

## ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería Marítima y Ciencias del Mar

# CÁLCULO Y MEDICIÓN DE LAS REACCIONES EN LOS BLOQUES DE LA CAMA DE VARAMIENTO DEL BUQUE TANQUERO ANDES V

**TESIS DE GRADO** 

Previa a la obtención del Título de

**INGENIERO NAVAL** 

Presentado por:

Fernando Xavier Espinosa Terán

Guayaquil – Ecuador

2010

#### AGRADECIMIENTO

A mi madre Margoth, a quien le debo todo lo que soy; A mi hermano Nicolás, la mayor fuente de incentivo y fortaleza en mi vida; A mi Abuelito Alfonso, que sin su apoyo no hubiera sido posible este logro; A mis tías Eugenia, Ximena, Rosa y a mi tío Patricio, por estar siempre en mis triunfos y ayudarme a superar mis derrotas; A Paola, quien con su amor y apoyo incondicional se ha vuelto uno de los pilares de mi vida; A mis amigos, los cuales siempre estuvieron cuando los necesité dentro y fuera de las aulas; A mi Director de tesis, Dr. José R. Marín L., por su paciencia y enseñanzas a lo largo de toda mi carrera y desarrollo de este trabajo.

#### DEDICATORIA

A mi madre Margoth,

a mi hermano Nicolás,

a mi abuelito Alfonso,

a mis tías Eugenia, Ximena, Rosa,

a Paola,

por su invaluable apoyo para poder culminar esta etapa de mi vida.

### **DECLARACIÓN EXPRESA**

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta tesis, corresponden exclusivamente a su autor, y el patrimonio intelectual de la Tesis de Grado corresponderá a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL"

(Reglamento de Exámenes y Títulos Profesionales de la ESPOL)

muon

Fernando Xavier Espinosa Terán

#### **TRIBUNAL DE GRADO**

Presidente del Tribunal

José R. Marín L., Ph.D. Director de Tesis

Cristóbal Mariscal D., M.Sc. Miembro Principal

#### RESUMEN

El Buque Tanquero Andes V de 96 m de eslora fue varado en el Dique Napo de ASTINAVE en abril del 2010. En este trabajo se han calculado las Reacciones en los bloques de la cama de varamiento para el buque mencionado, mediante 3 métodos teóricos: Crandall, Viga Timoshenko y Elementos Finitos. Asimismo, se han estimado experimentalmente dichas reacciones mediante la medición del aplastamiento de los tablones en la parte superior de cada bloque.

El método de Crandall asume la distribución de pesos del buque como trapezoidal y considera al buque como rígido. El de la Viga Timoshenko considera la flexión incluyendo el efecto del corte; este método representa a los bloques del dique como resortes distribuidos, y su solución se alcanzó aplicando el método de Diferencias Finitas. Para aplicar el método de Elementos Finitos, se modela al buque como vigas sobre soportes representados por resortes.

En la preparación de la cama de varamiento para el B/T Andes V, se encontraron prácticas inadecuadas, como la reutilización y uso de tablones deteriorados y de diferente altura, lo que no permitió una adecuada toma de datos. Por ello se obtuvieron resultados extraños, como reacciones negativas, y hubo necesidad de seleccionar resultados que aparentaron ser razonables.

Los resultados experimentales de las reacciones se encuentran en el rango de los teóricos, y, además crecen hacia Popa, tendencia observada también en el proceso teórico (133 y 142 ton según Viga Timoshenko y MEF, respectivamente). Esto demuestra que, a pesar de las dificultades, en general las estimaciones teóricas son consistentes con las experimentales. Entonces considerando la consistencia en valores, y la tendencia de las reacciones, se concluye que tanto, el MEF y el de la Viga Timoshenko para análisis de Reacciones son adecuados, aunque se recomienda éste último porque requiere menos tiempo para el desarrollo del modelo.

## ÍNDICE GENERAL

| RESUMEN                 | VI   |
|-------------------------|------|
| ÍNDICE GENERAL          | VIII |
| ABREVIATURAS Y SÍMBOLOS | XII  |
| ÍNDICE DE TABLAS        | XV   |
| INDICE DE FIGURAS       | XX   |
| INDICE DE GRÁFICOS      | XXII |
| INTRODUCCIÓN            | 1    |

# CAPÍTULO 1

# DISPOSICIÓN DE LA CÁMARA DE VARAMIENTO PARA EL BUQUE ANALIZADO

| 1.1 | Descripción del buque a analizar              |    |  |
|-----|-----------------------------------------------|----|--|
| 1.2 | Distribución simplificada de pesos            |    |  |
| 1.3 | Geometría y Conformación de la Cama de        |    |  |
|     | Varamiento                                    | 13 |  |
| 1.4 | Resumen de las propiedades requeridas para el |    |  |
|     | cálculo                                       | 17 |  |

## CAPÍTULO 2

# CÁLCULO DE LAS REACCIONES EN LOS BLOQUES DE LA CAMA DE VARAMIENTO

| 2.1 | Cálculo de las reacciones utilizando el modelo de |    |
|-----|---------------------------------------------------|----|
|     | Crandall                                          | 29 |
| 2.2 | Cálculo de las reacciones utilizando el modelo de |    |
|     | Viga Timoshenko                                   | 38 |
| 2.3 | Cálculo de las reacciones utilizando el método de |    |
|     | Elementos Finitos                                 | 46 |

## CAPÍTULO 3

# ESTIMACIÓN EXPERIMENTAL DE LAS REACCIONES EN LOS BLOQUES DE LA CAMA DE VARAMIENTO

| 3.1 | Descripción del proceso para obtener la estimación |    |
|-----|----------------------------------------------------|----|
|     | de las reacciones                                  | 58 |
| 3.2 | Resumen de las mediciones de compresión de los     |    |
|     | tablones                                           | 62 |
| 3.3 | Cálculo de las reacciones                          | 66 |

## CAPÍTULO 4

COMPARACIÓN ENTRE LOS RESULTADOS EXPERIMENTALES Y TEÓRICOS

| CONCLUSIONES    | 89 |
|-----------------|----|
| RECOMENDACIONES | 91 |

#### APÉNDICE A

| ESQUEMA ORIGINAL DE VARAMIENTO PARA EL BUQUE   |    |
|------------------------------------------------|----|
| TANQUERO ANDES V                               | 92 |
| APÉNDICE B                                     |    |
| CALCULO DEL AREA DE CORTE DE LAS SECCIONES DEL |    |
| BUQUE Y MODULO DE RIGIDEZ DE LOS BLOQUES DE LA |    |
| CAMA DE VARAMIENTO                             | 93 |

# APÉNDICE C

| DESCRIPCIÓN     | DEL     | PROGRAMA      | DFTIMOSH      | PARA    |     |
|-----------------|---------|---------------|---------------|---------|-----|
| IMPLEMENTAR E   | L MÉTO  | DO DE LA VIGA | A TIMOSHENKO  | ) EN EL |     |
| CÁCLULO DE LA   | S REAC  | CCIONES EN I  | LOS BLOQUES   | DE LA   |     |
| CAMA DE VARAM   | IENTO E | DE UN BUQUE   |               |         | 99  |
| APÉNDICE D      |         |               |               |         |     |
| DETALLE DE CÁL  | CULO D  | E INERCIAS SE | CCIONALES     |         | 107 |
| APÉNDICE E      |         |               |               |         |     |
| MEDICIONES DE   | APLAST  | AMIENTO TOMA  | ADAS EN SITIO |         | 131 |
| APENDICE F      |         |               |               |         |     |
| ANALISIS DE ESF | UERZO   | S SOBRE EL FO | NDO DEL BT A  | NDES V  | 150 |
| BIBLIOGRAFÍA    |         |               |               |         | 154 |

# ABREVIATURAS Y SÍMBOLOS

| A <sub>S</sub>  | Área que interviene en el corte                       |
|-----------------|-------------------------------------------------------|
| В               | Manga de la embarcación                               |
| C <sub>B</sub>  | Coeficiente de bloque                                 |
| E               | Módulo de elasticidad                                 |
| е               | Excentricidad                                         |
| F               | Fuerza                                                |
| G               | Módulo de Rigidez                                     |
| h               | Altura del conjunto tronco-tablón                     |
| l <sub>o</sub>  | Inercia Seccional                                     |
| к               | Rigidez                                               |
| k               | módulo del rigidez                                    |
| L <sub>oa</sub> | Eslora total del buque                                |
| L <sub>1B</sub> | Distancia longitudinal del bloque más a proa hacia la |
|                 | perpendicular de proa                                 |
| L <sub>BP</sub> | Eslora entre perpendiculares                          |
| L <sub>CG</sub> | Centro de gravedad longitudinal medido desde la       |
|                 | perpendicular de proa                                 |
| L <sub>κ</sub>  | Eslora soportada, longitud desde el primer hasta el   |
|                 | último bloque de la cama de varamiento                |
| М               | Momento Flector                                       |

| n              | Número total de elementos o segmentos                 |
|----------------|-------------------------------------------------------|
| P <sub>B</sub> | Presión sobre el bloque                               |
| q              | Distribución de carga actuando en el buque            |
| S              | Espaciamiento entre bloques                           |
| t              | espesor de los tablones                               |
| W              | Desplazamiento total del buque                        |
| w              | Peso por unidad de eslora obtenido de la distribución |
|                | de pesos del buque                                    |
| WA             | Distribución de peso sobre el bloque más a popa       |
| WB             | Distribución de pesos sobre los bloques en crujía     |
| WF             | Distribución de peso sobre el bloque más a proa       |
| x              | Distancia a lo largo de la eslora del buque           |
| У              | Desplazamiento vertical                               |
| m              | Pendiente de la recta                                 |
| b              | Corte de la recta con el eje vertical                 |
| Ton.           | Toneladas                                             |
| Kg             | Kilogramos                                            |
| m              | Metros                                                |
| cm             | Centímetros                                           |
| mm             | Milímetros                                            |
| plg.           | Pulgadas (")                                          |
| V              | Fuerza Cortante                                       |

| Ψ                   | Pendiente debida a la flexión                      |
|---------------------|----------------------------------------------------|
| Cuad.               | Cuaderna del buque                                 |
| B/T                 | Buque Tanquero                                     |
| V                   | Constante de Poisson                               |
| С                   | Constante para encontrar el área de corte          |
| MEF                 | Método de Elementos Finitos                        |
| SS                  | Soportes simples                                   |
| AP                  | Perpendicular de popa                              |
| FP                  | Perpendicular de proa                              |
| 3                   | Deformación unitaria                               |
| $\sigma_{fondo}$    | Esfuerzo en el fondo del buque                     |
| $\sigma_{cbta.}$    | Esfuerzo en la cubierta del buque                  |
| τ                   | Esfuerzo de corte promedio                         |
| А                   | Área del la cara superior del bloque de la cama de |
|                     | varamiento                                         |
| Bloque 5C, lateral1 | Bloque equivalente a los bloques Central No.5 y    |
|                     | laterales No.1 Babor/Estribor                      |
| V. Timosh.          | Método de la Viga Timoshenko                       |
| MS <sub>fondo</sub> | Módulo seccional del fondo del buque               |
| MS <sub>cbta</sub>  | Módulo seccional de la cubierta del buque          |

## ÍNDICE DE TABLAS

Pág.

| Tabla I    | Dimensiones principales del B/T Andes V             | 6  |
|------------|-----------------------------------------------------|----|
| Tabla II   | Distribución de pesos en Condición Ligera para el   |    |
|            | B/T Andes V                                         | 10 |
| Tabla III  | Distribución de pesos adicionales para el           |    |
|            | B/T Andes V                                         | 12 |
| Tabla IV   | Módulo de elasticidad (flexión estática) para       |    |
|            | maderas Fernán Sánchez y Pino Amarillo              | 18 |
| Tabla V    | Módulo de Elasticidad (compresión) para madera      |    |
|            | Pino Amarillo                                       | 19 |
| Tabla VI   | Calados del B/T Andes V durante su varamiento       | 20 |
| Tabla VII  | Desplazamiento y LCG para el B/T Andes V            |    |
|            | calculados por el programa SHCP                     | 21 |
| Tabla VIII | Inercias calculadas para el B/T Andes V             | 22 |
| Tabla IX   | Ecuaciones para estimar las inercias del B/T Andes  |    |
|            | V                                                   | 23 |
| Tabla X    | Comparación entre Inercias calculadas y estimadas   |    |
|            | para el B/T Andes V                                 | 24 |
| Tabla XI   | Inercias para cada estación del B/T Andes V         | 25 |
| Tabla XII  | Inercias para cada estación sobre los bloques de la |    |
|            | cama de varamiento del B/T Andes V                  | 27 |

| Tabla XIII | Datos del B/T Andes V para la aplicación del                    |    |
|------------|-----------------------------------------------------------------|----|
|            | método de Crandall                                              | 32 |
| Tabla XIV  | Presiones [ton/m <sup>2</sup> ] sobre los bloques de la cama de |    |
|            | varamiento aplicando el modelo de Crandall                      | 33 |
| Tabla XV   | Reacciones [ton] de los bloques de la cama de                   |    |
|            | varamiento aplicando el modelo de Crandall                      | 36 |
| Tabla XVI  | Datos del B/T Andes V para el Programa                          |    |

DFTIMOSH.....

42

- Tabla XVIII.-Desplazamientos verticales [cm] del B/T Andes Vcalculados con el modelo de Viga Timoshenko......45
- Tabla XX. Rigidez de los bloques ingresadas en SAP2000......
   49

- Tabla XXXI.-Comparación de los resultados de las reacciones[ton] entre MEF y Método de la Viga Timoshenko....80

| Tabla XXXII  | Comparación      | de     | los     | resultados     | de     | los  |    |
|--------------|------------------|--------|---------|----------------|--------|------|----|
|              | desplazamiento   | s entr | e MEF   | y Método       | de la  | Viga |    |
|              | Timoshenko       |        |         |                |        |      | 83 |
| Tabla XXXIII | Comparación e    | entre  | Resulta | ados Experin   | nental | es y |    |
|              | Teóricos para la | as Rea | iccione | s en los bloqi | Jes    |      | 85 |

- Tabla B-II.-Módulos de Rigidez equivalente (keq) para losbloques de la cama de varamiento del B/T Andes V.98
- Tabla D-I.-Estación 0.....108
- Tabla D-II.-Estación 15.....109
- Tabla D-III. Estación 33......
   110

   Tabla D-IV. Estación 50......
   113
- Tabla D-V. Estación 72.5.....
   116
- Tabla D-VIII. Estación 120......
   125

   Tabla D-IX. Estación 134......
   127

| Tabla D-X  | Estación 140                           | 129 |
|------------|----------------------------------------|-----|
| Tabla F-I  | Esfuerzos producidos en el B/T Andes V | 151 |
| Tabla F-II | Esfuerzos de fluencia para el Acero    | 151 |

# ÍNDICE DE FIGURAS

Pág.

| Figura 1  | Plano de Líneas de Formas para el B/T Andes V       | 7  |
|-----------|-----------------------------------------------------|----|
| Figura 2  | Plano de Distribución General para el B/T Andes V   | 9  |
| Figura 3  | Vista General de la cama de varamiento para el      |    |
|           | "B/T ANDES V"                                       | 14 |
| Figura 4  | Conformación típica de los bloques de la cama de    |    |
|           | varamiento para el B/T Andes V: (a) bloque lateral, |    |
|           | (b) bloque central                                  | 16 |
| Figura 5  | Transformación de la distribución de pesos a        |    |
|           | distribución trapezoidal en el Método de Crandall   | 30 |
| Figura 6  | Alcance de la reacción calculada para cada bloque   | 34 |
| Figura 7  | Diagrama de cuerpo libre para una viga              | 39 |
| Figura 8  | Viga Buque del B/T Andes V modelado en SAP2000      |    |
|           | (a) Modelo sin Cargas (b) Modelo con Cargas (c)     |    |
|           | Detalles del Modelo                                 | 50 |
| Figura 9  | Herramientas utilizadas para medir los espesores de |    |
|           | los tablones: (a) Calibrador Vernier Digital (b)    |    |
|           | Compás de Interiores                                | 59 |
| Figura 10 | Denominación de las mediciones tomadas en los       |    |
|           | tablones de la cama de varamiento: (a) Bloque       | 60 |
|           | Lateral, (b) Bloque Central                         |    |

| Figura B-1  | dimensiones de la sección para el cálculo del área   |     |
|-------------|------------------------------------------------------|-----|
|             | que soporta corte                                    | 94  |
| Figura B-2  | Equivalencia de la rigidez de los bloques de la cama |     |
|             | de varamiento                                        | 96  |
| Figura C-1  | Diagrama de cuerpo libre para un elemento            |     |
|             | diferencial de una viga, incluyendo el efecto del    |     |
|             | corte                                                | 100 |
| Figura C-2  | Condiciones de frontera para Viga Timoshenko         | 103 |
| Figura C-3  | Hoja de datos para ingresar al programa              |     |
|             | DFTIMOSH                                             | 104 |
| Figura C-4  | Hoja de resultados del programa DFTIMOSH             | 106 |
| Figura D-1  | Estación 0                                           | 108 |
| Figura D-2  | Estación 15                                          | 110 |
| Figura D-3  | Estación 33                                          | 112 |
| Figura D-4  | Estación 50                                          | 115 |
| Figura D-5  | Estación 72.5                                        | 118 |
| Figura D-6  | Estación 86                                          | 121 |
| Figura D-7  | Estación 104                                         | 124 |
| Figura D-8  | Estación 120                                         | 127 |
| Figura D-9  | Estación 134                                         | 128 |
| Figura D-10 | Estación 140                                         | 130 |

## ÍNDICE DE GRAFICOS

|             |                                                     | Pág. |
|-------------|-----------------------------------------------------|------|
| Gráfico 1   | Distribución de pesos en Condición Ligera para el   |      |
|             | B/T Andes V                                         | 11   |
| Gráfico 2   | Inercias por cada cuaderna para el B/T Andes V      | 26   |
| Gráfico 3   | Reacciones de los bloques modelados como            |      |
|             | resortes y simplemente soportados                   | 55   |
| Gráfico 4   | Resultados de los tres métodos teóricos aplicados   |      |
|             | para el cálculo de las Reacciones sobre los bloques |      |
|             | de la cama de varamiento                            | 75   |
| Gráfico 5   | Comparación de los resultados de las reacciones     |      |
|             | [ton] entre MEF y Método de Crandall                | 78   |
| Gráfico 6   | Comparación de los resultados de las reacciones     |      |
|             | [ton] entre MEF y Método de la Viga Timoshenko      | 81   |
| Gráfico 7   | Comparación de los resultados de los                |      |
|             | desplazamientos entre MEF y Método de la Viga       |      |
|             | Timoshenko                                          | 84   |
| Gráfico 8   | Comparación entre Resultados Experimentales y       |      |
|             | Teóricos para las Reacciones en los bloques         | 86   |
| Grafico F-1 | Esfuerzos en el fondo y cubierta del B/T Andes V    | 152  |
| Grafico F-2 | Esfuerzos cortantes promedio del B/T Andes V        | 152  |

#### INTRODUCCIÓN

Las fuerzas de reacción en el varamiento de un buque actúan en forma muy concentrada y si no son correctamente distribuidas pueden afectar a la estructura del mismo. Conocer dichas reacciones que, son también las cargas sobre los bloques de la cama de varamiento, permitiría determinar posteriormente la posibilidad de daños en la estructura del buque y el deterioro de los bloques por sobrecarga, [1].

Para el cálculo de las reacciones de los bloques se pueden emplear modelos que suponen al buque como una viga de sección variable, [1], [4], considerando dichas fuerzas como concentradas en crujía del buque. Además, una cama de varamiento típica en nuestro medio consta de varios bloques formados con una base cuadrada de cemento, bloques de madera dura y, tablas de sacrificio en la parte superior, las mismas que pueden modelarse como resortes lineales, [1]. Luego, dado que el cálculo de las reacciones, incluye simplificaciones, es recomendable su comprobación experimental.

Existen varios equipos para medir las cargas sobre los bloques, sin embargo, el calibrador Vernier es una herramienta efectiva para medir la carga a través de la compresión de los tablones de los bloques, [2]. Entonces para determinar las reacciones en los bloques de una cama de varamiento se puede empezar por medir la reducción del espesor de las tablas de sacrificio. Teniendo además el área donde se aplica la fuerza y el Módulo de Young de la madera, [1], se podría utilizar la ley de Hooke y estimar la fuerza que se aplicó para producir el aplastamiento medido.

El objetivo general de esta tesis es calcular la reacción en cada uno de los bloques de la cama de varamiento del buque tanquero Andes V y comprobar los resultados con las estimaciones experimentales encontradas a partir de mediciones tomadas en sitio.

Los objetivos específicos son:

- Calcular las reacciones en los bloques de la cama de varamiento del buque tanquero Andes V mediante dos modelos analíticos, Crandall y Viga Timoshenko, y, aplicando el método de Elementos Finitos.
- 2. Estimar las reacciones en los bloques de la cama de varamiento mediante mediciones del aplastamiento de los tablones de sacrificio.
- Comparar las reacciones estimadas, mediante las mediciones en sitio, con las calculadas empleando los 3 modelos mencionados previamente.

En nuestro medio no existen mediciones ni cálculos previos acerca de la carga que soporta cada bloque de la cama de varamiento de un buque. Conocer un método de cálculo para las reacciones mencionadas, que se aproxime adecuadamente a la realidad, es muy importante para determinar la capacidad de una cama de varamiento. Además, a partir de la distribución de reacciones y mediante un análisis estructural, se puede conocer las posibles deformaciones que sufriría el casco del buque durante el varamiento.

#### **CAPÍTULO 1**

# DISPOSICIÓN DE LA CÁMARA DE VARAMIENTO PARA EL BUQUE ANALIZADO

El presente capítulo presenta información básica sobre el B/T Andes V, perteneciente a la empresa ecuatoriana MARZAM y operada por MARDCOM S.A, la descripción de la distribución, conformación y dimensiones de los bloques de la cama de varamiento en el dique Napo de la empresa ASTINAVE. Además se presenta la distribución simplificada de pesos en la condición de entrada a dique en base al Manual de Carga del buque y la información proporcionada por el capitán del mismo. Finalmente se presenta un resumen de las propiedades que se necesitan para los cálculos a desarrollarse en capítulos posteriores.

#### 1.1 Descripción del buque a analizar

El buque tanquero ANDES V fue construido en un astllero ubicado en la República de China, en el año 2006. Comúnmente trabaja transportando petróleo entre las ciudades de La Libertad y Guayaquil (Terminal de Tres Bocas). En abril del 2010 fue la primera vez que este buque entraba a Carenamiento Normal (término utilizado para describir el carenamiento únicamente en lo que se refiere al mantenimiento del buque), debido a que es una embarcación nueva. Cabe recalcar que el carenamiento de un buque se lo realiza normalmente cada 2 años para embarcaciones que no sean nuevas.

Se aprovechó la entrada a dique para recolectar la información que permita calcular las reacciones en la Cama de Varamiento de esta embarcación. A continuación se presentan las dimensiones principales del buque:

| Eslora Total                 | 96.00 m            |  |
|------------------------------|--------------------|--|
| Eslora entre Perpendiculares | 89.60 m            |  |
| Manga                        | 13.40 m            |  |
| Puntal                       | 6.90 m             |  |
| Calado Máximo                | 5.60 m             |  |
| Desplazamiento               | 5555 TM            |  |
| Peso Muerto                  | 4136.5 TM          |  |
| Desplazamiento Ligero        | 1418.5 TM          |  |
| Tonelaje Bruto               | 2364 Ton. Moorsoon |  |
| Tonelaje Neto                | 1323 Ton. Moorsoon |  |
| Capacidad de Carga           | 3923 TM            |  |
| Velocidad                    | 12 Kt.             |  |

Tabla I.- Dimensiones principales del B/T Andes V

En la *Figura 1* se muestra el plano de líneas de formas del B/T Andes V en donde se puede observar que tiene un cuerpo medio paralelo desde la estación 11 hasta la estación 13 aproximadamente. Además se nota el fondo plano, característico en los buques tanqueros, a partir del cual el buque es soportado por grupos de tres bloques de la cama de varamiento (dos laterales y un central), debido a su manga.



Figura 1.- Plano de Líneas de Formas para el B/T Andes V

El plano de distribución general del B/T Andes V es mostrado en la *Figura 2*. Como se puede observar, en la condición ligera el mayor peso del buque se encuentra a popa debido a que allí se encuentran la superestructura y los Sistemas Propulsor y de Gobierno. En proa se puede evidenciar el bulbo, característico en los buques tanqueros. Se puede reconocer también el doble fondo del buque que tiene 0.90 m de altura.



Figura 2.- Plano de Distribución General para el B/T Andes V

#### **1.2** Distribución simplificada de pesos

Para realizar la distribución de pesos del B/T Andes V, se utilizaron los datos proporcionados por el armador del buque, que se presentan a continuación:

|          | Posición longitudinal (x) |         |           | Peso Ligaro |  |
|----------|---------------------------|---------|-----------|-------------|--|
| Estación | x_inicial                 | x_final |           | Fest Ligero |  |
|          | [m]                       | [m]     | [m]       | [ton]       |  |
| 0        | -2.24                     | 2.24    | 0.00      | 40.5        |  |
| 1        | 2.24                      | 6.72    | 4.48      | 39.5        |  |
| 2        | 6.72                      | 11.2    | 8.96      | 47          |  |
| 3        | 11.2                      | 15.68   | 13.44     | 53          |  |
| 4        | 15.68                     | 20.16   | 17.92     | 55          |  |
| 5        | 20.16                     | 24.64   | 22.40     | 56          |  |
| 6        | 24.64                     | 29.12   | 26.88     | 56          |  |
| 7        | 29.12                     | 33.6    | 31.36     | 56          |  |
| 8        | 33.6                      | 38.08   | 35.84     | 56          |  |
| 9        | 38.08                     | 42.56   | 40.32     | 56          |  |
| 10       | 42.56                     | 47.04   | 44.80     | 56          |  |
| 11       | 47.04                     | 51.52   | 49.28     | 56          |  |
| 12       | 51.52                     | 56      | 53.76     | 56          |  |
| 13       | 56                        | 60.48   | 58.24     | 56          |  |
| 14       | 60.48                     | 64.96   | 62.72     | 56          |  |
| 15       | 64.96                     | 69.44   | 67.20     | 64          |  |
| 16       | 69.44                     | 73.92   | 71.68     | 86          |  |
| 17       | 73.92                     | 78.4    | 76.16     | 124         |  |
| 18       | 78.4                      | 82.88   | 80.64     | 134.5       |  |
| 19       | 82.88                     | 87.36   | 85.12     | 110         |  |
| 20       | 87.36                     | 91.84   | 89.60     | 86.5        |  |
|          |                           |         | Sumatoria | 1400        |  |

Tabla II.- Distribución de pesos en Condición Ligera para el B/T Andes V

En la siguiente figura se han graficado estos valores, junto con un Perfil del buque con la finalidad de reconocer la influencia de sus compartimentos:



Gráfico 1.- Distribución de pesos en Condición Ligera para el B/T Andes V

Adicionalmente se tiene los siguientes pesos adicionales, reportados por el capitán del buque al momento de entrar a dique, tales como consumibles, combustible y agua, y que se muestran a continuación:

| DESCRIPCIÓN            | LCG respecto | LCG respecto    | Peso   | Momento  |
|------------------------|--------------|-----------------|--------|----------|
| DESCRIPCION            | a LC [m]     | a Perp. Pr. [m] | [ton]  | [ton.m]  |
| Tripulantes            | -35.35       | 80.15           | 11.00  | 881.65   |
| Repuestos              | -29.60       | 74.40           | 7.50   | 558.00   |
| Tanque de Agua Dulce   | -41.24       | 86.04           | 20.00  | 1720.88  |
| Tanque de Diesel #1 BB | -38.41       | 83.21           | 20.00  | 1664.16  |
| Tanque de Diesel #1 EB | -36.09       | 80.89           | 20.00  | 1617.82  |
| Tanque de Diesel #2 BB | -36.69       | 81.49           | 15.00  | 1222.29  |
| Tanque de Diesel #2 EB | -29.94       | 74.74           | 15.00  | 1121.10  |
| Viveres                | -38.00       | 82.80           | 1.00   | 82.80    |
| Tanque peak de proa    | 42.28        | 2.52            | 25.00  | 62.95    |
| Tanque de Lastre #1    | 37.33        | 7.47            | 250.00 | 1867.50  |
| Tanque de Lastre #2    | 21.37        | 23.43           | 0.00   | 0.00     |
| Tanque de Lastre #3    | -2.20        | 47.00           | 0.00   | 0.00     |
| Tanque de Lastre #4    | -20.70       | 65.50           | 0.00   | 0.00     |
| Tanque de Lazareto     | -44.97       | 89.77           | 10.00  | 897.71   |
| Tanques de carga       | 19.03        | 25.77           | 0.00   | 0.00     |
|                        |              | Sumatoria       | 394.5  | 11696.86 |

Tabla III.- Distribución de pesos adicionales para el B/T Andes V

Sumando los pesos en Condición Ligera y pesos adicionales se tiene que el desplazamiento total con el que el buque ingresó al dique es de 1794.5 ton. y el Centro de Gravedad se ubica a 2.95 m desde la Línea de Crujía hacia Popa.

# 1.3 Geometría y Conformación de los bloques de la cama de varamiento

El plano de varamiento de un buque, también llamado "Docking Plan" por su denominación en inglés, es desarrollado a partir de las Líneas de Formas de la embarcación a ser varada, y muestra la distribución, dimensiones y conformación de los bloques centrales y laterales que integran la cama de varamiento. Para la ubicación y cantidad de bloques a colocar en la cama de varamiento, se considera la disposición de cuadernas del dique puesto que los bloques laterales están ubicados sobre estas. En el caso del Dique Napo, dichas cuadernas se encuentran separadas 3.65 m.

En el caso del Dique Napo, en el cual se varó el buque objetivo de este trabajo, el plano de varamiento no es un esquema sino un reporte descriptivo de los bloques de la cama. En el *Apéndice A* se presenta dicha información para el caso del B/T Andes V. La cama de varamiento para el buque analizado en esta tesis, está conformada por 24 bloques centrales y 34 bloques laterales, los cuales están distribuidos de la siguiente manera (*véase la Figura 3*):

- 17 bloques en la banda de Estribor,
- 17 bloques en la banda de Babor

• 24 bloques a lo largo de la Línea de Crujía del buque



Figura 3.- Vista General de la cama de varamiento para el "B/T ANDES V"

Los bloques laterales, que son móviles, normalmente tienen cuñas superiores que se ajustan al fondo del buque. Para el caso de los buques tanqueros, cuya astilla muerta es muy pequeña o cero, dichos bloques no tienen cuñas en su parte superior sino únicamente tablones, a la misma altura que los bloques centrales. En el Dique Napo, los bloques que forman la cama de varamiento de un buque (*Figura 4*), tanto centrales como laterales, tienen una altura promedio de 56 plg. Los bloques laterales típicamente están conformados por una base de 4 troncos de madera, normalmente Fernán Sánchez, unidos por platinas de acero con pernos y/o tiras de madera con clavos y un tablón de 1" o 2" en la parte superior. Mientras tanto, los bloques centrales están constituidos de la siguiente manera:

- Una base de 4 troncos de madera dura, cada uno de 121.9 x 30.48 x 38.1 cm (48 x 12 x 15 plg) colocados uno al lado del otro;
- Dos bloques de cemento cada uno de 121.9 x 121.9 x 38.1 cm (48 x 48 x 15 plg.), uno sobre el otro;
- Cuatro troncos de madera, clase Fernán Sánchez, cada uno aproximadamente de 121.9 x 30.48 x 38.1 cm (48 x 12 x 15 plg.) colocados uno alado de otro, y;
- Cuatro tablones de madera, clase Fernán Sánchez, aproximadamente de 100 x 20 x 2.54 ó 5.08 cm (39.37 x 7.87 x 1 ó 2 plg.), que cubren en la parte superior del bloque un área de 121.9 x 121.9 m (48 x 48 plg.).


Figura 4.- Conformación típica de los bloques de la cama de varamiento para el B/T Andes V: (a) bloque lateral, (b) bloque central

### 1.4 Resumen de las propiedades requeridas para el cálculo

La finalidad del presente subcapítulo es describir las propiedades, dimensiones y parámetros necesarios para los cálculos de las reacciones en los bloques de la Cama de Varamiento que se presentan en los capítulos siguientes. Además se plantearán ciertos criterios que se mantendrán en todo el desarrollo de la presente tesis.

#### Propiedades Mecánicas de la Madera de los Tablones

A pesar de que se han revisado varias referencias bibliográficas y se ha buscado en Internet, no se ha encontrado el módulo de elasticidad de la madera tipo Fernán Sánchez sometida a compresión. En la *Referencia [1]* se tiene el módulo de elasticidad bajo compresión de los tablones que son de la madera tipo Pino Amarillo, (Southern Yellow Pine). Esta es una madera suave, muy utilizada en los Diques para camas de varamiento, motivo por el cual se comparará el Módulo de elasticidad en Flexión de dicha madera con el de la madera Fernán Sánchez, para determinar si es adecuado usar los valores presentados en la referencia mencionada.

