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ChapterAbstract

Computer vision is a scientific discipline that has been developed in recent decades due to
technological advances in acquisition devices together with the increase on computational
capabilities. The reduction in prices of hardware, both acquisition and processing, allows
this technology to be available to most users. Additionally, there is a technological advance
that allows sensors to be sensitive to different spectra, including smart mobile devices. Com-
puter vision is defined as a field of study that develops multiple techniques to ensure that
machines can "see" and "understand" information in images or videos of any spectrum, using
mathematical models that process, analyze and interpret digital information extracted from
images.

With the advance of convolutional neural networks (CNN), the usage of machine learning
based techniques has made great progress in recent years. Specifically, many techniques have
been developed to implement a process similar to the visual reasoning of human vision, to
perform tasks such as detection, recognition, segmentation, coloring, filtering, improvement,
similarity, etc. using CNN. This thesis presents a series of CNN-based techniques applied
to images of different spectra, especially the near infrared spectrum (NIR) and the visible
spectrum. Among the techniques implemented are: perform similarity detection between
images of VISIBLE and NIR spectra, colorization of NIR images, estimation of normalized
difference vegetation index (NDVI) using only one band of the spectrum and eliminate the
haze present in the images. It should be noted that to implement these techniques, generative
adversarial models have been used in their standard, conditional, stacked and cyclic variants,
which are the latest generation in these type of networks.

Keywords: Convolutional Neural Networks, Generative Adversarial Network, Infrared Im-
agery colorization, Haze, Normalized Difference Vegetation Index, Stacked Generative Adver-
sarial Network.
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ChapterResumen

La visión por computadora es una disciplina científica que se ha desarrollado en las últimas
décadas debido a los avances tecnológicos en los dispositivos de adquisición, así como a la
reducción de los precios, que les permite estar disponibles para la mayoría de los usuarios.
Además, hay un avance tecnológico que permite que los sensores sean sensibles a diferentes
espectros, incluidos los dispositivos móviles inteligentes. Vision por computador se define
como un campo de estudio que desarrolla múltiples técnicas para garantizar que las máquinas
puedan ”ver” y ”comprender” la información de las imágenes o videos de cualquier espectro,
utilizando modelos matemáticos que procesan, analizan e interpretan la información digital
extraída de las imágenes.

Con el avance de las redes neuronales convolucionales (CNN) distintas técnicas basadas
en aprendizaje automático han sido propuestas en los últimos años. Específicamente, se han
desarrollado muchas técnicas para implementar un proceso similar al razonamiento visual
de la visión humana, para realizar tareas como detección, reconocimiento, segmentación,
coloración, filtrado, mejora, similitud, etc. utilizando CNN. Esta tesis presenta una serie de
técnicas basadas en CNN aplicadas a imágenes de diferentes espectros, especialmente el
espectro infrarrojo cercano (NIR) y el espectro visible. Entre las técnicas implementadas se
encuentran: realizar detección de similitud entre imágenes de espectros VISIBLES y NIR,
coloración de imágenes NIR, generación de índice de vegetación de diferencia normalizada
(NDVI), usando solo una banda del espectro, y remoción de la neblina presente en las imágenes.
Cabe señalar que, para implementar estas técnicas, se han utilizado modelos generativos
adversariales en sus variantes estándar, condicionales, apiladas y cíclicas, que son la última
generación en este tipo de redes.

Palabras clave: Redes neuronales convolucionales, Red generativa adversarial, Colora-
ción de imágenes infrarrojas, Neblina, Indice de vegetación de diferencia normalizada, Red
generativa adversarial apilada.
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Chapter 1

Introduction

Ultimately, in the field of computer vision, techniques based on the use of several spectra, not
only the visible spectrum, are being proposed to address problems of detection, recognition,
composition of materials, surface characteristics, among others. For example, with the use
of cross-spectral images (visible and near infrared), additional information is obtained for
each spectrum that can be used to improve the different existing visualization techniques.
With these images, great advantages can be obtained in recognition and detection tasks. To
acquire this type of cross-spectral data set, multiple cameras are often used, which requires
alignment or estimation of the disparity of the images. Increasingly, multi-camera cross-
spectrum systems are integrated into active RGBD devices (for example, RGB-NIR cameras
in Kinect and iPhone X). However, searching for the coincidences in images from different
spectral bands is a challenge due to the great variations in the appearance, therefore, it is
necessary to register them to obtain the parity of each scene in both spectra [127]. The use
and combination of different spectral bands that determine the appropriate correspondences
between them are necessary to improve the vision techniques that previously only used images
of the visible spectrum.

Generally, there are some limitations with the lighting conditions, material texture or
temperature that considerably affect the performance of computer vision techniques when
only visible spectrum images are used. These limitations can be overcomed using cross-
spectral images, to tackle the design of computer vision problems more effectively.

There are some approaches designed to use images from different spectral bands to exploit
all features inherent to those bands other than visible and in that way improve the perfor-
mance of the techniques. Some of these techniques can be applied in the following ways; in
surveillance systems, using the dense depth information on images from the thermal and
visible spectrum to determine the differences between them and obtain adequate estimates
for object localization or environment navigation [78].

Another technique used to find self-correlation similarity between image regions using
a descriptor could be based on multi-spectral to further improve the matching quality and

1
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runtime efficiency [54], [3]. In biometrics, the spectral information can be used to enhance
the accuracy of the matching process; for example, spectral signatures of different regions
of the iris, face or fingertip can be created from multi-spectral band images, based on the
estimation of the similarity between those signatures to predict a corresponding biometric
representation. Some applications use multi-spectral information to detect any given material
composition, based on the reflectance and electromagnetic radiation emitted, for example, to
classify defects presented on white maize [92].

1.1 Motivation

Artificial intelligence (AI) has had a breakthrough in the last decade. This advance of AI is
attributed to five main factors: more, cheaper and better hardware computing power, better
designed for computer vision tasks, the availability of a large amount of information (big data)
and hardware accelerators (graphics processing units (GPU) that were originally designed for
the gaming industry, and tensor processing units (TPU). With the GPU’s, now it turns out to
be very useful in computing because it accelerates deep learning, analysis, and engineering
applications. GPUs have unlocked the potential of neural networks using deep learning as an
approach to computer vision, along with the huge amount of currently available data has led
to qualitative improvements in computer vision algorithms.

Some of the big corporations, such as, NVIDIA, ORBCOMM, Google, Microsoft, Facebook,
etc., are the ones that drive most research and AI-based products or services, making the
technology commercially available in the form of an API (interface of application program),
deep learning libraries, personal and professional agents, chatbots, robots, and many other
interesting products [99].

Computer vision is one of the sciences that uses AI advances, for the treatment and analysis
of images and videos, with the aim of understanding the scenes and facilitating decision
making. In such a way that using the images of different spectra to the visible one, allows to
improve the techniques that have been applied only with images from the visible spectrum.

The simultaneous use of images from different spectra can be helpful to improve the
performance of many computer vision tasks. The core idea behind the usage of cross-spectral
approaches is to take advantage of the strengths of each spectral band providing a richer
representation of a scene, which cannot be obtained with just images from one spectral band.

During the last decade, computer vision has had a great advance. Four underlying reasons
have driven the breakthroughs: more and better hardware computing power, cheaper, better
designed for computer vision tasks, and a lot of data (Big Data). Also, the Graphics Processing
Unit (GPU) chips that were originally designed for the gaming industry, now turns out to
be very useful in computing because it accelerates deep learning, analysis, and engineering
applications. GPUs have unlocked the potential of neural networks using deep learning as an
approach to computer vision, along with the huge amount of currently available data has led
to qualitative improvements in computer vision algorithms.
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Recently Convolutional Neural Network (CNN) based approaches are becoming the domi-
nant paradigm in almost every computer vision task. CNN’s have shown outstanding results
in various and diverse computer vision tasks such as stereo vision, metric 3D information
using computer vision as a measurement device, or as a source of semantic information like
objects, activities, locations, faces, gestures, motion, emotions, text/writing, scenes, etc. There
are several applications in use today for 3D urban modeling like Google Maps or Photosynth
by Microsoft. Also there are face or smile detection used in cameras like Cannon, Sonny,
Fuji, Apple, etc. Think of what more can be done by machines when they are able to detect,
recognize, describe an object in a given scene as accurate as a human eye. The human eye
is a complex structure and it goes through a more complex phenomenon of understanding
the environment. Similarly, making machines see things and make them capable enough to
figure out what they are seeing and further categorize it, is still a pretty tough job. Powered
by GPUs and tons of data, deep neural networks are driving progress today. Computer vision
applications can be found in almost every domain, including topics such as medical imag-
ing, gaming, video surveillance, multimedia, industrial applications, remote sensing, just to
mention a few. In most of the cases, these applications are based on images obtained from
cameras working at the visible spectrum. Nevertheless, the appealing factor of using images
from different spectral bands lies on the other hand on the possibility to obtain information
that cannot be seen at the visible spectrum, opening a new range of possibilities to be explored
in the computer vision and pattern recognition domain.

Image acquisition devices have largely expanded in recent years, mainly due to the de-
crease in price of electronics together with the increase in computational power. This increase
in sensor technology has resulted in a large family of images, able to capture different infor-
mation (from different spectral bands) or complementary information (2D, 3D, 4D); hence,
we can have: HD 2D images; video sequences at a high frame rate; panoramic 3D images;
multispectral images; just to mention a few.

Although innovative approaches have been developed over the past 20 years, the power
of using a multispectral image with computer vision technology remains unknown to many
potential end-users, such as decision-makers, farmers, environmental watchers in both the
private and governmental sectors, city planners, stockholders, and others. This is mainly
because the use of multispectral sensors has a relatively high cost of its final products and on
the need for professional manpower to operate the instrument and process the data.

1.2 Objectives

This thesis focuses on the exploration of the use of information from the different bands of
the electromagnetic spectrum in such a way that it can be exploited to solve some problems
existing in the field of computer vision, for which different deep learning architectures have
been designed to be used with multispectral images.

The research carried out during my doctoral studies includes the implementation of novel
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approaches to the processing and representation of multispectral images using deep learn-
ing techniques, especially using cross-spectral information with visible and near-infrared
spectrum images. The approaches addressed in the thesis are detailed below:

1. Cross-Spectral Image Similarity: Determine similarity and reach a performance similar
or better than other methods based on only visible spectra.

2. NIR image colorization: Implement a novel colorization process using near infrared
images.

3. NDVI vegetation index estimation: Facilitate the process of analyzing the health of the
vegetation, avoiding dependence on acquisition devices sensitive to the near infrared
spectra.

4. Image Dehazing: Improve the quality of the image using near infrared spectra images.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 summarizes the work related to
techniques to determine the similarity of cross-spectral image regions (VISIBLE-NIR), using
traditional, deep learning techniques. Also, several techniques with generative adversarial
networks to solve the colorization problem using near infrared images are reviewed. Addi-
tionally, It has been covered vegetation index estimation based also on near infrared spectra,
and image dehazing methods using only visible and cross-spectral (visible and near infrared)
images based on CNN, especially, conditional generative adversarial networks with multiple
loss approaches. Also includes work related to techniques to remove haze from images of both
the visible and near-infrared spectrum using hand-craft and deep learning approaches.

Chapter 3 presents several approaches to determine patch similarity using cross-spectral
dataset from [14]. Two approaches have been proposed, the first one using CNN and the
second one based on meta-learning; from the dataset [14], the categories: country, indoor,
oldbuilding and Urban have been selected. These images are the most affected in lighting
conditions and textures, which directly affect the complexity of the process of establishing
their similarity through the detection of characteristic points and, therefore, are the most
challenging scenarios for the training process. First, the characteristic points of patches of
the visible images have been obtained using the SIFT algorithm, to search these points in
their corresponding on the near infrared spectrum images. To carry out the experiments,
64 × 64 pixels patches have been generated centered on the previously detected points in
both the visible and near infrared images, since the images are perfectly aligned. Then the
corresponding patches are extracted with the previously defined size. The first approach is
based on a CNN network to determine the ability to compare regions (patches) of (visible-
near) images, focusing on learning similarity between cross-spectral image patches with a 2
channel convolutional neural network (CNN) model. This proposed approach is an adaptation
of previous work, trying to obtain similar results than the state of the art but with low-cost
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hardware. The second approach is a technique based on meta-learning, which proposes an
8-shot 1-w ay meta-learning metric based network model. For training, a total of 16 perfectly
balanced cross-spectral image patches (matched and not matched) have been prepared for
each category. The results of the experiments of the two approaches presented in chapter 3
have been compared to each other and also with another similar technique presented in [3].

Chapter 4 introduces works that tackle colorization grayscale and near infrared images
using non-parametric methods and convolutional neural network (CNN) approaches, like
Generative Adversarial Network (GAN), with local and global priors. This chapter proposes
novel approaches for colorizing near infrared (NIR) images using (GAN’s) architectures. The
first model proposed is based on the usage of a single level of learning to colorize the images.
On the second approach, a conditional model with a triplet level architecture is proposed
for learning each color channel independently, in a more homogeneous way. It allows a fast
convergence during the training, obtaining a greater similarity between the colored NIR image
and the corresponding ground truth. The third approach presents a modified architecture
that includes in the final layer of red channel the concatenation of the infrared image to
enhance the details obtained from the learning process, resulting in a sharp RGB image. The
fourth approach includes a novel stack model and multiple loss functions over a conditional
probabilistic generative model. The use of a variant of stacked GAN architecture is proposed
to add in each layer a feature hierarchy that encourages the representation manifold of the
generator to align with that of the bottom-up discriminative network, leveraging the powerful
discriminative representations to guide the generative model [44]. This stacked learning model
allows accelerating the diversity obtained in the multiple level of training representing each
of the channels of an image of the visible spectrum (RGB). Also, the model will receive as
an input a near infrared patch (NIR) fused with Gaussian noise to ensure more diversity of
colors. Also, in this approach a layer of Gaussian noise has been included in each level of the
triplet architecture of the generator model to reinforce the generalization and therefore be
able to optimize the learning of the colorization process. The proposed approaches have been
evaluated with a large dataset of NIR images and compared to each other to determine the
one that gets the best results. All these approaches are based on a GAN architectures where all
the color channels are obtained at the same time and also the same metrics have been used to
do the comparison.

Chapter 5 tackles the estimation of the Normalized Difference Vegetation Index (NDVI), to
solve problems related to plants health to automate agriculture activities to improve yields
productivity. Generative adversarial networks approaches have been used to implement
this solution. Specifically, three different approaches are proposed; the first one is based on
the usage of a Conditional (CGAN) architecture. In the first stage, it learns how to generate
the NDVI index from the given input image. Three different architectures are evaluated,
flat, siamese and triplet models. In the evaluated models, the final layer of the architecture
considers the infrared image to enhance the details, resulting in a sharp NVDI image. The
second approach obtains the NDVI from a single spectral band using a CGAN. The architecture
has been designed with a flat scheme, Gaussian noise is added to each patch to increase the
variability in the learning process of the generation of the NDVI index, reducing the time of
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the convergence and generalization and obtaining a good performance to solve the index
estimation problem. The last approach for NDVI index estimation proposes a novel approach
to obtain it, just from a RGB image. The NDVI values are obtained by using images from the
visible spectral band together with a synthetic near infrared image obtained by a cycled GAN.
The cycled GAN network is able to obtain a NIR image from a given grayscale image. It is
trained by using an unpaired set of grayscale and NIR images by using a U-net architecture
and multiple loss functions (grayscale images are obtained from the provided RGB images).
Then, the NIR image estimated with the proposed cycle generative adversarial network is used
to compute the NDVI index. Experimental results are provided showing the validity of the
proposed approach. Additionally, comparisons with previous approaches are also provided.

Chapter 6 summarizes several techniques to remove haze from images using stacked GAN
and multiple loss functions. Two approaches have been tackled to solve this problem. The first
one proposes to remove haze degradations in RGB images using a stacked CGAN. It employs
a triplet of GAN to remove the haze on each color channel independently. A multiple loss
functions scheme, applied over a conditional probabilistic model, is proposed. The proposed
GAN architecture learns to remove the haze, using as conditioned entrance, the images with
haze from which the clear images will be obtained. Such formulation ensures a fast model
training convergence and a homogeneous model generalization. The last approach proposed
to remove haze from RGB images using near infrared images based on a dense stacked condi-
tional Generative Adversarial Network. The architecture of the implemented deep network
receives, besides the images with haze, its corresponding image in the near infrared spectrum,
which serve to accelerate the learning process of the details of the characteristics of the images.
The model uses a triplet layer that allows the independent learning of each channel of the
visible spectrum image to remove the haze on each color channel separately. Also, a multiple
loss function scheme is proposed, which ensures a balanced learning between the colors and
the structure of the images. Experimental results have shown that the proposed method effec-
tively removes the haze from the images. Additionally, the proposed approach is compared
with a state of the art approach showing better results.

Finally, Chapter 7 summarizes the entire work implemented in this thesis, highlighting the
principal contributions and describing future architectures, new loss functions, datasets, and
better data augmentation processes to increase the effectiveness and accuracy of the proposed
approaches.
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Chapter 2

Related Work

This chapter summarizes work related to the research topics covered in this thesis. It starts
with cross-spectral image similarity, Section 2.1, which is the first topic related with the
multispectral image processing. Then, a survey of image colorization approaches is given
in Section 2.2. Next, a review of vegetation indexes is presented in Section 2.3. A survey of
haze removal from images is addressed in Section 2.4. Additionally, works related to CNN,
in particular, Generative Adversarial Network (GAN), are reviewed in Section 2.5, since this
framework is used in most of the algorithms that have been implemented in this thesis.
Furthermore, a summary of work based on cyclic GAN’s networks is presented in Section 2.6.

2.1 Cross-Spectral Image Similarity

Images are often represented using dense pixel-based properties or by compact region de-
scriptors (features) often used with interest point detectors. Dense properties include raw
pixel intensity or color values from image patches. There are other techniques like common
compact region descriptors that include distribution based descriptors (e.g., SIFT, SURF),
differential descriptors (e.g., local derivatives), shape-based descriptors using extracted edges
(e.g., shape context) and others. For a comprehensive comparison of local descriptors for
image matching see [69].

Although these representations and their corresponding similarity measures may vary
significantly, they all share the same basic assumption, that there exists a common underlying
visual property (e.g., pixels colors, intensities, edges, gradients or other filter responses),
which is shared by the two image patches, and can, therefore, be extracted and compared
across images/sequences, see [93]. The comparison between the representations, using the
aforementioned similarity measures can be embedded into learning methods, which are
able to find the non-linear relationship between the representations. These learning-based
approaches generally rely on some easy-to-compute distance metric (e.g., Hinge distance) that
some times correlates with the semantic similarity. Different learning approaches have been
proposed in the literature. Recently, Convolutional Neural Network (CNN) based learning
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techniques are among the best option producing appealing results (e.g., see [21]).

CNN’s are a specific type of neural network thoroughly used in deep learning algorithms.
Their convolutional kernel-based philosophy makes them easy to apply in the computer vision
domain for classical problems. One of them is the extraction of interesting parts of an image,
obtaining feature vectors needed for a task like object detection, classification, segmentation,
etc. These techniques do not ignore the structure and compositional nature of images, so they
can learn to extract features directly from raw images, eliminating the need for manual feature
extraction.

Several approaches for image patch similarity have been proposed in last years, some tech-
niques are proposed based on hand-crafted methods, or using CCN networks. In [119] a novel
region-based active contour model via local patch similarity measure for image segmentation
is proposed. Using the spatial constraints on local region-based models to construct a patch
similarity measure, which balances the noise suppression and the image details reservation.
Another approach, [20], proposes a novel deep similarity learning method that trains a binary
classifier to obtain the metric of the correspondence of two image patches. The classifica-
tion output is transformed into a continuous probability value, then used as the similarity
score. For the comparison, two commonly used metrics are presented: normalized mutual
information and local cross-correlation.

Romero et al. [89] present an unsupervised deep feature extraction for remote sensing
image classification, using a greedy layerwise unsupervised pretraining coupled with a highly
efficient algorithm for unsupervised learning of sparse features. The algorithm is rooted on
sparse representations and enforces both population and lifetime sparsity of the extracted
features, simultaneously. The proposed algorithm clearly outperforms standard principal
component analysis (PCA) and its kernel counterpart (kPCA), as well as current state-of-the-art
algorithms of aerial classification, while being extremely computationally efficient at learning
representations of data. In [82] the authors use an off-the-shelf CNN representation named
OverFeat, with simple classifiers to address different recognition tasks. Nevertheless, it showed
itself to be a strong competitor to the more sophisticated and highly tuned state-of-the-art
methods. The same trend was observed for various recognition tasks and different datasets,
which highlights the effectiveness and generality of the learned representations.

Another research presented by Aguilera et al. [3], propose a novel approach for learning
cross-spectral similarity measures, inspired on the network structure for stereo matching pre-
sented in [121], where they avoid defining a hand-made descriptor being the CNN responsible
for jointly learning the representation and the measurement. This approach has been referred
to as a 2 channel network (2ChNet). Patch matching has also been addressed in [37]; in this
case, the authors propose a generalization of the siamese networks in order to speed up the
matching process. The architecture of the network consists of two parts, firstly a network is
used for describing the patches, then another network is proposed for the matching (metric
network). Following the siamese architecture, [96] proposes to train a Siamese network that
compares the similarity between image patches just using the L2 distance. This simple match-
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ing speeds up the whole process since it is possible to use fast approximate nearest neighbor
algorithms to find the correspondences and thus improve the overall matching runtime. A
comparative study between 2 channel and siamese architecture has been performed in [3]. It
is shown that the 2ChNet has a considerably better performance in the cross-spectral domain,
which outperforms those approaches based on hand-made descriptors (e.g., [4], [6], [71]).
Also, in [101] the authors present an approach to learn data representations using a novel
autoencoder-based fabric defect detection method. However, the texture (non-defect) area
cannot be well reconstructed, which makes the pixel-wise detection inaccurate. For this
reason, they explore similarities between different patches in the whole test image. In order
to maintain the texture area in the reconstructed patch, the original encoded latent variable
is modified and the cross-patch similarity is introduced for determining the modification
function.

In [1] the authors present a technique to perform registration of images of different nature
using SAR and optical images, based on a neural network in order to build feature point
descriptors; then, they use the RANSAC algorithm to align found matches. Another approach
has been proposed in [76]. A deep local descriptor learning framework for cross-modality
face recognition, to learn discriminant and compact local information directly from raw facial
patches, is presented. It also includes a novel cross-modality enumeration loss to eliminate
the modality gap on the local patch level.

