

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Aplicación del Análisis Nodal para la Evaluación del Sistema de Levantamiento Artificial por Bombeo Electro-Sumergible del Campo ESPOL III

DANILO ARCENTALES BASTIDAS
MARCO CAIZAPANTA APOLO

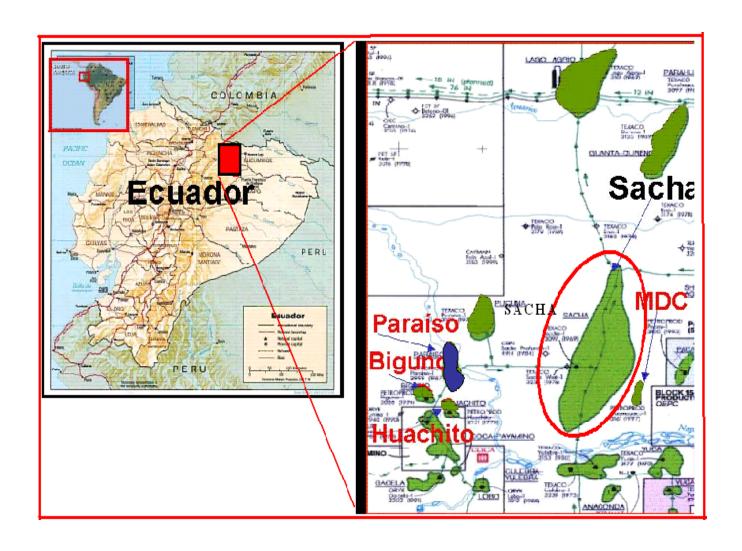
AGENDA

- 1. Introducción
- 2. Antecedentes
- 3. Objetivos
- 4. Recopilación de Información
- 5. Procedimiento y Análisis de los datos
- 6. Resultados Obtenidos
- 7. Conclusiones
- 8. Recomendaciones

Introducción

Análisis Nodal pozos con levantamiento artificial por bombeo electrosumergible.

Centrilift – Baker Hughes

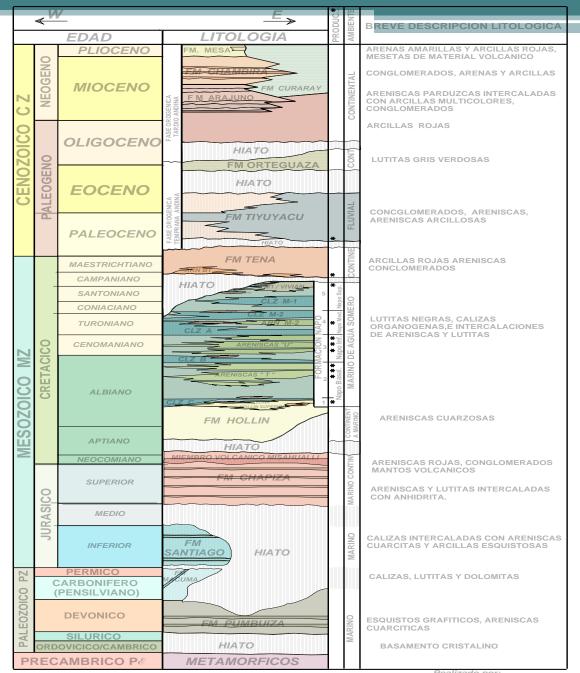

Antecedentes

EL mayor porcentaje de petróleo producido en nuestro país proviene de campos maduros, es decir que ya no cuentan con la suficiente energía para levantar el petróleo a la superficie naturalmente.

Campo ESPOL III

Para nuestro posterior análisis y evaluación hemos recopilado datos de información real de un campo el cual lo hemos llamado ESPOL III el mismo que se refiere al campo sacha.

Ubicación e Historia



Características del Campo ESPOL III

- Es el segundo campo mas grande
- Con una longitud de 28.5 Km
- Tiene una producción promedio de alrededor de 49.000 BPPD de un crudo de 28° API, proveniente de las arenas Hollin, Basal Tena, Napo U, Napo T.
- Tiene 225 pozos perforados, de los cuales 158 son productores

Estratigrafía del Campo ESPOL III

COLUMNA ESTRATIGRAFICA CUENCA ORIENTE

MODIFICADO DE DASHWOOD Y ABBOTTS

Colaboracion: Pierre Kummert

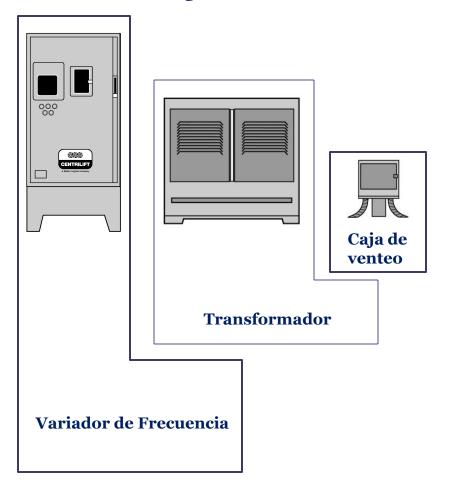
Juan Chiriboga / Omar Corozo

Características Petrofísicas de los Yacimientos

VALORES PROMEDIOS							
Espesor	Ø	Sw	So	K			
(ft)	(%)	(%)	(%)	mD			
9	18	34.3	65.7	300			
20-60	17	12.8	67.2	100			
20-44	15.6	20	80	200			
				70			
				500			
	(ft)	Espesor Ø (ft) (%) 9 18 20-60 17 20-44 15.6 30-70 14	Espesor Ø Sw (ft) (%) (%) 9 18 34.3 20-60 17 12.8 20-44 15.6 20 30-70 14 33.3	Espesor Ø Sw So (ft) (%) (%) (%) 9 18 34.3 65.7 20-60 17 12.8 67.2 20-44 15.6 20 80 30-70 14 33.3 66.7			

