

ESCUELA SUPERIOR POLITÉCNICA DEL L ITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2010-2011 III EVALUACION DE FISICA C

Nombre: **SOLUCION III EVALUACION FISICA C** Paralelo: ____ 14/02/2011

Atención: <u>Todos los temas deben presentar su respectiva justificación y/o desarrollo, caso contrario no tendrán validez.</u>

TEMA1 (8 pts.)

Un capacitor de placas planas y paralelas se conecta a una batería. Luego de cargarlo se lo desconecta, manteniendo las placas sin hacer contacto. Al separar las placas, ¿qué puede decir de la carga, campo eléctrico, potencial eléctrico y energía del capacitor?

<u>C</u>		, T	,	
	Q (carga)	E (campo)	V (potencial)	U (energía)
Α	Aumenta	No cambia	disminuye	No cambia
В	Disminuye	Disminuye	No cambia	No cambia
С	No cambia	Aumenta	Aumenta	Disminuye
D	No cambia	No cambia	Aumenta	Aumenta

Solución: literal D.

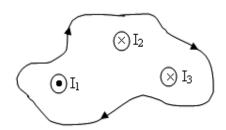
$$E = \frac{Q}{A \varepsilon_0}$$
: Q no cambia $\Rightarrow E$ no cambia

$$V = Ed : d$$
 aumenta $\Rightarrow V$ aumenta

$$C = \frac{\mathcal{E}_0 A}{d} y U = \frac{Q^2}{2C} : d \text{ aumenta} \Rightarrow C \text{ dis min uye} \Rightarrow U \text{ aumenta}$$

TEMA 2 (4 pts.)

El vector que mejor representa la dirección del campo eléctrico en el punto P, en la línea equipotencial de 200V de la figura es:


Solución: literal D.

El campo eléctrico siempre se dirige hacia donde el potencial disminuye.

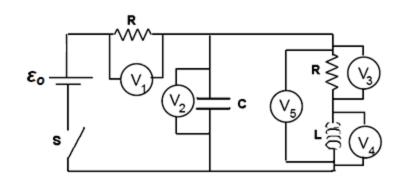
TEMA 3 (8pts.)

El valor de la integral de línea del campo magnético

B alrededor de la trayectoria cerrada en la

dirección indicada en la figura es 3.77×10^{-6} T-m. Si la corriente I_1 = 6 A y la corriente I_2 = 4 A, ¿cuál es el valor de la corriente I_3 ?

Solución:


Aplicando Ley de Ampere se tiene:

$$\begin{cases}
B.dl = \mu_0 I_{encerrada} \\
S.dl = \mu_0 (I_1 + I_2 + I_3) = 3.77 \times 10^{-6} Tm \\
(4\pi \times 10^{-7}) (-6A + 4A + I_3) = 3.77 \times 10^{-6} Tm \Rightarrow I_3 = 5A
\end{cases}$$

TEMA 4

Para el circuito mostrado en la figura se tiene: $\boldsymbol{\mathcal{E}_0}=12V,\ R=2\Omega,\ C=1\mu F\ y$ L=1mH.

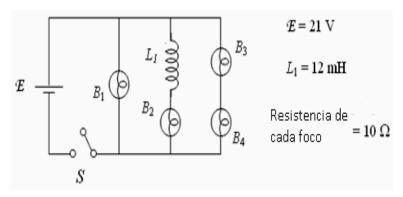
Conociendo que inicialmente los elementos están descargados, completar la tabla adjunta en base a las siguientes preguntas:

a) Determine la lectura de los voltímetros en el instante que se cierra el interruptor S. (5 pts.)

A t=o, el capacitor se comporta como un corto, mientras que el inductor como un circuito abierto.

$$V_1 = 12V$$
, $V_2 = V_3 = V_4 = V_5 = 0V$

b) Determine las lecturas de los voltímetros después de haber transcurrido un tiempo muy largo desde que el interruptor S se cerró. (5 pts.)