Song et al. in [98] present an adversarial discriminative feature learning framework to close
the sensing gap via adversarial learning on both raw-pixel space and compact feature space.
This approach integrates cross-spectral face hallucination into an end-to-end adversarial
network, in the feature space. Additionally, an adversarial loss and a high-order variance
discrepancy loss are employed to measure the global and local discrepancy between two
heterogeneous distributions respectively to enhance domain-invariant feature learning and
modality independent noise removing.

In [26], the authors propose a new approach to align two images related by an unknown
2D homography, where the local descriptor is learned from scratch from the images and the
homography is simultaneously estimated. This technique uses a siamese convolutional neural
network to optimize by a single loss function. This method has been designed to align images
of different modalities such as RGB and near infrared without using any prior labeled data.

In [46], the authors present a deep coupled learning approach to solve the problem of
matching polarimetric thermal face photos against a gallery of visible spectrum faces. With the
polarization state information of thermal faces it is possible to obtain the missing textural and
geometric details in the thermal face imagery, which exist in the visible spectrum. A coupled
deep neural network model has been designed, which leverages relatively large visible and
thermal datasets to overcome the problem of overfitting. It also finds global discriminative
features in a nonlinear embedding space to relate the polarimetric thermal faces to their
corresponding visible faces.
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2.2 Image Colorization

Another problem that has been addressed in this thesis is related with infrared image col-
orization. As mentioned before somehow it shares some common problems with monochro-
matic image colorization that has been largely studied during the last decades. Colorization
techniques mostly differ in the ways they obtain and treat the data for modeling the corre-
spondences between grayscale and color. Coarsely speaking colorization techniques can be
classified into parametric and non-parametric approaches. Non-parametric methods, given
an input grayscale image, firstly they define one or more color reference images (provided
by a user or automatically retrieved) to be used as source data. Then, following the image
analogy framework, color is transferred onto the input image from analogous regions of the
reference image(s). Parametric methods, on the other hand, learn prediction functions from
large datasets of color images at training time, posing the problem as either regression onto
continuous color space or classification of quantized color values.

In many vision applications, including surveillance and driving assistance, RGB video
sensors are preferred since depicted images are similar to the human visual perception system.
Visible spectrum images are referred through this work indistinctly as a visible spectrum or
RGB images have limitations related to lighting conditions and object surface color. The
limitations mentioned above can be easily overcome using Near Infrared (NIR) imagery.

The NIR band of the electromagnetic spectrum is just outside the range of what humans
can see and can sometimes offer clearer details than what is achievable with visible light
imaging. The NIR spectrum is independent of the brightness and color of the targets, which
has potential benefits, including non-visible illumination requirements. Different solutions
could take advantage of this contribution. For instance, in [41] the authors propose address
the task of restoring RGB images taken under low illumination, when an aligned near infrared
image is available under low lighting conditions, the NIR band is less noisy than the visible
and restoring the R,G, and B bands is possible based on the NIR band.

Although the problem of NIR image colorization shares some particularities with color
correction/transfer (e.g., [24], [35], [72], [73]) there are some important differences. First, in
the image colorization domain (grayscale image to RGB) the chrominance is the only feature
that needs to be calculated, because the luminance is given by grayscale input. Secondly, in
the case of color correction/transfer techniques, in general, three channels are given as input
to obtain the new representation in the new three-dimensional space.

Surface reflection in the NIR spectral band is material dependent. This means that the
difference in the NIR intensities is not only due to the particular color of the material but also
to the absorption and reflectance of dyes. In spite of the advantages of NIR imagery, when the
information needs to be shown to the people of the interest group, the visible representation
(e.g., RGB) is always preferred since it allows a better appreciation and understanding of the
scene and therefore it has been possible to have a better decision making. Welsh et al. [113]
describe a semi-automatic technique for colorizing a grayscale image by transferring color
from a reference color image. They examine the luminance values in the neighborhood of each
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pixel in the target image and transfer the color from pixels with matching neighborhoods in
the reference image. This technique works well on images where different colored regions give
rise to distinct luminance clusters or possess distinct textures. Colorization algorithms mostly
differ in the ways they obtain and treat the data for modeling the correspondences between
grayscale and color. There have been several approaches, as designed by, Celebi et al. [18]
to introduce a spatial and variational based frequency method, which obtain perceptually
inspired color and contrast enhancement of digital images.

Also, Gavet et al. [32] present the color logarithmic image processing (CoLIP) and antagonist
space, which is a framework that defines a vectorial space for color images. It illustrates the
representation of the chromaticity diagram with color modification application, namely white
balance correction and color transfer. Another technique is the grayscale image matting and
colorization; Chen et al. [19] present a variation of a matting algorithm with the introduction
of alpha’s distribution and gradient into the Bayesian framework and an efficient optimization
scheme. It can effectively handle objects with intricate and vision sensitive boundaries, such
as hair strands or facial organs, plus they combine this algorithm with the color transferring
techniques to obtain its colorization scheme. In other cases, the user must direct the search
for matching pixels by specifying matches indicating corresponding regions in the two images.
It is also difficult to fine-tune the outcome selectively in problematic areas. There are other
approaches like colorization by example; in [47] an algorithm that colorizes one or more input
grayscale images is presented. It is based on a partially segmented reference color image. By
partial segmentation, they assume that one or more mutually disjoint regions in the image
have been established, and each region has been assigned to a unique label.

The approaches presented above have been implemented using classical image processing
techniques. However, recently convolutional neural network based approaches are becoming
the dominant paradigm in almost every computer vision task. CNN’s have shown outstanding
results in various and diverse computer vision tasks such as stereo vision [122], image classifi-
cation [100] or even difficult problems related with cross-spectral domains [3] outperforming
conventional hand-made approaches. Hence, there are some recent image colorization ap-
proaches based on deep learning, that exploit to the maximum the capacities of this type of
convolutional neural networks. As an example, it can be mentioned the approach presented
on [124]. It proposes a fully automatic approach that produces brilliant and sharp image color.
They model the unknown uncertainty of the desaturated colorization levels designing it as a
classification task and use class-rebalancing at training time to augment the diversity of colors
in the result.

On the contrary, [45] presents a technique that combines both global priors and local
image features. Based on a CNN a fusion layer merges local information, dependent on small
image patches, with global priors, computed using the entire image. The model is trained
in an end-to-end fashion, so this architecture can process images of any resolution. They
leverage an existing large-scale scene classification database to train the model, exploiting
the class labels of the dataset to more efficiently and discriminatively learn the global priors.
In [61], recent research on colorization, addressing images from the infrared spectrum, has
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been presented. It uses convolutional neural networks to perform an automatic integrated
colorization from a single channel NIR image to a RGB image. The approach is based on a
deep multi-scale convolutional neural network to perform a direct estimation of the low RGB
frequency values. Additionally, it requires a final step that filters the raw output of the CNN
and transfers the details of the input image to the final output image.

2.3 Vegetation Index Estimation

Another research problem that has been tackled in this doctoral thesis corresponds to the
estimation of vegetation indexes from images of just one spectral band. In this section, the
works related to the estimation and use of vegetation indices are reviewed.

The agricultural industry has adopted the use of new technologies based on computer
vision approaches, which has been widely applied to various tasks of agricultural develop-
ment to automate all activities related to the improvement of productivity of the fields, the
decrease in rising labor costs and the training given to farmers to face increasingly aggressive
globalized competition. One of the approaches based on computer vision is the estimation of
vegetation indexes. Such indexes enable a better identification, analysis, and management
of this temporal and spatial in-field variability. Also, with the rapid and constant innovation
of camera sensors and Graphics Processing Unit (GPU) [102], enormous progress has been
achieved on the agricultural applications.

Nowadays, the owners of the plantations, after the automation of their agricultural pro-
cesses, can rely on the early identification of diseases or the infection of insects that affect
the health of the plants. These techniques, together with the use of unmanned aerial vehicles
(UAVs), are used to accurately apply fungicides that use GPS coordinates on the specific areas
that are present in the plantation. The use of sensors sensitive to the near infrared spectrum
allows obtaining information about of plant health. On the other hand, with the visible spec-
trum, the exterior of the plant can be observed, at a photometric level (color of the plant), due
to the transformation process produced by photosynthesis.

Additionally, with NIR sensors, all the crop captured information could be used to obtain
statistical information of every year trying to predict the health of future plantations for better
crop productivity. Many computer vision techniques have evolved to offer solutions for this
kind of agricultural problems. These techniques came from mathematical and statistical
methods to deep learning neural networks.

As mentioned above, deep learning models have obtained state-of-the-art results on most
of the computer vision complex problems [53]. Nevertheless, there are many challenging
problems in the agriculture still pending to be solved and deep learning-based solutions seem
to be the most appropriate to be used, obviating the need for a pipeline of specialized and
hand-crafted methods currently used. Some researchers have proposed deep learning-based
approaches for remote sensing and agricultural applications. In [68] the authors propose to
use SAR images to estimate missing spectral features through data fusion and deep learning,
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exploiting both temporal and cross-sensor dependencies on Sentinel-1 and Sentinel-2 time-
series, in order to obtain the Normalized Difference Vegetation Index (NDVI).

Huang et al. in [43] have proposed a novel method for effective and efficient topographic
shadow detection for the images obtained from Sentinel-2A multispectral imager (MSI) by
combining both the spectral and spatial information. This method uses a convolutional neural
network, directly operating on indices input due to its remarkable classification performance,
exploiting the spatial contextual information and spectral features for effective topographic
extraction. Another approach, presented in [83], has proposed a method to predict the veg-
etation dynamics using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI
time-series datasets and long short term memory network, an advanced technique adapted
from the artificial neural network. In [62], the authors have proposed a decision-level fusion
approach with a simpler architecture for the task of dense semantic labeling. This method first
obtains two initial probabilistic labelings resulting from a fully-convolutional neural network
and a simple classifier, e.g., logistic regression exploiting spectral channels and LIDAR data,
respectively. Then a Conditional Random Field (CRF) estimates the final dense semantic
labeling results. Some of these techniques are presented below.

Recently, in [7] an automated approach is proposed to detect and count individual palm
trees from UAV using a combination of spectral and spatial analyses. The proposed approach
comprises a step that discriminates the vegetation from the surrounding objects by applying
the NDVI and another step used to detect individual palm trees using a combination of Circular
Hough Transform (CHT) and the morphological operators.

In [12] the authors present a methodology to predict the NDVI by training a crop growth
model with historical data. Although they use a very simple soybean growth model, the
methodology could be extended to other crops and more complex models. According to [103]
long-term observations of vegetation phenology can be used to monitor the response of terres-
trial ecosystems to climate change. They propose a method for observing phenological events
by analyzing time series of vegetation indices such as the normalized vegetation difference
index to investigate the potential of a Photochemical Reflection Index (PRI) to improve the
accuracy of MODIS-based phenological estimates in an evergreen coniferous forest. The
results suggest that PRI can serve as an effective indicator of spring seasonal transitions, and
confirm the usefulness of MODIS PRI for detecting phenology. Also, [59] presents a study to
evaluate the economic benefits of greening programs (e.g., planting urban trees, adding or
enhancing parks, providing incentives for green roofs) using low-cost normalized difference
vegetation index data from satellite imagery, using the spatial lag-Tobit models that predict
tree canopy cover from NDVI.

In another research [81], the authors focus on temporal NDVI and surface temperature, to
analyse the changes of the environmental conditions related to the land surface temperature
on urban areas. The research demonstrates the correlation between temporal NDVI and
surface temperature exemplified with a case study conducted over two different regions,
geographically as well as economically. In [116] the authors present a method to reconstruct
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normalized difference vegetation index time-series datasets for monitoring long-term changes
in terrestrial vegetation. This Temporal–Spatial Iteration (TSI) method was developed to
estimate the NDVIs of contaminated pixels, based on reliable data. The TSI method is the
most applicable when large numbers of contaminated pixels exist.

Additionally, [126] presents a local modeling technique to estimate regression models
with spatially varying relationships, using Geographically Weighted Regression (GWR), to
investigate the spatially nonstationary relationships between NDVI and climatic factors at
multiple scales in northern China. The results indicate that all GWR models with appropriate
bandwidth represent significant improvements of model performance over the Ordinary
Least Squares (OLS) models. The results reveal that the ecogeographical transition zone
and the GWR model can improve the model ability to address spatial, nonstationary, and
scale-dependent problems in landscape ecology. Also in [29] the authors present a high-
throughput phenotyping platform to dynamically monitor NDVI during the growing season
for the contrasting wheat crops. The high-throughput phenotyping platform capture the
variation of NDVI among crops and treatments (i.e., irrigation, nitrogen, and sowing). The
high-throughput phenotyping platform can be used in agronomy, physiology, and breeding to
explore the complex interaction of genotype, environment and management.

Usually, CNN approaches depend on the existence of accurately registered images (i.e.,
since images from different spectra are considered, they may look different, so the problem
is how to find the same set of points in both spectra [86] to be used as references). However,
deep learning-based approaches have been proposed to overcome this problem and to obtain
correspondences in cross-spectral domains (e.g., [5]). Once corresponding points are obtained,
the image registration can proceed in a single reference system and feed these pre-processed
images to the learning CNN models.

Recently, some approaches based on deep learning proposing solutions to agriculture
problems related to health and productivity of the plantation has been implemented, especially
using generative networks, like Cyclic GAN [10]. In [79], the authors propose a novel deep
learning-based generative adversarial model, RefineGAN, for fast and accurate compressed
sensing for magnetic resonance imaging (CS-MRI) reconstruction. The proposed model is a
variant of a fully residual convolutional autoencoder and Generative Adversarial Networks
(GANs), specifically oriented for CS-MRI formulation; the architecture has been designed
with a generator and a discriminator networks with a cyclic data consistency loss for a correct
interpolation in the given under-sampled multiple space data. Bansal et al. [9] introduce a
data-driven approach for unsupervised video retargeting that translates content from one
domain to another while preserving the style native to a domain. This approach combines both
spatial and temporal information along with adversarial losses for content translation and style
preservation. It includes a study about the advantages of using spatiotemporal constraints
over spatial constraints for effective retargeting. In the next sections, an introduction to GAN
and Cyclic GAN architectures is provided since they are used in this thesis.
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2.4 Image Haze Removal

The image haze removal problem has been studied for more than two decades. Some of
the solutions proposed in the literature have been based on image attributes, transmission
map, air light conditions, atmospheric scattering model, among others. (e.g., [87]). Most of
these solutions start from the usage of images from other spectral bands to extract certain
characteristics that are used to remove the haze. In [13], a non-local haze-lines for removing
haze from image is proposed; this method is based on the observation that the number of
distinct colors in an image is orders of magnitude smaller than the number of pixels, based
on the assumption that an image can be faithfully represented with just a few hundreds of
distinct colors.

Another model-based approach has been presented by [108]; this work proposes a selection
of an atmospheric light value that is directly responsible for the color authenticity and contrast
of the resulting image. Additionally, they propose a fast transmission estimation algorithm to
be more efficient and reduce the process time. Also using a haze model, [31] presents a haze
removal technique that uses a fusion-based variational remove haze method, which combines
the minimized outputs of two energy functionals to produce a haze-free version. Ju et al. [51]
present an improvement by addressing the weaknesses inherent to the atmospheric scattering
models; the authors develop a way to remove the haze using an adaptive method for adjusting
scene transmission based on the image features. The input image is partitioned into several
scenes based on the haze thickness. Then, they obtain the rough scene transmission map
by maximizing the contrast in each scene and then remove the haze by using the proposed
adaptive method. Similarly to the previous work, Fattal et al. [30] propose to estimate the
optical transmission in hazy scenes, given a single input image; the scattered light is eliminated
to increase scene visibility and recover haze-free scene contrasts.

Recently, in [109], a fast algorithm for single remove haze is proposed. It is based on linear
transformation, by assuming that a linear relationship exists in the minimum channel between
the hazy image and the haze-free image. In [118], the authors proposed an enhanced detail
and dehaze technique for haze removal based on modified channel prior scheme and combine
the dehazed image with a non-sky detail layer using a method to improve the image details.
After that, the recovered image contrast has been enhanced based on a histogram equalization
approach. Also using a haze model, [60] proposes an improved contrast enhanced restoration.
This technique is based on a quadtree subdivision searching method, where the sky area
of a multi-channel polarization image is automatically extracted, and the atmospheric light
and degree of polarization are calculated; then, the scene depth information of an image
is calculated based on contrast enhancement method. Finally, the atmospheric intensity is
thinly restored by the guided filter, and the degraded image is restored. In [31] a haze removal
technique that uses a fusion-based variational method is presented, which combines the
minimized outputs of two energy functionals to produce a haze-free version. The authors
in [57] present a detailed survey and experimental analysis based on Dark Channel Prior (DCP)
methods that explain the effectiveness of the individual step of the dehazing process and
facilitate the development of advanced dehazing algorithms.
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In [66] a model-based approach has been presented, which proposes an algorithm based
on image filtering DCP estimations of atmospheric light to obtain an unhazed image and
finally improving the local contrast.

In [117], the authors propose a method that consists of a combined algorithm based on
both dark channel prior and histogram optimization, which can make the image contrast
stretching, so the impact of the haze on the image can be weakened. If the obtained dehazed
image cannot meet the minimum quality required, the dark channel prior can be used to
estimate the haze intensity. Also, in [49] the authors propose a method for combining DCP
and Bright Channel Prior (BCP) for single image dehazing. The proposed technique achieves
airlight approximations by implementing numerical proximity of atmospheric light, which
use the average value of the DCP and BCP.

Lately, novel image haze removal approaches based on deep learning techniques have
been proposed obtaining acceptable results. In [58] a model-based on a reformulated at-
mospheric scattering model is proposed, instead of estimating the transmission matrix and
the atmospheric light separately. Ren et al. [85] present a multi-scale deep neural network
for single-image remove haze by learning the mapping between hazy images and their cor-
responding transmission maps. The proposed algorithm consists of a coarse-scale net that
predicts a holistic transmission map based on the entire image and a fine-scale net that refines
results locally. Cai et al. [16] propose a trainable end-to-end system called DehazeNet, for
medium transmission estimation. DehazeNet takes a hazy image as an input and outputs
its medium transmission map that is subsequently used to recover a haze-free image via an
atmospheric scattering model.

More recently the generative adversarial network framework has been used obtaining
appealing results. In [123] the authors propose a unified single remove haze GAN network that
jointly estimates the transmission map and performs the haze process; the network is trained
using synthetic images and a two-terms loss function. The first term of the loss function is a
pixel-wise Euclidean distance, while the second term considers perceptual information. In the
current chapter, a loss function based on multiple terms is proposed. Additionally, in the GAN
architecture, a stacking strategy is proposed to speed up the learning process.

Two basic things can be done with generative based deep learning models. One is to take a
collection of points and infer a function that describes the distribution that generated them;
the second one is to build a generative model, which is to take a machine that observes many
samples from a distribution and can create more samples from the same distribution. They
allow a network to learn to generate data with the same internal structure as other data.

According to [91], a feature matching is proposed to address the instability of a GAN
network establishing a new objective for the generator that prevents it from over-training
maximizing the output of the discriminator, requiring to generate data that matches the
statistics of the real data. More details on GAN network architectures are provided in the next
section.
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2.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of neural networks that have gained
popularity in recent years. They allow a network to learn to generate data with the same
internal structure as some target data. GANs are powerful and flexible tools, and one of its
more common applications is image generation. It is a framework presented on [34] for
estimating generative models via an adversarial process, in which simultaneously two models
are trained: a generative model G that captures the data distribution and a discriminative
model D that estimates the probability that a sample came from the training data rather than
from G . The training procedure for G is to maximize the probability of D making a mistake.
This framework corresponds to a minimax two-player game. In the space of arbitrary functions
G and D , a unique solution exists [34], with G recovering the training data distribution and D
equal to 1/2 everywhere.

The generator G implicitly defines a probability distribution pg as the distribution of the
samples G (z) obtained when z ∼ pz . The Algorithm (see Algorithm 1) could converge to a
good estimator of pd at a , if given enough capacity and training time.

Algorithm 2.1 Minibatch stochastic gradient descend training of generative adversarial nets.
The number of steps to apply to the discriminator, k, is an hyperparameter.

for Number of training iterations do
for k steps do

• Sample minibatch of m noise samples z(1), ..., z(m) from noise prior
pg (z)

• Sample minibatch of m samples x(1), ..., x(m) from generated data
distribution pd at a(x)

• Update the discriminator by ascending its stochastic gradient:

�θd
1
m

∑m
i=1[logD(x(i ))+ log(1−D(G(z(i ))))].

end for
• Sample minibatch of m noise samples z(1), ..., z(m) from noise prior

pg (z)
• Update the generator by descending its stochastic gradient:

�θg
1
m

∑m
i=1 log(1−D(G(z(i )))).

end for

According to [70], GANs have the advantages that Markov chains are never needed, only
backpropagation is used to obtain gradients, no inference is required during learning, and a
wide variety of factors and interactions can easily be incorporated into the model. To learn the
generator’s distribution pg over data x, the generator builds a mapping function from a prior
noise distribution pz (z) to a data space G(z;θg ); and the discriminator, D(x;θd ), outputs a
single scalar representing the probability that x came from training data rather than pg . G and
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z(Gaussian noise)

y(real data)

Generator Network G(z)

generated/real ?

x(generated data)

Update Model

Discriminator Network D(x)

Figure 2.1 – Illustration of a generative adversarial network.

D are both trained simultaneously. The parameters model for G : θg (are adjusted to minimize
log (1−D(G(z))) and for D : θd to minimize l og D(x) with a value function V (G ,D):

min
G

max
D

V (D,G) = Ex∼p data(x )[l og D(x)]+Ez ∼p data(z )[log (1−D(G(z)))]. (2.1)

Generative Adversarial Networks are quite useful in several computer vision problems.
Figure 2.1 shows an illustration of this architecture.

