DIAGNOSTICO DE LA COBERTURA VEGETAL DE LA CUENCA HIDROGRAFICA DEL RIO CALIFORNIA –VALDIVIA

Edwin Jimenez Ruiz⁽¹⁾, Mauricio Mena Aspiazu⁽²⁾, Pedro Wong Coronel⁽³⁾

Facultad de Ingenieria Mecanica y Ciencias de la Produccion. (1)

Escuela Superior Politecnica del Litoral (ESPOL).

Campus Gustavo Galindo, Km. 30.5 vía Perimetral

Apartado 09-01-5863. Guayaquil-Ecuador

ejimenez@espol.edu.ec (1), msmena@espol.edu.ec (2), pawong@espol.edu.ec (3)

Resumen

El objetivo de este estudio fue realizar un diagnóstico de la cobertura vegetal de la cuenca del Rio California – Valdivia mediante la aplicación de estudios de índices florísticos e interpretación de imágenes satelitales Landsat, para lo cual se establecieron unidades de campo de 400 metros cuadrados ubicados dentro de la zona de influencia de la cuenca, de donde se midieron: CAP, ALTURA, ANCHO DE COPA, se cuantifico la regeneración y se identifico las especies con esos datos de campo se obtuvieron los índices de ABUNDANCIA, IVI, IVF, SHANNON y JACCARD. Complementado con un análisis de laboratorio de los índices normalizados de vegetación (NDVI) con el uso de las bandas roja e infrarroja cercanas de 7 años que abarcan las últimas dos décadas, generando una información multitemporal del estado de la cuenca.

Los resultados obtenidos muestran las especies con mayor y menor presencia dentro del bosque indicándonos que existe una explotación selectiva del área forestal de la cuenca, producto del uso del recurso sin un proceso de sostenibilidad ya que las especies corresponden a un tipo de bosque secundario, siendo necesario la implementación de un plan de manejo de la cuenca.

Palabras claves: cuenca hidrográfica, índices florísticos, imágenes satelitales, landsat, abundancia, IVI, IVF, SHANNON, JACCARD, NDVI.

Abstract

The objective of this study was a diagnosis of the land cover of the basin of the California – Valdivia river by applying floristic indexes studies and interpretation of Landsat satellite imagery to which were established units of area of 400 square meters located within the zone of influence of the basin, where data were extracted as Circumference at Breast Height, height, width treetop, quantified regeneration and identified species with those data were obtained from indices of abundance, IVI, IVF, SHANNON and JACCARD. Complemented with a laboratory analysis of the standardized vegetation indexes (NDVI) using the red and infrared bands of seven years covering the last two decades, generating a multi-temporal information of the condition of the basin.

The results show the major and minor species present in the forest indicated a selective exploitation of the forest area of the basin, resulting from use of the resource without a process of sustainability cause the species correspond to a secondary forest type, being necessary to implement a management plan for the basin.

Keywords: river basin, floristic indexes, satellite imagery, Landsat, abundance, IVI, IVF, SHANNON, JACCARD, NDVI.

1. Introducción

La presencia de las plantas en cualquier región del mundo es clave para el ciclo hidrológico en aspectos como almacenamiento de agua, liberación durante la evapotranspiración y condensación del punto de rocío, así como en el balance de radiación y energético y en la dinámica de los vientos. Todos estos elementos en interacción contribuyen al clima de una región. Sin embargo, este complicado y frágil esquema que se da en la naturaleza ha sido afectado por el hombre al modificar el uso de suelo por el desarrollo de grandes ciudades. (10)

En América del Sur la perdida de los bosques nublados, especialmente por la conversión de tierras forestales en tierras agrícolas— ha alterado el ciclo hidrológico y exacerbado los daños producidos por corrimientos de tierras y crecidas en épocas del fenómeno de El Niño. (20)