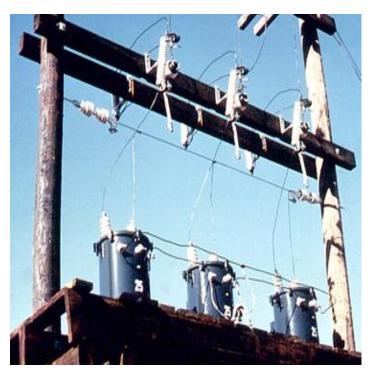
САМРО	FORM.	PRESION DE BURBUJA	TEMP. YACIM.	GRADO API	GOR	Во	GRAVEDAD DEL GAS
SACHA	Hinf	78	225	27.1	24	1.1625	1.5767
	Hsup	550	225	27.3	124	1.1334	1.3561
	Т	1310	216	30.3	436	1.3726	1.2518
	U	1052	211	26.7	270	1.2423	1.1324
	Uinf	1170	218	22.8	224	1.2302	1.21
	ВТ	807	181	24.1	150	1.117	1.099

<u>Descripción Técnica del Equipo de</u> <u>Bombeo Electro Sumergible</u>

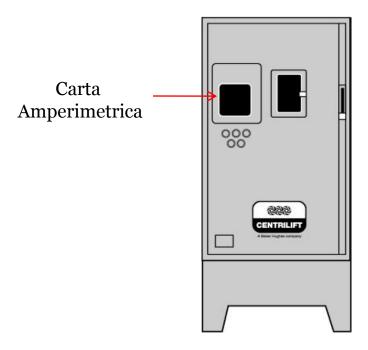

- En la actualidad existen en nuestro país pocos pozos terminados que poseen aun la suficiente energía en el yacimiento, para que el flujo llegue hasta la estación de producción a una tasa que sea rentable
- Por lo que se hace necesario proporcionar energía externa para levantar la columna de fluido desde los yacimientos hasta el centro de producción.

SISTEMA BES

EQUIPO DE FONDO


Bomba Centrifuga Separador de gas **Protector Motor Electrico** Sensor

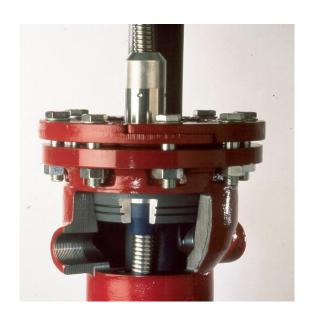
EQUIPO DE SUPERFICIE


Equipos de Superficie

Transformador

Fuente: Ingeniería de Petróleo -

Variador

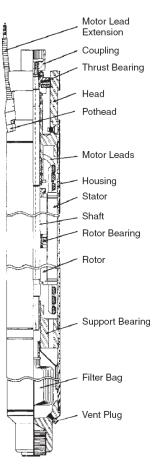

Fuente: Ingeniería de Petróleo –

Caja de Venteo

Fuente: Ingeniería de Petróleo –

Cabezal

Fuente: Ingeniería de Petróleo –


Equipos de Fondo

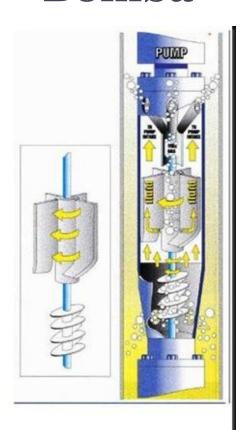
Sensor

Fuente: Ingeniería de Petróleo -

Motor

Fuente: Ingeniería de Petróleo -

Protector


Fuente: Ingeniería de Petróleo -

Separador de gas o Intake

Fuente: Ingeniería de Petróleo –

Bomba

Fuente: Ingeniería de Petróleo –

Cable de Potencia

Producción de altos volúmenes de crudos

Usadas en pozos desviados y costa afuera

No dispone de partes movibles en superficie

VENTAJAS

Disminucion del impacto ambietal

Se puede monitorear a traves de controles automatizados Altos costos

DESVENTAJAS

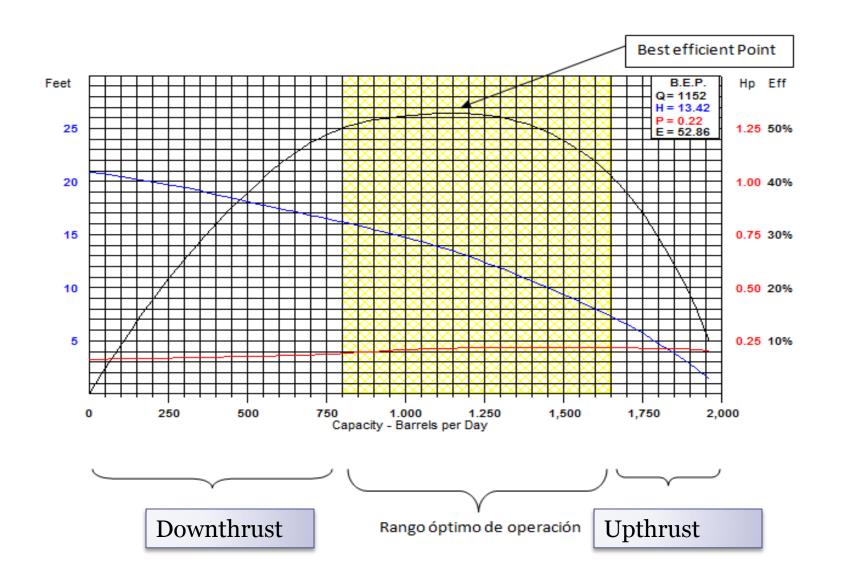
No es conveniente en pozos con alto GOR y con problemas de arena La fuente de electricidad debe ser fiable y confiable