A continuación se presentan los valores mencionados para la madera Fernán Sánchez y Pino Amarillo, tomadas de diferentes fuentes:

| Fuente                                                                | Tipo de<br>Madera                | Módulo de<br>Elasticidad |
|-----------------------------------------------------------------------|----------------------------------|--------------------------|
| http://www.cabinetmakerfdm.com/Wood_Explorer/6936.html                | Southern Yellow<br>Pine          | 1.27E+05                 |
| http://www.rosboro.com/products/custom.html                           | Southern Yellow<br>Pine          | 1.27E+05                 |
| http://www.castor.es/pino_amarillo.html                               | Pino Amarillo                    | 1.25E+05                 |
| http://www.jannone.net/madera/es/amarillo                             | Pino Amarillo                    | 1.28E+05                 |
| http://www.gabarro.com/es/enciclopedia/pino_amarillo_del_sur/rid:6    | Pino Amarillo                    | 1.30E+05                 |
| http://www.scribd.com/doc/2192216/Guia-especies-de-madera-CONFEMADERA | Pino Amarillo                    | 1.30E+05                 |
| http://www.physicsforums.com/archive/index.php/t-177609.html          | Southern Yellow<br>Pine (Húmedo) | 1.13E+05                 |
| http://lpchile.cl/manualLP/anexos/04_ANEXOpine%20269_280.pdf          | Pino Amarillo<br>(Húmedo)        | 1.13E+05                 |
| www.structural-wood.com/images/6150spec2.rtf                          | Southern Yellow<br>Pine (Húmedo) | 1.13E+05                 |
|                                                                       | Mediana                          | 1.27E+05                 |

| Fuente                                                                                                                                  |               | Fecha de<br>Publicación | Tipo de<br>Madera | Módulo de<br>Elasticidad<br>[kg/cm2] |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|-------------------|--------------------------------------|
| Manual de Diseño para Maderas del Grupo Andino                                                                                          |               | 1984                    | Férnan Sánchez    | 9.00E+04                             |
| Pruebas de Resistencia y Durabilidad de Maderas<br>Nacionales y Recomendaciones para su Uso en<br>Construcción de Embarcaciones Menores | [3]           | 1974                    | Férnan Sánchez    | 1.36E+04                             |
| Maderas Tropicales como Material de Construccion en los<br>Paises del Grupo Andino de America del Sur                                   | [8]           | 1987                    | Férnan Sánchez    | 1.28E+05                             |
| http://www.ecuadorforestal.org                                                                                                          | Página<br>Web | 2007                    | Férnan Sánchez    | 1.28E+05                             |
| Atlas de Maderas Tropicales de América Latina                                                                                           |               | 1990                    | Férnan Sánchez    | 1.28E+05                             |
|                                                                                                                                         |               |                         | Mediana           | 1.28E+05                             |

Tabla IV.- Módulo de elasticidad (flexión estática) para maderas

Fernán Sánchez y Pino Amarillo

Como se puede observar, el módulo de elasticidad del Pino Amarillo (1.28E5 Kg/cm<sup>2</sup>) es similar al módulo de elasticidad de la madera Fernán Sánchez (1.27E5 Kg/cm<sup>2</sup>), por lo que se decir que las propiedades mecánicas de ambos tipos de maderas son similares.

En la siguiente tabla se muestran los valores para el módulo de elasticidad del Pino amarillo, mencionados anteriormente:

|          | Módulo de Elasticidad |        |  |  |
|----------|-----------------------|--------|--|--|
|          | [psi] [kg/cm²]        |        |  |  |
| Máximo   | 8373                  | 589.92 |  |  |
| Mínimo   | 2817                  | 198.47 |  |  |
| Promedio | 5192                  | 365.80 |  |  |

Tabla V.- Módulo de Elasticidad (compresión)

para madera Pino Amarillo, [1]

Para los fines de la presente tesis se tomará el módulo de elasticidad de la madera Fernán Sánchez como 365.8 kg/cm<sup>2</sup>.

## Características Hidrostáticas de Entrada a Dique

Se registraron los calados durante el varamiento del B/T Andes V en el dique Napo y se tomó evidencia fotográfica obteniéndose la siguiente información:



Tabla VI.- Calados del B/T Andes V durante su varamiento

Se ingresaron los calados mostrados en la *tabla VI*, al programa SHCP con el objetivo de obtener el desplazamiento del buque, obteniéndose los siguientes resultados:

| Calados Ingresados       |         |                                 |  |
|--------------------------|---------|---------------------------------|--|
| Calado de Proa           | 1.05    | m                               |  |
| Calado de Popa           | 3.00    | m                               |  |
| Resultados               |         |                                 |  |
| Desplazamiento de diseño | 1795.94 | Tons                            |  |
| LCG Diseño               | -2.957  | m. desde sección media (+ Proa) |  |

 Tabla VII. Desplazamiento y LCG para el B/T Andes V calculados por el

### programa SHCP

Nótese que tanto el desplazamiento como el LCG son muy cercanos a los estimados a partir de la lista de pesos a la entrada a dique.

## Distribución de Inercia Seccional

Una de las propiedades estructurales más importantes de un buque es su inercia seccional. Para el caso del B/T Andes V, se dispone del Manual de Carga del buque, [6], donde se encuentran las inercias para las cuadernas 15, 33, 50, 86, 104, 120, 134 y sección media (cuaderna 72.5). Estas inercias, que fueron calculadas nuevamente *(Apéndice D)* obteniendo resultados similares, serán consideradas para el desarrollo de esta tesis y se

presentan en la *tabla VIII.* Además se calcularon las inercias para las cuadernas 0 y 140 basándose en los planos del buque.

| Cuad | A <sub>planchaje</sub> | A <sub>dble fndo</sub> | A <sub>Mamp long</sub> | A <sub>refuerzos</sub> | A <sub>tot</sub> | <b>Z</b> <sub>med</sub> | l <sub>o</sub>                 |
|------|------------------------|------------------------|------------------------|------------------------|------------------|-------------------------|--------------------------------|
| Cuau | cm <sup>2</sup>        | cm <sup>2</sup>        | cm <sup>2</sup>        | cm <sup>2</sup>        | cm <sup>2</sup>  | m                       | cm <sup>2</sup> m <sup>2</sup> |
| 0    | 1161.0                 |                        |                        |                        | 1161.0           | 6.76                    | 2.35E+03                       |
| 15   | 1512.0                 | 228.6                  | 214.3                  | 314.6                  | 2269.5           | 4.21                    | 3.11E+04                       |
| 33   | 1934.0                 | 647.0                  | 31.5                   | 576.2                  | 3188.7           | 2.97                    | 5.44E+04                       |
| 50   | 1987.2                 | 740.1                  | 360.4                  | 938.5                  | 4026.2           | 2.97                    | 6.30E+04                       |
| 72.5 | 1990.5                 | 740.6                  | 360.1                  | 938.5                  | 4029.7           | 2.96                    | 6.30E+04                       |
| 86   | 1998.1                 | 740.6                  | 363.9                  | 938.5                  | 4041.1           | 2.99                    | 6.45E+04                       |
| 104  | 2339.3                 | 1003.6                 | 370.7                  | 782.5                  | 4496.0           | 2.77                    | 7.38E+04                       |
| 120  | 2266.0                 | 813.5                  | 381.5                  | 681.6                  | 4142.6           | 3.07                    | 7.11E+04                       |
| 134  | 1733.1                 |                        |                        | 67.5                   | 1800.6           | 4.30                    | 3.07E+04                       |
| 140  | 718.5                  |                        | 659.6                  |                        | 1378.1           | 4.82                    | 1.30E+04                       |

Tabla VIII.- Inercias calculadas para el B/T Andes V

Normalmente la inercia más alta en un buque tanquero está localizada en la Sección Media y se reduce hacia proa y popa. En el caso del B/T Andes V, la inercia va aumentando hasta la sección media, pero luego sigue incrementándose hacia proa hasta la cuaderna 91 y de ahí empieza a reducirse. Esto se debe a que el planchaje, tanto del fondo como del costado del buque, aumenta su espesor a partir de la mencionada cuaderna 91 hacia Proa. Así tenemos que el espesor del fondo hasta la cuaderna 102 es de 12 mm y a partir de la cuaderna 103 aumenta a 16 mm. Sucede de manera similar con el espesor del planchaje de quilla, el cual va aumentando de espesor desde 12mm en popa hasta llegar 16 mm en proa.

Para el propósito de esta tesis se necesitan conocer los valores de la distribución de la Inercia Seccional en cada una de las estaciones, por lo que se procedió a realizar una interpolación entre los valores mostrados anteriormente. Con la ayuda de una hoja electrónica y utilizando la herramienta de línea de tendencia se obtienen las siguientes ecuaciones, separadas por regiones de aplicación:

| Válida entre las<br>cuadernas | Ecuación                                   |
|-------------------------------|--------------------------------------------|
| 0 a 33                        | y = -18.85x <sup>2</sup> + 2199.x + 2354.  |
| 33 a 72.5                     | y = -12.78x <sup>2</sup> + 1568.x + 16561  |
| 72.5 a 104                    | $y = 0.184x^3 - 35.45x^2 + 2246.x + 16258$ |
| 104 a 125                     | y = -6.320x <sup>2</sup> + 1244.x + 12775  |
| 125 a 135                     | y = -421.8x + 87207                        |
| 135 a 141                     | y = -325.5x + 58602                        |

Tabla IX.- Ecuaciones para estimar las inercias del B/T Andes V

Cabe recalcar que el valor de *x* en las ecuaciones es el número de la cuaderna en la que se quiere calcular la inercia.

Para comprobar la validez de las ecuaciones mostradas en la *tabla IX*, se procedió a estimar las inercias para las cuadernas ya calculadas, y así poder determinar el error entre el valor encontrado utilizando cada una de las ecuaciones de interpolación y el valor real. Dichos resultados se presentan en la siguiente tabla:

| Cued | l <sub>o</sub>                 | l <sub>o</sub> aprox           | 0/ dif        |
|------|--------------------------------|--------------------------------|---------------|
| Cuau | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> | % <b>0</b> 11 |
| 0    | 2.35E+03                       | 2.35E+03                       | 0.03%         |
| 15   | 3.11E+04                       | 3.11E+04                       | 0.00%         |
| 33   | 5.44E+04                       | 5.44E+04                       | 0.01%         |
| 50   | 6.30E+04                       | 6.30E+04                       | 0.01%         |
| 72.5 | 6.30E+04                       | 6.31E+04                       | 0.04%         |
| 86   | 6.45E+04                       | 6.43E+04                       | 0.40%         |
| 104  | 7.38E+04                       | 7.34E+04                       | 0.57%         |
| 120  | 7.11E+04                       | 7.10E+04                       | 0.03%         |
| 134  | 3.07E+04                       | 3.07E+04                       | 0.02%         |
| 140  | 1.30E+04                       | 1.30E+04                       | 0.07%         |

 Tabla X.- Comparación entre Inercias calculadas y estimadas para

 el B/T Andes V

Como se puede observar en la *tabla X*, el margen de error de las ecuaciones para estimar la inercia en cada una de las cuadernas es menor al 1%, entonces se puede concluir que las ecuaciones proveen una buena aproximación.

Después de hacer comprobado su validez, utilizando las ecuaciones de la *tabla IX*, se pueden encontrar las inercias para cada estación. Cabe mencionar que las estaciones se encuentran ubicadas aproximadamente cada 7 u 8 cuadernas del buque. La correspondencia entre cuadernas y estaciones junto con los valores de las inercias para cada estación, se muestran en la siguiente tabla:

| Ectopión | Cuadarna | l <sub>o</sub>                 |
|----------|----------|--------------------------------|
| Estacion | Cuadema  | cm <sup>2</sup> m <sup>2</sup> |
| 0        | 1        | 4.53E+03                       |
| 1        | 8        | 1.87E+04                       |
| 2        | 13       | 2.78E+04                       |
| 3        | 20       | 3.88E+04                       |
| 4        | 27       | 4.80E+04                       |
| 5        | 34       | 5.51E+04                       |
| 6        | 40       | 5.88E+04                       |
| 7        | 48       | 6.24E+04                       |
| 8        | 55       | 6.41E+04                       |
| 9        | 62       | 6.47E+04                       |
| 10       | 69       | 6.39E+04                       |
| 11       | 77       | 6.30E+04                       |
| 12       | 84       | 6.38E+04                       |
| 13       | 91       | 6.57E+04                       |
| 14       | 98       | 6.91E+04                       |
| 15       | 105      | 7.37E+04                       |
| 16       | 112      | 7.28E+04                       |
| 17       | 119      | 7.13E+04                       |
| 18       | 127      | 3.36E+04                       |
| 19       | 134      | 3.07E+04                       |
| 20       | 141      | 1.27E+04                       |

Tabla XI.- Inercias para cada estación del B/T Andes V

A continuación se presenta el gráfico con los valores calculados y estimados de las Inercias:



Gráfico 2.- Inercias por cada cuaderna para el B/T Andes V

Para el propósito de esta tesis se necesita la inercia de las cuadernas que se encuentran sobre cada uno de los bloques. Estas cuadernas y sus correspondientes inercias se muestran en la siguiente tabla:

| Cuad del | Cuad del | Plagua          | l <sub>o</sub> |
|----------|----------|-----------------|----------------|
| buque    | dique    | ыоцие           | [cm⁴]          |
| 137      | 10       | 1C              | 1.40E+08       |
| 132      | 11       | 2C              | 3.15E+08       |
| 126      | 12       | 3C              | 3.41E+08       |
| 120      | 13       | 4C              | 7.10E+08       |
| 115      | 14       | 5C, lateral 1   | 7.23E+08       |
| 109      | 15       | 6C, lateral 2   | 7.33E+08       |
| 103      | 16       | 7C, lateral 3   | 7.26E+08       |
| 98       | 17       | 8C, lateral 4   | 6.91E+08       |
| 92       | 18       | 9C, lateral 5   | 6.61E+08       |
| 86       | 19       | 10C, lateral 6  | 6.43E+08       |
| 80       | 20       | 11C, lateral 7  | 6.33E+08       |
| 75       | 21       | 12C, lateral 8  | 6.29E+08       |
| 69       | 22       | 13C, lateral 9  | 6.39E+08       |
| 63       | 23       | 14C, lateral 10 | 6.46E+08       |
| 57       | 24       | 15C, lateral 11 | 6.44E+08       |
| 52       | 25       | 16C, lateral 12 | 6.35E+08       |
| 46       | 26       | 17C, lateral 13 | 6.16E+08       |
| 40       | 27       | 18C, lateral 14 | 5.88E+08       |
| 34       | 28       | 19C, lateral 15 | 5.51E+08       |
| 29       | 29       | 20C, lateral 16 | 5.03E+08       |
| 23       | 30       | 21C, lateral 17 | 4.30E+08       |
| 16       | 31       | 22C             | 3.27E+08       |
| 10       | 32       | 23C             | 2.25E+08       |
| 5        | 33       | 24C             | 1.29E+08       |

Tabla XII.- Inercias para cada estación sobre los bloques de la cama de

varamiento del B/T Andes V

## **CAPÍTULO 2**

# CÁLCULO DE LAS REACCIONES EN LOS BLOQUES DE LA CAMA DE VARAMIENTO

El presente capítulo explica los métodos y/o modelos teóricos de cálculo por medio de los cuales se van a obtener las reacciones en los bloques de cama de varamiento del B/T Andes V. Primero se presenta el modelo de Crandall que asume al buque como una viga rígida de sección variable. El siguiente modelo es el de la Viga Timoshenko, el cual considera al buque como una viga flexible soportada en resortes distribuidos en forma continua, pero tomando en cuenta el efecto de corte. El último modelo es el del método de Elementos Finitos (MEF) el mismo que se realizará ayudándose en el programa de computación SAP2000, en el que se incluye la Flexión de Vigas con Efecto del Corte.

### 2.1 Cálculo de las reacciones utilizando el modelo de Crandall [1]

El modelo de Crandall para estimar las Reacciones en los Bloques de una Cama de Varamiento del buque, es quizás el método más simple de aplicar debido a que requiere una mínima cantidad de información. Se requiere conocer la ubicación de las perpendiculares de proa y popa, el desplazamiento total y la posición del LCG, mientras que el resto de parámetros necesarios se los puede obtener mediante el plano de las líneas de formas y el plano de varamiento.

El modelo de Crandall considera al buque como una viga de sección variable muy rígida, es decir, que las deformaciones en él son despreciables. Debido a dicha asunción este proceso no es recomendable para embarcaciones de esloras muy grandes o para embarcaciones que van a ser cortadas o que tengan un considerable daño. También se asumen a los bloques de la cama de varamiento como muy rígidos para poder calcular la presión sobre ellos.

Para la aplicación del método, el modelo de Crandall transforma la distribución de pesos del buque en forma trapezoidal *(ver Figura 5).* Se asume que dicha distribución actúa únicamente sobre la longitud soportada por la cama de varamiento, es decir, actúa entre la distancia desde el bloque más a popa hasta el bloque más a proa de la cama de varamiento.



Figura 5.- Transformación de la distribución de pesos a distribución trapezoidal en el Método de Crandall

Los valores extremos de la distribución de pesos trapezoidal se calculan como se muestra a continuación, [1]:

$$w_{A} = \frac{W}{L_{\kappa}} + 6\frac{W.e}{{L_{\kappa}}^{2}}$$
(1)

$$w_{F} = \frac{W}{L_{K}} - 6\frac{W.e}{{L_{K}}^{2}}$$
(2)

En las ecuaciones (1) y (2), W es el desplazamiento total del buque,  $L_K$  es la longitud de la quilla soportada por la cama de varamiento, y, *e* es la excentricidad o la distancia longitudinal entre el centro de gravedad

longitudinal ( $L_{CG}$ ) y el centro de la longitud soportada por la cama. La excentricidad se la puede obtener mediante:

$$e = L_{CG} - \frac{L_{\kappa}}{2} - L_{1B} \tag{3}$$

donde  $L_{1B}$  es la distancia longitudinal desde el bloque más a proa hasta la perpendicular de proa.

La distribución de pesos, [peso/longitud], se la expresa a partir de la asunción de linealidad, de la siguiente manera:

$$w_{B} = \frac{W_{A} - W_{F}}{L_{K}} x + W_{F} , \qquad (4)$$

donde x es la ubicación de cada bloque con respecto al bloque más a Proa.

Una vez obtenida la distribución de pesos, y tomando en cuenta las simplificaciones mencionadas, la presión sobre los bloques de la cama de varamiento ( $P_B$ ) puede ser calculada de la siguiente manera:

$$P_{B} = \frac{W_{B}S}{A_{B}},$$
(5)

donde *S* es el espaciamiento entre bloques y  $A_B$ área de contacto del bloque. Finalmente multiplicando esta presión por el área de soporte de los bloques, se pueden calcular las reacciones sobre los bloques. A continuación se presentan los datos para el cálculo de las reacciones para el B/T Andes V, además de la descripción de cada uno de ellos:

| Longitud de quilla soportada por<br>la cama de varamiento                              | L <sub>K</sub> (m)                                                          | 84.02  |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------|
| Distancia longitudinal desde el<br>bloque más a proa hasta la<br>perpendicular de proa | L <sub>1B</sub> <i>(m)</i>                                                  | 1.12   |
| Centro de gravedad longitudinal desde la perpendicular de proa                         | L <sub>CG</sub> (m)                                                         | 47.75  |
| Excentricidad                                                                          | е <i>(m)</i> = L <sub>CG</sub> - L <sub>K</sub> /2 - L <sub>1В</sub>        | 4.63   |
| Desplazamiento Ligero                                                                  | W (ton)                                                                     | 1794.5 |
| Distribución de peso sobre el<br>bloque más a popa                                     | $W_{\rm A}$ (ton/m)= W/L <sub>K</sub> + 6(W*e/L <sub>K</sub> <sup>2</sup> ) | 28.41  |
| Distribución de peso sobre el<br>bloque más a proa                                     | $W_{F}$ (ton/m)= W/L <sub>K</sub> - 6(W*e/L <sub>K</sub> <sup>2</sup> )     | 14.30  |

Tabla XIII.- Datos del B/T Andes V para la aplicación del método de Crandall

Utilizando una hoja de cálculo y las ecuaciones mencionadas anteriormente, se obtienen los valores de las presiones sobre los bloques de la cama de varamiento:

| Diamua          | Localización (x) | Area              | WB      | Р                     |
|-----------------|------------------|-------------------|---------|-----------------------|
| вюдие           | [m]              | [m <sup>2</sup> ] | [ton/m] | [ton/m <sup>2</sup> ] |
| 1C              | 0.00             | 0.794             | 14.30   | 65.79                 |
| 2C              | 3.65             | 0.796             | 14.92   | 68.40                 |
| 3C              | 7.30             | 0.792             | 15.53   | 71.57                 |
| 4C              | 10.95            | 0.792             | 16.14   | 74.39                 |
| 5C, lateral 1   | 13.97            | 1.153             | 16.65   | 52.70                 |
| 6C, lateral 2   | 17.62            | 1.158             | 17.26   | 54.41                 |
| 7C, lateral 3   | 21.27            | 1.157             | 17.87   | 56.39                 |
| 8C, lateral 4   | 24.92            | 1.173             | 18.49   | 57.54                 |
| 9C, lateral 5   | 28.57            | 1.109             | 19.10   | 62.85                 |
| 10C, lateral 6  | 32.22            | 1.132             | 19.71   | 63.59                 |
| 11C, lateral 7  | 35.87            | 1.187             | 20.33   | 62.50                 |
| 12C, lateral 8  | 39.52            | 1.165             | 20.94   | 65.60                 |
| 13C, lateral 9  | 43.17            | 1.254             | 21.55   | 62.73                 |
| 14C, lateral 10 | 46.82            | 1.142             | 22.17   | 70.82                 |
| 15C, lateral 11 | 50.47            | 1.121             | 22.78   | 74.17                 |
| 16C, lateral 12 | 54.12            | 1.134             | 23.39   | 75.26                 |
| 17C, lateral 13 | 57.77            | 1.176             | 24.00   | 74.52                 |
| 18C, lateral 14 | 61.42            | 1.116             | 24.62   | 80.53                 |
| 19C, lateral 15 | 65.07            | 1.169             | 25.23   | 78.75                 |
| 20C, lateral 16 | 68.72            | 1.129             | 25.84   | 83.57                 |
| 21C, lateral 17 | 72.37            | 1.261             | 26.46   | 76.55                 |
| 22C             | 76.72            | 0.718             | 27.19   | 138.29                |
| 23C             | 80.37            | 0.788             | 27.80   | 128.77                |
| 24C             | 84.02            | 0.788             | 28.41   | 131.61                |

Tabla XIV.- Presiones [ton/m<sup>2</sup>] sobre los bloques de la cama de varamiento

aplicando el modelo de Crandall

Para el cálculo de la reacción sobre los bloques, se tiene que considerar que la fuerza que soporta el bloque se encuentra repartida a distancias iguales en el sentido del eje x (hacia popa y proa) medidas desde el centro del bloque, como se muestra en la siguiente figura:



Figura 6.- Alcance de la reacción calculada para cada bloque

Para obtener el valor de la reacción total por el bloque, mostrada en la *figura* 6, se integra la ecuación de la recta en la parte superior, que representa la distribución de pesos del buque, entre las localizaciones inicial ( $x_i$ ) y final ( $x_f$ ), de la siguiente manera:

$$\int_{X_i}^{X_f} (mx+b) dx = \left[ m\left(\frac{x_f^2}{2}\right) + b * x_f \right] - \left[ m\left(\frac{x_i^2}{2}\right) + b * x_i \right]$$

donde: m, es la pendiente de la recta (constante)

b, es el corte de la recta con el eje vertical (constante)

Los resultados de esta integración se muestran con la ayuda de una hoja electrónica, obteniendo las reacciones en los bloques:

| Pendiente           | 0.17  | ton/m <sup>2</sup> |
|---------------------|-------|--------------------|
| Corte con el Origen | 14.30 | ton/m              |

| Plaqua          | Localiz. Inicial | Localiz. Final | Reacción |
|-----------------|------------------|----------------|----------|
| ыодие           | [m]              | [m]            | [ton]    |
| 1C              | 0.00             | 1.83           | 26.4     |
| 2C              | 1.83             | 5.48           | 54.4     |
| 3C              | 5.48             | 9.13           | 56.7     |
| 4C              | 9.13             | 12.46          | 53.7     |
| 5C, lateral 1   | 12.46            | 15.79          | 55.6     |
| 6C, lateral 2   | 15.79            | 19.44          | 63.0     |
| 7C, lateral 3   | 19.44            | 23.09          | 65.2     |
| 8C, lateral 4   | 23.09            | 26.74          | 67.5     |
| 9C, lateral 5   | 26.74            | 30.39          | 69.7     |
| 10C, lateral 6  | 30.39            | 34.04          | 72.0     |
| 11C, lateral 7  | 34.04            | 37.69          | 74.2     |
| 12C, lateral 8  | 37.69            | 41.34          | 76.4     |
| 13C, lateral 9  | 41.34            | 44.99          | 78.7     |
| 14C, lateral 10 | 44.99            | 48.64          | 80.9     |
| 15C, lateral 11 | 48.64            | 52.29          | 83.1     |
| 16C, lateral 12 | 52.29            | 55.94          | 85.4     |
| 17C, lateral 13 | 55.94            | 59.59          | 87.6     |
| 18C, lateral 14 | 59.59            | 63.24          | 89.9     |
| 19C, lateral 15 | 63.24            | 66.89          | 92.1     |
| 20C, lateral 16 | 66.89            | 70.54          | 94.3     |
| 21C, lateral 17 | 70.54            | 74.54          | 106.0    |
| 22C             | 74.54            | 78.54          | 108.7    |
| 23C             | 78.54            | 82.19          | 101.5    |
| 24C             | 82.19            | 84.02          | 51.6     |
|                 |                  | Sumatoria      | 1794.5   |
|                 |                  | Promedio       | 74.8     |

Tabla XV.- Reacciones [ton] de los bloques de la cama de varamiento

aplicando el modelo de Crandall

Como se puede observar en los resultados, la sumatoria de todas las reacciones es muy cercana al desplazamiento del buque. Además se puede notar que las reacciones en el primero y último bloques son muy pequeñas (a diferencia de lo esperado); esto es debido a que el modelo de Crandall solo toma en cuenta la eslora soportada por los bloques, es decir que el desplazamiento fuera de L<sub>K</sub> = 84.02 m. no es tomado en cuenta directamente sobre el primer y último bloque.

## 2.2 Cálculo de las reacciones utilizando el modelo de Viga Timoshenko [1]

El modelo de la viga Timoshenko es otro método para poder calcular las reacciones en los bloques de la cama de varamiento. A diferencia del método de Crandall, este método asume al buque como una viga flexible de sección variable, pero adicionalmente toma en cuenta el efecto de corte. Este método, considera las siguientes asunciones: el piso del dique no se deflecta al ser cargado; el material de la estructura del buque es homogéneo, isotrópico y elástico; y, las reacciones en los bloques tienen una relación directa a la deflexión del buque en cualquier punto a lo largo de su eslora.

Conociendo que el buque está en equilibrio, se puede aplicar la siguiente distribución de fuerzas externas para el buque varado:

$$q(x) = -k(x)y - w(x) \tag{6}$$

donde q(x) es la carga a lo largo de la eslora,

- k(x) es el Módulo de Rigidez, que es la Rigidez (K) de cadabloque por unidad de longitud, y,
- w(x) es el peso por unidad de longitud a lo largo de la eslora.

Realizando el diagrama de cuerpo libre para un segmento de viga *(figura 7),* se tiene que:

$$\sum M_z = 0 \quad \square \searrow \quad V = -\frac{dM}{dx} \tag{7}$$

$$\sum F_{y} = 0 \quad \square \qquad > \quad q = -\frac{dV}{dx} \tag{8}$$



Figura 7.- Diagrama de cuerpo libre para una viga

Además, existen dos ecuaciones elásticas para una viga que se derivan de la Ley de Hooke, la primera (*Ecuación 9*) considera que el efecto promedio del corte en una sección, reduce la pendiente de la viga deflectada, mientras que la segunda (*Ecuación 10*) considera que el Momento Flector es proporcional a la curvatura de la viga deformada:

$$\frac{dy}{dx} - \psi = -\frac{V}{A_s G} \tag{9}$$

$$\frac{d\psi}{dx} = \frac{M}{EI} \tag{10}$$

donde *G* es el Módulo de Corte del material de la Viga

E es el Módulo de Elasticidad del material de la Viga

$$\Psi$$
 es la pendiente debida a la flexión

Finalmente sustituyendo las ecuaciones elásticas (9) y (10) en las ecuaciones (7) y (8) se obtienen las siguientes ecuaciones:

$$E\frac{d}{dx}\left(I(x)\frac{d\psi(x)}{dx}\right) + A_{s}(x)G\left(\psi(x) - \frac{dy}{dx}\right) = 0$$
(11)

$$G\frac{d}{dx}\left[A_{s}(x)\left(\psi(x)-\frac{dy}{dx}\right)\right]-k(x)y-w(x)=0$$
(12)

donde se nota que las propiedades seccionales son variables.

Para obtener el resultado deseado ( $y(x) \ y \ \Psi(x)$ ), se deben resolver estas dos ecuaciones simultáneamente, lo cual sería muy complicado de realizar analíticamente. Por ello se utilizará el método numérico de Diferencias Finitas para la resolución de las Ecuaciones Diferenciales Ordinarias (11) y (12). La aplicación de dicho método para resolver las Ecuaciones Diferenciales Ordinarias se presenta en el *Apéndice C,* [10], [11].

Si se observa cuidadosamente las ecuaciones (11) y (12), se puede notar que el modelo de la viga Timoshenko necesita los valores de la Inercia de la sección del buque apoyada sobre cada bloque (*Io*), el área del buque que interviene en el corte de cada estación sobre un bloque ( $A_s$ ), el módulo de rigidez de los bloques (k(x)), y, el peso por unidad de longitud sobre cada bloque (*w*). Los valores de la inercia y peso por unidad de longitud a lo largo de la eslora del buque se encuentran en el *Capítulo 1* de la presente tesis. El cálculo del área de la sección del buque que interviene en el corte y el módulo de rigidez, se presentan en el *Apéndice B*.

Para los fines de esta tesis, se ha desarrollado un programa en Fortran, llamado *DFTIMOSH*, para obtener las reacciones en los bloques usando el método de la viga Timoshenko. La aplicación del mencionado programa se presenta en el *Apéndice C*. A continuación se muestran los datos ingresados en el mencionado programa:

| Número de segmentos: | 26       |                     |
|----------------------|----------|---------------------|
| Módulo de Young:     | 2.11E+03 | ton/cm <sup>2</sup> |
| Módulo de Corte:     | 8.45E+02 | ton/cm <sup>2</sup> |
| Espaciamiento x:     | 365      | cm                  |

| l <sub>o</sub>     | A corte            | k(x)                   | peso/long | #  |
|--------------------|--------------------|------------------------|-----------|----|
| [cm <sup>4</sup> ] | [cm <sup>2</sup> ] | [ton/cm <sup>2</sup> ] | [ton/cm]  | #  |
| 3.62E+07           | 263.72             | 0.001                  | 0.1578    | 1  |
| 1.40E+08           | 790.61             | 0.187                  | 0.1315    | 2  |
| 3.15E+08           | 819.39             | 0.187                  | 0.1293    | 3  |
| 3.41E+08           | 827.59             | 0.186                  | 0.1460    | 4  |
| 7.10E+08           | 2034.54            | 0.186                  | 0.1594    | 5  |
| 7.23E+08           | 2034.54            | 0.271                  | 0.1639    | 6  |
| 7.33E+08           | 2034.54            | 0.272                  | 0.1639    | 7  |
| 7.26E+08           | 1512.65            | 0.272                  | 0.1661    | 8  |
| 6.91E+08           | 1504.41            | 0.276                  | 0.1661    | 9  |
| 6.61E+08           | 1504.41            | 0.261                  | 0.1661    | 10 |
| 6.43E+08           | 1543.57            | 0.266                  | 0.1661    | 11 |
| 6.33E+08           | 1543.57            | 0.279                  | 0.1661    | 12 |
| 6.29E+08           | 1524.47            | 0.274                  | 0.1661    | 13 |
| 6.39E+08           | 1524.47            | 0.295                  | 0.1661    | 14 |
| 6.46E+08           | 1524.47            | 0.269                  | 0.1661    | 15 |
| 6.44E+08           | 1704.63            | 0.264                  | 0.1661    | 16 |
| 6.35E+08           | 1704.63            | 0.267                  | 0.1661    | 17 |
| 6.16E+08           | 1704.63            | 0.277                  | 0.1661    | 18 |
| 5.88E+08           | 878.25             | 0.262                  | 0.1661    | 19 |
| 5.51E+08           | 878.25             | 0.275                  | 0.1840    | 20 |
| 5.03E+08           | 878.25             | 0.265                  | 0.2331    | 21 |
| 4.30E+08           | 866.56             | 0.297                  | 0.3179    | 22 |
| 3.27E+08           | 858.93             | 0.169                  | 0.3413    | 23 |
| 2.25E+08           | 849.46             | 0.185                  | 0.2866    | 24 |
| 1.29E+08           | 758.92             | 0.185                  | 0.2342    | 25 |
| 2.35E+07           | 337.07             | 0.001                  | 0.2810    | 26 |

Tabla XVI.- Datos del B/T Andes V para el Programa DFTIMOSH

Utilizando los datos de la *tabla XVI*, se ejecuta el programa obteniendo las reacciones siguientes:

| Cuad del | Cuad del | Diamus          | Reacción |
|----------|----------|-----------------|----------|
| buque    | dique    | Bioque          | [ton]    |
| 137      | 10       | 1C              | 60.70    |
| 132      | 11       | 2C              | 57.30    |
| 126      | 12       | 3C              | 53.60    |
| 120      | 13       | 4C              | 50.20    |
| 115      | 14       | 5C, lateral 1   | 68.70    |
| 109      | 15       | 6C, lateral 2   | 64.70    |
| 103      | 16       | 7C, lateral 3   | 61.00    |
| 98       | 17       | 8C, lateral 4   | 58.90    |
| 92       | 18       | 9C, lateral 5   | 53.60    |
| 86       | 19       | 10C, lateral 6  | 53.40    |
| 80       | 20       | 11C, lateral 7  | 55.90    |
| 75       | 21       | 12C, lateral 8  | 56.10    |
| 69       | 22       | 13C, lateral 9  | 63.00    |
| 63       | 23       | 14C, lateral 10 | 61.20    |
| 57       | 24       | 15C, lateral 11 | 65.10    |
| 52       | 25       | 16C, lateral 12 | 72.30    |
| 46       | 26       | 17C, lateral 13 | 83.30    |
| 40       | 27       | 18C, lateral 14 | 87.90    |
| 34       | 28       | 19C, lateral 15 | 102.30   |
| 29       | 29       | 20C, lateral 16 | 108.40   |
| 23       | 30       | 21C, lateral 17 | 133.40   |
| 16       | 31       | 22C             | 83.20    |
| 10       | 32       | 23C             | 101.50   |
| 5        | 33       | 24C             | 113.00   |
|          |          | Sumatoria       | 1768.70  |
|          |          | Promedio        | 73.70    |

**Tabla XVII.-** Reacciones [ton] de los bloques de la cama de varamientoaplicando el modelo de Viga Timoshenko

Como se puede observar en los resultados, la sumatoria de todas las reacciones es menor al desplazamiento del buque en aproximadamente 26 ton, el cual es adecuado considerando que se está utilizando un método numérico para la resolución de las ecuaciones diferenciales de la Viga Timoshenko. Así mismo el promedio de las reacciones es de 73.70 ton. Para obtener un resultado con mayor exactitud se debería realizar un modelo con una mayor cantidad de segmentos.

