ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL	CALIFICACIÓN	
INSTITUTO DE CIENCIAS MATEMÁTICAS	TEMA 1	
CÁLCULO DIFERENCIAL	TEMA 2	
	TEMA 3	
SEGUNDA EVALUACIÓN 04 de Febrero de 2011	TEMA 4	
	BONUS	
	TOTAL EXAMEN	
Nombre:	DEBERES Y	
	LECCIONES	
#Matrícula: Paralelo:	TOTAL	

TEMA 1 (17 puntos)

- a) Enuncie y demuestre el Teorema de Rolle. (VALOR 12 puntos)
- b) Utilizando el polinomio de Taylor de primer orden o similarmente diferenciales, calcule arcsin(0.49). (VALOR 5 puntos)

TEMA 2 (16 puntos)

a) Determine
$$\frac{d^2y}{dx^2}$$
, si $y = f(\ln(x))$. (VALOR 6 puntos)

b) Calcule el siguiente límite:

$$\lim_{x \to 0} \frac{x - \sin(x)}{x - \tan(x)}.$$
 (VALOR 5 puntos)

c) Suponga que la ecuación dada a continuación define una función derivable respecto a x. Encuentre $\frac{dy}{dx}$, por medio de derivación implícita, si

$$xy + \sin(xy) = 1.$$
 (VALOR 5 puntos)

TEMA 3 (15 puntos)

- a) Un cartel publicitario debe tener 100 pulgadas cuadradas para el espacio impreso con márgenes superior e inferior de 3 pulgadas cada uno y cada margen lateral de 2 pulgadas. ¿Qué dimensiones del cartel requerirán el menor papel posible?. (VALOR 8 puntos)
- b) Bosqueje la gráfica de una función de variable real f tal que
 - i.) f es continua y diferenciable en \mathbb{R} .
 - ii.) f(-1) = f(2) = 0; f(0) = -2; f(1) = -4.
 - iii.) $\forall x \in (-\infty, -1) \cup (1, +\infty), f'(x) > 0.$
 - iv.) $\forall x \in (-1, 1), f'(x) < 0.$
 - v.) $\forall x \in (-\infty, 0), f''(x) < 0.$
 - vi.) $\forall x \in (0, +\infty), f''(x) > 0.$ (VALOR 7 puntos)

TEMA 4 (12 puntos)

- a) Decimos que una función $f: \mathbb{R} \mapsto \mathbb{R}$ es convexa o cóncava hacia arriba en \mathbb{R} si $f(tx+(1-t)y) \leq tf(x)+(1-t)f(y)$, para todo $x,y \in \mathbb{R}, t \in [0,1]$. Suponga que $f: \mathbb{R} \mapsto \mathbb{R}$ es una función convexa y derivable. Demuestre que $f(x) \geq f(c) + f'(c)(x-c)$, para todo $x,c \in \mathbb{R}$. (VALOR 7 puntos)
- b) Sea $f:(a,b)\mapsto\mathbb{R}$ una función derivable en el intervalo abierto (a,b). Demuestre que entre distintos ceros sucesivos de f' solo puede haber a lo más un cero de f. (VALOR 5 puntos)

<u>BONUS</u> (30 puntos, opcional) Seja $f : \mathbb{R} \to \mathbb{R}$ derivable, con derivada f' no necesariamente continua. Califique la siguiente proposición como Verdadera o Falsa y justifique rigurosamente su respuesta: "Dado cualquier intervalo [a, b], y dado c entre f'(a) y f'(b) existe por lo menos un punto $x_0 \in [a, b]$ tal que $f'(x_0) = c$ ".

Observación: Recuerde que si la suma de las calificaciones de las preguntas que no son del tipo Bonus (Temas 1-4) con la calificación de la pregunta tipo Bonus que el estudiante ha optado por desarrollar llegara a ser superior a la nota máxima del Examen, entonces el resultado final del Examen será el equivalente al 100% de la nota del Examen.