
3º Evaluación – Instalaciones Eléctricas Industriales /100 ptos. 1T-2010

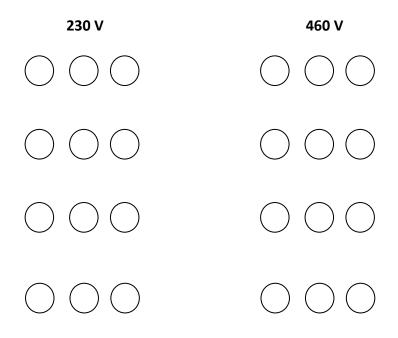
Tema 1.- (20ptos.) Considérese el sistema industrial de la Figura. El sistema consiste de dos barras IND1 e IND2 conectadas a través de una línea corta, trifásica y de cuatro hilos. La compañía de servicio eléctrico alimenta el sistema a través de un transformador 69kV/13.8 KV. Un puente trifásico de conmutación natural es conectado a la barra IND2. Determine la o las frecuencias de resonancias del sistema. Explique.

Los datos del sistema son:

- 1. Empresa de suministro: 69 KV, barra infinita.
- 2. Transformador: 69KV-Δ/13,8KV-Y-t, 20.000 KVA, R=0.5% y X=8%.
- 3. Línea: línea de distribución corta trifásica con hilo a tierra R=0.38 ohms y X=1.14 ohms.
- 4. Carga en IND1: 10.000 KW, 0,85 fp atraso, (en esta carga, el 60% es motriz).
- 5. Carga en IND2: 3.000 KW, 0,9 fp atraso.
- 6. Puente convertidor en IND2: Rectificador trifásico de conmutación, 5.000 KW, 0.85 fp atraso
- 7. El rectificador produce un espectro característico en sus magnitudes armónicas de fase y amplitud.
- 8. Corrección del factor de potencia: capacitores en IND1 y IND2 (hacen una compensación total de la carga).

Tema 2.- (20ptos.) Menciones 5 funciones que cumple un sistema de puesta a tierra.

Tema 3.- (10ptos.) Generación: Cuando se aplica el "Standby Power rating" y el "Continuous Power Rating" en el dimensionamiento de Generadores Eléctricos. Explique.


Tema 4.- (20ptos.) Con la siguiente información realizar la corrección del factor de potencia en el lado de baja. Medición en alta: Tc 50:5; Tp 8400/120. Transformador de la Subestación 1500KVA - Delta / Y - 13.8 KV/230-127V - Z 4.19%. Realizar un diagrama unifilar del banco de capacitores diseñado.

Datos tabulados de planillas eléctricas (lado 13.8 Kv).

KW/hr		KVAR/hr			
actual	anterior	actual	anterior	A (resto de horas)	B (horas pico)
6106	5476	4250	3917	1,56	1,15
6740	6106	4620	4250	1,56	1,20
7400	6740	4931	4620	1,50	1,43
8105	7400	5289	4931	1,47	1,22
8745	8105	5675	5289	1,47	1,14
9475	8745	6125	5675	1,13	1,10

Tema 5.- (20ptos.) Mediante un diagrama de flujo indique el proceso a seguir en el dimensionamiento de un conductor eléctrico para una acometida a un tablero de distribución en una instalación eléctrica industrial.

Tema 6.- (20ptos.) Motor de 12 terminales 230V / 460V. Realice las conexiones.