De los resultados, se nota que las reacciones en popa son mayores que las reacciones en proa, esto es debido a que en popa se encuentra la superestructura, el sistema de gobierno y propulsión. Además las reacciones en los últimos bloques a popa son mucho más altas que el promedio, dicho comportamiento se debe a que estos bloques tienen que soportar el peso del buque que queda en voladizo en popa.

Adicionalmente se han calculado los desplazamientos verticales del B/T Andes V en cada uno de los bloques, los que se presentan a en la siguiente tabla:

| Cuad del | Cuad del | Diama           | Desplaz. |
|----------|----------|-----------------|----------|
| buque    | dique    | Bioque          | [cm]     |
| 137      | 10       | 1C              | -0.89    |
| 132      | 11       | 2C              | -0.84    |
| 126      | 12       | 3C              | -0.79    |
| 120      | 13       | 4C              | -0.74    |
| 115      | 14       | 5C, lateral 1   | -0.69    |
| 109      | 15       | 6C, lateral 2   | -0.65    |
| 103      | 16       | 7C, lateral 3   | -0.61    |
| 98       | 17       | 8C, lateral 4   | -0.58    |
| 92       | 18       | 9C, lateral 5   | -0.56    |
| 86       | 19       | 10C, lateral 6  | -0.55    |
| 80       | 20       | 11C, lateral 7  | -0.55    |
| 75       | 21       | 12C, lateral 8  | -0.56    |
| 69       | 22       | 13C, lateral 9  | -0.59    |
| 63       | 23       | 14C, lateral 10 | -0.62    |
| 57       | 24       | 15C, lateral 11 | -0.68    |
| 52       | 25       | 16C, lateral 12 | -0.74    |
| 46       | 26       | 17C, lateral 13 | -0.82    |
| 40       | 27       | 18C, lateral 14 | -0.92    |
| 34       | 28       | 19C, lateral 15 | -1.02    |
| 29       | 29       | 20C, lateral 16 | -1.12    |
| 23       | 30       | 21C, lateral 17 | -1.23    |
| 16       | 31       | 22C             | -1.35    |
| 10       | 32       | 23C             | -1.50    |
| 5        | 33       | 24C             | -1.67    |

Tabla XVIII.- Desplazamientos verticales [cm] del B/T Andes V calculados

con el modelo de Viga Timoshenko

De los resultados, el desplazamiento aumenta hacía popa, esto es debido a que en ese sector se encuentra el mayor peso del buque, como ya se había mencionado anteriormente.

## 2.3 Cálculo de las reacciones utilizando el Método de Elementos Finitos

El tercer método que se va a utilizar para encontrar las reacciones sobre los bloques de la cama de varamiento, es el Método de Elementos Finitos (MEF). Para este fin se hará uso del programa de análisis estructural SAP2000, en el cual se ha modelado la estructura del B/T Andes V como una Viga Buque.

El modelo de la Viga Buque aplicado se compone de 51 nodos, 50 secciones, modeladas con elementos "Frame", y de 24 resortes que, como ya se había mencionado anteriormente, representan a los bloques. Adicionalmente se han tomando en cuenta las propiedades ya calculadas para las estaciones tales como Inercia (*Capítulo 1*), área que interviene en el corte (*Apéndice B*), y las propiedades del acero tipo ASTM A-131, tales como el Módulo de Elasticidad ( $E=2.11E6 \text{ kg/cm}^2$ ), Constante de Poisson (V=0.25), y el Módulo de corte ( $G=8.45E5 \text{ kg/cm}^2$ ).

El desplazamiento ligero del buque se ha modelado como cargas distribuidas, basadas en la distribución mostrada en el *Capítulo 1* de la presente tesis, mientras que el peso adicional por comestibles, combustible, agua, etc. se ha distribuido uniformemente a lo largo de la Eslora.

Por último, los bloques de la cama de varamiento se han modelado como resortes y el detalle del cálculo de sus rigideces, K, se encuentra en el *Apéndice B.* 

Todas las propiedades mencionadas en los párrafos anteriores que fueron ingresadas en el programa SAP2000, se resumen en las siguientes tablas:

| Cuad del | Bloque          | Sección | A corte | lo    | alto h | manga b | peso/long |
|----------|-----------------|---------|---------|-------|--------|---------|-----------|
| buque    | Bioque          | Deccion | m2      | m4    | m      | m       | kg/m      |
| 143      |                 | 1       | 0.026   | 1.206 | 2.23   | 1.12    | 15779.5   |
| 139      |                 | 2       | 0.076   | 1.336 | 6.30   | 2.95    | 15511.6   |
| 136      | 1C              | 3       | 0.079   | 1.442 | 6.35   | 2.79    | 12926.3   |
| 133      |                 | 4       | 0.082   | 3.100 | 6.38   | 4.03    | 12926.3   |
| 131      | 2C              | 5       | 0.082   | 3.216 | 6.43   | 4.15    | 12926.3   |
| 128      |                 | 6       | 0.083   | 3.343 | 6.79   | 4.70    | 14600.4   |
| 125      | 3C              | 7       | 0.083   | 3.469 | 7.25   | 5.66    | 14600.4   |
| 122      |                 | 8       | 0.112   | 7.062 | 7.38   | 6.30    | 15939.7   |
| 119      | 4C              | 9       | 0.112   | 7.138 | 7.56   | 6.70    | 15939.7   |
| 116      |                 | 10      | 0.203   | 7.198 | 7.63   | 7.12    | 16386.2   |
| 114      | 5C, lateral 1   | 11      | 0.203   | 7.255 | 7.63   | 7.12    | 16386.2   |
| 111      |                 | 12      | 0.208   | 7.307 | 7.41   | 8.50    | 16386.2   |
| 108      | 6C, lateral 2   | 13      | 0.208   | 7.347 | 7.41   | 8.50    | 16386.2   |
| 105      |                 | 14      | 0.208   | 7.376 | 7.41   | 8.50    | 16609.4   |
| 102      | 7C, lateral 3   | 15      | 0.208   | 7.160 | 7.41   | 8.50    | 16609.4   |
| 99       |                 | 16      | 0.208   | 6.986 | 7.41   | 8.50    | 16609.4   |
| 97       | 8C, lateral 4   | 17      | 0.208   | 6.823 | 7.41   | 8.50    | 16609.4   |
| 94       |                 | 18      | 0.151   | 6.675 | 7.41   | 8.52    | 16609.4   |
| 91       | 9C, lateral 5   | 19      | 0.151   | 6.556 | 7.41   | 8.52    | 16609.4   |
| 88       |                 | 20      | 0.151   | 6.463 | 7.41   | 8.52    | 16609.4   |
| 85       | 10C, lateral 6  | 21      | 0.151   | 6.394 | 7.41   | 8.52    | 16609.4   |
| 82       |                 | 22      | 0.151   | 6.345 | 7.41   | 8.52    | 16609.4   |
| 79       | 11C, lateral 7  | 23      | 0.151   | 6.315 | 7.41   | 8.52    | 16609.4   |
| 76       |                 | 24      | 0.152   | 6.298 | 7.20   | 8.52    | 16609.4   |
| 74       | 12C, lateral 8  | 25      | 0.152   | 6.289 | 7.20   | 8.52    | 16609.4   |
| 71       |                 | 26      | 0.152   | 6.359 | 7.20   | 8.52    | 16609.4   |
| 68       | 13C, lateral 9  | 27      | 0.152   | 6.417 | 7.20   | 8.52    | 16609.4   |
| 65       |                 | 28      | 0.152   | 6.453 | 7.20   | 8.52    | 16609.4   |
| 62       | 14C, lateral 10 | 29      | 0.152   | 6.466 | 7.20   | 8.52    | 16609.4   |
| 59       |                 | 30      | 0.152   | 6.455 | 7.20   | 8.52    | 16609.4   |
| 56       | 15C, lateral 11 | 31      | 0.170   | 6.426 | 7.21   | 8.54    | 16609.4   |
| 53       |                 | 32      | 0.170   | 6.382 | 7.21   | 8.54    | 16609.4   |
| 51       | 16C, lateral 12 | 33      | 0.170   | 6.315 | 7.21   | 8.54    | 16609.4   |
| 48       |                 | 34      | 0.170   | 6.221 | 7.21   | 8.54    | 16609.4   |
| 45       | 17C, lateral 13 | 35      | 0.170   | 6.103 | 7.21   | 8.54    | 16609.4   |
| 42       |                 | 36      | 0.170   | 5.962 | 7.21   | 8.54    | 16609.4   |
| 39       | 18C, lateral 14 | 37      | 0.088   | 5.799 | 7.23   | 8.76    | 16609.4   |
| 36       |                 | 38      | 0.088   | 5.612 | 7.23   | 8.76    | 18395.1   |
| 33       | 19C, lateral 15 | 39      | 0.088   | 5.421 | 7.23   | 8.76    | 18395.1   |
| 30       |                 | 40      | 0.088   | 5.162 | 7.23   | 8.76    | 23305.8   |
| 28       | 20C, lateral 16 | 41      | 0.088   | 4.857 | 7.23   | 8.76    | 23305.8   |
| 25       |                 | 42      | 0.088   | 4.491 | 7.14   | 8.21    | 31787.9   |
| 21       | 21C, lateral 17 | 43      | 0.087   | 4.057 | 6.75   | 7.33    | 31787.9   |
| 18       |                 | 44      | 0.086   | 3.545 | 6.39   | 6.50    | 34131.7   |
| 15       | 22C             | 45      | 0.086   | 3.028 | 6.30   | 6.29    | 34131.7   |
| 12       |                 | 46      | 0.085   | 2.515 | 6.25   | 6.27    | 28662.9   |
| 9        | 23C             | 47      | 0.085   | 2.015 | 6.18   | 6.13    | 28662.9   |
| 6        |                 | 48      | 0.085   | 1.536 | 6.08   | 5.89    | 23417.4   |
| 4        | 24C             | 49      | 0.076   | 1.085 | 6.08   | 4.78    | 28100.9   |
| 2        |                 | 50      | 0.034   | 0.561 | 4.03   | 3.99    | 28100.9   |

Tabla XIX.- Propiedades del material y cuadernas ingresadas en SAP2000

| Plagua          | К        |  |  |
|-----------------|----------|--|--|
| ыоцие           | kg/m     |  |  |
| 1C              | 6.81E+06 |  |  |
| 2C              | 6.83E+06 |  |  |
| 3C              | 6.80E+06 |  |  |
| 4C              | 6.80E+06 |  |  |
| 5C, lateral 1   | 9.90E+06 |  |  |
| 6C, lateral 2   | 9.94E+06 |  |  |
| 7C, lateral 3   | 9.93E+06 |  |  |
| 8C, lateral 4   | 1.01E+07 |  |  |
| 9C, lateral 5   | 9.52E+06 |  |  |
| 10C, lateral 6  | 9.71E+06 |  |  |
| 11C, lateral 7  | 1.02E+07 |  |  |
| 12C, lateral 8  | 1.00E+07 |  |  |
| 13C, lateral 9  | 1.08E+07 |  |  |
| 14C, lateral 10 | 9.81E+06 |  |  |
| 15C, lateral 11 | 9.62E+06 |  |  |
| 16C, lateral 12 | 9.74E+06 |  |  |
| 17C, lateral 13 | 1.01E+07 |  |  |
| 18C, lateral 14 | 9.58E+06 |  |  |
| 19C, lateral 15 | 1.00E+07 |  |  |
| 20C, lateral 16 | 9.69E+06 |  |  |
| 21C, lateral 17 | 1.08E+07 |  |  |
| 22C             | 6.16E+06 |  |  |
| 23C             | 6.76E+06 |  |  |
| 24C             | 6.76E+06 |  |  |

Tabla XX.- Rigidez de los bloques ingresadas en SAP2000

A continuación se muestra el modelo realizado en el programa SAP2000 de

la Viga Buque para el B/T Andes V:



Figura 8.- Viga Buque del B/T Andes V modelado en SAP2000

(a) Modelo sin Cargas (b) Modelo con Cargas (c) Detalles del Modelo

Una vez realizado el modelo e ingresadas las propiedades mostradas en las *tablas XIX y XX*, se ejecuta el programa SAP2000 obteniendo los siguientes resultados para las reacciones sobre los bloques:

| Cuad del | Cuad del | Plaqua          | Reacción |
|----------|----------|-----------------|----------|
| buque    | dique    | ыоцие           | [ton]    |
| 137      | 10       | 1C              | 57.55    |
| 132      | 11       | 2C              | 53.80    |
| 126      | 12       | 3C              | 50.19    |
| 120      | 13       | 4C              | 47.24    |
| 115      | 14       | 5C, lateral 1   | 65.70    |
| 109      | 15       | 6C, lateral 2   | 63.01    |
| 103      | 16       | 7C, lateral 3   | 60.52    |
| 98       | 17       | 8C, lateral 4   | 59.62    |
| 92       | 18       | 9C, lateral 5   | 54.81    |
| 86       | 19       | 10C, lateral 6  | 54.99    |
| 80       | 20       | 11C, lateral 7  | 57.45    |
| 75       | 21       | 12C, lateral 8  | 56.84    |
| 69       | 22       | 13C, lateral 9  | 62.95    |
| 63       | 23       | 14C, lateral 10 | 59.78    |
| 57       | 24       | 15C, lateral 11 | 62.36    |
| 52       | 25       | 16C, lateral 12 | 68.41    |
| 46       | 26       | 17C, lateral 13 | 78.12    |
| 40       | 27       | 18C, lateral 14 | 82.93    |
| 34       | 28       | 19C, lateral 15 | 98.41    |
| 29       | 29       | 20C, lateral 16 | 110.00   |
| 23       | 30       | 21C, lateral 17 | 142.07   |
| 16       | 31       | 22C             | 96.29    |
| 10       | 32       | 23C             | 119.68   |
| 5        | 33       | 24C             | 135.38   |
|          |          | Sumatoria       | 1798.08  |
|          |          | Promedio        | 74.92    |

Tabla XXI.- Reacciones [ton] de los bloques de la cama de varamiento

aplicando MEF
De los resultados, se puede notar que la sumatoria de todas las reacciones encontradas es muy similar al desplazamiento original del B/T Andes V al momento del varamiento, esto es un indicio de que el modelo se encuentra correctamente realizado.

Cabe notar que, las reacciones en los últimos bloque son las más altas, esto es debido a que dichos bloques soportan la parte del buque que queda en voladizo a popa.

Adicionalmente se han revisado los desplazamientos verticales del B/T Andes V en cada uno de los bloques, calculados por el programa SAP2000, y se presentan en la siguiente tabla:

| Cuad del | Cuad del | Plaqua          | Desplaz. |
|----------|----------|-----------------|----------|
| buque    | dique    | вюдие           | [cm]     |
| 137      | 10       | 1C              | -0.85    |
| 132      | 11       | 2C              | -0.79    |
| 126      | 12       | 3C              | -0.74    |
| 120      | 13       | 4C              | -0.69    |
| 115      | 14       | 5C, lateral 1   | -0.66    |
| 109      | 15       | 6C, lateral 2   | -0.63    |
| 103      | 16       | 7C, lateral 3   | -0.61    |
| 98       | 17       | 8C, lateral 4   | -0.59    |
| 92       | 18       | 9C, lateral 5   | -0.58    |
| 86       | 19       | 10C, lateral 6  | -0.57    |
| 80       | 20       | 11C, lateral 7  | -0.56    |
| 75       | 21       | 12C, lateral 8  | -0.57    |
| 69       | 22       | 13C, lateral 9  | -0.58    |
| 63       | 23       | 14C, lateral 10 | -0.61    |
| 57       | 24       | 15C, lateral 11 | -0.65    |
| 52       | 25       | 16C, lateral 12 | -0.70    |
| 46       | 26       | 17C, lateral 13 | -0.77    |
| 40       | 27       | 18C, lateral 14 | -0.87    |
| 34       | 28       | 19C, lateral 15 | -0.98    |
| 29       | 29       | 20C, lateral 16 | -1.14    |
| 23       | 30       | 21C, lateral 17 | -1.32    |
| 16       | 31       | 22C             | -1.56    |
| 10       | 32       | 23C             | -1.77    |
| 5        | 33       | 24C             | -2.00    |

Tabla XXII.- Desplazamientos verticales [cm] del B/T Andes V

calculados con el MEF

El máximo desplazamiento vertical se encuentra en el bloque más a popa, lo cual tiene lógica debido a que es uno de los bloques que soporta el mayor peso de la superestructura, sistema propulsor y sistema de gobierno. Para fines de comparación se han modelado los bloques de la cama de varamiento como soportes simples y se ha realizado la comparación con la modelización con resortes, obteniendo los siguientes resultados:

| Cure d del | Cureal del |                 | Read    | ción    |              |
|------------|------------|-----------------|---------|---------|--------------|
|            |            | Bloque          | Resorte | S.S.    | % diferencia |
| buque      | aique      |                 | [ton]   | [ton]   |              |
| 137        | 10         | 1C              | 57.55   | 93.95   | 63%          |
| 132        | 11         | 2C              | 53.80   | 44.74   | 17%          |
| 126        | 12         | 3C              | 50.19   | 49.63   | 1%           |
| 120        | 13         | 4C              | 47.24   | 51.55   | 9%           |
| 115        | 14         | 5C, lateral 1   | 65.70   | 57.71   | 12%          |
| 109        | 15         | 6C, lateral 2   | 63.01   | 58.70   | 7%           |
| 103        | 16         | 7C, lateral 3   | 60.52   | 59.47   | 2%           |
| 98         | 17         | 8C, lateral 4   | 59.62   | 62.13   | 4%           |
| 92         | 18         | 9C, lateral 5   | 54.81   | 57.81   | 5%           |
| 86         | 19         | 10C, lateral 6  | 54.99   | 60.36   | 10%          |
| 80         | 20         | 11C, lateral 7  | 57.45   | 60.30   | 5%           |
| 75         | 21         | 12C, lateral 8  | 56.84   | 60.34   | 6%           |
| 69         | 22         | 13C, lateral 9  | 62.95   | 60.21   | 4%           |
| 63         | 23         | 14C, lateral 10 | 59.78   | 60.07   | 0%           |
| 57         | 24         | 15C, lateral 11 | 62.36   | 59.56   | 4%           |
| 52         | 25         | 16C, lateral 12 | 68.41   | 59.35   | 13%          |
| 46         | 26         | 17C, lateral 13 | 78.12   | 58.70   | 25%          |
| 40         | 27         | 18C, lateral 14 | 82.93   | 62.84   | 24%          |
| 34         | 28         | 19C, lateral 15 | 98.41   | 66.62   | 32%          |
| 29         | 29         | 20C, lateral 16 | 110.00  | 84.06   | 24%          |
| 23         | 30         | 21C, lateral 17 | 142.07  | 120.84  | 15%          |
| 16         | 31         | 22C             | 96.29   | 125.43  | 30%          |
| 10         | 32         | 23C             | 119.68  | 89.01   | 26%          |
| 5          | 33         | 24C             | 135.38  | 234.70  | 73%          |
|            |            | Sumatoria       | 1798.08 | 1798.08 | 0.0%         |
|            |            | Promedio        | 74.92   | 74.92   | 0.0%         |

Tabla XXIII.- Comparación de reacciones de los bloques modelados como

resortes y simplemente soportados

Como se puede apreciar en la tabla anterior, el porcentaje de diferencia entre las dos modelizaciones no supera el 32%, excepto en el primero y último bloques. A continuación se muestra un gráfico con los resultados presentados en la *tabla XXIII:* 



Gráfico 3.- Reacciones de los bloques modelados como resortes y

simplemente soportados

En el caso de soportes modelados como simplemente soportados (SS) se nota una elevadísima Reacción en Popa, muy diferente del bloque contiguo. Este salto abrupto hace pensar que ésta representación del soporte no es adecuada, y que es preferible modelarlo como resorte.

# CAPÍTULO 3

# ESTIMACIÓN EXPERIMENTAL DE LAS REACCIONES EN LOS BLOQUES DE LA CAMA DE VARAMIENTO

El B/T Andes V fue varado en el dique Napo en el mes de abril del 2010, fecha en la cual se empezó con la parte experimental de esta tesis. El presente capítulo describe las herramientas utilizadas y el proceso seguido para obtener experimentalmente las reacciones en los bloques de la cama de varamiento del B/T Andes V.

# 3.1 Descripción del proceso para obtener la estimación de las reacciones

Para poder estimar las Reacciones que desarrollan los bloques de la cama de varamiento, de acuerdo al método seleccionado en este trabajo, primero se tiene que medir el aplastamiento de los tablones que tienen contacto con el fondo del buque. El término aplastamiento se refiere a la diferencia entre el espesor del tablón antes de que el buque se encuentre varado (espesor inicial) y el espesor del tablón cuando éste se encuentre comprimido por el peso del buque sobre él (espesor final).

La medición de los espesores iniciales de los tablones de la cama de varamiento, se la realizó con la ayuda de un calibrador digital. Inicialmente se marcó en el tablón los lugares en donde iban a ser tomadas las mediciones y luego se procedió a tomarlas con una precisión de centésimas de milímetro (0.01 mm). Cabe mencionar que en ciertos casos las mediciones se dificultaban mucho, o era imposible una medición adecuada, debido a que no siempre los tablones se encuentran en buen estado; en otras ocasiones en lugar de dichos tablones se encuentran bloques de madera, o en su defecto, se encuentran tablones muy deteriorados.

Para la medición de los espesores finales, es decir con el buque asentado sobre los bloques, se utilizaron 2 herramientas (*Figura 9*). Se tomó primero el espesor con un compás de interiores en cada una de las marcaciones realizadas en los tablones. Luego se midió el valor del espesor, con el calibrador Vernier digital.



Figura 9.- Herramientas utilizadas para medir los espesores de los tablones

(a) Calibrador Vernier Digital (b) Compás de Interiores

Con la finalidad de determinar de mejor forma la medida del aplastamiento, se tomaron 6 mediciones por cada tablón en los bloques laterales, y, se tomaron 10 mediciones en los bloques centrales, debido a que sobre estos últimos se disponen 4 tablones. *La figura 10* muestra los lugares en donde se tomaron las mediciones mencionadas de los tablones y su correspondiente denominación.



Figura 10.- Denominación de las mediciones tomadas en los tablones de la cama de varamiento: (a) Bloque Lateral, (b) Bloque Central

Además de las dificultades mencionadas anteriormente, en ciertos casos no se tomó los espesores finales de los tablones debido a que estos no tenían contacto con el fondo de la embarcación, y por consiguiente el valor del aplastamiento era nulo. También se puede mencionar que cuando el bloque no tiene contacto con el fondo del buque varado, se acostumbra a poner cuñas bajo el tablón para que el bloque realice su función. Este procedimiento ayuda al varamiento, pero reduce la confiabilidad de los datos tomados para el fin de esta tesis.

También se tomaron las mediciones de ancho y longitud para cada tablón y se reportó el estado de los mismos (tablón "nuevo" o "viejo").

### 3.2 Resumen de las mediciones de compresión de los tablones

En este subcapítulo se presenta un resumen de las mediciones de los aplastamientos, realizadas en los tablones de los bloques de la cama de varamiento construida para el B/T Andes V, en el dique Napo.

Las mediciones de los espesores se presentan en tres tablas diferentes con la siguiente información: la denominación del bloque, su espesor promedio inicial y final, el aplastamiento y el área del tablón (ó tablones en el caso de los bloques centrales). La primera tabla muestra la información de los bloques en la banda de Estribor, la segunda de los bloques de la banda de Babor, y, la tercera de los bloques centrales.

| Estribor  | Espesor<br>Promedio |       | Aplastam. | Àrea               |
|-----------|---------------------|-------|-----------|--------------------|
| Estribui  | Inicial             | Final |           |                    |
|           | [cm]                | [cm]  | [cm]      | [cm <sup>2</sup> ] |
| Bloque 1  | 2.55                |       |           | 1946               |
| Bloque 2  | 4.69                |       |           | 1978               |
| Bloque 3  | 4.44                | 4.96  | -0.52     | 2000               |
| Bloque 4  | 5.37                | 4.64  | 0.74      | 1978               |
| Bloque 5  | 2.27                | 2.62  | -0.35     | 1720               |
| Bloque 6  | 2.66                | 3.16  | -0.51     | 1831               |
| Bloque 7  | 2.76                | 2.87  | -0.11     | 1827               |
| Bloque 8  | 4.67                | 4.19  | 0.47      | 1925               |
| Bloque 9  | 4.66                | 4.67  | -0.01     | 1695               |
| Bloque 10 | 2.51                | 2.16  | 0.35      | 1882               |
| Bloque 11 | 2.39                | 2.49  | -0.10     | 1858               |
| Bloque 12 | 2.25                | 2.67  | -0.42     | 1833               |
| Bloque 13 | 4.86                | 5.60  | -0.74     | 1934               |
| Bloque 14 | 2.37                | 2.49  | -0.11     | 1796               |
| Bloque 15 | 4.60                | 4.49  | 0.11      | 1732               |
| Bloque 16 | 2.50                | 3.19  | -0.69     | 1806               |
| Bloque 17 | 4.88                | 4.87  | 0.01      | 1780               |

| Deher     | Espes<br>Prome | or<br>dio | Aplastam. | Àrea               |
|-----------|----------------|-----------|-----------|--------------------|
| Babor     | Inicial        | Final     |           |                    |
|           | [cm]           | [cm]      | [cm]      | [cm <sup>2</sup> ] |
| Bloque 1  | 5.00           |           |           | 2060               |
| Bloque 2  | 5.57           | 3.04      | 2.53      | 2077               |
| Bloque 3  | 5.46           | 5.63      | -0.17     | 1971               |
| Bloque 4  | 2.51           | 2.65      | -0.14     | 1909               |
| Bloque 5  | 4.93           | 4.74      | 0.19      | 1773               |
| Bloque 6  | 2.35           | 2.76      | -0.41     | 1802               |
| Bloque 7  | 18.00          | 18.00     | 0.00      | 2400               |
| Bloque 8  | 4.71           | 3.66      | 1.05      | 1934               |
| Bloque 9  | 10.80          | 10.80     | 0.00      | 3321               |
| Bloque 10 | 2.27           | 2.39      | -0.12     | 1702               |
| Bloque 11 | 4.47           | 3.82      | 0.65      | 1980               |
| Bloque 12 | 4.43           | 4.13      | 0.29      | 1919               |
| Bloque 13 | 5.03           | 4.82      | 0.21      | 1872               |
| Bloque 14 | 4.74           | 4.91      | -0.18     | 1648               |
| Bloque 15 | 4.67           | 4.83      | -0.16     | 1907               |
| Bloque 16 | 2.40           | 2.91      | -0.52     | 1905               |
| Bloque 17 | 23.60          | 23.60     | 0.00      | 3073               |

(b)

| Contral   | Espesor<br>Promedio |       | Aplastam. | Àrea               |
|-----------|---------------------|-------|-----------|--------------------|
| Central   | Inicial             | Final |           |                    |
|           | [cm]                | [cm]  | [cm]      | [cm <sup>2</sup> ] |
| Bloque 1  | 4.36                | 3.70  | 0.67      | 7936               |
| Bloque 2  | 3.62                | 4.06  | -0.44     | 7960               |
| Bloque 3  | 3.18                | 2.78  | 0.40      | 7920               |
| Bloque 4  | 2.94                |       |           | 7920               |
| Bloque 5  | 3.33                | 3.66  | -0.33     | 7524               |
| Bloque 6  | 4.43                | 2.93  | 1.50      | 7524               |
| Bloque 7  | 3.62                |       |           | 7600               |
| Bloque 8  | 3.24                | 3.22  | 0.02      | 7840               |
| Bloque 9  | 3.14                | 3.45  | -0.31     | 7600               |
| Bloque 10 | 2.57                | 2.52  | 0.05      | 7683               |
| Bloque 11 | 2.08                | 2.35  | -0.27     | 7644               |
| Bloque 12 | 4.77                | 4.27  | 0.50      | 7792               |
| Bloque 13 | 4.51                | 4.06  | 0.46      | 7524               |
| Bloque 14 | 4.12                | 4.34  | -0.22     | 7840               |
| Bloque 15 | 4.21                | 4.23  | -0.02     | 7372               |
| Bloque 16 | 4.85                | 5.37  | -0.52     | 7592               |
| Bloque 17 | 4.74                | 5.18  | -0.44     | 7952               |
| Bloque 18 | 4.68                | 4.88  | -0.19     | 7713               |
| Bloque 19 | 4.62                | 5.34  | -0.72     | 8056               |
| Bloque 20 | 3.67                | 3.17  | 0.51      | 7577               |
| Bloque 21 | 2.49                | 3.08  | -0.59     | 7761               |
| Bloque 22 | 2.97                | 3.02  | -0.06     | 7176               |
| Bloque 23 | 4.75                | 4.34  | 0.41      | 7880               |
| Bloque 24 | 3.12                | 2.01  | 1.12      | 7880               |

(C)

Tabla XXIV.- Resumen de área y aplastamiento en los bloques de la cama

de varamiento determinadas experimentalmente por bandas:

(a) Estribor, (b) Babor, (c) Centrales

#### 3.3 Cálculo de las reacciones

Una vez conocidos los valores del aplastamiento que sufre cada tablón, para obtener las reacciones se puede aplicar la ley de Hooke que establece que: "El alargamiento unitario que experimenta un material elástico es directamente proporcional a la fuerza aplicada F', [4]. Así tenemos:

$$\varepsilon = \frac{\sigma}{E} \Rightarrow \frac{\Delta t}{t_{inicial}} = \frac{F}{AE}$$
$$\Rightarrow F = AE \left(\frac{t_{final}}{t_{inicial}} - 1\right)$$

Para la presente tesis se han tomado las fuerzas como positivas.

Ahora se debe combinar las fuerzas en Babor, Estribor y Centrales para cada una de las cuadernas que tengan bloques en las tres filas, con el objetivo de tener una sola reacción equivalente. Una experiencia parecida es descrita en el *Apéndice B*, para la determinación de la rigidez, *K*, del bloque, el que fue modelado como un solo resorte equivalente. Ahora, para obtener tanto el área resultante como la reacción resultante entre los bloques laterales y central de una misma cuaderna, se sumaron los resultados parciales encontrados por cada bloque, obteniendo así los siguientes resultados:

|          |                 | Área Superior      |                    | Area total         | Reac               | Reacción |         |          |        |
|----------|-----------------|--------------------|--------------------|--------------------|--------------------|----------|---------|----------|--------|
| Cuad del | Bloque          | Babor              | Central            | Estribor           | Area total         | Babor    | Central | Estribor | Total  |
| dique    |                 | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] | [ton]    | [ton]   | [ton]    | [ton]  |
| 10       | 1C              |                    | 7936               |                    | 7936               |          | 443.7   |          | 443.7  |
| 11       | 2C              |                    | 7960               |                    | 7960               |          | -351.9  |          | 0.0    |
| 12       | 3C              |                    | 7920               |                    | 7920               |          | 364.9   |          | 364.9  |
| 13       | 4C              |                    | 7920               |                    | 7920               |          | 0.0     |          | 0.0    |
| 14       | 5C, lateral 1   | 2060               | 7524               | 1946               | 11530.2            | 0.00     | -275.0  | 0.00     | 0.0    |
| 15       | 6C, lateral 2   | 2077               | 7524               | 1978               | 11578.9            | -345.3   | 929.1   | 0.00     | 929.1  |
| 16       | 7C, lateral 3   | 1971               | 7600               | 2000               | 11570.8            | 22.3     | 0.0     | -86.5    | 22.3   |
| 17       | 8C, lateral 4   | 1909               | 7840               | 1978               | 11726.8            | 39.1     | 19.0    | 99.4     | 157.5  |
| 18       | 9C, lateral 5   | 1773               | 7600               | 1720               | 11093.4            | -24.6    | -274.9  | -96.0    | 0.0    |
| 19       | 10C, lateral 6  | 1802               | 7683               | 1831               | 11315.5            | 113.8    | 51.7    | -127.8   | 165.5  |
| 20       | 11C, lateral 7  | 2400               | 7644               | 1827               | 11870.3            | 0.0      | -369.9  | -27.4    | 0.0    |
| 21       | 12C, lateral 8  | 1934               | 7792.2             | 1925               | 11650.9            | -158.2   | 299.3   | 71.1     | 370.4  |
| 22       | 13C, lateral 9  | 3321               | 7524               | 1695               | 12539.8            | 0.0      | 278.4   | -1.3     | 278.4  |
| 23       | 14C, lateral 10 | 1702               | 7840               | 1882               | 11423.7            | 32.2     | -151.9  | 97.3     | 129.5  |
| 24       | 15C, lateral 11 | 1980               | 7372               | 1858               | 11210.2            | -104.7   | -13.0   | -28.1    | 0.0    |
| 25       | 16C, lateral 12 | 1919               | 7592.4             | 1833               | 11344.4            | -46.7    | -295.9  | -126.6   | 0.0    |
| 26       | 17C, lateral 13 | 1872               | 7952               | 1934               | 11757.9            | -28.6    | -267.2  | -107.6   | 0.0    |
| 27       | 18C, lateral 14 | 1648               | 7713.44            | 1796               | 11157.6            | 22.6     | -116.7  | -31.1    | 22.6   |
| 28       | 19C, lateral 15 | 1907               | 8055.76            | 1732               | 11694.4            | 24.0     | -458.6  | 14.7     | 38.6   |
| 29       | 20C, lateral 16 | 1905               | 7577.2             | 1806               | 11288.0            | 150.7    | 382.1   | -181.9   | 532.7  |
| 30       | 21C, lateral 17 | 3073               | 7761               | 1780               | 12614.5            | 0        | -674.6  | 1.0      | 1.0    |
| 31       | 22C             |                    | 7176               |                    | 7176               |          | -50.0   |          | 0.0    |
| 32       | 23C             |                    | 7880               |                    | 7880               |          | 248.8   |          | 248.8  |
| 33       | 24C             |                    | 7880               |                    | 7880               |          | 1030.0  |          | 1030.0 |

Tabla XXV.- Resumen de áreas y reacciones totales en los bloques estimadas experimentalmente

Cabe hacer ciertas observaciones acerca de la tabla mostrada anteriormente: al ser aplastada la madera en uno de sus bordes, el opuesto aumenta de espesor, como efecto de compensación (Poisson). Este efecto ha sido una de las mayores dificultades en la toma de datos durante el proceso experimental, motivo por el cual en ciertos casos se tiene que el espesor final del tablón (t<sub>f</sub>) es mayor que el espesor inicial del mismo (t<sub>0</sub>), produciendo un aplastamiento y reacción negativos. Las reacciones negativas no son útiles para los fines del presente trabajo, así que se las tomó como nulas para que no afecten a la reacción total.

