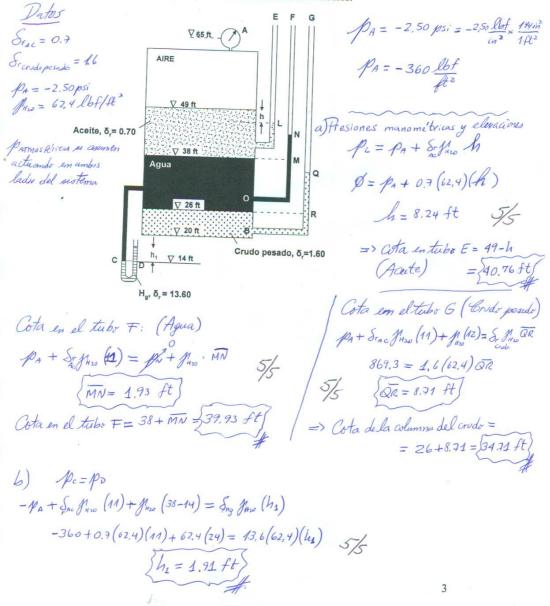
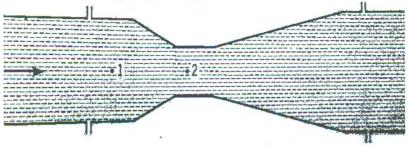
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL (ESPOL) FICT – INGENIERÍA CIVIL


EXAMEN PARCIAL DE MECÁNICA DE FLUIDOS

ESTUDIANTE: MAH	
# MATRÍCULA:	PARALELO 2 FECHA: 05/VII/2013
INDICAC	PARALELO 2 FECHA: 05/VII/2013 CIONES GENERALES:
1) Lea atentamente TODAS las especif 2) Tomar en cuenta el Art. 21 del Pregrado de la ESPOL (sot circunstancial), el Artículo 7, litera del Consejo Académico CAC 201	icaciones de cada problema. Escriba claramente. Reglamento de Evaluaciones y Calificaciones de ore deshonestidades Académicas premeditada y al g del Código de Ética de la ESPOL y la Resolución 3-108, sobre compromiso ético de los estudiantes al
<u>Ira. PA</u>	RTE (20 PUNTOS):
	ECTA: "La viscosidad dinámica µ tiene las uerza, L es longitud y T es tiempo": (2 puntos)
b) F L-1 T-1	c) FLT^2 d) FL^2T e) FLT^2
2 Verdadero o Falso: Cuando no h o se asume que éste es incompresible	ay cambios en la densidad de un fluido, se dice F (1 punto)
3 Complete: La densidad de un fluid Temperatura	do depende de l
 VF: Z representa la altura hidrostáti VF: V²/2g implica energía cinética 	de Bernoulli: $h + z + v^2/2g = C$ (2 puntos) ca.
• VF : Z depende del datum o cota refe	Prencial
 V(F): Si hubieran pérdidas y no se inc 	cluyeren, igual se podría anlican la
una o más de una respuesta):	sobre el <u>Esfuerzo Cortante</u> : (Puede haber (2 puntos)
Nunca ocurre cuando el fluido está	en reposo.
Depende del gradiente de velocidad	con respecto a la profundidad
Es directamente proporcional a newtonianos y no-newtonianos. Es menor cerca del fondo.	la distribución de velocidad en fluidos