Selección del equipo básico de un sistema de Bombeo Electro sumergible BES

Datos básicos requeridos del pozo

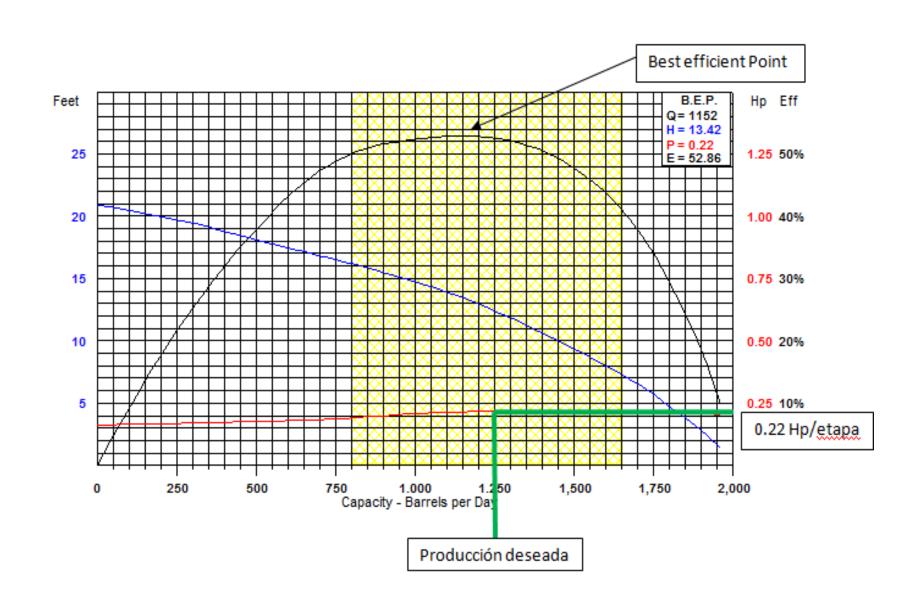
- A continuación se describe la lista de parámetros básicos requeridos para el proceso de diseño:
- Datos del pozo:
- Datos de producción actuales
- Condiciones de fluido del pozo
- Fuentes de energía
- Posibles problemas del pozo

Selección de la Bomba Electro Sumergible


• Los principales parámetros que caracterizan una bomba son:

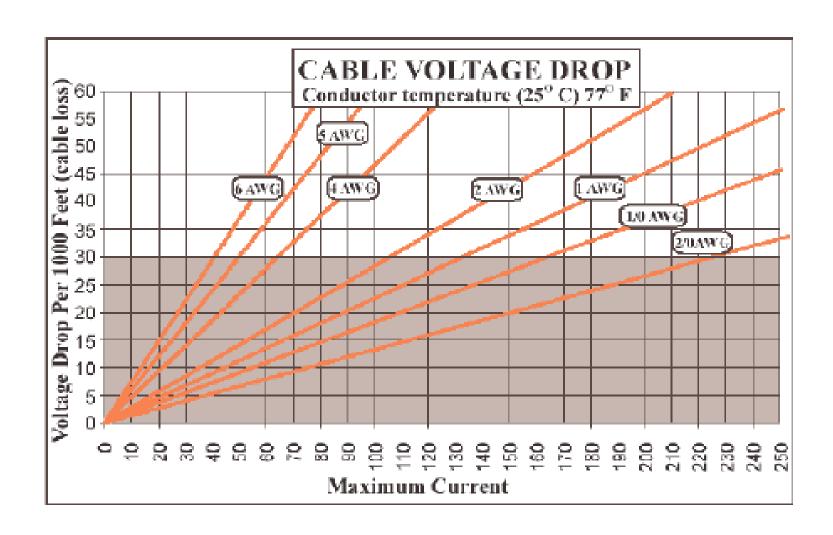
- Serie de la Bomba

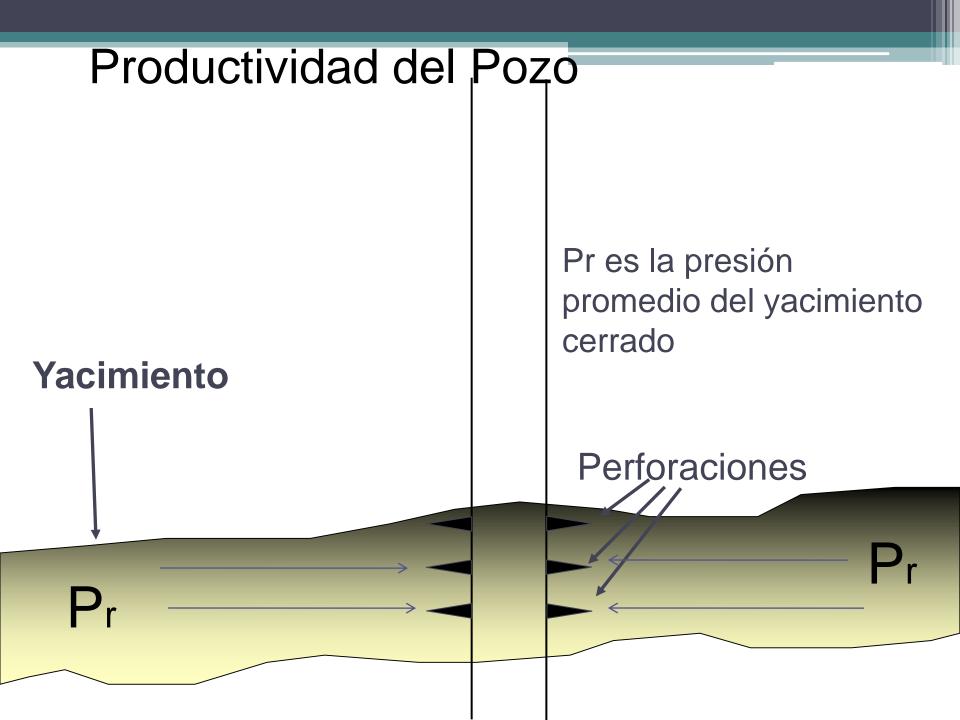
- Tipo de bomba requerido


- Número de etapas

CURVA DE RENDIMIENTO DE LA BOMBA

Selección del motor


- Debemos seleccionar el motor tomando en cuenta lo siguiente:
- Diámetro del casing
- Potencia requerida por la bomba en HP
- Voltaje y amperaje disponible en superfice.


Selección del Cable de Potencia


 La selección del cable implica la determinación de:

- diametro del cable
- Tipo del cable
- Longitud del cable

Dinámica de Yacimientos Comportamiento Influjo

Para el sistema mostrado en la lámina anterior, la Ley de Darcy establece lo siguiente:

$$q_{o} = \frac{7.08 \times 10^{-3} \quad k_{o}h(P_{r} - P_{wf})}{\mu_{o}B_{o}\left(\left(\ln \frac{r_{e}}{r_{w}}\right) - 0.75\right)}$$

qo = tasa de flujo

h = espesor efectivo de arena

Pr = presión del yacimiento

re = radio de drenaje

Bo = factor volumétrico

ko = permeabilidad efectiva

 μ_{o} = viscosidad promedio

Pwf = presión de fondo

rw = radio del pozo

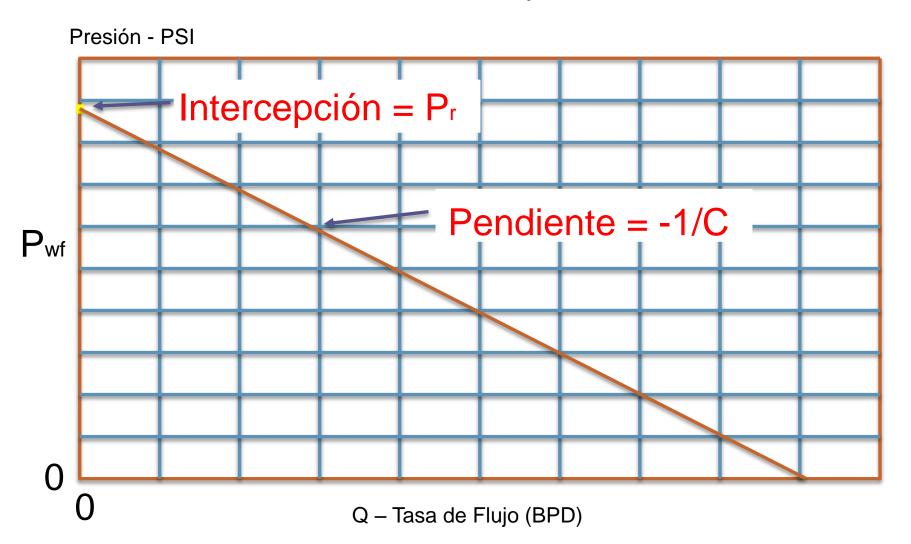
Todos los datos necesarios en esta ecuación normalmente no están disponibles. Pero si asumimos que ko, h, re, rw, Bo y μ_o son constantes para un pozo en particular (esta es una buena asunción), la ecuación se convierte en:

$$q_{o} = \frac{C_{1}C_{2}C_{3} (P_{r} - P_{wf})}{C_{4}C_{5} (\ln \frac{C_{6}}{C_{7}}) - C_{8}}$$

Simplificando...

$$Q_o = c \left(P_r - P_{wf} \right)$$

Despejando...


$$P_{wf} = -\frac{1}{c} q_o + P_r$$

Esta es una ecuación de la forma "y=mx+b " la cual representa una línea recta. Además, la línea tiene una pendiente "m" y la intercepción con el eje Y "b".