Existen ciertos casos en los que el buque se asienta tan solo en el centro del tablón lo que produce un aumento del espesor del tablón en todos sus bordes. Recordando que las mediciones de los espesores de los mismos fueron tomadas en sus bordes, como resultado se obtienen reacciones negativas y por lo mencionado en el párrafo anterior dicha fuerza se toma como nula a pesar de que en la realidad si existe un aplastamiento.

Como ya se había mencionado anteriormente, muchas veces los tablones son reutilizados a pesar de que estén deteriorados, lo que provoca una medición poco confiable. En la siguiente tabla se muestra un resumen de las dificultades por cada bloque encontradas durante el proceso experimental:

68

| Bloque         | Reacción<br>[ton] | Tablones<br>Nuevos | Tablones<br>Viejos | Observación                                                                                                                                                                                                                                                                | Confiable |
|----------------|-------------------|--------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1C             | 443.7             | 3                  | 1                  | En 7 lugares donde se debían tomar las mediciones de t <sub>f</sub> ,el buque no se asentaba sobre el bloque                                                                                                                                                               | No        |
| 2C             | 0.0               | 2                  | 2                  | En 2 lugares donde se debían tomar las mediciones de t <sub>f</sub> ,el buque no se asentaba sobre el bloque                                                                                                                                                               | No        |
| 3C             | 364.9             |                    | 2                  | En 6 lugares donde se debían tomar las mediciones de $t_f$ , no existe tablón solo bloque de madera ( $t_f = t_0$ )                                                                                                                                                        | No        |
| 4C             | 0.00              | 4                  |                    | En ninguno de lugares donde se debían tomar las mediciones de t <sub>f</sub> el buque se asentaba sobre el bloque                                                                                                                                                          | No        |
| 5C, lateral 1  | 0.0               | 4                  |                    | Bloque Central: En 1 lugar donde se debía tomar las mediciones de t <sub>f</sub> ,el buque no se asentaba sobre el bloque.<br>Bloques Laterales: En ninguno de lugares donde se debían tomar las mediciones de t <sub>f</sub> el buque se asentaba sobre el bloque         | No        |
| 6C, lateral 2  | 929.1             | 4                  |                    | Bloque Central: En 7 lugares donde se debían tomar las mediciones de t <sub>r</sub> ,el buque no se asentaba sobre el bloque<br>Bloques Laterales: El buque solo se asienta en 2 puntos en babor sobre los tablones, en estribor el buque no se asienta                    | No        |
| 7C, lateral 3  | 22.3              | 4                  |                    | Bloque Central: En ninguno de lugares donde se debían tomar las mediciones de t <sub>f</sub> el buque se asentaba sobre el bloque Bloques Laterales: El buque no se asentaba en 3 puntos en estribor y 2 en babor                                                          | No        |
| 8C, lateral 4  | 157.5             | 1                  | 3                  | Bloque Central: Todos los puntos de contactos puedieron ser medidos.<br>Bloques Laterales: Todos los puntos de contactos puedieron ser medidos.                                                                                                                            | Si        |
| 9C, lateral 5  | 0.0               | 4                  |                    | Bloque Central: En 3 lugares donde se debían tomar las mediciones de t <sub>r</sub> , el buque no se asentaba sobre el bloque<br>Bloques Laterales: Todos los puntos de contactos puedieron ser medidos.                                                                   | No        |
| 10C, lateral 6 | 165.5             |                    | 4                  | Bloque Central: Todos los puntos de contactos puedieron ser medidos.<br>Bloques Laterales: El buque no se asentaba en 1 punto en estribor, en babor todos los puntos pudieron ser medidos                                                                                  | Si        |
| 11C, lateral 7 | 0.0               | 2                  | 2                  | Bloque Central: En 4 lugares donde se debían tomar las mediciones de t <sub>f</sub> ,el buque no se asentaba sobre el bloque<br>Bloques Laterales: El buque no se asentaba en 1 punto en estribor, en babor se tenía un bloque de madera (t <sub>0</sub> =t <sub>f</sub> ) | No        |
| 12C, lateral 8 | 370.4             | 1                  | 3                  | Bloque Central: Todos los puntos de contactos puedieron ser medidos.<br>Bloques Laterales: Todos los puntos de contactos puedieron ser medidos.                                                                                                                            | No        |

Tabla XXVI.- Observaciones de los espesores medidos de los tablones

| Bloque          | Reacción<br>[ton] | Tablones<br>Nuevos | Tablones<br>Viejos | Observación                                                                                                                                                                                                                                                                                                                                                                                    | Confiable |
|-----------------|-------------------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 13C, lateral 9  | 278.4             |                    | 4                  | Bloque Central: En 5 lugares donde se debían tomar las mediciones de t <sub>r</sub> ,el buque no se asentaba sobre el bloque<br>Bloques Laterales: El buque asentaba normalmente en estribor y todas las mediciones pudieron ser tomadas, en babor se<br>tenía un bloque de madera (t <sub>o</sub> =t <sub>r</sub> )                                                                           | No        |
| 14C, lateral 10 | 129.5             |                    | 4                  | que Central: En 3 lugares donde se debían tomar las mediciones de t <sub>f</sub> ,el buque no se asentaba sobre el bloque<br>ques Laterales: El buque asentaba normalmente en estribor y todas las mediciones pudieron ser tomadas, en babor 1<br>to no se puede tomar debido a que el buque no se asienta                                                                                     |           |
| 15C, lateral 11 | 0.0               |                    | 4                  | Bloque Central: En 1 lugar donde se debía tomar las mediciones de t <sub>r</sub> ,el buque no se asentaba sobre el bloque.<br>Bloques Laterales: El buque asentaba normalmente en estribor y todas las mediciones pudieron ser tomadas, en babor 1<br>punto no se puede tomar debido a que el buque no se asienta                                                                              | No        |
| 16C, lateral 12 | 0.0               |                    | 4                  | Bloque Central: Todos los puntos de contactos puedieron ser medidos.<br>Bloques Laterales: El buque no se asentaba en 2 puntos en estribor, en babor todos los puntos pudieron ser medidos                                                                                                                                                                                                     | No        |
| 17C, lateral 13 | 0.0               |                    | 4                  | Bloque Central: En 4 lugares donde se debían tomar las mediciones de t <sub>f</sub> ,el buque no se asentaba sobre el bloque.<br>Bloques Laterales: No pudieron tomarse las mediciones de t <sub>f</sub> en 3 puntos en la banda de estribor, mientras que en babor 1<br>punto no se puede tomar debido a que el buque no se asienta                                                           | No        |
| 18C, lateral 14 | 22.6              |                    | 4                  | Bloque Central: En 4 lugares donde se debían tomar las mediciones de t <sub>r</sub> ,el buque no se asentaba sobre el bloque.<br>Bloques Laterales: Todas las mediciones pudieron ser tomadas tanto en la banda de babor como en la de estribor.                                                                                                                                               | No        |
| 19C, lateral 15 | 38.6              |                    | 3                  | Bloque Central: En 1 lugar donde se debía tomar las mediciones de t <sub>r</sub> ,el buque no se asentaba sobre el bloque y en tres<br>puntos no se tomaron las medidas debido a que no existía tablón sino que había un bloque de madera (t <sub>o</sub> =t <sub>r</sub> )<br>Bloques Laterales: Todas las mediciones pudieron ser tomadas tanto en la banda de babor como en la de estribor. | Si        |
| 20C, lateral 16 | 532.7             |                    | 4                  | Bloque Central: Todos los puntos de contactos puedieron ser medidos.<br>Bloques Laterales: No se pudieron medir 4 puntos en la banda de estribor debido a que no se asienta el buque, en babor<br>todos los puntos pudieron ser medidos.                                                                                                                                                       | No        |
| 21C, lateral 17 | 1.0               | 4                  |                    | Bloque Central: En 1 lugar donde se debía tomar las mediciones de t <sub>i</sub> ,el buque no se asentaba sobre el bloque<br>Bloques Laterales: Todos los puntos pudieron ser medidos en estribor, mientras que en Babor hay un bloque de madera                                                                                                                                               | No        |
| 22C             | 0.0               | 1                  | 3                  | Se tomaron todas las mediciones sin novedad                                                                                                                                                                                                                                                                                                                                                    | No        |
| 23C             | 248.8             |                    | 4                  | Se tomaron todas las mediciones sin novedad                                                                                                                                                                                                                                                                                                                                                    | Si        |
| 24C             | 1030.0            | 1                  | 3                  | En 3 lugares donde se debían tomar las mediciones de t <sub>r</sub> ,el buque no se asentaba sobre el bloque                                                                                                                                                                                                                                                                                   | No        |

Tabla XXVII.- Observaciones de los espesores medidos de los tablones (continuación)

En la última columna de las *tablas XXVI y XXVII* se muestra la confianza en cada uno de los resultados obtenidos experimentalmente. Esta confianza en cada resultado se basa en el área de contacto que tienen los tablones con el fondo del buque y al estado de los mismos (tablón viejo o nuevo). La tabla presentada a continuación muestra los resultados más confiables obtenidos, los que serán comparados con los valores obtenidos con los métodos teóricos:

| Bloque          | Reacción<br>[Ton] |
|-----------------|-------------------|
| 8C, lateral 4   | 157               |
| 10C, lateral 6  | 165               |
| 14C, lateral 10 | 130               |
| 19C, lateral 15 | 39                |
| 23C             | 249               |

Tabla XXVIII.- Resultados experimentales más confiables

Si se suman todas las reacciones encontradas experimentalmente mostradas en las *tablas XXVI y XXVII*, se obtiene un valor de 4735.3 ton, cuando el desplazamiento real del buque durante el varamiento fue de 1795.9 ton. Esto demuestra que no todos los valores son útiles para comparar. Se ratifica entonces, el haber seleccionado algunas reacciones que se consideran confiables.

# CAPÍTULO 4

# **COMPARACIÓN ENTRE RESULTADOS**

## **EXPERIMENTALES Y TEÓRICOS**

El presente capítulo presenta la comparación entre los resultados obtenidos para las reacciones en los bloques de la cama de varamiento del B/T Andes V. En el primer subcapítulo se compararán los resultados entre los métodos de Crandall, Viga Timoshenko y Elementos Finitos, y en el segundo subcapítulo se muestra la comparación entre los resultados teóricos y los obtenidos experimentalmente.

### 4.1 Análisis entre resultados teóricos

Para conservar el equilibrio, se debe cumplir que la sumatoria de todas las reacciones debe ser igual al desplazamiento. Si se asume que el desplazamiento del buque se encuentra uniformemente distribuido a lo largo de su eslora, entonces todas las reacciones serían iguales, así se tiene que:

Reacción Promedio de cada bloque = 
$$\frac{W}{\#Bloques}$$
  
 $\frac{1795.94 \text{ ton}}{24} = 74.83 \text{ ton}$ 

La reacción promedio sobre cada bloque de 74.83 ton. es un valor de referencia, y se puede comparar con las fuerzas resultantes al aplicar los métodos teóricos.

El análisis de los resultados teóricos se lo realizará en tres partes: primero se presentan el análisis entre los 3 métodos, segundo se realiza una comparación entre los resultados del MEF vs. los resultados del método de Crandall, y por último se realiza el análisis entre los resultados del MEF y los resultados del método de Viga Timoshenko. A continuación se presentan, tabulados y gráficamente, los resultados de las reacciones obtenidos después de aplicar los tres métodos teóricos:

|       |       |                 | Reacciones [ton] |        |            |  |
|-------|-------|-----------------|------------------|--------|------------|--|
| dique | buque | Bloque          | Crandall         | MEF    | V. Timosh. |  |
| 10    | 137   | 1C              | 26.4             | 57.6   | 60.7       |  |
| 11    | 132   | 2C              | 54.4             | 53.8   | 57.3       |  |
| 12    | 126   | 3C              | 56.7             | 50.2   | 53.6       |  |
| 13    | 120   | 4C              | 53.7             | 47.2   | 50.2       |  |
| 14    | 115   | 5C, lateral 1   | 55.6             | 65.7   | 68.7       |  |
| 15    | 109   | 6C, lateral 2   | 63.0             | 63.0   | 64.7       |  |
| 16    | 103   | 7C, lateral 3   | 65.2             | 60.5   | 61.0       |  |
| 17    | 98    | 8C, lateral 4   | 67.5             | 59.6   | 58.9       |  |
| 18    | 92    | 9C, lateral 5   | 69.7             | 54.8   | 53.6       |  |
| 19    | 86    | 10C, lateral 6  | 72.0             | 55.0   | 53.4       |  |
| 20    | 80    | 11C, lateral 7  | 74.2             | 57.4   | 55.9       |  |
| 21    | 75    | 12C, lateral 8  | 76.4             | 56.8   | 56.1       |  |
| 22    | 69    | 13C, lateral 9  | 78.7             | 62.9   | 63.0       |  |
| 23    | 63    | 14C, lateral 10 | 80.9             | 59.8   | 61.2       |  |
| 24    | 57    | 15C, lateral 11 | 83.1             | 62.4   | 65.1       |  |
| 25    | 52    | 16C, lateral 12 | 85.4             | 68.4   | 72.3       |  |
| 26    | 46    | 17C, lateral 13 | 87.6             | 78.1   | 83.3       |  |
| 27    | 40    | 18C, lateral 14 | 89.9             | 82.9   | 87.9       |  |
| 28    | 34    | 19C, lateral 15 | 92.1             | 98.4   | 102.3      |  |
| 29    | 29    | 20C, lateral 16 | 94.3             | 110.0  | 108.4      |  |
| 30    | 23    | 21C, lateral 17 | 106.0            | 142.1  | 133.4      |  |
| 31    | 16    | 22C             | 108.7            | 96.3   | 83.2       |  |
| 32    | 10    | 23C             | 101.5            | 119.7  | 101.5      |  |
| 33    | 5     | 24C             | 51.6             | 135.4  | 113.0      |  |
|       |       | Sumatoria       | 1794.5           | 1798.1 | 1768.7     |  |
|       |       | Promedio        | 74.8             | 74.9   | 73.7       |  |

**Tabla XXIX.-** Resultados de los tres métodos teóricos aplicados para elcálculo de las reacciones sobre los bloques de la cama de varamiento



**Gráfico 4.-** Resultados de los tres métodos teóricos aplicados para el cálculo de las Reacciones sobre los bloques de la cama de varamiento

En el bloque 21C-lateral 17, ubicado bajo la Cuaderna 23 del buque (MEF) se encuentra el valor máximo de reacción, el cual es de 142.1 ton. Este valor tan alto se debe a que es el último soporte conformado por 3 bloques (1 central y 2 laterales), y además resiste gran parte de la carga de popa, donde se encuentra el mayor peso del buque.

Se puede notar una diferencia considerable (83.8 ton) entre las reacciones calculadas entre el MEF y Crandall, esto se debe a que éste método de Crandall sólo considera el peso del buque dentro de la eslora soportada por los bloques ( $L_K$ =84.02 m). Por ello se obtiene una reacción baja para el bloque de proa de 51.6 ton.

Cada método considera al desplazamiento del buque distribuido de manera diferente, especialmente en la parte en voladizo hacia los extremos del mismo, y debido a que en popa existe más peso, ahí es más evidente la diferencia entre las reacciones calculadas por cada método. En cuanto a los métodos de Viga Timoshenko y MEF, si se busca tener mayor exactitud en los resultados se podría realizar modelos con una mayor cantidad de segmentos.

A continuación se muestra la comparación entre las reacciones calculadas ente el MEF y el método de Crandall:

| Cuad del | Cuad del |                 | Reaccio | % de     |            |
|----------|----------|-----------------|---------|----------|------------|
| buque    | dique    | Bloque          | MEF     | Crandall | Diferencia |
| 137      | 10       | 1C              | 57.6    | 26.4     | 54%        |
| 132      | 11       | 2C              | 53.8    | 54.4     | 1%         |
| 126      | 12       | 3C              | 50.2    | 56.7     | 13%        |
| 120      | 13       | 4C              | 47.2    | 53.7     | 14%        |
| 115      | 14       | 5C, lateral 1   | 65.7    | 55.6     | 15%        |
| 109      | 15       | 6C, lateral 2   | 63.0    | 63.0     | 0%         |
| 103      | 16       | 7C, lateral 3   | 60.5    | 65.2     | 8%         |
| 98       | 17       | 8C, lateral 4   | 59.6    | 67.5     | 13%        |
| 92       | 18       | 9C, lateral 5   | 54.8    | 69.7     | 27%        |
| 86       | 19       | 10C, lateral 6  | 55.0    | 72.0     | 31%        |
| 80       | 20       | 11C, lateral 7  | 57.4    | 74.2     | 29%        |
| 75       | 21       | 12C, lateral 8  | 56.8    | 76.4     | 34%        |
| 69       | 22       | 13C, lateral 9  | 62.9    | 78.7     | 25%        |
| 63       | 23       | 14C, lateral 10 | 59.8    | 80.9     | 35%        |
| 57       | 24       | 15C, lateral 11 | 62.4    | 83.1     | 33%        |
| 52       | 25       | 16C, lateral 12 | 68.4    | 85.4     | 25%        |
| 46       | 26       | 17C, lateral 13 | 78.1    | 87.6     | 12%        |
| 40       | 27       | 18C, lateral 14 | 82.9    | 89.9     | 8%         |
| 34       | 28       | 19C, lateral 15 | 98.4    | 92.1     | 6%         |
| 29       | 29       | 20C, lateral 16 | 110.0   | 94.3     | 14%        |
| 23       | 30       | 21C, lateral 17 | 142.1   | 106.0    | 25%        |
| 16       | 31       | 22C             | 96.3    | 108.7    | 13%        |
| 10       | 32       | 23C             | 119.7   | 101.5    | 15%        |
| 5        | 33       | 24C             | 135.4   | 51.6     | 62%        |
|          |          | Sumatoria       | 1798.1  | 1794.5   | 0.2%       |
|          |          | Promedio        | 74.9    | 74.8     | 0.2%       |

Tabla XXX.- Comparación de los resultados de las reacciones [ton] entre

MEF y Método de Crandall



*Gráfico 5.-* Comparación de los resultados de las reacciones [ton] entre MEF y Método de Crandall

Para el cálculo de las reacciones sobre los bloques, el método de elementos finitos (MEF) considera las propiedades del material de las secciones del buque además de su inercia seccional, el área que interviene en el corte y el desplazamiento del mismo. En cuanto a la cama de varamiento, se consideran las Rigideces de cada bloque, K; mientras que en el método de Crandall solo se considera el desplazamiento y algunas dimensiones del buque y de la cama de varamiento; además se asume una distribución de cargas en forma trapezoidal, dentro de la eslora sobre los soportes y no la eslora total como en el caso del MEF.

Debido a lo anteriormente mencionado se puede esperar que las reacciones obtenidas aplicando el MEF sean más confiables que las obtenidas aplicando el método de Crandall. La comparación entre las reacciones calculadas ente el MEF y el método de la Viga Timoshenko se presenta a continuación:

|       | Cuad del |                 | Reaccio | % de            |            |
|-------|----------|-----------------|---------|-----------------|------------|
| buque | dique    | Bloque          | MEF     | Viga<br>Timosh. | Diferencia |
| 137   | 10       | 1C              | 57.6    | 60.7            | 5%         |
| 132   | 11       | 2C              | 53.8    | 57.3            | 7%         |
| 126   | 12       | 3C              | 50.2    | 53.6            | 7%         |
| 120   | 13       | 4C              | 47.2    | 50.2            | 6%         |
| 115   | 14       | 5C, lateral 1   | 65.7    | 68.7            | 5%         |
| 109   | 15       | 6C, lateral 2   | 63.0    | 64.7            | 3%         |
| 103   | 16       | 7C, lateral 3   | 60.5    | 61.0            | 1%         |
| 98    | 17       | 8C, lateral 4   | 59.6    | 58.9            | 1%         |
| 92    | 18       | 9C, lateral 5   | 54.8    | 53.6            | 2%         |
| 86    | 19       | 10C, lateral 6  | 55.0    | 53.4            | 3%         |
| 80    | 20       | 11C, lateral 7  | 57.4    | 55.9            | 3%         |
| 75    | 21       | 12C, lateral 8  | 56.8    | 56.1            | 1%         |
| 69    | 22       | 13C, lateral 9  | 62.9    | 63.0            | 0%         |
| 63    | 23       | 14C, lateral 10 | 59.8    | 61.2            | 2%         |
| 57    | 24       | 15C, lateral 11 | 62.4    | 65.1            | 4%         |
| 52    | 25       | 16C, lateral 12 | 68.4    | 72.3            | 6%         |
| 46    | 26       | 17C, lateral 13 | 78.1    | 83.3            | 7%         |
| 40    | 27       | 18C, lateral 14 | 82.9    | 87.9            | 6%         |
| 34    | 28       | 19C, lateral 15 | 98.4    | 102.3           | 4%         |
| 29    | 29       | 20C, lateral 16 | 110.0   | 108.4           | 1%         |
| 23    | 30       | 21C, lateral 17 | 142.1   | 133.4           | 6%         |
| 16    | 31       | 22C             | 96.3    | 83.2            | 14%        |
| 10    | 32       | 23C             | 119.7   | 101.5           | 15%        |
| 5     | 33       | 24C             | 135.4   | 113.0           | 17%        |
|       |          | Sumatoria       | 1798.1  | 1768.7          | 1.6%       |
|       |          | Promedio        | 74.9    | 73.7            | 1.6%       |

Tabla XXXI.- Comparación de los resultados de las reacciones [ton] entre

MEF y Método de la Viga Timoshenko



**Gráfico 6.-** Comparación de los resultados de las reacciones [ton] entre MEF y Método de la Viga Timoshenko

El uso del método numérico de Diferencias Finitas para la solución de las ecuaciones del método de Viga Timoshenko, implica que los resultados no son exactos aunque son una buena aproximación porque se toma en cuenta información importante acerca del buque y de la cama de varamiento. El método de elementos finitos, siendo también un método numérico, ofrece muy buenos resultados y considera la misma información que el método de Viga Timoshenko. En cuanto al tiempo para la aplicación de cada método, el de la Viga Timoshenko, una vez que se dispone de un programa con su implementación, es mucho más sencillo y rápido.

Al igual que en los métodos anteriores, los resultados de la zona de Popa tienen una diferencia un poco mayor que las restantes esto se debe al peso soportado por los últimos bloques de la parte en voladizo del buque. Asimismo se puede observar que se tiene el menor porcentaje de diferencia entre las reacciones de estos dos últimos métodos, por lo que se podría decir que cualquiera de ellos, son una buena opción para un análisis definitivo aplicando un modelo adecuado. También se ha realizado una comparación entre los desplazamientos verticales calculados aplicando el MEF y el de la Viga Timoshenko, los que se presentan a continuación:

| Cuad dal | Cuad del<br>dique |                 | Desplazam | % do            |            |
|----------|-------------------|-----------------|-----------|-----------------|------------|
| buque    |                   | Bloque          | MEF       | Viga<br>Timosh. | Diferencia |
| 10       | 137               | 1C              | -0.89     | -0.85           | 5%         |
| 11       | 132               | 2C              | -0.84     | -0.79           | 6%         |
| 12       | 126               | 3C              | -0.79     | -0.74           | 7%         |
| 13       | 120               | 4C              | -0.74     | -0.69           | 6%         |
| 14       | 115               | 5C, lateral 1   | -0.69     | -0.66           | 4%         |
| 15       | 109               | 6C, lateral 2   | -0.65     | -0.63           | 3%         |
| 16       | 103               | 7C, lateral 3   | -0.61     | -0.61           | 1%         |
| 17       | 98                | 8C, lateral 4   | -0.58     | -0.59           | 1%         |
| 18       | 92                | 9C, lateral 5   | -0.56     | -0.58           | 2%         |
| 19       | 86                | 10C, lateral 6  | -0.55     | -0.57           | 3%         |
| 20       | 80                | 11C, lateral 7  | -0.55     | -0.56           | 3%         |
| 21       | 75                | 12C, lateral 8  | -0.56     | -0.57           | 1%         |
| 22       | 69                | 13C, lateral 9  | -0.59     | -0.58           | 0%         |
| 23       | 63                | 14C, lateral 10 | -0.62     | -0.61           | 2%         |
| 24       | 57                | 15C, lateral 11 | -0.68     | -0.65           | 4%         |
| 25       | 52                | 16C, lateral 12 | -0.74     | -0.70           | 5%         |
| 26       | 46                | 17C, lateral 13 | -0.82     | -0.77           | 6%         |
| 27       | 40                | 18C, lateral 14 | -0.92     | -0.87           | 6%         |
| 28       | 34                | 19C, lateral 15 | -1.02     | -0.98           | 3%         |
| 29       | 29                | 20C, lateral 16 | -1.12     | -1.14           | 1%         |
| 30       | 23                | 21C, lateral 17 | -1.23     | -1.32           | 7%         |
| 31       | 16                | 22C             | -1.35     | -1.56           | 16%        |
| 32       | 10                | 23C             | -1.50     | -1.77           | 18%        |
| 33       | 5                 | 24C             | -1.67     | -2.00           | 20%        |

Tabla XXXII.- Comparación de los resultados de los desplazamientos entre

MEF y Método de la Viga Timoshenko



**Gráfico 7.-** Comparación de los resultados de los desplazamientos entre MEF y Método de la Viga Timoshenko

De los resultados, se observa que no existe una gran diferencia entre los desplazamientos hasta el bloque 20C-laterla16, y en adelante los desplazamientos del método de Viga Timoshenko son mayores. Esto podría obedecer a la aproximación de las derivadas para la resolución de las ecuaciones diferenciales. Si se desea una mayor precisión en los resultados se debería realizar un modelo con una mayor cantidad de segmentos.

### 4.2 Comparación entre los resultados teóricos y experimentales

Como ya se había mencionado en el *Capítulo* 3, se han seleccionado los resultados experimentales considerados confiables, para las reacciones de los bloques de la cama de varamiento del B/T Andes V. En la siguiente tabla se puede observar la comparación entre éstos y los resultados teóricos:

| Bloque          | Crandall | MEF   | V. Timosh. | Experime | Min. %     | Max. %     |
|-----------------|----------|-------|------------|----------|------------|------------|
| Bioque          |          |       |            | ntales   | diferencia | diferencia |
| 1C              | 26.4     | 57.6  | 60.7       |          |            |            |
| 2C              | 54.4     | 53.8  | 57.3       |          |            |            |
| 3C              | 56.7     | 50.2  | 53.6       |          |            |            |
| 4C              | 53.7     | 47.2  | 50.2       |          |            |            |
| 5C, lateral 1   | 55.6     | 65.7  | 68.7       |          |            |            |
| 6C, lateral 2   | 63.0     | 63.0  | 64.7       |          |            |            |
| 7C, lateral 3   | 65.2     | 60.5  | 61.0       |          |            |            |
| 8C, lateral 4   | 67.5     | 59.6  | 58.9       | 157      | 57%        | 63%        |
| 9C, lateral 5   | 69.7     | 54.8  | 53.6       |          |            |            |
| 10C, lateral 6  | 72.0     | 55.0  | 53.4       | 165      | 57%        | 68%        |
| 11C, lateral 7  | 74.2     | 57.4  | 55.9       |          |            |            |
| 12C, lateral 8  | 76.4     | 56.8  | 56.1       |          |            |            |
| 13C, lateral 9  | 78.7     | 62.9  | 63.0       |          |            |            |
| 14C, lateral 10 | 80.9     | 59.8  | 61.2       | 130      | 38%        | 54%        |
| 15C, lateral 11 | 83.1     | 62.4  | 65.1       |          |            |            |
| 16C, lateral 12 | 85.4     | 68.4  | 72.3       |          |            |            |
| 17C, lateral 13 | 87.6     | 78.1  | 83.3       |          |            |            |
| 18C, lateral 14 | 89.9     | 82.9  | 87.9       |          |            |            |
| 19C, lateral 15 | 92.1     | 98.4  | 102.3      | 39       | 138%       | 165%       |
| 20C, lateral 16 | 94.3     | 110.0 | 108.4      |          |            |            |
| 21C, lateral 17 | 106.0    | 142.1 | 133.4      |          |            |            |
| 22C             | 108.7    | 96.3  | 83.2       |          |            |            |
| 23C             | 101.5    | 119.7 | 101.5      | 249      | 52%        | 59%        |
| 24C             | 51.6     | 135.4 | 113.0      |          |            |            |

Tabla XXXIII.- Comparación entre Resultados Experimentales y Teóricos

para las Reacciones en los bloques

Los resultados de la tabla XXXIII se muestran gráficamente a continuación:



Gráfico 8.- Comparación entre Resultados Experimentales y Teóricos para

las Reacciones en los bloques

Cabe recalcar que en la preparación de la cámara de varamiento del B/T Andes V, se encontraron algunas prácticas inadecuadas, como la reutilización de tablones de camas de varamiento antiguas, y no uniformidad en las alturas de los tablones. Todo esto no permitió una adecuada toma de datos para estimar el aplastamiento y posterior cálculo de las reacciones en los bloques en forma experimental. Por ello se obtuvieron resultados experimentales extraños, como por ejemplo puntos en los que el buque no asentaba y reacciones negativas, y como consecuencia hubo necesidad de seleccionar resultados que aparentan ser los más razonables.

En la figura anterior, se nota que los resultados teóricos se encuentran comprendidos entre el rango de los resultados experimentales. Esto da a entender que, aun con las dificultades descritas en el párrafo anterior, en promedio las estimaciones teóricas son consistentes con los experimentales.

También se puede ver que las reacciones experimentales van creciendo hacia Popa, como se nota en el bloque 23C, comportamiento que también puede ser observado en la distribución de las reacciones teóricas. Todo esto se debe a la mayor concentración de pesos en popa y a la parte del buque en voladizo en dicho extremo.
#### CONCLUSIONES

Se han empleado los métodos teóricos de Crandall, Viga Timoshenko y Elementos Finitos para calcular las reacciones sobre los bloques de la cama de varamiento del B/T Andes V en el dique Napo de ASTINAVE. Luego dichos resultados fueron comparados con las estimaciones experimentales a partir del aplastamiento de los tablones de los bloques, y, se puede concluir lo siguiente:

- El proceso aplicado en este trabajo para medir las reacciones es muy simple, basándose en el aplastamiento de los tablones por efecto de la reacción desarrollada por el bloque. Sin embargo, la reutilización de tablones, el uso de material deteriorado y la variación de la altura de los bloques, dificulta su aplicación.
- 2. El método de Crandall es muy sencillo de aplicar, debido a que solo necesita información básica del buque como su eslora total, desplazamiento y, además de ciertas distancias que pueden ser medidas rápidamente en la cámara de varamiento. A pesar de esto, éste método debe ser utilizado únicamente para análisis preliminares por las simplificaciones que aplica.

- 3. Graficando los resultados experimentales de las reacciones consideradas confiables, se encuentran en el rango de los teóricos (ver el Gráfico 8), y, además crecen hacia Popa, tendencia observada también en el proceso teórico. Esto demuestra que, a pesar de las dificultades, en general las estimaciones teóricas son consistentes con las experimentales. Entonces considerando la consistencia en valores, y la tendencia de las reacciones, se concluye que, el MEF o el de la Viga Timoshenko para análisis de Reacciones son adecuados, aunque se recomienda éste último porque requiere menos tiempo para su aplicación.
- 4. Para determinar teóricamente las reacciones en los bloques de la cama de varamiento de un buque los métodos de la Viga Timoshenko y de Elementos Finitos pueden ser utilizados con mayor confianza que el de Crandall. Esto es debido a que incluyen menos simplificaciones, y consideran las propiedades del buque como Inercia Seccional, área de corte y distribución real de pesos. A su favor, el Método de la Viga Timoshenko, contando con su implementación en un programa, requiere menos tiempo que el MEF para su aplicación.

5. De la comparación entre los bloques de la cama de varamiento representados como soportes simples y como resortes, se tiene que en el bloque de popa, 24C, existe una reacción de 135 ton. en la modelación como resorte, mientras que dicho valor es de 234 ton para modelación como soporte simple. Es decir que se tiene un 73% de diferencia entre las 2 representaciones. Además en el caso de los soportes modelados como simples se tiene un aumento abrupto de la reacción entre los bloques 23C y 24C (146 ton), resultado que no se espera encontrar en la realidad. Por lo tanto, se concluye que los bloques de una cama de varamiento deben ser modelados siempre como resortes.

#### RECOMENDACIONES

- El programa DFTIMOSH, el cual ha sido aplicado en este trabajo para calcular las reacciones en los bloques de la cama de varamiento de un buque, es muy sencillo de aplicar. En el futuro se podría mejorar este programa con una interfaz más amigable, la opción de presentar gráficos y la opción de ingresar datos básicos (como dimensiones de bloques, geometría de las estructuras seccionales, etc.) para que internamente se encuentren los valores necesarios para los cálculos.
- El módulo de Young para la madera soportando compresión, es un parámetro indispensable para el cálculo de la Rigidez de los bloques de la cama de varamiento. Se recomienda para futuros trabajos realizar pruebas con material local para así confirmar la información disponible.