La expansión de la frontera agrícola, la tala inmoderada de árboles, la inercia del desarrollo y la suma de las diversas actividades humanas han sido las causas de la deforestación de más de 120,000 km² anuales en las dos últimas décadas; en contraste, solo se ha recuperado una décima parte de esta superficie por regeneración natural y labores de reforestación (FAO 2000). (10)

Un suelo con cobertura vegetal tendrá un patrón de absorción de radiación y reflexión de ondas cortas y largas diferente que un suelo erosionado y sin agua, lo que le conferirá un color y una respuesta espectral distinta. Esta modificación se manifiesta en un calor sensible mucho mayor que el latente. (10)

2. Materiales y métodos.

Un análisis de cobertura consiste en la medición de una porción de bosque relativamente pequeña en relación a la extensión total del mismo con el objetivo de determinar sus características dasométricas (altura, diámetro, densidad, etc.). Esto se lo realizó aplicando los siguientes pasos en el campo:

Ubicación.

- Estratificación.
- Elaboración del mapa base.
- Muestreo.
- Establecimiento de las unidades:



Figura 1.

- Identificación de especies.
- Tabulación de resultados:

Se utilizaron las siguientes formulas:

Área Basal=

DIAMETRO²/4

Densidad Relativa= Total de individuos de todas las especies

Total área muestreada

Dominancia Relativa= <u>Área Basal de la especie X 100</u>

Área Basal de todas las especies

Número total de cuadrantes evaluados

IVI = Densidad Relativa + Dominancia Relativa + Frecuencia Relativa

IVF = Diámetro relativo a la altura de pecho + altura relativa + cobertura relativa

Coeficiente de Jaccard = C/(A + B - C)

Índice de Shannon H ' = $-\Sigma$ abundancia relativa*Ln(abundancia relativa)

Para categorizar la diversidad elaboramos la siguiente tabla clasificatoria:

Tabla 1.

RESULTADO	CATEGORIA
1 - 1.25	POCO DIVERSO
1.26 - 2.50	ALGO DIVERSO
2.51 - 3.75	MEDIANAMENTE DIVERSO
3.76 - 5.00	ALTAMENTE DIVERSO

Se establecieron las unidades georeferenciadamente (sistema de coordenadas WGS84 17S):

Tabla 2.

FECHA	NOMBRE	COORDENADA X	COORDENADA Y	COORDENADA Z	
16/ENERO/2010	BRAMONA 1	0545679	9792964	162	
17/ENERO/2010	HUACA 1	0543412	9792770	151	
23/ENERO/2010	PONGA 1	0539268	0539268 9792241		
24/ENERO/2010	HUACA 2	0542935	9792626	156	
30/ENERO/2010	PONGA 2	0538557	9792087	95	
31/ENERO/2010	BRAMONA 2	0545314	9792624	161	

Para el análisis de las imágenes satelitales se siguieron los siguientes pasos en laboratorio:

• Busqueda de imágenes, escenas LANDSAT 7 utilizadas:

Año	Mes	Día
1990*	FEBRERO	21
2000	NOVIEMBRE	23
2002	ENERO	13
2003	MAYO	08

2007	FEBRERO	28
2008	NOVIEMBRE	29
2010	OCTUBRE	02

TABLA 3

*Escena LANDSAT 5

• Analisis de imágenes:

Para el cálculo del NDVI se utilizó la siguiente fórmula:

(BANDA 4 - BANDA 3) / (BANDA 4 + BANDA 3)

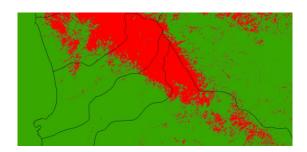


Figura 2.

Para el calculo de la cobertura vegetal se utilizó la siguiente fórmula:

Float(BAND 4 – BAND 3)/Float(BAND 4+BAND 3)

Banda 4 = infrarrojo cercano y Banda 3 = rojo.

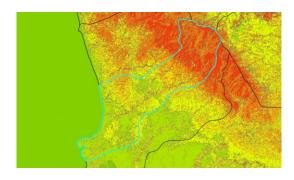


Figura 3.

