Tema:

Obtención de Ecuaciones de Correlación para estimar las Velocidades de las Ondas de Corte en los Suelos de la Ciudad De Guayaquil"

Expositores:

Fecha:

Eddie Tandazo Ortega Jenny Ramírez Calderón

Mayo - 2006

INDICE GENERAL

<u>CAPITULO 1.</u> OBJETIVOS, ALCANCE Y JUSTIFICACION DE LA TESIS

<u>CAPITULO 2</u> PROPIEDADES DINAMICAS DE LOS SUELOS

CAPITULO 3 UBICACIÓN DE LOS SITIOS DE ESTUDIO EN LA CIUDAD DE GUAYAQUIL

CAPITULO 4MEDICIÓN DE LA VELOCIDAD DE LA ONDA DE CORTE EN LOS SUELOS DE LA CIUDAD
DEDEGUAYAQUIL, MEDIANTE EL ENSAYO
SASW

CAPITULO 5 MEDICIONES DE LAS PROPIEDADES GEOTÉCNICAS EN CAMPO Y LABORATORIO

<u>CAPITULO 6</u> ECUACIONES DE CORRELACION PARA ESTIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

ECUACIONES DE CORRELACION PARA ESTIMAR LAS VELOCIDADES DE LAS ONDAS DE CORTE

CAPITULO 8

CAPITULO 7

ESTIMACION DEL PERFIL DE VELOCIDADES DE ONDA DE CORTE

<u>CAPITULO 9</u>

CONCLUSIONES Y RECOMENDACIONES

CAPITULO 1 Objetivos, alcance y justificacion de la tesis

1.1 Objetivos

- Estimar la velocidad de onda de corte para los suelos de la ciudad de Guayaquil
- Correlacionar la Vs con parámetros geotécnicos básicos obtenidos con los equipos de la práctica común de la ingeniería de la ciudad.
- Proporcionar metodología de exploración geotécnica y análisis de laboratorio.
- Evaluar la variabilidad de la energía transmitida en la prueba SPT.

CAPITULO 1

OBJETIVOS, ALCANCE Y JUSTIFICACION DE LA TESIS

1.2 Alcance

- Proporcionar ecuaciones semiempíricas de correlación para la estimación de la velocidad de la onda cortante
- Proporcionar ecuaciones de correlación para la estimación de parámetros geotécnicos.
- Proporcionar lineamientos de exploración geotécnica.
- Implementar nuevos métodos de análisis de laboratorio para la estimación de parámetros geotécnicos.

Presentar resultados que muestran la verdadera energía de impacto en la prueba SPT

Calibrar los equipos para las pruebas de percusión.

CAPITULO 1 OBJETIVOS, ALCANCE Y JUSTIFICACION DE LA TESIS

1.3 Justificación

Proyecto RADIUS, 1999.

"Investigación y estudio del comportamiento dinámico del subsuelo y microzonificación sísmica de la ciudad de la ciudad de Guayaquil", 2004.

Tesis de Grado : Obtención de ecuaciones semiempíricas para estimar las velocidades de ondas de corte en la ciudad, 2006

CAPITULO 1 OBJETIVOS, ALCANCE Y JUSTIFICACION DE LA TESIS

1.3 Justificación

CAPITULO 2 propiedades dinamicas de los suelos

2.1 Módulo de rigidez al cortante, G

$$G_{max} = \rho \cdot V_s^2$$

Corresponde a deformaciones pequeñas $\gamma < 10^{-4 \%}$

ρ : Densidad de laboratorio (T/m³)
Vs : Velocidad de onda de corte (m/s)

La inclinación del lazo de histéresis depende de la rigidez del suelo

Características del comportamiento del suelo:

- No es único, varía en función del rango de deformación
- Pérdida de rigidez = Mayores deformaciones por cortante

x 10⁴ Deformación por cortante ciclica Y_c (%) Escala logaritmica

D, amortiguamiento

2.2 Amortiguamiento histerético

$$D = \frac{\Delta E}{4.\pi W_{s}} = \frac{1}{2.\pi} \frac{A_{lazo}}{G_{sec} \cdot \gamma_{c}^{2}}$$

Lazo Histerético:

Lugar geométrico definido por varias amplitudes de cargas cíclicas

Inclinación = Rigidez Amplitud = Energía de disipación

2.3 Resistencia dinámica al esfuerzo cortante

El esfuerzo cortante no drenado dinámico NO es igual al usado por cargas "estáticas"/monotónicas

3.1 Delimitación del área de estudio

PLANO DE GUAYAQUIL

ESC 1:50000

División por cuadrantes del área urbana de la ciudad de Guayaquil

3.2 Marco Geológico Regional

3.2 Marco Geológico Regional

CORTE A-A

CAPITULO 3

UBICACIÓN DE LOS SITIOS DE ESTUDIO EN LA CIUDAD DE GUAYAQUIL

3.2 Marco Geológico Regional

3.3 Estudio Geotécnico Previo

✓ Constituye una continuación del proyecto RADIUS (1998-1999)

Risk Assessment Tools for Diagnosis of Urban Areas against Seismic Disasters (Herramientas de Evaluación del Riesgo para el diagnóstico de zonas urbanas contra desastres sísmicos.)

3.3 Estudio Geotécnico Previo

✓ Variación espacial de las propiedades geotécnicas

Conocer el MACRO-COMPORTAMIENTO del subsuelo Comportamiento Estático
Problemas de amplificaciones dinámicas

CAPITULO 3 Ubicación de los sitios de estudio en la ciudad de guayaquil

3.3 Estudio Geotécnico Previo

FASE I "Estudio de investigación para la microzonificación sísmica de la ciudad de Guayaquil "

RECOLECCION DE REGISTROS 800 sondeos a profundidades entre 20 a 40 metros

<u>ZONA</u>	DESCRIPCION	# Perforaciones en Base de datos	Muestras de suelo analizadas
D1	Depositos Deltaico -estuarino (Este - Centro)	146	1979
D2	Depositos Deltaico-estuarino (Sur)	37	321
D3	Depositos Deltaico-estuarino (Oeste - Norte- Trinitaria)	173	2520
	Depositos de la Llanura aluvial (Norte)		
D4 A	H < 10 m	25	88
D4 B	10 < H < 20 m	10	73
D4 C	H > 20 m	58	845
D5	Depositos Aluvio - lacustre (Norte)	78	420
D6	Depositos Coluviales	7	66
D7	Depositos residuales y formación rocosa	56	319
	Total =	590	6631

CAPITULO 3 ubicación de los sitios de estudio en la ciudad de guayaquil

3.3 Estudio Geotécnico Previo

COMPORTAMIENTO DE LAS ARCILLAS.

