64 0.12 0.59
Missing or found people 30 0.77 0.27 0.68 4 0.75 - 0.75
Displaced people and evacuations 12 0.50 0.08 0.45 7 0.57 - 0.57
Infrastructure damage 157 0.64 0.07 0.61 73 0.75 0.11 0.72
Needs or offers 234 0.67 0.11 0.63 207 0.64 0.12 0.59
Caution and advice 61 0.77 0.08 0.75 39 0.64 0.18 0.56
Emotional support 451 0.67 0.10 0.63 325 0.62 0.10 0.59
Other useful information 753 0.69 0.10 0.66 426 0.59 0.13 0.53
Not related or irrelevant 1,846 0.69 0.11 0.66 1,946 0.66 0.11 0.61

Table 5.3: Agreement statistics for Spanish and English tweets.

based on the context words, and b) a skip-gram model that predicts surrounding words given the
current word. The approach shows that both models can learn high accuracy syntactic and semantic
regularities and overcome the issues in sparse representation models.

Word2Vec [88] represents each word in the corpus like an atomic entity and generates an embed-
dings vector for each word. In this aspect, Word2Vec and Glove [109] are similar; both define words
as the smallest unit to train. However, Word2Vec does not take advantage of the global context.
Both CBOW and Skip-Grams are predictive models and only use local contexts during training. In
contrast, GloVe leverage the same intuition but uses a neural method to decompose the co-occurrence
matrix into more expressive and dense word vectors. N-gram feature is a critical improvement in
FastText [89] compared to Word2Vec, and it aims to solve the out-of-vocabulary (OOV) issue. Fast-
Text enables word embeddings to encode sub-word information and produce more accurate vectors
than Word2Vec. Most recently, deep contextualized embeddings such as ELMo [110] and Flair [6],
generate embeddings for a word based on the context, thus generating slightly different embeddings
for each word depending on the context of its occurrence. The models leverage recent advances
of the learning representation models that use the pre-trained embeddings and then fine-tune the
embeddings to the specific dataset.

This chapter is interested in identifying if a given tweet is related to a crisis event and frame
the problem of detecting crisis-related tweets as a multi-class classification task. To that end, the
classification tasks evaluate Convolutional Neural Networks (CNN) and LSTM sequence models
using word embeddings as learning representation. Due to the unstructured, short, and noisy nature
of the Twitter data, CNN models have shown to perform well for short-text classification task [100].
The training of the models optimizes the binary cross-entropy loss using the adaptive gradient-
based learning algorithm [71], with the learning rate and parameters set to the values suggested
by the default. The number of epochs is 10 for the case of the random embeddings and 5 when
using the stacked embeddings with Glove-Flair [6]. The models use dropout [126] after embeddings
and hidden units to avoid overfitting. The initialization of the word embeddings in L is random
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in the case of CNN. LSTM model uses word embeddings with random initialization and Stacked
Glove-Flair pre-trained.

5.3 Experimental Settings

5.3.1 Data Preprocessing

The preprocessing step normalizes all characters to their lower-cased forms, truncate elongations
to three characters, convert every digit to D, anonymize twitter usernames to userID, and all
URLs to HTTP. The preprocessing step remove all punctuation marks except periods, semicolons,
question, and exclamation marks. The tokenization of the tweets uses the NLTK toolkit [19].

5.3.2 Label Grouping

Due to the imbalance of the labels, it is necessary to group the labels for a binary classification
task to identify whether a tweet is related to a crisis event or not. A given tweet is related to a crisis
if it belongs to any of the categories but Not related or irrelevant. The Table 5.4 shows the grouping
labels used for the experiments. The grouping into two classes achieves a reasonable balance for
both Spanish and English languages.

Label Spanish (es) English (en)

Crisis related 2322 2249
Not related 1846 1946
Total 4168 4195

Table 5.4: Dataset for the binary classification task.

5.3.3 Splitting Strategy

The splitting strategy for the dataset is to use 80% for training and development (using 10-fold
cross-validation) and hold out 20% of the data as a test set. A random split of the dataset into train
and test sets to ensure that the class distribution remains reasonably balanced in each set.

5.3.4 Classification Tasks

There are two sets of classification tasks for the experiments, as described next. First, the
experiments train and test models using the same language: train and predict on the Spanish
dataset, and similarly, train and predict on the English dataset. Second, the language is different
for training and testing, e.g., training a model on the Spanish dataset and predicting on English
dataset.
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model LR LSTM CNN LSTM Stacked
lang P R F1 P R F1 P R F1 P R F1

es-es 85.70 85.48 85.52 85.78 85.12 85.18 86.30 85.71 85.77 81.49 81.17 79.73
en-en 93.30 93.21 93.21 92.89 92.95 92.92 94.30 94.04 94.05 91.06 91.35 91.04
es-en 79.05 78.45 78.47 76.23 74.68 74.59 79.74 79.71 79.65 85.90 85.90 85.88
en-es 57.73 45.10 29.97 56.32 44.62 28.39 52.27 44.67 29.31 79.57 77.50 77.49

Table 5.5: Performance of the models in single language and multi-lingual classification.

5.3.5 Classification Models

The experiments evaluate a baseline classifier based on Linear Regression (LR) as well as models
based on neural architectures such as CNN and LSTM. Neural models use Stacked Embeddings
(Glove word embeddings + Flair deep contextual embeddings).

5.3.6 Evaluation Metrics

The experiments use Precision, Recall, and macro F1 metrics to evaluate the performance of
classification models and report the results on the test set.

5.4 Results and Discussion

The Table 5.5 shows the results of the classification task. The first column shows the source
language in which is trained the model and the target language that predicts. Each of the models
have three columns associated that represent the metrics precision (P ), recall (R), and F1 score.

For the first experiment, the CNN model outperforms other models training and predicting for
a single language. The performance of the baseline model LR is on par with CNN and better than
the LSTM model. The results mean TF-IDF based models are strong baselines in noisy short-text
classification under a single language and single event but often fail to generalize for new events
due to the out-of-vocabulary (OOV) issue. The LSTM and CNN are using randomly initialized
embeddings and fine-tuned during training, which hinders the performance compared to using pre-
trained embeddings. In this experiment, the LSTM with multi-lingual embeddings did not perform
well, mainly because it does not apply the fine-tuning to the embedding weights.

The second experiment aims to train a single model for predicting tweets in another language
(row 3 and 4 in Table 5.5). Traditional approaches as LR using TF-IDF fail to generalize, and
the performance fall in the case es-en and drops drastically in the case en-es. The reason that
the first case is not as critical as the second is not apparent and requires further analysis. There
is a small percentage (4%) in the Spanish dataset with a different language, but not enough to
affect the training of the model. In the case of the English dataset, there is 10% of tweets with a
language different from English. However, the model LSTM with multi-lingual Stacked Embeddings
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generalizes well in this setting and outperforms other models, which is promising for tackling the
multi-lingual scenarios in detecting crisis-related tweets. The next sections detail some of the findings
related to the crisis-related conversations, cross-lingual analysis, and current limitations in this
research.

5.4.1 Crisis-related conversations

This study explores the conversational nature of the interactions on Twitter and how to improve
the extraction of insights during crisis events by analyzing entire conversations. The analysis focuses
on both Spanish and English conversations. By considering only the root or initial tweets in the
conversation, approximately 21% of them are not related to the earthquake, while the rest of the
root tweets belong to the other categories. The replies to root tweets not related to the crisis (97%)
are also not related to the earthquake. However, there is a remaining 3% of replies annotated as
donations, emotional support, and other useful information even when the root or parent tweet of the
conversation is not related to the crisis. The small percentage of non-related conversations indicates
that analysis might lose some information even when the root tweet is not related to the crisis. A
similar situation occurs in the replies to root tweets that are related to the crisis, for instance, 24%
of the replies annotated as not related to the crisis, in the case of English conversations up to 35%.

In this case, these tweets could help to analyze the objective or outcome of the conversation.

5.4.2 Cross-lingual analysis

(a) Spanish crisis-related tweets. (b) English crisis-related tweets

Figure 5.2: Spatial distribution of crisis-related tweets, darker color indicates larger percentage of
tweets.

The further analysis uses the best model to categorize the complete dataset to identify tweets
related to the crisis event. First, the analysis determines the country of the users in the conversations
using the location field in the metadata of the tweets. Approximately 30% of the users do not provide
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the location, and 15% contain noisy information in location; therefore, this analysis considers only
those with valid location information. The Figure 5.2 shows the spatial distribution for each of the
languages. The Figure 5.2a show the crisis-related tweets in the Spanish language with Ecuador as
the predominant country, which is where the earthquake occurred, followed by the United States,
Venezuela. There is a significant percentage in Spain, where there is a large number of Ecuadorian
immigrants. The Spanish dataset contains the location information for approximately 49% of the
tweets. The Figure 5.2b shows that the Spanish-speaking countries decrease their participation in the
English dataset. The United States is the country where most tweets in English are posted, followed
by England and Canada. The English dataset contains the location information for approximately
77% of the tweets.

Another aspect is the percentage of the annotated tweets associated to each category depending
on the language and location. Most of the tweets (3.57%) related to Needs / Offers for goods and
services came from the affected country, while 3.24% came from other countries. The majority of
the tweets related to statistics about deaths and injured people come from other countries (13.87),
while the tweets in the affected country are 2%. The tweets related to Needs / Offers for goods
and services that came from the affected country is almost inexistent, while 4% came from other
countries. The majority of the tweets related to statistics about deaths and injured people come
from other countries (29.46%), while tweets in the affected country are less than 1%.

5.4.3 Limitations

This study identifies several issues while conducting experiments that are important to mention.
Due to the limited size of the annotated dataset, further analysis is necessary to characterize the
tweets from local users where the event occurred vs. foreigners, and the cross-lingual differences.
Given the conversational structure in the Twitter platform, the conversations might have several
overlapping tweets, i.e., conversations can have several branches, and this study treats each branch
as an independent conversation, which could cause duplicated tweets in the dataset. The dataset
splitting strategy performs a random splitting, but further experiments should consider time-based
splitting, as it is more similar to a real scenario. In this sense, models should be able to learn
from incomplete conversations until more replies arrive. The use of the conversational context for
learning to predict a new tweet could improve the performance of the classification models; thus, it
constitutes a future research direction, especially using attention mechanisms [137].

Due to the ambiguity in some tweets, assigning labels can be confusing even for human annota-
tors, and a limitation in the annotation process is the number of annotations per tweet compared
to previous works. Similar to previous works on crisis-related datasets, the corpus has a long tail of
classes with few instances. Due to the imbalance in the labels, it is difficult for classification models
to learn from very few instances. Some strategies to overcome the imbalance include the implemen-
tation of Zero-shot [162] or Few-shot [114] learning for labels with few instances. The scarcity of
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annotated data in the Spanish language limits the capacity to use additional annotated data from
other events to augment the dataset. Further evaluation of new cross-lingual embeddings and lan-
guage models are essential for transfer learning approaches to overcome the scarcity of annotated
data in low-resource languages [54].

5.5 Conclusion

This chapter introduced an annotated corpus in Spanish and the English language for the earth-
quake that occurred in Ecuador on April 16, 2016. The annotated corpus considers not only isolated
tweets but those that belong to conversations regarding the earthquake, which enable future research
for a more in-depth understanding of that type of interaction and their outcome. The findings show
that tweets often overlap semantically, approximately 15% of the tweets that can belong to multi-
ple labels, an indication that a multi-label annotation would be more suitable for a more in-depth
understanding of more complex interactions such as conversations. The experiments explore how to
identify crisis-related tweets on multi-lingual settings leveraging advances on multi-lingual deep con-
textual embeddings. The results show that multi-lingual embedding outperforms other approaches
based on sparse representation; however, for a single language, a simpler model still performs better.
Future research directions include a comparative analysis of cross-lingual modeling of crisis-events
using additional datasets publicly available. Also, future work could tackle the learning of labels
with few instances, as in the corpus, through zero-shot or few show learning methods.