According to [70], in an unconditioned generative model, there is no control on modes
of the data being generated. However, by conditioning the model on additional information
it is possible to direct the data generation process. Generative adversarial networks can be
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z(Gaussian noise)

y(data label)

Generator Network 
G(z|y)

generated/real ?

x(generated data)

y(data label)

Update model

Discriminator
Network D(x|y)

y(real data)

Figure 2.2 – Illustration of a conditional generative adversarial network.

extended to a conditional model if both the generator and discriminator are conditioned
on some extra information y , see Fig. 2.2. This information could be any kind of auxiliary
information, such as class labels or data from other modalities. The conditioning can be
performed by feeding y into both discriminator and generator as an additional input layer.
Now, with the addition of the conditional information, the objective function of a two-player
minimax game becomes:

min
G

max
D

V (D,G) = Ex ∼p data(x)[log D(x|y)]+Ez ∼p z(z)[log (1−D(G(z|y)))]. (2.2)

The discriminator performs a binary classification including the extra information fed
to the network. As a result, the discriminator and generator reach more accurate gradients.
Conditional GANs enhance the stability of the model, but it affects the learning of the semantic
characteristics of the image samples, meaning that both the generator and discriminator are
conditioned on some sort of auxiliary information such as class labels or data from other
modalities.
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Figure 2.3 – Illustration of a stacked generative adversarial network, proposed by [44].

In [91] some techniques are presented to improve the efficiency of the generative adver-
sarial networks. One of them, called the virtual batch normalization, allows to significantly
improve the network optimization using the statistics of each set of training batches. The
disadvantage is that this process is computationally expensive, because it requires running
forward propagation on two minibatches of data, so it is only used in the generator network.

Continuing with the investigation of different adversarial generative models, the stacked
GAN architecture is presented in [44]. It consists of a top-down stack of GANs, each designed to
generate lower-level representations conditioned on higher level representations. A represen-
tation discriminator is introduced at each feature hierarchy to encourage the representation
manifold of the generator to align with that of the bottom up discriminative network, lever-
aging the powerful discriminative representations to guide the generative model. Besides, a
conditional loss is introduced to encourage the use of conditional information from the layer
above, and a novel entropy loss that maximizes a variational lower bound on the conditional
entropy of generator outputs, see Fig. 2.3. First, each stack is trained independently and then
the training to the whole model is continued comprehensively (end to end). Unlike the original
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GAN that uses only a randomized initialized noise vector to represent all possible variations,
the Stacked GAN architecture decomposes variations at multiple levels and gradually solve
uncertainties in the generative process from top to bottom. Based on the visual inspection,
using the metric Inception Scores (IS) and the Turing visual test, it is shown that the Stacked
GAN is capable of generating much higher quality images than traditional unstacked GANs
and this strategy allows accelerating the learning process to generate the required output.

In this section, only the GAN architectures used on this thesis have been reviewed. Accord-
ing to the GAN’s Zoo, every week, new papers on Generative Adversarial Networks (GAN) are
coming out and it is hard to keep track of them all 1, not to mention the incredibly creative
ways in which researchers are naming these GANs!, see Fig. 2.4.

Figure 2.4 – Illustration of "All the named GAN variants cumulatively by month since 2014";
Credit: Bruno Gavranović.

2.6 Cyclic Generative Adversarial Networks

Image-to-image translation is the process of transforming an image from one domain to
another, where the goal is to learn the mapping between an input image and an output image

1Deep Hunt Newsletter. Last updated on Feb 23, 2018.
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using a training set of aligned image pairs. However, for many tasks, paired training data are
hard to obtain, and to prepare them it often takes a lot of work from specialized personnel
to obtain thousands of paired image datasets, especially with complex image translations.
Cyclic Generative Adversarial Network (CyclicGAN) is an architecture to address this problem,
because it learns to perform image translations without explicit pairs of images. No one-to-one
image pairs are required. CyclicGAN learns to perform style transfer from the two sets despite
every image having vastly different compositions.

The Fig. 2.5 and 2.6 depict the CycleGAN model proposed in [128]. As can be appreciated,
the CyclicGAN architecture generates synthetic images through two generators (G and F) and
two discriminators Dx, D y . In order to generate a synthetic image, the architecture takes
advantage of the joint of cycle-consistency in addition to the usual discriminator and generator
losses.

According with [128] the objective of a CyclicGAN is to learn mapping functions between
two domains, X and Y , given training samples xi

N
i=1 ∈ X and y j

M
j=1 ∈ Y .

Figure 2.5 – Cycle generative adversarial model G : X → Y and its discriminator D y .

The model includes two mappings functions G : X → Y and F : Y → X . Besides, it
introduces two adversarial discriminators Dx and D y , where Dx aims to distinguish between
images x and translated images F (y); in the same way, D y aims to discriminate between y and
G(x). Besides, the proposed approach includes two types of loss terms: adversarial losses [34]
for matching the distribution of generated synthetic images to the data distribution in the
target domain real images; and a cycle consistency loss to prevent the learned mappings G
and F from contradicting each other. The adversarial losses defined according to [34] to both
mapping functions. For the mapping function G : X → Y its discriminator D y , is defined as:
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Figure 2.6 – Cycle generative adversarial model F : Y → X and its discriminator Dx .

LG AN (G ,D y , X ,Y ) = Ey∼p data(y )[log DY (y)]+Ex ∼p data(x )[log (1−DY (G(x)))], (2.3)

where G tries to generate images G(x) that look similar to images from domain Y , while D y

aims to distinguish between translated samples G(x) and real samples y .

For the mapping function F : Y → X its discriminator Dx , is defined as:

LG AN (F,Dx ,Y , X ) = Ex∼p data(x )[log DX (x)]+Ey ∼p data(y )[log (1−DX (F (y)))], (2.4)

where F tries to generate images F (y) that look similar to images from domain X , while Dx

aims to distinguish between translated samples F (y) and real samples x.

According to [128], to reduce the space of possible mapping functions, the learned mapping
functions should be cycle-consistent. For each image x from domain X , the image translation
cycle should be able to bring x back to the original image, i.e., x → G(x) → F (G(x)) ≈ x, calling
this forward cycle consistency. Therefore, for each image y from domain Y , G and F should
also satisfy backward cycle consistency: y → F (y) → G(F (y)) ≈ y . This cycle consistency loss
is defined as:

Lc ycle (G ,F ) = Ex∼p data(x )[‖F (G(x))−x‖1]+Ey ∼p data(y )[
∥∥G(F (y))− y

∥∥
1]. (2.5)

The final objective is defined as:
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L(G ,F,DX ,D y ) =LG AN (G ,D y , X ,Y )+LG AN (F,Dx ,Y , X )+λLC ycle (G ,F ) (2.6)

where λ controls the relative importance of the two first terms of the equation, with the aim to
solve:

G∗,F∗ = argmin
G ,F

argmax
Dx ,D y

L (G ,F,Dx ,D y ). (2.7)

2.7 Instance Normalization

Much of the recent work on GANs is focused on developing techniques to stabilize training.
Thus, GANs are known to be unstable (during training) and very sensitive to changes in the
hyper-parameter values of the learning model. Another field of analysis has emerged around
the style of an image evaluated by the statistics of convolutional neural network filters, a
renewed interest in the texture generation and image stylization problems in order to obtain
qualitative improvement in the generated image, discarding the instance-specific contrast
information from an image during style transfer. This can be evaluated by the statistics of
convolutional neural network filters.

Ulyanov et al. [104] shows that it is possible to train a generator network g (x, z) that can
apply to a given input image x the style of another x0. They introduce a method named
instance normalization for a better stylization and texture synthesis, that derive entropy
loss which improves samples diversity. This method prevents instance-specific mean and
covariance shift simplifying the learning process. The instance normalization layer is applied
at test time as well as at training time. According to [104] the generator network should discard
contrast information in the content image to learn a highly nonlinear contrast normalization
function as a combination of such layers. Let x ∈ RN xC xW xH an input tensor containing a
batch of N images, where C , W and H are the depth, width and high respectively of the image
tensor and let xti j k denote its t i j k-th element of x image tensor, where k and j span spatial
dimensions, t is the index of the image in the batch, i is the feature channel (in the case of an
RGB image being used as an input, it would represent a color channel). Thus, a simple version
of instance normalization is defined as:

yti j k = xti j k∑W
l=1

∑H
m=1 xti lm

. (2.8)

A small change in the stylization architecture proposed by [104] is a qualitative improve-
ment in the generated images. The change is limited to swapping batch normalization with
instance normalization, and to apply the latter both at training and testing times. The resulting
method can be used to train high-performance architectures for real-time image generation.
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2.8 Metalearning

The field of meta-learning has as one of its primary goals the understanding of the interaction
between the mechanism of learning and the concrete contexts in which that mechanism
is applicable. The field has seen a continuous growth in the past years with interesting
new developments in the construction of practical model-selection assistants, task-adaptive
learners, and a solid conceptual framework [106].

Meta-learning, has been proposed to simulate the human learning process. Normally,
humans apply the method known as learning to learn with few samples, therefore, knowledge
already acquired is always used. Meta-learning algorithms tries to implement architectures
that can learn new knowledge or reinforce something already known to apply it to another
situation efficiently. Without the need to rely on large data sets, such as artificial intelligence
algorithms based on deep learning. There are three meta-learning models, the first one based
on distance metrics, the second one known as model-based, with the use of memory and the
last one named as optimization-based.

In this thesis, it has been implemented Few-shot classification which is a type of meta-
learning model in the field of supervised learning. Where a dataset D is often split into two
parts, a support set S for learning and a prediction set B for testing, D = (S,B). These kind of
models

θ∗ = argmax
θ

E(x,y)∈D

[
Pθ(y |x)

]

θ∗ = argmax
θ

EB⊂D

[ ∑
(x,y)∈B

Pθ(y |x)

]
; trained with mini-batches.

(2.9)
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Chapter 3

Cross Spectral Image Similarity

This chapter tackles the problem of learning similarities between cross-spectral image patches
using a 2 channel network (2ChNet) model and a metric based meta-learning approach.

The core idea is to propose novel approaches to learn the best representation of the image
patches to determine the similarity degree between cross-spectral regions (patches) using a
framework able to compare image regions and determining a similarity measure to decide if
there is a similarity between the compared patches. The models have been trained end-to-
end from scratch. Experimental results have shown that the proposed approaches effectively
estimate the similarity of the patches and, comparing them with the state of the art approaches,
better results are obtained. It should be noted that the approach based on meta-learning is
the one that has shown the best results.

3.1 Introduction

One of the challenges that remain in the field of computer vision is to achieve the same
effectiveness that the human eye has, to determine whether two images are similar or not.
Many of the traditional techniques are based on encoding images into representation vectors,
for which it is necessary to take small regions of the images to be compared and distance
metrics, such as the Euclidean, are used to measure the similarity between the regions of the
images.

Many factors could affect the image comparison process, such as occlusion, illumination,
quality of sensors, etc. For this reason, different approaches have been developed, from hand-
craft methods to deep learning-based, in order to obtain this kind of information valid for
high-level vision problems.

One of the computer vision techniques that has always been in constant research is the
determination of the similarity between regions of images, because it is the fundamental
process of many vision tasks. The ability to compare image regions (patches) has been the
basis of many approaches to core computer vision problems, including object, texture and
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scene categorization. Hence, developing representations for image patches have been of
interest in several works. Computer vision tackles problems related to object detection and
recognition, texture classification, action recognition, segmentation, tracking, data retrieval,
image alignment, etc. There are several techniques for performing these tasks, and usually
based on representing an image using some global or local image properties, and comparing
them using some similarity measure. Learning visual similarities has been presented recently
with success on images in the mono-spectral domain [120]. Images are often represented by
compact region descriptors with interest points. The main idea is to extract all possible patches
no matter overlapping. These patches are usually very small compared with the original size
of the image, with them we proceed with their processing to exploit interrelation between
them [14].

During early 2000 different approaches based on hand-craft methods were widely used
initially to obtain the representation of images using vectors. These feature descriptors such
as: SIFT [63], SURF [11], KAZE [8], among the best known have been applied for the resolution
of many computer vision problems based on the main characteristics of the images and had
had a great impact on computer vision area.

Many researchers have been working with image patches for road detection and urban
understanding, which can be used for image labeling [15]; other approaches have been pro-
posed based on image-adaptive wavelet transform, which is tailored to sparsely represent a
given image, to form a multiscale sparsifying global transform for the image in question [15].
There are some other methods based on image patch processing like a fast patch dictionary
for image recovery and sparsity-based image denoising via dictionary learning and structural
clustering [27], non-local means methods for image denoising [23] and image processing using
the smooth ordering of its patches [80].

Approaches to perform image completion involve filling missing parts in images. In [38] the
authors have proposed novel statistics of similar patches. They propose that the coincidence of
similar patches in the image allows them to obtain their displacements (relative positions), and
the statistics resulting from these displacements can be used to obtain reliable information to
complete the image.

Another application that can be derived from good management of the regions of the
images is the edition of the same ones to modify the position of objects, to make changes in
the texture or any other adjustment that is required to make in an image. Also, in the analysis
of medical images, techniques based on regions of images (patches) are also observed in
order to compare the similarity of the images with the related databases already existing, to
determine whether or not they are similar [115].

In order to overcome the aforementioned poor performance some recent approaches,
based on the usage of convolutional neural networks, have been proposed with interesting
results. Some times such good results are obtained using expensive dedicated GPUs. One
approach is to learn a feature representation directly from image data, to obtain a general
similarity function for comparing image patches. To formulate such a function, various CNN-
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(a) (b)

Figure 3.1 – Cross-spectral pairs of images obtained from [14]: (a) Visible spectrum images;
(b) NIR images.

based models have been designed and trained to support a wide variety of changes in image
appearance [120].

The previous approaches have been developed using images or patches from the visible
spectrum, in other words, monospectral approaches. These days, the coexistence of cameras
working at different spectral bands have considerably increased, mainly based on recent
advances in imaging devices as well as the reduction on the prices of such a technology, which
makes it possible to propose new architectures based on convolutional neural network. This
cross-spectral information helps to solve classical problems in poor lighting conditions or
enhance visible spectrum images with information from other spectral bands (e.g., filtering
[41], enhancement [125]). The current chapter is focused on the usage of images from the
visible spectrum (RGB images) together with images from the near infrared spectrum (NIR
images). Figure 3.1 presents two pairs of cross-spectral images used to validate the proposed
approaches based on the 2 channel CNN network and based on the usage of meta-learning.

The usage of cross-spectral information, although interesting and appealing, implies new
challenging and difficult problems that need to be tackled and efficiently solved. For instance,
different works have been recently proposed for describing and matching feature points in
cross-spectral domains based on classical approaches (e.g., [94], [4], [6], [71], to mention a few).
Unfortunately, due to the natural difference between images acquired from different spectra,
the obtained performance is far away from the one obtained in mono-spectral scenarios.

In the current chapter, firstly, the use of the CNN architecture presented in [3], but mod-
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ifying the number of layers and reducing both the size of patches and convolution kernels
is proposed, in order to use it in a low-cost hardware (about ten times cheaper than the one
used in [3]). This network consists of a unified architecture that jointly learns a 2 channel deep
neural network for cross-spectral patch representation (see Fig. 3.2).

Secondly, meta-learning techniques have been proposed, which allow generalizing a new
model from few data. Therefore, there is no longer a dependence on large datasets for the
training process. Also, meta-learning can take the advantage to use other sources of data that
are not labeled but plenty available, of multimodal learning, transfer learning, and continuous
learning for domain adaptation. With meta-learning, a specific transformation of a subset of
features is critical for transferring the knowledge, in order to obtain a distribution of patterns
in the feature space that share some characteristics that may be described by the model and
easy to adapt to a new dataset of similar type to learn the representation of the features to
generate a new one.

As mentioned above, the main contribution of the current chapter is to perform image
matching using distance metrics and determine its similarity with low-cost hardware and
reach a performance similar to the state-of-the-art techniques. The rest of the chapter is
organized as follows. Section 3.2 presents the CNN architectures detailing the design and
training with cross-spectral datasets. Section 3.3 depicts the experimental results and finally,
conclusions are presented in Section 3.4.

3.2 Network Architecture

As mentioned above the current chapter is focused on finding correspondences between
images from visible and near infrared spectra. Two different approaches have been proposed,
the first network architecture proposed to find correspondences between patches from these
images is similar to the one presented in [3], the 2 channel network (2ChNet) model. Figure
3.2 shows an illustration of the model. Details of the adaptation proposed to the (2ChNet)
architecture are presented in Fig. 3.3; this architecture contains less layers than [3], in order to
train it with a low-cost hardware. As can be appreciated in this illustration, this architecture
takes as an input a pair of patches (one from each spectrum), and then a series of convolution,
ReLu, and max-pooling layers are applied till the final linear layer that works as the metric
network. Note that the patch from the visible spectrum (RGB image) is converted to grayscale.

The network learns the similarity by combining information from both spectra and jointly
processing them through different layers. This way of processing the information has been
shown as the best solution in cross-spectral domains [3]. The training process does not rely on
labels assigned to each patch, but rather on pairs of patches of different spectra with similarity
or non-similarity. During the training, the loss is minimized with a hinge-based term and
squared �2-norm regularization.

The model consists of different layers, like convolution, ReLU, max-pooling and a final
linear layer that computes the loss of each iteration of the learning process. This last layer
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Figure 3.2 – The 2 channel network (2ChNet) model implemented on the current chapter to
obtain automatic cross-spectral matchings.

acts as a metric, which permits to determine whether the pair of patches have or not corre-
spondence. Figure 3.3 shows the adapted architecture of the model. The network architecture
described above was trained in a supervised way; each layer convolves the output of the
previous one, with a filter learned at each operation are followed by a non-linear activation
function (ReLU). Some layers permit to change the spatial size of the output, obtaining the
maximum or an average value of previous convolution layers, or the corresponding activation
function. The last layers are fully connected and multiply the output obtained with a matrix
of learned parameters. We use a margin criterion based on a hinge loss and squared l2-norm
regularization term as in [120]:

min
w

λ

2
‖w‖2 +

N∑
i=1

max(0,1− yi onet
i ), (3.1)

where w is the network weight, onet
i is the training output for the i-th training sample iteration

and yi is the i-th training label; the value domain is {-1,1} for a false and true similarity
respectively, and λ denote the weight decay.
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Figure 3.3 – Architecture of the 2ChNet adapted from [3]

Algorithm 3.1 Image Patch Similarity: i is the index of the image patches pairs vectors, I P1 and
I P2 and the index of their corresponding label vector Yi ; epochs is the number of iterations
for training process; n is the number of images per batch; t is the number of images of the
training dataset.

1: for Number of image patches in the training set (t ) do

2: Determine
−→
IP1

−→
IP2 pairs from the complete sample training set: S−→

I P
.

3: calculate the corresponding label Y j , so that Y j = 0 when
−−→
{IP1}t

i=1 are similar
−−→
{IP2}t

i=1 and
otherwise Yi = 1. end for

4: for epochs steps do
5: for n steps do
6: Initialize network weights
7: Instance the architecture of the siamese network
8: Contrastive loss calculation, by minimization
9: Neural Net Optimization

10: end for
11: Fine-tuning weights of the net based on error rate

12: end for

The second architecture implemented in this chapter to evaluate image similarity is a met-
ric based meta-learning approach. One of the challenges raised by meta-learning techniques
is the design of a deep training model that uses only a few training data and the previous
experience taken from very similar learning tasks. This learning strategy is known to learn from
few data shots, trying to simulate the human capacity to learn from one or a few examples. In
the current chapter, an architecture that is capable of detecting the similarity of patches of
cross-spectral images is proposed. In this case, the model has been designed to generate a
similarity metric solely based on K-shots in N-ways learning in which it is given little training
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3.2. Network Architecture

Figure 3.4 – Architecture of the siamese network for patch similarity, Blocks Ai /Bi contain the
same set of operations (Conv, Relu and Instance Normalization).

data to determine whether or not similarity exists between the K classes with N data in each,
(see Algorithm 3.1).

Once the model has been trained, the similarity metric can deduce the pattern of the
common characteristics that represent the images evaluated by the trained meta-learning
architecture. The weight parameters of the model have been designed to be shared and they
are optimized as :

θ∗ = argmin
θ

EC ∼p (C)[Lθ(C )] (3.2)

where θ∗ tries to optimize the siamese model to obtain a semantic embedding space based
on few shot samples and labels EC ∼p per category, through the learning process to generate
the representation vectors and determine the patching similarity using the corresponding
dataset C . The dataset C contains pairs of feature vectors and labels, C = (i pi , y j ), and each
label belongs to a known label set L.

The second proposed approach is based on a cross-spectral metric meta-learning model,
implemented through a siamese network, see the architecture in Fig. 3.5. As mention in
chapter 2 the metalearning scheme consist of poner la frase anterior The model is capable of
determining the similarity of the cross-spectral image patches of different patterns, separately
categorized, with few examples in each class, having 50% of these examples with images of the
visible spectrum and the rest with images of the near infrared spectrum, with a few samples
on each class per spectra; from the training process and for the test process there are three
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Figure 3.5 – Siamese general schema implemented on the current research.

classes not seen by the training process with few examples in each.

The meta-learning model proposed in this chapter has been designed to be trained over a
variety of categories at the same time to obtain a good performance on the learning of metric
similarity of the image patches. Being C the cross-spectral dataset of image patches of all
categories to be considered in the training process to perform the learning similarity tasks
and optimized for the best accuracy. Each task is associated with a cross-spectral categories
of previously mentioned dataset C , containing both patch image representation and their
corresponding labels.

Let I P1 and I P2 be a pair of image patches from visible and near infrared spectra respec-
tively, and let L be their corresponding label; "0" for a similar image patch pair class and “1“
for a non similar image patch pair, including cross-spectral image pairs existing in the training
and test database. Let W be the shared weights in the siamese network architecture, see Fig.
3.4, which will be optimized incrementally as the proposed model is generalized. Having
a generator function Gw (i p) instantiated by a siamese architecture with a weight vector W .
Being the siamese net instantiated Gw (i p1) and Gw (i p2) to obtain an embedding vector repre-
sentation on each side of the network to measure the distance between those embeddings,
and determine the similarity of the patches feed it into the network. The similarity function
Gw (I P1, I P2) is defined as:

Gw (I P1, I P2) = ‖Gw (i p1)−Gw (i p2)‖2. (3.3)

Metric-based meta-learning model defines a function capable of determining the similarity
between objects. Being this function a classifier (kθ) that is a learner model to be trained for a
given task, in this case, determine the similarity between cross-spectral image categories; the
model must have also an optimizer that learns how to update the learner model’s parameters
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via the support set C, the corresponding dataset used for the experiments. The predicted
probability over a set of known labels, in this case "0" for a similar image patch pair class and
"1" for a non similar image patch pair, is a weighted sum of labels of support set C samples.
The weight is generated by a kernel function kθ, measuring the similarity between two data
samples, it is defined as:

Pθ(y |x,C ) = ∑
(xi ,yi )∈C

kθ(x, xi )yi , (3.4)

where C is the dataset that contains pairs of feature vectors xi and labels yi , and each label
belongs to a known label set L. Being kθ the classifier with parameter θ that outputs a
probability of a data point belonging to the class y in this case "0" or "1" when the feature
vector x in this case the embedded representation of the cross-spectral image category does
not belong to the class y .