Considerando su microestructura y la influencia de sus propiedades mecánicas

CAPITULO 3

UBICACIÓN DE LOS SITIOS DE ESTUDIO EN LA CIUDAD DE GUAYAQUIL

 La carga en la superficie de la arcilla depende de la CONCENTRACION IONICA Y

			ITDC	
PH D	EL	FLU	JUU)

Los cationes del agua son atraídos para mantener su neutralidad

000068

014060

014068

00000

015050

624051

013051

624050 3.3 Estudio Geotécnico Previo VALORES DE PH 10 Variación de la salinidad en 12 puntos en la ciudad de Guayaquil

CAPITULO 3 Ubicación de los sitios de estudio en la ciudad de guayaquil

3.3 Estudio Geotécnico Previo

FASE I "Estudio de investigación para la microzonificación sísmica de la ciudad de Guayaquil "

Levantamiento de esteros

antiguos

CAPITULO 3

UBICACIÓN DE LOS SITIOS DE ESTUDIO EN LA CIUDAD DE GUAYAQUIL

CAPITULO 3 Ubicación de los sitios de estudio en la ciudad de guayaquil

El series arcillosas divididas según 2 tipos diferentes de ambientes

CAPITULO 3

UBICACIÓN DE LOS SITIOS DE ESTUDIO EN LA CIUDAD DE GUAYAQUIL

CAPITULO 3 Ubicación de los sitios de estudio en la ciudad de guayaquil

3.3 Estudio Geotécnico Previo

CAMPAÑA DE EXPLORACION EN 14 SITIOS DE LA CIUDAD DE GUAYAQUIL

213ECU 214ECU 216ECU	La Pradera-2 Corner Perimetral Ave & 25 of July Ave, SOPEÑA Estadio Ramón Unamuno	D1
212ECU	Municipal Park Stalla Maris, GUASMO ESTE	D2
209ECU 210ECU 211ECU 221ECU	Kennedy Baseball Field Guayaquil Yacht Club, Puerto Azul Municipal Hospital of Isla Trinitaria Federación de Deportiva del Guayas, Miraflores	03
218ECU 217ECU 219ECU	La Garzota District Nueva Terminal Internacional, Antiguo Jardin de la Salsa Duale River Site, Rivera de los Vergeles	D4
220ECU 222ECU	Ciudadela 2 de Julio (at Ave. Daule) La Prosperina (Cooperativa Santa Cecilia)	D5
215ECU	Chongon JP Camp	D6
	Zona de investigación geomecánica	D7

3.3 Estudio Geotécnico Previo

FASE I "Estudio de investigación para la microzonificación sísmica de la ciudad de Guayaquil "

Estudio de Microtepidaciones

Mapa de zonificación geotécnica de Guayaquil

CAPITULO 4 mediciones de las velocidades de la onda de corte, sasw

SASW (Spectra Analysis of Surface Waves), análisis espectral de la onda de superficie

Esquema del método SASW
MEDICIONES DE LAS VELOCIDADES DE LA ONDA DE CORTE, SASW

4.1 Equipo utilizado

EQUIPOS UTILIZADOS

- 1) Estuche acolchonado de transporte
- 2) Cables 100m
- 3) Laptop
- 4) Unidad de Sistema de Registro de ondas
- 5) GPS
- 6) Sismógrafos Kinemetrics de 1-Hz
- 7) Cinta

MEDICIONES DE LAS VELOCIDADES DE LA ONDA DE CORTE, SASW

4.1 Metodología de análisis

Variación de X, para obtener perfil de dispersión de sitio

X = 2, 4, 8, 16, 32, y 64 m.

MEDICIONES DE LAS VELOCIDADES DE LA ONDA DE CORTE, SASW

4.1 Metodología de análisis

CAPITULO 4 MEDICIONES DE LAS VELOCIDADES DE LA ONDA DE CORTE, SASW

4.1 Metodología de análisis

 $V_R = \lambda_R \cdot f$

Como primera aproximación en campo:

VS≈ 1.1 VR

CAPITULO 4 MEDICIONES DE LAS VELOCIDADES DE LA ONDA DE CORTE, SASW

4.1 Metodología de análisis

SITIO	DESCRIPCION				
0	Roca dura con velocidad de onda cortante				
4	∨s >1500				
в	Roca con velocidad de onda cortante				
	760 m/s < VS < 1500 m/s				
	Roca suave, suelo granular*, muy denso				
	(N>50) o suelo fino** con IP ≥ 8, de muy				
С	rígido a duro (Su >150 Kpa), todos ellos				
	con velocidades de onda cortante				
	360 m/s < VS < 760 m/s				
	Suelo granular" de medianamente denso a				
D	denso (15 \leq N \leq 50), o suelo lino 11 de				
U	ambas, con velocidad de ende cortante				
	180 m/s < VS < 360 m/s				
	Un perfil de suelo con velocidad de onda				
-	cortante VS < 180 m/s, o cualquier perfil con				
E	más de 3m de arcilla suave a media				
	(IP >20%, w>40%, y Su <50 kPa)				
	Suelo requeriendo una evaluación específica				
	de respuesta dinámica de sitio, cualquier				
	perfil de suelo que contenga uno o más de				
	las siguientes caracterísiticas geotécnicas:				
	 Suelos vulnerables a falla potencial 				
	colapso bajo carga sísmica:				
	Suelo licuables				
F	Arcillas rápidas y altamente				
Г	sensitivas				
	Suelos debilmente				
	Cementados colapsibles				
	2. Capas de turba y/o arcina altamente orgánica de más de 3m				
	3 Canas de arcilla de muy alta nlasticidad				
	(IP> 75%) de más de 8m				
	4. Capas de arcilla de suave a media				
	(Su < 50 kPa) con más de 36m				

