a) Aumenta la porosidad en la Pasta de cemento

TECNOLOGÍA DEL HORMIGÓN I APORTE (A)

1. (10%) La reducción del contenido de agua en el hormigón provoca los siguientes

b) Reduce la contr c) Incrementa la t d) Disminuye la D e) ninguna de las a	rabajabilidad o urabilidad.				
• •	iormigón de Pe	eso normal tiene	una gravedad especíí	ica que fluctúa	
entre: A) 2.6 – 2.8 anteriores.	B	2.2 – 2.4	C) 1.8 – 2.0	D) Ninguna de	•
3. Trabajabi	lidad en el Hor	migón se define	como:		
b)Economía de c)Facilidad de d)Todas las an 4. (10%)El d	e una mezcla, o mezclado,colo iteriores. iámetro del cili	cación, compact indro para elabo	s estructuras. o masivo de mano de ación y terminado en rar muestras de horn	estado fresco.	D
A) 4 veces el T	MA B) a de las anterio	3 veces el TMA	C) 2 veces el TMA	4	
		on permitida (AS a su ensayo es:	TM C39) altura/diám	netro (A/D) en una	
A) 0.5	B) 1.5	O 1.0	D) 0.25.		
	·				
1 3 13 11 - 2		<	2.289 2 3 2.00, 2 2.00, 3 2.00, 3 2.00, 3 3	2500-2 000-1 1/300-1 1/00/1	CENTRAL POR NA ACENT

6. (20 %)De los siguientes límites granulométricos, determine el módulo de finura (SERIE COMP.)
promedio especificado.

			1 1/01/11
ABERTURA (mm.)	ABERTURA (pulgadas)	% QUE PASA ACUMULADO	"RET. ACUM.
25.4	1	100	> 0
19.1	3/4	84-100	_> 8 ′
12.5	1/2	73-91	-> 18 ×
9.5	3/8	62-81 -	> 28.5
4.76	Nº 4	51-69	1 \40 /
2.38	Nº 8	39-58	51.5
1.19	Nº 16	29-48	J> 61.5°
0.595	Nº 30	20-38]>71 V
0.296	N° 50	12-29]>79.51
0.149	Nº 100	7-20	> 86.5 /
0.074	N° 200	2-10	> qu 💉

$$R_{P} = \frac{426.5}{100} = 4.27$$

7. (30%)Se dispone de la siguiente dosificación de hormigón convencional en condición sss.

Materiales	Peso kg/m3		
Piedra #67	1000		
Arena	700		
Cemento	400		
Agua añadida	200		

Materiales	Absorciones (%)	Humedades (%)	Gravedad específica
Piedra #67	1.5	3.0	2.6
Arena	3.0	1.5	2.55
Cemento			3.15
Agua			1.0

Calcular la dosificación en estado natural.

CONDICION SECA.

MATERIAL. PESO (Kg)

PH 67
$$1000/(1+\frac{1.5}{100}) = 985.2$$

ARENA $700/(1+\frac{3.0}{100}) = 679.6$

CEMENTO $400 = 400.0$

AGUA $2300-985.2-679.6-400 = 235.2$
 $2300 \times 8/m^3$