## APÉNDICE A

#### **ESQUEMA ORIGINAL DE VARAMIENTO PARA**

## EL BUQUE TANQUERO ANDES V

A continuación se presenta una copia del esquema original de Varamiento para el buque tanquero Andes V, realizado por la empresa ASTINAVE:

| DOELLING PLAN              | B/T ANDES "V"          |
|----------------------------|------------------------|
| FECHA A VARADES            | 22/AGnil/2010          |
| JUGAR A VARARSE:           | D.A.E. Two Onelland    |
| =8607.4 %                  | 96:00 Hts              |
| 7AN 64:                    | 13.40 41-              |
| Poricion:                  | 01                     |
| CANENIA DE PROA:           | 31 Culs a man al un an |
| CADENI DE POPA:            | Sosre (a col, x1=35    |
| ANMAR BLOQUES .            | DEL XI-11 AL H-34      |
| SACAR BLOQUES :            | N-35 Y N=36.           |
| Hover Bloques:             |                        |
| CUMAS FIJAS EL             | Distanceia de          |
| N=1, Some LA cd. 14_       | Zion H4s               |
| N-2, Subre LA cd. 15       | 3,00 Hts.              |
| N-4180512 14 ad. 17 -      | 4.00 Hts.              |
| N=5, sobre 14 al. 18 -     | 4.00 HAS.              |
| N-6, Sobre 12 cd. 19-      |                        |
| N=7, Soure la col. 20-     | 4.00 Hts.              |
| N-8, 505-E La (d: 21-      |                        |
| N- 91 Sobre 1-4 cd. 22-    | 4.00 Hts.              |
| NIL 10, Sobre 1-4 ad. 23 - |                        |
| N-12 Soure 14 ad. 24 -     | 3.50 Hts.              |
| X1:13, 50502 14 cd. 25 -   |                        |
| N: 14, Sobre 1 Cd. 26 -    |                        |
| N=15, Soone La cd. 22.     |                        |
| N-161 Some 4 cd. 29        |                        |
| N-17, Some la col 30       | 2100 Hts.              |
| ,                          | 1-50 Mts.              |

## APÉNDICE B

## CALCULO DEL AREA DE CORTE DE LAS SECCIONES DEL BUQUE Y MODULO DE RIGIDEZ DE LOS BLOQUES DE LA CAMA DE VARAMIENTO.

#### Área de corte de las cuadernas del buque

Para calcular el área de corte de cada una de las secciones que se asientan sobre algún bloque, se ha utilizado el artículo "The Shear Coefficient in Timoshenko's Beam Theory" del autor G.R Cowper (1966), [12]. En dicho trabajo se describe cual es el área que interviene en el corte en una sección rectangular hueca con una pared fina, y es el que se tomará para aproximar dicho parámetro en la presente tesis.

El artículo de Cowper describe como encontrar un factor C, el cual corresponde al porcentaje de la sección que interviene en el corte, el que se calcula con la siguiente fórmula:

$$C = \frac{10(1+\nu)(1+3m)^2}{(12+72m+150m^2+90m^3)+\nu(11+66m+135m^2)+10n^2((3+\nu)m+3m^2)}$$





Figura B-1.- dimensiones de la sección para el cálculo del

área que soporta corte

En el caso de un buque, se debe encontrar cual es el área seccional de cada cuaderna, correspondiente al área de la sección rectangular anteriormente mencionada, para luego multiplicarla por el factor C calculado. A continuación se muestra la tabla para el B/T Andes V:

| Módulo o | de Poisson | v               | 0.25 |       |     |                |     |     |     |                 |                 |
|----------|------------|-----------------|------|-------|-----|----------------|-----|-----|-----|-----------------|-----------------|
| Cuad del | Cuad del   | Plaqua          | b    | h     | t   | t <sub>1</sub> |     |     | V   | A proyect       | A corte         |
| buque    | dique      | ыоцие           | cm   | cm    | cm  | cm             | m   | n   | n   | cm <sup>2</sup> | cm <sup>2</sup> |
| 137      | 10         | 1C              | 122  | 237.0 | 1.0 | 1.0            | 0.5 | 0.5 | 0.6 | 474.0           | 790.6           |
| 132      | 11         | 2C              | 460  | 775.1 | 1.2 | 1.4            | 0.7 | 0.6 | 0.6 | 1860.2          | 819.4           |
| 126      | 12         | 3C              | 460  | 775.1 | 1.2 | 1.4            | 0.7 | 0.6 | 0.6 | 1860.2          | 827.6           |
| 120      | 13         | 4C              | 712  | 762.9 | 1.5 | 1.3            | 0.8 | 0.9 | 0.5 | 1525.8          | 2034.5          |
| 115      | 14         | 5C, lateral 1   | 712  | 762.9 | 1.5 | 1.3            | 0.8 | 0.9 | 0.5 | 1525.8          | 2034.5          |
| 109      | 15         | 6C, lateral 2   | 712  | 762.9 | 1.5 | 1.3            | 0.8 | 0.9 | 0.5 | 1525.8          | 2034.5          |
| 103      | 16         | 7C, lateral 3   | 852  | 741.3 | 1.5 | 1.3            | 1.0 | 1.1 | 0.4 | 1455.6          | 1512.7          |
| 98       | 17         | 8C, lateral 4   | 852  | 727.8 | 1.5 | 1.3            | 1.0 | 1.2 | 0.4 | 1455.6          | 1504.4          |
| 92       | 18         | 9C, lateral 5   | 852  | 727.8 | 1.5 | 1.3            | 1.0 | 1.2 | 0.4 | 1455.6          | 1504.4          |
| 86       | 19         | 10C, lateral 6  | 852  | 727.8 | 1.5 | 1.1            | 0.9 | 1.2 | 0.4 | 1455.6          | 1543.6          |
| 80       | 20         | 11C, lateral 7  | 852  | 727.8 | 1.5 | 1.1            | 0.9 | 1.2 | 0.4 | 1455.6          | 1543.6          |
| 75       | 21         | 12C, lateral 8  | 852  | 720.2 | 1.5 | 1.1            | 0.9 | 1.2 | 0.4 | 1440.4          | 1524.5          |
| 69       | 22         | 13C, lateral 9  | 852  | 720.2 | 1.5 | 1.1            | 0.9 | 1.2 | 0.4 | 1440.4          | 1524.5          |
| 63       | 23         | 14C, lateral 10 | 852  | 720.2 | 1.5 | 1.1            | 0.9 | 1.2 | 0.4 | 1440.4          | 1524.5          |
| 57       | 24         | 15C, lateral 11 | 854  | 720.7 | 1.5 | 1.1            | 0.9 | 1.2 | 0.4 | 1441.4          | 1704.6          |
| 52       | 25         | 16C, lateral 12 | 854  | 720.7 | 1.5 | 1.1            | 0.9 | 1.2 | 0.4 | 1441.4          | 1704.6          |
| 46       | 26         | 17C, lateral 13 | 854  | 720.7 | 1.5 | 1.1            | 0.9 | 1.2 | 0.4 | 1441.4          | 1704.6          |
| 40       | 27         | 18C, lateral 14 | 876  | 722.5 | 1.4 | 1.1            | 1.0 | 1.2 | 0.4 | 1445.0          | 878.3           |
| 34       | 28         | 19C, lateral 15 | 876  | 722.5 | 1.4 | 1.1            | 1.0 | 1.2 | 0.4 | 1445.0          | 878.3           |
| 29       | 29         | 20C, lateral 16 | 876  | 722.5 | 1.4 | 1.1            | 1.0 | 1.2 | 0.4 | 1445.0          | 878.3           |
| 23       | 30         | 21C, lateral 17 | 876  | 722.5 | 1.4 | 1.1            | 1.0 | 1.2 | 0.4 | 1445.0          | 866.6           |
| 16       | 31         | 22C             | 876  | 722.5 | 1.4 | 1.1            | 1.0 | 1.2 | 0.4 | 1445.0          | 858.9           |
| 10       | 32         | 23C             | 876  | 722.5 | 1.4 | 1.1            | 1.0 | 1.2 | 0.4 | 1445.0          | 849.5           |
| 5        | 33         | 24C             | 284  | 302.0 | 1.0 | 1.1            | 1.0 | 0.9 | 0.4 | 604.0           | 758.9           |

**Tabla B-I.-** Área de corte para las cuadernas del B/T Andes V soportadassobre los bloques de la cama de varamiento

Los valores de b y h, equivalentes a Manga y Puntal para cada sección, son tomados de las tablas realizadas para el cálculo de inercias, las que a su vez fueron obtenidas del plano de líneas de formas del B/T Andes V. Los espesores son determinados del plano estructural. Para ciertos casos en donde se tienen diferentes espesores se tomó un promedio de los mismos.

Como ya se ha mencionado, el B/T Andes V solo tiene 5 años de antigüedad, motivo por el cual no se ha tomado en cuenta el efecto de la corrosión en el planchaje para este cálculo.

#### Módulo de rigidez de los bloques de la cama de varamiento

Como ya se había mencionado, una cama de varamiento está conformada por bloques centrales a lo largo de la línea de crujía del buque y una línea a cada lado que ayuda a mantener la estabilidad del buque durante el varamiento. Para el propósito de los cálculos de esta tesis se asumirá que todos los bloques posicionados en la misma ubicación longitudinal bajo el buque pueden ser combinados en un solo bloque equivalente, [1], (*véase la figura B-2*). Este bloque equivalente tiene una rigidez resultante  $K_{eq} = K_1 + K_2 + K_3$ , y la rigidez equivalente para cada bloque sería:

$$K_i = \frac{AE}{h}$$
;  $i = 1, 2, 3$ 

Donde *A* es el área de contacto del bloque con el fondo del buque, *E* es el Módulo de Young de la madera del tablón y h es la altura del conjunto tronco- tablón.



Figura B-2.- Equivalencia de la rigidez de los bloques de la cama de

varamiento, [1]

Para el caso del B/T Andes V, se ha estimado un espesor promedio del conjunto tablón-tronco para todos los bloques de la cama de varamiento y se ha implementado la formulación ya mencionada en una hoja electrónica obteniéndose los resultados mostrados en la *tabla B-II*.

Para desarrollar los cálculos teóricos, se asume que la Rigidez de cada bloque está uniformemente distribuida en el segmento. Por ello, se divide  $K_{eq}$ para la separación entre bloques para determinar el llamado Módulo de Rigidez,  $k_{eq}$ 

| E (ton/cm <sup>2</sup> ) | 0.37 Espesor promedio ( |                 | edio (c <i>m</i> ) | 42.6     |                    |                 |                                                  |                        |
|--------------------------|-------------------------|-----------------|--------------------|----------|--------------------|-----------------|--------------------------------------------------|------------------------|
|                          | B                       | abor            | Ce                 | ntral    | Est                | tribor          | K                                                | 1-()                   |
| Bloque                   | Area                    | K <sub>Bb</sub> | Area               | Kc       | Area               | K <sub>Eb</sub> | K <sub>Bb</sub> +K <sub>C</sub> +K <sub>Eb</sub> | K(X)                   |
|                          | [cm <sup>2</sup> ]      | [ton/cm]        | [cm <sup>2</sup> ] | [ton/cm] | [cm <sup>2</sup> ] | [ton/cm]        | [ton/cm]                                         | [ton/cm <sup>2</sup> ] |
| 1C                       |                         |                 | 7936               | 68.13    |                    |                 | 68.13                                            | 0.1867                 |
| 2C                       |                         |                 | 7960               | 68.34    |                    |                 | 68.34                                            | 0.1872                 |
| 3C                       |                         |                 | 7920               | 67.99    |                    |                 | 67.99                                            | 0.1863                 |
| 4C                       |                         |                 | 7920               | 67.99    |                    |                 | 67.99                                            | 0.1863                 |
| 5C, lateral 1            | 2060                    | 17.69           | 7524               | 64.59    | 1946               | 16.71           | 98.99                                            | 0.2712                 |
| 6C, lateral 2            | 2077                    | 17.83           | 7524               | 64.59    | 1978               | 16.98           | 99.40                                            | 0.2723                 |
| 7C, lateral 3            | 1971                    | 16.92           | 7600               | 65.24    | 2000               | 17.17           | 99.33                                            | 0.2721                 |
| 8C, lateral 4            | 1909                    | 16.39           | 7840               | 67.31    | 1978               | 16.98           | 100.67                                           | 0.2758                 |
| 9C, lateral 5            | 1773                    | 15.22           | 7600               | 65.24    | 1720               | 14.77           | 95.24                                            | 0.2609                 |
| 10C, lateral 6           | 1802                    | 15.47           | 7683               | 65.96    | 1831               | 15.72           | 97.14                                            | 0.2661                 |
| 11C, lateral 7           | 2400                    | 20.60           | 7644               | 65.62    | 1827               | 15.68           | 101.90                                           | 0.2792                 |
| 12C, lateral 8           | 1934                    | 16.60           | 7792               | 66.89    | 1925               | 16.52           | 100.02                                           | 0.2740                 |
| 13C, lateral 9           | 3321                    | 28.51           | 7524               | 64.59    | 1695               | 14.55           | 107.65                                           | 0.2949                 |
| 14C, lateral 10          | 1702                    | 14.61           | 7840               | 67.31    | 1882               | 16.15           | 98.07                                            | 0.2687                 |
| 15C, lateral 11          | 1980                    | 17.00           | 7372               | 63.29    | 1858               | 15.95           | 96.24                                            | 0.2637                 |
| 16C, lateral 12          | 1919                    | 16.47           | 7592               | 65.18    | 1833               | 15.74           | 97.39                                            | 0.2668                 |
| 17C, lateral 13          | 1872                    | 16.07           | 7952               | 68.27    | 1934               | 16.61           | 100.94                                           | 0.2765                 |
| 18C, lateral 14          | 1648                    | 14.15           | 7713               | 66.22    | 1796               | 15.42           | 95.79                                            | 0.2624                 |
| 19C, lateral 15          | 1907                    | 16.37           | 8056               | 69.16    | 1732               | 14.87           | 100.39                                           | 0.2751                 |
| 20C, lateral 16          | 1905                    | 16.36           | 7577               | 65.05    | 1806               | 15.50           | 96.91                                            | 0.2655                 |
| 21C, lateral 17          | 3073                    | 26.38           | 7761               | 66.63    | 1780               | 15.28           | 108.29                                           | 0.2967                 |
| 22C                      |                         |                 | 7176               | 61.60    |                    |                 | 61.60                                            | 0.1688                 |
| 23C                      |                         |                 | 7880               | 67.65    |                    |                 | 67.65                                            | 0.1853                 |
| 24C                      |                         |                 | 7880               | 67.65    |                    |                 | 67.65                                            | 0.1853                 |

Tabla B-II.- Módulos de Rigidez equivalente (k<sub>eq</sub>) para los bloques de la

cama de varamiento del B/T Andes V

## **APÉNDICE C**

# DESCRIPCIÓN DEL PROGRAMA DFTIMOSH PARA IMPLEMENTAR EL MÉTODO DE LA VIGA TIMOSHENKO EN EL CÁCLULO DE LAS REACCCIONES EN LOS BLOQUES DE LA CAMA DE VARAMIENTO DE UN BUQUE

Para poder implementar el método de la Viga Timoshenko, primero se debe deducir las ecuaciones de equilibrio incluyendo el efecto del corte. Luego se aplica el método de Diferencias Finitas para resolver las ecuaciones diferenciales del mismo [10]. En la referencia [1] se presentan dos ecuaciones diferenciales del equilibrio de un elemento, que deben ser resueltas simultáneamente:

$$\sum M_z = 0 \implies V = -\frac{dM}{dx}$$
$$\sum F_y = 0 \implies \frac{dV}{dx} = -q = ky + w$$



Figura C-1.- Diagrama de cuerpo libre para un elemento diferencial de una viga, incluyendo el efecto del corte

Además, de la Hipótesis Cinemática y considerando el efecto de la deformación cortante promedio en toda la sección, se tiene:

$$\frac{d\psi}{dx} = \frac{M}{EI}$$
$$\frac{dy}{dx} - \psi = -\frac{V}{A_s G}$$

Reemplazando en las ecuaciones de Equilibrio, se tiene que:

$$E\left[I\frac{d^{2}\psi}{dx^{2}} + \frac{dI}{dx}\right] + GA_{s}\left[\psi - \frac{dy}{dx}\right] = 0$$
$$G\left[A_{s}\left(\frac{d\psi}{dx} - \frac{d^{2}y}{dx^{2}}\right) + \frac{dA_{s}}{dx}\left(\psi - \frac{dy}{dx}\right)\right] - ky - w = 0$$

donde: V, es la fuerza cortante

100

- *M,* es el momento flector
- $\Psi$ , es pendiente debida a la flexión
- I(x), es la inercia seccional para cada estación sobre un bloque
- *G,* es el módulo de rigidez para el material del buque
- As, es el área que interviene en el corte de cada estación sobre un bloque
- *x,* es la distancia en dirección de la eslora del buque
- *y,* es el desplazamiento vertical
- *w,* es el peso por unidad de longitud
- k, es el Módulo de Rigidez de cada bloque (Rigidez distribuida en un segmento, es decir, por unidad de longitud)

Aplicando el método de Diferencias Finitas para resolver numéricamente las ecuaciones anteriores se tiene:

$$EI\left[\frac{\psi_{i+1} - 2\psi_{i} + \psi_{i-1}}{h^{2}}\right] + E\left[\frac{I_{i+1} - I_{i-1}}{2h}\right]\left[\frac{\psi_{i+1} - \psi_{i-1}}{2h}\right] + GA_{s}\left(\psi_{i} - \frac{y_{i+1} - y_{i-1}}{2h}\right) = 0$$
$$G\left[A_{si}\left(\frac{\psi_{i+1} - \psi_{i-1}}{2h} - \frac{y_{i+1} - 2y_{i} + y_{i-1}}{h^{2}}\right) + \frac{dA_{s}}{dx}\Big|_{i}\left(\psi_{i} - \frac{y_{i+1} - y_{i-1}}{2h}\right)\right] - k_{i}y_{i} - w_{i} = 0$$

Ahora se agrupan los coeficientes de los términos semejantes:

$$y_{i+1}\left(-\frac{GA_{si}}{2h}\right) + y_{i-1}\left(\frac{GA_{si}}{2h}\right) + \psi_{i+1}E\left(\frac{I_{i}}{h^{2}} + \frac{dI}{dx_{i}} \cdot \frac{1}{2h}\right) + \left(F\right) + \psi_{i}\left(-\frac{2EI_{i}}{h^{2}} + GA_{si}\right) + \psi_{i-1}E\left(\frac{I_{i}}{h^{2}} - \frac{dI}{dx_{i}} \cdot \frac{1}{2h}\right) + \left(F\right) + \psi_{i+1}G\left(-\frac{A_{si}}{h^{2}} - \frac{dA_{s}}{dx_{i}} \cdot \frac{1}{2h}\right) + y_{i}\left(\frac{2GA_{si}}{h^{2}} - k_{i}\right) + y_{i-1}G\left(-\frac{A_{si}}{h^{2}} + \frac{dA_{s}}{dx_{i}} \cdot \frac{1}{2h}\right) + \psi_{i+1}G\left(\frac{A_{si}}{2h}\right) + \psi_{i}\left(G\left(\frac{dA_{s}}{dx_{i}}\right) + \psi_{i-1}G\left(-\frac{A_{si}}{2h}\right) = w_{i}$$
[F/L]

Ahora se procede a implementar las Condiciones de Frontera del problema (*véase figura A3.2*), Viga Libre-Libre:

$$M = EI \frac{d\psi}{dx} = EI \left( \frac{\psi_{i+1} - \psi_{i-1}}{2h} \right)$$
$$V = GA_s \left( \psi_i - \frac{dy}{dx} \right) = GA_s \left( \psi_i - \frac{y_{i+1} - y_{i-1}}{2h} \right)$$

Con esto, el sistema de ecuaciones puede ser resuelto, evaluando el desplazamiento y la rotación en el centro de cada segmento.



Figura C-2.- Condiciones de frontera para Viga Timoshenko

El programa DFTIMOSH es un programa para el cálculo de las reacciones sobre los bloques de una cama de varamiento utilizando el método de Viga Timoshenko, [1]. DFTIMOSH fue programado en lenguaje FORTRAN, basándose en las ecuaciones previamente descritas. Para ejecutar el programa primero se debe preparar un documento de texto, con formato libre y la información siguiente:



Figura C-3.- Hoja de datos para ingresar al programa DFTIMOSH

Una vez preparado el archivo de datos, se ejecuta el programa siguiendo los pasos mostrados a continuación:

 Ingresar el nombre del archivo de datos y el nombre del archivo de resultados;

| DFTimosh                           |  |
|------------------------------------|--|
| File                               |  |
| Viga Timoshenko - Dif.Finitas 🛛 🔀  |  |
| Nombre del Archivo de Datos: andes |  |
| Nombre del Archivo de Resultados:  |  |
| Leer                               |  |
| Calcular                           |  |
| Cancelar                           |  |
|                                    |  |

2. Presionar el botón "Leer" y luego el botón "Calcular".

| DFTimosh                                                                               |  |
|----------------------------------------------------------------------------------------|--|
| File                                                                                   |  |
| Viga Timoshenko - Dif.Finitas 🛛 🔀                                                      |  |
| Nombre del Archivo de Datos: andes<br>Nombre del Archivo de Resultados: <sup>res</sup> |  |
| Leer                                                                                   |  |
|                                                                                        |  |

3. Abrir la carpeta en donde se encuentra el archivo ejecutable y abrir el archivo de resultados con el Bloc de Notas (para este caso "res")

El archivo de resultados muestra en su primera parte la misma información ingresada en el archivo de datos, y en una segunda parte la solución del problema en el siguiente formato:

- Primera Columna: Número del bloque donde se aplica la reacción
- Segunda Columna: Aplastamiento del bloque
- Tercera Columna: Ángulo de corte
- Cuarta Columna: Valor de la reacción para cada bloque

| 🚺 res                                                                                                                                                                                                                                                                                                                                                                                                                     | - Bloc de n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otas                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                   | × |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Archivo                                                                                                                                                                                                                                                                                                                                                                                                                   | Edición Foi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rmato Ver                                                          | ′ Ayuda                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOL                                                                | UCION                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                   | ^ |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>112<br>13<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>112<br>13<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>112<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>0<br>112<br>13<br>14<br>5<br>6<br>7<br>8<br>9<br>0<br>112<br>23<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>112<br>23<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>1 | $y_1$<br>0.024<br>-0.124<br>-0.102<br>-0.080<br>-0.063<br>-0.044<br>-0.043<br>-0.047<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059<br>-0.059 | i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i | $\begin{array}{c} fi\_i\\ 0.\ 000174\\ 0.\ 0000127\\ 0.\ 000076\\ 0.\ 000018\\ 0.\ 000018\\ 0.\ 000010\\ -0.\ 000010\\ -0.\ 000010\\ -0.\ 000016\\ -0.\ 000028\\ -0.\ 000028\\ -0.\ 000016\\ -0.\ 000016\\ -0.\ 000016\\ 0.\ 000046\\ 0.\ 000046\\ 0.\ 000046\\ 0.\ 000046\\ 0.\ 000046\\ 0.\ 000046\\ 0.\ 000046\\ 0.\ 000026\\ -0.\ 000016\\ -0.\ 000021\\ -0.\ 000021\\ -0.\ 000016\\ -0.\ 000016\\ -0.\ 000016\\ -0.\ 0000157\\ -0.\ 000191\end{array}$ | Reac_i<br>-0.1<br>82.6<br>82.4<br>72.9<br>66.5<br>41.0<br>46.0<br>61.6<br>69.9<br>97.6<br>94.0<br>40.5<br>30.6<br>37.5<br>27.5<br>23.1<br>21.3<br>38.5<br>81.6<br>184.0<br>200.4<br>115.3<br>78.8<br>143.5<br>0.4 |   |

Figura C-4.- Hoja de resultados del programa DFTIMOSH

#### Código Fuente del Programa DFTIMOSH

```
program DFECTimoshenko
use dflib
use dflogm
include 'resource.fd'
external sub1, sub2, substop
logical lg4
type (dialog)dlg
common /dataseg/n,in,as,ks,wt,ey,gc,hx
character *40 shipname
real in,ks
integer dn6
dimension in(0:50),as(0:50),ks(0:50),wt(0:50),co(200,200)
   lg4=dlginit(idd_dialog1,dlg)
   i=dlgsetsub(dlg,idc_leer,sub1)
   i=dlgsetsub(dlg,idc_calcular,sub2)
   i=dlgsetsub(dlg,idclose,substop)
   i=dlgmodal(dlg)
  call coef(co)
  dn6 = 2*n+6
  call flim(co,dn6,dn6+1)
  write(*,*)'dn6',dn6
  write(6,500)
   500 format(//,13x,' S O L U C I O N',//,&
                '#
                                       fii Reaci')
                        уi
  do i=3,dn6-2,2
      j=(i-1)/2-1
      write(6,1000)j+1,co(i,dn6+1),co(i+1,dn6+1),-
ks(j)*co(i,dn6+1)*hx
     1000 format(i3,2x,f12.6,2x,f12.6,2x,f12.1)
   end do
stop
end
```

```
subroutine sub1(dlg,idexecute,dlg_clicked)
! lectura de datos
use dflogm
use dflib
common /dataseg/n,in,as,ks,wt,ey,gc,hx
common /ship/shipname
logical 1g4
character *40 dfile,rfile,txt1,txt2,shipname
real lbp, in, ks
type (dialog)dlg
include 'resource.fd'
dimension in(0:50),as(0:50),ks(0:50),wt(0:50)
   14 = dlgget(dlg,idc_edit1,dfile)
   open(1,file=dfile,status='old',err=1000)
   14 = dlgget(dlg,idc_edit2,rfile)
   open(6,file=rfile)
!
   read(1,500)shipname
  write(6,500)shipname
   500 format(a40)
  read(1,*)nseg ! numero de segmentos
  n = nseg - 1
   read(1,*)ey,gc,hx
  write(6,600)nseg,ey,gc,hx
   600 format( /, ' Numero de segmentos: ',i2,/, &
                 ' Modulo de Young:
                                       ',e10.4,/,&
                     ' Modulo de Corte:
                                            ',e10.4,/,&
                     ' Espaciamiento x:
                                            ',e10.4,//,&
                     ' #
                                Inercia
                                               Acorte
Mod.Rig.
              Peso/long')
   do i=0,n
      read(1,*)in(i),as(i),ks(i),wt(i)
    write(6,700)i+1,in(i),as(i),ks(i),wt(i)
    700 format(2x,i2,4(2x,e12.4))
   end do
   return
```

```
! error messages
  1000 i4=messageboxqq('File does not
exist'c,'Error'c,mb$iconexclamation.or.mb$ok)
  return
  2000 i4=messageboxqq('Not a number in
file'c,'Error'c,mb$iconexclamation.or.mb$ok)
  close (1)
  return
end
subroutine sub2(dlg,id,dlg_clicked)
use dflogm
type (dialog)dlg
include 'resource.fd'
! CIERRA EL CUADRO DE DIÀLOGO
call dlgexit(dlg)
return
end
subroutine substop(dlg,idstop,dlg_clicked)
use dflogm
type (dialog)dlg
include 'resource.fd'
! CIERRA EL CUADRO DE DIÀLOGO
call dlgexit(dlg)
stop
return
end
subroutine coef(co)
common /dataseg/n,in,as,ks,wt,ey,gc,hx
real in,ks
integer dn1, dn2, dn4, dn5, dn6, dn7
dimension in(0:50),as(0:50),ks(0:50),wt(0:50),co(200,200)
```

dn1 = 2\*n+1

```
dn2 = 2*n+2
dn3 = 2*n+3
dn4 = 2*n+4
dn5 = 2*n+5
dn6 = 2*n+6
dn7 = 2*n+7
!
do i=1,dn7
do j=1,dn7
   co(i,j) = 0.0
end do
end do
!
do i=0,n
   if (i.eq.0) then
      di = (-3*in(0)+4.*in(1)-in(2))/(2.*hx)
    da = (-3*as(0)+4.*as(1)-as(2))/(2.*hx)
   else if (i.eq.n) then
      di = (3*in(n)-4.*in(n-1)+in(n-2))/(2.*hx)
    da = (3*as(n)-4.*as(n-1)+as(n-2))/(2.*hx)
   else
      di = (in(i+1)-in(i-1))/(2.*hx)
      da = (as(i+1)-as(i-1))/(2.*hx)
   end if
   c1 = -gc*as(i)/(2.*hx)
   c2 = ey*(in(i)/hx**2.+di/(2.*hx))
   c3 = -2.*ey*in(i)/hx**2.+gc*as(i)
   c4 = ey*(in(i)/hx**2.-di/(2.*hx))
   d1 = -gc*(as(i)/hx**2.+da/(2.*hx))
   d2 = gc*as(i)*2./hx**2.-ks(i)
   d3 = gc*(-as(i)/hx**2.+da/(2.*hx))
   d4 = gc*as(i)/(2.*hx)
   d5 = gc*da
   ie = 2*(i+1)+1
   ie1 = ie+1
   co(ie,ie+2)=c1
```

```
co(ie, ie-2) = -c1
   co(ie,ie+3)=c2
   co(ie,ie+1)=c3
   co(ie, ie-1)=c4
   co(ie1,ie+2)=d1
   co(ie1,ie)=d2
   co(ie1,ie-2)=d3
   co(ie1,ie+3)=d4
   co(ie1,ie+1)=d5
   co(ie1, ie-1) = -d4
   co(ie,dn7)=0.0
   co(ie1,dn7)=wt(i)
! write(6,1000)ie,(co(ie,kk),kk=1,dn7)
! write(6,1000)ie1,(co(ie1,kk),kk=1,dn7)
   1000 format(i2,13(2x,e8.2))
end do
! condiciones de frontera
   co(1,4) = 1.0/2.0 ! co(1,4) = 1.0
   co(1,2) = 1.0/2.0 ! = 0.0
   co(1,3) = -1./(hx)
   co(1,1) = -co(1,3)
   co(1,dn7) = 0.0
   co(2,4) = +1.0 ! co(2,6) = +1.
   co(2,2) = -1.0
   co(2,dn7) = 0.0
!
   co(dn6-1,dn6) = 1.0/2.0 ! co(dn6-1,dn4) = 1.0
   co(dn6-1,dn4) = 1.0/2.0 ! = 0.0
   co(dn6-1,dn5) = -1./(hx)
   co(dn6-1, dn3) = 1./(hx)
   co(dn6-1,dn7) = 0.0
   co(dn6, dn6) = +1.
   co(dn6, dn4) = -1.0 ! co(dn6, dn2) = -1.0
   co(dn6,dn7) = 0.0
return
end
```

```
SUBROUTINE FLIM (AB,N,NP)
         DIMENSION AB(200,200)
         integer n,np
       ESTA RUTINA RESUELVE UN SISTEMA LINEAL DE ECUACIONES
!C
       SE USA EL METODO DE ELIMINACIÓN DE GAUSS, CON PIVOTEO
!C
PARCIAL
!C
      SON PERMITIDOS MULTIPLOS EN AMBOS LADOS, ELLOS PUEDEN
SER
!C
       ALMACENADOS COMO COLUMNAS QUE AUMENTA EL COEFICIENTE DE
LA MATRIZ
!C
       LOS PARAMETROS SON:
!C
          AB COEFICIENTE AUMENTADO DE LA MATRIZ CON VECTORES
R.H.S.
!C
          N
              NUMERO DE ECUACIONES
!C
              NUMERO TOTAL DE COLUMNAS EN LA MATRIZ AUMENTADA
          \mathbf{NP}
          NDIM PRIMERA DIMENSION DE LA MATRIZ AB EN LA LLAMADA
!C
DEL PROGRAMA
       LOS VECTORES SOLUCION SON RETORNADOS EN LAS COLUMNAS
!C
AUMENTADAS EN AB
!C
!C
      COMIENZA LA REDUCCION
         NM1=N-1
         DO 35 I=1,NM1
!C
       ENCONTRAR EL NUMERO DE FILA DE LA FILA PIVOT.
INTERCAMBIAREMOS
       LUEGO LAS FILAS, COLOCANDO EL ELEMENTO PIVOT SOBRE LA
IC
DIAGONAL
            IPVT=I
            IP1=I+1
            DO 10 J=IP1,N
               IF ( ABS(AB(IPVT,I)).LT.ABS(AB(J,I)) ) IPVT=J
   10
           CONTINUE
!C
       CHEQUEO PARA ASEGURAR QUE EL ELEMENTO PIVOT NO ES
DEMASIADO PEQUEÑO, SI ES ASÍ
!C
       IMPRIMIR UN MENSAJE Y RETORNAR
```

IF (ABS(AB(IPVT,I)).LT.ABS(1.E-5)) GO TO 99 !C AHORA INTERCAMBIO, EXCEPTO SI EL ELEMENTO PIVOT ESTA EN LA DIAGONAL. !C NO SE NECESITA

IF (IPVT.EQ.I) GO TO 25
DO 20 JCOL=I,NP
SAVE=AB(I,JCOL)
AB(I,JCOL)=AB(IPVT,JCOL)
AB(IPVT,JCOL)=SAVE

20 CONTINUE

```
!C
       AHORA SE REDUCE TODOS LOS ELEMENTOS BAJO LA DIAGONAL EN
LA FILA I-TH
!C
        CHEQUEO PRIMERO SI YA EXISTE UN CERO, SI ES ASÍ PUEDO
SALTAR A OTRA FILA
   25
               DO 32 JROW=IP1,N
                   IF (AB(JROW, I).EQ.0) GO TO 32
                   RATIO=AB(JROW,I)/AB(I,I)
                   DO 30 KCOL=IP1,NP
                        AB(JROW, KCOL) = AB(JROW, KCOL) -
RATIO*AB(I,KCOL)
   30
                  CONTINUE
   32
               CONTINUE
             CONTINUE
   35
        NECESITAMOS CHEQUEA A(N,N) POR EL TAMAÑO
!C
              IF (ABS(AB(N,N)).LT.1.E-5) GO TO 99
        AHORA REALIZAMOS LA SUSTITUCION HACIA ATRAS
!C
          NP1=N+1
          DO 50 KCOL=NP1,NP
             AB(N,KCOL)=AB(N,KCOL)/(AB(N,N))
             DO 45 J=2,N
                NVBL=NP1-J
                L=NVBL+1
                VALUE=AB(NVBL,KCOL)
                DO 40 K=L,N
                   VALUE=VALUE-AB(NVBL,K)*AB(K,KCOL)
   40
               CONTINUE
```

AB(NVBL,KCOL)=VALUE/AB(NVBL,NVBL)

- 45 CONTINUE
- 50 CONTINUE

RETURN

!C MENSAJE PARA UNA MATRIZ SINGULAR

99 WRITE (6,100)

100 FORMAT(' SOLUTION NOT FEASIBLE. A NEAR ZERO PIVOT WAS ENTERED')

RETURN

END

### APÉNDICE D

### DETALLE DE CÁLCULO DE INERCIAS SECCIONALES

En el Manual de Carga del B/T Andes V se encuentran las inercias seccionales para 8 cuadernas representativas del buque (15, 33, 50, 72.5, 86, 104, 120, 134). Dichas Inercias fueron calculadas nuevamente para comprobar los resultados, utilizando la información en los planos de Líneas de Formas y Estructural. Una vez calculadas estas inercias se procedió a realizar una interpolación para obtener los valores para las cuadernas que se apoyaban sobre los bloques de la cama de varamiento, obteniendo los resultados mostrados en el subcapítulo 1.4. En el presente Anexo se presentan los detalles de los cálculos realizados para encontrar las inercias seccionales de las Cuadernas mencionadas, y además se añaden las cuadernas 0 y 140.