National Eathquake Hazards Reduction Program

MEDICIONES DE LAS VELOCIDADES DE LA ONDA DE CORTE, SASW

4.3 Resultados de las mediciones

213ECU 214ECU 216ECU	La Pradera-2 Corner Perimetral Ave & 25 of July Ave, SOPEÑA Estadio Ramón Unamuno	D1
212ECU	Municipal Park Stalla Maris, GUASMO ESTE	D2
209ECU 210ECU 211ECU	Kennedy Baseball Field Guayaquil Yacht Club, Puerto Azul Municipal Hospital of Isla Trinitaria	D3
221ECU	Federación de Deportiva del Guayas, Miraflores	
218ECU 217ECU 219ECU	La Garzota District Nueva Terminal Internacional, Antiguo Jardin de la Salsa Duale River Site, Rivera de los Vergeles	D4
220ECU 222ECU	Ciudadela 2 de Julio (at Ave. Daule) La Prosperina (Cooperativa Santa Cecilia)	D5
215ECU	Chongon JP Camp	D6
	Zona de investigación geomecánica	D7

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

		SASW site ID #				Р	rof. (m)	
		209ECU	Kennedy Baseball Field				50	
		210ECU	Guavaguil Yacht Club, Puerto Azul				100	
		211ECU Municipal Hospital of Isla Trinitaria				82		
		212ECU	Municipal Park Stalla Maris, G	UASM	O EST	E	80	
		213ECU	La Pradera-2				65	
		214ECU	Corner Perimetral Ave & 25 of July Ave SOPEÑA			ΞÑΔ	60	$\langle - \rangle = \langle - \rangle$
		215ECU	Chongon (JP car	ny 770 n)	,		170	
		216ECU	Estadio Pamon Unar				30	
		210200	Estado Ramon Ona		din da		100	
		217ECU	Nueva Terminal Internacional, Anug	uo Jaro	ain de	la Salsa	100	
		218ECU	La Garzota Distri	ct			60	
		219ECU	Duale River Site, Rivera de los Vergeles				60	
		220ECU	Ciudadela 2 de Julio (at Ave. Daule)				60	
221ECU		221ECU	Federacion de Deportiva del Guayas, Miraflores			res	30	
		222ECU	La Prosperina (Cooperativa Santa Cecilia)				30	
		Total			total	(m) B =	977	
oreholes II	SASW sit	e ID #		СРТ	DCP	Veleta campo	Percusión y	lavado (SPT + Shelby)
GYE-01N	209ECU		Kennedy Baseball Field	17	25			35
GYE-02CH	210ECU		Guayaquil Yacht Club, Puerto Azul	12	23	5		51
GYE-035	211ECU		Municipal Hospital of Isla Trinitaria	13	19	6		80
GYE-04S	212ECU	Mu	nicipal Park Stalla Maris, GUASMO ESTE	14	21	8		36
GTE-055	213ECU	Corno	La Pradera-2		20	1		40
GTE-003	214ECU 215ECU	Come	Corner Perimetral Ave & 25 of July Ave, SOPENA		22	0		10
GYE-07C	216ECU		Estadio Ramon Unamuno		36	10	-	52
GYE-08N	217ECU	Nueva Ter	Nueva Terminal Internacional, Antiguo Jardin de la Salsa		20	10	40	
GYE-10N	218ECU		La Garzota District		23	15	33	
GYE-13N	219ECU	D	Duale River Site, Rivera de los Vergeles		18	7		40
GYE-12P	220ECU		Ciudadela 2 de Julio (at Ave. Daule)					15
GYE-09N	221ECU	Feder	acion de Deportiva del Guayas, Miraflores	19	22	10		40
GYE-11N	222ECU	La	Prosperina (Cooperativa Santa Cecilia)					15
		-		157	249	74	-	522
						total (m) A	=	1002

* se repitieron ensayos para verificar SPT

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.1 Metodología de los ensayos de campo

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.1.1 Ensayo de cono dinámico, DPT

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.1.2 Ensayo de cono estático eléctrico, CPT

5.1.2 Ensayo de cono estático eléctrico, CPT

Barras Ew de 1m de longitud;

Unión cónica y con un área de 2.55 cm2

Consola

Impresora, mediante señal de consola

Sensor de nivel

5.1.2 Ensayo de cono estático eléctrico, CPT

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.1.3 Ensayo de veleta de campo, VST

5.1.3 Ensayo de veleta de campo, VST

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.1.4 Ensayo de Penetración Estándar, SPT

Es de gran importancia La medición de la energía transmitida a las barras y al muestreador?

Tabla 7. Cambios en los valores de N dado por varios factores (De Kulhawy y Trautmann, 1996)

N-SPT V	Efectos relativos de lo			
Grupo	Item	resultados del ensayo		
Equipo	Muestreador no estándar Muestreador Deformado o dañado Diámetro/Peso de varillas Longitud de varillas Varillas deformadas Tipos de martillo Sistema de caída de martillo Peso del martillo Tamaño del bloque de impacto Clase de equipo de perforación	Moderado Moderado Menor Menor Moderado a significativo Significativo Menor Moderado a significativo menor		
Procesador/Operador	Tamaño del agujero Método de estabilización del agujero Limpieza del agujero Cabeza hidrostática insuficiente Preparación del muestreador Método de caída del martillo Error en el conteo de golpes	Moderado Menor a significante Moderado a significante Moderado a significante Moderado a significante Moderado a significante Moderado a significante		

Donde:

N60 = valor N corregido al 60% de la máxima energía teórica liberada por un martillo de

140 lbs que se deja caer desde 30 pulg.

Nfield = valor de SPT medido en el campo.

CE = factor de corrección de energía (ver Tabla 2)

ER= sistema de energía del martillo expresada como un porcentaje de la energía teórica de

un martillo de 140 lbs cayendo 30 pulg..

