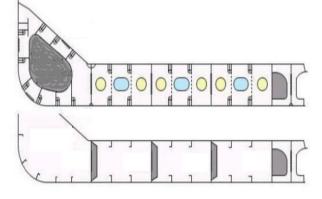
Faculty of Maritime Engineering and Marine Sciences

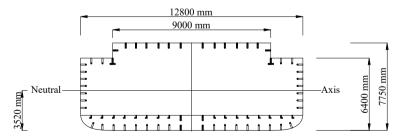
Ship's Structure

Quiz 4 – Ship hull stress analysis

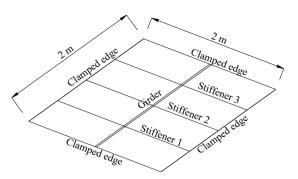

August 31st, 2021

Student: ID:

Part 1. Closed books


1. In the attached figure, a midship section of a ore-carrier ship with longitudinal framing system is presented. Main dimensions are: L: 108 m, B: 21.0 m, D; 10.80 m, T_{loaded} : 9.2 m, and height of

double bottom is 1.20 m. Spacings are: between transverse bulkheads, 12.0 m, between longitudinal stiffeners, 0.77 m and between bottom floors, 2.40 m. A side girder forms the limit of a ballast tank in the double bottom of the ship. What is the plate aspect ratio that you would use to analyze the bending of a side girder? (10)


2.50 : 1 2.08 : 1 2.0 : 1 3.12 : 1

2. A tanker ship with dimensions: L: 78.76 m, B: 12.80 m, D: 6.40 m, T: 5.66 m, has a longitudinal framing system with double bottom. According to RINA, an IACS ship classification society, the allowable normal stress for the standard steel in a primary analysis is 17.5 kN/cm^2 . If according to those rules, the maximum bending moment in hogging condition is 72441 kN-m, what is the maximum bending moment that can be developed in still water? (15)

168 MN-m	208000 kN-m	187368 kN-m	224 MN-m
----------	-------------	-------------	----------

3. A reinforced steel plate panel is formed by one girder and three stiffeners, as can be seen in the figure. The effective inertia of stiffeners is 70 cm⁴ and the ratio between inertia of girder and stiffeners is 5:1. Pressure on the panel is uniform and has a value of 20 kN/m². If the reaction on the first stiffener is 5864.7 N, what is the contact force between this stiffener and the girder? (10)

8271 N	10 kN	5.25 kN	9.33 kN

4. For the analysis of a reinforced plate panel of problem 3 of this exam, the redistribution of bending moment because of the rotation of the stiffeners is considered. Using Timoshenko's solution for a steel clamped rectangular plate under uniform load the required thickness of a plate is to be calculated. Uniform pressure on the panel is 30 kN/m^2 , and stiffener and girder inertias are 70 and 350 cm⁴, respectively. Apply a 1.5 mm for corrosion allowance. (15)