Chapter 6

Context-aware Classification

This chapter addresses RQ4 that seeks to evaluate the effect of using conversational context in
classification. This chapter begin with an overview and motivation for context-aware classification
in Section 6.1. Next, Section 6.2 provides a description of the methodology and the crosslingual
classification task evaluation. Then, Section 6.3 details the experimental settings in and Section 6.4
show the empirical results. Finally, Section 6.5 outlines conclusions and research directions.

6.1 Introduction

The analysis of messages posted on microblogging platforms such as Twitter can help humani-
tarian organizations (e.g., United Nations, Red Cross) or activists during crisis events. Social media
platforms allow them to gain situational awareness, know the urgent needs of affected people, as-
sess critical damages in the infrastructure, identify medical emergencies in different locations, or
coordinate relief or rescue actions [139].

The content generated by users in social networks contains information that can be useful for
disaster relief. One of the limitations in the management of social network data during Crisis events
is related to the analysis of short and noisy text messages, which are posted by users during crisis
events such as disasters and emergencies [26].

Previous works have used or analyzed tweets individually in downstream NLP tasks [57, 100].
Often tweets belong to conversations as depicted in Figure 6.1, which represent a graph of interactions
for a set of sample conversations during a crisis event (Pakistan earthquake in 2013). Conversation
seed tweets (blue nodes) have links to their replies (orange nodes). The annotated tweets can either
be a conversation starter tweet (large blue nodes) or a reply (large orange nodes). This chapter seek
to evaluate and gain insights on the potential of using the conversational context in NLP tasks.

In a more detailed example, Table 6.1 shows a sample conversation for the Nepal earthquake in
2015, in which one of the tweets has been collected and tagged (category column) in the CrisisNLP

50
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Figure 6.1: Network graph of sample conversations during a crisis event (Pakistan earthquake in
2013). Conversation tweets (blue nodes) have links to their replies (orange nodes). The annotated
tweets can either start a conversation (large blue nodes) or belong to the replies (large orange nodes).

corpus [61].

user tweet deep category

Jaimarie13 #Nepal #HELPNEPAL #NepalEarthquake #NepalQuake
#Vegas #LasVegas #RescueNet https://t.co/rRDuBDZ6iE

1

RescueNetOnline @Jaimarie13 Thank you for the mention! Our team is
now on the ground in #Nepal helping w/the relief efforts.
#NepalEarthquake #NepalQuake

2

Jaimarie13 @RescueNetOnline so glad you made it safely! Let me know
how I can help! Keep up the great work &amp; be the voice
for us back home #NEPAL

3 help_efforts

RescueNetOnline @Jaimarie13 thank you, we will stay connected and let you
know how things are from the field as we’re able!

4

Table 6.1: Sample conversation in the conversational CrisisNLP dataset. The history (highlighted
tweets) helps to understand the labeled tweet (indicated by the category column) and could improve
downstream NLP tasks.

This study hypothesize that the context of the conversation can improve downstream NLP tasks,
such as the case of tweets before the annotated tweet in the sample conversation, therefore seek to
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answer the following research questions:

RQ1 Does previous crisis-related datasets sampling contain conversational tweets and wherein the
conversation is?

RQ2 Does the conversational context improve downstream NLP classification tasks, and to what
extent?

RQ3 What are the categories that best benefit from having conversation context in downstream
NLP classification tasks.

6.2 Methodology

To answer the research question RQ1, this study introduce the Conversational CrisisNLP dataset,
which augment the original CrisisNLP dataset [60] with the conversational context for the tweets.
The Appendix A details the data acquisition, storage, and processing of the dataset.

6.2.1 Data

code event ltweets utweets tweets convs users langs ut g% c%

EV00 2013-PK-eq 1,881 687 2,568 1,880 1,253 24 2.05 36.52 0.05
EV01 2014-CL-eq 2,685 1,843 4,528 2,671 2,955 13 1.53 68.64 0.52
EV02 2014-CL-eq-en 2,376 2,689 5,065 2,369 2,698 23 1.88 113.17 0.30
EV03 2014-Ca-eq 1,884 230 2,114 1,882 1,384 6 1.53 12.21 0.11
EV04 2014-IN-fl 1,820 1,362 3,182 1,818 1,569 17 2.03 74.84 0.11
EV05 2014-MX-hu-en 1,447 349 1,796 1,441 1,148 8 1.56 24.12 0.42
EV06 2014-PH-ty-en 11,742 5,778 17,520 11,551 11,929 30 1.47 49.21 1.65
EV07 2014-PK-fl 1,769 1,539 3,308 1,768 2,171 25 1.52 87.00 0.06
EV08 2015-NP-eq-en 12,506 23,788 36,294 12,438 21,950 42 1.65 190.21 0.55
EV09 2015-VU-cy-en 2,610 3,358 5,968 2,595 2,644 29 2.26 128.66 0.58

ALL 40,720 41,623 82,343 40,413 49,701 217 1.66 102.22 0.76

Table 6.2: The conversational crisisNLP dataset statistics.

Table 6.2 describes the Conversational CrisisNLP dataset per event, assigning a code to each event
later reference. The name of the event contains the [year]-[country or state]-[event type]-[language]
format, when the language is not present means the native language of the country where the event
occurred. The augmented dataset have the tweets (ltweets) in the original CrisisNLP [61] corpus plus
the unlabeled tweets (utweets) that are either child or parent tweets of some of the labeled tweets
in the original dataset. For all events, the total number of tweets (tweets = ltweets + utweets)
increases compared to the original dataset; in some cases, the percentage of increase (g%) is higher
than 100%. The number of conversations (convs) is less than the number of original tweets (ltweets),



CHAPTER 6. CONTEXT-AWARE CLASSIFICATION 53

which implies that a percentage (c%) of the original tweets belong to the same conversation. Also,
most users in the dataset have less than three tweets on average (ut = tweets/users).

Due to some inconsistencies in the original CrisisNLP dataset between the labeled data annotated
by paid workers and the labeled data annotated by volunteers, this study structured the categories for
the Conversational CrisisNLP dataset as detailed in Table 6.3. The agumented dataset increase the
total number of tweets (tweets column) for all categories compared to the original tweets (ltweets).
The percentage of increase (g%) is significant for some crisis-related categories (help-efforts,people-
displaced,sympathy-or-emotional) but also for the non-related tweets.

category ltweets tweets g%

caution-and-advice 1,342 1,725 28.54
help-efforts 4,523 9,415 108.16
help-request 253 471 86.17
infrastructure-damage 2,138 3,289 53.84
not-related 15,947 42,320 165.38
other 9,385 14,771 57.39
people-dead 2,951 3,242 9.86
people-displaced 602 1,298 115.61
people-missing 476 641 34.66
sympathy-or-emotional 3,103 8,615 177.63
ALL 40,720 85,787 47.47

Table 6.3: Category statistics in conversational crisisNLP.

Table 6.4 shows the statistics of the categories for each of the events in the Conversational
CrisisNLP dataset. Some categories (help-request, people-missing) have none or few instances,
which makes difficult NLP tasks such as classification.

category EV00 EV01 EV02 EV03 EV04 EV05 EV06 EV07 EV08 EV09

caution advice 69 140 325 76 41 91 348 51 41 160
help efforts 299 581 12 82 45 198 436 463 2,018 389
help request 73 1 71 108
infra. damage 28 146 43 366 66 466 356 86 348 233
not related 312 161 342 119 498 47 7,006 25 6,720 717
other 724 514 835 948 206 321 3,031 618 1,507 681
people dead 326 453 178 197 893 31 66 220 420 167
people displaced 12 26 63 4 27 101 130 85 89 65
people missing 5 42 6 6 14 28 8 103 243 21
sympathy emotion 106 549 571 86 30 164 290 118 1,012 177

Table 6.4: Category statistic by events in the conversational crisisNLP.

Figure 6.2 shows the temporal distribution of the tweets for each of the events in the Conver-
sational CrisisNLP dataset. Some of the events begin their conversational tweets (blue line) before
the date the labeled tweets were collected, due mostly to tweets non-related to the crisis event.



CHAPTER 6. CONTEXT-AWARE CLASSIFICATION 54

0 2 4 6

101

102

2013-PK-eq

0 2 4

102

102.5

2014-Ca-eq

−5 0 5 10

100

101

102

103

2014-CL-eq

−20 0 20

100

101

102

103

2014-CL-eq-en

0 20

100

101

102

103

2014-IN-fl

−10 0 10

100

101

102

103
2014-MX-hu-en

0 5 10

102

104

2014-PH-ty-en

0 5 10 15

101

102

103
2014-PK-fl

−50 0

100

102

104

2015-NP-eq-en

0 10 20

101

102

103

2015-VU-cy-en

Figure 6.2: Temporal distribution of the tweets in the Conversational CrisisNLP dataset. As ex-
pected, the occurrence of the conversational tweets (blue line) begins before the labeled tweets
(orange line) for most of the crisis events. The conversational tweets (blue line) contain both la-
beled and unlabeled tweets.

Figure 6.3 shows the distribution of the number of replies (red line) for conversations in the
Conversational CrisisNLP dataset. As expected, the distribution follows a power-law distribution
as most human activities. Most conversations are short (i.e., few replies), but some events (2014-
CL-eq-en,2015-VU-cy-en ) contains a few very long conversations with more than ten tweets.



CHAPTER 6. CONTEXT-AWARE CLASSIFICATION 55

101 102
10−14

10−7

100

2013-PK-eq

101 102

10−5

100

2014-Ca-eq

101 102
10−18

10−9

100

2014-CL-eq

101 102 103
10−19

10−9

101

2014-CL-eq-en

101 102

10−10

10−5

100

2014-IN-fl

101
10−6

10−3

100

2014-MX-hu-en

101 102
10−20

10−10

100

2014-PH-ty-en

101 102
10−6

10−4

10−2

2014-PK-fl

101 102

10−10

10−5

100

2015-NP-eq-en

0 500 1,000
10−29

10−14

101

2015-VU-cy-en

Figure 6.3: Distribution of the number of replies for conversations. The empirical distribution
(brown line) follows a power-law distribution (blue line) rather than an Exponential distribution
(red line).

6.3 Experimental Settings

This section describe the settings for the experiments conducted. The focus is to know the effects
of conversational context in NLP classification tasks (RQ2, RQ3) using existing classification models.
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Figure 6.4: Distribution of the deep of labeled (orange curves) and unlabeled tweets (blue curves)
in the conversations for each event in the conversational CrisisNLP dataset. The Y axis show the
categories and the X axis indicates the probability density estimate of the deep of the tweets.

To that end, the experiments select several models used in previous works [140, 100] suitable for
Binary or Multinomial distributed discrete data such as texts dataset.

Naive bayes (NB) parametrizes distribution of the data by θy = (θy1, . . . , θyn) for each class y, where
n is the the size of the vocabulary and θyi is the probability P (xi | y) of feature i appearing
in a sample belonging to class y [113].
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Logistic regression (LR) represents the probabilities of the possible outcomes uses the logistic func-
tion f(x) = L/(1 + e−k(x−x0)) and minimizes the following cost function

min
w,c

1

2
wTw + C

n∑
i=1

log(exp(−yi(X
T
i w + c)) + 1) (6.1)

The experiments use the L-BFGS-B optimization method [161].

Random forest (RF) is an averaging algorithm based on randomized decision trees [22]. RF uses
n classifiers created with randomness in the construction (the experiments use n = 5). The
prediction of the ensemble is the averaged prediction of the individual classifiers.

Support vector machine (SVM) constructs a hyper-plane or set of hyper-planes in a high dimen-
sional space. It aims to achieve a good separation between classes by the hyper-plane that
has the most considerable distance to the nearest training data points of other classes (the
more significant the margin, the lower the generalization error). The experiments use RBF
kernel [27].