Eficiencias (ER) de martillos de la prueba SPT (adaptado de Clayton, 1990)

endo 30 pulg	Hamn Autom Safe Don	ner Correction Fac atic 1.3 ty 1.0 ut 0.75	ctor, C _E
Country	Hammer Type (per Figure 4.10)	Hammer Release Mechanism	Hammer Efficiency E , R
Argentina	Donut	Cathead	0.45
Brazil	Pin weight	Hand dropped	0.72
China	Automatic	Trip	0.60
	Donut	Hand dropped	0.55
	Donut	Cathead	0.50
Colombia	Donut	Cathead	0.50
Japan	Donut	Tombi trigger	0.78-0.85
	Donut	Cathead 2 turns + special release	0.65-0.67
UK	Automatic	Trip	0.73
115	Safatu	2 turns on cathead	0.55_0.60

 $C_{\rm E} = (E_{\rm f}/60)$

 $N_{60} = (E_f/60) N_{prom}$

$N_{60} = \frac{ER(C_B C_s C_R) N_{campo}}{0.60}$

Donde, ER, es la eficiencia del martillo, tabla C_B , factor de corrección por el diámetro de la perforación C_s , corrección de la muestra C_R , corrección por longitud de la barra

Factores de corrección (adaptado de Skempton, 1986)

Factor	Equipment Variables	Value	
Borehole diameter	65-115 mm (2.5-4.5 in)	1.00	
factor, C_B	150 mm (6 in)	1.05	
	200 mm (8 in)	1.15	
Sampling method	Standard sampler	1.00	
factor, C_S	Sampler without liner (not recommended)	1.20	
Rod length factor, C_R	3-4 m (10-13 ft)	0.75	
	4-6 m (13-20 ft)	0.85	
	6-10 m (20-30 ft)	0.95	
	>10 m (>30 ft)	1.00	

Efecto de la presión de confinamiento en arenas

≻La resistencia a la penetración de materiales pocos cohesivos (arenas) dependen fuertemente de la presión de confinamiento.

>Multiplicando N60 por C_N, los efectos de la presión de confinamiento son compensados.

Considerando la ecuación propuesta por Liao y Whitman (1986) se determina el valor de (N1)₆₀ como:

Variabilidad de le Energía por profundidades

SPT Analyzer.

- El equipo procesa automáticamente las señales que se producen debido a la propagación e la onda compresional, y automáticamente y en tiempo real integra la aceleración para obtener la velocidad de la partícula en la barra v(t).
- Usando la ley de Hooke, y del registro tiempo historia de la deformación unitaria c(t), se obtiene el registro de la fuerza F(t). Los instrumentos fueron calibrados en las oficinas de Pile Dinamic Inc, Cleveland, OH.

La energía transmitida se la midió como, la integral:

$$EFV = \int_{t=0}^{t=t \max} F(t) \cdot v(t) dt$$

t_{max} = el tiempo en el cual se produce la energía máxima entre el tiempo t0 y el final del registro
 F(t) = la medición del registro fuerza-tiempo
 v(t) = la medición del registro de velocidad-tiempo

A esta relación se la conoce como el método Fuerza- Velocidad, EFV

Barra Instrumentada AWJ

Se colocaron:

Dos acelerómetros piezoresistente diametralmente opuesto, sobre un bloque de acero

Dos medidores de deformación (Strain Gages) soldados a la barra.

Barrad de 60 cms de longitud tipo AWJ

Instrumentos fueron conectados en un Analizador de señales, SPT AnalyzerTM (Pile Dynamics Inc.2000)

Martillo tipo SAFETY

Diferencias entre el martillo Safety (SEGURO) y el Donut (Usado en la Ciudad de Guayaquil)

Cambios en los valores de N dado por varios factores (Kulhawy y Trautmann, 1996)

N-SPT V	Efectos relativos de los	
Grupo	Item	resultados del ensayo
Equipo	Muestreador no estándar Muestreador Deformado o dañado	Moderado Moderado
	Diametro/Peso de varillas Longitud de varillas Varillas deformadas	Menor Menor Menor
	Tipos de martillo Sistema de caída de martillo	Moderado a significativo Significativo
	Tamaño del bloque de impacto Clase de equipo de perforación	Moderado a significativo menor
Procesador/Operador	Tamaño del agujero Método de estabilización del agujero Limpieza del agujero Cabeza hidrostática	Moderado Menor a significante Moderado a significante Moderado a significante
	insuficiente Preparación del muestreador Método de caída del martillo Error en el conteo de golpes	Moderado a significante Moderado a significante Menor

CE =(ER/60)

N60 = (ER/60) Nprom

Barra Instrumentada AWJ

Dimensiones: DE:44.5mm DI: 34mm A: 6.47cm² L:600mm

CE, Usando Martillo tipo DONUT

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Profundidad

VARIABILIDAD DE LA ENERGIA DE IMPACTO EN EL ENSAYO DE PENETRACION ESTANDAR, GUAYAQUIL 2005

Martillo DONUT y barras AW Energía							
Profundidad (m) % ER C _E							
15-	22	45,5	0,76	0,05			
22-	30	47,5	0,79	0,06			
30-	35	49	0,82	0,09			
35-	40	55	0,92	0,06			
Martillo SAFETY y barras AW Energía							
Profundi	idad (m)	% ER	CĘ	cov			
15-	40	61	1.02	0.02			
	Tabla de Marillo	%ER	CE				
	Anular ("Donut")	45	0.75				
Seed, et al 1985	De Seguridad (Safety)	60	1				
	Automatico	100	1.67				
	Anular ("Donut")	30 a 60	0.5 a 1.0				
Youd e Idriss, 1997	De Seguridad (Safety)	42 a 72	0.7 a 1.2				
	Automatico	48 a 70	0.8a1.3				
Gua 2005	DONUT	45-55	0.76-0.92				
096,2000	SAFETY	61-63	1.02-1.04				

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

- Contenido de humedad natural
- ✓ Límites de Atterberg
- Granulometría
- ✓ Compresión sin confinar (simple)
- ✓ Consolidación
- Clasificación de Suelos
- Densidad de sólidos

norma ASTM D2216

norma ASTM D4318

norma ASTM D422

norma ASTM D2166

norma ASTM D2435-90

norma ASTM D2487

norma ASTM D854

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.2.1 Estimación de la superficie especifica (Se) de los suelos finos

10.0 gr de suelo secado a horno en 30 ml de agua desionizada.