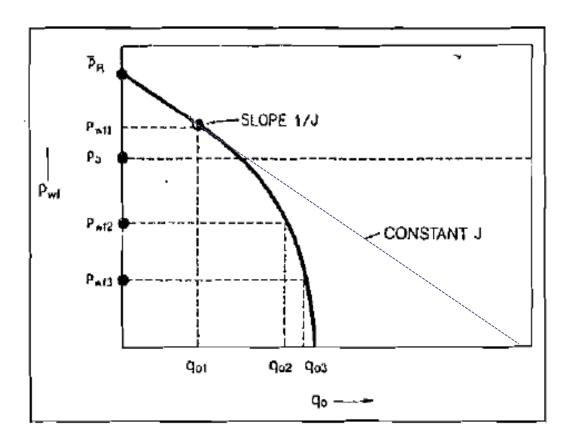
La constante K es lo que llamamos: Indice de Productividad "IP".

$$P_{wf} = -\frac{1}{c} q_o + P_r$$

Gráficamente se representa así:

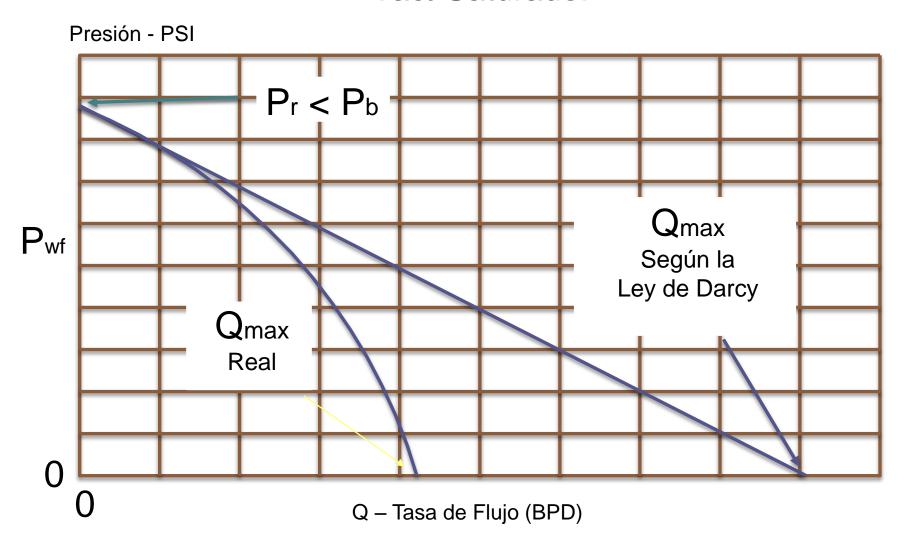
El Indice de Productividad (IP) es igual a la tasa de flujo dividada por la reducción de presión por producción "drawdown":

$$IP = \frac{q}{\left(P_r - P_{wf}\right)}$$


Tasa Máxima

Cual es la máxima tasa de flujo que puede producir el pozo? La máxima tasa de flujo ocurre a la máxima reducción de presión por producción (Pwf = 0).

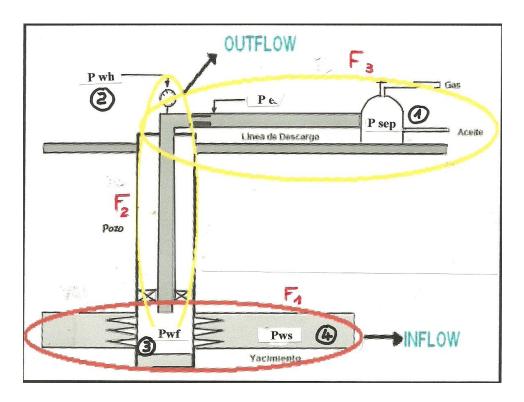
$$PI = \frac{q_{max}}{(P_r - 0)}$$
 or $q_{max} = P_r \times PI$


La Ley de Darcy se cumple en pozos con una sola fase de fluidos (por ej. Agua, petróleo o agua/petróleo).

¿Pero que pasa si se libera gas en el yacimiento?

Yac. Subsaturado

Yac. Saturado:


Comportamiento del Influjo – IPR Yacimiento Saturados o Sub-Saturados

En vez de la Ley de Darcy usamos la curva de Vogel – IPR La ecuación es:

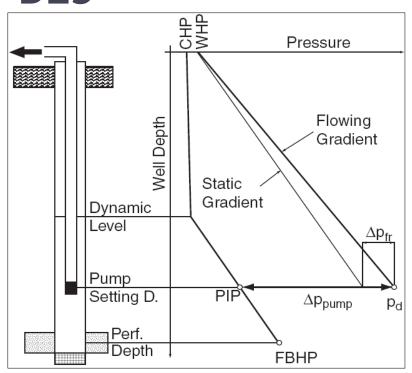
$$\frac{q_o}{q_{o(\text{max})}} = 1 - 0.2 \left(\frac{P_{wf}}{P_r}\right) - 0.8 \left(\frac{P_{wf}}{P_r}\right)^2$$

donde $q_{o(max)}$ es la máxima tasa de flujo que el pozo puede producir.

Análisis Nodal de un pozo

Calcula caidas de presione entre dos nodos, fluidos producidos, y de esta maner determinar curvas de comporrtamiento de afluencia y el potencial de produccion del yacimiento en un pozo

Análisis Nodal, Pozo con BES


Se debe considerar:

- Bomba como un elemento independiente
- Presión de entrada y descarga de la bomba

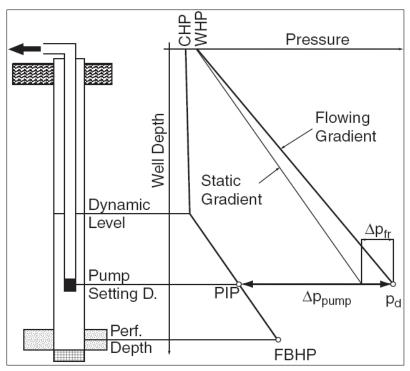
Calcular:

• Curva de Rendimiento del pozo con levantamiento artificial por BES.