Convolutional neural network (CNN) is a regularized version of multilayer perceptrons. CNN is
fully connected networks; that is, each neuron in one layer connects to all neurons in the next
layer. The fully-connectedness of these networks makes them prone to overfitting data. The
experiments use the vanilla implementation in [70]

To evaluate the classifiers, the experiments use the following metrics: (a) Precision (b) Weighted
F1 (c) AUC The weighted F1 metric account for the imbalance of the labels. The experiments use
stratified cross-validation (kfolds = 5) and report the average of the scores in the empirical results
in the next section. The categorical classification task filters the categories with less than kfolds

instances. The experiments perform standard preprocessing steps such as replacing tokens such
as URLs, Mentions, Reserved words (RT, FAV), Emojis, or Smileys. The preprocessing maintain
Hashtags since removing the symbol (#) can be used as an input feature, mainly because there are
some tweets that most of their content is hashtags. For the non-neural methods, the experiments use
TF-IDF vectorization to represent the features and the implementation uses Sklearn [107]. While
the neural models use word embeddings, and the implementation uses Keras [29].

6.4 Results and Discussion

This study conduct several experiments to determine if there are improvements in classification
tasks (RQ2) through the use of contextual information provided by conversation history on Twitter.
The experiments perform two types of classification tasks: (i) Binary, and (ii) Categorical. Since the
Conversational CrisisNLP dataset contains several events, this section report the results per event.
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event NB LR RF SVM CNN NB+ LR+ RF+ SVM+ CNN+

EV00 76.63 78.71 80.92 80.27 79.81 76.50 78.76 81.54 80.15 79.68
EV01 91.10 91.10 91.47 91.08 91.10 91.10 91.10 91.45 91.08 91.10
EV02 79.96 87.59 89.17 88.98 93.42 79.44 87.74 89.64 89.57 93.93
EV03 90.63 90.63 90.34 90.72 90.63 90.63 90.63 90.90 90.72 90.63
EV04 90.83 94.15 92.32 94.09 92.67 90.53 94.10 93.07 93.95 92.90
EV05 95.16 95.16 95.22 95.16 95.16 95.16 95.16 95.37 95.16 95.16
EV06 71.49 69.07 65.03 68.57 69.58 71.27 68.62 66.12 67.95 70.65
EV07 97.89 97.89 97.89 97.89 97.89 97.89 97.89 97.89 97.89 97.89
EV08 73.80 72.30 67.06 71.95 71.01 73.75 72.29 67.20 71.70 72.18
EV09 72.84 85.48 83.35 86.65 89.17 73.92 85.78 83.70 86.91 88.19

Table 6.5: Models comparison for the binary classification task using Weighted F1 metric.

event NB LR RF SVM CNN NB+ LR+ RF+ SVM+ CNN+

EV00 85.69 86.63 72.05 87.25 86.00 86.10 86.77 75.58 87.25 86.37
EV01 71.93 77.68 65.20 76.96 75.55 71.37 78.11 63.12 77.04 75.36
EV02 93.74 94.25 85.11 93.95 95.48 93.93 94.35 87.12 93.98 95.11
EV03 75.29 77.63 58.14 73.49 78.07 76.02 77.71 58.00 73.70 77.92
EV04 98.32 98.48 95.42 97.74 98.04 98.27 98.43 96.87 97.73 98.25
EV05 79.26 80.72 58.66 80.52 76.37 78.79 80.41 57.07 80.70 76.17
EV06 78.01 80.22 70.76 77.08 80.48 77.81 80.22 71.36 76.91 80.81
EV07 73.19 72.54 54.53 65.84 65.81 75.83 72.93 52.17 67.11 70.81
EV08 81.13 82.64 73.30 81.57 82.65 80.79 82.39 73.44 81.24 82.32
EV09 92.68 91.46 85.33 91.52 93.78 92.68 91.58 84.77 91.54 92.66

Table 6.6: Models comparison for the binary classification task using AUC metric.

category NB LR RF SVM CNN NB+ LR+ RF+ SVM+ CNN+

caution-and-advice 20.00 39.44 27.39 34.22 26.75 13.33 33.90 21.69 31.84 22.83
help-efforts 59.52 62.12 54.90 58.48 53.80 63.44 61.05 53.10 56.38 48.51
help-request 0.00 20.00 31.51 45.33 36.76 0.00 13.33 19.86 38.00 24.84
infrastructure-damage 11.75 53.76 33.97 47.63 28.39 15.00 55.98 30.20 47.54 28.88
not-related 32.09 43.96 48.66 51.36 50.32 42.52 53.25 51.94 58.52 58.17
other 47.55 46.67 41.50 49.89 43.58 44.60 44.82 39.77 47.36 39.55
people-dead 55.56 62.16 50.27 58.66 67.43 52.33 53.60 39.53 49.97 62.45
people-displaced 0.00 5.00 7.47 27.81 17.61 0.00 6.67 18.95 36.74 17.58
people-missing 5.00 17.96 17.42 26.53 20.87 6.67 22.94 17.89 28.21 17.23
sympathy-or-emotional 46.58 67.79 41.69 65.47 50.86 32.87 70.94 41.28 67.42 48.12

Table 6.7: Models comparison for the categorical classification task using precision metric.

6.4.1 Binary classification task

The Binary classification task uses just two categories for the tweets in the Conversation Cri-
sisNLP dataset: (i) Not related, and (ii) Related. The Related category contains all the categories
defined in Table 6.3 but not-related. The results are in separate tables for each metric Weighted
F1 (Table 6.5) and AUC (Table 6.6). The event column uses the code for each event defined in
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category NB LR RF SVM CNN NB+ LR+ RF+ SVM+ CNN+

caution-and-advice 1.38 11.70 12.90 18.15 24.70 0.92 8.52 10.09 13.44 19.97
help-efforts 46.23 54.27 46.74 55.80 53.00 40.11 48.00 40.86 50.35 48.08
help-request 0.00 2.58 18.00 24.62 25.65 0.00 1.72 14.96 20.58 17.87
infrastructure-damage 0.95 9.19 20.41 21.78 24.81 0.91 10.70 17.37 22.20 24.24
not-related 37.30 38.95 47.35 44.19 48.49 49.58 51.83 54.23 55.69 56.65
other 40.18 43.45 37.43 42.28 40.18 36.07 39.24 35.75 37.26 37.79
people-dead 42.84 59.21 53.58 60.14 62.84 30.07 48.98 41.62 50.50 52.20
people-displaced 0.00 0.37 5.61 5.51 11.08 0.00 0.49 11.19 8.13 12.14
people-missing 0.20 7.77 15.79 16.66 14.05 0.27 10.40 15.50 19.06 15.46
sympathy-or-emotional 31.50 45.92 40.78 48.16 51.09 20.92 40.71 36.21 42.56 47.10

Table 6.8: Models comparison for the categorical classification task using F1 metric
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Figure 6.5: Analysis of the effect of using different percentiles (25, 50, 75, 100) from the conversation
history for the binary classification task (SVM model) in one of events (2015-VU-cy-en) of the
Conversational CrisisNLP dataset.

user text deep category

Jaimarie13 xxbos nepal helpnepal nepalearthquake nepalquake
vegas xxunk xxunk url

1

RescueNetOnline mention thank you for the mention our team is
now on the ground in nepal helping w the relief
efforts nepalearthquake nepalquake

2

Jaimarie13 mention so glad you made it safely let me know
how i can help keep up the great work be the
voice for us back home emoji emoji emoji nepal

3 help_efforts

RescueNetOnline mention thank you twe will stay connected and let you know
how things are from the field as we re able emoji

4

Table 6.9: Interpretability model for the neural classifier for a sample conversation.

Table 6.2, while the remaining columns represent each of the models. The line in the middle of
the tables separates the models, to the left models that do not use conversational context. To the
right of the line are those that use the conversational context. The experiments show mixed results
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in the binary classification task for both metrics. For some of the events, the model with the best
score (highlighted cells) uses a conversational context. In general, some models improve their scores
(blue) compared to their counterparts that do not use conversational context.

6.4.2 Categorical classification task

To answer the research question RQ3, the experiments allow to know the performance of the
models across categories. To that end, the experiment defines a specific classification task that uses
all the categories as described in the original CrisisNLP dataset [61]. The experiments use the same
format as the Binary classification task, i.e., best model per category is highlighted and blue color
denotes improvement of models that use conversation history compared to those that do not use
it. This task calculates the metrics precision (Table 6.7) and F1 (Table 6.8), and the scores per
category are averaged across events.

The results show that there is a significant decrease in the performance across models because
the Categorical classification task is more difficult compared to the binary task. The difficulty is due
to the imbalance of the labels per category that require zero or one-shot learning approaches [56].
The most problematic categories are help-request, people-displaced, and people-missing. For the
F1 metric, the CNN model outperforms other models in most categories and the worst-performing
model is NB. Overall, the results show a similar trend that in the binary classification task, that
is in several cases the models do improve their predictions when using the conversation context
as opposed to using only the labeled tweet. However, critical categories such as help-efforts and
help-request did not improve as expected.

6.4.3 Discussion

This study aims to know to what extent using conversational context could improve downstream
NLP tasks (RQ2) thought additional experiments for the binary classification task.

6.4.4 Context sensitivity

The SVM classifier is one of the models with most improvements (see Table 6.6) when using
conversational context, thus the experiments use SVM for further experiments that measure the
sensitivity of varying the length of the conversation context (history). Figure 6.5 shows the analysis
of the effect of using different percentiles (25, 50, 75, 100) for the conversation history in the binary
classification task in one of the events (2015-VU-cy-en). Our findings indicate that using a more
extended conversation context did improve the classification task from percentile 25 to 50. However,
there are not significant improvements using percentile 75 of the history, and finally, using the
complete history of the conversations improves w.r.t percentile 75 by 1% on AUC metric. Despite
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the gains are not large, using context information can help to disambiguation or handling difficult
cases for the models in downstream NLP tasks beyond the Crisis Informatics domain.

6.4.5 Models interpretability

A interpretability model, applied to the sample conversation presented in Table 6.1, allows to
validate the initial hypothesis through the use of the UMLFit neural learning framework [54]. UML-
Fit extracts an interpretation of the classification model based on input sensitivity detected through
an external mechanism. The interpretability results fit closely with the initial hypothesis that clas-
sifiers can leverage additional data provided by conversation contexts to improve the understanding
of the target tweet (labeled tweet) as depicted in Table 6.9. The most important or relevant words
(highlighted close to dark red color) are in the target tweet as expected but also in the second tweet
(e.g., the word efforts). The lighter colors indicate less importance or prevalence to the minimum
level (light yellow and green color), The interpretability model also shows that the model is paying
too much attention to unknown words (xxunk tag) or unnecessary words (e.g., in, for, the, it) which
indicates the necessity of filtering those as part of the preprocessing step.

6.4.6 Limitations

This study have some limitation listed next. Most of the events in the Conversational CrisiNLP
dataset contain tweets in several languages (Table 6.2), which generate noisy representations for
the classification models. There is not evaluation of the cross-lingual aspect in the experiments,
but it could have an impact on the conversational aspect. Also, the experiments do not evaluate
cross-event scenarios, which is an aspect important for real-world scenarios, and some proposed
approaches tackle the issue [7].

6.5 Conclusions

This chapter gains insights on the use of conversational context for the NLP classification task
for crisis-related conversations on Twitter. This study introduced a new Conversational CrisisNLP
dataset and evaluated several text classifiers. Empirical results show leveraging conversational con-
text does improve the prediction scores of the classifiers. Future research directions can evaluate the
sample aspect for image-grounded conversations in the crisis domain.



Chapter 7

Semisupervised Learning

This chapter addresses RQ5 that deals with the use of massive unlabeled data for classifica-
tion tasks. This chapter begins with an overview and motivation for semisupervised learning in
Section 7.1. Next, Section 7.2 provides a description of the methodology and the cross-lingual clas-
sification task evaluation. Then, Section 7.3 details the experimental settings in and Section 7.4
show the empirical results. Finally, Section 7.5 outlines conclusions and research directions. The
work presented in this chapter was first published at the 2nd Workshop on Affective Content Anal-
ysis (AffCon 2019) co-located with Thirty-Third AAAI Conference on Artificial Intelligence (AAAI
2019) [132].

7.1 Introduction

The classification or grouping of short texts is critical in various tasks in text mining and the
retrieval of information in the context of social networks or data generated by users on the web.
Specifically, these tasks aim to categorize or group similar texts, so that texts with the same label
or group are similar to each other and different from texts in other categories or groups. Traditional
classification or grouping models often use a sparse representation for text data, such as the bag of
words (BOW) or TF-IDF [84].