|      | #  | yi   | zi   | ti | q    | long <sub>i</sub> | Ai      | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|------|----|------|------|----|------|-------------------|---------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|      | #  | m    | m    | mm | rad  | m                 | cm2     | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
|      | 1  | 0.00 | 4.49 | 10 |      |                   |         |      |                               |                                |                                |                                |                                |
|      | 2  | 0.11 | 4.50 | 10 | 1.52 | 0.11              | 10.88   | 4.50 | 48.89                         | 219.76                         | 0.00                           | 0.01                           | 0.00                           |
| m    | 3  | 0.35 | 4.50 | 10 | 1.57 | 0.24              | 24.42   | 4.50 | 109.85                        | 494.13                         | 0.00                           | 0.12                           | 0.00                           |
| ente | 4  | 0.62 | 4.64 | 10 | 1.10 | 0.30              | 30.42   | 4.57 | 138.93                        | 634.58                         | 0.00                           | 0.23                           | 0.05                           |
| iqr  | 5  | 0.97 | 4.84 | 10 | 1.03 | 0.40              | 40.41   | 4.74 | 191.58                        | 908.19                         | 0.00                           | 0.55                           | 0.15                           |
| õ    | 6  | 1.44 | 5.26 | 10 | 0.86 | 0.63              | 62.69   | 5.05 | 316.56                        | 1598.60                        | 0.00                           | 2.05                           | 0.88                           |
| +    | 7  | 2.05 | 5.81 | 10 | 0.83 | 0.83              | 82.69   | 5.53 | 457.66                        | 2532.94                        | 0.00                           | 4.71                           | 2.15                           |
| orr  | 8  | 2.80 | 6.52 | 10 | 0.81 | 1.03              | 103.28  | 6.17 | 637.13                        | 3930.35                        | 0.00                           | 9.18                           | 4.34                           |
| ш    | 9  | 3.49 | 7.36 | 10 | 0.69 | 1.08              | 107.79  | 6.94 | 748.09                        | 5192.06                        | 0.00                           | 10.44                          | 6.23                           |
|      | 10 | 0.00 | 7.49 | 10 | 1.61 | 3.49              | 349.04  | 7.42 | 2590.95                       | 19232.77                       | 0.00                           | 354.36                         | 0.51                           |
|      | 11 | 0.46 | 7.50 | 10 | 1.55 | 0.46              | 45.95   | 7.50 | 344.43                        | 2581.52                        | 0.00                           | 0.81                           | 0.00                           |
|      | 12 | 1.38 | 7.51 | 10 | 1.56 | 0.92              | 92.14   | 7.51 | 691.58                        | 5190.52                        | 0.00                           | 6.52                           | 0.00                           |
|      | 13 | 2.76 | 7.40 | 10 | 1.65 | 1.38              | 138.13  | 7.45 | 1029.73                       | 7676.52                        | 0.00                           | 21.96                          | 0.14                           |
|      | 14 | 3.49 | 7.36 | 10 | 1.63 | 0.73              | 73.15   | 7.38 | 539.70                        | 3982.05                        | 0.00                           | 3.26                           | 0.01                           |
|      |    |      |      |    |      | Σ                 | 1160.99 |      | 7845.07                       | 54174.00                       |                                |                                | 14.46                          |

|                   | Α               | Az                | Az <sup>2</sup>                | l <sub>oi</sub>                |
|-------------------|-----------------|-------------------|--------------------------------|--------------------------------|
|                   | cm <sup>2</sup> | cm <sup>2</sup> m | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |
| Planchaje Externo | 1160.99         | 7845.07           | 54174.00                       | 14.46                          |
| Sumatoria         | 1160.99         | 7845.07           | 54174.00                       | 14.46                          |

| Cuaderna 0                                             |      |   |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------|------|---|--|--|--|--|--|--|--|--|--|
| Z <sub>med</sub>                                       | 6.76 | m |  |  |  |  |  |  |  |  |  |
| I <sub>o</sub> 2.35E+03 cm <sup>2</sup> m <sup>2</sup> |      |   |  |  |  |  |  |  |  |  |  |

Tabla D-I.- Estación 0



Figura D-1.- Estación 0

|        | #  | Уi   | zi   | ti | q    | long <sub>i</sub> | Ai      | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|--------|----|------|------|----|------|-------------------|---------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|        | π  | m    | m    | mm | rad  | m                 | cm2     | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
|        | 1  | 0.00 | 0.00 | 12 |      |                   |         |      |                               |                                |                                |                                |                                |
| ta     | 2  | 0.51 | 0.00 | 10 | 1.57 | 0.51              | 51.00   | 0.00 | 0.00                          | 0.00                           | 0.00                           | 1.11                           | 0.00                           |
| ier    | 3  | 0.78 | 0.00 | 12 | 1.57 | 0.27              | 32.52   | 0.00 | 0.00                          | 0.00                           | 0.00                           | 0.20                           | 0.00                           |
| Such 1 | 4  | 0.90 | 0.02 | 12 | 1.43 | 0.12              | 14.19   | 0.01 | 0.12                          | 0.00                           | 0.00                           | 0.02                           | 0.00                           |
| +      | 5  | 1.52 | 0.40 | 12 | 1.02 | 0.73              | 87.39   | 0.21 | 18.18                         | 3.78                           | 0.00                           | 3.86                           | 1.06                           |
| 2      | 6  | 1.90 | 0.90 | 12 | 0.65 | 0.63              | 75.31   | 0.65 | 48.92                         | 31.77                          | 0.00                           | 2.47                           | 1.58                           |
| Ō      | 7  | 2.24 | 1.52 | 12 | 0.51 | 0.71              | 84.61   | 1.21 | 102.21                        | 123.46                         | 0.00                           | 3.50                           | 2.68                           |
|        | 7  | 2.24 | 1.52 | 10 | 0.00 | 0.00              | 0.00    | 1.52 | 0.00                          | 0.00                           | 0.00                           | 0.00                           | 0.00                           |
|        | 8  | 3.01 | 2.80 | 10 | 0.54 | 1.50              | 149.67  | 2.16 | 322.98                        | 696.99                         | 0.00                           | 27.94                          | 20.56                          |
|        | 10 | 6.10 | 7.23 | 10 | 0.61 | 5.40              | 540.30  | 5.01 | 2709.06                       | 13583.25                       | 0.00                           | 1314.39                        | 882.81                         |
|        | 13 | 1.34 | 7.47 | 10 | 1.62 | 4.77              | 476.99  | 7.35 | 3504.20                       | 25743.61                       | 0.00                           | 904.37                         | 2.23                           |
|        |    |      |      |    |      | Σ                 | 1511.97 |      | 6705.66                       | 40182.87                       |                                |                                | 910.92                         |

| ор   | #  | yi   | zi   | ti    | q    | long <sub>i</sub> | Ai     | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|------|----|------|------|-------|------|-------------------|--------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| lon  | π  | m    | m    | mm    | rad  | m                 | cm2    | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| e    | 2  | 0.51 | 0.00 | 10.00 |      |                   |        |      |                               |                                |                                |                                |                                |
| qo   | 16 | 0.51 | 0.90 | 10.00 | 0.00 | 0.90              | 90.00  | 0.45 | 40.50                         | 18.23                          | 0.00                           | 6.08                           | 6.08                           |
|      | 6  | 1.90 | 0.90 | 10.00 | 1.57 | 1.39              | 138.60 | 0.90 | 124.74                        | 112.27                         | 0.00                           | 22.19                          | 0.00                           |
|      |    |      |      |       |      | Σ                 | 228.60 |      | 165.24                        | 130.49                         |                                |                                | 6.08                           |
|      |    |      |      |       |      |                   |        |      |                               |                                |                                |                                |                                |
| as   | #  | yi   | zi   | ti    | q    | long <sub>i</sub> | Ai     | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | I <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
| iert | #  | m    | m    | mm    | rad  | m                 | cm2    | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| qŋ   | 9  | 4.40 | 4.70 | 7.00  |      |                   |        |      |                               |                                |                                |                                |                                |
| 0    | 15 | 1.34 | 4.70 | 7.00  | 1.57 | 3.06              | 214.34 | 4.70 | 1007.40                       | 4734.77                        | 0.00                           | 167.47                         | 0.00                           |
|      |    |      |      |       |      | Σ                 | 214.34 |      | 1007.40                       | 4734.77                        |                                |                                | 0.00                           |

|       | # Elemento |          | Dimensi | iones | <b>y</b> i | Zi   | Ai              | A <sub>i</sub> z <sub>i</sub> | A <sub>i</sub> zi²             | l <sub>oi</sub> | l <sub>oi</sub>                |
|-------|------------|----------|---------|-------|------------|------|-----------------|-------------------------------|--------------------------------|-----------------|--------------------------------|
|       | #          | Elemento | mm      |       | m          | m    | cm <sup>2</sup> | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> | mm <sup>4</sup> | cm <sup>2</sup> m <sup>2</sup> |
| nales | 0          | Vigo T   | 350     | 10    | 3.01       | 2.80 | 35.00           | 98.00                         | 274.40                         | 29167           | 0.00                           |
|       | 0          | viga i   | 100     | 10    | 2.66       | 2.80 | 10.00           | 28.00                         | 78.40                          | 833333          | 0.01                           |
| ipr   | 11         | Viga T   | 350     | 10    | 4.69       | 7.16 | 35.00           | 250.43                        | 1791.79                        | 35729167        | 0.36                           |
| gitt  | 11         | viga i   | 100     | 10    | 4.69       | 6.98 | 10.00           | 69.75                         | 486.51                         | 8333            | 0.00                           |
| OU    | 12         | Viga T   | 350     | 10    | 3.35       | 7.23 | 35.00           | 252.95                        | 1828.03                        | 35729167        | 0.36                           |
| sL    |            |          | 100     | 10    | 3.35       | 7.05 | 10.00           | 70.47                         | 496.60                         | 8333            | 0.00                           |
| ΟZ    | 12         | Viga T   | 300     | 10    | 1.34       | 7.31 | 30.00           | 219.30                        | 1603.08                        | 22500000        | 0.23                           |
| nei   | 13         |          | 100     | 12    | 1.34       | 7.15 | 12.00           | 85.85                         | 614.16                         | 14400           | 0.00                           |
| Ref   | 11         | Viga T   | 400     | 10    | 3.35       | 4.50 | 40.00           | 180.00                        | 810.00                         | 53333333        | 0.53                           |
| _     | 14         | viga i   | 100     | 12    | 3.35       | 4.29 | 12.00           | 51.53                         | 221.26                         | 14400           | 0.00                           |
|       | 15         |          | 480     | 12    | 1.34       | 4.46 | 57.60           | 256.90                        | 1145.76                        | 110592000       | 1.11                           |
|       | 15         | viga i   | 200     | 14    | 1.34       | 4.21 | 28.00           | 117.96                        | 496.98                         | 45733           | 0.00                           |
|       |            |          |         |       |            | Σ    | 314.60          | 1681.13                       | 9846.97                        | 258837367       | 2.59                           |

|                     | Α               | Az                | Az <sup>2</sup>                | l <sub>oi</sub>                |
|---------------------|-----------------|-------------------|--------------------------------|--------------------------------|
|                     | cm <sup>2</sup> | cm <sup>2</sup> m | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |
| Planchaje Externo   | 1511.97         | 6705.66           | 40182.87                       | 910.92                         |
| Doble Fondo         | 228.60          | 165.24            | 130.49                         | 6.08                           |
| Cubiertas           | 214.34          | 1007.40           | 4734.77                        | 0.00                           |
| Ref. longitudinales | 314.60          | 1681.13           | 9846.97                        | 2.59                           |
| Sumatoria           | 2269.51         | 9559.43           | 54895.10                       | 919.59                         |

| Cuaderna 15      |          |                                |  |  |  |  |  |
|------------------|----------|--------------------------------|--|--|--|--|--|
| Z <sub>med</sub> | 4.21     | m                              |  |  |  |  |  |
| lo               | 3.11E+04 | cm <sup>2</sup> m <sup>2</sup> |  |  |  |  |  |

Tabla D-II.- Estación 15



Figura D-2.- Estación 15

|        |    | V:         | 7:   | t: | a    | long | Δ:      | 7:   | Δ: 7:   | Δ: 7: <sup>2</sup> | lara. | laa.             | la:    |
|--------|----|------------|------|----|------|------|---------|------|---------|--------------------|-------|------------------|--------|
|        | #  | <b>y</b> i | -1   | 4  | Ч.   | long | 74      | -1   | 22      | 22                 | 22    | <sup>1</sup> y y | 22     |
|        |    | m          | m    | mm | rad  | m    | cm2     | m    | cm m    | cm m               | cm m  | cm m             | cm m   |
| ta     | 1  | 0.00       | 0.00 | 12 |      |      |         |      |         |                    |       |                  |        |
| oier   | 4  | 3.54       | 0.00 | 10 | 1.57 | 3.54 | 354.30  | 0.00 | 0.00    | 0.00               | 0.00  | 370.62           | 0.00   |
| Such 1 | 5  | 4.47       | 0.25 | 12 | 1.31 | 0.96 | 114.75  | 0.13 | 14.34   | 1.79               | 0.00  | 8.74             | 0.60   |
| +      | 6  | 5.39       | 0.90 | 12 | 0.96 | 1.13 | 135.57  | 0.58 | 77.95   | 44.82              | 0.00  | 14.42            | 4.77   |
| 5      | 7  | 5.97       | 1.74 | 10 | 0.60 | 1.02 | 101.80  | 1.32 | 134.27  | 177.11             | 0.00  | 8.79             | 5.96   |
| Ē      | 8  | 6.64       | 3.90 | 10 | 0.30 | 2.26 | 226.26  | 2.82 | 637.81  | 1797.99            | 0.00  | 96.52            | 88.13  |
|        | 10 | 6.70       | 5.16 | 12 | 0.05 | 1.26 | 150.80  | 4.53 | 682.76  | 3091.18            | 0.00  | 19.85            | 19.79  |
|        | 11 | 6.70       | 6.96 | 10 | 0.00 | 1.80 | 180.00  | 6.06 | 1089.90 | 6599.34            | 0.00  | 48.60            | 48.60  |
|        | 13 | 0.00       | 7.23 | 10 | 1.61 | 6.71 | 670.54  | 7.09 | 4754.16 | 33706.96           | 0.00  | 2512.47          | 4.07   |
|        |    |            |      |    |      | Σ    | 1934.02 |      | 7391.19 | 45419.20           |       |                  | 171.93 |

| ор   | #  | yi   | zi   | ti  | q    | long <sub>i</sub> | Ai     | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|------|----|------|------|-----|------|-------------------|--------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Fon  | *  | m    | m    | mm  | rad  | m                 | cm2    | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| e    | 1  | 0.00 | 0.00 | 12  |      |                   |        |      |                               |                                |                                |                                |                                |
| qo   | 15 | 0.00 | 0.90 | 12  | 0.00 | 0.90              | 108.00 | 0.45 | 48.60                         | 21.87                          | 0.00                           | 7.29                           | 7.29                           |
|      | 6  | 5.39 | 0.90 | 10  | 1.57 | 5.39              | 539.00 | 0.90 | 485.10                        | 436.59                         | 0.00                           | 1304.92                        | 0.00                           |
|      |    |      |      |     |      | Σ                 | 647.00 |      | 533.70                        | 458.46                         |                                |                                | 7.29                           |
|      |    |      |      |     |      |                   |        |      |                               |                                |                                |                                |                                |
| bug  | #  | yi   | Zi   | ti  | q    | longi             | Ai     | Zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
| p Lc | #  | m    | m    | mm  | rad  | m                 | cm2    | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| am   | 3  | 3.35 | 0.00 | 3.5 |      |                   |        |      |                               |                                |                                |                                |                                |
| Ŝ    | 14 | 3.35 | 0.90 | 3.5 | 0.00 | 0.90              | 31.50  | 0.45 | 14.18                         | 6.38                           | 0.00                           | 2.13                           | 2.13                           |
|      |    |      |      |     |      | Σ                 | 31.50  |      | 14.18                         | 6.38                           |                                |                                | 2.13                           |

|     |    | _, _,    | Dim | ensior | ies | y <sub>i</sub> | Zi   | A <sub>i</sub>  | A <sub>i</sub> z <sub>i</sub> | A <sub>i</sub> zi²             | l <sub>oi</sub> | l <sub>oi</sub>                |
|-----|----|----------|-----|--------|-----|----------------|------|-----------------|-------------------------------|--------------------------------|-----------------|--------------------------------|
|     | #  | Elemento |     | mm     |     | m              | m    | cm <sup>2</sup> | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> | mm <sup>4</sup> | cm <sup>2</sup> m <sup>2</sup> |
|     |    | Viga T   | 350 | 10     |     | 6.64           | 3.90 | 35.00           | 136.50                        | 532.35                         | 29167           | 0.00                           |
|     | °  | viya i   | 100 | 10     |     | 6.29           | 3.90 | 10.00           | 39.00                         | 152.10                         | 833333          | 0.01                           |
|     | 16 | Ángulo L | 160 | 100    | 10  | 0.67           | 0.00 | 30.60           | 0.00                          | 0.00                           | 7200000         | 0.07                           |
|     | 17 | Ángulo L | 160 | 100    | 10  | 1.34           | 0.00 | 30.60           | 0.00                          | 0.00                           | 7200000         | 0.07                           |
|     | 18 | Ángulo L | 160 | 100    | 10  | 2.01           | 0.00 | 30.60           | 0.00                          | 0.00                           | 7200000         | 0.07                           |
| les | 19 | Ángulo L | 160 | 100    | 10  | 2.68           | 0.00 | 30.60           | 0.00                          | 0.00                           | 7200000         | 0.07                           |
| nal | 20 | Ángulo L | 160 | 100    | 10  | 4.02           | 0.11 | 30.60           | 3.43                          | 0.38                           | 7200000         | 0.07                           |
| udi | 21 | Ángulo L | 160 | 100    | 10  | 4.69           | 0.35 | 30.60           | 10.56                         | 3.64                           | 7200000         | 0.07                           |
| git | 22 | Ángulo L | 160 | 100    | 10  | 4.69           | 0.90 | 30.60           | 27.54                         | 24.79                          | 7200000         | 0.07                           |
| on  | 23 | Ángulo L | 160 | 100    | 10  | 4.02           | 0.90 | 30.60           | 27.54                         | 24.79                          | 7200000         | 0.07                           |
| l S | 24 | Ángulo L | 160 | 100    | 10  | 2.68           | 0.90 | 30.60           | 27.54                         | 24.79                          | 7200000         | 0.07                           |
| IZC | 25 | Ángulo L | 160 | 100    | 10  | 2.01           | 0.90 | 30.60           | 27.54                         | 24.79                          | 7200000         | 0.07                           |
| fue | 26 | Ángulo L | 160 | 100    | 10  | 1.34           | 0.90 | 30.60           | 27.54                         | 24.79                          | 7200000         | 0.07                           |
| Se, | 27 | Ángulo L | 160 | 100    | 10  | 0.67           | 0.90 | 30.60           | 27.54                         | 24.79                          | 7200000         | 0.07                           |
|     | 28 | Ángulo L | 125 | 80     | 10  | 6.03           | 7.01 | 20.50           | 143.75                        | 1007.95                        | 3250000         | 0.03                           |
|     | 29 | Ángulo L | 125 | 80     | 10  | 5.36           | 7.06 | 20.50           | 144.79                        | 1022.66                        | 3250000         | 0.03                           |
|     | 30 | Ángulo L | 125 | 80     | 10  | 4.69           | 7.11 | 20.50           | 145.71                        | 1035.74                        | 3250000         | 0.03                           |
|     | 31 | Ángulo L | 125 | 80     | 10  | 4.02           | 7.15 | 20.50           | 146.51                        | 1047.13                        | 3250000         | 0.03                           |
|     | 32 | Ángulo L | 125 | 80     | 10  | 2.68           | 7.21 | 20.50           | 147.74                        | 1064.79                        | 3250000         | 0.03                           |
|     | 33 | Ángulo L | 125 | 80     | 10  | 2.01           | 7.23 | 20.50           | 148.17                        | 1071.00                        | 3250000         | 0.03                           |
|     | 34 | Ángulo L | 125 | 80     | 10  | 1.34           | 7.24 | 20.50           | 148.48                        | 1075.45                        | 3250000         | 0.03                           |
|     | 35 | Ángulo L | 125 | 80     | 10  | 0.67           | 7.24 | 20.50           | 148.48                        | 1075.45                        | 3250000         | 0.03                           |
|     |    |          |     |        |     |                | Σ    | 576.20          | 1528.37                       | 9237.36                        | 113262500       | 1.13                           |

|                     | Α               | Az                | Az <sup>2</sup>                | l <sub>oi</sub>                |  |
|---------------------|-----------------|-------------------|--------------------------------|--------------------------------|--|
|                     | cm <sup>2</sup> | cm <sup>2</sup> m | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |  |
| Planchaje Externo   | 1934.02         | 7391.19           | 45419.20                       | 171.93                         |  |
| Doble Fondo         | 647.00          | 533.70            | 458.46                         | 7.29                           |  |
| Mamp longitudinal   | 31.50           | 14.18             | 6.38                           | 2.13                           |  |
| Ref. longitudinales | 576.20          | 1528.37           | 9237.36                        | 1.13                           |  |
| Sumatoria           | 3188.72         | 9467.44           | 55121.40                       | 182.47                         |  |

| Cuaderna 33                     |          |                                |  |  |  |  |  |  |
|---------------------------------|----------|--------------------------------|--|--|--|--|--|--|
| <b>z<sub>med</sub></b> 2.9690 m |          |                                |  |  |  |  |  |  |
| ١ <sub>٥</sub>                  | 5.44E+04 | cm <sup>2</sup> m <sup>2</sup> |  |  |  |  |  |  |

Tabla D-III.- Estación 33



Figura D-3.- Estación 33

|      | #  | Уi   | zi   | ti | q    | long <sub>i</sub> | Ai      | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | I <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|------|----|------|------|----|------|-------------------|---------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|      | π  | m    | m    | mm | rad  | m                 | cm2     | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| ष    | 1  | 0.00 | 0.00 | 12 |      |                   |         |      |                               |                                |                                |                                |                                |
| oiel | 2  | 0.90 | 0.00 | 10 | 1.57 | 0.90              | 90.00   | 0.00 | 0.00                          | 0.00                           | 0.00                           | 6.08                           | 0.00                           |
| ž    | 3  | 5.19 | 0.00 | 10 | 1.57 | 4.29              | 428.90  | 0.00 | 0.00                          | 0.00                           | 0.00                           | 657.49                         | 0.00                           |
| +    | 4  | 5.79 | 0.21 | 12 | 1.23 | 0.63              | 76.06   | 0.11 | 8.10                          | 0.86                           | 0.00                           | 2.55                           | 0.29                           |
| 2    | 5  | 6.50 | 0.90 | 12 | 0.81 | 0.99              | 118.99  | 0.56 | 66.22                         | 36.85                          | 0.00                           | 9.75                           | 4.68                           |
| Fo   | 6  | 6.69 | 1.85 | 10 | 0.20 | 0.97              | 97.31   | 1.38 | 134.00                        | 184.52                         | 0.00                           | 7.68                           | 7.38                           |
|      | 7  | 6.70 | 2.40 | 10 | 0.01 | 0.55              | 54.60   | 2.13 | 116.14                        | 247.04                         | 0.00                           | 1.36                           | 1.36                           |
|      | 9  | 6.70 | 6.91 | 10 | 0.00 | 4.51              | 450.70  | 4.65 | 2097.33                       | 9759.94                        | 0.00                           | 762.92                         | 762.92                         |
|      | 11 | 0.00 | 7.21 | 10 | 1.62 | 6.71              | 670.67  | 7.06 | 4732.93                       | 33400.27                       | 0.00                           | 2513.90                        | 5.03                           |
|      |    |      |      |    |      | Σ                 | 1987.24 |      | 7154.72                       | 43629.47                       |                                |                                | 781.66                         |
|      |    |      |      |    |      |                   |         |      |                               |                                |                                |                                |                                |
| 0    | #  | yi   | zi   | ti | q    | long <sub>i</sub> | Ai      | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
| puc  | π  | m    | m    | mm | rad  | m                 | cm2     | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| ц    | 14 | 0.00 | 0.90 | 10 |      |                   |         |      |                               |                                |                                |                                |                                |
| ble  | 5  | 6.50 | 0.90 | 10 | 1.57 | 6.50              | 650.10  | 0.90 | 585.09                        | 526.58                         | 0.00                           | 2289.60                        | 0.00                           |
| å    | 15 | 3.35 | 0.90 | 10 |      |                   |         |      |                               |                                |                                |                                |                                |
|      | 16 | 3.35 | 0.00 | 10 | 0.00 | 0.90              | 90.00   | 0.45 | 40.50                         | 18.23                          | 0.00                           | 6.08                           | 6.08                           |
|      |    |      |      |    |      | Σ                 | 740.10  |      | 625.59                        | 544.81                         |                                |                                | 6.08                           |
|      |    |      |      |    |      |                   |         |      |                               |                                |                                |                                |                                |
| bug  | #  | Уi   | Zi   | ti | q    | long <sub>i</sub> | Ai      | Zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
| p Lc | #  | m    | m    | mm | rad  | m                 | cm2     | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| am   | 1  | 0.00 | 0.00 |    |      |                   |         |      |                               |                                |                                |                                |                                |
| Š    | 11 | 0.00 | 7.21 | 5  | 0.00 | 7.21              | 360.35  | 3.60 | 1298.52                       | 4679.22                        | 0.00                           | 1559.74                        | 1559.74                        |
|      |    |      |      |    |      | Σ                 | 360.35  |      | 1298.52                       | 4679.22                        |                                |                                | 1559.74                        |

|      | "  | -        | Dim | ensic | ones | Уi    | Zi   | Ai              | A <sub>i</sub> z <sub>i</sub> | A <sub>i</sub> zi²             | l <sub>oi</sub> | l <sub>oi</sub>                |
|------|----|----------|-----|-------|------|-------|------|-----------------|-------------------------------|--------------------------------|-----------------|--------------------------------|
|      | #  | Elemento |     | mm    |      | m     | m    | cm <sup>2</sup> | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> | mm <sup>4</sup> | cm <sup>2</sup> m <sup>2</sup> |
|      | •  | Vigo T   | 350 | 10    |      | 6.70  | 3.90 | 35.00           | 136.50                        | 532.35                         | 29167           | 0.00                           |
|      | 0  | viga i   | 100 | 10    |      | 6.60  | 3.90 | 10.00           | 39.00                         | 152.10                         | 833333          | 0.01                           |
|      | 10 | Vigo T   | 350 | 10    |      | 3.35  | 6.96 | 35.00           | 243.43                        | 1693.02                        | 29167           | 0.00                           |
|      | 10 | viya i   | 100 | 10    |      | 3.25  | 7.02 | 10.00           | 70.20                         | 492.80                         | 833333          | 0.01                           |
|      | 12 | Viga T   | 350 | 10    |      | 0.00  | 3.90 | 17.50           | 68.25                         | 266.18                         | 29167           | 0.00                           |
|      | 12 | viya i   | 100 | 10    |      | -0.10 | 3.90 | 5.00            | 19.50                         | 76.05                          | 833333          | 0.01                           |
|      | 17 | Ángulo L | 160 | 100   | 10   | 0.67  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 18 | Ángulo L | 160 | 100   | 10   | 1.34  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 19 | Ángulo L | 160 | 100   | 10   | 2.01  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 20 | Ángulo L | 160 | 100   | 10   | 2.68  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 21 | Ángulo L | 160 | 100   | 10   | 4.02  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 22 | Ángulo L | 160 | 100   | 10   | 4.69  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 23 | Ángulo L | 160 | 100   | 10   | 5.36  | 0.16 | 26.00           | 4.26                          | 0.70                           | 7200000         | 0.07                           |
|      | 24 | Ángulo L | 160 | 100   | 10   | 6.03  | 0.45 | 26.00           | 11.77                         | 5.33                           | 7200000         | 0.07                           |
|      | 25 | Ángulo L | 160 | 100   | 10   | 6.03  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
|      | 26 | Ángulo L | 160 | 100   | 10   | 5.36  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
|      | 27 | Ángulo L | 160 | 100   | 10   | 4.69  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| les  | 28 | Ángulo L | 160 | 100   | 10   | 4.02  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| na   | 29 | Ángulo L | 160 | 100   | 10   | 2.68  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| pn   | 30 | Ángulo L | 160 | 100   | 10   | 2.01  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| git  | 31 | Ángulo L | 160 | 100   | 10   | 1.34  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| p    | 32 | Angulo L | 160 | 100   | 10   | 0.67  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| l sc | 33 | Ángulo L | 125 | 80    | 10   | 0.00  | 1.50 | 10.25           | 15.38                         | 23.06                          | 1420000         | 0.01                           |
| )ZI  | 34 | Ángulo L | 125 | 80    | 10   | 0.00  | 2.10 | 10.25           | 21.53                         | 45.20                          | 1420000         | 0.01                           |
| fue  | 35 | Angulo L | 125 | 80    | 10   | 0.00  | 2.70 | 10.25           | 27.68                         | 74.72                          | 1420000         | 0.01                           |
| Re   | 36 | Angulo L | 125 | 80    | 10   | 0.00  | 3.30 | 10.25           | 33.83                         | 111.62                         | 1420000         | 0.01                           |
|      | 37 | Angulo L | 125 | 80    | 10   | 0.00  | 4.50 | 10.25           | 46.13                         | 207.56                         | 1420000         | 0.01                           |
|      | 38 | Angulo L | 125 | 80    | 10   | 0.00  | 5.10 | 10.25           | 52.28                         | 266.60                         | 1420000         | 0.01                           |
|      | 39 | Angulo L | 125 | 80    | 10   | 0.00  | 5.70 | 10.25           | 58.43                         | 333.02                         | 1420000         | 0.01                           |
|      | 40 | Ángulo L | 125 | 80    | 10   | 0.00  | 6.30 | 10.25           | 64.58                         | 406.82                         | 1420000         | 0.01                           |
|      | 41 | Ángulo L | 125 | 80    | 10   | 0.67  | 7.13 | 20.50           | 146.15                        | 1041.92                        | 3250000         | 0.03                           |
|      | 42 | Angulo L | 125 | 80    | 10   | 1.34  | 7.12 | 20.50           | 145.96                        | 1039.29                        | 3250000         | 0.03                           |
|      | 43 | Angulo L | 125 | 80    | 10   | 2.01  | 7.11 | 20.50           | 145.66                        | 1034.92                        | 3250000         | 0.03                           |
|      | 44 | Angulo L | 125 | 80    | 10   | 2.68  | 7.08 | 20.50           | 145.23                        | 1028.81                        | 3250000         | 0.03                           |
|      | 45 | Angulo L | 125 | 80    | 10   | 4.02  | 7.02 | 20.50           | 144.00                        | 1011.46                        | 3250000         | 0.03                           |
|      | 46 | Angulo L | 125 | 80    | 10   | 4.69  | 6.99 | 20.50           | 143.20                        | 1000.26                        | 3250000         | 0.03                           |
|      | 47 | Angulo L | 125 | 80    | 10   | 5.36  | 6.94 | 20.50           | 142.27                        | 987.41                         | 3250000         | 0.03                           |
|      | 48 | Angulo L | 125 | 80    | 10   | 6.03  | 6.89 | 20.50           | 141.23                        | 972.95                         | 3250000         | 0.03                           |
|      | 49 | Angulo L | 125 | 80    | 10   | 6.70  | 6.27 | 20.50           | 128.63                        | 807.15                         | 1420000         | 0.01                           |
|      | 50 | Angulo L | 125 | 80    | 10   | 6.70  | 5.67 | 20.50           | 116.33                        | 660.17                         | 1420000         | 0.01                           |
|      | 51 | Angulo L | 125 | 80    | 10   | 6.70  | 5.07 | 20.50           | 104.03                        | 527.95                         | 1420000         | 0.01                           |
|      | 52 | Angulo L | 125 | 80    | 10   | 6.70  | 4.47 | 20.50           | 91.73                         | 410.49                         | 1420000         | 0.01                           |
|      | 53 | Angulo L | 125 | 80    | 10   | 6.70  | 3.27 | 20.50           | 67.13                         | 219.85                         | 1420000         | 0.01                           |
|      | 54 | Angulo L | 125 | 80    | 10   | 6.70  | 2.67 | 20.50           | 54.83                         | 146.67                         | 1420000         | 0.01                           |
|      | 55 | Angulo L | 125 | 80    | 10   | 6.70  | 2.07 | 20.50           | 42.53                         | 88.25                          | 1420000         | 0.01                           |
|      | 56 | Angulo L | 125 | 80    | 10   | 6.66  | 1.47 | 20.50           | 30.23                         | 44.59                          | 1420000         | 0.01                           |
|      |    |          |     |       |      |       | Σ    | 938.50          | 2883.36                       | 15841.04                       | 166507500       | 1.67                           |

|               | Α               | Az                | Az <sup>2</sup>                | l <sub>oi</sub>                |  |
|---------------|-----------------|-------------------|--------------------------------|--------------------------------|--|
|               | cm <sup>2</sup> | cm <sup>2</sup> m | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |  |
| Planchaje Ext | 1987.24         | 7154.72           | 43629.47                       | 781.66                         |  |
| Doble Fondo   | 740.10          | 625.59            | 544.81                         | 6.08                           |  |
| Mamp long.    | 360.35          | 1298.52           | 4679.22                        | 1559.74                        |  |
| Ref. long.    | 938.50          | 2883.36           | 15841.04                       | 1.67                           |  |
| Sumatoria     | 4026.19         | 11962.19          | 64694.54                       | 2349.14                        |  |

| Cuaderna 50                   |          |                                |  |  |  |  |  |  |
|-------------------------------|----------|--------------------------------|--|--|--|--|--|--|
| <b>z<sub>med</sub></b> 2.97 m |          |                                |  |  |  |  |  |  |
| ١o                            | 6.30E+04 | cm <sup>2</sup> m <sup>2</sup> |  |  |  |  |  |  |