1.0 gr de polvo seco de AM, en
 200 ml de agua desionizada.

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.2.1 Estimación de la superficie especifica (Se) de los suelos finos

$$S_{e} = \frac{1gr}{319.87 \, gr \, / \, mol} \cdot \frac{1}{200 \, ml} \cdot (N) \cdot N_{AV} \cdot A_{AM} \cdot \frac{1}{10 \, gr}$$

Donde:

 N_{AV} = 6.02 x 1023 moléculas/mol es el Número de Avogadro A_{AM} es el área cubierta por un catión de AM, asumida generalmente en 130 *A*

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.2.2 Estimación del ángulo de fricción en el estado crítico

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.2.3 Estimación de la redondez y esfericidad de las arenas

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.2.3 Estimación de la redondez y esfericidad de las arenas

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.3 Resultados de las mediciones de las propiedades geotécnicas

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.3 Resultados de las mediciones de las propiedades geotécnicas

CAPITULO 5 MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.3 Resultados de las mediciones de las propiedades geotécnicas

Zona Geotecnica D1 Deltaico Estuarino Este Centro

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIC

5.3 Resultados de las mediciones de las propiedades geotécnicas

Zona Geotecnica D2 Deltáico Estuarino Sur

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.3 Resultados de las mediciones de las propiedades geotécnicas

Zona Geotecnica D3 Deltáico Estuarino Oeste Norte Trinitaria

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.3 Resultados de las mediciones de las propiedades geotécnicas

Zona Geotecnica D4 Llanura Aluvial Norte

H < 10m

10 < H < 20m

MEDICIONES DE LAS PROPIEDADES GEOTECNICAS EN CAMPO Y LABORATORIO

5.3 Resultados de las mediciones de las propiedades geotécnicas

H > 20m

Zona Geotecnica D4 Llanura Aluvial Norte

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.1 Ecuaciones de correlación en función de los ensayos de laboratorio

6.1.1 Ecuaciones de correlación en función de la resistencia al esfuerzo cortante no drenado (Su), el índice de liquidez (IL) y la rigidez (G_{max})

Zona geotécnica D1, Deltáico-Estuarino (Este-Centro)

$$G_{max} = (95 \cdot \frac{Su}{IL} + 870) \cdot \sigma'_{vo}$$

COV: 0.25

Zona geotécnica D2, Deltáico-Estuarino (Sur)

$$G_{max} = (35 \cdot \frac{Su}{IL} + 3325) \cdot \sigma'_{vo}$$

COV: 0.15

Donde Gmax = (t/m²), Su = (t/m²), σ 'vo = (t/m²), IL= %

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.1 Ecuaciones de correlación en función de los ensayos de laboratorio

6.1.1 Ecuaciones de correlación en función de la resistencia al esfuerzo cortante no drenado (Su), el índice de liquidez (IL) y la rigidez (G_{max})

Zona geotécnica D3, Deltáico-Estuarino (Oeste–Norte-Trinitaria)

$$G_{max} = (625 \cdot \frac{Su}{IL} + 70) \cdot \sigma'_{vo}$$

COV: 0.35

Zona geotécnica D4, Llanura aluvial (Norte)

$$G_{max} = (60 \cdot \frac{Su}{IL} + 1000) \cdot \sigma'_{vo}$$

COV: 0.23

Donde Gmax = (t/m²), Su = (t/m²), σ 'vo = (t/m²), IL= %

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.1.1 Ecuaciones de correlación en función de la resistencia al esfuerzo cortante no drenado (Su), el índice de liquidez (IL) y la rigidez (Gmax)

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.1 Ecuaciones de correlación en función de los ensayos de laboratorio

6.1.1 Ecuaciones de correlación en función de la resistencia al esfuerzo cortante no drenado (Su), el índice de liquidez (IL) y la rigidez (G_{max})

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.1 Ecuaciones de correlación en función de los ensayos de laboratorio

6.1.2 Ecuaciones de correlación para estimar el valor de la superficie específica (Se) de las series arcillosas

Zona	Rango	de datos I	LL (%)	Se (m2/gr) PH Ecuar Fluido en los de		Se (m2/gr)		Ecuación de
Zona	Min	Max	Rango	Min	Max	Rango	poros del suelo	estimación
Deltáico Estuarino (Este Centro)	60	100	40	49	185	136	7.7	Se= 3.4 LL - 155
Deltáico Estuarino (Sur)	60	100	40	51	155	104	7,0	Se= 2.6 LL - 105
Deltáico Estuarino (Oeste Norte Trinitaria)	40	100	60	110	260	150	7.8	Se= 2.5 LL + 10

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.1.2 Ecuaciones de correlación para estimar el valor de la superficie específica (Se) de las series arcillosas

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.1.3 Ecuaciones de estimación de la resistencia al esfuerzo cortante no drenado para la arcilla gris verdosa de la ciudad de Guayaquil, CH, en estado normalmente consolidado (NC).

$$\frac{S_{u.torv}}{\sigma_{vo}} = 0.11 + 0.0037IP$$
Skempton 1957

Zona geotécnica D1, Deltáico-Estuarino (Este-Centro)
$$\frac{S_{u.torv}}{\sigma_{vo}} = 0.23 + 0.0037IP$$

$$\frac{S_{u.VST}}{\sigma_{vo}} = 0.35 + 0.0037IP$$
Zona geotécnica D3, Deltáico-Estuarino (Oeste-Norte-Trinitaria)

$$\frac{S_{u.torv}}{\sigma_{vo}} = 0.23 + 0.0037IP$$

Zona geotécnica D4, Llanura aluvial (Norte)

$$\frac{S_{u..torv}}{\sigma_{vo}} = 0.20 + 0.0037IP$$

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

CAPITULO 6 ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.2. Ecuaciones de correlación en función de los ensayos de campo.

