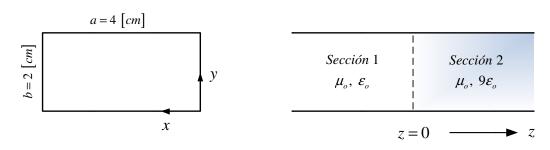
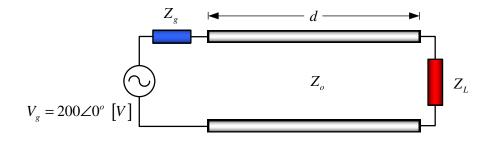
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL TEORÍA ELECTROMAGNÉTICA II



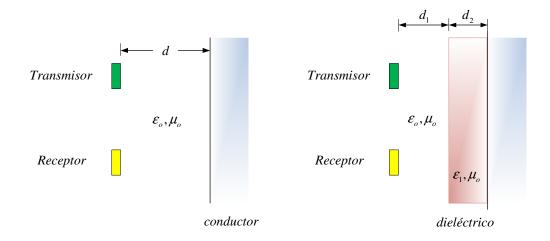
Profesor: Ing. Alberto Tama Franco

TERCERA EVALUACIÓN	Fecha: viernes 18 de febrero del 2011
Alumno:	

PRIMER TEMA:


Una guía de ondas rectangular, de dimensiones $a=4\ [cm]\ y\ b=2\ [cm]$, que opera a la frecuencia de $5,000\ [MHz]$, tiene una discontinuidad dieléctrica en z=0 tal como se muestra en la figura. Para el modo dominante y considerando que la propagación ocurre desde la sección 1, determinar: a) El circuito análogo, utilizando líneas de transmisión sin pérdidas, que como equivalente permitirá reemplazar la configuración original; y, b) La sección de $\lambda/4$, que permitirá acoplar las líneas de transmisión del circuito análogo anteriormente indicado, especificando su longitud física y su permitivad relativa, asumiendo que para ella $\mu=\mu_a$.

SEGUNDO TEMA:


A una LTSP que opera a una frecuencia de 300~[MHz], y que tiene como parámetros $L=1~[\mu H/m]$ y C=100~[pF/m], se conecta una carga $Z_L=150~[\Omega]$. Asumiendo que $Z_g=150~[\Omega]$ y que d=100~[m], determinar:

- a) El coeficiente de reflexión en la carga y en el centro de la línea.
- b) La Razón de Onda Estacionaria ROE
- c) El voltaje en el centro de la línea.
- d) La potencia disipada en la carga.
- e) La impedancia en el centro de la línea.

TERCER TEMA:

Un método para medir la constante dieléctrica de una pieza plana de material es el siguiente: Un transmisor se coloca a 0.30~[m] de una pared conductora. Un pulso muy estrecho es transmitido y recibido en el receptor después de 2~[ns]. Ahora, un pedazo plano del material dieléctrico se coloca entre el transmisor y la pared conductora y recibe la señal después de 2.1~[ns]. Asuma que las reflexiones son sólo producidas por la pared conductora y que el dieléctrico es sin pérdidas con una permeabilidad $\mu = \mu_o$. Calcular la permitividad relativa del dieléctrico.

CUARTO TEMA:

Por una LTSP, de 105~[cm] de longitud e impedancia característica $Z_o=50~[\Omega]$, se propaga energía electromagnética hasta los terminales de recepción, a una velocidad de fase de $2.5x10^8~[m/s]$ y frecuencia de 500~[MHz], tal como se muestra en la figura. Si un pedazo de línea, de 17.85~[cm] y de similares características que la línea principal, se coloca en paralelo con la carga, determinar:

- a) La razón de onda estacionaria en cada sección.
- b) La impedancia de entrada en la línea principal.
- c) El equivalente de la línea en cortocircuito (inductancia o capacitancia), especificando su valor.