The metric-based approaches learn one task invariant metric for all the tasks. Even though
the metric-learning approaches allow different numbers of classes, they require the tasks all
coming from a similar domain such that there exists a uniform metric that could work across
tasks [107].

3.2.1 Instance Normalization

Deep learning is a technique that allows learning multiple levels of representations and
abstraction to transform data to solve a specific problem. Many types of research with deep
learning are focusing on developing techniques to stabilize training. Thus, some architectures
are known to be unstable (during training) and very sensitive to the changes made on the
model hyperparameters. For that reason, instance normalization has been implemented, see
section 2.8 for a detailed information.

A small change in the stylization architecture proposed by [104] presents a qualitative
improvement in the generated embedding vector. The fig. 3.4 shows the implementation
of this normalization layer. The resulting method can be used to train high-performance
architectures for real-time embedded vector generation. The architecture uses this normaliza-
tion, applied in feed-forward style transformation, to improve the quality of the embedded
feature representation generated by the model, which has been validated empirically in the
experiments.

3.2.2 Contrastive Loss

To be able to differentiate if the images that are fed to the model are similar or not, an encoded
representation must be obtained to conserve the structural and semantic information of
images, for which the contrastive loss based on a maximum margin has been used.
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According to [36], a meaningful mapping from high to low dimensional space maps similar
input vectors to nearby points on the output manifold and dissimilar vectors to distant points.
Unlike conventional learning systems where the loss function is a sum over samples, with the

contrastive loss function the minimization runs over pairs of samples. Let
−→
X1,

−→
X2 ∈ I be a pair

of input images shown to the system; let Y be a binary label assigned to this pair. Y = 0 if
−→
X1

and
−→
X2 are similar, and Y = 1 if they are dissimilar and P is the number of the training image

pairs. Define the parameterized distance function to be learned DW between
−→
X1,

−→
X2 as the

Euclidean distance between the outputs of GW . The distance is defined as:

Dw (
−→
X1,

−→
X2) = ‖Gw (

−→
X1)−Gw (

−→
X2)‖2. (3.5)

The corresponding loss function L is defined as:

Lθ(W ) =
P∑

i=1
L(W, (Y ,

−→
X1,

−→
X2)i ). (3.6)

Applying this loss to the model, where the image pairs are the image patches of visible and
near infrared spectra, such that minimizing L with respect to W results in low values of DW

for similar pairs of images and high values of DW for dissimilar pair. As a result the above loss
function can be defined as :

Lθ(W, (Y ,
−→
X1,

−→
X2)i ) = (1−Y )

1

2
(DW )2 + (Y )

1

2
(max(0,m −DW ))2, (3.7)

where m > 0 is a margin. The margin defines a radius around the outputs of GW . Dissimilar
pairs contribute to the loss function only if their distance is within this radius (m), see Fig. 3.6.
The first term of the equation (3.7) corresponds to the partial loss function for a pair of similar
points. The second term of the equation corresponds to the partial loss function for a pair of
dissimilar points. The contrastive term involving dissimilar pairs is crucial. Simply minimizing

DW (
−→
X1,

−→
X2) over the set of all similar pairs will usually lead to a collapsed solution, since DW

and the loss L could then be made zero by setting GW to a constant.

3.3 Experimental Results

To test the first proposed approach the cross-spectral dataset from [14] has been used (pairs of
images are presented in Fig. 3.1). This dataset consists of 477 registered images categorized in
9 groups captured in RGB (visible spectrum) and NIR (Near Infrared spectrum). To compare
with the previous approach, [3], just images from the category country have been used for
training (150 pairs of images randomly selected). These images are the most affected in
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Figure 3.6 – Illustration of the loss function L against the energy Dw ; the dashed (red) line is the
loss function for the similar pairs and the solid (blue) line is for the dissimilar pair; illustration
from [36]

conditions of varying lighting and textures, which directly affect the variability and complexity
of the detection of the feature points and therefore are the most challenging scenarios for
the training process. Feature points have been obtained from SIFT, applied over the visible
spectrum images. Patches of 64×64 pixels have been generated centered on those points.
Then, points placed in the same position than those obtained by SIFT algorithm are placed
in the NIR images and the corresponding patches with the same size extracted. With this
process 150.000 patches have been generated from country category (note that the provided
dataset contains correctly registered pairs of images); the same amount of patches have been
generated using random points taken from each visible and near infrared images, that is,
forming unpaired image patches for the false pair dataset.

The model is trained using Stochastic Gradient Descent with a weight decay (λ) of 0.0007,
a learning rate of 0.05, a momentum of 0.9 and batches size of 80 samples. All input patches
were normalized by their intensity mean, previous to normalization the values of intensities
must be in the [0,1] range. (80%) of the dataset generated as mentioned above has been used
for training, while 20% used for validation. It has been used MatconvNet toolbox for Matlab
that implements Convolutional Neural Networks [105]. The 2ChNet model was trained during
6 days, on a 3.2 eight core processor with 4Gb of memory with a NVIDIA GeForce GTX970
GPU.

Once the 2ChNet has been trained with images from the country category it has been
evaluated with other cross-spectral images from the country category together with other
categories. Thus, 300 pairs from each of the following categories have been selected: country,
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(a) (b)

Figure 3.7 – Cross-spectral pairs of images obtained from [14]: (a) Visible spectrum images;
(b) NIR images.
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Table 3.1 – Evaluations (FPR95%) on visible and near infrared image patch datasets [14] from
different categories (the smaller the better, bold faces correspond to the best results in that
category).

Descriptor-Network country indoor oldbuilding urban

SIFT [63] 46.6 12.4 21.3 13.27
2ch Network (from [3]) 0.23 4.4 2.3 1.58

2ch Network (1st. Prop. App.) 0.27 3.3 3.4 4.6

indoor, oldbuilding and urban respectively. The results obtained from this evaluation were
compared with those obtained with a classical feature descriptor (SIFT) to highlight the
improvements in performance reached with the proposed approach. The FPR95% rate, which
is the ratio between the number of negative coincidences wrongly categorized as positive (false
positives) and the total number of actual negative coincidences (regardless of classification),
is used to measure the obtained results. Additionally, these values have been compared with
the ones presented in [3] using the same image categories. Table 3.1 shows the obtained
performances. As expected, it can be appreciated the large improvements reached concerning
SIFT. Additionally, it can be appreciated that in spite of the hardware limitations and the
corresponding reduction in the size of the proposed model, the results are similar to the one
presented in [3]. Actually, in one case the result is even better than the one obtained in [3].

The second proposed approach for determining patch similarity has been tested using
the previous cross-spectral dataset from [14]. The proposed 8-shot 1-w ay meta-learning
metric based network model has been trained with two image categories and evaluated with
four image categories, two of which have not been used in the training process. Figure 3.7
shows some examples of pairs of different categories). In order to make comparisons with
similar approaches, like [3] and the first proposed approach in this chapter, country, indoor,
oldbuilding and urban categories have been selected. The cross-spectral dataset for the
experiments has been prepared: pairs of randomly selected images from visible and near
infrared for each category have been collected. First, a set of characteristic points on the visible
spectrum images have been obtained using the SIFT algorithm, to search these points and
their corresponding ones in the near infrared spectrum images. To carry out the experiments,
64 × 64 pixels patches have been generated centered on the previously detected points in both
the visible and near infrared spectrum images, since the images are perfectly aligned; then the
corresponding patches are extracted with the previously defined size. For training, a total of
16 perfectly balanced cross-spectral image patches (matched and not matched) have been
selected for each category. It has been used Adam optimizer with a learning rate of 0.0002,
with stochastic gradient descent, minimizing the contrastive loss to converge the model.

Once the meta-learning metric based model has been trained, it has been evaluated with
other cross-spectral image samples in order to obtain the performance of the model. Thus,
new pairs from each of the categories have been selected and used to test the model. Like in the
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Table 3.2 – Evaluations (FPR95%) on cross-spectral image patch datasets from different cate-
gories [14] (the smaller the better, bold faces correspond to the best results in that category).

Descriptor-Network country indoor oldbuilding urban

SIFT [63] 46.6 12.4 21.3 13.27
2ch Network (from [3]) 0.23 4.4 2.3 1.58

2ch Network (from 1st. Prop. App.) 0.27 3.3 3.4 4.6
Metric Based Network

(cross-spectral 2nd. Prop. App.) 0.22 3.1 2.2 1.63

Table 3.3 – Evaluations (FPR95%) on visible and near infrared image patch datasets evaluated
separately from different categories, [14] (the smaller the better, bold faces correspond to the
best results in that category).

Descriptor-Network country indoor oldbuilding urban

Metric Based Network 2nd. Prop. App.
(only Visible spectrum images) 0.17 1.6 1.9 1.21

Metric Based Network 2nd. Prop. App.
(only Near infrared images ) 0.19 2.6 1.6 1.43

previous case, the results obtained from this evaluation were compared with SIFT. Additionally,
these values have been compared with the ones presented in [3] and with the results from
the first proposed approach. Table 3.2 shows the obtained performances. As expected, it
can be appreciated the large improvements reached from SIFT. Additionally, it can be also
appreciated better results than those presented in [3] and with respect to the first proposed
approach, actually, only in the urban category previous approaches remain a bit better than
the ones obtained with this second proposed approach. The model has been also evaluated
when the similarity of images from the same spectra has been considered (i.e., visible spectra
patches only or near infrared patches only), just to show that the proposed model can measure
similarity without having to train it again showing that it is adaptable to various measurement
tasks. The results are shown in the Table 3.3

3.4 Conclusions

In this chapter the challenging problem of cross-spectral image patch similarity has been
tackled; firstly, by adapting a state of the art architecture [3] with low-cost hardware. The
results obtained with the 2 channel approach shows that even with a low-cost hardware
the obtained performance is quite similar to the state of the art, as well as it is shown that
outperforms classical SIFT feature based descriptors. This implementation was the first
implementation in the framework of this thesis. Hence, at that time, MatConvNet was one
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of the most widely used tools to work on deep learning. Nowadays, the institution counts
with more powerful computational hardware (GPU Titan XP, Titan V, among others) and
with specialized libraries for deep learning (e.g., Tensorflow), that has become the standard
framework on machine learning techniques developments. Hence, with these new specialized
libraries and the equipment with greater computer capacity new approaches have been
implemented to determine the similarity of the cross-spectral images; using much more
advanced approaches, such as meta-learning metric based technique obtaining better results.
In this way, the rest of the research carried out in the framework of the thesis is by using these
specialized libraries, and hardware with greater computational power mentioned before.
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Chapter 4

Near Infrared Image Colorization

This chapter presents novels approaches to generate RGB representations from near infrared
(NIR) images by using Generative Adversarial Networks (GANs). The networks have been
implemented using a single, triplet learning level architecture, applying several variations
to improve the quality and performance of the network. The applied variations include a
conditional, dense and a stacked model to generalize the image representation process. Finally,
a model with multiple loss functions, which combine different terms to improve final results is
proposed. The proposed techniques obtain satisfactory results when objects from different
categories are tested. Experimental results, with a large set of real images, are provided to
show the validity of the proposed approaches. Comparisons with other architectures are also
provided to show the improvements reached with the proposed approaches.

4.1 Introduction

Visible spectrum images, referred through this chapter indistinctly as visible spectrum or RGB
images, have limitations related to lighting conditions and object surface’s color. Some of the
limitations mentioned above can be easily overcome using Near Infrared (NIR) imagery. The
NIR band of the electromagnetic spectrum is just outside the range of what humans can see
and can sometimes offer clearer details than what is achievable with visible light imaging. In
the computer vision domain, several applications take advantage of near infrared spectrum,
since materials have characteristics (i.e., physical or chemical properties) that can be easily
detected in the NIR spectral band. In many vision applications, including surveillance photo
interpretation by imagery analysts and driving scene understanding by drivers looking at
backup-aid cameras, RGB video sensors are preferred since depicted images are similar to the
human visual perception system. Whereby, in spite of the advantages of NIR imagery, when the
information needs to be shown to the people of the interest group the visible representation
(e.g., RGB) is always preferred since it allows a better appreciation and understanding of the
scene and therefore it will be possible to make better decisions.

The NIR spectrum is independent of the brightness and color of the targets, which has
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potential benefits, including non-visible illumination requirements. Surface reflection in the
NIR spectral band is material dependent. This means that the difference in the NIR intensities
is not only due to the particular color of the material but also to the absorption and reflectance
of dyes. In this context, this chapter addresses the process of colorization using images of
the near infrared spectrum to obtain their representation in the visible spectrum (RGB repre-
sentation). Different solutions could take advantage of this contribution, for instance, to give
daylight to night images, to allow the observers can selectively attend relevant color targets and
to ignore non-targets with an irrelevant color, to map cross-spectral into a three-dimensional
(synthetic) color space to increase the dynamic range of a sensor system increasing detection
probability [40].

For the implementation of the NIR images colorization, different GAN networks have been
proposed instead of a standard CNN network. One of the principal reasons why adversarial
generative networks have been selected are dependent on some advantages that those net-
works have to generate synthetic information, in this case, colored images. These networks
apply a supervised learning method that does not require data sets to feed it as an input,
which is a great advantage, additionally, GANs networks allow generating information from
any domain, being these images, text, audio and video, since they are able to learn the internal
representation of the data they generate as the network is trained based on examples taken
from real data (ground truth). GANs can learn distributions of messy and complicated data.
This can be used to solve a variety of machine learning problems, including the one that is
being proposed for NIR image colorization. This framework has been presented in detail in
Section 2.5.

In this chapter, four approaches for NIR image colorization are detailed, the first one, based
on a standard GAN model with one leaning layer for colorization (flat), the second one with a
model with multiple level of learning, one for each color channel (red, green, blue ), the third
one a conditional triplet level model with multiple loss functions, and the last one a stacked
GAN with multi-dense connection and loss functions. Figure 4.1 illustrates the process for
infrared imagery coloring using a standard conditional GAN.

The results obtained from the experiments carried out show that the best results is obtained
with the approach based on a conditional stacked GAN. This stack architecture is based on the
approach presented in [44]. This approach consists of a top-down GAN stack, each designed to
generate lower level representations conditioned to higher level representations. This strategy
allows accelerating the learning process to generate a new image representation from NIR
to RGB. In addition, this stacked GAN proposed model includes multiple losses, which are
continuous and differentiable with which the training process is improved. This fourth model
maximizes the process of obtaining new representations from images of the near infrared
spectrum so that they can be better represented in the visible spectrum. The fourth proposed
approaches are detailed in Section 4.2. The multiple loss function used in the fourth model is
detailed in Section 4.3 Experimental results are presented in Section 4.4. Finally, conclusions
are given in Section 4.5.
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4.2 Proposed Approaches

In the particular problem tackled in this chapter (NIR image colorization), as mention above,
four approaches have been implemented, the first one, based on a single learning level (flat),
the second one a triplet learning level model, the third one a conditional triplet model with
multiple loss functions, and the last one a stacked GAN with multi-dense connection and loss
functions. Figure 4.2 presents the learning architecture of a single level of learning that allows
obtaining a RGB representation using a standard adversarial generative architecture, based on
a Gaussian noise distribution concatenated with the NIR image.

Figure 4.1 – Illustration of the process of conditional GAN network for NIR image colorization.

The Figure 4.3 shows an improved architecture a deep convolutional GAN (DCGAN), where
a triple learning model is applied, that is, each channel of the RGB representation has its
own learning layer, this allows improving the diversity of colorization of the network, because
independent learning is maintained by each channel. Figure 4.4 shows the changes applied to
the triple-level learning architecture conditional deep convolutional GAN (CDCGAN), which
proposes to condition one of the learning levels of architecture, in particular, the red channel,
where the output of this level of the red channel is concatenated with the corresponding
NIR image, this operation is performed due to the overlap of the VISIBLE-NIR bands in the
electromagnetic spectrum, and it is used to improve the details of the resulting color images
(for a better understanding of the subject of the band overlap the spectral sensitivity graph
is shown in Fig. 4.5). The last architecture implemented for NIR colorization is shown in Fig.
4.6 where a multiple loss function, dense connections are applied in the stacked conditional
GAN (SC-GAN) has been included in the architecture to obtaining a better convergence and
accuracy, enhancing also the quality of the generated images. Fig. 4.7 shows the general
schema of the stacked GAN proposed in the fourth approach.
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Figure 4.2 – Illustration of the flat GAN network architecture, the first approach proposed for
NIR image colorization.

The proposed fourth approach builds upon the second and third approaches presented in
this chapter, which consists in an adaptation of the stacked GAN architecture presented in [44].
With this stack model during the learning process, a feature hierarchy in each layer has been
added to encourage the representation manifold of the generator to align with a bottom-up
way to the discriminative network, leveraging the powerful discriminative representations
to guide the generative model. This stacked learning model allows accelerating the diversity
obtained in the multiple level of training representing each of the channels of an image of the
visible spectrum (RGB). Therefore, the model will receive as input a near infrared patch (NIR)
fused with Gaussian noise to ensure more diversity of colors, also in this approaches a layer
of Gaussian noise has been included in each level of the triplet architecture of the generator
model to reinforce the generalization and therefore be able to optimize the learning of the
colorization process. An l 1 regularization term has been added at every layer of the generator
model in order to prevent the coefficients to fit so perfectly to overfit and for mitigating the
Gaussian noise included in the generator model, which can reduce the time necessary to reach
a generalized trained model.

In the fourth approach a stacked conditional GAN network, has been selected for these
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others reasons: i ) it optimizes the higher-level features resulting from the generator model; i i )
the learning is conditioned on NIR images plus Gaussian noise from the source domain; i i i ) it
has a fast convergence capability; i v) the capacity of the generator model to easily serve as a
density model of the training data; and v) sampling is simple and efficient. The SC-GAN is
designed to learn and generate a new sample from an unknown probability distribution. In
the proposed SC-GAN framework, the generator network has been modified to use feature
hierarchical representation. Additionally, to optimize the model generalization, the GAN
framework is reformulated for a conditional generative image modeling tuple, see Fig 4.1.
In other words, the generative model G(z;θg ) is trained from a NIR image plus Gaussian
noise, in order to produce a RGB image; the discriminative model D(z;θd ) is trained to assign
the correct label to the generated colored image, according to the provided ground truth
RGB image. Variables (θg ) and (θd ) represent the weighting values for the generative and
discriminative networks.
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Figure 4.3 – Illustration of the triplet GAN (DCGAN) network architecture, the second approach
for NIR image colorization.
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Conditional Deep Convolutional Generative Adversarial Network Architecture:

(G) Generator Network with Triplet Model
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Figure 4.4 – Illustration of conditional GAN (CDCGAN) network architecture, the third pro-
posed approach for NIR image colorization.

4.3 Multiple Loss Function

The third model has been defined with a multiple term loss function (L ) formed by the
combination of the adversarial loss, plus the intensity loss (MSE) and the structural loss
(SSIM). This combined loss function has been defined to avoid the usage of only a pixel-wise
loss (PL) to measure the mismatch between a generated image and its corresponding ground
truth image. This multi-term loss function is better designed to human perceptual criteria of
image quality, which is detailed below.

The adversarial loss is designed to minimize the cross-entropy to improve the texture loss:
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Figure 4.5 – Illustration of spectral sensitivity graph, which shows the overlap between the
VISIBLE-NIR bands in a single sensor multispectral camera.

LAd ver sar i al =−∑
i

log D(Gw (Iz|y ), (Ix|y ), (4.1)

where D and Gw are the discriminator and generator of the real Ix|y and generated Iz|y images
conditioned by the near image in each channel of the SC-GAN Network.

The intensity loss is defined as:

LIntensi t y = 1

N M

N∑
i=1

M∑
j=1

(RGBei , j −RGB gi , j )2, (4.2)

where RGBei , j is the estimated RGB representation and RGB gi , j is the ground truth RGB
image. This loss measures the difference in intensity of the pixels between the images without
considering texture and content comparisons. This loss penalizes larger errors, but is more
tolerant to small errors, without considering the specific structure in the image. To address the
limitations of the simple intensity loss function, the usage of the Structural Similarity Index
(SSIM) [111] is proposed; it evaluates images accounting for the fact that the human visual
perception system is sensitive to changes in local structures. The idea behind this loss function
is to help the learning model to produce a visually improved image. The structural loss for a
pixel P is defined as:

LSSI M = 1

N M

P∑
p=1

1−SSI M(p), (4.3)

where SSI M(p) is the Structural Similarity Index (see [111] for more details) centered in pixel
p of the patch (P ).

The final loss function (L f i nal ) used in this work is the weighted sum of the individual loss
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Figure 4.6 – Illustration of the fourth proposed stacked triplet GAN (SC-GAN) architecture with
multiple losses proposed for NIR image colorization.

function terms:

L f i nal = 0.65LAd ver sar i al +0.2LIntensi t y +0.15LSSI M . (4.4)

The proportion assigned to each loss has been defined based on the variability of the values
obtained by each of the losses during the training process; the losses with greater fluctuation
were assigned a greater proportion of impact on the optimization of the model.
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4.3. Multiple Loss Function

Figure 4.7 – Illustration of the proposed stacked GAN schema used NIR image colorization.

The stacked conditional GAN network has been trained using Stochastic AdamOptimizer
since it prevents overfitting and leads to convergence faster. Furthermore, it is computationally
efficient, has little memory requirements, is invariant to a diagonal rescaling of the gradients,
and is well suited for problems that are large in terms of data and/or parameters. The image
dataset was normalized in a (-1,1) range and an additive Gaussian distribution noise with a
standard deviation of 0.021, 0.024, 0.026 added to each image channel of the proposed triplet
model. The following hyper-parameters were used during the training process: learning rate
0.0002 for both the generator and the discriminator networks; epsilon = 1e-08; exponential
decay rate for the 1st moment momentum 0.5, for discriminator and 0.4 for the generator;
weight initializer with a standard deviation of 0.00282; l1 weight regularizer; weight decay
1e-5; leak relu 0.2 and patch’s size of 64×64.