6.2.1 Ecuaciones de correlación entre la resistencia al esfuerzo cortante no drenado Su y la resistencia de punta del cono estático qc.

$$Su = \frac{q_c - \sigma_{vo`}}{N_{Kv}}$$

Donde Su VST

Su =	$\underline{q_c} - \sigma_{vo^{}}$
5 <i>u</i> –	$N_{\scriptscriptstyle KT}$

Donde Su _{TOR}

ZONA	Factor N _{Kx}
D1: DELTAICO-ESTUARINO (ESTE-CENTRO)	24 – 25
D2: DELTAICO ESTUARINO (SUR)	17
D3: DELTAICO ESTUARINO (OESTE-NORTE-TRINITARIA)	15 – 20
D4: LLANURA ALUVIAL (NORTE)	27

ZONA	Factor Ν _{κτ}
D1: DELTAICO-ESTUARINO (ESTE-CENTRO)	25 – 27
D2: DELTAICO ESTUARINO (SUR)	22
D3: DELTAICO ESTUARINO (OESTE-NORTE-TRINITARIA)	15 – 18
D4: LLANURA ALUVIAL (NORTE)	20

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.2. Ecuaciones de correlación en función de los ensayos de campo.

6.2.1 Ecuaciones de correlación entre la resistencia al esfuerzo cortante no drenado Su y la resistencia de punta del cono estático qc.

$$Su = \frac{q_c - \sigma_{vo}}{N_{Kqu}}$$

Donde Su _{qu/2}

ZONA	Factor N _{Kgu}
D1: DELTAICO-ESTUARINO (ESTE-CENTRO)	27 – 31
D2: DELTAICO ESTUARINO (SUR)	25
D3: DELTAICO ESTUARINO (OESTE-NORTE-TRINITARIA)	17 – 21
D4: LLANURA ALUVIAL (NORTE)	22

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.2.1 Ecuaciones de correlación entre la resistencia al esfuerzo cortante no drenado Su y la resistencia de punta del cono estático qc.

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.2. Ecuaciones de correlación en función de los ensayos de campo.

6.2.2 Ecuaciones de correlación para la estimación de la sensitividad mediante el valor de qc

 $St = \frac{Rf}{N_{Kf}}$

$$Rf = \frac{fs}{qc} * 100$$

$$St = \frac{fs}{qc * N_{Kf}} \cdot 100$$

ZONA	Factor N _{Kf}
DELTAICO- ESTUARINO (ESTE- CENTRO)	4
DELTAICO ESTUARINO (SUR)	5
DELTAICO ESTUARINO (OESTE- NORTE- TRINITARIA)	4.5
LLANURA ALUVIAL (NORTE)	6

CAPITULO 6 ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.3. Correlación entre la resistencia por punta del cono estático qc y la resistencia por punta del cono dinámico qd.

$$q_{d} = N_{Kd} \cdot q_{c}$$

ZONA	Factor N _{Kd}	Cov
DELTAICO-ESTUARINO (ESTE-CENTRO)	6.2	0.1
DELTAICO ESTUARINO (SUR)	6.5	0
DELTAICO ESTUARINO (OESTE-NORTE-TRINITARIA)	7.6	0.38
LLANURA ALUVIAL (NORTE)	8	0

ECUACIONES DE CORRELACION PARA ETIMACION DE LOS DIFERENTES PARAMETROS GEOTECNICOS

6.4. Ecuaciones de correlación para estimar los esfuerzos de preconsolidación de los suelos en función de la Velocidad de onda de corte V_s .

$$\sigma_{p}^{'} = N_{kP} \cdot V_{S}^{1.47}$$

ZONA	Factor N _{Kp}	Cov
Deltáico Estuarino (Este Centro)	2.30	0.13
Deltáico Estuarino (Sur)	0.80	0
Deltáico Estuarino (Oeste Norte Trinitaria)	1.46	0.62
Llanura Aluvial (Norte)	2.12	0.12

ECUACIONES DE CORRELACION PARA ESTIMAR LAS VELOCIDADES DE LAS ONDAS DE CORTE

7.1 Ecuaciones de correlación en función del Su, resistencia al esfuerzo cortante no drenado.

Zona geotécnica D1, Deltáico-Estuarino (Este-Centro)

OCR = 1-2

$\mathbf{V}_{\mathrm{S}} = \left(\mathbf{Q} 5 \cdot \mathbf{S}_{\mathrm{U}} + 175 \right) \frac{\sigma_{\mathrm{vo}} \cdot \mathbf{g}}{\gamma}$	$\bigg)^{\frac{1}{2}}$
--	------------------------

COV: 0.40

OCR > 2

$$\mathbf{V}_{\mathrm{S}} = \left(\mathbf{45} \cdot \mathbf{S}_{\mathrm{U}} + 400 \right] \cdot \frac{\sigma_{\mathrm{vo}} \cdot \mathbf{g}}{\gamma} \right)^{1/2}$$

COV: 0.50

Zona geotécnica D2, Deltáico-Estuarino (Sur)

OCR = 1-2

$$\mathbf{V}_{\mathrm{S}} = \left(\mathbf{4}50 \cdot \mathbf{S}_{\mathrm{U}} + 500 \mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{5}}}}}}^{\mathbf{\mathbf{\mathbf{\mathbf{5}}}} \cdot \mathbf{\mathbf{\mathbf{\mathbf{g}}}}}_{\mathbf{\mathbf{\mathbf{\gamma}}}} \right)^{1/2}$$

COV: 0.23

OCR > 2

$$\mathbf{V}_{\mathrm{S}} = \left(\mathbf{\P} \mathbf{0} \cdot \mathbf{S}_{\mathrm{U}} + 1000 \mathbf{\mathcal{P}} \frac{\mathbf{\sigma}_{\mathrm{vo}} \cdot \mathbf{g}}{\gamma} \right)^{1/2}$$