De la misma manera se realizó el análisis multitemporal para lo cual se generaron mapas:

Figura 4.

3. Resultados

El análisis de los índices de vegetación IVI & IVF para los árboles iguales o mayores a 7.5 centímetros de DAP, los que obtivieron mayor IVI & IVF en las 6 unidades establecidas son en orden de mayor a menor: <u>Vernonia bacchariodes</u>, <u>Cordia alliodora</u> y <u>Guazuma ulmifolia Lam</u>., y el menor de todos fue el <u>Cynophalla sp.</u>:

Tabla 3.

SUMATORIA UNIDADES	IVI	IVF
Acalypha diversifolia Jacq.	101,0405329	177,8665193
Agonandra sp.	6,602160224	1,321596946
Bougainvillea peruviana Bonpl.	124,3483513	147,4744478
Brosimun alicastrum	13,19681788	96,08251418
Cassia fistula	15,00661587	1,392386649
Cecropia litoralis Snethl.	81,71119455	34,50941964
Cedrela filillis	52,86817795	20,1562715
Cedrela odorata	19,59769389	3,394058455
Chamaedorea linearis (Ruiz & Pav.) C. Mart.	45,53717965	11,44915784
Chrysophyllum argenteum Jacq. subsp. panamense	29,45391974	13,99795045
Cordia alliodora	175,5183102	265,3781784
Cordia collococca sandmark.	59,85354293	28,09809522
Croton rivinifolius Kunth	107,0122598	128,2200627
Cupania sp.	13,45126739	1,867071014
Cynophalla sp.	5,916586838	0,796093629
Cythrarexylum sp.	13,13192629	1,770154725
Erithroxylum sp	13,25590178	1,774599814
Ficus insipida Willd.	29,3615067	7,257482942
Gallesia Integrifolia (Spreng.) Harms.	15,98755449	2,474743733
Guazuma ulmifolia Lam.	143,2389244	232,8344052
Ilex sp.	81,58862678	58,52352001
Inga acuminata Benth.	25,03891183	10,989411
Inga carinata T.D. Penn.	25,10670428	4,402605462
Inga densiflora	11,45582559	2,995933212
Leucaena Trichodes (jacq.) Benth	7,388580292	1,637462872
Machaerium Millei Standl.	13,26077943	4,516015868
Markea sp.	14,89076874	4,369564713
Muntingia calabura	46,33974787	34,24357035
Neurolaena lobata (L.) R. Br. ex Cass.	27,19594728	7,590377564
Pleurothyrium trianae (Mez) Rohwer	13,29082157	2,256529544
Pouteria sp.	86,24103285	114,6805886
Pterocarpus rohrii Vahl	6,937276549	1,477430678
Ruagea glabra Triana & Planch	17,39799153	3,537857243
Trichilia sp.	51,53396795	10,51587194
Triplaris cumingiana Fisch &C.A. Mey. ex C.A. Mey	67,6317461	34,91241698
Urera baccifera	14,95565899	5,759400391
Vernonia baccharoides	175,9281045	300,6465859
Zanthoxylum riedelianum subsp. kellermanii (P. Wilson) Reynel	30,90445753	13,69110541
Zizyphus thysiflora	16,82262558	5,138542172
	1900	1900

Para los árboles menores a 7.5 centímetros de DAP dentro de las 24 subunidades establecidas los de mayor IVI fueron: <u>Cordia alliodora</u>, <u>Acalyha diversifolia Lam.</u>, <u>Bougainvillea peruviana Bonpl.</u>, <u>Pouteria sp.</u>, el IVF el orden fue así: <u>Cordia alliodora</u>, <u>Bougainvillea peruviana Bonpl.</u>, <u>Acalyha diversifolia Lam.</u>, <u>Pouteria sp.</u>, el de menor IVI & IVF resulto ser <u>Matisia grandifolia Little</u>.:

Tabla 4.