The triplet architecture used in the three previous approaches maintains the same oper-
ations in the structure. The architecture is formed by convolutional, de-convolutional, relu,
leak-relu, fully connected and the activation functions tanh and sigmoid for generator and
discriminator networks respectively. Additionally, every layer of the model uses batch nor-
malization for training any type of mapping that consists of multiple compositions of affine
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Figure 4.8 – Pair of images (1024×680 pixels) from [14]: urban Category (the two images in
the left side) and oldbuilding category (the two images in the right side): (top) NIR images to
colorize; (bot tom) RGB images used as ground truth.

transformation with element-wise nonlinearity and do not stuck on saturation mode. The spa-
tial information in the generator model is maintained. This is achieved by dropping pooling
and drop-out layers. In the experiments, a stride of 1 has been used to avoid downsizing the
images.

To prevent overfitting a l 1 regularization term (λ) has been added in the generator model,
this regularization has the particularity that the weights matrix ends up using only a small
subset of their most important inputs and become quite tolerant to input images noise. Park
et al. [75] present a color restoration method that estimates the spectral intensity of the NIR
band in each RGB color channel to effectively restores natural colors. According to the spectral
sensitivity of conventional cameras with the IR cut-off filter, the contribution of the NIR
spectral energy in each RGB color channel is greater in the red channel, hence the architecture
adds the NIR band at the final red channel layer, this improves the details of generated images,
color and hue saturation.

The generator (G) and discriminator (D) are both feedforward deep neural networks that
play a min-max game between one another. The generator takes as an input a NIR image
blurred concatenated with a patch of Gaussian noise with a size of 64×64 pixels and transforms
it into the form of the data that are interested in imitating, in this case, a RGB image. In
training (model building), the discriminator takes as an input a set of data, either real image
(z) or generated image (G(z)), and produces a probability of that data being real (P (z)). The
discriminator is optimized to increase the likelihood of giving a high probability to the real data
(the ground truth image) and a low probability to the fake generated data (wrongly colored
NIR image), as introduced in [70]. The equations are explained in Section 2.5.
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4.4 Experimental Results

This section presents the results obtained after the implementation of the proposed ap-
proaches using several variations of a GAN network for NIR colorization. The proposed
approaches have been evaluated using NIR images and their corresponding RGB obtained
from [14]. The urban and oldbuilding categories have been considered for evaluating the
performance. These categories have been selected since they look quite similar; the intention
is to evaluate the capability of the network to be used in scenarios containing similar objects,
which have not been used during the training stage. Figure 4.8 presents two pairs of images
from each of these categories. The urban category contains 58 pairs of images of (1024×680
pixels), while the oldbuilding contains 51 pairs of images of (1024×680 pixels). From each of
these categories, 280.000 pairs of patches of (64×64 pixels) have been cropped both in the
NIR images as well as in the corresponding RGB images. Additionally, 5600 pairs of patches
per category have been generated for validation. It should be noted that images are correctly
registered so that a pixel-to-pixel correspondence is guaranteed.

The quantitative evaluation of the fourth proposed approaches, consists of measuring
at every pixel the angular error between the obtained result (colorized NIR image) and the
corresponding RGB image provided in the given dataset as ground truth values:

Angular Error = cos−1
(

dot(RGBN I R ,RGBGT )

norm(RGBN I R )∗norm(RGBGT )

)
, (4.5)

where RGBN I R is the colorized NIR image, and RGBGT is the corresponding ground truth
image, both perfectly aligned. This angular error is computed over every single pixel of the
whole set of images used for validation.

4.4.1 NIR Colorizing results from single and triplet GAN approaches

Four colorization models based on GAN networks have been proposed in this chapter, of
which, the first three (single, triplet, conditional triplet GAN networks respectively), despite
the good results obtained, have been overcome by the fourth proposed approach that is based
on hierarchical learning (a stacked GAN network).

The first NIR colorization model implemented was through a GAN network with a single
learning level for both the generator and discriminator networks, using urban and oldbuilding
category images. The colorization results are shown in Fig. 4.9 and the quantitative results are
presented in table 4.1

The second NIR colorization model implemented in the framework of this chapter was
through a Conditional GAN network (DCGAN) with a triplet learning level for generator and a
single level for discriminator networks, using urban and oldbuilding categories. This second
proposed architecture has been evaluated using two different training schemes. Firstly, the
DCGAN network has been trained with the urban category and evaluated with both urban and
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Figure 4.9 – Results obtained from the first proposed approach: (top) Original NIR patches to
be colorized (64×64 pixels); (mi ddl e) Results from the proposed approach; (bot tom) Ground
truth images.
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Table 4.1 – Average angular error obtained with the proposed single level GAN architecture, for
each image category.

Architecture Angular error
urban oldbuilding

Flat GAN from the 1st. Prop. App. 5.07 15.28

Figure 4.10 – Results obtained with the second approach: (top) NIR images from the oldbuild-
ing category; (mi ddl e) Images colorized with the DCGAN network trained with urban Images;
(bot tom) Ground truth images.

oldbuilding categories, and secondly, the model has been trained with oldbuilding category
and testing with both urban and oldbuilding categories.

Also, the DCGAN network has been trained with both datasets and evaluated independently
in each of them, urban and oldbuilding categories. The colorization results for oldbuilding
category are shown in Fig. 4.10 and for the urban category in Fig. 4.11. The quantitative results
are presented in table 4.2:
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Figure 4.11 – Results obtained with the second approach:(top) NIR images from the urban
category; (mi ddl e) Images colorized with the DCGAN network trained with urban Images;
(bot tom) Ground truth images.

Table 4.2 – Average angular errors obtained with the second proposed approach a Triplet based
DCGAN architecture.

Category Angular error
urban oldbuilding

urban 4.8 8.6
oldbuilding 9.8 7.1

both categories 7.4 8.2

The third NIR colorization model implemented was a variant of the previous Conditional
GAN network with an inclusion of the near infrared image as a dense connection on the red
layer of the network to improve the detail of the estimated colored image. The colorization
results for oldbuilding category are shown in Fig. 4.10 and for the urban category in Fig. 4.11.
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Table 4.3 – Average angular errors obtained with the second approach, a triplet based DCGAN,
and with the third proposed approach, a conditional triplet based CDCGAN architecture.

Category 2nd.Prop. App. (DCGAN) 3rd. Prop. App. (CDCGAN)
urban 4.8 4.34

oldbuilding 9.8 5.71

Table 4.4 – Average angular errors (AE), mean squared error (MSE) and structural similarities
(SSIM) obtained with the proposed stacked conditional GAN architecture by using different
loss functions (SSIM values, the bigger the better).

Architecture AE MSE SSIM
urban Oldbuilding urban Oldbuilding urban Oldbuilding

CDCGAN from 3rd Prop. App. 5.77 5.96 18.91 18.25 0.84 0.86

Proposed SC-GAN with LAd ver sar i al +
LIntensi t y

5.43 5.21 18.74 18.11 0.86 0.89

Proposed stacked conditional GAN with
LAd ver sar i al +LSSI M

5.32 4.97 18.53 18.02 0.90 0.91

Proposed stacked conditional GAN with L f i nal 5.04 4.78 17.63 17.34 0.90 0.91

The quantitative results obtained are shown in table 4.3

4.4.2 NIR colorizing with stacked conditional GAN, dense connections and multi-
ple loss

The fourth approach of NIR colorization is the stacked conditional GAN (SC-GAN) with dense
connections and multiple loss network as mention before, this approach has obtained the best
colorization results. The model has been trained using a 3.2 eight-core processor with 16GB
of memory with an NVIDIA TITAN XP GPU. On average every training process took about 60
hours. Results from the proposed architecture have been compared with those obtained with
the Conditional GAN model presented in the third colorization approach.

The quantitative evaluation consists of measuring several metrics with the results obtained
with the third colorization approach and the proposed stacked conditional GAN approach
with different loss functions for each category; one of the metrics consists of measuring at
every pixel the angular error (AE), see equation 4.5, between the obtained result (RGBN I R )
and the corresponding ground truth value (RGBGT ). AE is included since this measure is
quite similar to the human visual perception system; some studies show the high correlation
between the AE and the perception of human observer [33]. AE is probably the most widely
used performance measure in color constancy research.

Quantitative evaluations for the different architectures using these three evaluation metrics
(AE, MSE and SSIM), when considering the categories urban and Oldbuilding, are provided in
Table 4.4. It can be observed that in all cases the results obtained with the proposed stacked
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Figure 4.12 – Results of colorization: (1st r ow) NIR patches from the urban category; (2nd
r ow) Results from the first approach (flat). (3r d r ow) Results from the third approach (condi-
tional triplet) (CDCGAN network); (4th r ow) Ground truth images.

conditional GAN, using as a loss function the weighted sum of the three terms, are better than
those obtained with the third proposed approach. Finally, some RGB images of the category
urban, generated with the proposed stacked conditional GAN network, are shown in Fig. 4.14
for qualitative evaluation. The results of the category oldbuilding generated with the proposed
stacked conditional GAN network are shown in Fig. 4.15 also for qualitative evaluation. As can
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Figure 4.13 – Results of colorization: (1st r ow) NIR patches from the oldbuilding category;
(2nd r ow) Results from the first approach flat) (3r d r ow) Results from the third proposed
approach proposed (CDCGAN network); (4th r ow) Ground truth images.

be seen, in both cases, the proposed stacked conditional GAN, with a loss function based on
the weighted sum of the three terms (see equation 4.4), produces images quite similar to the
provided original images (ground truth). Despite these good results, there are some difficult
cases in which the fourth proposed approach fails to color NIR images accurately. Fig. 4.16 and
4.17 show some illustrations of the cases where the desired results were not obtained. It should
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Figure 4.14 – Results from urban: (1st row) NIR patches; (2nd row) Ground truth images;
(3rd row) Results from the third proposed approach (CDCGAN); (4th row) RGB representa-
tion obtained with the fourth proposed approach, (loss Function: LAd ver sar i al +LIntensi t y );
(5th row) RGB representation obtained with the fourth proposed approach, (loss function:
LAd ver sar i al +LSSI M ); (6th row) RGB obtained with the fourth proposed approach, (loss
function: L f i nal ).
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1st
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4th
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Figure 4.15 – Results from oldbuilding: (1st row) NIR image patches; (2nd row) Real images
(ground truth); (3rd row) Results from the third proposed approach (CDCGAN); (4th row) RGB
representations obtained with the fourth proposed approach, (loss Function: LAd ver sar i al +
LIntensi t y ); (5th row) RGB representations obtained with the fourth proposed approach, (loss
Function: LAd ver sar i al +LSSI M ); (6th row) RGB representations obtained with the fourth
proposed approach, (loss Function:L f i nal ).
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Figure 4.16 – Difficult cases in urban Category: (1st row) NIR patches; (2nd row) Real im-
ages (ground truth); (3rd row) Bad results obtained with the fourth proposed approach (loss
Function: L f i nal ).
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Figure 4.17 – Difficult cases in oldbuilding Category: (1st row) NIR patches; (2nd row) Real
images (ground truth); (3rd row) Bad results obtained with the fourth proposed approach (loss
Function: L f i nal ).
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Figure 4.18 – Illustration of colorized images and their corresponding color distribution his-
tograms: (up) urban Category; (down) oldbuilding Category.

be taken into account that in these cases there are large changes in the color of the texture,
which makes the colorization of the images difficult. It should be noted that these particular
cases are not common in the categories urban and oldbuilding, where the color of the surface
changes smoothly. Figure 4.18 shows some examples corresponding to the colored urban and
oldbuilding categories together with their corresponding color distribution histogram per
channel, both for the category urban and for oldbuilding. The Figure 4.19 shows the relative
error distribution presented for each channel per category (urban and oldbuilding. This error
is calculated for each intensity value ([0.255]) as follows:

E I c =
255∑
j=0

T p∑
k=0

|I c(I j(k)
) − I j(k) |

I j Tp
, (4.6)

where I is the intensity value of the original image (ground truth), as mentioned earlier, this
variable takes values in the range j = {0,255}; I c is the corresponding intensity value of the
element I j(k) in the colorized image; Tp is the number of times a certain intensity level I
appears in the ground truth. The average error obtained in the numerator of Eq. (4.6) is
divided by the value of I to obtain a measure relative to the intensity value being considered.

64



4.5. Conclusions

(red channel) (green channel) (blue channel)

Figure 4.19 – Illustration of the average relative error distribution of colored images: (up)
urban Category; (down) oldbuilding Category.

Figure 4.19 shows the average relative errors of the differences found in the process of
colorization of the images of the urban category, it can be observed that the greatest difference
has been presented in the red channel having higher average relative error values, for pixels,
having a peak of up to 18.4% in pixels near zero; it is followed by the green channel with a peak
of up to 18% for pixels near the pixel 255, however, presents average relative errors for each
of the pixels smaller than those presented in the red channel. Finally, the blue channel has
the lowest average relative error in the distribution of pixels, reaching a peak of up to 16.9%.
However, if we analyze the colorization of the images belonging to the category oldbuilding,
see Fig. 4.19, it can be seen that the greatest error has occurred in the green channel having a
peak of up to 30.5% in pixels close to 100, followed by the blue channel, which despite having
a peak of 34% in pixels close to 255, the distribution of average relative errors are smaller than
those presented in the green channel. Finally, it is observed that the red channel has the lowest
distribution of average relative errors, presenting a peak of up to 33.5%, for pixels close to pixel
255, it is observed that the values of the relative errors for each of the pixels are lower than
those presented in the green and blue channels.

4.5 Conclusions

This chapter summarizes the research and work done to perform the colorization of images of
the near infrared spectrum, four learning architecture schemes based on adversarial generative
networks have been implemented, which have been quantitatively evaluated using different
metrics. Results show that the model of Stacked Conditional Adversarial Generative Network
(SC-GAN) for NIR image colorization is the best one; this fourth approach generates good
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quality color images of different scenes (i.e., content, texture, shades, color intensity). Future
works will be focused on the evaluation of other network architectures, like variational auto-
encoders, cycle-consistent adversarial networks, metalearning and reinforcement learning,
which have shown appealing results in recent works. The fourth colorization approach will be
evaluated with different loss functions to improve and accelerate the training process. Finally,
it will be considered to increase the number of images for the training process or the number
of layers or feature maps to increase the diversity of colors.
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Chapter 5

Normalized Difference Vegetation
Index Estimation

This chapter proposes novel approaches to estimate the Normalized Difference Vegetation
Index (NDVI) using Generative Adversarial Network architectures. The first scheme is based
on a supervised learning architecture, where a synthetic NDVI index is obtained from NIR
images paired with their corresponding ground truth using a standard GAN network. Two
different approaches have been implemented, a single and a triplet learning architecture. The
second scheme is an unsupervised model based on an image to image translation applying
CyclicGAN. Two approaches have been designed, the first one is an image translation between
a RGB (grayscale) and NIR unpaired images to obtain a synthetic NIR. Once this NIR image
is generated, the same image is used to obtain the NDVI index. The second unsupervised
approach proposed in this chapter, using also a CyclicGAN, is an architecture where a syn-
thetic NDVI index is obtained through an image translation between a red channel and NDVI
unpaired images. The experimental results obtained with the last unsupervised scheme show
the validity of the implemented model. Additionally, this second proposed unsupervised
approach has been compared with the state of the art, showing better results.

5.1 Introduction

Computer vision is a technology that, combined with machine learning and remote sensing,
allows computers to understand and estimate the quantity, quality and condition of crops.
These estimations can be made based on the intensity of radiation reflected by certain bands
of the electromagnetic spectrum. This information can be captured by using remote sensing
technology, planes or unmanned aerial vehicles, which can incorporate sensors sensitive to
near infrared (NIR), in addition to the visible spectrum, in order to simultaneously acquire
images of the same scene from different spectra. Then, with such cross-spectral information,
more efficient solutions can be implemented to help farmers with their crops to apply more
efficient growth methods, increase yields and profits [25], [28].

A vegetation index is a single value that quantifies vegetation biomass and/or the plant
health for each pixel in a remote sensing image. The index could be computed using several
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spectral bands that are sensitive to the plant biomass and health. The math associated with
calculating a vegetation index is derived from the physics of light reflection and absorption
across bands. For instance, it is known that healthy vegetation reflects light strongly in the
near infrared band and less strongly in the visible portion of the spectrum. Thus, a high ratio
between the light reflected in the near infrared and light reflected in the visible spectrum will
represent areas that potentially have healthy vegetation. The more a plant absorbs visible
sunlight (during the growing season), the more photosynthesis and more productive it is.
Conversely, the less sunlight absorbs the plant, the less photosynthesis and less productive it
is. Higher-end image processing techniques are proposed by [74], to investigate the strength
of key spectral vegetation indexes for agricultural crop yield prediction using neural network
in order to increase agricultural production [22].

Among the different indexes proposed in the literature, the Normalized Difference Veg-
etation Index (NDVI) is the most widely used [90]; NDVI is often used to monitor drought,
forecast agricultural production, assist in forecasting fire zones and desert maps [97]. NDVI
is preferable for global vegetation monitoring since it helps to compensate for changes in
lighting conditions, surface slope exposure, and other external factors. In general, it is used
to determine the condition, developmental stages and biomass of cultivated plants and to
forecast their yields. This index is calculated as the ratio between the difference and sum of
the reflectance in NIR and red regions:

NV D I = RNIR −RRED

RNIR +RRED
, (5.1)

where RNIR is the reflectance of NIR radiation and RRED is the reflectance of red channel
radiation.

This index defines values from -1.0 to 1.0, basically representing greens, where negative
values are mainly formed from clouds, water and snow, and values close to zero are primarily
formed from rocks and bare soil. Very small values (0.1 or less) of the NDVI function correspond
to empty areas of rocks, sand or snow. Moderate values (from 0.2 to 0.3) represent shrubs and
meadows, while large values (from 0.6 to 0.8) indicate temperate and tropical forests [17] [52].

Another application of NDVI is to track changes to an ecosystem over time. Measuring
the impacts of forestry on an ecosystem by calculating the change in vegetation index over
time [77]. This is valuable for understanding the impacts of climate change at varying scales.
Changes to the vegetation index will vary locally and regionally. This could direct conservation
efforts to areas that are subject to greater changes, or aid in management and planning efforts.

Overall, NDVI is a standardized way to measure health in vegetation based on how the plant
reflects the light at certain frequencies (some waves are absorbed and others are reflected). The
pigment in plant leaves, chlorophyll (a health indicator) strongly absorbs visible light, and the
cellular structure of the leaves strongly reflects near-infrared light. When the plant becomes
dehydrated, sick, affected with disease, etc., the spongy layer deteriorates, and the plant
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absorbs more of the near-infrared light, rather than reflecting it. Thus, observing how NIR
changes compared to red light provides an accurate indication of the presence of chlorophyll,
which correlates with plant health. Recent studies have demonstrated the usefulness of optical
indexes from hyperspectral or cross-spectral remote sensing in the assessment of vegetation
biophysical variables both in forestry and agriculture [114], [2].

In order to obtain the NDVI vegetation index, registered images of the visible and infrared
spectrum are needed to compute the value according to eq. (5.1). In other words, sensors
from both spectra are needed to acquire the images at the same time from the same scene.
This requirement makes any solution that deals with the use of this vegetation index more
challenging, because depends on whether aligned image pairs are available for training,
testing and validation. Cross/multi-spectral computer vision approaches provide solutions to
multiple complex problems. However, as mentioned above, different preprocessing steps need
to be implemented before computing these solutions or it is necessary to invest in cameras
sensitive to the near infrared spectrum.

This chapter presents two schemes, the first one a supervised approach, where two archi-
tectures have been implemented, requiring both models to work with paired images, using a
standard GAN network. The first model uses a triple level of learning using as an input a NIR
image concatenated with some Gaussian noise. The second supervised model was designed
just using information from a single spectral band, the red channel of an image concatenated
with some Gaussian noise, using a single level of learning. Although interesting results have
been obtained, the weakness point of these approaches lies in the need of having NIR images
for the training process, which are not that much common like visible spectrum images and
also the limitation that models can only be trained with paired images.

To overcome these limitations, a second scheme based on an unsupervised approach has
been implemented to perform an image-to-image translation between unpaired images. Two
architectures have been implemented using a CyclicGan. The first unsupervised approach
has been recently presented in where a synthetic near infrared image is generated from a
CyclicGAN and then this synthetic NIR image has been used to calculate the vegetation
index to avoid the dependence on near infrared image. The second unsupervised approach
implemented in this chapter does not depend on paired images for the training and testing
process. The approach proposed is a learning model based on a Cyclic Generative Adversarial
Network trained with a large dataset, one for visible spectrum and the other is the computed
NDVI image. Each one is fed into a CyclicGAN to perform the image domain translation.
Additionally, a modified residual network (RESNET) architecture is used to go deeper without
degradation in the accuracy and error rate. A least square GAN loss function is also included,
to help to stabilize the training, and to preserve details of the estimated NDVI index. The
chapter is organized as follows. The proposed approaches are detailed in Section 5.2. The
experimental results with a set of real images are presented in Section 5.3. Finally, conclusions
are given in Section 5.4.
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CONDITIONAL GENERATIVE ADVERSARIAL PROCESS

Synthetic NDVI

Y ( NIR image )

NVDI vegetation index

Z ( Gaussian noise )

Generator (G)

Discriminator 
(D)

P (vegetation index is true)

Discriminator Objective
P(x) = 0.5, can not distinguish
between the synthetic and
real vegetation index

Figure 5.1 – Conditional generative adversarial process implemented on the current chapter
to estimate NDVI Vegetation Index.

5.2 Proposed Approaches NDVI Vegetation Index Estimation

This section introduces the approaches implemented to estimate the NDVI vegetation index,
using supervised and unsupervised schemes. For simplicity, NDVI indexes are represented
as image values, so here in after the terms NDVI indexes and NDVI images will be indistintly
used. The details of the implemented architectures in each scheme are given below.

5.2.1 Supervised Approaches

Two supervised approaches based on GAN networks have been designed for NDVI vegetation
indices estimation. The first one is a triplet level of learning model with only adversarial loss
using as an input near infrared images while the second approach is a single level learning
model with multiple loss functions using the red channel of a RGB image, the approaches will
be explained in detail below.

5.2.1.1 Proposed Architectures

The first approach proposed for NDVI vegetation index estimation uses a similar architecture
like the one presented in the previous chapter for NIR colorization, where the usage of a
conditional adversarial generative learning network has been proposed. A traditional scheme
of layers in a deep network is used. In the current chapter, the usage of a Conditional GAN
model is evaluated in three different schemes: Flat, Siamese and Triplet. These models have
presented good performance to solve problems like colorization, segmentation, classification,
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Conditional Generative Adversarial Network Architecture:
(G) Generator Network with (Flat-Siamese-Triplet Models)
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Figure 5.2 – GAN architecture of the first supervised approach for NDVI vegetation index
estimation; (top) The three models (flat, siamese and triplet) evaluated as generator networks;
(bot tom) The discriminator network.
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similarity learning, object recognition, etc. Based on the results that have been obtained on
this type of solutions, where improvements in accuracy and performance have been obtained,
the usage of a learning model that allows the mapping representation of a vegetation index
based on cross-spectral images has been proposed.