COV: 0.10

ECUACIONES DE CORRELACION PARA ESTIMAR LAS VELOCIDADES DE LAS ONDAS DE CORTE

7.1 Ecuaciones de correlación en función del Su, resistencia al esfuerzo cortante no drenado.

Zona geotécnica D3, Deltáico-Estuarino (Oeste–Norte-Trinitaria) OCR = 1-2

$$\mathbf{V}_{\mathrm{S}} = \left(\mathbf{O} \cdot \mathbf{S}_{\mathrm{U}} + 145 \mathbf{E} \frac{\mathbf{\sigma}_{\mathrm{vo}} \cdot \mathbf{g}}{\gamma} \right)^{1/2}$$

COV: 0.30

OCR > 2

$$\mathbf{V}_{\mathrm{S}} = \left(\mathbf{Q} \cdot \mathbf{S}_{\mathrm{U}} + 70 \mathbf{E} \frac{\mathbf{\sigma}_{\mathrm{vo}} \cdot \mathbf{g}}{\gamma} \right)^{\frac{1}{2}}$$

COV: 0.16

Zona geotécnica D4, Llanura aluvial (Norte)

OCR = 1-2

$$\mathbf{V}_{\mathrm{S}} = \left(\mathbf{O} \cdot \mathbf{S}_{\mathrm{U}} + 250 \underbrace{]}{\frac{\sigma_{\mathrm{vo}} \cdot \mathbf{g}}{\gamma}}^{1/2} \right)^{1/2}$$

COV: 0.35

COV: 0.14

OCR > 2

CAPITULO 7 ECUACIONES DE CORRELACION PARA ESTIMAR LAS VELOCIDADES DE LAS ONDAS DE CORTE

7.2 Ecuaciones de correlación en función de la resistencia de punta de cono, q_c

$$V_{s} = \sqrt{\frac{3gq_{c}}{2N_{kc}\gamma_{s}(1+\upsilon)}} e^{\frac{3N_{kc}-4}{4} - \frac{1}{2\beta}}$$
$$V_{s} = \sqrt{\eta q_{c}} e^{\alpha}$$
$$\alpha = \frac{3N_{kc}-4}{4} - \frac{1}{2\beta} \qquad \eta = \frac{3g}{2N_{kc}\gamma_{s}(1+\upsilon)}$$

Romo y Ovando (1992)

CAPITULO 7 ECUACIONES DE CORRELACION PARA ESTIMAR LAS VELOCIDADES DE LAS ONDAS DE CORTE

7.2 Ecuaciones de correlación en función de la resistencia de punta de cono, qc

$$V_{S} = N_{kc} \cdot qc$$

ZONA	Rango Factor N _{KC}
D1: DELTAICO-ESTUARINO (ESTE-CENTRO)	1.30 – 1.50
D2: DELTAICO ESTUARINO (SUR)	2.75 – 2.95
D3: DELTAICO ESTUARINO (OESTE-NORTE-TRINITARIA)	2.00 – 3.00
D4: LLANURA ALUVIAL (NORTE)	1.50 – 1.70

ECUACIONES DE CORRELACION PARA ESTIMAR LAS VELOCIDADES DE LAS ONDAS DE CORTE

7.3 Ecuaciones de correlación en función del NSPT, número de golpes de la prueba de penetración estándar.

Algunas Coorrelaciones existentes de Vs-N (SPT)				
TIPO DE SUELO	Vs (m/s)	Autor		
	$Vs = 32 N^{0.5}$	Shibata (1970)		
	$Vs = 87 N^{0.36}$	Ohta (1972)		
	$Vs = 88 N^{0.34}$	Ohta y Goto (1978)		
Arena	$Vs = 80 N^{(1/3)}$	JRA (1980)		
Arena	$Vs = 56 N^{0.5}$	Seed (1983)		
	$V_{s} = 81 N^{0.33}$ (holocene)	lmai (1977)		
	Vs=97 N ^{0.32} (Pleistocene)	lmai (1977)		
	$Vs = 57 N^{0.49}$	Lee (1990)		
	$Vs = 100 N^{(1/3)}$	JRA (1980)		
Arcilla	Vs = 114 N ^{0.31}	Lee (1990)		
Arcina	$V_s = 102 N^{0.29}$ (holocene)	lmai (1977)		
	$V_{s} = 114 \text{ N}^{0.29}$ (Pleistocene)	lmai (1977)		
Limos	$Vs = 106 N^{0.32}$	Lee (1990)		
Aluviales	$V_{s} = 85 N^{0.31}$	Ohba y Toriuma (1970)		
Friccionantes	$Vs = 59 N^{0.47}$	Ohsaki y Iwasaki (1973)		
Gravas	$Vs = 94 N^{0.34}$	Ohta y Goto (1978)		
Granulares (Granular)	$Vs = 100 N^{0.29}$	Sykora y Stokoe (1983)		
Arenas diluviales (Dilluvial Sands)	$Vs = 125 N^{0.3}$	Okamota (1989)		
	$V_{s} = 19 N^{0.6}$	Kanai (1966)		
	$Vs = 82 N^{0.39}$	Ohsaki y Iwasaki (1973)		
	$Vs = 92 N^{0.329}$	Imai y Yoshimura (1975)		
	$Vs = 90 N^{0.341}$	lmai (1975)		
	$Vs = 91 N^{0.337}$	lmai (1977)		
Todos	$Vs = 85 N^{0.348}$	Ohta y Goto (1978)		
10003	$V_{e} = 61 N_{0.214}^{0.5}$	Seed y Idriss (1981)		
	$Vs = 97 N^{0.314}$	Imai y Tonouchi (1982)		
	$Vs = 76 N^{0.33}$	Imai y Yoshimura (1990)		
	$V_8 = 121 \text{ N}^{0.27}$	Yokota (1991)		
	$V_{\rm S} = 22 {\rm N}^{3.03}$	Jafari (1997)		
	$Vs = 84 N^{0.51}$	Obha y Toriumi (1970)		
Note: This N values are for Ja	panese practice. The N values in Jap	anese practice is considered to be		