Curva de Rendimiento del Pozo con BES

Donde:

CHP = Presión en la tubería de revestimiento; psi

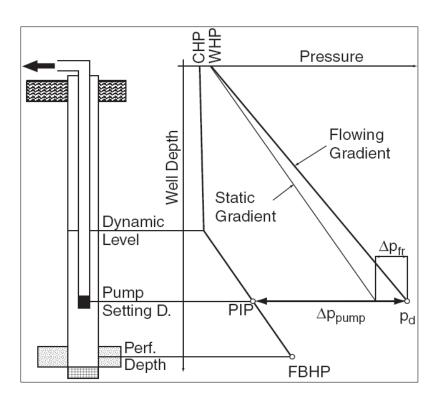

WHP = Presión en el cabezal del pozo; psi PIP = Presión de entrada a la bomba; psi

Pd = Presión de descarga; psi FBHP = Presión de fondo fluyente; psi

Dividiremos el perfil de las presiones del pozo en dos subsistema:

- Formación-bomba
- Cabezal-bomba

Subsistema Bomba-Cabezal


$$PIP = Pwf - \frac{\gamma_f}{2.31}(PMP - PB)$$

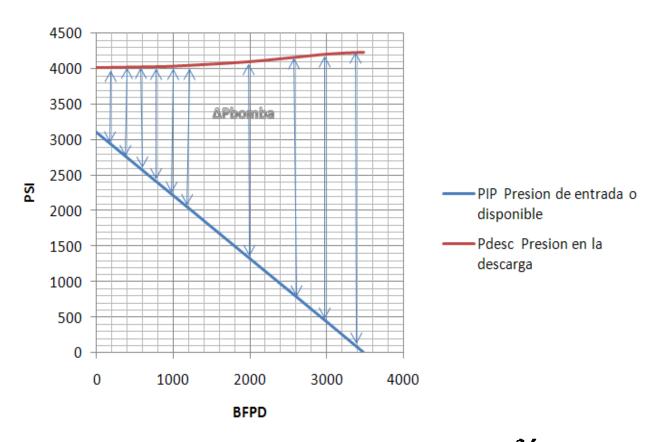
Donde:

PIP= Pump Intake Pressure (Presión de entrada de la bomba) Pwf=Presion de fondo fluyente

Yf= gravedad especifica del fluido PB=Profundidad de la bomba Encontramos presión de entrada de la bomba disponible (PIP) considerando la gravedad especifica del fluido que la Presión de Fondo fluyente (Pwf) debe levantar desde el Punto medio de las Perforaciones (PMP) hasta la profundidad de la bomba (PB).

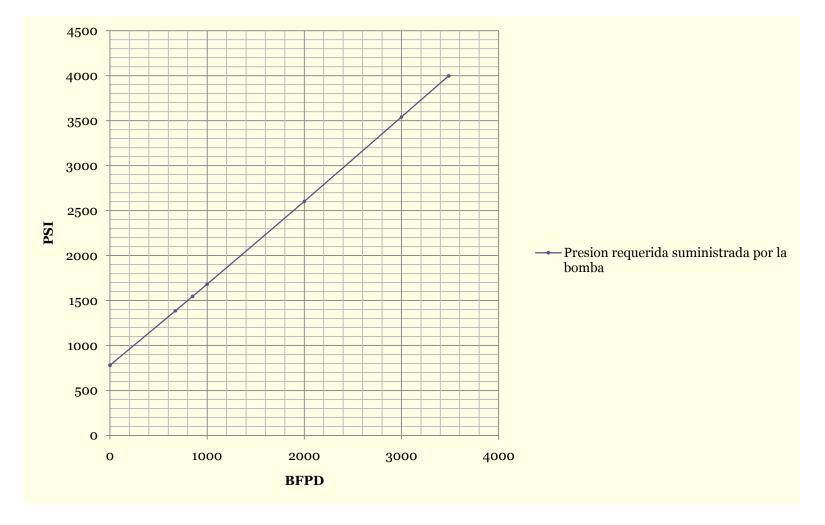
Subsistema Formación-Bomba

$$Pdesc = PWH + \Delta Pf + \frac{\gamma_f}{2.31}PB$$


Pdesc: Presión de descarga

PWH = Presión de cabezal

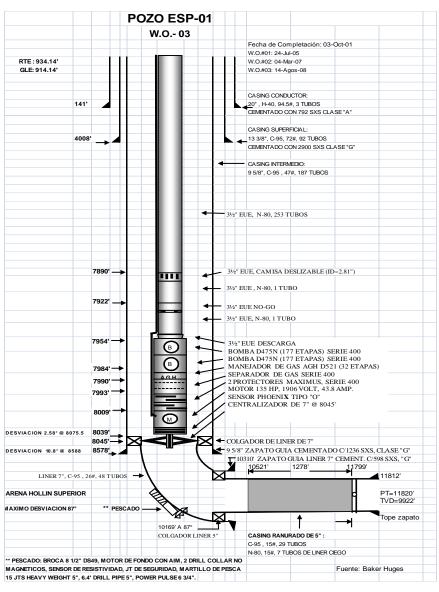
 ΔPf = Perdidas por fricción en la tubería de producción


 Encontramos la Presión de descarga de la bomba requerida (Pdesc) tomando en cuenta la Presión en el cabezal, perdidas por fricción en la tubería de producción y la columna de fluido presente en el tubing.