However, the characteristics of the short texts create some problems for both conventional un-
supervised and supervised models. Usually, the number of unique words in each short text is small
(90% of the instances of the text in tweets in the datasets used in this work have less than 23 words),
and as a result, the problem of lexical shortage generally leads to poor grouping quality [36].

An alternative to address lexical shortages is to enrich text representations by extracting char-
acteristics and relationships with sources such as Wikipedia [14] or ontologies [40]; however, this
approach requires written knowledge, which also depends on the language. Another alternative is
to code texts in distributed dense vectors [90] with neural networks [150].

62



CHAPTER 7. SEMISUPERVISED LEARNING 63

Another problem is the definition of the labels for a specific task and the number of manually
annotated instances for each label. Unsupervised methods learn the categories from the data, but the
resulting groupings may not be related to the expected labels. Supervised methods have predefined
labels but often require a considerable number of labeled instances to learn to categorize. Semi-
supervised approaches offer an alternative to solve these problems by using a small amount of labeled
data according to predefined classes, at the same time, take advantage of the massive unlabelled
data availability [13].

This chapter investigates the research question: How can a semi-supervised approach learn to
categorize short texts in a multi-label taxonomy using a small set of labeled data and leveraging the
availability of large unlabeled data? To that end, the proposed build upon neural semi-supervised
k-means clustering that modifies the normal objective function and adds a penalty term for labeled
data [144]. The proposed model extended the neural semi-supervised clustering and applied it
to multi-label settings. The results show that semi-supervised k-means outperform other baseline
unsupervised models for multi-label classification tasks.

7.2 Methodology

In unsupervised learning, k-means is an algorithm for clustering data used in many applications,
including text mining tasks [30]. The k-means algorithm divides the data into a K number of
clusters, so that minimizes the distance of each point to the centroids of the clusters, assigning it to
the nearest cluster. The input to the clustering model are the set of short texts {s1, s2, s3, ..., sN}
represented by the data points {x1, x2, x3, ..., xN}, where xi is a sparse or dense vector.

The k-means algorithm defines a set of binary variables rnk ∈ {0, 1} for each data point xn,
where k ∈ {1, ...,K} specifies the cluster assigned. For example, rnk = 1 if xn is assigned to cluster
k, and rnj = 0 for j ̸= k. The objective function in k-means is defined as:

Junsup =

N∑
n=1

K∑
k=1

rnk∥xn − µk∥2 (7.1)

where µk is the centroid of the k-th cluster. The k-means algorithm learns the values of {rnk} and
{µk} such that optimizes Junsup. To minimize the objective function, k-means utilizes the gradient
descent approach with an iterative procedure [99].

Each iteration involves two steps: assign clusters and estimate centroids. In the assign clusters
step, k-means minimizes Junsup with respect to {rnk} by keeping fixed {µk}. In this case, Junsup is
a linear function for {rnk}, so to optimize each data point separately by merely assigning the n-th
data point to the closest cluster centroid.

In the estimate centroids step, k-means minimizes Junsup with respect to {µk} by keeping {rnk}
fixed. In this case, Junsup is quadratic function of {µk}, and minimization sets to zero the derivative
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for {µk}, as follows:
∂Junsup
∂µk

= 2

N∑
n=1

rnk(xn − µk) = 0 (7.2)

Then, it solves {µk} as

µk =

∑N
n=1 rnkxn∑N
n=1 rnk

(7.3)

Thus, µk corresponds to the mean of all the data points assigned to the cluster k.

7.2.1 Neural Semi-supervised Clustering

The classical k-means algorithm uses unlabeled data to solve the clustering problem based on
an unsupervised learning approach; however, the clustering results may not be consistent with
the expected labels. This study extend the semi-supervised approach in [144], which injects some
supervised information into the learning process to produce useful and coherent clusters. Similar to
the classic k-means algorithm, the training steps for the neural semi-supervised k-means are:

1. Initialize {µk} and f(·).

2. Repeat until convergence:

(a) assign clusters: Assigns each short-text to its nearest cluster centroid based on its neural
representation.

(b) estimate centroids: Estimates the clusters’ centroid based on the cluster assignments from
previous step.

(c) update parameters: Updates the neural networks parameters according to the objective
function by keeping fixed the centroids and cluster assignments.

7.2.2 Representation learning

The model represents each short text entry si as a sequence of word indices and, together with the
initial centroids, form the input data to the semi-supervised neuronal clustering model. Then, the
embedding layer maps each word in the sequence as a dense vector x = f(s), using word embeddings
initialized randomly or from pre-trained embeddings [90, 89]. In this approach, rather than training
the text representation model independently, the semi-supervised clustering integrates it with the
k-means algorithm training process.
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7.2.3 Objective function

The neural semi-supervised clustering uses a small number of labeled instances to guide the
clustering process and minimizes the objective function defined as:

Jsemi =

C∑
c=1

{α
N∑

n=1

K∑
k=1

rnk∥f(sn)− µk∥2

+ (1− α)

L∑
n=1

{∥f(sn)− µgn∥2+∑
j ̸=gn

[l + ∥f(sn)− µgn∥2 − ∥f(sn)− µj∥2]+}}

(7.4)

where {(s1, y1), (s2, y2), ..., (sL, yL)} denote the labeled data, and the unlabeled data is {sL+1, sL+2, ..., sN}.
The label yi specify the cluster for each short-text si. The outer sum iterates over the number of
labels C defined in the taxonomy; thus, extending the original objective function in [144]. The
objective function contains two terms:

1. The first term is the objective function in the classic k-means algorithm (Equation (7.1)), and
the second term penalizes depending on how far are the predicted clusters from the ground-
truth clusters for labeled data. The experiments use the factor α ∈ [0, 1] to tune the importance
of unlabeled data.

2. The second term contains two sub-terms:

(a) The first sub-term penalizes depending on the distance between each labeled instance and
its correct cluster centroid, where gn = G(yn) indicates the cluster ID given by the label
yn. The mapping function G(·) uses the Hungarian algorithm [96].

(b) The second sub-term specifies a hinge loss function with a margin l, where [x]+ =

max(x, 0). This term incurs in some loss if the distance to the ground truth centroid
is larger (by a margin l) than the distances to the wrong centroids.

7.2.4 Model training

The parameters in Jsemi are: the clusters’ assignment for each text {rnk}, the clusters’ centroids
{µk}, and the neural network weights f(·). The goal is to find the values of {rnk}, {µk}, and
parameters in f(·) that minimizes Jsemi. Based on the k-means algorithm, the semi-supervised
model iteratively minimizes Jsemi with respect to {rnk}, {µk}, and parameters in f(·).

First, the model initializes the clusters’ centroids {µk} with the k-means method [12], and
also initializes randomly the parameters in the neural network. Then, the model iteratively carries
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out three steps (assigns clusters, estimates the centroids, and updates the parameters) until Jsemi

converges.
The assign clusters step minimizes Jsemi with respect to {rnk} by keeping fixed f(·) and {µk}

to assign a cluster ID for each data point. The second term in Equation (7.4) has no relation with
{rnk}. Thus, the model only needs to minimize the first term, by setting the nearest cluster centroid
to each text, i.e., is identical to the assign clusters step in the k-means algorithm. In this step,
the model also calculates the mappings between the ground-truth clusters specified by {yi} and the
cluster assignments for the labeled data.

The estimate centroids step minimizes Jsemi with respect to {µk} by keeping {rnk} and f(·)
fixed, which corresponds to the estimate centroids step in the classic k-means algorithm. It aims to
estimate the cluster centroids {µk} based on the cluster assignments {rnk} from the assign_cluster
step. In the Equation (7.4), the second term considers each labeled instance in the process of
estimating cluster centroids. Solving ∂Jsemi/∂µk = 0, gives

µk =

∑N
n=1 αrnkf(sn) +

∑L
n=1 wnkf(sn)∑N

n=1 αrnk +
∑L

n=1 wnk

(7.5)

wnk = (1− α)(I
′

nk +
∑
j ̸=gn

I
′′

nkj −
∑
j ̸=gn

I
′′′

nkj)

I
′

nk = δ(k, gn)

I
′′

nkj = δ(k, j) · δ
′

nj

I
′′′

nkj = (1− δ(k, j)) · δ
′

nj

δ
′

nj = δ(l + ∥f(sn)− µgn∥2 − ∥f(sn)− µj∥2 > 0)

(7.6)

where δ(x1, x2)=1 if x1 is equal to x2, otherwise δ(x1, x2)=0; and δ(x) = 1 if x is true, otherwise
δ(x) = 0. In the numerator of Equation (7.5), the first term represents the contributions from all
data points, and the weight of sn for µk is αrnk. The second term represents labeled data, and wnk

is the weight of an instance sn for µk.
The update parameters step minimizes Jsemi with respect to f(·) by keeping {rnk} and {µk}

fixed, with no counterpart in the k-means algorithm. The primary goal is to learn the parameters of
the text representation model. The training uses Jsemi as the loss function and employs the Adam
algorithm to optimize it [71].

7.3 Experimental Settings

This chapter evaluates the models on the dataset for the Ecuador earthquake introduced in
previous chapters. The Appendix A details the data acquisition, storage, and processing of the
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dataset. For training, the experiments use a small subset of labeled data and a large subset of
unlabeled dataset [67]. Table 7.1 summarizes the number of labeled and unlabeled text instances
for training, as well as the number of instances in the test set. For the experiments, the splitting
strategy is to randomly sample 80% of labeled instances for training (training set) and remaining
20% instances for validation (validation set). The unsupervised and semisupervised models use
unlabeled instances for training (unlabeled set). The experiments train the models using k-fold
cross-validation (k = 10) on the training set and report the results for the validation set using the
metric F1.

Dataset Labeled Unlabeled Test Total

2016-EC-eq 1,500 150,076 693 152,269

Table 7.1: Statistics for the dataset.

This subsection compares the proposed semi-supervised approach with unsupervised and super-
vised models.

7.3.1 Unsupervised learning:

All unsupervised models use k-means for clustering, with the number of clusters k = 2 to map
the values for each label (0, 1). For learning representation, the experiments evaluate the following
methods: a) BOW represents each short-text as a sparse vector based on term frequency (TF).
b) TF-IDF similar to BOW, uses a sparse vector to represent each short-text based on term fre-
quency-inverse document frequency, and c) AVG-EMB uses word embeddings vectors to represent
each short-text and then calculate the average.

7.3.2 Supervised learning:

The experiments evaluate several supervised models for the classification task; the representation
learning used depends on each model as described next:

LR: uses a sparse vector representation that feeds a logistic regression classifier.

FastText: uses dense word vectors representation (embeddings layer), followed by a Global Average
Pooling layer, which averages the word embeddings, and then uses a Dense layer with sigmoid
activation to predict the labels.

CNN: uses dense word vectors representation (word embeddings layer) followed by a Dropout layer,
then a convolutional layer, and an output layer with sigmoid activation.

LSTM: similar to CNN, but the word embeddings layer feeds a recurrent LSTM layer, which is more
suitable for sequence modeling such as texts.
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BiLSTM: uses two LSTM networks to model the text sequences in both directions, followed by a
Dropout layer with a rate of 0.5 and then a dense layer with sigmoid activation.

CNN-LSTM: leverage the advantage of the CNN layer to capture salient features and sequence
modeling capability of LSTM.

7.4 Results and Discussion

Type Model Precision Recall F1

unsupervised BOW 62.68 54.72 58.43
unsupervised TF-IDF 62.10 68.75 65.26
unsupervised EMB-AVG 63.50 75.91 69.16
supervised LR 87.02 86.80 86.91
supervised FastText 88.28 88.91 88.60
supervised CNN 88.56 88.92 88.74
supervised LSTM 89.45 86.97 88.19
supervised BiLSTM 89.05 87.32 88.18
supervised CNN-LSTM 88.48 86.85 87.66
semi-supervised CNN 89.03 87.10 88.06

Table 7.2: Models performance for the task of identifying crisis-related conversations.