Therefore, the model will receive as an input a near infrared patch with a Gaussian noise
added in each element of the learning model to generate the necessary variability of the
vegetation index patches, to be able to generalize the learning process. A L1 regularization
term has been added on a single layer in order to prevent the coefficients to fit so perfectly
to overfit, which can improve the generalization capability of the model. Figure 5.1 depicts
the Conditional GAN model proposed in the current chapter. See Section 2.5 for more detail
about GAN networks.

Like in the NIR image colorization problem, a conditional triplet GAN network based
architecture is selected due to several reasons: i ) the learning process is conditioned on NIR
images from the source domain; i i ) its fast generalization of the model; i i i ) reduces the
probability of getting stuck in local minimum; and i v) learn a loss that adapts to the data.
The network is intended to learn to generate new samples from an unknown probability
distribution. As mentioned above, in this case, the generator network has been implemented
in three different schemes: Flat, Siamese and Triplet, which are evaluated in the experimental
result section. Figure 5.2 presents an illustration of the GAN network with the three generator
schemes. In all the cases, at the output of the generator network, the vegetation index is
obtained. This vegetation index will be validated by the discriminative network, which will
evaluate the probability that the generated image (vegetation index in grayscale), is similar to
the real one that is used as ground truth.

Additionally, in the generator model, in order to obtain a better image representation,
the CGAN framework is reformulated for a conditional generative image modeling tuple. In
other words, the generative model G(z;θg ) is trained from a near infrared image plus Gaussian
noise, in order to produce a NDVI vegetation index image; additionally, a discriminative model
D(z;θd ) is trained to assign the correct label to the generated NDVI image, according to the
provided real NDVI image, which is used as a ground truth. Variables (θg ) and (θd ) represent
the weighting values for the generative and discriminative networks.

The second approach proposed for NDVI index vegetation estimation uses a similar archi-
tecture like the first approach proposed in the NIR image colorization chapter, where a single
layer adversarial generative learning network has been proposed. In this case, the network is
fed with the red channel of the given RGB image, instead of the NIR image into the Conditional
GAN flat model. This network model has been used, because it presented good performance
to solve problems like colorization, dehazing, enhancement, object recognition, etc. Figure
5.3 presents an illustration of the GAN network used in this approach. In all the cases, at
the output of the generator network, the vegetation index is obtained. This vegetation index
will be validated by the discriminative network, which will evaluate the probability that the
generated image (vegetation index), is similar to the real one used as a ground truth.
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Figure 5.3 – GAN architecture of the second supervised approach for NDVI vegetation index
estimation. A single level layer model (flat) evaluated as generator network; bottom the
discriminator network.
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Additionally, in the generator model, in order to obtain a better image representation,
the GAN framework is reformulated for a conditional generative image modeling tuple. In
other words, the generative model G(z|ni r ;θg ) is trained from a red channel of a RGB image
plus Gaussian noise, in order to produce a NDVI vegetation index image; additionally, a
discriminative model D(z ′;θd ) is trained to assign the correct label to the generated NDVI
image, according to the provided real NDVI image, which is used as a ground truth. Variables
(θg ) and (θd ) represent the weighting values for the generative and discriminative networks.

Based on the results that have been obtained with the first supervised approach, the usage
of a learning model that allows the generation of a vegetation index based on a single channel
of RBG images (the red channel) has been proposed. It should be highlighted that, on the
contrary to the previous approach that estimates NDVI from NIR information, with the second
supervised approach the NDVI is estimated only from the visible spectrum information (the
red channel) in order to obtain improvements in the accuracy and performance of the model.
Visible spectrum information (RGB images) is more accessible than NIR information. As
mentioned before, the model will receive as an input a patch corresponding to the red channel
of a RGB image. Gaussian noise is added to each patch of the learning architecture to increase
the variability of the generated images during the training process, decreasing the time of the
convergence and generalization. A L1 regularization term has been added on each layer of
the model in order to prevent the coefficients to overfit, which make the network learns small
weights to minimize the loss, and maximize the distribution of model outputs, and improve
the generalization capability of the model.

5.2.1.2 Loss Functions

The first supervised model has been defined with an Adversarial loss defined as:

LAd ver sar i alN I R =−∑
i

log D(Gw (IN DV Iest |N I R ), (IN DV Ir eal |N I R )), (5.2)

where D and Gw are the discriminator and generator of the real NDVI IN DV Ir eal and estimated
NDVI vegetation index IN DV Iest images conditioned by the near infrared image N I R in GAN
network.

The second supervised model has been defined with a multi-term loss (L ) formed by the
combination of the adversarial loss plus the intensity loss (MSE) and the structural loss (SSIM).
These combined losses have been defined to avoid the usage of only a pixel-wise loss (PL)
to measure the mismatch between a generated image and its corresponding ground truth
image. This multi-term loss function is better designed to human perceptual criteria of image
quality, which is detailed next. The Adversarial loss is designed to minimize the cross-entropy
to improve the texture loss :

LAd ver sar i alr ed−channel =−∑
i

l og D(Gw (IN DV Iest |r ed−channel ), (IN DV Ir eal |r ed−channel ), (5.3)
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where D and Gw are the discriminator and generator of the real NDVI IN DV Ir eal and estimated
NDVI vegetation index IN DV Iest images conditioned by the red channel of a RGB image in GAN
network.

The Intensity loss is defined as:

LIntensi t y = 1

N M

N∑
i=1

M∑
j=1

(N DV Iei , j −N DV I gi , j )2, (5.4)

where N DV Iei , j is the vegetation index estimated by the network and N DV I gi , j is the ground
truth vegetation index and N ×M is the size of the patches. This loss measures the difference
in intensity of the pixels between the images without considering texture and content com-
parisons. Additionally, this loss penalizes larger errors, but is more tolerant of small errors,
without considering the specific structure in the image.

To address the limitations of the simple intensity loss function, the usage of a reference-
based measure is proposed. One of the reference-based indexes is the Structural Similarity
Index (SSIM) [111], which evaluates images accounting for the fact that the human visual
perception system is sensitive to changes in the local structure; the idea behind this loss
function is to help the learning model to produce a visually improved image. The Structural
loss for a patch P is defined as:

LSSI M (P ) = 1

N

P∑
p=1

1−SSI M(p), (5.5)

where SSIM(p) is the Structural Similarity Index (see [111] for more details) centered in pixel p
of the patch P . The Final loss (L ) used in this second supervised model is the accumulative
sum of the individual Adversarial, Intensity and Structural loss functions:

LF i nal = 0.60LAd ver sar i alr ed−channel +0.25LIntensi t y +0.15LSSI M . (5.6)

5.2.2 Unsupervised Approach

On the contrary to the previous approaches, in this section, NDVI vegetation index is estimated
using the image translation technique, through an unsupervised approach i.e, cyclic generative
adversarial network (CyclicGAN). The architectures proposed in this section are based on the
work presented on [128], a previous work that presents an unpaired image to image translation,
through a CyclicGAN. This type of network permits domain style transfer which is a convenient
method for image-to-image translation problems. It is not necessary to have a set of input
images that capture the scene at the same time and place from different spectra, being this
advantage, which is applied in the unsupervised learning models proposed in the present
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chapter. Obtain this kind of set of images could be time-consuming and quite difficult based
on what type of domain style the image dataset you are trying to translate between. In [48]
the authors present a general-purpose image-to-image translation model in a supervised
manner by using conditional adversarial; these networks not only learn the mapping from an
input image to output image, also learn a loss function to train the corresponding mapping.
However, the aforementioned researches are limited and still dependent on some kind of
correlated labeling. Two approaches using CyclicGAN have been proposed, the first one is a
domain translation from grayscale image to NIR, to generate synthetic NIR image and then
use it to compute the NDVI vegetation index; and the second approach is image translation
between the red channel of a RGB image to NDVI vegetation index. See Section 2.5 for more
details of CyclicGAN.

5.2.2.1 Instance Normalization

GANs are a framework in which two networks compete with each other. The two networks,
the generator G and the discriminator D, are both represented by function approximators.
Moreover, given a training data, the generator creates samples as an attempt to mimic the
ones from the same probability distribution as the training set. The discriminator, on the other
hand, is a common binary classifier. It has two main objectives. First, it categorizes whether
its received input comes from the true data distribution (ground truth) or the generator
distribution. See Section 2.5 for more details.

During training, D receives half of the time images from the training set, and the other half,
images from the generator network to maximize the probability of assigning the correct class
label to both: real images (ground truth) and synthetic samples (images from the generator).
To reach that the training process between the generator G and discriminator D finds an
equilibrium - the Nash equilibrium [91] [34]. These GAN networks can be unstable during
the training process. For that reason, to reduce instability, instance normalization has been
implemented, see section 2.8 for a detailed information.

The architecture uses this normalization, applied in feed-forward style transfer, to improve
the quality of the NDVI generated vegetation index.

5.2.2.2 Residual Networks (ResNET)

Deep neural networks have evolved from simple to very complex architectures depending on
the type of problem to be solved, whether these are classification, segmentation, recognition,
identification, etc. According to [39], deep networks naturally integrate low/mid/high-level
features and classifiers in an end-to-end multilayer way, and the “levels” of features can be
enriched by the number of stacked layers (depth). When deeper networks are able to start
converging, a degradation problem could appear. With the network depth increasing, accuracy
gets saturated and then degrades rapidly, this behavior of degradation indicates that every
neural model is unique and not easy to optimize. There exists a solution by construction to
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Figure 5.4 – Residual block from [39].

the deeper model: the added layers are identity mapping, and the other layers are copied
from the learned shallower model. The existence of this constructed solution indicates that a
deeper model should produce no higher training error than its shallower counterpart. In [39]
it is presented a deep residual learning framework, where instead of waiting for the stacked
layers to fit directly to a desired underlying mapping, these layers are allowed to fit the residual
mapping. Formally, denoting the desired underlying mapping as H(x). It is allowed that the
stacked nonlinear layers fit another mapping of F (x) := H(x)− x. The original mapping is
recast into F (x)+x. The authors hypothesize that it is easier to optimize the residual mapping
than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping
were optimal, it would be easier to push the residual to zero than to fit an identity mapping by
a stack of nonlinear layers.

The formulation of F(x) + x can be realized by feedforward neural networks with “shortcut
connections”, to perform identity mapping, and their outputs are added to the outputs of the
stacked layers, see Fig. 5.4. Also an identity shortcut connection add neither extra parameter
nor computational complexity. The entire network can still be trained end-to-end by stochastic
gradient descent (SGD) with backpropagation.

5.2.2.3 Proposed Architecture using RGB: grayscale - NIR Translation

This section presents the approach proposed for NDVI vegetation index estimation just with a
single image from the visible spectrum. As mentioned above, it uses a similar architecture like
the one proposed on [128], a recent work for unpaired image to image translation, where the
usage of a cycle generative adversarial network has been proposed. CyclicGANs is a convenient
method for image-to-image translation problems, such as style transfer, because it just relies
on an unconstrained input set and output set rather than specific corresponding input/output
pairs. This could be time-consuming, unfeasible, or even impossible based on what two
image types are trying to translate between. Another approach presented in [48] has shown
results synthesizing photos from label maps, reconstructing objects from edge maps, but still
dependent on some kind of correlated labeling.
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Figure 5.5 – Cycle generative adversarial model G : X (g r ay scale) → Y (N I R) and its discrimi-
nator D y .

Figure 5.6 – Cycle generative adversarial model F : Y (N I R) → X (g r ay scal e) and its discrimi-
nator Dx .
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The proposed architecture is based on the approach presented in [128] about cycle consis-
tent learning and loss functions; in the proposed work it is used to estimate the synthetic NIR
images. The proposed model can learn to translate the images between the visible spectrum
to their corresponding NIR spectrum, without the need to have accurately registered RGB/NIR
pairs. This allows us to use these NIR synthetic images in the calculation of the NDVI vegeta-
tion index and to be able to use them in solutions oriented to solve problems related to the
state of the crops and their corresponding level of productivity in the crops. Another advantage
of being able to count on the synthetic images of the NIR spectrum is that, undoubtedly, the
costs of the solutions are decreased since there is no need to buy acquisition devices sensitive
to that electromagnetic spectrum. Additionally, the proposed architecture uses Residual Net-
work (ResNET) [39] to perform the image transformation from one spectrum to another. It
avoids the vanishing gradient problem, as the gradient is back-propagated to earlier layers,
repeated multiplication may make the gradient infinitely small. As a result, as the network
goes deeper, its performance can get saturated or even starts degrading rapidly. To avoid all
these problems, the generator and discriminator have been implemented to propagate larger
gradients to initial layers and these layers also could learn as fast as the final layers, giving us
the ability to train deeper networks, more details of ResNet are given in Section 5.2.2.2

The “identity shortcut connection” enable skips of one or more layers, to ensure properties
of NIR images of previous layers are available for later layers as well, so that their outputs do
not deviate much from original grayscale image used as an input, otherwise the characteristics
of original images will not be retained in the output and results will be very unreal. Figure 5.5
and 5.6 depicts the CyclicGAN model proposed in the current chapter. As can be appreciated
in the illustrations, the CyclicGan architecture to generate NIR synthetic images is composed
of two generators G , F and two discriminators Dx , D y . In order to generate a NIR synthetic
image, the architecture takes advantage of the joint of cycle-consistency and least square
losses [67] in addition to the usual discriminator and generator losses. The results of the
experiments have shown that these loss functions demand that the model maintains textural
information of the visible and NIR images and generate uniform synthetic outputs, see Section
5.3.4 for details on results.

5.2.2.4 Proposed Architecture using Red Channel - NDVI Translation

This section focuses on the estimation of NDVI vegetation index using the red channel of
RGB images. The proposed model can learn to translate the images between the visible
spectrum (red channel) to their corresponding NDVI indexes, using an unpaired dataset. This
allows us to transform from RGB to NDVI and to be able to use them in solutions oriented to
solve problems related to the state of the crops and their corresponding level of productivity.
Another advantage of the proposed network to generate the synthetic NDVI images is that,
undoubtedly, the costs of agricultural solutions may decrease, since there would be no need
to acquire sensors sensitive to NIR spectra together with all the cost associated with the
synchronized image acquisition and registration.
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The model includes two mappings functions G : grayscale image → NIR image and F : NIR
image → grayscale image. In addition, it introduces two adversarial discriminators Dx and D y

, where Dx aims to distinguish between real grayscale images and translated images (synthetic
grayscale); in the same way, D y aims to discriminate between real NIR and (synthetic NIR).
Besides, the proposed approach includes two types of loss terms: adversarial losses [34] for
matching the distribution of generated synthetic NIR images to the data distribution in the
target domain real NIR images; and a cycle consistency loss to prevent the learned mappings
G and F from contradicting each other. Once the NIR has been estimated, it is used to obtain
the NDVI vegetation index from eq. (5.1).

Additionally, the proposed architecture uses a modified residual block from (ResNET) [39]
to perform the image transformation from the visible spectrum (red channel) to vegetation
index and viceversa. In order to avoid the vanishing gradient problem, as the gradient is
back-propagated to earlier layers, repeated multiplication may make the gradient infinitely
small. See Section 5.2.2.2 for more details information on ResNet.

The "skip connections" from ResNet ensure that the properties of NDVI images of previous
layers are available for later layers as well, so that their output do not deviate much from
original RGB input (red channel), otherwise the characteristics of original images will not be
retained in the output and results will be very unreal. In this chapter a modification of the
original residual block is introduced to improve the quality of the NDVI image obtained by the
network. For this purpose an instance normalization has been added, see Fig. 5.7, to calculate
the μ and σ along the (C, H, W) axes for each sample and channel. The detailed architecture
used to generate NDVI synthetic vegetation index is complex as can be appreciated in Fig. 5.8.

Figures 5.9 and 5.10 depict the CyclicGAN model proposed in the current section. It is
composed of two generators (G , F ) and two discriminators (Dx, D y). In order to obtain
a synthetic NDVI vegetation index, the architecture takes advantage of the joint of cycle-
consistency and least square losses [67] in addition to the usual discriminator and generator
losses. The results of the experiments have shown that these loss functions demand that the
model maintain textural information of the visible (corresponding red channel) and NDVI
images and generate uniform synthetic outputs.

5.2.2.5 Loss Functions

According to [128] the objective of a CyclicGAN is to learn two mapping functions between
two domains X(red channel) and Y (N DV I ) given training samples of each image category
{xi }N

i=1 where xi ∈ X(red channel) and {y j }N
j=1 where y j ∈ Y (N DV I ). The data distribution is

denoted by x∼ pdata(x) and y∼ pdata(y). The adversarial losses, according to [34], are applied
to both mapping functions.

Also, according to [128], to reduce the space of possible mapping functions, the learned
mapping functions should be cycle-consistent; for each image x (red channel) from domain
X , the image translation cycle should be able to bring x back to the original image, i.e., x →
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Figure 5.9 – Cycle generative adversarial model G : X(red channel) → Y (N DV I ) and its discrim-
inator D y .

Figure 5.10 – Cycle generative adversarial model F :Y (N DV I ) → X(red channel) and its dis-
criminator Dx .
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G(x) → F (G(x)) ≈ x, calling this forward cycle consistency. Therefore, for each image y (NDVI)
from domain Y , G and F should also satisfy backward cycle consistency: y → F (y) → G(F (y))
≈ y . This cycle consistency loss is defined as :

LC Y C LE (G ,F ) = Ex∼p data(x )[‖F (G(x))−x‖1]+Ey ∼p data(y )[
∥∥G(F (y))− y

∥∥
1]. (5.7)

5.2.2.6 Least Squares GAN’s Loss

Recently, Generative Adversarial Networks [34] have demonstrated impressive performance
for unsupervised learning tasks. Unlike other deep generative models, which usually adopt
approximation methods for inference, GANs do not require any approximation and can be
trained end-to-end through the differentiable networks. In spite of the great progress for GANs
in image generation, the quality of generated images by GANs is still limited for some realistic
tasks. Regular GANs adopt the sigmoid cross entropy loss function for the discriminator [67].
This loss function, however, will lead to the problem of vanishing gradients when updating the
generator using the fake samples that are on the correct side of the decision boundary but are
still far from the real data.

The implementation of the Least Squared GAN (LSGAN) can bring two principal advantages.
First, unlike regular GANs, which cause almost no loss for samples that are very close to the
groundtruth, this proposed loss LSGAN penalize the same samples even though they are
correctly classified at the moment of generator updates parameters. On the other hand, the
parameters of the discriminator are fixed, i.e., the decision boundary is fixed. As a result,
the penalization makes the generator to generate samples toward the decision boundary.
Additionally, the decision boundary should go across the manifold of real data for a successful
GAN learning. Otherwise, the learning process will be saturated.

In the current paper a least square loss has been implemented [67] to accelerate the training
process. This loss is able to move the fake samples toward the decision boundary, in other
words, generate samples that are closer to real data, in this case the synthetic NDVI image. The
experiments performed with this loss instead of negative log likelihood shown better results.
The standard adversarial GAN loss function are replaced with the least square losses, which
are defined as :

LLSG AN (G ,D y , X ,Y ) = Ey∼p data(y )[(DY (y)−1)2]+Ex ∼p data(x )[DY (G(x))2], (5.8)

LLSG AN (F,Dx ,Y , X ) = Ex∼p data(x )[(DX (x)−1)2]+Ey ∼p data(y )[(DX (F (y))2)]. (5.9)

5.2.2.7 Multiple Losses

For the supervised scheme, the first approach of the supervised scheme has only used the
adversarial loss of the standard GAN. On the contrary, the model of the second supervised
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approach has been defined with a multi-term loss (L ) formed by the combination of the
adversarial loss plus the intensity loss (MSE) and the structural similarity loss (SSIM). This
combined loss has been defined to avoid the usage of only a Pixel-wise Loss (PL) to measure
the mismatch between a generated image and its corresponding ground-truth image. This
multi-term loss function is better designed to human perceptual criteria of image quality,
which is detailed next. The adversarial loss is designed to minimize the cross-entropy to
improve the texture loss :

LAd ver sar i al =−∑
i

l og D(Gw (Iz|y ), (Ix|y )), (5.10)

where D and Gw are the discriminator and generator of the real Ix|y and generated Iz|y images
conditioned by the red channel of the RGB of the GAN network.

The intensity loss is defined as:

LIntensi t y = 1

N M

N∑
i=1

M∑
j=1

(N DV Iei , j −N DV I gi , j )2, (5.11)

where N DV Iei , j is the vegetation index estimated by the network and N DV I gi , j is the ground-
truth vegetation index and N ×M is the size of the patches. This loss measures the difference
in intensity of the pixels between the images without considering texture and content com-
parisons. Additionally, this loss penalizes larger errors, but is more tolerant to small errors,
without considering the specific structure in the image.

To address the limitations of the simple intensity loss function, the usage of a reference-
based measure is proposed. One of the reference-based index is the structural similarity
index [111], which evaluates images accounting for the fact that the human visual perception
system is sensitive to changes in the local structure; the idea behind this loss function is to
help the learning model to produce a visually improved image. The Structural loss for a patch
P is defined as:

LSSI M = 1

N

P∑
p=1

1−SSI M(p), (5.12)

where SSIM(p) is the Structural Similarity Index (see [111] for more details) centered in pixel p
of the patch P .

For the two unsupervised approaches, the LG AN : (standard GAN adversarial loss), LC Y C LE :
(cycle-consistent loss) and LLSG AN : (least square loss), have been used. Each of the schemes
has its own definition of the distribution of the weights of each component of the loss function.
For the first unsupervised approach, the weighted sum of the individual loss function terms
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designed to obtain the best results, is defined as:

LF I N AL−SN T HC Y C LE−LSG AN = 0.45 LLSG AN +0.55 LC Y C LE (5.13)

For the second unsupervised approach, two losses have been used, the first one is the
standard adversarial loss.

And the second loss evaluated in the second unsupervised approach is the LSGAN loss
where the weighted sum of the individual loss function terms defined as:

LF I N AL−REDC Y C LE−LSG AN = 0.65 LLSG AN +0.35 LC Y C LE (5.14)

The combination of the weights associated with each loss function is focused on improving
the quality of the images for human perception and at the same time, they are used as regular-
ization terms that determine which loss function is the most significant in the optimization
of the model for the generation of the synthetic vegetation index. An inappropriate weights
balance increases the risk that the model generates synthetic indexes with too many artifacts
and that it cannot generalize properly.