A t muy grande, el capacitor se comporta como un circuito abierto, mientras que el inductor como un corto.

$$V_1 = V_2 = V_3 = V_5 = 6V, V_4 = 0V$$

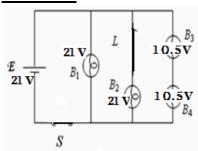
	V_1	V_2	V_3	V_4	V_5
$ \begin{array}{c} LECTURA \\ (t = 0) \end{array} $	12V	0V	0V	0V	0V
LECTURA (t muy grande)	6V	6V	6V	0V	6V

TEMA 5

Una batería ideal de 21V es conectada a cuatro focos idénticos que tienen la misma resistencia de 10Ω y un inductor de 12~mH, como se muestra en la figura. El brillo de los focos depende de la potencia disipada en el foco: a mayor potencia disipada, mayor el brillo del foco, entonces:

S

a) En el instante que se cierra el interruptor, ¿cuál es la corriente que circula por la fuente? (6 pts.)


Solución:

 B_3 y B_4 están en serie, entonces B_{eq1} =20 Ω B_1 y B_{eq1} están en paralelo, entonces B_{eq2} =6.67 Ω Aplicando Ley de Ohm se tiene:

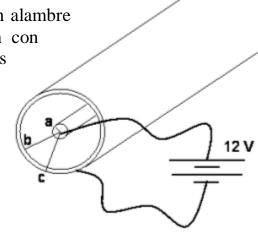
$$I = \frac{\varepsilon}{R_{eq2}} = \frac{21V}{6.67\Omega} = 3.15A$$

b) Después de que el interruptor ha permanecido cerrado por un tiempo muy largo, ¿cuál es el orden del brillo de los focos? (8 pts.)

Solución:

Debido a que $P=V^2/R$ y todos los focos tienen la misma resistencia, entonces:

Brillo de B_1 = Brillo de B_2


Brillo de B_3 = Brillo de B_4

Brillo de B_1 es mayor que el Brillo de B_3

TEMA 6

Un cable coaxial consiste de dos cilindros conductores: un alambre interior sólido con radio $a=0.0015\ m$, y un cascarón con dimensiones $b=0.0055\ m$ y $c=0.006\ m$. El cable coaxial es conectado a una batería de 12V como se muestra en la figura. Si V=0 en el terminal negativo de la batería y el cable no tiene carga neta, entonces:

a) Calcular el valor de la carga neta por unidad de longitud λ_a sobre el alambre interior. (8 pts.)

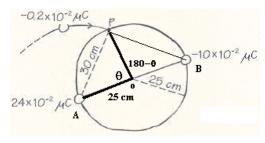
Solución:

$$\Delta V = -\int E.dl$$

$$\int E.dA = \frac{Q}{\varepsilon_0} \Rightarrow E \left(2\pi rL\right) = \frac{\lambda L}{\varepsilon_0} \Rightarrow E = \frac{\lambda}{2\pi\varepsilon_0 r}$$

$$\Delta V = -\int_b^a \left(\frac{\lambda}{2\pi\varepsilon_0 r}\right) dr = \frac{\lambda}{2\pi\varepsilon_0} \ln\left(\frac{b}{a}\right) \Rightarrow 12V = \frac{\lambda}{2\pi \times 8.85 \times 10^{-12}} \ln\left(\frac{0.0055}{0.0015}\right)$$

$$\lambda = 5.14 \times 10^{-10} \frac{C}{m}$$


b) Si el cable coaxial tiene una longitud de 100m, ¿cuál es la capacitancia de este cable? (8 pts.)

$$C = \frac{Q}{V} \Rightarrow C = \frac{2\pi L \varepsilon_0}{\ln \binom{b}{a}} = \frac{2\pi \times 100 \times 8.85 \times 10^{-12}}{\ln \binom{0.0055}{0.0015}} = 4.28 \times 10^{-9} F$$

TEMA 7

Considere dos cargas de $24 \times 10^{-2} \,\mu\text{C}$ y $-10 \times 10^{-2} \,\mu\text{C}$, respectivamente, en los extremos opuestos del diámetro de una circunferencia de radio 25 cm.

a) Cuál es el potencial en un punto sobre la circunferencia situado a 30 cm de la carga positiva (5 pts.)

$$30^{2} = 25^{2} + 25^{2} - 2(25)(25)\cos\theta \implies \cos\theta = \frac{2(25)^{2} - 30^{2}}{2(25)^{2}} = 0.28 \implies \theta = 73.74^{0}$$

$$PB^{2} = 25^{2} + 25^{2} - 2(25)(25)\cos(180 - 73.74) = 1599.99cm^{2} \implies PB = 39.99cm \approx 0.40m$$

$$V = 9 \times 10^{9} \frac{24 \times 10^{-8} \times}{0.30} - 9 \times 10^{9} \frac{10 \times 10^{-8}}{0.40} = 4950 V$$

b) Cuánto trabajo se requiere para traer una carga de $-0.2 \times 10^{-2} \,\mu\text{C}$ del infinito al punto mencionado en (a) (5 pts.)