Table 7.2 summarizes the scores of the models on the test set. The models fall into three
categories (type): unsupervised, supervised, and semi-supervised. The metrics are precision, recall,
and F1, and report the scores for each label. The columns show the total weighted score of the
metrics for each model. The results show that the supervised systems outperform unsupervised
models by a small margin. Among the supervised learning, deep neural models perform better than
the baseline method (LR). The semi-supervised model shows promising results, as it achieves scores
close to the supervised models. Therefore, classification tasks can achieve good predictions results
with less annotation effort.

Neural architectures introduce several hyper-parameters like the output dimension of the text
representation models, while semi-supervised k-means clustering has α in Equation (7.4). The next
sections analyze the impact of some of the hyper-parameters and determine the configuration for
further experiments.

7.4.1 Embeddings dimension

The experiments evaluate the effectiveness of the output dimension in text representation models.
To that end, the experiments use embeddings size of {50, 100, 200, 300, 500, 1000}, while maintaining
all other parameters fixed. Figure 7.1 show that the score F1 drops if the size is ≤ 100 and the curve



CHAPTER 7. SEMISUPERVISED LEARNING 69

falls if the size is ≥ 500. Based on the results, further experiments use 300 as the size of the
embedding.
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Figure 7.1: Influence of the dimensionality of the text learning representation.

7.4.2 Alpha

The experiments evaluate the effect of α in Equation (7.4), which controls the importance of un-
labeled data in the performance of the model. The experiments evaluate α with values of: {0.00001,
0.0001, 0.001, 0.01, 0.1}, and maintain the other parameters fixed. Figure 7.2 shows that the per-
formance decay for small α values. By increasing the value of α, there are improvements and reach
a peak F1 score with α = 0.1. Further experiments use the value of α = 0.1 as it maximizes F1.
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Figure 7.2: Influence of unlabeled data, where the x-axis is α in Equation (7.4).
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7.4.3 Labeled set size

This parameter controls the influence of the size of the labeled data. The experiments evaluate the
ratio of labeled data for training between [1%, 10%], and kept the other parameters fixed. Figure 7.3
illustrates the performance improvement as the size of labeled data increases and confirms the
importance of labeled data for training.
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Figure 7.3: Influence of the size of labeled data used for training.

7.4.4 Pre-training

This aspect measures the effect of the pre-training embeddings for neural architectures. The first
option uses pre-trained embeddings in the models for the classification task with labeled data. These
experiments evaluate several pre-trained embeddings such as Word2Vec, Glove, FastText. Figure 7.4
shows that pre-trained embeddings achieve superior performance compared to random embeddings;
further experiments use FastText.
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Figure 7.4: Influence using pre-training embeddings in neural models.



CHAPTER 7. SEMISUPERVISED LEARNING 71

7.5 Conclusions

The work presented in this chapter builds on the neural semi-supervised clustering that integrates
a neural representation learning for short-texts, and the k-means clustering into a unified framework.
To that end, the model utilizes a small percentage of labeled data to guide the intention for clustering.
The proposed extended the model to use it in the muti-labeled clustering of short-texts. The
results show that the proposed neural semi-supervised clustering is more effective than baselines
unsupervised, and it close to the supervised models. Therefore, the results show the potential to
overcome critical issues, such as scarcity of labeled data, and leverage the availability of massive
unlabeled data.



Chapter 8

Recommending Conversations

This chapter addresses RQ6 related to the recommendation of content on social media, in par-
ticular, recommending conversations. This chapter begins with an overview and motivation for
recommending conversations in Section 8.1. Next, Section 8.2 provides a description of the method-
ology and the recommendation task evaluation. Then, Section 8.3 details the experimental settings
in and Section 8.4 show the empirical results. Finally, Section 8.5 outlines conclusions and research
directions.

8.1 Introduction

Online social networks (OSNs) are increasingly receiving considerable attention from the research
community, as the content available in these networks contains valuable information for event de-
tection, crisis management, forecasting, recommendations, among others. The near real-time user
interactions within OSNs, make new relevant content (e.g., news) available to the public often faster
than traditional media [73, 45]. Thus, the content recommendation is an essential task for web
companies and organizations that are looking to reach an audience, such as advertising [3, 79].

The work presented in this chapter focuses on recommending content on OSNs as part of intelli-
gent systems in the domain of crisis management [106]. Due to the increasing number of crisis events
worldwide, it is an important task to recommend content that may elicit interactions from the crowds
to help other people, especially in the context of natural disasters. Nevertheless, the proposed ap-
proach applies to other application domains. Previous works focused on analyzing individual tweets
for recommendation tasks. In the field of recommendation systems, previous works addressed sev-
eral types of recommendation tasks, including hashtags, mentions, news, points-of-interest, profile
classification, retweets, tweets, URLs, and whom to follow [131].

Twitter conversations may span a wide range of domains such as politics, religion, health, fitness,
sports, food, or fashion. Conversational recommendations could be particularly useful during crisis

72
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events, such as earthquakes when people use social media platforms to look for relevant information,
request for help, offer support, contact relatives, and other types of inquiries. This chapter presents a
novel recommendation task for OSNs, particularly recommending users to join relevant multi-agent
and multi-turn conversations. This task aims to recommend users to join a set of conversations on
different topics they might be interested, even when no link connections are available (i.e., users have
no relationship between them). Moreover, recommending short-text conversations can be modeled
using neural architectures such as sequential models [50]. This chapter proposes a neural learning
architecture based on a sequence-to-sequence model to tackle the task of recommending conversations
using the conversation context and the user’s history.

In conversational modeling, it is feasible to train supervised machine learning models without
human-annotated data, since the data itself provides the ground truth as in the case of the prediction
of the next utterance [83]. The experiments use a large Spanish Twitter corpus of Ecuadorian Users
(USERSEC) containing 10K conversations from three popular users from Ecuador. The dataset
contains posts whose content is related to three domains: politics, sports, and crisis events activism.

Empirical results show that the model outperforms several baseline models, such as TF-IDF
and state of the art model based on collaborative filtering (CFT). The experiments highlight the
performance of the bi-LSTM variant of the model, which outperforms other variants such as RNN
or LSTM.

The main contributions of this chapter are: (i) the USERSEC corpus, a conversational dataset
of short-text conversations on Spanish, (ii) a novel task for recommending users in short-text con-
versations, and (iii) a state-of-the-art neural architecture to recommend users or conversations on
microblogs.

8.2 Methodology

8.2.1 Data

This chapter analyzes conversations on Twitter, which is one of the most popular microblogging
sites. In some circumstances such as crisis events, conversations on Twitter occur almost in real-
time as the case of IRC or chat rooms. An advantage of using Twitter is the limit in the number
of characters of each message, which makes it comparable to conversations found in chat rooms.
Although in November of 2017, Twitter announced that it had increased the limit to 280 characters1,
most of the tweets collected in the corpus have the prior limit of 140 characters.

Twitter conversations begin with a user posting a message, not directed to any user in particular
but broadcast to the user’s audience (followers). Some users in the network interact by replying to
the initial tweet or another tweet in the conversation thread. Since the Twitter APIs provide an

1https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.
html

https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
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identifier to each tweet, it is not necessary a preprocessing step to disentangle utterances (replies)
in conversations as it is the case for other data sources [142].

Figure 8.1 illustrates the types of conversations occurring on Twitter. The conversation begins
with a root tweet (initial tweet) from a user (blue node). Wide conversations have just a single reply
to the root tweet (orange nodes). Some of the wide conversations evolve into Deep conversations that
can contain several replies in a cascade forming conversational threads with three or more tweets
(green nodes). In this context, non-followers might be interested in joining the conversation; thus,
finding the right profiles for a set of conversations highlights the scope and relevance of the tasks
proposed in this chapter.

Figure 8.1: A sample conversation from the USERSEC corpus. The large blue node at the center
is the initial tweet of the conversation. The orange nodes around are direct replies to it (wide
conversations), while some of the tweets (green nodes) evolve into deep conversational threads.

The work presented in this chapter introduces the USERSEC conversational corpus that includes
the following properties: • Large number of conversations, on the scale of 104, appropriate for
training neural architectures. • Multi-turn conversations with more than two turns. • Multi-agent
conversations as opposed to two-way conversations in chats datasets. • Conversations on several
domains. • Conversations on the Spanish language.
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Unlike the work of [115], the dataset does not restrict the conversations to the initial two or
three utterances. Without the limitation in the number of utterances, one can train models to learn
context-aware conversations, which is essential for the recommendation of relevant conversational
threads. The dataset contains all tweets in conversations initiated by three popular users in Ecuador.
These users belong to different expertise domains: politics (@MashiRafael), sports (@aguschmer),
and humanitarian aid activism (@KarlaMorales). By using different domains, the analysis shows
that there are users with mutually exclusive interactions as well as inter-domain interactions (green
nodes), as shown in Figure 8.2. In the dataset collected, there are at least 10% of users interact with
two or more in different domains.

Figure 8.2: Clusters of interacting users. Three popular users (MashiRafael, KarlaMorales,
aguschmer) in the USERSEC dataset and a sample of their audience forming clusters (in color
Red, Blue, Orange) of users interacting exclusively with them. The users interacting with several
popular users constitute the intersecting clusters (green).

The data collection uses Twitter’s Streaming API2 to collect the initial tweets of fashionable
users. The tweets collected contain all the replies to the tweets of the popular users, as well as the

2https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data

https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
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timelines of users participating in the conversations collected with the Twitter REST API3. The reply
field (in-reply-to-status-id) in tweets’ metadata specifies when a tweet is a reply by another user and
allows to collect all parent tweets in the conversation threads through recursive navigation to the
root tweet. Then, the data collection gets the tweets in all possible conversation threads, navigating
recursively down to the child tweets. The timelines dataset contains the last two hundred tweets
posted by all users participating in the conversations.

The grouping of the tweets per conversation uses the root tweet ID of each conversation and
include only replies within a time frame of 10 days to avoid noisy tweets generated by bots or
spam accounts since 90% of the conversations on Twitter last less than ten days [133]. Also, the
preprocessing discard replies posted in a short period (less than five seconds), given that those are
usually tweets created by third-party applications, bots, or spam accounts. To allow the models to
learn the context of the conversations, the preprocessing filter out conversations with less than two
utterances. In the case of consecutive utterances, if they belong to the same user, the preprocessing
concatenates them in a single turn. Finally, the preprocessing discard tweets in languages other
than Spanish using the language identifier in the tweet meta-data.

8.2.2 Characterization

The dataset contains tweets created from March 2015 to December 2017. Approximately 35% of
the tweets are conversational, which is similar to the values obtained in prior work [115]. Table 8.1
summarizes the most important characteristics of the collected corpus. There are two datasets, the
conversational tweets, and the tweets that belong to the timeline of the users participating in the
conversations (the timelines dataset).

The conversations dataset contains approximately 520K tweets for 13K conversations started by
three popular users selected as the seed users. To build the conversation threads, the augmentation
task uses the methodology described in [133] to increase the number of conversations given that each
conversation can have multiple ramifications (threads). Additionally, the same conversation thread
can generate several overlapping contexts to increase the number of instances in the training set.
The number of turns is less than the number of utterances because of the grouping of consecutive
utterances that belong to the same user in a conversation thread. The average length of the con-
versations is approximately five turns, constrained to a minimum of two and involving two or more
users. An important statistic is the number of words for the contexts of the conversation threads,
as it defines the maximum length of the input layer in the model, as explained in subsection 8.2.4.