5.3 Results and Discussions

This section presents the data augmentation process applied to the ground truth images used
for the experiments and the results obtained with the different implemented approaches.

5.3.1 Datasets for Training and Testing

In this chapter two schemes have been implemented, the first one corresponds to supervised
approaches and the second one corresponds to unsupervised approaches. Both schemes have
been trained and tested receiving as an input the cross-spectral dataset from [14]. From the
aforementioned dataset the country, mountain and field categories have been considered
for evaluating the performance of the proposed approaches. For the supervised approaches,
examples of the patches from this dataset are shown in Fig. 5.11, for the unsupervised ap-
proaches, some examples images resized Fig. 5.12. The cross-spectral dataset consists of 477
registered images categorized in 9 groups captured in RGB (visible spectrum) and NIR (near
infrared spectrum). The country category contains 52 pairs of images of (1024×680 pixels),
while the field contains 51 pairs of images of (1024×680 pixels). In order to train the supervised
network schemes, implemented to generate vegetation index, from each of these categories
380.000 pairs of patches of (64×64 pixels) have been cropped both, in the RGB images as
well as in the corresponding NIR and NDVI images. Additionally, 3800 pairs of patches, per
category, of (64×64 pixels) have been also generated for validation. It should be noted that
images are correctly registered, so that a pixel-to-pixel correspondence is guaranteed. On the
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contrary, to train the schemes of unsupervised networks, from each of these categories 3500
pairs of images of (256×256 pixels) have been generated both, in the red channel of the RGB
images as well as in the corresponding NIR and NDVI images (the NIR images are used to
compute the ground truth NVDI indexes, which are represented as images). Additionally, 1000
pairs of images, per category, of (256×256 pixels), have been also generated for testing and 100
pairs of images per category for validation. It should be noted that the images used during
the training process are not paired; in other words, they do not correspond to the same scene,
because there is no need to have correspondence to be used as input for the model.

5.3.2 Data Augmentation

In this section, the data augmentation process applied to the unsupervised approach uses a
cross-spectral dataset from [14]. For the second unsupervised approach, the network receives
as an input an unpaired dataset of red channel images together with their corresponding NDVI
images; as mentioned above, this NDVI is computed from NIR and red images. In order to
enlarge the size of the training dataset, an automatic data augmentation process has been
implemented to create a modified version of images in the dataset of red channel and NDVI
by taking random crops with a parameterized size, randomly selecting the coordinates in the
image to crop the region before the training phase. After the creation of multiple variations of
the images, that can improve the performance and the ability of the fit models to generalize
what they have learned to new images. The data augmentation process executed for the
unsupervised approaches (see Algorithm ??) has generated a total of 70 different variations
with a size of (256×256 pixels) for each image per category existing in the dataset, which can be
used to feed the learning network to synthesize vegetation indices to increase the performance
and accelerate the generalization of the model. For each category 1600 pairs of images from
visible and NIR spectrum have been generated. Additionally, for each category, 1200 pairs of
images for testing and 400 pairs of images for validation from visible and NIR spectrum have
been used.

5.3.3 Evaluation Metrics

Digital images resulting from an artificial intelligence process, such as deep neural networks,
are subject to a wide variety of distortions, which may result in a degradation of visual quality.
Quality is a very important parameter for all objects and their functionalities. The importance
of research in the objective evaluation of image quality is to develop measures that can
automatically predict the perceived image quality. In an image based technique, image quality
is a prime criterion. Commonly, for a good image quality evaluation, an evaluation with
complete reference metrics is applied, like MSE (Mean Square Error), one of the most used
image quality metrics. The MSE metric measures the average of the squares of the errors or
deviations between the generated and the original image. This error (MSE), does not match
with human visual perception. In contrast to MSE, SSIM is also evaluated to measure image
quality level.
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Figure 5.11 – Pairs of patches (64×64) from country Category (two-left columns) and field
Category (two-right columns) [14]: (top) RGB image; (mi ddl e) Red channel of the given RGB
image; (bot tom) NDVI vegetation index computed from RGB images and the corresponding
NIR images.
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Figure 5.12 – Cross-spectral images: (1st row) RGB images; (2nd row) Red channel images used
as input into the CyclicGAN; (3rd row) Correspondig NIR images; (4th row) Ground truth NDVI
images. Images from [14], country, field and mountain categories (from left to right).
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Figure 5.13 – Images of NDVI vegetation indexes obtained with the first supervised approach
implemented in this chapter: (1st col) NDVI index as ground truth images from the country
category; (2nd col) NDVI index results from flat GAN network; (3rd col) NDVI index obtained
with the siamese GAN network); (4th col) NDVI index obtained with the triplet GAN network.

In the current chapter, for all the supervised and unsupervised implemented approaches,
MSE and SSIM metrics have been used, with which it was possible to measure the quality of
the results coming from the experiments and determine the validity of the proposed approach
being evaluated. However, MSE is an absolute value of the representation perspective, instead
of SSIM which is normalized. Additionally, from a semantic perspective, SSIM gives better
results to measure over MSE error. Also, SSIM performs well to obtain perception and saliency-
based errors. According to [111], SSIM, evaluates images accounting for the fact that the
human visual perception system is sensitive to changes in the local structure.

5.3.4 Experimental Results

The first supervised proposed approach has been evaluated using NIR images and their
corresponding NVDI vegetation index, obtained from the equation presented above, in which
the RGB was used; this cross-spectral dataset came from [14]. The country and field categories
have been considered for evaluating the performance of the proposed approach. Examples of
this dataset are presented in Fig. 5.12.

In order to train the network to generate vegetation index from each of these categories
280.000 pairs of patches of (64×64 pixels) have been cropped both, in the NIR images as well
as in the corresponding NVDI images. Additionally, 2800 pairs of patches, per category, of
(64×64 pixels) have been also generated for validation. It should be noted that images are
correctly registered, so that a pixel-to-pixel correspondence is guaranteed.
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Figure 5.14 – Images of NDVI vegetation indexes obtained with the first supervised approach
implemented in this chapter: (1st col) NDVI index as ground truth images from the field
category; (2nd Col) NDVI index results from the FLAT GAN Network;(3rd col) NDVI index
obtained with the siamese GAN network); (4th col) NDVI index obtained with the triplet GAN
network.

Figure 5.15 – Images of NDVI vegetation indexes obtained with the second supervised approach
implemented in this chapter: (1st col) Ground truth NDVI index from the country category;
(2nd col) NDVI index obtained with the proposed GAN architecture with LF i nal loss function.
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Figure 5.16 – Images of NDVI vegetation indexes obtained with the second supervised approach
implemented in this chapter: (1st col) Ground truth NDVI index from the field category; (2nd
col) NDVI index obtained with the proposed GAN architecture with LF i nal loss function.

Training RMSE SSIM
country field country field

GAN with LAd ver sar i al +LIntensi t y 3.93 4.12 0.86 0.83
GAN with LAd ver sar i al +LSSI M 3.81 3.96 0.91 0.89

GAN with LF i nal 3.53 3.70 0.94 0.91

Table 5.1 – Root mean squared errors (RMSE) and structural similarities (SSIM) obtained with
the second supervised proposed GAN architecture by using different loss functions (SSIM the
bigger the better).

The Conditional Generative Adversarial networks from the first approach evaluated in the
current chapter (Generator: Flat, Siamese and Triplet) for NDVI vegetation index estimation,
see Section 5.2.1 have been trained using a 3.2 eight core processor with 16GB of memory with
a NVIDIA GeForce GTX970 GPU. Qualitative results are presented in Fig. 5.13 and Fig. 5.14.
Figure 5.13 shows NDVI vegetation index images from the country category generated with the
flat, siamese and triplet proposed GAN network. Additionally, Fig. 5.14 shows NDVI vegetation
index images from the field category generated with the flat, siamese and triplet proposed
GAN network. Quantitative evaluations for the different architectures have been obtained
and provided below. Up to my humble knowledge, there is not previous work tackling the
vegetation index estimation from just one spectral band. Hence, the only way to evaluate the
results is by comparing the Root Mean Square Error (RMSE) of each approach. The RMSE
measures the similarity between the estimated NDVI concerning the ground truth, which is
the standard deviation of the residuals. Residuals are a measure of how distant are the images
compared to each other.
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Figure 5.17 – Illustration of NIR images obtained by the first unsupervised proposed CyclicGAN,
which are later on used to estimate the corresponding NDVI indexes: (1st row) RGB images;
(2nd row) Gray scale image used as input into the CyclicGAN; (3rd row) Estimated NIR images;
(4th row) Ground truth NIR images. Images from [14], country, field and mountain categories.
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Table 5.2 – Average Root Mean Squared Errors (RMSE) and Structural Similarities (SSIM) ob-
tained from estimated NDVI vegetation index from the first unsupervised proposed approach
and the real one computed from eq. (5.1) (the bigger SSIM, the better). Note that NDVI values
are scaled up to a range of [0-255] since they are depicted as images as shown in Fig. 5.18.

NDVI estimation RMSE SSIM
country field mountain country field mountain

Results from 2nd. Sup. App. 3.53 3.70 – 0.94 0.91 –
Results from 1st Unsup. App. LF I N AL−SN T HC Y C LE−G AN 3.42 3.64 3.63 0.94 0.91 0.86

Results from 1st Unsup. App. LF I N AL−SN T HC Y C LE−LSG AN 3.39 3.56 3.81 0.94 0.92 0.89

Table 5.3 – Average root mean squared errors (RMSE) and structural similarities (SSIM) ob-
tained from the NDVI vegetation index estimated from the second unsupervised approach of
the current chapter and the real one computed from eq. (5.1) (the bigger SSIM, the better).
Note that NDVI values are scaled up to a range of [0-255].

NDVI estimation index RMSE SSIM
country field mountain country field mountain

GAN results from 2nd. Sup. App. 3.53 3.70 – 0.94 0.91 –
CyclicGAN results from [128] 3.46 3.53 3.82 0.93 0.90 0.88

CyclicGAN results from 1st. Unsup. App. LF I N AL−SN T HC Y C LE−G AN 3.42 3.64 3.63 0.94 0.91 0.86
CyclicGAN results from 1st. Unsup. App. LF I N AL−SN T HC Y C LE−LSG AN 3.39 3.56 3.81 0.94 0.91 0.89
CyclicGAN results from 2nd. Unsup. App. LF I N AL−REDC Y C LE−G AN 3.39 3.50 3.72 0.94 0.92 0.90
CyclicGAN results from 2nd. Unsup. App. LF I N AL−REDC Y C LE−G AN 3.15 3.11 3.20 0.94 0.92 0.90

The second supervised approach to estimate NDVI vegetation index uses a Conditional
Generative Adversarial network which has been designed as a Flat (single layer) of learning
level using a single channel (red) to perform the estimation. It has been trained using a 3.4
four core processor with 16Gb. of memory with a NVIDIA Titan XP GPU. Qualitative results are
presented in Fig. 5.15 and Fig. 5.16. Figure 5.15 shows NDVI vegetation index images from the
country category generated with the proposed Flat GAN network with multiple loss functions,
see Section 5.2.1.2. Table 5.1 presents the average root mean square errors (RSME) and the
standard deviation obtained with the Flat architecture evaluated in the proposed work for
the two categories. It can be appreciated that the single learning layer using as an input a red
channel image reaches the best result of the supervised approaches.

Table 5.4 – Error of NDVI for mountain category from the second unsupervised proposed
approach with LSGAN loss.

Vegetation health classes using NDVI Evaluation Error
Mean Standard Deviation

[-1;0.20): Barren areas 0.051 0.0472
[0.20;0.38): Crop, grass 0.041 0.0362
[0.38;0.6): Agroforestry 0.029 0.0193

[0.6;1]: Forestry 0.031 0.0256
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Table 5.5 – Error of NDVI for country category from the second unsupervised proposed ap-
proach with LSGAN loss.

Vegetation health classes using NDVI Evaluation error
Mean Standard deviation

[-1;0.20): Barren areas 0.033 0.0291
[0.20;0.38): Crop, grass 0.021 0.0211

[0.38;0.60): Agroforestry 0.019 0.0102
[0.6;1]: Forestry 0.023 0.0114

Table 5.6 – Error of NDVI for field category from the second unsupervised proposed approach
with LSGAN loss.

Vegetation health classes using NDVI Evaluation error
Mean Standard deviation

[-1;0.20): Barren areas 0.041 0.0349
[0.20;0.38): Crop, grass 0.032 0.0321

[0.38;0.60): Agroforestry 0.023 0.0149
[0.60;1]: Forestry 0.028 0.0176

Figure 5.18 – Images of NDVI vegetation indexes obtained with the synthetic NIR generated
by the proposed CyclicGAN: (top) Ground truth NDVI vegetation index images; (bot tom)
Estimated NDVI vegetation indexes. Images from [14], country, field and mountain categories.
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Figure 5.19 – Images of NDVI vegetation indexes obtained with the second unsupervised
approach implemented in this chapter: (1st col) NDVI estimated with [128]; (2nd col) NDVI
estimated by the proposed CyclicGAN; (3rd col) NDVI estimated by the proposed CyclicGAN
with LSGAN; (4th col) Ground truth NDVI vegetation index. Images from [14], mountain
category.

Results from the first unsupervised approach using a Cyclic Generative Adversarial network
to generate (synthetic NIR images) in order to avoid the dependence on near infrared (NIR)
image obtain better results than the two supervised approaches previously presented. Some
examples of the dataset used in this approach are presented in Fig. 5.17. These synthetic NIR
images are then used for estimating the NDVI indexes. Figure 5.18 presents some illustrations
of NDVI indexes estimated from these NIR images and the ground truth ones computed
from eq. (5.1). Quantitative evaluations are presented in Table 5.2. In this table average root
mean square error (RMSE) and structural similarity index metric (SSIM) computed over the
validation set are depicted, when different combinations of the proposed loss functions where
considered.

The standard loss function for GANs has been implemented in the model, which is based
on negative log likelihood and also uses the least square loss, which obtain better quantitative
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Figure 5.20 – Images of NDVI vegetation indexes obtained with the second unsupervised
approach implemented in this chapter: (1st col) NDVI estimated with [128]; (2nd col) NDVI
estimated by the proposed CyclicGAN; (3rd col) NDVI estimated by the proposed CyclicGAN
with LSGAN; (4th col) Ground truth NDVI vegetation index. Images from [14], field category.

results and avoid the vanishing gradient problem, where a deep feed-forward network is
unable to propagate valid gradient information from the output back to the first layer of
the model. A least square loss has been implemented to accelerate and maintain stable the
training process. Additionally, in this Table 5.2, results from second supervised approach are
presented for comparison. It can be appreciated that in all the cases the results obtained
with the least square loss in the first unsupervised proposed CyclicGAN are better than those
obtained with the second supervised approach. It should be mentioned that the least square
loss permits to accelerate the network convergence in less number of epochs, allowing a better
optimization of the network.

Hence, discriminator becomes more stable and the network converge faster in less number
of epochs

A novel second unsupervised approach implemented to estimate the NDVI vegetation
index based also on a the Cyclic Generative Adversarial Network (synthetic NDVI images)
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with some variations in the architecture has obtained outstanding results comparing with
previous approaches, the two supervised approaches and the first unsupervised approach
already reviewed, which can be used to evaluate the health status of plants and take actions
depending on it. Figures 5.19, 5.20, 5.21 present some illustrations of NDVI indexes estimated
from the proposed architecture using as a ground truth the NDVI index computed from eq.
(5.1). Quantitative evaluations are presented in Table 5.3. In this table average root mean
square errors (RMSE) (note the NDVI values are scaled up to a range of [0-255]) and structural
similarity index metric (SSIM) computed over the validation set are depicted, when different
combinations of the proposed loss functions were considered see (Section 5.2.2.5). In the
experiments, the standard loss function which is based on negative log likelihood and also
the least square loss was used for Cyclic GANs, which obtain better quantitative results and
avoid the vanishing gradient problem. A deep feed-forward network is unable to propagate
valid gradient information from the output back to the first layer of the model. Least square
loss function has been implemented to accelerate the network convergence, allowing a better
optimization of the network and maintain stable the training process. Additionally, in this
table, results from standard CyclicGAN [128], second supervised and unsupervised approach
are presented. It can be appreciated that in all the cases the results obtained with the least
square loss in the proposed CyclicGAN, the second unsupervised approach, are better than
those obtained with the others approaches.

The NDVI error distribution values per category country, field and mountain computed
from the experimental results for each multiple loss implemented in the second unsupervised
approach are shown in Fig. 5.22, 5.23 and 5.24 from which it can be determined that the
results of the mountain category with the different multiple losses is the one with an average
error distribution slightly smaller than the other categories country and field. To increase the
cyclic loss effect over the network L1 regularization has been used. The proposed CyclicGAN
network has been trained using Stochastic AdamOptimizer since it is well suited for problems
with deep network, large datasets and avoid overfitting. The image dataset was normalized in
a (-1,1) range. The following hyper-parameters were used during the training process: learning
rate 0.0003; epsilon = 1e-08; exponential decay rate for the 1st moment of momentum 0.5; L1
9.5; weight decay 1e-2; leak relu 0.18.

The results obtained with the unsupervised technique, lead us to perform an analysis to
determine the accuracy of the estimated indexes. This study is carried out over each category,
according to the literature the NDVI range from [112] and [90], and the index values are in the
range of (-1,1). The quantitative values obtained with the statistical analysis of the estimated
NDVI are presented in Tables 5.4, 5.5 and 5.6. These tables shows that the similarity reached
compared with the ground truth NDVI indexes, given the mean and standard deviation results
obtained per category and level of NDVI classes, specially Agroforestry and Forestry, are less
than 0.05 and 0.04 for mean and standard deviation respectively in the worst case mountain
category.
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Figure 5.21 – Images of NDVI vegetation indexes obtained with the second unsupervised
approach implemented in this chapter: (1st col) NDVI estimated with [128]; (2nd col) NDVI
estimated by the proposed CyclicGAN; (3rd col) NDVI estimated by the proposed CyclicGAN
with LSGAN; (4th col) Ground truth NDVI vegetation index. Images from [14], country category.
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Figure 5.22 – Error distribution for each loss of the second unsupervised approach, field
category.
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Figure 5.23 – Error distribution for each loss of the second unsupervised approach, country
category.
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Figure 5.24 – Error distribution for each loss of the second unsupervised approach, mountain
category.

5.4 Conclusions

This chapter proposes novel supervised and unsupervised architectures to obtain NDVI vege-
tation indexes using a generative adversarial and a cycle-consistent adversarial network, both
using multiple losses. All the approaches are designed in order to avoid the dependence on
NIR sensors to compute the mentioned index. The CycleGAN with the least square loss is the
novel approach that better tackles the challenging problem of synthesizing NDVI images from
a single channel (red) of a RGB representation. Experimental results have shown that the NDVI
images estimated with the proposed approach are better than those obtained with the super-
vised scheme and also the standard unsupervised CyclicGAN model; the quantitative values
presented also show better results than previous supervised and unsupervised approaches
presented in this chapter for NDVI index estimation.
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Chapter 6

Image Dehazing

This chapter proposes a novel approach to remove haze from RGB images using near infrared
images based on a dense stacked conditional Generative Adversarial Network. The architecture
of the implemented deep network receives, besides the images with haze, its corresponding
image in the near infrared spectrum, which serve to accelerate the learning process of the
details of the characteristics of the images. The model uses a triplet layer that allows the
independent learning of each channel of the visible spectrum image to remove the haze on
each color channel separately. A multiple loss function scheme is proposed, which ensures
balanced learning between the colors and the structure of the images. Experimental results
have shown that the proposed method effectively removes the haze from the images.

6.1 Introduction

The images can be seriously affected by different causes, one of the most common is the natural
phenomena that occur when fog, dust, rain or snow are present in the scene. This considerably
reduces the visibility of the objects in the images, thus affecting the understanding of the
scene. Therefore, processes such as object detection, segmentation or recognition, among
others, will not be able to obtain results that meet the required objectives.

Outdoor scenes usually suffer mainly from low contrast and poor visibility due to the
adverse weather conditions that cause airborne particles to scatter the light present in the
atmosphere. One of the atmospheric effects that occur is the mist, which is independent of
the brightness of the scene and generates attenuation effects. It is affected by ambient light
at the time of image acquisition. It is necessary to consider that at a greater distance from
the camera focus the image more diffuse becomes. The effect of haze on image quality is as a
result of a random scattering of light and hence affects all pixels of the image.

Improving the quality of images has been one of the problems that computer vision has
sought to solve, several approaches have been proposed, especially aimed at removing climatic
effects such as haze; some traditional techniques were focused for the elimination of the haze
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presented on images using the characteristics present on them, including those that specialize
in removing fog; some focus on working with depth or with multiple views of the same image
as presented by [95] where a method based on generic regularity in natural images is presented
where the pixels of small image patches usually exhibit a 1D distribution in the RGB color
space, known as color lines. This method derives a local training model that explains the
color lines in the context of fuzzy scenes and uses it to recover scene transmission based on
the displacement of the lines from the origin. In [55] a technique to improve casual outdoor
photographs by combining them with existing georeferenced digital terrain and urban models
is proposed. This approach uses a registration process to align a photograph with that model.

These methods typically involve multi-step approaches that use depth information for
removal of those degradation effects. Most methods for removing haze on images only consider
using hard threshold assumptions or user input to estimate atmospheric light. Artificial
lighting or applied adaptive filters [64] are also considered in some methods to remove the
haze in the images. However, the error estimation of atmospheric light may affect the results
of the removal process.

In recent years, deep learning has been extensively used in a wide range of fields. In deep
learning, Convolutional Neural Networks are found to give the most accurate results in solving
real-world problems. Among the different networks architectures, Generative Adversarial
Networks (GANs) have obtained outstanding results to solve problems like the four colorization
approaches (two supervised and two unsupervised) presented in chapter 4, face generation,
super-resolution [88], [56], text-to-image synthesis [84], cross-spectral similarity approaches
presented in chapter 3 or NVDI vegetation index generation approaches presented in chapter
5. Some of these approaches have used NIR images to improve the results obtained by the
networks.

One of the advantages of using the properties of the near infrared spectrum image is to
enhance the techniques that allow improving the quality of the images without sharpness,
because the information that can be recovered can serve to understand a scene more quickly
and facilitate making a more accurate decision to solve any kind of problems.