SUMATORIA SUBUNIDADES	IVI	IVF
Acalypha diversifolia Jacq.	159,4365435	120,532672
Achatocarpus pubescens C. H. Wright	10,48710241	6,084874413
Acnistus arborescens (L.) Schltdl.	28,06549002	7,870286453
Agonandra sp.	18,88253292	11,26454759
Arbutus unedo L.	36,07394879	3,959507147
Arrabidaea sp.	12,09642668	58,71650806
Bougainvillea peruviana Bonpl.	152,651192	124,8732432
Brosimun alicastrum	6,100742358	0,114399885
Cassia fistula	123,9819544	30,94116927
Cecropia litoralis Snethl.	24,56409416	6,696779996
Cedrela sp.	32,74979518	8,437163317
Chrysoclamys macrophylla pax.	36,76228903	98,5972235
Clarisia racemosa	14,4406016	0,668603775
Coccoloba mollis Casar.	28,2678052	7,444165074
Cordia alliodora	220,2087499	216,7943904
Cordia collococca sandmark.	32,5454461	3,584827386
Croton rivinifolius Kunth	81,0665545	116,6443475
Erithroxylum sp	9,126446947	19,43088242
Ficus sp,	47,97782563	0,541816791
Gallesia Integrifolia (Spreng.) Harms.	3,465732146	0,151934649
Garcinia madruno (kunth) Hammel	6,451936357	0,133466533
Grias peruviana Miers	11,26859891	0,355320379
Guazuma ulmifolia Lam.	21,06260543	5,780930531
Ilex sp.	71,83608069	78,3871116
Inga acuminata Benth.	13,47441092	1,817777703
Inga carinata T.D. Penn.	18,57403463	2,275366271
Inga densiflora	18,71808363	0,824954862
Markea sp.	48,74406418	32,53355711
Matisia grandiflora Little.	2,982704153	0,085070891
Neurolaena lobata (L.) R. Br. ex Cass.	43,24917423	11,52761273
Pouteria sp.	146,5711067	92,53346515
Prosopis juliflora	22,69069856	3,572300311
Rauvolfia sp.	5,200431022	2,894057792
Triplaris cumingiana Fisch &C.A. Mey. ex C.A. Mey	31,8278741	2,146412385
Urera baccifera	49,42107925	7,82244734
Urera caracasana (Jacq.) Gaudich. ex Griseb.	21,55464526	3,078058734
Vernonia baccharoides	72,16399162	16,38324384
Zanthoxylum riedelianum subsp. kellermanii (P. Wilson) Reynel	115,2572069	94,49950308
	1800	1200

Para el análisis del índice de vegetación Shannon se obtuvo como resultado entre las 6 unidades establecidas, de árboles mayores o iguales a 7.5 centímetros de DAP que el bosque en este estrato es algo diverso en especies según Shannon:

Tabla 5.

ÍNDICES SHANNON UNIDADES					
NOMBRE	SHANNON				
BRAMONA 1	1,965792309				
BRAMONA 2	2,219562681				
HUACA 1	1,977028341				
HUACA 2	1,991847635				
PONGA 1	2,26940536				
PONGA 2	2,115209071				
PROMEDIO	2,089807566				

Para árboles menores a 7.5 centímetros de DAP, según el índice Shannon los resultados de las 24 subunidades indicó que el bosque en este estrato es algo diverso en especies, destacándose la unidad Bramona 1 con un estrato medianamente diverso:

Tabla 6.

ÍNDICES SHANNON SUBUNIDADES				
NOMBRE	SHANNON			
BRAMONA 1	2,668732491			
BRAMONA 2	1,859100544			
HUACA 1	1,727931835			
HUACA 2	1,884422029			
PONGA 1	1,987591168			
PONGA 2	2,074373242			
PROMEDIO	2,033691885			

Según el índice de similitud Jaccard calculado se encontró un bosque con similitudes bajas entre sectores exceptuando en Bramona-Huaca y similitudes altas entre unidades del mismo sector exceptuando Huaca, los siguientes son los resultados obtenidos:

Tabla 7.