Tabla D-IV.- Estación 50



Figura D-4.- Estación 50
|      | #  | Уi   | zi   | ti   | q    | long <sub>i</sub> | Ai      | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|------|----|------|------|------|------|-------------------|---------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|      | π  | m    | m    | mm   | rad  | m                 | cm2     | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| ta   | 1  | 0.00 | 0.00 | 12   |      |                   |         |      |                               |                                |                                |                                |                                |
| iel  | 2  | 0.90 | 0.00 | 10   | 1.57 | 0.90              | 90.00   | 0.00 | 0.00                          | 0.00                           | 0.00                           | 6.08                           | 0.00                           |
| , S  | 3  | 5.20 | 0.00 | 10   | 1.57 | 4.30              | 429.80  | 0.00 | 0.00                          | 0.00                           | 0.00                           | 661.63                         | 0.00                           |
| +    | 4  | 5.68 | 0.09 | 12   | 1.39 | 0.49              | 58.91   | 0.04 | 2.59                          | 0.11                           | 0.00                           | 1.18                           | 0.04                           |
| 5    | 5  | 6.51 | 0.90 | 12   | 0.79 | 1.16              | 138.91  | 0.49 | 68.62                         | 33.90                          | 0.00                           | 15.51                          | 7.63                           |
| Fo   | 6  | 6.67 | 1.60 | 10   | 0.23 | 0.72              | 71.99   | 1.25 | 90.03                         | 112.58                         | 0.00                           | 3.11                           | 2.95                           |
|      | 7  | 6.70 | 2.00 | 10   | 0.07 | 0.40              | 40.41   | 1.80 | 72.84                         | 131.30                         | 0.00                           | 0.55                           | 0.55                           |
|      | 9  | 6.70 | 6.90 | 10   | 0.00 | 4.90              | 489.80  | 4.45 | 2181.08                       | 9712.35                        | 0.00                           | 979.21                         | 979.21                         |
|      | 11 | 0.00 | 7.20 | 10   | 1.62 | 6.71              | 670.67  | 7.05 | 4729.57                       | 33352.96                       | 0.00                           | 2513.90                        | 5.03                           |
|      |    |      |      |      |      | Σ                 | 1990.50 |      | 7144.74                       | 43343.19                       |                                |                                | 995.40                         |
|      |    |      |      |      |      |                   |         |      |                               |                                |                                |                                |                                |
| _    | "  | yi   | zi   | ti   | q    | long <sub>i</sub> | Ai      | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>v'v'</sub>              | l <sub>oi</sub>                |
| pud  | #  | m    | m    | mm   | rad  | m                 | cm2     | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| Щ    | 14 | 0.00 | 0.90 | 10   |      |                   |         |      |                               |                                |                                |                                |                                |
| ble  | 5  | 6.51 | 0.90 | 10   | 1.57 | 6.51              | 650.60  | 0.90 | 585.54                        | 526.99                         | 0.00                           | 2294.89                        | 0.00                           |
| õ    | 15 | 3.35 | 0.90 | 10   |      |                   |         |      |                               |                                |                                |                                |                                |
|      | 16 | 3.35 | 0.00 | 10   | 0.00 | 0.90              | 90.00   | 0.45 | 40.50                         | 18.23                          | 0.00                           | 6.08                           | 6.08                           |
|      |    |      |      |      |      | Σ                 | 740.60  |      | 626.04                        | 545.21                         |                                |                                | 6.08                           |
|      |    |      |      |      |      |                   |         |      |                               |                                |                                |                                |                                |
| bug  | #  | Уi   | Zi   | ti   | q    | long <sub>i</sub> | Ai      | Zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
| 0 Lo | #  | m    | m    | mm   | rad  | m                 | cm2     | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| amp  | 1  | 0.00 | 0.00 |      |      |                   |         |      |                               |                                |                                |                                |                                |
| Š    | 11 | 0.00 | 7.20 | 5.00 | 0.00 | 7.20              | 360.10  | 3.60 | 1296.72                       | 4669.49                        | 0.00                           | 1556.50                        | 1556.50                        |
|      |    |      |      |      |      | Σ                 | 360.10  |      | 1296.72                       | 4669.49                        |                                |                                | 1556.50                        |

|      | 4  | Flomente | Dim | ensic | ones | Уi    | Zi   | Ai              | A <sub>i</sub> z <sub>i</sub> | A <sub>i</sub> zi²             | l <sub>oi</sub> | l <sub>oi</sub>                |
|------|----|----------|-----|-------|------|-------|------|-----------------|-------------------------------|--------------------------------|-----------------|--------------------------------|
|      | #  | Elemento |     | mm    |      | m     | m    | cm <sup>2</sup> | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> | mm⁴             | cm <sup>2</sup> m <sup>2</sup> |
|      | Q  | Viga T   | 350 | 10    |      | 6.70  | 3.90 | 35.00           | 136.50                        | 532.35                         | 29167           | 0.00                           |
|      | 0  | viya i   | 100 | 10    |      | 6.60  | 3.90 | 10.00           | 39.00                         | 152.10                         | 833333          | 0.01                           |
|      | 10 | Viga T   | 350 | 10    |      | 3.35  | 6.95 | 35.00           | 243.32                        | 1691.56                        | 29167           | 0.00                           |
|      | 10 | viga i   | 100 | 10    |      | 3.25  | 7.02 | 10.00           | 70.17                         | 492.38                         | 833333          | 0.01                           |
|      | 12 | Viga T   | 350 | 10    |      | 0.00  | 3.90 | 17.50           | 68.25                         | 266.18                         | 29167           | 0.00                           |
|      | 12 | viya i   | 100 | 10    |      | -0.10 | 3.90 | 5.00            | 19.50                         | 76.05                          | 833333          | 0.01                           |
|      | 17 | Ángulo L | 160 | 100   | 10   | 0.67  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 18 | Ángulo L | 160 | 100   | 10   | 1.34  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 19 | Ángulo L | 160 | 100   | 10   | 2.01  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 20 | Ángulo L | 160 | 100   | 10   | 2.68  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 21 | Ángulo L | 160 | 100   | 10   | 4.02  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 22 | Ángulo L | 160 | 100   | 10   | 4.69  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|      | 23 | Ángulo L | 160 | 100   | 10   | 5.36  | 0.13 | 26.00           | 3.30                          | 0.42                           | 7200000         | 0.07                           |
|      | 24 | Ángulo L | 160 | 100   | 10   | 6.03  | 0.39 | 26.00           | 10.16                         | 3.97                           | 7200000         | 0.07                           |
|      | 25 | Ángulo L | 160 | 100   | 10   | 6.03  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
|      | 26 | Ángulo L | 160 | 100   | 10   | 5.36  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
|      | 27 | Ángulo L | 160 | 100   | 10   | 4.69  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| es   | 28 | Ángulo L | 160 | 100   | 10   | 4.02  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| na   | 29 | Ángulo L | 160 | 100   | 10   | 2.68  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| udi  | 30 | Ángulo L | 160 | 100   | 10   | 2.01  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| git  | 31 | Ángulo L | 160 | 100   | 10   | 1.34  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| -on  | 32 | Ángulo L | 160 | 100   | 10   | 0.67  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| l SC | 33 | Ángulo L | 125 | 80    | 10   | 0.00  | 1.50 | 10.25           | 15.38                         | 23.06                          | 1420000         | 0.01                           |
| DZI  | 34 | Ángulo L | 125 | 80    | 10   | 0.00  | 2.10 | 10.25           | 21.53                         | 45.20                          | 1420000         | 0.01                           |
| fue  | 35 | Ángulo L | 125 | 80    | 10   | 0.00  | 2.70 | 10.25           | 27.68                         | 74.72                          | 1420000         | 0.01                           |
| Re   | 36 | Ángulo L | 125 | 80    | 10   | 0.00  | 3.30 | 10.25           | 33.83                         | 111.62                         | 1420000         | 0.01                           |
|      | 37 | Ángulo L | 125 | 80    | 10   | 0.00  | 4.50 | 10.25           | 46.13                         | 207.56                         | 1420000         | 0.01                           |
|      | 38 | Ángulo L | 125 | 80    | 10   | 0.00  | 5.10 | 10.25           | 52.28                         | 266.60                         | 1420000         | 0.01                           |
|      | 39 | Ángulo L | 125 | 80    | 10   | 0.00  | 5.70 | 10.25           | 58.43                         | 333.02                         | 1420000         | 0.01                           |
|      | 40 | Ángulo L | 125 | 80    | 10   | 0.00  | 6.30 | 10.25           | 64.58                         | 406.82                         | 1420000         | 0.01                           |
|      | 41 | Ángulo L | 125 | 80    | 10   | 0.67  | 7.12 | 20.50           | 146.05                        | 1040.46                        | 3250000         | 0.03                           |
|      | 42 | Ángulo L | 125 | 80    | 10   | 1.34  | 7.12 | 20.50           | 145.86                        | 1037.83                        | 3250000         | 0.03                           |
|      | 43 | Angulo L | 125 | 80    | 10   | 2.01  | 7.10 | 20.50           | 145.55                        | 1033.46                        | 3250000         | 0.03                           |
|      | 44 | Angulo L | 125 | 80    | 10   | 2.68  | 7.08 | 20.50           | 145.12                        | 1027.36                        | 3250000         | 0.03                           |
|      | 45 | Angulo L | 125 | 80    | 10   | 4.02  | 7.02 | 20.50           | 143.89                        | 1010.02                        | 3250000         | 0.03                           |
|      | 46 | Ángulo L | 125 | 80    | 10   | 4.69  | 6.98 | 20.50           | 143.09                        | 998.83                         | 3250000         | 0.03                           |
|      | 47 | Angulo L | 125 | 80    | 10   | 5.36  | 6.94 | 20.50           | 142.17                        | 985.99                         | 3250000         | 0.03                           |
|      | 48 | Ángulo L | 125 | 80    | 10   | 6.03  | 6.88 | 20.50           | 141.13                        | 971.54                         | 3250000         | 0.03                           |
|      | 49 | Angulo L | 125 | 80    | 10   | 6.70  | 6.27 | 20.50           | 128.63                        | 807.15                         | 1420000         | 0.01                           |
|      | 50 | Angulo L | 125 | 80    | 10   | 6.70  | 5.67 | 20.50           | 116.33                        | 660.17                         | 1420000         | 0.01                           |
|      | 51 | Ángulo L | 125 | 80    | 10   | 6.70  | 5.07 | 20.50           | 104.03                        | 527.95                         | 1420000         | 0.01                           |
|      | 52 | Ángulo L | 125 | 80    | 10   | 6.70  | 4.47 | 20.50           | 91.73                         | 410.49                         | 1420000         | 0.01                           |
|      | 53 | Angulo L | 125 | 80    | 10   | 6.70  | 3.27 | 20.50           | 67.13                         | 219.85                         | 1420000         | 0.01                           |
|      | 54 | Angulo L | 125 | 80    | 10   | 6.70  | 2.67 | 20.50           | 54.83                         | 146.67                         | 1420000         | 0.01                           |
|      | 55 | Angulo L | 125 | 80    | 10   | 6.70  | 2.07 | 20.50           | 42.53                         | 88.25                          | 1420000         | 0.01                           |
|      | 56 | Angulo L | 125 | 80    | 10   | 6.66  | 1.47 | 20.50           | 30.23                         | 44.59                          | 1420000         | 0.01                           |
|      |    |          |     |       |      |       | Σ    | 938.50          | 2879.83                       | 15825.99                       | 166507500       | 1.67                           |

|                | Α               | Az                | Az <sup>2</sup>                | l <sub>oi</sub>                |
|----------------|-----------------|-------------------|--------------------------------|--------------------------------|
|                | cm <sup>2</sup> | cm <sup>2</sup> m | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |
| Planchaje Ext. | 1990.50         | 7144.74           | 43343.19                       | 995.40                         |
| Doble Fondo    | 740.60          | 626.04            | 545.21                         | 6.08                           |
| Mamp. long.    | 360.10          | 1296.72           | 4669.49                        | 1556.50                        |
| Ref. long      | 938.50          | 2879.83           | 15825.99                       | 1.67                           |
| Sumatoria      | 4029.70         | 11947.32          | 64383.88                       | 2559.64                        |

| See<br>Cu               | Sección Media:<br>Cuaderna 72.5 |                                |  |  |  |  |  |  |  |  |
|-------------------------|---------------------------------|--------------------------------|--|--|--|--|--|--|--|--|
| <b>z</b> <sub>med</sub> | 2.96                            | m                              |  |  |  |  |  |  |  |  |
| l <sub>o</sub>          | 6.30E+04                        | cm <sup>2</sup> m <sup>2</sup> |  |  |  |  |  |  |  |  |

Tabla D-V.- Estación 72.5



Figura D-5.- Estación 72.5

|     | #  | <b>y</b> i | zi   | ti | q    | long <sub>i</sub> | Ai      | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|-----|----|------------|------|----|------|-------------------|---------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|     | π  | m          | m    | mm | rad  | m                 | cm2     | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| ta  | 1  | 0.00       | 0.00 | 12 |      |                   |         |      |                               |                                |                                |                                |                                |
| iei | 2  | 0.90       | 0.00 | 10 | 1.57 | 0.90              | 90.00   | 0.00 | 0.00                          | 0.00                           | 0.00                           | 6.08                           | 0.00                           |
| Crt | 3  | 5.20       | 0.00 | 10 | 1.57 | 4.30              | 429.80  | 0.00 | 0.00                          | 0.00                           | 0.00                           | 661.63                         | 0.00                           |
| +   | 4  | 5.68       | 0.09 | 12 | 1.39 | 0.49              | 58.91   | 0.04 | 2.59                          | 0.11                           | 0.00                           | 1.18                           | 0.04                           |
| 2   | 5  | 6.51       | 0.90 | 12 | 0.79 | 1.16              | 138.91  | 0.49 | 68.62                         | 33.90                          | 0.00                           | 15.51                          | 7.63                           |
| Fo  | 6  | 6.67       | 1.60 | 10 | 0.23 | 0.72              | 71.99   | 1.25 | 90.03                         | 112.58                         | 0.00                           | 3.11                           | 2.95                           |
|     | 7  | 6.70       | 2.00 | 10 | 0.07 | 0.40              | 40.41   | 1.80 | 72.84                         | 131.30                         | 0.00                           | 0.55                           | 0.55                           |
|     | 9  | 6.70       | 6.98 | 10 | 0.00 | 4.97              | 497.40  | 4.49 | 2233.82                       | 10032.10                       | 0.00                           | 1025.50                        | 1025.50                        |
|     | 11 | 0.00       | 7.28 | 10 | 1.62 | 6.71              | 670.67  | 7.13 | 4780.55                       | 34075.73                       | 0.00                           | 2513.90                        | 5.03                           |
|     |    |            |      |    |      | Σ                 | 1998.10 |      | 7248.45                       | 44385.71                       |                                |                                | 1041.70                        |

| 0   | #  | yi   | zi   | ti | q    | long <sub>i</sub> | Ai     | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | I <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|-----|----|------|------|----|------|-------------------|--------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| puc | "  | m    | m    | mm | rad  | m                 | cm2    | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| ц   | 14 | 0.00 | 0.90 | 10 |      |                   |        |      |                               |                                |                                |                                |                                |
| ble | 5  | 6.51 | 0.90 | 10 | 1.57 | 6.51              | 650.60 | 0.90 | 585.54                        | 526.99                         | 0.00                           | 2294.89                        | 0.00                           |
| Do  | 15 | 3.35 | 0.90 | 10 |      |                   |        |      |                               |                                |                                |                                |                                |
|     | 16 | 3.35 | 0.00 | 10 | 0.00 | 0.90              | 90.00  | 0.45 | 40.50                         | 18.23                          | 0.00                           | 6.08                           | 6.08                           |
|     |    |      |      |    |      | Σ                 | 740.60 |      | 626.04                        | 545.21                         |                                |                                | 6.08                           |

| bug  | #  | Уi   | zi   | ti | q    | long <sub>i</sub> | Ai     | Zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|------|----|------|------|----|------|-------------------|--------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| p L( | π  | m    | m    | mm | rad  | m                 | cm2    | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| am   | 1  | 0.00 | 0.00 |    |      |                   |        |      |                               |                                |                                |                                |                                |
| Ä    | 11 | 0.00 | 7.28 | 5  | 0.00 | 7.28              | 363.90 | 3.64 | 1324.23                       | 4818.88                        | 0.00                           | 1606.29                        | 1606.29                        |
|      |    |      |      |    |      | Σ                 | 363.90 |      | 1324.23                       | 4818.88                        |                                |                                | 1606.29                        |

|        |    | -        | Dim | ensic | nes | Уi    | Zi   | Ai              | A <sub>i</sub> z <sub>i</sub> | A <sub>i</sub> zi²             | l <sub>oi</sub> | l <sub>oi</sub>                |
|--------|----|----------|-----|-------|-----|-------|------|-----------------|-------------------------------|--------------------------------|-----------------|--------------------------------|
|        | #  | Elemento |     | mm    |     | m     | m    | cm <sup>2</sup> | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> | mm <sup>4</sup> | cm <sup>2</sup> m <sup>2</sup> |
|        | 0  | Vigo T   | 350 | 10    |     | 6.70  | 3.90 | 35.00           | 136.50                        | 532.35                         | 29167           | 0.00                           |
|        | 0  | viya i   | 100 | 10    |     | 6.60  | 3.90 | 10.00           | 39.00                         | 152.10                         | 833333          | 0.01                           |
|        | 10 | Viga T   | 350 | 10    |     | 3.35  | 7.03 | 35.00           | 245.98                        | 1728.75                        | 29167           | 0.00                           |
|        | 10 | viya i   | 100 | 10    |     | 3.25  | 7.09 | 10.00           | 70.93                         | 503.11                         | 833333          | 0.01                           |
|        | 12 | Viga T   | 350 | 10    |     | 0.00  | 3.90 | 17.50           | 68.25                         | 266.18                         | 29167           | 0.00                           |
|        | 12 | viya i   | 100 | 10    |     | -0.10 | 3.90 | 5.00            | 19.50                         | 76.05                          | 833333          | 0.01                           |
|        | 17 | Ángulo L | 160 | 100   | 10  | 0.67  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|        | 18 | Ángulo L | 160 | 100   | 10  | 1.34  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|        | 19 | Ángulo L | 160 | 100   | 10  | 2.01  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|        | 20 | Ángulo L | 160 | 100   | 10  | 2.68  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|        | 21 | Ángulo L | 160 | 100   | 10  | 4.02  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|        | 22 | Ángulo L | 160 | 100   | 10  | 4.69  | 0.11 | 26.00           | 2.85                          | 0.31                           | 7200000         | 0.07                           |
|        | 23 | Ángulo L | 160 | 100   | 10  | 5.36  | 0.13 | 26.00           | 3.30                          | 0.42                           | 7200000         | 0.07                           |
|        | 24 | Ángulo L | 160 | 100   | 10  | 6.03  | 0.39 | 26.00           | 10.16                         | 3.97                           | 7200000         | 0.07                           |
|        | 25 | Ángulo L | 160 | 100   | 10  | 6.03  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
|        | 26 | Ángulo L | 160 | 100   | 10  | 5.36  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
|        | 27 | Ángulo L | 160 | 100   | 10  | 4.69  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| les    | 28 | Ángulo L | 160 | 100   | 10  | 4.02  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| na     | 29 | Ángulo L | 160 | 100   | 10  | 2.68  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| pn     | 30 | Ángulo L | 160 | 100   | 10  | 2.01  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| ŋgit   | 31 | Ángulo L | 160 | 100   | 10  | 1.34  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| ٦<br>و | 32 | Angulo L | 160 | 100   | 10  | 0.67  | 0.79 | 26.00           | 20.55                         | 16.23                          | 7200000         | 0.07                           |
| l sc   | 33 | Ángulo L | 125 | 80    | 10  | 0.00  | 1.50 | 10.25           | 15.38                         | 23.06                          | 1420000         | 0.01                           |
| SIZ    | 34 | Ángulo L | 125 | 80    | 10  | 0.00  | 2.10 | 10.25           | 21.53                         | 45.20                          | 1420000         | 0.01                           |
| fue    | 35 | Angulo L | 125 | 80    | 10  | 0.00  | 2.70 | 10.25           | 27.68                         | 74.72                          | 1420000         | 0.01                           |
| Re     | 36 | Angulo L | 125 | 80    | 10  | 0.00  | 3.30 | 10.25           | 33.83                         | 111.62                         | 1420000         | 0.01                           |
|        | 37 | Angulo L | 125 | 80    | 10  | 0.00  | 4.50 | 10.25           | 46.13                         | 207.56                         | 1420000         | 0.01                           |
|        | 38 | Angulo L | 125 | 80    | 10  | 0.00  | 5.10 | 10.25           | 52.28                         | 266.60                         | 1420000         | 0.01                           |
|        | 39 | Angulo L | 125 | 80    | 10  | 0.00  | 5.70 | 10.25           | 58.43                         | 333.02                         | 1420000         | 0.01                           |
|        | 40 | Ángulo L | 125 | 80    | 10  | 0.00  | 6.30 | 10.25           | 64.58                         | 406.82                         | 1420000         | 0.01                           |
|        | 41 | Angulo L | 125 | 80    | 10  | 0.67  | 7.20 | 20.50           | 147.50                        | 1061.30                        | 3250000         | 0.03                           |
|        | 42 | Angulo L | 125 | 80    | 10  | 1.34  | 7.19 | 20.50           | 147.42                        | 1060.12                        | 3250000         | 0.03                           |
|        | 43 | Angulo L | 125 | 80    | 10  | 2.01  | 7.18 | 20.50           | 147.11                        | 1055.71                        | 3250000         | 0.03                           |
|        | 44 | Angulo L | 125 | 80    | 10  | 2.68  | 7.16 | 20.50           | 146.68                        | 1049.54                        | 3250000         | 0.03                           |
|        | 45 | Angulo L | 125 | 80    | 10  | 4.02  | 7.10 | 20.50           | 145.45                        | 1032.01                        | 3250000         | 0.03                           |
|        | 46 | Angulo L | 125 | 80    | 10  | 4.69  | 7.06 | 20.50           | 144.65                        | 1020.69                        | 3250000         | 0.03                           |
|        | 47 | Angulo L | 125 | 80    | 10  | 5.36  | 7.01 | 20.50           | 143.73                        | 1007.72                        | 3250000         | 0.03                           |
|        | 48 | Angulo L | 125 | 80    | 10  | 6.03  | 6.96 | 20.50           | 142.68                        | 993.11                         | 3250000         | 0.03                           |
|        | 49 | Angulo L | 125 | 80    | 10  | 6.70  | 6.27 | 20.50           | 128.63                        | 807.15                         | 1420000         | 0.01                           |
|        | 50 | Angulo L | 125 | 80    | 10  | 6.70  | 5.67 | 20.50           | 116.33                        | 660.17                         | 1420000         | 0.01                           |
|        | 51 | Angulo L | 125 | 80    | 10  | 6.70  | 5.07 | 20.50           | 104.03                        | 527.95                         | 1420000         | 0.01                           |
|        | 52 | Angulo L | 125 | 80    | 10  | 6.70  | 4.47 | 20.50           | 91.73                         | 410.49                         | 1420000         | 0.01                           |
|        | 53 | Angulo L | 125 | 80    | 10  | 6.70  | 3.27 | 20.50           | 67.13                         | 219.85                         | 1420000         | 0.01                           |
|        | 54 |          | 125 | 80    | 10  | 6.70  | 2.67 | 20.50           | 54.83                         | 146.67                         | 1420000         | 0.01                           |
|        | 55 | Angulo L | 125 | 80    | 10  | 6.70  | 2.07 | 20.50           | 42.53                         | 88.25                          | 1420000         | 0.01                           |
|        | 56 | Angulo L | 125 | 80    | 10  | 6.66  | 1.47 | 20.50           | 30.23                         | 44.59                          | 1420000         | 0.01                           |
|        |    |          |     |       |     |       | Σ    | 938.50          | 2895.61                       | 16048.60                       | 166507500       | 1.67                           |

|                | Α               | Az                | Az <sup>2</sup>                | l <sub>oi</sub>                |
|----------------|-----------------|-------------------|--------------------------------|--------------------------------|
|                | cm <sup>2</sup> | cm <sup>2</sup> m | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |
| Planchaje Ext. | 1998.10         | 7248.45           | 44385.71                       | 1041.70                        |
| Doble Fondo    | 740.60          | 626.04            | 545.21                         | 6.08                           |
| Mamp. long.    | 363.90          | 1324.23           | 4818.88                        | 1606.29                        |
| Ref. long      | 938.50          | 2895.61           | 16048.60                       | 1.67                           |
| Sumatoria      | 4041.10         | 12094.33          | 65798.41                       | 2655.73                        |

| Cuaderna 86    |                                                        |   |  |  |  |  |  |  |  |  |
|----------------|--------------------------------------------------------|---|--|--|--|--|--|--|--|--|
| <b>Z</b> med   | 2.99                                                   | m |  |  |  |  |  |  |  |  |
| l <sub>o</sub> | l <sub>o</sub> 6.45E+04 cm <sup>2</sup> m <sup>2</sup> |   |  |  |  |  |  |  |  |  |

Tabla D-VI.- Estación 86



Figura D-6.- Estación 86

|      | #  | yi   | zi   | ti | q    | long <sub>i</sub> | Ai      | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|------|----|------|------|----|------|-------------------|---------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|      | π  | m    | m    | mm | rad  | m                 | cm2     | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| ta   | 1  | 0.00 | 0.00 | 16 |      |                   |         |      |                               |                                |                                |                                |                                |
| oier | 2  | 0.90 | 0.00 | 16 | 1.57 | 0.90              | 144.00  | 0.00 | 0.00                          | 0.00                           | 0.00                           | 9.72                           | 0.00                           |
| Crt  | 3  | 5.06 | 0.00 | 16 | 1.57 | 4.16              | 666.24  | 0.00 | 0.00                          | 0.00                           | 0.00                           | 962.66                         | 0.00                           |
| +    | 4  | 5.77 | 0.27 | 14 | 1.21 | 0.76              | 106.13  | 0.14 | 14.38                         | 1.95                           | 0.00                           | 5.08                           | 0.65                           |
| 2    | 5  | 6.44 | 0.90 | 14 | 0.81 | 0.91              | 128.05  | 0.59 | 74.97                         | 43.90                          | 0.00                           | 8.93                           | 4.22                           |
| Fo   | 6  | 6.69 | 2.04 | 10 | 0.22 | 1.17              | 116.76  | 1.47 | 171.58                        | 252.14                         | 0.00                           | 13.27                          | 12.62                          |
|      | 7  | 6.70 | 2.15 | 10 | 0.06 | 0.12              | 11.52   | 2.10 | 24.15                         | 50.64                          | 0.00                           | 0.01                           | 0.01                           |
|      | 9  | 6.70 | 7.11 | 10 | 0.00 | 4.96              | 495.90  | 4.63 | 2297.75                       | 10646.64                       | 0.00                           | 1016.25                        | 1016.25                        |
|      | 11 | 0.00 | 7.41 | 10 | 1.62 | 6.71              | 670.67  | 7.26 | 4871.09                       | 35378.70                       | 0.00                           | 2513.90                        | 5.03                           |
|      |    |      |      |    |      | Σ                 | 2339.28 |      | 7453.93                       | 46373.96                       |                                |                                | 1038.79                        |

|      | #  | yi   | zi   | ti | q    | long <sub>i</sub> | Ai              | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|------|----|------|------|----|------|-------------------|-----------------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|      | #  | m    | m    | mm | rad  | m                 | cm <sup>2</sup> | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
|      | 14 | 0.00 | 0.90 | 10 |      |                   |                 |      |                               |                                |                                |                                |                                |
| 유    | 5  | 6.44 | 0.90 | 10 | 1.57 | 6.44              | 643.60          | 0.90 | 579.24                        | 521.32                         | 0.00                           | 2221.61                        | 0.00                           |
| onc. | 31 | 1.34 | 0.90 | 10 |      |                   |                 |      |                               |                                |                                |                                |                                |
| ц    | 18 | 1.34 | 0.00 | 10 | 0.00 | 0.90              | 90.00           | 0.45 | 40.50                         | 18.23                          | 0.00                           | 6.08                           | 6.08                           |
| ble  | 30 | 2.01 | 0.90 | 10 |      |                   |                 |      |                               |                                |                                |                                |                                |
| å    | 19 | 2.01 | 0.00 | 10 | 0.00 | 0.90              | 90.00           | 0.45 | 40.50                         | 18.23                          | 0.00                           | 6.08                           | 6.08                           |
|      | 15 | 3.35 | 0.90 | 10 |      |                   |                 |      |                               |                                |                                |                                |                                |
|      | 16 | 3.35 | 0.00 | 10 | 0.00 | 0.90              | 90.00           | 0.45 | 40.50                         | 18.23                          | 0.00                           | 6.08                           | 6.08                           |
|      | 27 | 4.69 | 0.90 | 10 |      |                   |                 |      |                               |                                |                                |                                |                                |
|      | 22 | 4.69 | 0.00 | 10 | 0.00 | 0.90              | 90.00           | 0.45 | 40.50                         | 18.23                          | 0.00                           | 6.08                           | 6.08                           |
|      |    |      |      |    |      | Σ                 | 1003.60         |      | 741.24                        | 594.22                         |                                |                                | 24.30                          |

| bud  | #  | yi   | zi   | ti | q    | long <sub>i</sub> | Ai     | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|------|----|------|------|----|------|-------------------|--------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| p Lc | -  | m    | m    | mm | rad  | m                 | cm2    | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| am   | 1  | 0.00 | 0.00 | 5  |      |                   |        |      |                               |                                |                                |                                |                                |
| Ë    | 11 | 0.00 | 7.41 | 5  | 0.00 | 7.41              | 370.65 | 3.71 | 1373.81                       | 5092.04                        | 0.00                           | 1697.35                        | 1697.35                        |
| _    |    |      |      |    |      | Σ                 | 370.65 |      | 1373.81                       | 5092.04                        |                                |                                | 1697.35                        |

|     | щ  |          | Dim | ensic | ones | y <sub>i</sub> | Zi   | A <sub>i</sub>  | A <sub>i</sub> z <sub>i</sub> | A <sub>i</sub> zi²             | l <sub>oi</sub> | l <sub>oi</sub>                |
|-----|----|----------|-----|-------|------|----------------|------|-----------------|-------------------------------|--------------------------------|-----------------|--------------------------------|
|     | #  | Elemento |     | mm    |      | m              | m    | cm <sup>2</sup> | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> | mm⁴             | cm <sup>2</sup> m <sup>2</sup> |
|     | 8  | Viga T   | 350 | 10    |      | 6.70           | 3.90 | 35.00           | 136.50                        | 532.35                         | 29167           | 0.00                           |
|     | 0  | viga i   | 100 | 10    |      | 6.60           | 3.90 | 10.00           | 39.00                         | 152.10                         | 833333          | 0.01                           |
|     | 10 | Viga T   | 350 | 10    |      | 3.35           | 7.19 | 35.00           | 251.76                        | 1810.87                        | 29167           | 0.00                           |
|     | 10 | viga i   | 100 | 10    |      | 3.25           | 7.20 | 10.00           | 71.98                         | 518.11                         | 833333          | 0.01                           |
|     | 12 | Viga T   | 350 | 10    |      | 0.00           | 3.90 | 17.50           | 68.25                         | 266.18                         | 29167           | 0.00                           |
|     | 12 | viga i   | 100 | 10    |      | -0.10          | 3.90 | 5.00            | 19.50                         | 76.05                          | 833333          | 0.01                           |
|     | 17 | Ángulo L | 160 | 100   | 10   | 0.67           | 0.12 | 26.00           | 3.12                          | 0.37                           | 7200000         | 0.07                           |
|     | 20 | Ángulo L | 160 | 100   | 10   | 2.68           | 0.12 | 26.00           | 3.12                          | 0.37                           | 7200000         | 0.07                           |
|     | 21 | Ángulo L | 160 | 100   | 10   | 4.02           | 0.12 | 26.00           | 3.12                          | 0.37                           | 7200000         | 0.07                           |
|     | 23 | Ángulo L | 160 | 100   | 10   | 5.36           | 0.22 | 26.00           | 5.72                          | 1.26                           | 7200000         | 0.07                           |
|     | 24 | Ángulo L | 160 | 100   | 10   | 6.03           | 0.55 | 26.00           | 14.22                         | 7.78                           | 7200000         | 0.07                           |
|     | 25 | Ángulo L | 160 | 100   | 10   | 6.03           | 0.78 | 26.00           | 20.28                         | 15.82                          | 7200000         | 0.07                           |
|     | 26 | Ángulo L | 160 | 100   | 10   | 5.36           | 0.78 | 26.00           | 20.28                         | 15.82                          | 7200000         | 0.07                           |
|     | 28 | Ángulo L | 160 | 100   | 10   | 4.02           | 0.78 | 26.00           | 20.28                         | 15.82                          | 7200000         | 0.07                           |
| es  | 29 | Ángulo L | 160 | 100   | 10   | 2.68           | 0.78 | 26.00           | 20.28                         | 15.82                          | 7200000         | 0.07                           |
| nal | 32 | Ángulo L | 160 | 100   | 10   | 0.67           | 0.78 | 26.00           | 20.28                         | 15.82                          | 7200000         | 0.07                           |
| udi | 33 | Ángulo L | 125 | 80    | 10   | 0.00           | 1.50 | 10.25           | 15.38                         | 23.06                          | 1420000         | 0.01                           |
| git | 34 | Ángulo L | 125 | 80    | 10   | 0.00           | 2.10 | 10.25           | 21.53                         | 45.20                          | 1420000         | 0.01                           |
| -ou | 35 | Ángulo L | 125 | 80    | 10   | 0.00           | 2.70 | 10.25           | 27.68                         | 74.72                          | 1420000         | 0.01                           |
| l S | 36 | Ángulo L | 125 | 80    | 10   | 0.00           | 3.30 | 10.25           | 33.83                         | 111.62                         | 1420000         | 0.01                           |
| LZ0 | 37 | Ángulo L | 125 | 80    | 10   | 0.00           | 4.50 | 10.25           | 46.13                         | 207.56                         | 1420000         | 0.01                           |
| fue | 38 | Ángulo L | 125 | 80    | 10   | 0.00           | 5.10 | 10.25           | 52.28                         | 266.60                         | 1420000         | 0.01                           |
| Rei | 39 | Ángulo L | 125 | 80    | 10   | 0.00           | 5.70 | 10.25           | 58.43                         | 333.02                         | 1420000         | 0.01                           |
| _   | 40 | Ángulo L | 125 | 80    | 10   | 0.00           | 6.30 | 10.25           | 64.58                         | 406.82                         | 1420000         | 0.01                           |
|     | 41 | Ángulo L | 125 | 80    | 10   | 0.67           | 7.36 | 20.50           | 150.78                        | 1109.00                        | 3250000         | 0.03                           |
|     | 42 | Ángulo L | 125 | 80    | 10   | 1.34           | 7.34 | 20.50           | 150.39                        | 1103.28                        | 3250000         | 0.03                           |
|     | 43 | Ángulo L | 125 | 80    | 10   | 2.01           | 7.33 | 20.50           | 150.29                        | 1101.77                        | 3250000         | 0.03                           |
|     | 44 | Ángulo L | 125 | 80    | 10   | 2.68           | 7.31 | 20.50           | 149.86                        | 1095.47                        | 3250000         | 0.03                           |
|     | 45 | Ángulo L | 125 | 80    | 10   | 4.02           | 7.25 | 20.50           | 148.63                        | 1077.56                        | 3250000         | 0.03                           |
|     | 46 | Ángulo L | 125 | 80    | 10   | 4.69           | 7.21 | 20.50           | 147.83                        | 1066.00                        | 3250000         | 0.03                           |
|     | 47 | Ángulo L | 125 | 80    | 10   | 5.36           | 7.17 | 20.50           | 146.91                        | 1052.74                        | 3250000         | 0.03                           |
|     | 48 | Ángulo L | 125 | 80    | 10   | 6.03           | 7.12 | 20.50           | 145.86                        | 1037.81                        | 3250000         | 0.03                           |
|     | 49 | Ángulo L | 125 | 80    | 10   | 6.70           | 6.28 | 20.50           | 128.69                        | 807.82                         | 1420000         | 0.01                           |
|     | 50 | Ángulo L | 125 | 80    | 10   | 6.70           | 5.68 | 20.50           | 116.39                        | 660.77                         | 1420000         | 0.01                           |
|     | 51 | Ángulo L | 125 | 80    | 10   | 6.70           | 5.08 | 20.50           | 104.09                        | 528.49                         | 1420000         | 0.01                           |
|     | 52 | Ángulo L | 125 | 80    | 10   | 6.70           | 4.48 | 20.50           | 91.79                         | 410.97                         | 1420000         | 0.01                           |
|     | 53 | Ángulo L | 125 | 80    | 10   | 6.70           | 3.28 | 20.50           | 67.19                         | 220.20                         | 1420000         | 0.01                           |
|     | 54 | Ángulo L | 125 | 80    | 10   | 6.70           | 2.68 | 20.50           | 54.89                         | 146.95                         | 1420000         | 0.01                           |
|     | 55 | Ángulo L | 125 | 80    | 10   | 6.70           | 2.08 | 20.50           | 42.59                         | 88.47                          | 1420000         | 0.01                           |
|     | 56 | Ángulo L | 125 | 80    | 10   | 6.64           | 1.48 | 20.50           | 30.29                         | 44.75                          | 1420000         | 0.01                           |
|     |    |          |     |       |      |                | Σ    | 782.50          | 2863.91                       | 16465.58                       | 123307500       | 1.23                           |

|                | Α               | Az                | Az <sup>2</sup>                | l <sub>oi</sub>                |
|----------------|-----------------|-------------------|--------------------------------|--------------------------------|
|                | cm <sup>2</sup> | cm <sup>2</sup> m | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |
| Planchaje Ext. | 2339.28         | 7453.93           | 46373.96                       | 1038.79                        |
| Doble Fondo    | 1003.60         | 741.24            | 594.22                         | 24.30                          |
| Mamp. long.    | 370.65          | 1373.81           | 5092.04                        | 1697.35                        |
| Ref. long      | 782.50          | 2863.91           | 16465.58                       | 1.23                           |
| Sumatoria      | 4496.03         | 12432.90          | 68525.80                       | 2761.67                        |

| Cuaderna 104   |                                                        |   |  |  |  |  |  |  |  |  |  |
|----------------|--------------------------------------------------------|---|--|--|--|--|--|--|--|--|--|
| <b>Z</b> med   | 2.77                                                   | m |  |  |  |  |  |  |  |  |  |
| I <sub>o</sub> | I <sub>o</sub> 7.38E+04 cm <sup>2</sup> m <sup>2</sup> |   |  |  |  |  |  |  |  |  |  |