			5	- 0.0		
ن ا	b/a	$(w)_{x=0,y=0}$	$(M_x)_{x=a/2,y=0}$	$(M_y)_{x=0,y=b/2}$	$(M_x)_{x=0,y=0}$	$(M_y)_{x=0,y=0}$
4444444	1.0	0.00126ga4/D	-0.0513qa ²	-0.0513qa ²	0.0231ga ²	0.0231ga ²
ununun t	1.1	0.00150ga4/D	$-0.0581ga^{2}$	$-0.0538qa^2$	0.0264qa2	0.0231qa ²
. *	1.2	0.00172ga4/D	$-0.0639ga^2$	$-0.0554qa^2$	0.0299qa ²	0.0228qa2
5	1.3	0.00191ga4/D	$-0.0687qa^{2}$	-0.0563qa2	0.0327qa2	0.0222qa2
L DIN	1.4	$0.00207 ga^4/D$	$-0.0726qa^2$	$-0.0568qa^2$	0.0349qa ²	0.0212qa2
ET	1.5	0.00220ga4/D	$-0.0757ga^2$	$-0.0570qa^2$	0.0368qa2	0.0203qa2
mininik.	1.6	0.00230ga4/D	$-0.0780qa^{2}$	$-0.0571qa^2$	0.0381qa ²	0.0193qa2
<u>9</u> +	1.7	0.00238qa4/D	$-0.0799qa^2$	$-0.0571qa^{2}$	0.0392qa ²	0.0182qa2
ý T	1.8	$0.00245 ga^4/D$	$-0.0812ga^2$	$-0.0571qa^{2}$	0.0401qa ²	0.0174ya2
	1.9	$0.00249ga^4/D$	$-0.0822ga^2$	$-0.0571qa^{2}$	0.0407qa2	0.0165qa ²
	2.0	0.00254ga4/D	$-0.0829qa^2$	$-0.0571qa^{2}$	0.0412qa ²	0.0158qa2
	~.0	$0.00260 ga^4/D$	$-0.0833qa^2$	$-0.0571qa^2$	0.0417ga2	0.0125qa2

TABLE 35. DEFLECTIONS AND BENDING MOMENTS IN A UNIFORMLY LOADED RECTANGULAR PLATE WITH BUILT-IN EDGES (FIG. 91)

6.23 mm 7.00 mm 7.85 mm 5.43 mm

Quiz 4 – Ship hull stress analysis

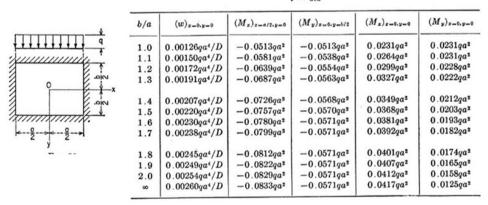
August 31st, 2021

Student: ID:

Part 2. Closed books

Useful relations

Shear stress in bending:

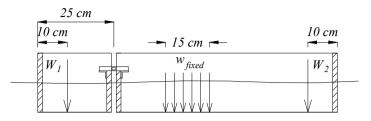

$$\tau_{xy} = \frac{V(x) Q(y, z)}{I_c b}$$

Normal stress in plate bending:

$$\sigma_{\rm x} = \frac{12 \,\,{\rm M}_{\rm x}}{{\rm t}^2}$$

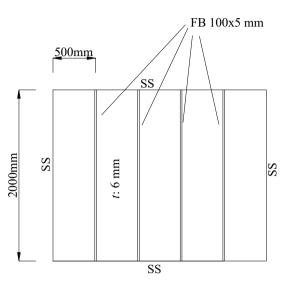
Bending moment in rectangular plate under uniform load:

TABLE 35. DEFLECTIONS AND BENDING MOMENTS IN A UNIFORMLY LOADED Rectangular Plate with Built-in Edges (Fig. 91) $\mu = 0.3$


Equivalent von Misses stress:

$$\sigma_{eq} = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau^2} \,.$$

I declare that during this exam I have fulfilled the Code of Ethics of our university.


.....

1. In SiMar laboratory a simplified hull bending test is completed. A PVC plastic tube is employed (*L*: 100 cm, *diameter*: 20 cm, *thickness*: 0.4 cm, and specific weight of PVC is 14210 N/m³). In the central part of the model a distributed weight w_{fixed} of 5.27 N/cm is placed, and two concentrated forces each one of 19.6 N are placed at 10 cm from each end.

Calculate the shear force at the point where the load cell is located (25 cm from left end). (25)

2. A stiffened panel built with standard steel, with external dimensions 2x2.5 m, has four stiffeners in the vertical direction. The steel plate is 6 mm in thickness, the stiffeners are 100x5 mm flat bars and following DNV recommendation the plate as 100% effective. The load is uniformly distributed of 24000 kN/m², acting on the whole panel. Determine the Safety factor of the panel, applying the Maximum Distortion energy theory, considering all edges of the reinforced panel as simply supported. (25)