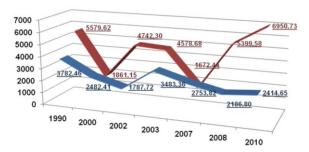
ANÁLISIS SECTORES	%
JACCARD BRAMONA 1 -2	42%
JACCARD HUACA 1 - 2	15%
JACCARD PONGA 1 - 2	41%
JACCARD BRAMONA-HUACA	46%
JACCARD BRAMONA-PONGA	37%
JACCARD HUACA-PONGA	33%

Resultado del análisis multitemporal del índice normalizado de vegetación:

Tabla 7.

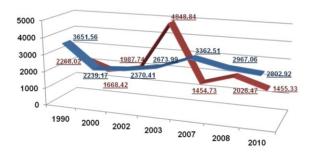
	RESULTADO NDVI					
AÑO	HECTÁREAS CON COBERTURA	HECTÁREAS SIN COBERTURA	TOTAL HECTÁREAS			
1990	16172,49	280,18	16.452,67			
2000	5637,22	10815,45	16.452,67			
2002	7759,28	8693,39	16.452,67			
2003	15855,37	597,30	16.452,67			
2007	8886,80	5881,75	14.768,54			
2008	12956,40	1965,06	14.921,46			
2010	13458,58	1289,77	14.748,35			

En el siguiente gráfico se observa claramente el comportamiento de la cobertura:


Figura 5.

Resultado del análisis multitemporal de la cobertura vegetal:

Tabla 8.


COBERTURA VEGETAL DE LA CUENCA HIDROGRAFICA CALIFORNIA-VALDIVIA								
CLASIFICACION NO SUPERVISADA								
CLASIFICACION 1990 2000 2002 2003 2007 2008 2010								
ARENA	43,34	0,12	2,68	11,14	56,08	22,31	49,78	
PLAYA	70,52	131,3	87,42	103,13	81,55	15,58	92,46	
SUELO DESCUBIERTO	81,1	3694,55	1105,76	108,74	149,05	102,58	59,75	
INTERVENCION	976,06	4375,55	4368,64	644,79	5236,83	2112,14	919,28	
MATORRALES	3651,56	2239,17	2370,41	2673,99	3362,51	2967,06	2802,92	
PASTIZALES Y CULTIVOS	2268,02	1668,42	1987,74	4848,84	1454,73	2026,47	1455,33	
BOSQUE PERTURBADO	3782,46	2482,41	1787,72	3483,36	2753,82	2186,80	2414,65	
BOSQUE POCO PERTURBADO	5579,62	1861,15	4742,30	4578,68	1672,44	5399,58	6950,73	
TOTAL HECTAREAS	16452,7	16452,7	16452,67	16452,67	14767,01	14832,50	14744,90	

En los siguientes gráficos observamos el comportamiento de las coberturas del bosque y el comportamiento de los matorrales y pastizales y cultivos de ciclo corto:

■BOSQUE PERTURBADO ■BOSQUE POCO PERTURBADO

Figura 6.

Figura 7.

4. Conclusiones.

En las UNIDADES las especies <u>Vernonia</u> <u>bacchariodes</u> o Chilca y <u>Cordia alliodora</u> o Laurel son la más representativas y las especies <u>Agonandra sp.</u> o Chiquiñai y <u>Cynophalla sp.</u> o Orito son las menos representativas, dentro del estrato superior de esta área del bosque, algo diverso según el análisis SHANNON esto efecto de la intervención causada por la tala.

En las SUBUNIDADES las especies <u>Cordia alliodora</u> o Laurel, <u>Acalypha diversifolia Jacq.</u> O Bijama y <u>Bougainvillea peruviana Bonpl.</u> O Cabo de Lampa y <u>Pouteria sp.</u> o Colorado son las más representativas y <u>Matisia grandiflora Little.</u> O Molinillo es la menos representativa, dentro del estrato medio de esta área de bosque, algo diverso según el análisis SHANNON.