ECUACIONES DE CORRELACION PARA ESTIMAR LAS VELOCIDADES DE LAS ONDAS DE CORTE

7.3 Ecuaciones de correlación en función del NSPT, número de golpes de la prueba de penetración estándar.

ESTIMACION DEL PERFIL DE VELOCIDAD DE ONDAS DE CORTE

ESTIMACION DEL PERFIL DE VELOCIDAD DE ONDAS DE CORTE

ESTIMACION DEL PERFIL DE VELOCIDAD DE ONDAS DE CORTE

ESTIMACION DEL PERFIL DE VELOCIDAD DE ONDAS DE CORTE

CAPITULO 9 CONCLUSIONES Y RECOMENDACIONES

Aporte a los ingenieros consultores y diseñadores
Según el modelo de clasificación NERPH, FEMA 302 los suelos de la zona deltáico estarino este centro, oeste norte y trinitaria de la ciudad de guayaquil son de tipo F

SITIO	DESCRIPCION
۵	Roca dura con velocidad de onda cortante
~	∨s >1500
в	Roca con velocidad de onda cortante
	760 m/s < VS < 1500 m/s
	Roca suave, suelo granular*, muy denso
~	(N>50) o suelo fino** con IP ≥ 8, de muy
C	rigido a duro (Su >150 Kpa), todos ellos
	con velocidades de onda cortante
	uolo granular≛ de medianamente dense a
р	denso (15 < N < 50), o suelo fino** de
	rígido a muy rígido (50 kPa \leq Su \leq 150 kPa)
2	ambos con velocidad de onda cortante
	180 m/s < VS < 360 m/s
E	Un perfil de suelo con velocidad de onda
	cortante VS < 180 m/s, o cualquier perfil con
	más de 3m de arcilla suave a media
	(IP >20%, w>40%, y Su <50 kPa)
	Suelo requeriendo una evaluación específica
	de respuesta dinámica de sitio, cualquier
	perfil de suelo que contenga uno o más de
	las siguientes caracterísiticas geotécnicas:
F	 Suelos vulnerables a falla potencial
	colapso bajo carga sísmica:
	Suelo licuables
	Arcillas rápidas y altamente
	sensitivas
	Suelos debilmente
	cementados colapsibles
	2. Capas de turba y/o arcilla altamente
	orgánica de más de 3m
	 Capas de arcilla de muy alta plasticidad
	(IP> 75%) de más de 8m
	4. Capas de arcilla de suave a media
	(Su < 50 kPa) con más de 36m

NEHRP, FEMA 302 □ Vs30 (m/s) SITE SUB CLASS: Vs30 (m/s) >1500 m/s Vs eq (m/s) 1080 < Vs30 ≤ 1500 m/s 720 < Vs30 ≤ 1080 m/s 600 540 < Vs30 ≤ 720 m/s 360 < Vs30 ≤ 540 m/s 70 < Vs30 ≤ 360 m/s</p> 550 30 < Vs30 ≤ 270 m/s <180 m/s Special Soil Condit 500 450 Depositos Coluvial, aluvio lacustre v formación rocosa 400 Vs = 180 m/s (umbral para suelos tipo E) 350 Depositos Llanura aluvial 300 Depositos Deltaico-estuarinos 250 200 150 100 F F. D-F D-Е Е D C+ C-F F 50 209ECU 210ECU 211ECU 212ECU 213ECU 214ECU 216ECU 221ECU 217ECU 218ECU 219ECU 220ECU 222ECU 215ECU

D1: Zona Deltáico Estuarino Este Centro
D2: Zona Deltáico Estuarino Sur
D3: Zona D. E (Oeste Norte Trinitaria)
D4: Llanura Aluvial Norte

113<V_{s30}<155

106<V_{s30}<146 140<V_{s30}<190

*Pasante del tamiz #200 <50% y 50% con IP<8% ** Pasante del tamiz #200 >50% con IP≥8%

En los puntos 2,4,5,6 existen mayores concentraciones de agua salada,;mientras que en las zonas este-centro y zona sur donde existen más influencia de la ría Guayas no.

Zona	Rango de datos LL (%)			Se (m2/gr)			PH Fluido en los	Ecuación de
	Min	Max	Rango	Min	Max	Rango	poros del suelo	estimación
Deltáico Estuarino (Este Centro)	60	100	40	49	185	136	7.7	Se= 3.4 LL - 155
Deltáico Estuarino (Sur)	60	100	40	51	155	104	7,0	Se= 2.6 LL - 105
Deltáico Estuarino (Oeste Norte Trinitaria)	40	100	60	110	260	150	7.8	Se= 2.5 LL + 10

>A superficie específica más alta, sus depósitos poseen estructuras más abiertas lo cual induce a tener velocidades de la onda de corta más bajas.

$$V_{s} = N_{kc} \cdot qc$$

ZONA	Rango Factor N _{KC}
D1: DELTAICO-ESTUARINO (ESTE-CENTRO)	1.30 - 1.50
D2: DELTAICO ESTUARINO (SUR)	2.75 – 2.95
D3: DELTAICO ESTUARINO (OESTE-NORTE-TRINITARIA)	2.00 - 3.00
D4: LLANURA ALUVIAL (NORTE)	1.50 - 1.70

Tipo de suelo	% de finos	Prof. (m)	а	b
Arcilla/limo	> 50	< 30	130	0.145
	<40	< 20	105	0.23
		20 - 30	100	0.3
		>30	120	0.3
		<20	-	-
	20 - 40	20 - 30	93	0.28
Arena/Arena limosa/Arena		> 30	108	0.32
arcillosa	10 - 20	<20	-	-
		20 - 30	60	0.4
		> 30	62	0.42
	< 10	< 20	105	0.22
		20 - 30	93	0.26
		> 30	100	0.25

BAJA EFICIENCIA

Note: Occasional Fourth Increment Used

SPT Resistance (N-value) or "Blow Counts" is total number of blows to drive sampler last 300 mm (or

ALTA EFICIENCIA

Note: Occasional Fourth Increment Used to provide additional soil material

SPT Resistance (N-value) or "Blow Counts" is total number of blows to drive sampler last 300 mm (or blows per foot).

Third Increment