6 Conteste: ¿Qué técnica utiliza Ud. para facilitar el cálculo de la fuerza (2 puntos)
6 Conteste: ¿Qué tecnica utiliza ou proposition de la puntos) resultante sobre una superficie curva sumergida?
Descomposición de la Resultante en tuerza vertical y nonza car
Le cosión CORRECTA sobre flotación y establidad.
"La altura metacéntrica, clave para la estabilidad, es la distancia entre G y M, siendo G el centro de gravedad y M el centro de flotación del cuerpo sumergido."
"Un ángulo mayor a 20 entre la vertical en reposo y la vertical producida por el giro asegura la flotabilidad y estabilidad de una embarcación."
"Si la altura metacéntrica resultase negativa, habría un probable hundimiento de la embarcación."
8 Nombre 3 tipos de líneas de flujo que Ud conozca: (2 puntos)
(2 nuntos)
fuerza, M es masa, L es longitud $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (d) M L ⁻³ (e) M L T ⁻¹
10 Verdadero o Falso y JUSTIFIQUE SU RESPUESTA: En la ecuación del teorema de Reynolds:
$\frac{dB_{sis}}{dt} = \frac{\partial}{\partial t} \int_{vc} \rho b \ d\forall + \int_{sc} \rho b \ (\overrightarrow{V} \cdot \overrightarrow{n}) \ dA$
"El término de la derecha (SC: Superficie de control) establece que las entradas (ingresos al volumen) son positivas y las salidas (egresos del volumen) son negativas"
FALSO!
El signo de cada termino componente de lo de termina el producto punto entre V.n = v v Cos o donde
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Area siemre sale de la superficie mientras que V depende de sentido
del flujo. Así, en una entrada VIII (15)
V. A Cos O" => V.A.


IIda. PARTE (20 PUNTOS):

El manómetro ubicado en A registra una presión de -2.50 psi (aire). Determine: (a) La elevación (cota) de los líquidos en las columnas de los piezómetros abiertos E, F y G (en pies); (b) La altura h_1 de mercurio en el manómetro U en la figura (en pies). Peso volumétrico del agua = 62.4 lbf / ft^3 . Desprecie la presión en la columna del aire. Considere únicamente presiones manométricas en sus cálculos.

IIIra. PARTE (25 PUNTOS):

Un tubo **Venturi** consiste en una porción convergente seguida de un tramo estrangulado de diámetro constante, y luego una sección gradualmente divergente. Usualmente es usado para determinar el flujo volumétrico (caudal) en una tubería. El diámetro de la sección 1 es 6 pulgadas y en la sección 2 es de 4 pulgadas. Despreciando las pérdidas, encuentre el caudal (pie 3 /s) a través de la tubería cuando $p_1 - p_2 = 3$ psi y el fluido es aceite ($\delta_T = 0.90$). Tome el peso volumétrico del agua = 62.4 lbf/ft 3 . Transforme todas las medidas de longitud a pies. 1 psi = 1 lbf/in 2 .

Platos: $\phi_1 = 6$ in = 0.5 ft $\phi_2 = 4$ in = 0.333 ft pe'rdidas despreciables => $\Delta E = \phi$ $p_1 - p_2 = \Delta p = 3$ psi = 432 $\frac{lbf}{ft^2}$ Sr = 0.90 $p_{Hro} = 62.4$ lbf/ft^3 $p_{Ac} = p = 8r$ $p_{H2o} = 8r$ $\left(\frac{62.4}{32.2}\right)$ C. de la Continuidad:

Oc. de la Continuidad: $Q = A, V_1 = A_2 V_2$ $Q = \frac{\pi \phi_1^2}{4}, V_1 = \frac{\pi \phi_2^2}{4} V_2$ $V_2 = \frac{\phi_1^2 V_1}{\phi_2^2}, V_2 = 2.25 V_1$

Beaución de Bernoulli; (Variante de pressiones) $p_1 + \frac{pV_1^2}{2} + pg Z_1 = p_2 + p \frac{V_2^2}{2} + pg Z_2$ $p_1 - p_2 + \frac{pV_1^2}{2} = p \frac{V_2^2}{2} + pg (Z_2 - \overline{z}_1)$ $432 \frac{lbf}{ft^2} + \frac{(62.4)}{32.2} S_1 \frac{V_1^2}{2} = p \frac{f}{ft^2} \frac{p^2}{ft^2} \frac{V_1^2}{2}$ $432 = V_1^2 \frac{(62.4)}{32.2} S_1 \frac{p^2}{ft^2} \frac{V_1^2}{2}$ $= 7 \quad V_1 = 11.01 \text{ ft/A}$ $= 7 \quad V_2 = 24.78 \text{ ft/S}$ $= 7 \quad Q = \frac{\pi}{4} \phi_1^2 V_1 = 2.16 \quad pie / seg$