Conteste todas las preguntas en el espacio asignado para las mismas. Si le falta espacio use la parte de atrás de la hoja. Total de preguntas: 2, total de puntos: 0.

Nombre completo: _

1. Suponga el modelo de regresión multivariada $\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{\Xi}$, donde \mathbf{Y} y $\mathbf{\Xi}$ son matrices de n por p, \mathbf{X} es una matriz n por q+1, \mathbf{B} es una matriz de q+1 por p. La matriz \mathbf{B} está particionada en $\mathbf{B} = \begin{bmatrix} \boldsymbol{\beta}_0^T \\ \mathbf{B}_1 \end{bmatrix}$, tal que $\boldsymbol{\beta}_0$ corresponde a la primera fila y \mathbf{B}_1 contiene las otras q filas. Suponga que la matriz de varianzas y covarianzas muestrales de todas las variables \mathbf{S} también está particionada en $\mathbf{S} = \begin{bmatrix} \mathbf{S}_{yy} & \mathbf{S}_{yx} \\ \mathbf{S}_{xy} & \mathbf{S}_{xx} \end{bmatrix}$. Sea

 $\hat{\mathbf{B}} = \begin{bmatrix} \hat{\boldsymbol{\beta}}_0^T \\ \hat{\mathbf{B}}_1 \end{bmatrix}$ el estimador de mínimos cuadrados de \mathbf{B} . Demuestre que $\hat{\mathbf{B}}_1 = \mathbf{S}_{xx}^{-1} \mathbf{S}_{xy}$

2. Sean \mathbf{x} y \mathbf{y} dos vectores aleatorios con matrices de varianzas Σ_{xx} y Σ_{yy} , respectivamente, y matriz de covarianza entre ellas Σ_{xy} . Sean \mathbf{a} y \mathbf{b} dos vectores constantes. Defina las variables aleatorias $u = \mathbf{a}^T \mathbf{x}$ y $v = \mathbf{b}^T \mathbf{y}$. Halle los vectores \mathbf{a} y \mathbf{b} que maximicen la correlación entre u y v sujeto a las restricciones var(u) = var(v) = 1.