

ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS MÉTODOS CUANTITATIVOS IV SEGUNDA EVALUACIÓN II TÉRMINO 2011-2012 28/ENERO/2012

"Un politécnico no miente, no plagia, ni hace trampa, ni tolera que otros lo hagan"

on pointed no monte, no plagia, in na	io trampa, in toicia que etres io i	agar.
Alumno:	Firma:	
Profesor: Ing. Raúl Tingo	Paralelo: 241	
TEMA 1	20 pt	os.
Resuelva <i>CUANTITATIVAMENTE</i> las sigui	entes ecuaciones en diferencias:	
a) $y_{t+1} - y_t = te^t$		

b)
$$2y_{t+1} - 2y_t = 3$$

c)
$$y_{t+2} - 4\sqrt{3}y_{t+1} + 16y_t = 0$$

d)
$$y_{t+3} - 5y_{t+2} + 8y_{t+1} - 4y_t = 2$$

TEMA 2 10 ptos.

Determine $\emph{CUALITATIVAMENTE}$ si y_t es dinámicamente estable para la siguiente ecuación:

$$y_{t+1} = e^{y_t - 1}$$

Identifique en el diagrama de fase si la solución es convergente, divergente, convergente oscilante o divergente explosiva.

TEMA 3 15 ptos.

Resolver el siguiente sistema de ecuaciones en diferencias

$$\begin{cases} x_{t+1} - x_t - y_t = 1 \\ y_{t+1} + x_t - 3y_t = 2 \end{cases}$$

TEMA 4

Dado el siguiente sistema de ecuaciones diferenciales no lineales:

$$\begin{cases} x' = y + xy + y^3 \\ y' = x + x^3 + 2xy^2 \end{cases}$$

a) Linealizar el sistema

b) Resolver el sistema cuantitativamente

c) Analizar cualitativamente la estabilidad dinámica (diagrama de fase, curvas de demarcación)

TEMA 5

Dada las siguientes ecuaciones de oferta y demanda

$$Q_{dt} = 10 - p_t$$

$$Q_{st} = -4 + 8p_t$$

Considerando el modelo de inventario:

$$p_{t+1} = p_t - 0.5(Q_{st} - Q_{dt})$$

a) Determine la solución p_t para el modelo

b) Grafique p_t vs t y determine si es convergente o divergente la solución (especifique que tipo de convergencia o divergencia)