The timelines dataset contains the last 200 tweets crawled for each of the users participating
in the conversations. The number of unique users engaging in conversations with popular users is
120K approximately. For those users, 71K (60%) have a description in their profile, although the
experiments do not use that information given that it is very noisy. The distribution of the number

3https://dev.twitter.com/rest/public

https://dev.twitter.com/rest/public
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Conversations Timelines

popular users 3 users 120,220
conversations 12,909 descriptions 71,142
tweets 520,263 tweets 14,860,508
words 588,039 words 13,607,961
conversation threads 65,274
utterances 345,277
turns 331,971
minimum turns 3.00 minimum tweets 3.00
average turns 5.09 average tweets 123.61
maximum turns 64.00 maximum tweets 200.00
median turns 4.00 median tweet 74.00
minimum context words 5.00 minimum words 1.00
average context words 68.23 average words 1,571.77
maximum context words 1,720.00 maximum words 652,282.00
median context words 57.00 median words 834.00

Table 8.1: USERSEC dataset statistics

of replies in conversations follows a power law (alpha = 1.4368, xmin = 2), as shown in Figure 8.3.
Most conversations are short (i.e., few replies), but the dataset contains deep conversations with
more than ten tweets mostly initiated by the three popular users.
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Figure 8.3: Distribution of the number of replies in conversations for the USERSEC dataset. The
empirical distribution (dotted brow line) follows a power-law distribution (blue) more closely than
an exponential distribution (red).
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8.2.3 Problem Definition

This study frames the problem of recommending short-text conversations on microblogs as a
ranking task. Give a set of users U = {u1, u2, . . . , un} and a set of conversations C = {c1, c2, . . . , cn}
, it defines two subproblems:

1. Recommend a user Ui to join a conversation Ctarget from a subset Csample, where Csample ⊂ C.
In this case, the task consists of predicting which conversation a user will join from a list of
candidate conversations, which includes the ground truth and several distractors conversations.

2. Recommend a conversation Ci to a user Utarget from set Usample, where Usample ⊂ U . In
this case, the task consists of predicting the user that will join a conversation from a list of
candidate users, which includes the ground truth user and several distractors users.

Each conversation context Ci is the concatenation of a percentage of the tweets in a conversation
thread Ct = {ct1, ct2, . . . , ctn}. While each user profile Ui consists of the concatenation of the set of
tweets Ut = {ut1, ut2, . . . , utn} that belong to Ui prior to the conversation Ci.

The two subproblems generalize as a more generic content-to-content recommendation task:
recommending a source item Si to a target item Ttarget from a subset Tsample, where Tsample ⊂ T .
In this case, S can be either the user profiles U or the conversation contexts C and similarly for T .

8.2.4 Proposed Approach

Neural architectures rely on large datasets for training, which highlights the value of using a
sizeable conversational corpus, as previous works [116, 83, 125]. The experiments leverage the large-
scale data collected to train and evaluate a deep neural model based on a sequence-to-sequence ar-
chitecture. The model presented leverage sequence-to-sequence models that use an encoder-decoder
approach for the problem of dialog response selection [83]. This chapter focus on recommending
users according to the likelihood that they might join a conversation or vice-versa, as defined in
Section 8.2.3. Figure 8.4 depicts the proposed model based on a sequence-to-sequence architecture
for the case of recommending users to join a conversation. The model learns to rank source users
Ui that will join a target conversation Ctarget based on the prediction score, in this case Ui = S and
Ctarget = T .

For the activation units in the recurrent neural networks, the experiments use several variants as
detailed next. RNNs extends traditional neural networks to allow for time-delayed directed cycles
between units [86]. This characteristic leads to the formation of an internal state of the network,
ht, which allows it to model time-dependent data. The network updates the internal state at each
time step as some function of the observed variables xt, and the hidden state at the previous time
step ht−1. The matrices Wx and Wh represent the input and hidden state, respectively, as shown in
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Figure 8.4: Diagram of the Seq2Seq model, where wi are the word vectors of a conversation context
Ci and a user profile Ui. The values ch, ph are the last hidden states from the sequence models and
correspond to the source S and target T in the generic task.

Equation 8.1.

ht = f(Whht−1 +Wxxt) (8.1)

RNNs are the building block of many current neural language models, including those on encoder-
decoder architectures [116, 125]. In the encoder-decoder approach, the first RNN is used to encode
the given sequence. The initial hidden state in the second RNN uses the final hidden state from the
first RNN to generate a candidate’s sequences optimized by beam-search or similar search strategies.
The model consisting of two siamese RNNs to model the conversation context and the user profiless,
respectively. The input layer receives the text of these two sets of tweets. Then, the embedding layer
maps the sequences of words to a lower-dimensional representation (w ∈ Rd). For the initialization
of the word embeddings, the experiments use the pre-trained vectors [89], which consist of 2 million-
word vectors trained on Common Crawl (600B tokens). The input to the RNN networks is the
output of the embedding layer. At each step, the siamese RNNs update the hidden states and
obtain two final hidden states that represent a summary of the conversation contexts and the user
profiles. Then, the model learns the probability of matching the correct pair of final hidden states
from both RNNs, as shown in Equation 8.2.

p(flag = 1|ch, uh,M) = σ(chT ∗M ∗ uh+ b), (8.2)

where the bias b and the matrix M ∈ Rd×d are parameters of the model. Given an input profile,
the model generates a context with the product ch′ = M ∗ uh and measures the similarity to the
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actual context using the dot product. Then, the sigmoid function converts it to a probability. The
training of the model tries to minimize the cross-entropy [155] of all triples (context, profile, flag),
as shown in Equation 8.3.

L = −
∑
n

log p(flagn|chn, uhn,M) +
λ

2
||θ||2F , (8.3)

where ||θ||2F is the Frobenius norm of θ = {M, b}. The initialization of the weights and the opti-
mizer are critical for the performance of the RNNs networks. The experiments initialize the Wh

matrix using orthogonal weights [121] and Wx with values from uniform distribution in the range
of [−0.01, 0.01]. The RNN model uses one hidden layer with 256 neurons and updates the gradients
using the Adam optimizer [71].

The first variant is to use LSTM units in the same architecture shown in Figure 8.2. RNN
networks suffer from vanishing gradients when dealing with long sequences. LSTM models tackle
the problem of vanishing gradients and allow the model to learn longer dependencies in sequential
data such as text [50]. To handle longer dependencies, LSTM uses a series of gates that determine
whether the network should either, remember a new input, forget (and retain the old value), or utilize
as output. The error signal can be feedback indefinitely into the gates of the LSTM unit. This error
signal helps to overcome the vanishing and exploding gradient problems in standard RNNs, where
the error gradients would otherwise decrease or increase at an exponential rate.

The second variant is to use bi-directional LSTM (bi-LSTM) networks [122], which consists of
two LSTM networks that read the input sequence from left to right and vice-versa. This architecture
allows us to capture a more accurate meaning of the sequences and relationships of the words in
both conversation contexts and user profiless. Bi-LSTM networks provide two final hidden states,
and the model average them to get the vectors p and c for Equation (8.2).

8.3 Experimental Settings

8.3.1 Preprocessing

The preprocessing applies several standard preprocessing steps to the data, as described next.
The tokenization uses the NLTK4 library to split each tweet into words. Then, further preprocessing
uses the library Preprocessor5 to replace with generic tags any specific tokens present in the tweet’s
text like mentions, URLs, and hashtags, emojis and reserved words (RT, FAV). To reduce the
computational cost of the experiments, the preprocessing truncates the 70th percentile (120 words) as
the maximum text length for the conversation contexts and the user profiles. Also, the preprocessing
excludes the timeline data of follower users as well as images or other multimedia data associated

4www.nltk.org/
5https://github.com/s/preprocessor

www.nltk.org/
https://github.com/s/preprocessor
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with the tweets given that the focus of this chapter is to analyze text-based conversations.

8.3.2 Splitting

For the main experiments, the data splitting uses the same methodology as in the work of [159].
For each conversation, the experiments use 80% for training, 10% for validation, and test sets,
respectively. The creation of the training, as well as evaluation sets, are explained next. For the
task of recommending users, the preprocessing build the training set by extracting triplets (context,
user, flag) from conversations in the corpus. The experiments consider each utterance after the
second, as a potential candidate specifying the user that joined the conversation, and the previous
utterances as the conversation context. The context contains a sequence of utterances occurring in
a conversation thread, truncated to a specific number of tweets. The user profile consists of the
tweets in the user’s timeline. The flag indicates whether or not the user joined the conversation, i.e.,
whether the user is the one who replied to the context.

Each conversation context forms a pair of triples. The first triplet contains the user profile that
joined the conversation (flag = 1). In the second triplet, the users not joining the conversation
(flag = 0) are selected randomly from elsewhere in the training data. The experiments use a 1 : 1

ratio between positive (flag = 1), and negative (flag = 0) triples. Table 8.2 shows an example6 in
the training set (translated from Spanish to English language). The example shows the context of
the conversation and two user profiles: the user profile with Flag set to 1 did join the conversation,
whereas the other profile did not.

Conversation context User Profiles Flag

@KarlaMoralesR Any courier who supports us? There
are more than 50 life straws in Atlanta, DHL charges
regular fee for shipping, another way for them to arrive?
Any courier that supports us?

@iChacha_Chacha Nutritionist, Di-
etitian and Esthetician. Now crossfit
lover [...]

1

@Sandinin lawyer, humanist, I still
believe in the human being [...]

0

Table 8.2: Example of an instance in the train set.

To building the user profile, the experiments consider the tweets before the conversation in the
dataset. Another strategy for building the profiles is to use a specific number of tweets posted by
each user. However, due to the higher computational cost for training the models, this can be an
issue for future research. In the validation and test sets, the distribution of the negative instances
increases the difficulty of the recommendation task compared to the balanced distribution in the
training set. The augmentation of negative instances resembles real scenarios where a large number
of users with different preferences. In the dataset, for each positive instance (the correct user profile
that joined the conversation), nine user profiles did not join the conversation as negative instances

6https://twitter.com/KarlaMoralesR/status/723235984662511616

https://twitter.com/KarlaMoralesR/status/723235984662511616
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or distractors. For evaluation purposes, the experimental settings use 20% of the conversations in
the dataset to build the validation and test sets. For the task of recommending conversations, the
experimental settings are the same to build both the training and evaluation sets.

8.3.3 Additional datasets

In addition to the corpus introduced, this chapter evaluates the models using the TREC dataset [159].
The experiments use the TREC dataset to perform benchmarking comparison of the models as de-
tailed in Section 8.4. The TREC dataset contains approximately 10K conversations of diverse topics
based on the tweets released by TREC 2011 microblog track7.

8.3.4 Baseline methods

The experiments evaluate several two baseline methods (Random and naive TF-IDF) as well as
the state of the art CTF method8.

Random: This method ranks the items (users or conversations) for recommendation randomly and
establish the quality of other models.

TF-IDF: The ‘term-frequency’ component (TF ) is a count of the number of occurrences of a word in
a given context, whereas the ‘inverse document frequency’ term (IDF ) penalizes the occurrence
of the word elsewhere in the corpus. The product of TF and IDF produces the TF-IDF score,
as shown in subsection 8.3.4.

TFIDF(w, d,D) = f(w, d)× log N

|{d ∈ D : w ∈ d}|
,

where f(w, d) denotes the number of times the word w appeared in document d, which repre-
sents the conversation context c or the user profile p. N defines the total number of documents,
and the denominator represents the number of documents in which the word w appears. The
term D represents the set of documents, i.e., the set of conversation contextss or user profiless.
For each of the candidate users, the TF-IDF model calculates vectors for the conversation
context and the user profile. The model considers the user profile with the highest dot prod-
uct between the context vector and the profiles vectors (set of users candidates), as the most
probable user that will join the conversation. For the proposed task, TF-IDF captures the
importance of the words in the user profile for the conversation context.

7https://trec.nist.gov/data/tweets/
8To the best of the knowledge, the state-of-the-art before the method.

https://trec.nist.gov/data/tweets/
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CFT: CFT method combines collaborative filtering with topic modeling for improving the recom-
mendations [159]. The method optimizes objective function:

minL+ µ.NLL((C)|Θ)

where L encodes the user reply preference similar to collaborative filtering (CF). The sec-
ond term denotes the negative log-likelihood of a set of conversations C, with Θ containing
parameters that capture the topical content and discourse structures by latent variables.

8.3.5 Evaluation metrics

The evaluation of the models does not require human annotation because the ground truth
instances are available in the conversations itself, as described in subsection 8.2.1. The recommen-
dation task uses ranking evaluation metrics [119]. Specifically, Recall@k metrics to measure the
relevance of the users recommended participating in the conversations.

