ÍNDICE GENERAL

2501	INACNI	Página
KESU	JMEN	II
NDIC	CE GENERAL	III
ABRE	EVIATURAS	IV
SIMB	OLOGIA	V
NDIC	CE DE FIGURAS	VI
NDIC	CE DE TABLAS	VII
NTR	ODUCCIÓN	1
CAPÍ	TULO 1	
1. IN	IFORMACIÓN GENERAL	3
1.1	Antecedentes y justificación	3
1.2	Planteamiento del problema	7
1.3	Objetivos	9
	1.3.1 Objetivo General	g
	1.3.2 Objetivo Específicos	9
1.4	Metodología utilizada	9
	1.4.1 Trabaio de Campo	10

1.4.1.1 Recolección de muestras10
1.4.2 Trabajo de laboratorio11
1.4.2.1 Preparación de las muestras12
1.4.2.2 Equipos, materiales e insumos analíticos14
1.4.2.3 Metodología de Análisis19
CAPÍTULO 2
2. ESTADO DEL ARTE DE LAS NANOARCILLAS26
2.1 Generalidades26
2.1.1 Montmorillonita31
2.1.2 Modificadores Orgánicos37
2.1.3 Nanoarcillas39
Aplicación de nanoarcillas a matrices poliméricas y pinturas 43
2.2 Otras aplicaciones de las nanoarcillas47
2.3 Nanoarcillas en el Ecuador48
CAPÍTULO 3
3. PROCESO PARA PREPARACION DE NANOARCILLAS51
3.1 Obtención de la fracción arcilla51
3.1.1 Eliminación de la materia orgánica52
3.1.2 Eliminación de carbonatos55

	3.1.3	Recuperación fracción arcilla	57
3.2	Obter	nción de la Montmorillonita	62
	3.2.1	Intercambio Catiónico	62
	3.2.2	Purificación de Montmorillonita	66
3.3	Prepa	aración de nanoarcillas	67
CAPÍ ⁻	TULO 4	4	
4. RE	ESULT	ADOS Y DISCUSION DE LA CARACTERIZACION	70
4.1	Análi	sis granulométrico	72
4.2	Difrac	ción de rayos X	72
	4.2.1	Difracción de rayos X en fracción arcilla cálcica	73
	4.2.2	Difracción de rayos X en fracción arcilla sódica	74
	4.2.3	Difracción de rayos X en arcillas modificada a	
		nivel nanomolecular con sales de alkilomonio	78
4.3	Capa	cidad de Intercambio Catiónico (CEC), Análisis de superficie	
	espec	cífica y porcentaje de Montmorillonita	80
4.4	Anális	sis Térmico Gravimétrico y Térmico Diferencial	80
4.5	Anális	sis por Espectroscopia por Infrarrojo	84
4.6	Análisis por Microscopía Electrónica de Barrido (SEM)		

CAPÍTULO 5	
5. DISCUSION DE RESULTADOS	88
5.1 Conclusiones y Recomendaciones	39
APENDICE.	
REFERENCIAS BIBLIOGRAFICAS.	

ABREVIATURAS

ASTM American Society for Testing and Materials

ATD Curvas térmicas diferenciales ATG Curvas Térmicas Gravimétricas B.E.T. Brunauer, Emmett y Teller

CEC Capacidad de intercambio Catiónico

CIAP Centro de Investigaciones Aplicadas de Polímeros

DEGEO Departamento de Geología. EPN Universidad Politécnica Nacional

EPSA Departamento de Ingeniería Mecánica y de Materiales de la

Politécnica de Alcoy

ETSI Minas Escuela Técnica Superior de Ingeniería de Minas

FIMCP Facultad de Ingeniería Mecánica y Ciencias de la Producción

GA-1 Muestra 1 del Grupo Ancon.

GPS Sistema de posicionamiento global

HTM8-MS Dehydrogenated Tallow, 2e-thylhexyl quaternary ammonium

LUDA Laboratorio de la Universidad de Azuay

MBI Índice de azul de metileno msnm Metros sobre el nivel del mar

N2 Nitrógeno íguido.

PSE Península de Santa Elena rpm Revoluciones por minuto

SEM Microscopia Electrónica de Barrido

UDA Universidad del Azuay

UFOP Universidad Federal de Ouro Preto
UPM Universidad Politécnica de Madrid
UTM marcador de traslación universal

VAC Voltiamperios.