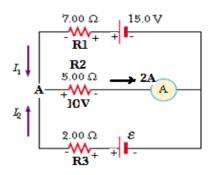
$$W = qV = -0.2 \times 10^{-8} C \times 4950V = -9.9 \times 10^{-6} J$$

TEMA 8 (10 pts.)

En el circuito mostrado el amperímetro marca una corriente de 2A. Determine la potencia disipada por cada resistor.

Solución:

Malla I:


$$15 - 7I_1 - 10 = 0 \Rightarrow I_1 = 0.71A$$

Nodo A:

$$I_1 + I_2 = 2A \Rightarrow I_2 = 1.29A$$

Calculando la potencia por cada resistor:

$$P_{R1} = (0.71A)^2 (7\Omega) = 3.53W$$

 $P_{R2} = (2A)^2 (5\Omega) = 20W$
 $P_{R3} = (1.29A)^2 (2\Omega) = 3.33W$

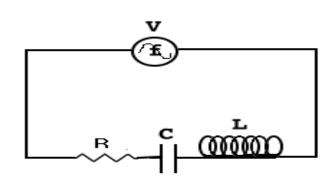
TEMA 9 (6 pts.)

Determine el radio de la órbita que describe un electrón, cuando penetra en un campo magnético de inducción 20Wb/m², con una velocidad de 10³ m/s, que forma un ángulo de 60° con la dirección del campo.

Solución:

$$qvB sen\theta = m \frac{v^{2}}{R}$$

$$R = \frac{mv}{qB sen\theta} = \frac{9.11 \times 10^{-31} Kg \times 1000 \frac{m}{s}}{1.6 \times 10^{-19} C \times 20 \times sen 60^{0}}$$


$$R = 3.29 \times 10^{-10} m$$

TEMA 10

En el circuito mostrado se tiene: $R=160\Omega$, $C=15\mu F$, L=230m, f=60Hz y $C_{max}=36V$.

a) Calcular la fem rms (2 pts.)

$$\varepsilon_{rms} = \varepsilon_{max} / \sqrt{2} = 36V / \sqrt{2} = 25.5V$$

b) Calcular la corriente rms (8 pts.)

la reactancia inductiva X_L

$$X_{L} = \omega L = 2\pi f L = (2\pi)(60Hz)(230 \times 10^{-3}H)$$

 $X_{L} = 87\Omega$

la reactancia capacitiva X_c

$$X_{c} = \frac{1}{\omega C} = \frac{1}{2\pi f C}$$

$$X_{c} = \frac{1}{(2\pi)(60Hz)(15 \times 10^{-6} F)} = 177\Omega$$

Nótese que $X_c > X_L$ de modo que el circuito es más capacitivo que inductivo.

la impedancia Z del circuito, se la obtiene de la ecuación

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
$$Z = \sqrt{(160\Omega)^2 + (87\Omega - 177\Omega)^2} = 184\Omega$$

Entonces, la corriente rms es:

$$i_{rms} = \varepsilon_{max} / Z = 25.5 V / 184 = 0.139 A$$

c) Calcular el factor de potencia (4 pts.)

De la ecuación
$$\tan \phi = \frac{X_L - X_C}{R} = \frac{\omega L - 1/\omega C}{R}$$

 $\tan \phi = \frac{87\Omega - 177\Omega}{R} = 0.563$

$$\tan \phi = \frac{87\Omega - 177\Omega}{160\Omega} = -0.563.$$

Así pues, tenemos $\phi = \tan^{-1}(-0.563) = -29.4^{\circ}$

Factor de potencia = $cos(-29.4^{\circ}) = 0.871$.