Curva de Presión de Entrada y Descarga VS Tasa de producción

$$\Delta p_{bomba} = WHP + PMP * \frac{\gamma_f}{2.31} + \Delta p_{fr} - p_{wf}$$

Curva de Rendimiento del pozo con levantamiento artificial BES



Evaluación del Pozo ESP-01 mediante análisis nodal

Objetivos:

- Evaluar si la producción actual del pozo se encuentra dentro del rango óptimo de operación, y a su vez determinar si la bomba actual en el pozo esta sobredimensionada.
- Optimizar el Pozo ESP-01 mediante el análisis nodal

Evaluación del Pozo ESP-01 mediante analisis nodal

Completación BES actual
2 bombas D475N de 177 etapas
2 Separadores de Gas
2 Protectores
1 Motor 135 HP

Información del pozo ESP-01

Presión de Reservorio	=	4207	Psi
Tubería de Producción ID	=	2.992	Pulgadas
Tubería Nueva C	=	120	adim.
Qo Actual @ Pwf = 3607ps i	=	673	BFPD/psi
Gravedad Específica del Liquido	=	1	adim.
Profundidad Presiones (Sensor)	=	1085	pies
Profundidad de Asentamiento de la Bomba	=	7984	pies
Presión en la Cabeza del Pozo	=	120	psi

FECHA	BFPD	BPPD	BSW %	Arena	Método
22/05/2002	1801	1747	3	Hi	BES
22/02/2005	1450	1392	3	Hi	BES
07/02/2008	1103	1059	4	Hi	BES
26/10/2008	1000	960	4	Hi	BES
02/03/2009	840	798	4	Hi	BES
04/02/2010	673	673	5	Hi	BES

Calculo del IP del Pozo ESP-01

De la información proporcionada por el cliente calculo el IP del pozo utilizando los siguientes datos:

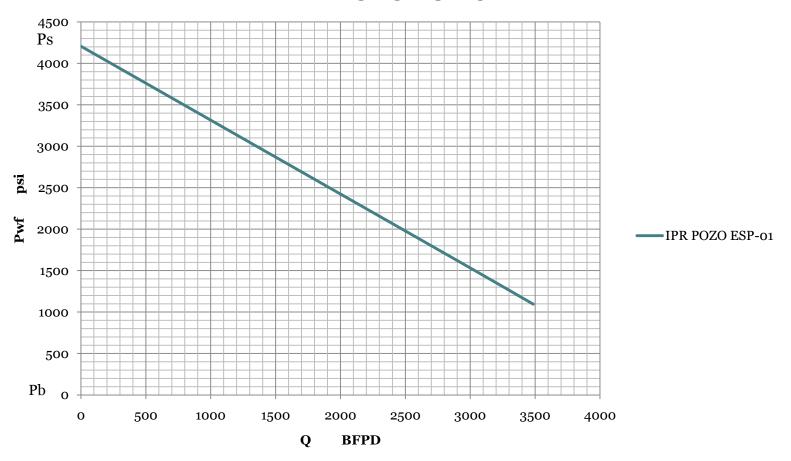
$$IP = \frac{Q}{Ps - Pwf}$$

$$IP = \frac{673}{4207 - 3607}$$

$$IP = 1.12 BFPD/psi$$

IPR del Pozo

De la información del pozo tengo:

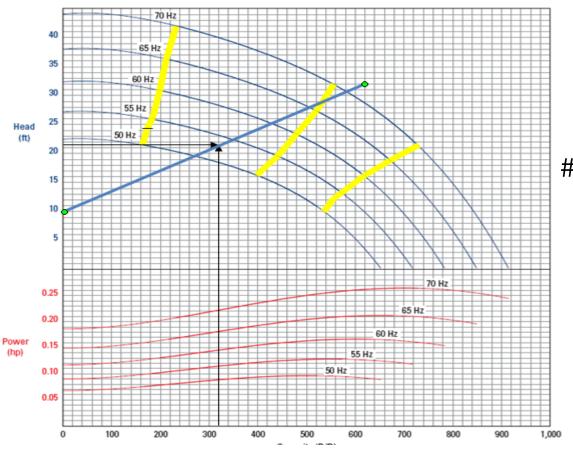

$$Pwf = Ps - \frac{Q}{IP}$$

$$Pwf = 4207 - \frac{850}{1.12}$$

Pwf	=	3448	psi
J			L

Q	PWF
0	4207
850	3449.20
1000	3315.47
2000	2423.94
3000	1532.41
3486	1095
3500	1086.64
3618	981.00
4000	640.88
4500	195.11
4624	78.43

IPR POZO ESP-01

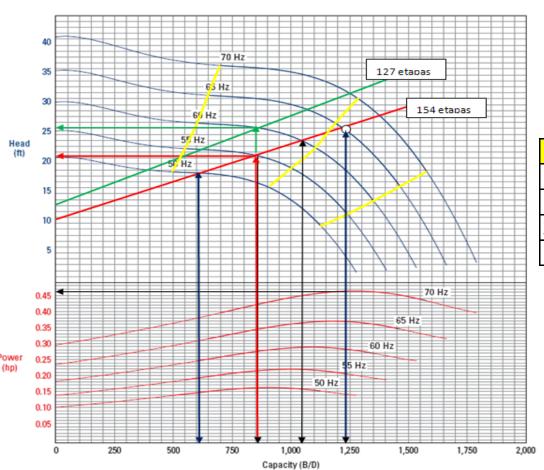


Perfil de Presiones en el pozo

Q(BFPD)	Pwf(psi)	PIP	PWH	Perd.friccion	Columna hidr.	Pdesc	ΔPbomba
0	4207	3218	240	0	3767	4007	789
673	3607	2618	240	4	3767	4011	1393
850	3449	2460	240	7	3767	4014	1554
1000	3315	2326	240	9	3767	4016	1690
2000	2423	1435	240	38	3767	4045	2610
3000	1532	543	240	84	3767	4091	3548
3486.0	1095	106	240	104	3767	4111	4005
3500	1086	98	240	108	3767	4115	4017

Se determina que el sistema requiere una presión de 1393 psi o 2952 pies de cabeza suministrada por la bomba para levantar 637 BFPD.