In the particular problem tackled in this chapter to remove the haze to obtain a clear RGB
representation, the usage of a GAN architecture is proposed. Two supervised approaches
have been implemented the first one used a stacked conditional GAN and the second one
that includes two variations, a multi-dense connection and the use of a near infrared image;
in this second approach, every channel is mapped into a three-dimensional space, using a
stacked dense Conditional GAN model to accelerate convergence and improve the accuracy
and efficiency of training. Also, multiple loss functions are used in both supervised approaches.
The chapter is organized as follows. The proposed approaches are detailed in Section 6.2.
Experimental results with a set of real images are presented in Section 6.3. Finally, conclusions
are given in Section 6.4.
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6.2 Proposed Approaches

The proposed supervised approaches are based on a generative adversarial model, which take
a collection of haze patches and form some image representation without the haze. Generative
adversarial networks help in this kind of problems, because the model is capable of generating
a new image, rather than finding a function; based on this principle a stacked network architec-
ture with a multiple loss to improve the generalization learning is proposed, this model allows
accelerate the diversity obtained in the multiple levels of training. A l 1 regularization term has
been added at every layer of the generator network in order to prevent the coefficients to fit
so perfectly to overfit and to introduce more robustness to the generalization of the model;
additionally, it helps to reduce the time to reach a well trained network. The architecture of
the first approach is presented in Fig. 6.1. Basically in the architecture, a new layer of learning
was added, as well as the depth of the learning layers was increased—the learning model is
conformed by convolutional, de-convolutional, relu, leak-relu, fully connected and activation
function tanh and sigmoid for generator and discriminator networks respectively. Addition-
ally, every layer of the model uses batch normalization for training any type of mapping that
consists of multiple compositions of affine transformation with element-wise nonlinearity
and do not stuck on saturation mode. It is very important to maintain the spatial information
in the generator model, there is not pooling and drop-out layers and only the stride of 1 is
used to avoid downsize the image shape.

To improve the first proposed approach some variations have been included to enhance the
quality of the haze removal process; a multi dense network stacked three times to accelerate
the training process has been proposed. This model, unlike the first proposed approach were,
to remove the haze the network receives as an input only RGB image, in the novel proposed
approach the network receive in addition to the RGB image, its corresponding image from the
near infrared spectrum to obtain images with greater clarity in its details. The GAN generates
the image without haze starting from the images of both RGB and NIR concatenated spectra,
this architecture with the stacked scheme uses a multiple loss to learn more efficiently and to
improve the convergence of the model, which allows to accelerate the obtained diversity and
to generalize the learning model. The deep dense connection applied to triplet architecture
used for the second proposed approach is shown in Fig. 6.2, it maintains a similar structure
than the first proposed approach presented in this chapter. Basically, in the architecture a
layer of learning was suppressed, as well as the depth of the learning layers was decreased,
because of the concatenation of the NIR with the haze image.

Based on the results obtained in the experiments, it was determined that the second
approach implemented is the one that best removes the haze from the images.

The network of the second approach has been designed to learn how to generate new
images without haze from a conditional latent distribution. In this case, the generator network
has been modified to use feature hierarchical representation; three levels of dense stacking
conditional learning process have been included. Additionally, the model has been designed
to receive cross-spectral concatenated images as input and use a multiple loss functions. To
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Conditional Generative Adversarial Network Model :
(G) Triplet Level Dehazing Generator Network 

(D) Discriminator Network
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Figure 6.1 – Illustration of the first proposed approach based on triplet dense CGAN architec-
ture used for image dehazing.
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Conditional Generative Adversarial Dense Network Model :
(G) Triplet Level Dehazing Generator Network 

(D) Discriminator Network
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Figure 6.2 – Illustration of the second proposed approach based on triplet cross-spectral dense
CGAN architecture used for image dehazing.

optimize the model generalization, the GAN framework is reformulated for a conditional
generative image modeling tuple. In other words, the generative model G(z;θg ) is trained
from a haze and an infrared concatenated image and contrary to the original GAN model
formulation, the random noise z is not used; with the assumption that the randomness has
already been preserved by the conditioning variables provided by the images with haze, in
order to produce a clear RGB image. The discriminative model D(z;θd ) is trained to assign the
correct label to the generated clear RGB image, according to the provided original color image,
which is used as a ground truth. Variables (θg ) and (θd ) represent the weighting values for the
generative and discriminative networks, ( for more details on GAN architecture see Section 2.5.

Densely connected CCN has several compelling advantages: they alleviate the vanishing
gradient problem, strengthen feature propagation, encourage feature reuse, and substantially
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reduce the number of parameters. Applying this kind of model of connectivity between the
layers achieved as a direct consequence of the input concatenation of RGB and NIR image at
any level of the learning layers permits that all the feature maps learned by any of the dense
net layers can be accessed by all subsequent layers. This encourages feature reuse throughout
the network and leads to more compact models.

The second proposed approach introduces a dense connection between layers on the
architecture, according to [42], an approach that implements shorter connections generally at
the beginning and the end of the learning layers in the model is proposed, this gives to the
network the capacity to train more rapidly using fewer layers.

Also, a multiple loss function (L ) has been implemented, which was formed by the com-
bination of the adversarial loss plus the intensity loss (MSE), the structural loss (SSIM) and
the image quality loss (IQ). This combined loss function has been defined to avoid the usage
of only a pixel-wise loss to measure the mismatch between a generated image and its cor-
responding ground truth image. This multi-term loss function is better designed to human
perceptual criteria of image quality, which is detailed below.

The adversarial loss is designed to minimize the cross-entropy to improve the texture loss:

LAd ver sar i al =−∑
i

l og D(Gw (Iz|y ), (Ix|y ), (6.1)

where D and Gw are the discriminator and generator of the real Ix|y and generated Iz|y images
conditioned by the haze and near infrared image fed in each channel of the Stacked Gan
Network.

The intensity loss is defined as:

LIntensi t y = 1

N M

N∑
i=1

M∑
j=1

(RGBei , j −RGB gi , j )2, (6.2)

where RGBei , j is the estimated RGB representation and RGB gi , j is the ground truth RGB
image. This loss measures the difference in intensity of the pixels between the images without
considering the texture and content comparisons. This loss penalizes larger errors, but is more
tolerant of small errors, without considering the specific structure in the image.

To address the limitations of the simple intensity loss function, the usage of a reference-
based measure is proposed. One of the reference-based indexes is the Structural Similarity
Index (SSIM) [111], which evaluates images accounting for the fact that the human visual
perception system is sensitive to changes in local structure; the purpose of using this index
defines the structural information in an image as those attributes that represent the structure
of objects in the scene, independent of the average luminance and contrast. The structural
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loss for a pixel p is defined as:

LSSI M = 1

N M

P∑
p=1

1−SSI M(p), (6.3)

where SSI M(p) is the Structural Similarity Index (see [111] for more details) centered in pixel
p of the patch P .

Another loss function considered in this approach is based on the universal image quality
index; the method proposed by [110] and it was designed to model any image distortion via a
combination of three factors: loss of correlation, luminance distortion, and contrast distortion.

The main reason to use this quality index as a loss function is its strong ability to measure
the structural distortions existing in the images with haze. It is important to bear in mind that
because the signals of the images are non-stationary it is preferable to evaluate the quality of
the images by locally measuring their statistical characteristics and then combine them all
collectively in a single measurement of image quality.

If there are a total of M steps, at the j -th step the local quality index Q j is computed, then
the overall quality index is given by :

Q = 1

M

M∑
j=1

Q j . (6.4)

Hence, we can formulate the quality loss function as:

LQ = 1

M

M∑
j=1

(1−Q j ). (6.5)

The final loss function (L f i nal ) used in this work is the accumulative weighted sum of the
individual adversarial, intensity, structural and quality loss functions:

L f i nal = 0.40LAd ver sar i al +0.25LIntensi t y +0.20LSSI M +0.15LQ . (6.6)

The proportion assigned to each loss has been defined based on the variability of the values
obtained by each of the losses during the training process.
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(a) (b)

(c) (d)

Figure 6.3 – Set of RGB images from an indoor environment: (a) Ground truth image; (b), (c)
and (d) Real images with different haze levels.
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Chapter 6. Image Dehazing

Figure 6.4 – Results from light hazed category with the first proposed approach: (1st row) Haze
patches; (2nd row) Unhaze patches (Loss Function: L f i nal ); (3rd row) Ground truth images.

The dense stacked conditional GAN network proposed has been trained using Stochastic
AdamOptimazer since it is well suited for problems that are large in terms of data and/or
parameters, very appropriate for non-stationary objectives and problems with very noisy/or
sparse gradients. Also, the Hyper-parameters have intuitive interpretation and typically require
less tuning, prevents overfitting and leads to convergence faster. Furthermore, it is computa-
tionally efficient, has little memory requirements, is invariant to the diagonal rescaling of the
gradients. The image dataset was normalized in a (-1,1) range. The following hyper-parameters
were used during the training process: learning rate 0.00004 for the generator and 0.00003 for
the discriminator networks respectively; epsilon = 1e-08; exponential decay rate for the 1st
moment momentum 0.4 for discriminator and 0.3 for the generator; weight initializer with
a standard deviation of 0.04582; l1 weight regularizer; weight decay 1e-2; leak relu 0.21 and
patch’s size of 64×64.

The learning architecture is conformed by convolutional, de-convolutional, relu, leak-relu,
fully connected and activation functions t anh and si g moi d for generator and discriminator
networks respectively. Additionally, every layer of the model uses batch normalization for
training any type of mapping to prevent underfitting. It is very important to maintain the
spatial information in the generator model, there is not pooling and drop-out layers and
only the stride of 1 is used to avoid downsize the image shape. To prevent overfitting a l1
regularization term (λ) has been added in the generator model, this regularization has the
particularity that the weights matrix ends up using only a small subset of their most important
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Figure 6.5 – Results from dense hazed category with the first proposed approach: (1st row)
Haze patches; (2nd row) Unhaze patches (Loss Function: L f i nal ); (3rd row) Ground truth
images.
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inputs and become quite resistant to noise in the inputs. Additionally, the architecture includes
a dense model implemented by the first and bottom layers in the model to increase the
generalization and obtain more optimization of the learning process.

The generator (G) and discriminator (D) are both feedforward deep neural networks that
play a min-max game between one another. The generator takes as input on each channel
the hazy and NIR image and it is transformed into the form of the data we are interested in
imitating, in this case a RGB clear image. The discriminator takes as an input a set of data,
either real image (z) or generated image (G(z)), and produces a probability of that data being
real (P (z)). The discriminator is optimized in order to increase the likelihood of giving a
high probability to the real data (the ground truth given image) and a low probability to the
fake generated data (wrongly clarified haze image), as introduced in [70]; thus, the dense
conditional discriminator network is updated as follow:

�θd

1

m

m∑
i=1

[logD(x(i ))+ log(1−D(G(y (i ), z(i ))))], (6.7)

where m is the number of patches in each batch, x is the ground truth image, y is the image
without haze (RGB) generated by the network and z is the random Gaussian sampled noise.
The weights of the discriminator network (D) are updated by ascending its stochastic gradient.
On the other hand, the generator is then optimized in order to increase the probability of the
generated data being highly rated, it is updated as follow:

�θg

1

m

m∑
i=1

log(1−D(G(y (i ), z(i )))), (6.8)

where m is the number of samples in each batch, y is the image without haze (RGB) generated
by the network and z is the random Gaussian sampled noise. Like in the previous case, the
weights of the generator network (G) are updated by descending its stochastic gradient.
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(a)

(b)

(c)

Figure 6.6 – Set of images from [65]: (a) NIR image; (b) Hazed image; and (c) Ground truth
image.
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6.3 Experimental Results

To evaluate both haze removal proposals, the dataset obtained from [65] has been used. For
the experiments, from all these images 85000 pairs of patches of (32×32 pixels) have been
cropped both, in the hazed images as well as in the corresponding clear RGB and NIR images.
Additionally, 8500 pairs of patches have been also generated for validation. On average, every
training process took about 60 hours using a 3.2 eight-core processor with 16GB of memory
with an NVIDIA TITAN V GPU.

The quantitative evaluation of both proposed approaches, consists of measuring several
metrics with the results obtained with the first and second proposed Stacked GAN approaches
when different combinations of the proposed loss functions where considered; one of the
metrics consists of measuring at every pixel the angular error (AE) between the obtained
result (RGBoi , j ) and the corresponding ground truth value (RGB gi , j ). AE is included since
this measure is quite similar to the human visual perception system, [33]—AE is probably the
most widely used performance measure in color constancy research. Additionally, the Mean
Squared Error (MSE), the Quality Index (QIndex) and the Structural Similarity (SSIM) metrics
are also considered in this quantitative evaluation. On the contrary to AE and MSE, which
can be considered as pixel level evaluation metrics, the SSIM and QIndex are methods for
evaluating the perceived quality of the results. The SSIM provides a measurement of local
image quality over space while QIndex models the image distortion relative to the reference
image as a combination of three factors: loss of correlation, luminance distortion, and contrast
distortion. These metrics have a high degree of sensitivity to measure to image degradations,
therefore, they are the more appropriate to this type of quantitative evaluation.

The first proposed approach for remove haze from RGB image has been evaluated using real
hazed images and their corresponding clear RGB representations obtained from [65]. Figure
6.3 presents four images from this dataset, where ground truth image can be appreciated on
(a) while different real hazed images are depicted on (b), (c) and (d). See more details about
data set generation in [65].

Some patches, with the corresponding result obtained with the first proposed approach,
are depicted in Fig. 6.4 and Fig. 6.5; just for making easier the evaluation of results from the
proposed approach patches have been split up into Light Haze and Dense Haze.

With the metrics mentioned above combinations of the different loss functions are evalu-
ated, results are provided in Table 6.1. It can be appreciated that in all the cases the results
obtained with the final loss proposed with Stacked Conditional GAN are better than those
obtained with the other combination of losses, because are not based solely on the difference
of the information of the pixels, they are based on the high-level characteristics of the images
for which they are able to reconstruct better the fine details in comparison with the methods
trained only by distance value of pixels. Just as illustrations, a few RGB images from Light Haze
and Dense Haze categories, generated with the proposed Stacked GAN network, are depicted
in Fig. 6.4 and Fig. 6.5 for qualitative evaluation.
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Figure 6.7 – (1st row) NIR patches; (2nd row) Light hazed patches; (3rd row) Results from the
second proposed approach, (Loss function: L f i nal ); (4th row) Ground truth images.
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Figure 6.8 – Results from dense hazed category: (1st row) NIR patches; (2nd row) Haze patches;
(3rd row) Results with second proposed approach. (Loss function: L f i nal ); (4th row) Ground
truth images.
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The second proposed architecture has been evaluated using real hazed images and their
corresponding clear RGB and NIR infrared representations obtained from [65]. Figure 6.6
presents a set of images from this dataset. The corresponding results obtained with the
proposed approach are depicted in Figs. 6.7 and 6.8; just for making easier the evaluation of
results from the second proposed approach patches have been split up into Light Haze and
Dense Haze categories.

With the metrics mentioned above combinations of the different loss functions are evalu-
ated, results are provided in Table 6.2. It can be appreciated that in all the cases the results
obtained with the final loss proposed with dense Stacked Conditional GAN are better than
those obtained with the first proposed approach. Also, these losses, being perfectly differ-
entiable, allow for better optimization of the network, thus accelerating the convergence
process.

6.4 Conclusion

This chapter tackles the challenging problem of generating clear RGB representations from
hazed images and their corresponding NIR images. In the current work two supervised
approaches have been designed by using a novel dense stacked cross-spectral conditional
generative adversarial network, both approaches use the stacked GAN. However, the second
proposed approach has obtained the best results, after including multiple dense connections
between the layers in the architecture, to facilitate the propagation of the characteristics and
minimize the number of model parameters. The results have shown that in most cases the
network can obtain reliable clear RGB representations. The proposed approaches have as a
limitation the need of having ground truth images without haze for training.
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7.1 Conclusions

This thesis has [50] implemented innovative techniques in the field of computer vision using
images of the visible and near-infrared spectrum, using deep learning through convolutional
networks, especially generative adversarial networks, which are specialists in creating infor-
mation through the antagonistic game of two convolutional networks that interact with each
other. In this dissertation, with this type of convolutional networks, different techniques have
been created to solve challenging problems, like detect the similarity of patches of different
spectra (visible-infrared), colorize images of the near infrared spectrum, estimation of vegeta-
tion index (NDVI) and the haze removal present on RGB images using NIR images. For all these
techniques different variants of the GAN’s networks, such as standard, conditional, stacked
and cyclic have been used. It should be mentioned that together with the implementation of
adversarial network models, the use of multiple loss functions has been proposed to improve
the generalization of the models and increase the effectiveness of the model.

Chapter 2 summarizes the extensive literature review of the different techniques that
different authors have developed to address the issues raised in this thesis. This review has
allowed us to analyze the different approaches presented in the most relevant conferences and
determine their advantages and limitations, so that this knowledge is used and new methods
or techniques can be formulated that solve the same problem addressed in the thesis in a
better way and thus contribute to the state of the art.

Chapter 3 addresses the problem of determining the similarity of the images of different
spectra firstly, a supervised scheme has been proposed where the images have to be paired.
This approach has obtained better results than traditional methods such as SIFT, SURF, HAR-
RIS, etc. However, to overcome the limitation of having the images aligned, that is, that they
are from the same scene, a new approach based on meta-learning has been proposed in this
thesis, it is based on distance metrics, the model is capable to learn object categories from a
few examples, and do not require high computational power. The designed architecture can
synthesize an effective embedded representation that allows the model to learn new classes

119



Chapter 7. Conclusions and Future Work

from existing information about different previously learned classes.

In Chapter 4 the colorization of NIR images using CCN has been tackled. Different models
have been proposed. One of the most elaborated model includes a novel Stacked Dense
Conditional Generative Adversarial Network. The experimental results have shown that the
proposed approach generates good quality colored images of different scenes (i.e., content).
The principal reason to use images from the NIR spectrum is because of its independence from
the brightness and color of the targets, which has potential benefits, including non-visible
illumination requirements. Another contribution of the proposed model is the implementation
of multiple loss functions that not only focus on the intensity of the pixels, but also on the
texture, since the similarity of the structures present in the images is measured, which allows
obtaining more clear colorized images, in addition, to preserve the color tones correctly.

Chapter 5 presents supervised and unsupervised techniques to estimate the NDVI vegeta-
tion index. Within the supervised scheme two approaches are proposed; the first approach
that learns from NIR images with a triple learning layer, the second one is an approach that
learns from a grayscale image with a single level of learning layer, both approaches are based
on GAN networks. These models have the limitation of relying on registered images, that is,
the model must be feed with only paired image patches, although good estimates of the NDVI
index have been obtained. To overcome the limitations of relying on registered images with
paired images, working with patches and relying on sensors sensitive to the near infrared
spectrum, an unsupervised approach has been proposed. It works with visible spectrum
images (red channel) and NDVI index images, this approach performs translation (mapping)
of the images (visible-NDVI) and is based on a Cyclic GAN network with multiple loss functions
for an efficient and fast generalization of the model. The results obtained by this unsupervised
approach are better than those obtained with the supervised schemes previously implemented.
This NDVI index estimation makes it possible the monitoring of the states of vegetation and
helps to determine the best action to be performed to monitor the stages of development and
biomass of crops and plants, to forecast and improve their yields.

Chapter 6, addresses the problem of removing the haze from the images, through the
implementation of two supervised techniques, the approach that showed the best results was
the conditional stacked GAN, densely connected, optimized through multiple loss functions.
This approach has as a limitation the need of having ground truth paired images without
haze for the training process. The network is fed with the hazed and its corresponding NIR
image, which is concatenated at the beginning and end of the architecture layers and serves to
improve the quality of the obtained clear image. With this technique, valuable information
on the objects present in the hazed images can be obtained, which allows a better scene
understanding. Therefore, processes such as detection, segmentation or recognition of objects,
among others, will benefit from the reduction of the atmosphere effect that reduce the visibility.
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7.2 Future Work

This thesis tackles challenging problems related to cross-spectral image processing, like patch-
ing similarity, near infrared image colorization, image haze removal, NDVI estimated index, for
which several deep learning models have been implemented, mainly focusing on adversarial
generative models. The results obtained with the model of cross-spectral image similarity
using meta-learning have shown that it is possible to even with a few shot samples to obtain
a performance quite similar to the state of the art, as well as it is shown that outperforms
classical SIFT feature based descriptors.

As future work, other architectures based on reinforced continual learning, meta-learning,
like learning models based on Model-Agnostic Meta-Learning (MAML) to enable the model
to be capable to update their weights to perform fast adaptation, new function losses, and
normalization techniques will be considered to improve the results already obtained.

For NIR colorization, future work will be focused on evaluating other network architectures,
like variational auto-encoders and cycle-consistent adversarial networks, which have shown
appealing results in recent works. Additionally, these models will be evaluated with other loss
functions to improve and accelerate the training process. Finally, increasing the number of
images to train will be considered in order to increase the diversity of colors.

Estimation of vegetation indexes is crucial to help farmers to improve the quality of their
crops, making possible the early identification of diseases or the infection of insects that
affect the health of the plants. These techniques, together with the use of unmanned aerial
vehicles (UAVs), are used to accurately apply the better solutions. Future approaches addressed
reinforced learning techniques so that the model is able to learn to estimate different types of
vegetation indices in a progressive manner, so that it re-uses prior learning for the new tasks
applied to the model, in this case, estimate new kind of vegetation indexes.

Haze removal is a challenging problem focused to improve the scene understanding. As a
future work, actually, as work in progress, a cyclic GAN architecture will be proposed, but feed
it with unpaired images (RGB hazed and clear images) to perform the mapping between them
in order to remove the haze to obtain the corresponding clear image; also, new loss function
will be implemented to improve the optimization and convergence of the model.

The results obtained in the experiments in each of the techniques implemented with
deep learning in this thesis show that it is possible to use convolutional networks, especially
generative adversarial networks to create information in the (visible) spectrum from the
information of another spectrum (near infrared) or to make comparisons of images of different
spectra. Therefore it is verified that the characteristics of the images of different spectra can
be used to complement the missing information (merge) or to generate new information
(hallucinate) and thus be able to apply these techniques to solve problems proposed in the
field of computer vision. However, as mentioned above, new architectures based on continual
learning or meta-learning can be proposed to address the problems previously described,
in order to obtain better results. Also, new loss functions can be implemented in previously
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challenge problems to obtain more generalized models, accelerate the convergence and obtain
more accurate results. Another alternative may be to implement new data augmentation
schemes to improve training processes and results.
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