For the recommendation tasks, the conversational recommender models learn to predict the
ground truth instance from a set of candidate instances. The recommender models rank the users
according to the prediction accuracy and evaluate if the instance predicted is among the top k

candidates. That means the prediction is correct if the ranking of the ground truth instance is in
the top K ranked instances specified by the K parameter of the Recall@K metric. The value of the
parameter k depends on the number of instances available for selection.

The evaluation uses nine negative instances (distractors) in addition to the ground truth instance.
Therefore, the evaluation uses three recall metrics: recall@(1, 10), recall@(2, 10), and recall@(5, 10).
The number of candidate instances for each evaluation is 10, as specified by the second parameter.

Additionally, the evaluation includes two additional metrics (Precision@1 and nDCG@5) to
compare with prior state-of-the-art method CFT [159].

8.3.6 Implementation details

The model implementation is on Tensorflow and uses a single worker instance with a single
NVIDIA Tesla K80 GPU. The dataset and the code are available in Github9 except for CFT re-
quested to the original authors.

8.4 Results and Discussion

Table 8.3 shows the results for the baselines and the proposed model for the recommendation
tasks. The RND column shows the accuracy of the random method and provides a reference for

9https://github.com/johnnytorres/recsys_twconv_s2s

https://github.com/johnnytorres/recsys_twconv_s2s
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the performance of other models. The results show that the Bi-LSTM outperforms other models on
most of the evaluation metrics.

It is interesting to note that TF-IDF outperforms the CFT and RNN variant on Recall@2 and
Recall@5. This result is due to the limited ability of the RNN to handle extended contexts but also
depicts TF-IDF as a stable baseline for recall metrics. In the case of metric precision@1, TF-IDF
fails considerably due to the metric’s strict calculation for positive instances.

The LSTM variants of the model addressed the issues in the naive variant (RNN) and outper-
formed both TF-IDF and CFT.

S2S
Dataset Metric RND TFIDF CFT RNN LSTM BILSTM

TREC precision@1 10.15 0.25 65.41 35.11 81.48 84.84
nDCG@5 30.11 66.67 70.53 67.52 95.94 96.11
recall@(1,10) 9.50 43.35 73.59 48.40 93.05 93.85
recall@(2,10) 19.85 62.60 76.63 62.30 95.25 95.70
recall@(5,10) 51.90 87.45 85.81 85.35 98.55 98.75

USERSEC precision@1 10.07 - 43.28 16.43 49.51 70.74
nDCG@5 29.90 52.95 71.06 47.03 78.32 81.89
recall@(1,10) 11.20 36.15 60.76 25.47 65.38 78.03
recall@(2,10) 21.11 48.18 66.41 39.32 75.64 81.11
recall@(5,10) 49.23 68.55 81.85 67.95 89.91 85.38

Table 8.3: Results for the task of recommending conversations.

Table 8.4 shows the results of the models for the task of recommending users, which resulted in
a more difficult task according to the scores. Again, the bi-LSTM variant of the model outperforms
the other methods considerably. The CFT model does not support this type of recommendation
and requires extensive modification in their implementation to support it.

S2S
Dataset Metric RND TFIDF CFT RNN LSTM BILSTM

TREC precision@1 9.92 0.25 - 31.02 32.80 36.89
nDCG@5 27.99 47.48 - 58.97 73.77 78.28
recall@(1,10) 8.50 25.15 - 41.70 54.02 60.01
recall@(2,10) 18.85 40.50 - 53.85 71.25 77.50
recall@(5,10) 48.35 68.85 - 75.45 90.55 93.35

USERSEC precision@1 10.01 - - 47.80 56.58 63.02
nDCG@5 29.88 61.66 - 76.82 82.32 83.12
recall@(1,10) 11.62 42.39 - 65.56 75.13 76.32
recall@(2,10) 21.02 57.35 - 73.93 79.91 81.54
recall@(5,10) 49.06 79.31 - 87.35 89.40 89.49

Table 8.4: Results for the task of recommending users.
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8.4.1 Embeddings

The experiments further evaluate the S2S model with two cases for the embedding layer. The
first case is maintaining fixed the pre-trained fast text embeddings [20]. Figure 8.5 shows that the
evaluation loss has a spike after 50k iterations, and this affects the metrics negatively, as shown
in Figure 8.6. The second case allows the model to fine-tune the embeddings during training, and
the loss is stable after 50k iterations. The pre-trained embeddings use input data from a different
domain, thus fine-tuning the embeddings with different domains does improve the results.
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Figure 8.5: Training and evaluation set loss values for TREC dataset using fixed pre-trained em-
beddings (left) and fine-tuned pre-trained embeddings (right) using S2S model with RNN activation
units.

Figure 8.7 shows the influence of the performance of the model as the number of training instances
increase. The experiments found that using less than 60% of training instances, it causes the scores
to drop significantly in all metrics for both recommendation tasks. The recall@1 metric shows that
more training instances help the performance of the model. In real-world settings, the percentage
of training size will depend on the availability of the tweets received or collected.

8.4.2 Discussion

8.4.3 Performance across domains

The experiments analyze the performance of the recommendation model across domains. Fig-
ure 8.8 shows the scores for the evaluation metric for each domain in the dataset: politics (@MashiRafael),
sports (@aguschmer), and humanitarian activism (@KarlaMoralesR). For the task of recommending
conversations, the results show that the model performs consistently better in the sport domain,
mainly due to lower topics drift [3] compared to politics or sports domains. Humanitarian activism
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Figure 8.6: Recall@1 validation scores for recommending conversations (left) and users (right) in
TREC dataset using fixed pre-trained embeddings (FE) and fine-tuned pre-trained embeddings
(FTE).
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Figure 8.7: Influence of the training size in the recommendations of conversations and users. To the
left, the recall@k scores for the TREC dataset, to the right for the USERSEC dataset. The x-axis
represents the percentage of the conversations tweets used as training set.

is the second domain with higher scores for recommendations, while politics is the most challenging
domain as well as the users that interact in several domains.

For the task of recommending users, the analysis shows the tweets related to humanitarian
activism, often belong to standard categories like warnings, reports of people or infrastructure af-
fected, relief or help requests, donations offer, emotional messages. Therefore, the predictability



CHAPTER 8. RECOMMENDING CONVERSATIONS 87

recall@1 recall@2 recall@5

0.5

0.6

0.7

0.8

0.9

1

Sc
or
e
C
R

KarlaMoralesR aguschmer
MashiRafael intersect

recall@1 recall@2 recall@5
0.7

0.8

0.9

1

Sc
or
e
U
R

KarlaMoralesR aguschmer
MashiRafael

Figure 8.8: Performance of the recommendation tasks on across domains represented by the popular
users. In the top, the scores for conversations recommendation (CR) task includes users that interact
cross-domains (intersect). In the bottom, the scores for users recommendation (UR) task.

of the conversations is higher as the topics revolve around a small number of categories. In con-
trast, the domains of politics and sports change the topics rapidly in conversations according to
the events unfolding in the temporal and spatial context. Thus, conversations in these domains are
more difficult for the recommendation task. The results indicate that the model can perform well
in specific domains and that collecting a large dataset for a specific domain for training the model
could potentially further improve the performance of the recommendations.

8.4.4 Twitter conversations

Twitter allows the generation of hierarchical conversations similar to a tree structure. It means
that multiple users can reply to the initial tweet, forming different branches. Each branch becomes
a separate conversation thread, and deeper levels of the conversation can also have several branches.
Hierarchical conversations cause the root and branching tweets to appear in multiple conversations.
However, the number of such instances is small compared to the number of conversations in the
dataset. Retweets can be a significant part of the streaming data, but only propagate content
created by other users. For the case of retweets, the data collection includes only the original tweet
(i.e., the original tweet in the propagation cascade). Another issue of conversations on Twitter is
that users can include multimedia data in the tweets, such as photos and videos.
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8.4.5 Task difficulty

The Recall@k metrics allow altering the difficulty of the recommendation task in a controlled
manner. The difficulty of the task occurs by increasing the number of negative user profiles in
the experiments, and the parameter k establishes the number of profiles the recommender system
predicts as containing the correct user who joined the conversation. Future experimental settings
could consider selecting negative instances that are similar to the ground truth profile, thus increasing
the complexity of the task instead of choosing negative instances randomly or in different domains.
Several metrics allow measuring the similarity of the user profiles based on the content found in
their respective timelines. Recommender models that perform well on the more complex task should
be able to capture a more fine-grained and deeper semantic meaning of utterances. This situation
is evident when contrasted with models that naively select user profiles, maximizing the number of
words in common with the context such as TF-IDF.

8.4.6 Model limitations

Although LSTM architecture helps to overcome the problem of vanishing gradients in RNNs
and learn longer sequences [128], there is a disadvantage with recurrent neural networks. LSTM is
limited to text sequences with length in the order of hundreds of words, not thousands compared
to other methods that rely on topics modeling. The limitation in LSTM networks affects how much
history the experiments can use to build user profiles. Ideally, the experiments should be able to
feed the model with the entire timeline of each user to build his profile, which can be thousands
of words long. However, LSTM fails to learn such long sequences, and it will take a long time to
train, even with GPUs. Alternatives to solve the issue of very long text-content in user profiles or
conversations context could use different approaches to summarize the entire user profile and obtain
the latent topics of interest through TF-IDF, LDA [55], or extractive summarization [65]. Another
research direction is to explore the compression of the content to a fixed hidden state using CNN.
Then, the RNN model uses this fixed representation for modeling the recommendation task.

8.4.7 Model complexity

The proposed model uses the gradient descent algorithm to find the minimum of the loss function.
The algorithm minimizes the error term by changing each weight in proportion to the derivative
of the error for itself, given that non-linear activation functions are differentiable. The method
applies back-propagation through time or BPTT and is a generalization of back-propagation for
feed-forward networks [118]. For recursively computing the partial derivatives, BPTT has a time
complexity of O(n), where n is the number of weights per time step for computing the Jacobian
matrices, at the cost of storing all forward activations within the given time horizon. For the model,
the number of time steps is given by the length of the text content (conversation context or user
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profile), as mentioned in Section 8.3.1. Nonetheless, the proposed method scales better compared to
CF-based algorithms, such as CFT. For example, with millions of users, O(M), and millions of items
(conversations) O(N), a CF algorithm with the complexity of n will suffer scalability problems [44].

8.5 Conclusions

The work presented in this chapter proposes a new recommendation task. It introduces a new
conversational corpus on Spanish collected from Twitter, involving popular Ecuadorian users in
the domains of politics (@MashiRafael), sports (@aguschmer), and humanitarian activism (@Kar-
laMorales). The model proposed employs Seq2Seq neural learning architecture for recommending
unstructured multi-turn conversations to users that might be interested in participating. Our model
is easily adaptable to a more generic task of recommending text-to-text settings, with the source
and target content being interchangeable between conversation context and user profile. The ex-
perimental results demonstrate that the proposed neural architecture using variants such as LSTM
and Bi-LSTM provide better results compared to baseline models as well as state of the art CFT.
Moreover, the proposed model can generalize and improve the prediction performance by using pre-
training embeddings compared to the baseline methods. However, there is a critical issue encoding
large sequences of text through sequential networks (LSTMs). For example, full user profiles or con-
versation context can be computationally expensive. As stated in Section 8.4.6, the problem with
gradient descent for RNN architectures is that error gradients vanish exponentially quickly with the
number of time steps (i.e., number of words in the conversation context or user profile). Beside
LSTM, recent work proposes to solve the issue with an independently recurrent neural network
approach by reducing the context of a neuron to its former state and explore in the next layers the
cross-neuron information [81]. It is promising to research direction for recommending conversations
as the method help to learn memories of different range, including long-term memory, without the
gradient vanishing and exploding problem.