En las REGENERACIONES las especies <u>Croton rivinifolius Kunth</u> o Chala (20%), <u>Pouteria sp.</u> o Colorada (12%) y <u>Bougainvillea peruviana Bonpl.</u> o Colorado (11%) son las más abundantes; el 68.42% del <u>Croton rivinifolius Kunth</u> o Chala y el 50% de la <u>Bougainvillea peruviana Bonpl.</u> o Colorado se concentran en la UNIDAD HUACA 2, mientras que el 60.87% de la <u>Pouteria sp.</u> o Chala se concentra en la UNIDAD PONGA 1, destacando la especie <u>Cordia alliodora</u> o Laurel con un 10% de toda la población muestreada.

En las áreas donde confluyen los drenajes (HUACA) que alimentan al río principal se encontró una mayor intervención y las áreas menos intervenidas (BRAMONA), datos corroborados por los índices de diversidad de Shannon y de similitud de Jaccard.

En el área de bosque correspondiente a la cuenca alta presentaría valores sobre el 50% de similitud y mayor diversidad, según el estudio reportado por Herrera y Maldonado.

El estudio multitemporal satelital indica que esta cuenca está siendo selectiva y cíclicamente deforestada, mostrando una recuperación de las áreas de bosque poco perturbado y manteniendo las áreas de bosque perturbado.

5. Agradecimientos.

Agradecemos al egresado Fausto Maldonado por su valioso aporte y al Laboratorio de Teledetección remota de la Facultad de Ciencias de la Tierra de la ESPOL, en especial a los ingenieros Edison Navarrete Cuesta y Carlos Martillo Bustamante y su equipo de colaboradores que nos guiaron en el análisis satelital.

6. Referencias.

- (1) Bosque protector Chongón Colonche http://www.darwinnet.org/docs/Ibas_RT/EC025.p df
- (2) C. Bonifaz & X. Cornejo, 2004. Flora del bosque de Garua.
- (3) Cuenca Hidrográfica.
 http://www.es.wikipedia.org/wiki/Cuenca_hidrográfica
- (4) Cuencas Hidrográficas.
 http://www.adeca.org.ni/museo_eco/indexhidrologia.htm
- (5) D. Miguel A. Bruña Guerra, Dña. Beatriz Gómez Tolón y D. Santiago Ormeño Villajos. Escuela Universitaria de Ingeniería Técnica Topográfica (U.P.M.). Marzo de 1999. CARTOGRAFÍ.A DE SUELOS EN CASTILLA LA MANCHA A PARTIR DE IMAGENES DE SATELITE.
- (6) Ecología, cuencas hidrográficas: http://www.eraecologica.org/revista 16/era agric ola 16.htm
- (7) Eduard Plana Bach. INTRODUCCIÓN A LA ECOLOGIA Y DINAMICA DEL BOSQUE TROPICAL, CURSO SOBRE GESTIÓN Y CONSERVACIÓN DE BOSQUES TROPICALES, BLOQUE II GESTIÓN FORESTAL Y AGROFORESTERÍA EN LOS TRÓPICOS.

 http://www.puce.edu.ec/zoologia/vertebrados/personal/sburneo/cursos/ecologiaII/Bibliografia/2-4%20Ecologia%20y%20dinamica%20BHT.pdf
- (8) HERNADEZ E. "Monitoreo y evaluación de proyectos de ordenación de cuencas" Facultad de Ciencias Forestales, Mérida, Venezuela, 1993.
- (9) Ilán Adler, Gabriela Carmona y José Antonio Bojalil, 2008. MANUAL DE CAPTACIÓN DE AGUAS DE LLUVIA PARA CENTROS URBANOS.
- (10) Irma Rosas Pérez, Gabriela Carranza Ortiz, Yolanda Nava Cruz y Alfonso Larqué Saavedra, 2005. La percepción sobre la conservación de la cobertura vegetal. http://www2.ine.gob.mx/publicaciones/libros/508/percepcion.pdf
- (11) Jordi Vivancos, Albert Llastarri, Mònica Grau, Daniel Vivancos. Introducción a la Teledetección. La Tierra a vista de satélite.