Tabla D-VII.- Estación 104



Figura D-7.- Estación 104

|      | #  | Уi   | zi   | ti | q    | long <sub>i</sub> | Ai      | z <sub>i</sub> | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|------|----|------|------|----|------|-------------------|---------|----------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|      | #  | m    | m    | mm | rad  | m                 | cm2     | m              | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
|      | 1  | 0.00 | 0.00 | 16 |      |                   |         |                |                               |                                |                                |                                |                                |
| тa   | 2  | 1.34 | 0.00 | 16 | 1.57 | 1.34              | 214.40  | 0.00           | 0.00                          | 0.00                           | 0.00                           | 32.08                          | 0.00                           |
| oier | 3  | 2.01 | 0.00 | 16 | 1.57 | 0.67              | 107.20  | 0.00           | 0.00                          | 0.00                           | 0.00                           | 4.01                           | 0.00                           |
| Cut  | 4  | 3.16 | 0.00 | 16 | 1.57 | 1.15              | 184.16  | 0.00           | 0.00                          | 0.00                           | 0.00                           | 20.33                          | 0.00                           |
| +    | 5  | 3.35 | 0.04 | 16 | 1.38 | 0.19              | 30.81   | 0.02           | 0.57                          | 0.01                           | 0.00                           | 0.10                           | 0.00                           |
| rro  | 6  | 4.87 | 0.49 | 14 | 1.28 | 1.58              | 221.39  | 0.26           | 58.00                         | 15.20                          | 0.00                           | 46.14                          | 3.74                           |
| Fo   | 7  | 5.47 | 0.90 | 14 | 0.97 | 0.73              | 102.67  | 0.69           | 71.20                         | 49.38                          | 0.00                           | 4.60                           | 1.46                           |
|      | 8  | 5.84 | 1.38 | 14 | 0.65 | 0.60              | 84.59   | 1.14           | 96.43                         | 109.94                         | 0.00                           | 2.57                           | 1.62                           |
|      | 9  | 6.43 | 3.90 | 12 | 0.23 | 2.59              | 310.58  | 2.64           | 819.92                        | 2164.60                        | 0.00                           | 173.37                         | 164.36                         |
|      | 10 | 6.64 | 7.35 | 10 | 0.06 | 3.46              | 345.64  | 5.63           | 1944.25                       | 10936.41                       | 0.00                           | 344.12                         | 342.84                         |
|      | 12 | 0.00 | 7.63 | 10 | 1.61 | 6.65              | 664.59  | 7.49           | 4977.42                       | 37278.36                       | 0.00                           | 2446.09                        | 4.31                           |
|      |    |      |      |    |      | Σ                 | 2266.04 |                | 7967.80                       | 50553.89                       |                                |                                | 518.33                         |

|   |     | #  | yi   | zi   | ti | q    | long <sub>i</sub> | Ai     | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|---|-----|----|------|------|----|------|-------------------|--------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|   |     | #  | m    | m    | mm | rad  | m                 | cm2    | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
|   | 원   | 7  | 5.47 | 0.90 | 10 |      |                   |        |      |                               |                                |                                |                                |                                |
|   | ğ   | 15 | 0.00 | 0.90 | 10 | 1.57 | 5.47              | 547.20 | 0.90 | 492.48                        | 443.23                         | 0.00                           | 1365.39                        | 0.00                           |
|   | щ   | 16 | 1.34 | 0.90 | 10 |      |                   |        |      |                               |                                |                                |                                |                                |
|   | ple | 2  | 1.34 | 0.00 | 10 | 0.00 | 0.90              | 90.00  | 0.45 | 40.50                         | 18.23                          | 0.00                           | 6.08                           | 6.08                           |
|   | õ   | 17 | 2.01 | 0.90 | 10 |      |                   |        |      |                               |                                |                                |                                |                                |
|   |     | 3  | 2.01 | 0.00 | 10 | 0.00 | 0.90              | 90.00  | 0.45 | 40.50                         | 18.23                          | 0.00                           | 6.08                           | 6.08                           |
|   | - [ | 18 | 3.35 | 0.90 | 10 |      |                   |        |      |                               |                                |                                |                                |                                |
|   |     | 5  | 3.35 | 0.04 | 10 | 0.00 | 0.86              | 86.30  | 0.47 | 40.43                         | 18.94                          | 0.00                           | 5.36                           | 5.36                           |
|   |     |    |      |      |    |      | Σ                 | 813.50 |      | 613.91                        | 498.62                         |                                |                                | 17.51                          |
| _ |     |    |      |      |    |      |                   |        |      |                               |                                |                                |                                |                                |
|   | g   |    |      |      |    |      |                   |        |      |                               | • 2                            |                                |                                |                                |

|   | <i>#</i> | Уi   | zi   | ti | q    | long <sub>i</sub> | Ai     | Zi   | A <sub>i</sub> z <sub>i</sub> | A <sub>i</sub> z <sub>i</sub> <sup>2</sup> | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|---|----------|------|------|----|------|-------------------|--------|------|-------------------------------|--------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
|   |          | m    | m    | mm | rad  | m                 | cm2    | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup>             | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |
|   | 1        | 0.00 | 0.00 |    |      |                   |        |      |                               |                                            |                                |                                |                                |
| Ŵ | 11       | 0.00 | 7.63 | 5  | 0.00 | 7.63              | 381.45 | 3.81 | 1455.04                       | 5550.25                                    | 0.00                           | 1850.08                        | 1850.08                        |
|   |          |      |      |    |      | Σ                 | 381.45 |      | 1455.04                       | 5550.25                                    |                                |                                | 1850.08                        |

|          |    |          | Dim | ensic | ones | Уi    | Ζi   | Ai              | A <sub>i</sub> z <sub>i</sub> | A <sub>i</sub> zi²             | l <sub>oi</sub> | l <sub>oi</sub>                |
|----------|----|----------|-----|-------|------|-------|------|-----------------|-------------------------------|--------------------------------|-----------------|--------------------------------|
|          | #  | Elemento |     | mm    |      | m     | m    | cm <sup>2</sup> | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> | mm <sup>4</sup> | cm <sup>2</sup> m <sup>2</sup> |
|          | ٩  | Viga T   | 350 | 10    |      | 6.43  | 3.90 | 35.00           | 136.50                        | 532.35                         | 29167           | 0.00                           |
|          | 3  | viga i   | 100 | 10    |      | 6.33  | 3.90 | 10.00           | 39.00                         | 152.10                         | 833333          | 0.01                           |
|          | 12 | Vigo T   | 350 | 10    |      | 0.00  | 3.90 | 17.50           | 68.25                         | 266.18                         | 29167           | 0.00                           |
|          | 13 | viya i   | 100 | 10    |      | -0.10 | 3.90 | 5.00            | 19.50                         | 76.05                          | 833333          | 0.01                           |
|          | 11 | Ángulo L | 125 | 80    | 10   | 3.35  | 7.56 | 20.50           | 154.88                        | 1170.10                        | 7200000         | 0.07                           |
|          | 19 | Ángulo L | 160 | 100   | 10   | 0.67  | 0.11 | 30.60           | 3.36                          | 0.37                           | 7200000         | 0.07                           |
|          | 20 | Ángulo L | 160 | 100   | 10   | 2.68  | 0.11 | 30.60           | 3.36                          | 0.37                           | 7200000         | 0.07                           |
|          | 21 | Ángulo L | 160 | 100   | 10   | 4.02  | 0.29 | 30.60           | 8.87                          | 2.57                           | 7200000         | 0.07                           |
|          | 22 | Ángulo L | 160 | 100   | 10   | 4.02  | 1.01 | 30.60           | 30.90                         | 31.20                          | 7200000         | 0.07                           |
|          | 23 | Ángulo L | 160 | 100   | 10   | 2.68  | 1.01 | 30.60           | 30.90                         | 31.20                          | 7200000         | 0.07                           |
|          | 24 | Ángulo L | 160 | 100   | 10   | 0.67  | 1.01 | 30.60           | 30.90                         | 31.20                          | 7200000         | 0.07                           |
| 6        | 25 | Ángulo L | 125 | 80    | 10   | 0.00  | 1.38 | 10.25           | 14.09                         | 19.38                          | 1420000         | 0.01                           |
| ales     | 26 | Ángulo L | 125 | 80    | 10   | 0.00  | 1.98 | 10.25           | 20.24                         | 39.98                          | 1420000         | 0.01                           |
| lina     | 27 | Ángulo L | 125 | 80    | 10   | 0.00  | 2.58 | 10.25           | 26.39                         | 67.96                          | 1420000         | 0.01                           |
| ituc     | 28 | Ángulo L | 125 | 80    | 10   | 0.00  | 3.18 | 10.25           | 32.54                         | 103.33                         | 1420000         | 0.01                           |
| ng       | 29 | Ángulo L | 125 | 80    | 10   | 0.00  | 4.38 | 10.25           | 44.84                         | 196.19                         | 1420000         | 0.01                           |
| Lo<br>Lo | 30 | Ángulo L | 125 | 80    | 10   | 0.00  | 4.98 | 10.25           | 50.99                         | 253.69                         | 1420000         | 0.01                           |
| zos      | 31 | Ángulo L | 125 | 80    | 10   | 0.00  | 5.58 | 10.25           | 57.14                         | 318.58                         | 1420000         | 0.01                           |
| rer      | 32 | Ángulo L | 125 | 80    | 10   | 0.00  | 6.18 | 10.25           | 63.29                         | 390.84                         | 1420000         | 0.01                           |
| tefu     | 33 | Ángulo L | 125 | 80    | 10   | 0.67  | 7.54 | 20.50           | 154.59                        | 1165.80                        | 3250000         | 0.03                           |
| œ        | 34 | Ángulo L | 125 | 80    | 10   | 1.34  | 7.53 | 20.50           | 154.41                        | 1163.02                        | 3250000         | 0.03                           |
|          | 35 | Ángulo L | 125 | 80    | 10   | 2.01  | 7.52 | 20.50           | 154.10                        | 1158.39                        | 3250000         | 0.03                           |
|          | 36 | Ángulo L | 125 | 80    | 10   | 2.68  | 7.50 | 20.50           | 153.67                        | 1151.93                        | 3250000         | 0.03                           |
|          | 37 | Ángulo L | 125 | 80    | 10   | 4.02  | 7.44 | 20.50           | 152.46                        | 1133.86                        | 3250000         | 0.03                           |
|          | 38 | Ángulo L | 125 | 80    | 10   | 4.69  | 7.40 | 20.50           | 151.66                        | 1122.00                        | 3250000         | 0.03                           |
|          | 39 | Ángulo L | 125 | 80    | 10   | 5.36  | 7.35 | 20.50           | 150.74                        | 1108.40                        | 3250000         | 0.03                           |
|          | 40 | Ángulo L | 125 | 80    | 10   | 6.03  | 7.30 | 20.50           | 149.69                        | 1093.07                        | 3250000         | 0.03                           |
|          | 41 | Ángulo L | 125 | 80    | 10   | 6.47  | 4.38 | 20.50           | 89.69                         | 392.38                         | 1420000         | 0.01                           |
|          | 42 | Ángulo L | 125 | 80    | 10   | 6.50  | 4.98 | 20.50           | 101.99                        | 507.39                         | 1420000         | 0.01                           |
|          | 43 | Ángulo L | 125 | 80    | 10   | 6.54  | 5.58 | 20.50           | 114.29                        | 637.15                         | 1420000         | 0.01                           |
|          | 44 | Ángulo L | 125 | 80    | 10   | 6.58  | 6.18 | 20.50           | 126.59                        | 781.68                         | 1420000         | 0.01                           |
|          | 45 | Ángulo L | 125 | 80    | 10   | 5.87  | 1.38 | 20.50           | 28.19                         | 38.76                          | 1420000         | 0.01                           |
|          | 46 | Ángulo L | 125 | 80    | 10   | 6.06  | 1.98 | 20.50           | 40.49                         | 79.96                          | 1420000         | 0.01                           |
|          | 47 | Ángulo L | 125 | 80    | 10   | 6.21  | 2.58 | 20.50           | 52.79                         | 135.93                         | 1420000         | 0.01                           |
|          | 48 | Ángulo L | 125 | 80    | 10   | 6.33  | 3.18 | 20.50           | 65.09                         | 206.65                         | 1420000         | 0.01                           |
|          |    |          |     |       |      |       | Σ    | 681.60          | 2676.39                       | 15560.01                       | 100845000       | 1.01                           |

|                | Α               | Az                | Az <sup>2</sup>                | l <sub>oi</sub>                |
|----------------|-----------------|-------------------|--------------------------------|--------------------------------|
|                | cm <sup>2</sup> | cm <sup>2</sup> m | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |
| Planchaje Ext. | 2266.04         | 7967.80           | 50553.89                       | 518.33                         |
| Doble Fondo    | 813.50          | 613.91            | 498.62                         | 17.51                          |
| Mamp. long.    | 381.45          | 1455.04           | 5550.25                        | 1850.08                        |
| Ref. long      | 681.60          | 2676.39           | 15560.01                       | 1.01                           |
| Sumatoria      | 4142.59         | 12713.14          | 72162.78                       | 2386.93                        |

| Cuaderna 120 |          |                                |  |  |  |  |  |  |  |  |
|--------------|----------|--------------------------------|--|--|--|--|--|--|--|--|
| <b>Z</b> med | 3.07     | m                              |  |  |  |  |  |  |  |  |
| lo           | 7.11E+04 | cm <sup>2</sup> m <sup>2</sup> |  |  |  |  |  |  |  |  |

Tabla D-VIII.- Estación 120



Figura D-8.- Estación 120

|      | #  | Уi   | zi   | ti | q    | long <sub>i</sub> | Ai      | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                    | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|------|----|------|------|----|------|-------------------|---------|------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| F    | #  | m    | m    | mm | rad  | m                 | cm2     | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> |
| erta | 1  | 0.00 | 0.04 |    |      |                   |         |      |                               |                                |                                |                                |                                |
| iqr  | 3  | 2.11 | 0.64 | 16 | 1.29 | 2.20              | 351.29  | 0.34 | 118.03                        | 39.66                          | 0.00                           | 141.12                         | 10.54                          |
| ũ    | 4  | 2.84 | 1.75 | 14 | 0.58 | 1.33              | 186.70  | 1.19 | 222.92                        | 266.16                         | 0.00                           | 27.67                          | 19.38                          |
| + 0  | 5  | 3.01 | 3.90 | 12 | 0.08 | 2.15              | 258.50  | 2.83 | 730.52                        | 2064.46                        | 0.00                           | 99.96                          | 99.39                          |
| orr  | 6  | 3.12 | 5.10 | 12 | 0.09 | 1.21              | 144.63  | 4.50 | 650.82                        | 2928.67                        | 0.00                           | 17.51                          | 17.36                          |
| ш    | 7  | 3.40 | 6.30 | 12 | 0.23 | 1.23              | 148.03  | 5.70 | 843.79                        | 4809.60                        | 0.00                           | 18.77                          | 17.76                          |
|      | 8  | 3.90 | 7.68 | 12 | 0.35 | 1.46              | 175.71  | 6.99 | 1227.98                       | 8581.73                        | 0.00                           | 31.40                          | 27.76                          |
|      | 10 | 0.00 | 7.75 | 12 | 1.59 | 3.90              | 468.20  | 7.71 | 3611.73                       | 27860.86                       | 0.00                           | 593.97                         | 0.21                           |
|      |    |      |      |    |      | Σ                 | 1733.07 |      | 7405.79                       | 46551.16                       |                                |                                | 192.40                         |

| ЪС  | ,, | Elemento | Dim | ensio | ones | <b>y</b> i | Zi   | Ai              | A <sub>i</sub> z <sub>i</sub> | A <sub>i</sub> zi²             | l <sub>oi</sub> | l <sub>oi</sub>                |
|-----|----|----------|-----|-------|------|------------|------|-----------------|-------------------------------|--------------------------------|-----------------|--------------------------------|
| Lo  | #  | Elemento |     | mm    |      | m          | m    | cm <sup>2</sup> | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup> | mm⁴             | cm <sup>2</sup> m <sup>2</sup> |
| ZOS | 5  | Viga T   | 350 | 10    |      | 3.01       | 3.90 | 35.00           | 136.50                        | 532.35                         | 29167           | 0.00                           |
| ler | 5  | viga i   | 100 | 10    |      | 2.91       | 3.90 | 10.00           | 39.00                         | 152.10                         | 833333          | 0.01                           |
| efu | 0  | Vigo T   | 350 | 10    |      | 1.20       | 7.57 | 17.50           | 132.39                        | 1001.51                        | 29167           | 0.00                           |
| R   | 9  | viga i   | 100 | 10    |      | 1.10       | 7.40 | 5.00            | 36.98                         | 273.43                         | 833333          | 0.01                           |
|     |    |          |     |       |      |            | Σ    | 67.50           | 344.86                        | 1959.39                        | 1725000         | 0.02                           |

|                | Α               | Az                | Az <sup>2</sup>                | l <sub>oi</sub>                |
|----------------|-----------------|-------------------|--------------------------------|--------------------------------|
|                | cm <sup>2</sup> | cm <sup>2</sup> m | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |
| Planchaje Ext. | 1733.07         | 7405.79           | 46551.16                       | 192.40                         |
| Ref. long.     | 67.50           | 344.86            | 1959.39                        | 0.02                           |
| Sumatoria      | 1800.57         | 7750.65           | 48510.55                       | 192.42                         |

| Cı             | Cuaderna 134 |                                |  |  |  |  |
|----------------|--------------|--------------------------------|--|--|--|--|
| <b>Z</b> med   | 4.30         | m                              |  |  |  |  |
| l <sub>o</sub> | 3.07E+04     | cm <sup>2</sup> m <sup>2</sup> |  |  |  |  |

Tabla D-IX.- Estación 134



Figura D-9.- Estación 134

|      | #  | Уi   | zi   | ti | q    | long <sub>i</sub> | Ai     | zi   | A <sub>i</sub> z <sub>i</sub> | $A_i z_i^2$                                | l <sub>z'z'</sub>              | ly'y'                          | l <sub>oi</sub>                |
|------|----|------|------|----|------|-------------------|--------|------|-------------------------------|--------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
|      | #  | m    | m    | mm | rad  | m                 | cm2    | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup>             | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |
| æ    | 1  | 0.00 | 7.66 | 10 |      |                   |        |      |                               |                                            |                                |                                |                                |
| erte | 2  | 0.46 | 7.68 | 10 | 1.54 | 0.46              | 46.02  | 7.67 | 352.96                        | 2707.38                                    | 0.00                           | 0.81                           | 0.00                           |
| iqr  | 3  | 1.48 | 7.59 | 10 | 1.66 | 1.03              | 102.87 | 7.63 | 785.37                        | 5996.04                                    | 0.00                           | 9.07                           | 0.07                           |
| Ũ    | 4  | 0.00 | 5.22 | 10 | 0.56 | 2.80              | 280.11 | 6.40 | 1793.68                       | 11485.94                                   | 0.00                           | 183.14                         | 131.68                         |
| + 0  | 5  | 0.14 | 5.23 | 10 | 1.48 | 0.14              | 14.41  | 5.22 | 75.23                         | 392.86                                     | 0.00                           | 0.02                           | 0.00                           |
| orr  | 6  | 0.37 | 5.47 | 10 | 0.76 | 0.33              | 33.50  | 5.35 | 179.23                        | 958.96                                     | 0.00                           | 0.31                           | 0.17                           |
| ш    | 7  | 0.46 | 5.85 | 10 | 0.21 | 0.39              | 39.03  | 5.66 | 221.01                        | 1251.64                                    | 0.00                           | 0.50                           | 0.47                           |
|      | 8  | 0.72 | 6.27 | 10 | 0.57 | 0.49              | 48.88  | 6.06 | 296.22                        | 1795.21                                    | 0.00                           | 0.97                           | 0.69                           |
|      | 9  | 0.99 | 6.88 | 10 | 0.42 | 0.67              | 67.01  | 6.57 | 440.43                        | 2894.66                                    | 0.00                           | 2.51                           | 2.09                           |
|      | 10 | 1.48 | 7.59 | 10 | 0.60 | 0.87              | 86.70  | 7.23 | 627.20                        | 4537.45                                    | 0.00                           | 5.43                           | 3.67                           |
|      |    | -    |      |    |      | Σ                 | 718.51 |      | 4771.34                       | 32020.14                                   |                                |                                | 138.84                         |
|      |    |      |      |    |      |                   |        |      |                               |                                            |                                |                                |                                |
|      | щ  | Уi   | zi   | ti | q    | long <sub>i</sub> | Ai     | Zi   | A <sub>i</sub> z <sub>i</sub> | A <sub>i</sub> z <sub>i</sub> <sup>2</sup> | l <sub>z'z'</sub>              | l <sub>y'y'</sub>              | l <sub>oi</sub>                |
|      | #  | m    | m    | mm | rad  | m                 | cm2    | m    | cm <sup>2</sup> m             | cm <sup>2</sup> m <sup>2</sup>             | cm <sup>2</sup> m <sup>2</sup> | cm²m²                          | cm²m²                          |
|      | 1  | 0.00 | 0.92 | 16 |      |                   |        |      |                               |                                            |                                |                                |                                |

|     |    | m    | m    | mm | rad  | m    | cm2    | m    | cm⁻m    | cm <sup>-</sup> m <sup>-</sup> | cm <sup>-</sup> m <sup>-</sup> | cm⁻m⁻ | cm⁻m⁻ |
|-----|----|------|------|----|------|------|--------|------|---------|--------------------------------|--------------------------------|-------|-------|
|     | 1  | 0.00 | 0.92 | 16 |      |      |        |      |         |                                |                                |       |       |
|     | 2  | 0.19 | 0.96 | 16 | 1.38 | 0.19 | 30.69  | 0.94 | 28.83   | 27.08                          | 0.00                           | 0.09  | 0.00  |
|     | 3  | 0.40 | 1.20 | 14 | 0.72 | 0.32 | 45.04  | 1.08 | 48.58   | 52.40                          | 0.00                           | 0.39  | 0.22  |
| 0   | 4  | 0.76 | 1.52 | 14 | 0.83 | 0.48 | 67.60  | 1.36 | 92.07   | 125.40                         | 0.00                           | 1.31  | 0.60  |
| ulb | 5  | 0.96 | 1.95 | 14 | 0.44 | 0.47 | 66.28  | 1.74 | 115.22  | 200.30                         | 0.00                           | 1.24  | 1.01  |
| В   | 6  | 1.10 | 2.52 | 14 | 0.24 | 0.59 | 82.62  | 2.24 | 184.94  | 414.02                         | 0.00                           | 2.40  | 2.26  |
|     | 7  | 1.11 | 3.08 | 14 | 0.01 | 0.56 | 77.90  | 2.80 | 218.37  | 612.11                         | 0.00                           | 2.01  | 2.01  |
|     | 8  | 1.01 | 3.76 | 14 | 2.99 | 0.69 | 96.35  | 3.42 | 329.65  | 1127.88                        | 0.00                           | 3.80  | 3.72  |
|     | 9  | 0.80 | 4.32 | 14 | 2.78 | 0.59 | 82.78  | 4.04 | 334.32  | 1350.17                        | 0.00                           | 2.41  | 2.11  |
|     | 10 | 0.45 | 4.79 | 12 | 2.50 | 0.59 | 70.78  | 4.55 | 322.15  | 1466.34                        | 0.00                           | 2.05  | 1.32  |
|     | 11 | 0.17 | 4.97 | 12 | 2.16 | 0.33 | 39.61  | 4.88 | 193.27  | 943.17                         | 0.00                           | 0.36  | 0.11  |
|     |    |      |      |    |      | Σ    | 659.64 |      | 1867.41 | 6318.87                        |                                |       | 13.36 |

|                | Α               | Az                | Az <sup>2</sup>                | l <sub>oi</sub>                |  |
|----------------|-----------------|-------------------|--------------------------------|--------------------------------|--|
|                | cm <sup>2</sup> | cm <sup>2</sup> m | cm <sup>2</sup> m <sup>2</sup> | cm <sup>2</sup> m <sup>2</sup> |  |
| Planchaje Ext. | 718.51          | 4771.34           | 32020.14                       | 138.84                         |  |
| Bulbo          | 659.64          | 1867.41           | 6318.87                        | 13.36                          |  |
| Sumatoria      | 1378.15         | 6638.75           | 38339.01                       | 152.19                         |  |

| Cuaderna 140 |          |                                |  |  |  |
|--------------|----------|--------------------------------|--|--|--|
| <b>Z</b> med | 4.82     | m                              |  |  |  |
| ١o           | 1.30E+04 | cm <sup>2</sup> m <sup>2</sup> |  |  |  |

Tabla D-X.- Estación 140



Figura D-10.- Estación 140

## APÉNDICE E

## ANALISIS DE ESFUERZOS DESARROLLADOS

## EN EL B/T ANDES V

El programa SAP2000, calcula los Momentos Flectores y Fuerzas Cortantes para cada una de las secciones ingresadas en el modelo realizado. Con estos datos se procede a calcular el esfuerzo cortante que es el cociente entre la fuerza cortante (V) y el área que interviene en el corte (A<sub>s</sub>); y el esfuerzo máximo de una sección transversal que es el cociente entre el Momento Flector y su Módulo Seccional [4]. En la siguiente tabla muestran los esfuerzos resultantes máximos, tanto en cubierta como en el fondo del buque, y también los esfuerzos cortantes:

| Ect  | М         | V         | <b>MS</b> <sub>Fondo</sub> | MS <sub>Cbta.</sub> | A <sub>s</sub> | $\sigma_{Fondo}$   | $\sigma_{Cbta.}$   | τ                  |
|------|-----------|-----------|----------------------------|---------------------|----------------|--------------------|--------------------|--------------------|
| ESI. | kg-m      | kg        | m <sup>3</sup>             | m <sup>3</sup>      | m²             | kg/cm <sup>2</sup> | kg/cm <sup>2</sup> | kg/cm <sup>2</sup> |
| 0    | 6.84E-10  | -9.99E-11 | 0.393                      | 0.035               | 0.034          | 0                  | 0                  | 0                  |
| 15   | -6.88E+05 | -4.60E+04 | 0.956                      | 0.738               | 0.086          | -72                | 93                 | -54                |
| 33   | -1.49E+06 | -4.64E+04 | 1.278                      | 1.832               | 0.088          | -117               | 81                 | -53                |
| 50   | -1.56E+06 | 2.47E+04  | 1.487                      | 2.121               | 0.170          | -105               | 74                 | 14                 |
| 72.5 | -1.18E+06 | 6.60E+04  | 1.488                      | 2.126               | 0.152          | -79                | 55                 | 43                 |
| 86   | -8.51E+05 | 2.87E+04  | 1.506                      | 2.156               | 0.151          | -57                | 39                 | 19                 |
| 104  | -6.20E+05 | 4.64E+04  | 1.588                      | 2.669               | 0.208          | -39                | 23                 | 22                 |
| 120  | -4.25E+05 | 3.04E+04  | 1.558                      | 2.316               | 0.112          | -27                | 18                 | 27                 |
| 134  | -2.25E+05 | 5.16E+04  | 0.890                      | 0.713               | 0.082          | -25                | 32                 | 63                 |
| 140  | -6.95E+04 | 4.66E+04  | 0.469                      | 0.270               | 0.076          | -15                | 26                 | 61                 |

Tabla F-I.- Esfuerzos producidos en el B/T Andes V

En la siguiente tabla se muestran los esfuerzos de fluencia para el Acero:

| Tensión | 2520 | kg/cm <sup>2</sup> |  |  |
|---------|------|--------------------|--|--|
| Corte   | 1680 | kg/cm <sup>2</sup> |  |  |

Tabla F-II.- Esfuerzos de fluencia para el Acero, [4]

A continuación se presentan gráficamente los valores para los esfuerzos

máximos y de corte presentados en la tabla F-I:



Grafico F-1.- Esfuerzos en el fondo y cubierta del B/T Andes V



Grafico F-2.- Esfuerzos cortantes promedio del B/T Andes V

De los resultados, se puede observar que los esfuerzos de fluencia para el acero se encuentran muy lejanos a los esfuerzos presentados en la *tabla F-I para el B/T Andes V. S*e concluye así que, la conformación y geometría de la cama de varamiento analizada para el B/T Andes V, no produce ninguna deformación permanente en el buque.

## **BIBLIOGRAFÍA**

- Taravella Brandon M., Accuracy Assessment of Methods for Predicting
  Dry Dock Block Reactions, Revista Marine Technology, Vol. 42, No 2,
  Abril 2005, pag. 103 -112
- [2] Taravella Brandon M., Comunicación vía correo electrónica, 21 de Enero de 2009
- [3] Velarde Toscano Marco, Pruebas de Resistencia y Durabilidad de Maderas Nacionales y Recomendaciones para su uso en Construcción de Embarcaciones Menores, Tesis de Grado Ing. Naval, FIMCM-ESPOL, 1974.
- [4] Popov, Egor P., Introducción a la Mecánica de Sólidos, LIMUSA, Segunda Edición, 2000
- [5] Computer and Structures Inc, CSI, Linear and Nonlinear Static and Dynamic Analysis and Design of Three-Dimensional Structures, SAP 2000, Versión 10, Septiembre 2005
- [6] Chinese Shipyard, Loading Manual for M/N Andes V. República de China, 2006
- [7] Manual de Diseño de Maderas del Grupo Andino, Junta del Acuerdo de Cartagena, PADT- REFORT, 3ra Edición, 1984

- [8] Keenan, F.J.y Tejada, M., Maderas tropicales como material de construcción en los países del Grupo Andino de América del Sur., CIID, 1987.
- [9] Chichignoud Michéle, Atlas de las maderas de América Latina, Editorial Quae, 2da edición, 1990
- [10] José R. Marín, Ph.d, Notas de clase: Diferencias Finitas para EDO's,2000
- [11] José R. Marín, Ph.d, Aplicación del método numérico de Diferencias Finitas para la resolución de las ecuaciones del Método de la Viga Timoshenko para encontrar las reacciones en los bloques de la cama de varamiento de un buque, 2010.
- [12] Cowper G.R., The Shear Coefficient in Timoshenko's Beam Theory, Journal of Applied Mechanics, Transactions of the ASME, 1966