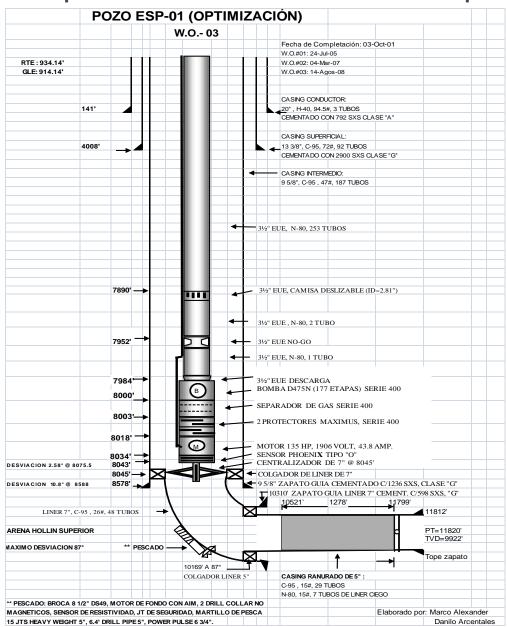
Curva de Rendimiento del Pozo ESP-01


$$\#etapas = \frac{2952}{\frac{21pies}{etapa}} = 141 \ etapas$$

Optimización del pozo ESP-01

Requerimientos del cliente:

Q		bfpd	
Rango de Q	750 1300		bfpd
Profundidad			
Bomba	8000		ft
T superficie		110	٥F
Frecuencia		55	Hz
Rango de F	53	65	Hz


Curva de Rendimiento del Pozo ESP-01 Optimizado

Completación BES actual

- 1 bomba DN1100 de 166 etapas
- 1 Separador de Gas
- 2 Protectores
- 1 Motor 96 HP 1430 V 43 Amp

Diagrama de completación del Pozo ESP-01 Optimizado

Comparación

Completación BES actual	Completación BES propuesta
2 bombas D475N de 177 etapas	1 bomba DN1100 de 166 etapas
2 Separadores de Gas	1 Separador de Gas
2 Protectores	2 Protectores
1 Motor 135 HP	1 Motor 96 HP 1430 V 43 Amp

Conclusiones

- Un análisis nodal resulta ser muy beneficioso ya que nos permite **optimizar el comportamiento de la tasa de producción de un pozo** y el perfil de presiones del mismo con cualquier tipo de Completación.
- En los cálculos de optimización del sistema BES realizados , **no se ha considerado la producción de gas como un parámetro dentro del diseño** , debido a que el GOR en nuestro pozo es bastante bajo ya que la presión de burbuja en Hollin Inferior es muy baja.
- El sistema BES a pesar de ser un sistema de **levantamiento costoso para manejar bajos volúmenes de fluidos**, es beneficioso en el caso contrario cuando se manejan altos volúmenes de producción y puede trabajar en medios corrosivos.
- Una baja frecuencia del motor suele producir el **efecto de downthrust**, mientras que el efecto inverso se llama **Uptrhust**.Sin embargo ninguno de los dos estados es recomendado como frecuencia de trabajo normal.
- La **vida útil de los equipos** de un Sistema BES es mayor si se cuenta con un Variador, ya que este permite arranques suaves eliminando picos de corriente que generalmente dañan los equipos.

Conclusiones

• Al realizar la **Curva de rendimiento del Pozo ESP-1** mediante el análisis nodal, **proponemos una nueva Completación**, la misma que cuenta con una Bomba DN1100 de 166 etapas, que producirá 800 BFPD a una frecuencia de 55 Hz, de igual manera podremos producir tasas mayores a esta, debido a que el cliete posee un VSD.

Recomendaciones

- Realizar una mayor cantidad de **pruebas de restauración de presión** con el sensor de fondo para actualizar los datos del yacimiento y poder realizar un **análisis nodal mas exacto.**
- En el caso de que se analicen yacimientos con **alto GOR** y con **presiones bajo el punto de burbuja s**e debe considerar la presencia de Gas y se deberán usar las correlaciones de **Vogel**.
- Como se cuenta con vari ador y se tiene un rango de operación entre 53Hz a 65
 Hz, se recomendó usar un motor que nos suministre la potencia requerida que en nuestro caso fue 96 HP.

Bibliografía

- Production Optimization using Nodal Analisis, Dale Beggs
- REDA Basic equipment Selection and Catalog, Schlumberger
- Catalogo de ESP REDA, Schlumberger
- Nine Steps ESP Design, Baker Huges
- Electrical Submersible Pumps Manual, Gabor Takacs
- Petroleum Engineering Handbook, Bradley
- Manual de Tuberias, Tenaris
- Apuntes Seminario de Graduación, Dictado por el Ing. Bolivar Miranda, Director de la Tesina.

Gracias por la atención!