VLIR Conjunto de Universidades Flamencas

Vol. Volumen

SIMBOLOGÍA

Å Amstrong

Nitrato de Sodio AgNo₃ AI^{+3} Ion de Aluminio Ca⁺² Ion de Calcio

CaCO₃ Carbonato de Calcio CaO Óxido de Calcio

cm⁻¹ inversa de centímetros $\,\mathrm{cm}^3$ Centímetros cúbicos CO_2 Fe^{+2} Dióxido de Carbono.

Ion de Hierro HCI Acido Clorhídrico Peroxido de Socio H_2O_2 H_2SO_4 Acido Sulfúrico K^{+} Ion de Potasio K_2O Oxido de Potasio

M Molar Magnesio

 ${\rm Mg}_{\rm Mg^{+2}}$ Ion de Magnesio

mm Milímetros

Metro cuadro por gramo m2/g

Ν Normal Na Sodio

Ion de Sodio Na⁺ NaCI Cloruro de Sodio Nh⁺³ Ion de amonio Nanometro nm NaO Oxido de Sodio NaOH Hidróxido de Sodio

Oxigeno O_2 V Volumen

٥С Grados centígrados

Micrómetros. μ m % porcentaje

ÍNDICE DE FIGURAS

Figura 1.1	Foto satelital de la Península de Santa Elena	6
Figura 1.2	Entrada al deposito del Grupo Ancon	
Figura 1.3	Toma de muestras en el deposito	
Figura 1.4	Arcillas del deposito	
Figura 2.1	Volumen y valores mundiales para nanocompuestos	
· ·	poliméricos según tipo, 2003 y 2008	30
Figura 2.2	El árbol de las esmectitas	
Figura 2.3	Estructura de la montmorillonita	
Figura 2.4	Hidratación de la Montmorillonita sódica	
Figura 2.5	Orientación del alkilomonio en las galerías de los silicatos	
Ü	con diferentes orientaciones y posiciones en las capas	38
Figura 2.6	Proceso de intercambio del cation inorgánico por el cation	
J	orgánico	40
Figura 2.7	tratamiento de superficie de una montmorillonita hasta	
Ü	tener la nanoarcilla	41
Figura 2.8	Aumenta de distancia entre capas con la presencia de	
· ·	monómeros	42
Figura 2.9	Tecnologías para modificar arcillas	
Figura 2.10	Proceso de exfoliación	
Figura 2.11	Esquema de la propiedad de barrera en PET contra el	
J	CO2 y O2 debido a la capa de arcilla	45
Figura 2.12	Camino tortuoso para el oxigeno en un nanocompuesto	
Figura 3.1	Efervescencia de la muestra al añadir agua oxigenada	53
Figura 3.2	Decantamiento rápido de la muestra después del lavado	
Figura 3.3	No decantamiento de la muestra después del lavado	55
Figura 3.4	Agua sobrenadante filtrada después del lavado	56
Figura 3.5	Solución lechosa formada al reaccionar el AgNO ₃ , añadido	
_	al agua de la figura 3.4	57
Figura 3.6	Agitación mecánica de la muestra por 30 minutos	60
Figura 3.7	Muestras libres de carbonatos y materia orgánica llevadas	
_	de los vasos precipitados a la probeta de 1000ml para inicia	r
	la recuperación de la fracción arcilla	61
Figura 3.8	Muestras de arcilla con cloruro de sodio, centrifugación y	
_	lavado. Se puede observar su hinchamiento	65
Figura 3.9	Agitación con procesador ultrasónico	
Figura 3.10	Agitación magnética	
Figura 4.1	Difractograma representativo de la fracción arcilla cálcica	
Figura 4.2	Difractograma representativo de la fracción arcilla sódica	

Figura 4.3	Difractograma representativo de la fracción arcilla sódica saturada con glicerol	.76
Figura 4.4	Difractograma representativo de la fracción arcilla sódica calentada a 550°C	.77
Figura 4.5	Difractograma representativo de la arcilla modificada a nivel nanomolecular	.78
Figura 4.6	Análisis térmico diferencial de la fracción arcillas cálcica y arcilla sódica	.81
Figura 4.7 Figura 4.8	Análisis térmico gravimétrico de la fracción arcillas cálcica Primer análisis térmico gravimétrico de la fracción arcilla	.81
_	sódica	.82
Figura 4.9	Segundo análisis térmico gravimétrico de la fracción arcilla sódica realizada por la UFOP	.82
Figura 4.10	•	85
Figura 4.11	Micrografía representativo de la fracción arcilla sodica	

ÍNDICE DE TABLAS

Tabla 1	Tiempo de sedimentación de la fracción arcilla para	
	una profundidad de 5 cm a diversas temperaturas	59
Tabla 2	Análisis granulométrico de la muestra tomada	.72