Future research directions include improving the recommendation model to support significant
conversational contexts that encapsulate global interests or preferences from users. By doing cap-
turing global interest, it can reduce the model complexity as well as improve the precision of the
recommendation tasks. To capture global user preferences, models can incorporate topics modeling
into the recommending model, as stated in recent works [158, 43, 102]. This study also outlines
several other aspects explored in recommending conversations on microblogs, such as incorporating
multi-modal models [94] and multi-lingual pre-trained embeddings [35] that can help to deal with
this kind of user interaction on social media. Finally, another aspect that is important to RSs is the
ability to produce real-time recommendations. In domains such as crisis informatics, intelligent sys-
tems need to react immediately to online requests and provide recommendations to users regardless
of the user history or conversation context.



Chapter 9

Conclusions

This thesis focused on six research chapters to address research problems concerning crisis-related
conversation on Twitter, including several perspectives such as characterization, taxonomy, classifi-
cation, and recommendation. Specifically, (1) in chapter 3, establishws a methodology to collected
and built a corpus for crisis-related conversations and analyze the factor that ignites conversations;
(2) in chapter 4, proposed a fine-grained taxonomy to categorize tweets crisis-related conversations;
(3) in chapter 6, considered the task of context-aware categorization of crisis-related conversations;
(4) in chapter 7, considered the task of semi-supervised multi-label classification of short-text on
social media; (5) in chapter 5, considered the task of cross-lingual classification through contextual
embeddings; (6) and, in chapter 8, proposed a model to recommend conversational content during
crisis events.

This section summarizes the main findings and outlines future research directions. section 9.1
provide a detailed summary of the contributions of the research and provides an answer to the re-
search questions enumerated in chapter 1. Then, it discusses directions for future work in section 9.2.

9.1 Main Findings

9.1.1 Characterizing crisis-related conversations

RQ1: What are the factors that ignite conversations? The analysis of Twitter data shows that 36%
of the tweets are conversational in nature form threads with two or more tweets. Therefore, it
investigated the factors that contribute to sparking a conversation on Twitter, i.e., identifying
whether a tweet that will generate replies from other users. The goal was to predict f a tweet
will evolve into a conversation rather the popularity as previous works. The predictive model
depends on two main aspects: networking and activity level. The activity level is related to
the number of favorites the user has given to other tweets or the number of tweets created.
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The networking level is related to user attributes that indicate network relationships (followers,
friends). Also, the content patterns of the tweets are a reliable indicator of tweets evolving into
conversations, which is explained by a slight negative correlation with the feature mentions.
In contrast, other content-related features (represented by the number of URLs, media, or
hashtags) are slightly positive. The findings show that factors such as user mentions and
hashtags are predominant in starting conversations.

RQ2: Does current taxonomies account for crisis-related conversations? Previous works have run into
some issues to categorize tweets into different topical classes because: a) tweets can contain
information that belongs to one or more classes; b) choosing the dominant category is difficult,
even human scorers differ in their judgment about whether or not a tweet belongs to a spe-
cific category; and, c) the semantic ambiguity of the tweets, as well as the idiomatic phrases,
sometimes makes it difficult to interpret them. Given these difficulties, this work proposed
that in order to understand and analyze conversations in the context of crisis events, it is nec-
essary to extend previous coarse-grained or generic taxonomies. For example a turn (tweets)
categorized as an act of type Statement or Request based on generic taxonomies is not enough
to extract useful information relevant to a crisis. This work proposed more detailed dialogue
acts, such as Informative Statement, Complaint, Offers, or Requests to capture the intention
of the participants. Similarly, turns often belongs to multiple overlapping conversational acts,
so the proposed hierarchical multi-label approach provides more flexibility than single label
approaches. With the proposed taxonomy, a classification task uses a CNN model to predict
the fine-grained conversational acts for a conversation as well as the potential outcomes, such
as prevention, situational awareness, and relief coordination. Although the taxonomy helps
to understand the flow of conversations between users, the results show that as the number
of labels increases, the classification scores decrease which indicated the necessity of a more
substantial number of labeled tweets, especially for the tail classes or the use approaches such
as zero or one-shot learning.

9.1.2 Modeling of crisis-related conversations

RQ3: How to deal with multiple languages that appear during a crisis event? This study introduced
an annotated corpus of crisis-related tweets for Spanish and English language. As users world-
wide can comment about the event, often in different languages about the same event, neural
architectures allow identifying crisis-related tweets in a multi-lingual setting. The results show
that deep contextual multi-lingual embeddings outperform strong baseline models. Analysis
of the type of conversations that occur from the perspective of different languages identifies
that certain types of conversations occur more in the native language and others in a foreign
language. The findings show that conversations from foreign countries seek to gather situation
awareness and give emotional support, while in the affected country, the conversations aim
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mainly to humanitarian aid.

RQ4: Does the conversational context help downstream tweets classification tasks? Current classi-
fication approaches have focused on the analysis of individual tweets, which do not have enough
context to disambiguate information. The analysis of conversations during several crisis events
yields insights into the use of conversational context in NLP classification tasks. To that end,
this study introduces a new corpus, the Conversational CrisisNLP dataset, and evaluate sev-
eral non-neural and neural classifiers using contextual information from conversations. The
empirical results show that the proposed approach slightly improves the performance of the
classifiers in some cases for both binary and categorical classification tasks. Our findings indi-
cate that using a more extended conversation context did improve the classification task from
percentile 25 to 50 from the conversation history. The experiments validate the initial hypoth-
esis through an interpretability model [54] for the binary classification task and applied it to
the conversations, which extracts an interpretation of the classification model based on input
sensitivity detected through an external mechanism. The results show that the interpretabil-
ity results fit tightly with the initial hypothesis that classifiers can leverage additional data
provided by conversation contexts to improve the understanding of the target tweet (labeled
tweet). Although the gains are not significant, using context information could help to disam-
biguation or handling severe cases for the models in downstream NLP tasks beyond the Crisis
Informatics domain.

RQ5: How to leverage the massive amount of unlabeled social media data for supervised tasks? This
research question investigates how a semi-supervised approach can learn to categorize short
texts in a multi-label taxonomy using a small set of labeled data and leveraging the availability
of large amounts of unlabeled data on social media. To that end, this work proposes neural
semi-supervised k-means clustering that modifies the normal objective function and adds a
penalty term for labeled data [144]. The proposed model extended a neural semi-supervised
clustering and applied it to multi-label settings. The results show that semi-supervised k-
means outperform other baseline unsupervised models for multi-label classification tasks. The
results are promising as the proposed model leverage the massive amount of data on social
media and help to overcome the scarcity of labeled data.

RQ6: How to recommend users to join relevant conversations on social media? This research ques-
tion analyzed Twitter conversations that may span a wide range of domains such as politics,
religion, health, fitness, sports, food, among others. As conversational recommendations could
be particularly useful during crisis events, such as earthquakes when people use social media
platforms to look for relevant information, request for help, offer support, contact relatives,
and other types of inquiries. This work proposes a novel recommendation task for OSNs,
particularly recommending users to join relevant multi-agent and multi-turn conversations.
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The recommendation tasks aim to recommend users to join a set of conversations on different
topics they might be interested in, even when no link connections are available (i.e., users have
no relationship between them). The proposed neural learning architecture uses a sequence-
to-sequence model to tackle the task of recommending conversations using the conversation
context and the user’s history. The results show that recommending short-text conversations
is feasible to train using sequence-to-sequence models without human-annotated data since the
data itself provides the ground truth as in the case of the prediction of the next utterance.
Empirical results show that the model outperforms several baseline models, such as TF-IDF
and state of the art model based on collaborative filtering (CFT). The experiments highlight
the performance of the bi-LSTM variant of the model, which outperforms other variants such
as RNN or LSTM, and the potential for recommending content on social media.

9.2 Future Research Directions

9.2.1 Conversational chatbots

During crisis events, people turn to social media platforms to search for relevant information,
ask advice, request help, offer support, among other things. On the other hand, humanitarian
relief organizations, governmental agencies, or individual activists rely each time more on social
media to gain situational awareness, learn urgent needs on affected zones, and coordinate relief
efforts [100]. However, human resources are limited and cannot deal with the overwhelming volume
of data generated during crisis events. Future work could explore the idea of building conversational
agents that can interact with users in one-to-one or one-to-many, multi-turn conversations about
several topics during natural disasters. The hypothesis is that multi-agent multi-turn conversations
on social media, specifically in the context of natural disasters, can be modeled leveraging on deep
neural architectures [83] trained over a large dataset collected from crisis-related conversations. The
advantage of this task is that they do not require human annotation efforts because the ground truth
is in the data itself.

9.2.2 Deep conversational reinforcement learning

Recently, several works proposed deep learning extensions of the classic reinforcement learn-
ing [145] such as Deep Q-Networks [92], Policy Networks [124], and Hierarchical Deep Reinforce-
ment Learning [72]. Likewise, Deep Reinforcement Learning (DRL) have made inroads in several
NLP tasks such as text games [97], social media [47], coreference resolution [31], knowledge graph
reasoning [149], semi-supervised text classification [148], information extraction [98, 112], dialog
systems [80, 160], and multimodal tasks [91, 143]. The focus is to predict the interest of users in
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crisis-related conversations, similar to the work of predicting popularity prediction in Reddit fo-
rums [47]. The goal is to make recommendations based on the interest level of a broad group of
users on a specific topic, in case conversations related to crisis events such as earthquakes. In this
setting, a model tries to identify and track tweets in real-time, attempting to identify and recom-
mend crisis-related tweets before they become popular conversations. The assumption is that the
users capacity is limited, and models can make only a few recommendations out of the enormous
space of possibilities on social media.

9.2.3 Image-grounded conversations

Another research direction could tackle the problem of understanding image grounded conversa-
tions during natural disasters that can provide further insights from data shared on social media. In
this area, it is essential to know what type of information is published by users during a crisis event,
where and when do image-grounded conversations arise during a crisis event, and how a model can
categorize image-grounded conversations during a crisis event.



Appendix A

Appendix: Data Collection

A.1 Ecuador Earthquake Dataset

This appendix describe the data collection process using Twitter as the the main source of data
for the analysis. This dataset initially use data from Artificial Intelligence for Disaster Response1

(AIDR), which is an online platform to support disaster response that collects big crisis data from so-
cial networks [58]. Specifically, the data requested for AIDR is related to the Ecuadorian earthquake
in 2016. The dataset contains randomly collected tweets from Twitter Streaming API.

In total, the collected corpus contains more than 150 million tweets, from January to April 2016
using the Twitter Streaming API2. Through this API, Twitter provides researchers with the 1% of
its public data collected at a given time. To deal with the overwhelming amount of data obtained
through Twitter Streaming API, the collection rely on Cassandra [74] as distributed storage. The
choise Cassandra over other NoSQL databases base on its distributed architecture, scalability, and
high availability without compromising performance as the database grows [4]. Figure A.1 shows
the data capture and storage architecture used in this research work. It consists of four nodes, on
each node running: a Twitter Capture Service that collects data from Twitter Streaming API, and
a local Cassandra used to store the data.

The Twitter Streaming data collection processs use two types of filters: a geolocated bounding
box, and tweets containing specific words. The bounding box filter allows to capture geolocated
tweets in Ecuador. The data collection filter only in English or Spanish tweets or users who have
specified those languages in their profiles, and exclude tweets in other languages. Also, considering
that retweets can be a significant part of streaming data, and the fact that retweets only propagate
content generated by other users, the process filter out retweets and only retain the original or root
tweets. The reason is that the focus is the interactions in the form of conversations.

1http://aidr.qcri.org/
2https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
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Figure A.1: Cassandra cluster to capture and store Twitter data.

The data augmentation step retrieves conversation trees (parents and replies tweets) for all the
initial tweets in the dataset. To identify conversations, a preprocessing step uses tweet’s field in-
reply-to-status-id that specify if the tweet is a reply to another tweet, which allow to establish
which tweet belongs to a specific conversation. If a parent tweet not present in the dataset, the
data collection process obtain it through the Twitter REST API3. From the parent tweets (i.e., the
tweets that initiate a conversation), the data augmentation crawls all the child tweets following the
procedure in a previous work [133]. Next, the preprocessing step filters out isolated tweets and use
only tweets that form part of conversations with at least one reply.

3https://dev.twitter.com/rest/public

https://dev.twitter.com/rest/public
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