http://concurso.cnice.mec.es/cnice2006/material12 1/index.htm (12) La esfera verde, Elizabeth Urquieta N.,
Jorge Salinas F., Nelly Herrera N.,
Susana Benedetti R., Claudia Santos S.,
Jorge Bizama A., Olga Patiño P., Pedro Llera Z. y
Ana María Vliegenthart.

http://www.laesferaverde.cl/ar fdc.htm

(13) Leica Geosystems, 1999. Introducción al sistema GPS (Sistema de Posicionamiento Global).

http://www.udape.gov.bo/portalsig/ElementosSIG/que-esgps-leica.pdf

- (14) THE GLOBE PROGRAM: http://globe.gov/ http://www.globe.unh.edu
- (15) Manual de Métodos Básicos de Muestreo y Análisis en Ecología Vegetal, Bonifacio Mostacedo y Todd S. Fredericksen, Santa Cruz de la Sierra, 2000.

 http://www.rmportal.net/library/content/libros/manual-de-metodos-basicos-de-muestreo-y-analisis-en-ecologia.pdf/at download/file
- (16) Memorias del Primer Taller sobre Cobertura Vegetal, Clasificacion y Cartografia Proyecto SIG-PAFC y el INADE, Santafe de Bogota. 1994. Plan de Ordenación y Manejo de la subcuenca hidrográfica del Rio sambingo HAto Viejo, afluente de la cuenca del río Patía, Guia Metodologica Guia Para La Formulacion De Los Planes De Ordenacion Y Manejo De Cuencas Hidrograficas Del Departamento Del Cauca, Corporacion Autonoma Regional del Cauca CRC, 2003.

http://www.crc.gov.co/files/ConocimientoAmbiental/POMCH/Rio%20Sambingo-

Hatoviejo/flora.pdf

- (17) MUÑOZ LUZURIAGA F."Manejo de cuencas hidrográficas tropicales" CCE L, Loja, Ecuador. 2007
- (18) Priscilla Muriel M. 2008. Enciclopedia de las Plantas Útiles del Ecuador, La diversidad de ecosistemas en el Ecuador. http://www.biologia.puce.edu.ec/imagesFTP/2882. http://www.biologia.puce.edu.ec/imagesFTP/2882. http://www.biologia.puce.edu.ec/imagesFTP/2882
- (19) Roy Wilhen Fraatz López y Carlos Alberto Montúfar García, Zamorano, Honduras, Diciembre, 2007. Estudio florístico-estructural de una comunidad vegetal madura en el Macizo Montañoso Apagüiz-Apapuerta, El Paraíso, Honduras.

http://zamo-oti-

02.zamorano.edu/tesis infolib/2007/T2521.pdf

(20) Unasylva, revista internacional de silvicultura e industrias foresatales, editorial 229, vol. 58, 2007/4.

- http://www.fao.org/docrep/010/a1598s/a1598s01. htm
- (21) Valverde, F.M., Tazan, G., & Risso, C. 1979. Cubierta vegetal de la peninsula de Santa Elena. University of Guayaquil Department of Botany, publication No. 2: 1-236. Guayaquil, Ecuador.
- (22) Valverde, F. M. 1991. Estado actual de la vegetación natural de la Cordillera Chongón Colonche. Instituto de Investigaciones de Recursos Naturales, Facultad de Ciencias, Universidad de Guayaquil, Guayaquil.
- (23) VILLAVICENCIO-ENRÍQUEZ Y VALDEZ HERNÁNDEZ, 2003. ANALISIS DE LA ESTRUCTURA ARBÓREA DEL SISTEMA AGROFORESTAL RUSTICANO DE CAFÉ EN SAN MIGUEL, VERACRUZ, MEXICO.