

ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA **EXAMEN PRIMER PARCIAL - CARRETERAS I PARALELO 2**

LUNES 30 DE JUNIO 2014 18H30 - 20H30

ESTUDIANTE:	 	

Nota Total: / 70

Escoja una de las opciones presentadas.

la construye hasta que su índice de serviciabilidad cae por debajo de un nivel

d. El número de años que va a prestar servicio una

predeterminado.

estructura de pavimento.

Cada respuesta correcta equivale a 2 puntos. Los métodos de diseño de pavimentos empírico-2. El experimento vial AASHO se llevó a cabo en: mecanicistas que se usan hasta ahora, buscan controlar la ocurrencia de las siguientes fallas: Una localidad única en el estado de Illinois, de los Estados Unidos de Norteamérica Fisuración térmica y fatiga b. En varias localidades representativas de los diversos tipos de climas y suelos que existen en Fisuración térmica y ahuellamientos (o roderas) Ahuellamientos y pérdida de serviciabilidad los Estados Unidos de Norteamérica Fisuramiento por fatiga y ahuellamientos c. En un conjunto de pavimentos que se escogieron en los Estados Unidos, Canadá y Brasil d. En una pista única de pruebas, ubicada en la Universidad de Texas, en Austin 3. Un pavimento debe considerarse como: 4. Para determinar el factor equivalente de carga de un cierto eje, cargado a un cierto peso, se a. La capa de material estabilizado que recubre determina: una carretera b. La losa de hormigón de cemento hidráulico que La relación de esfuerzo de compresión sobre la cubre calles y carreteras subrasante que causa el eje con respecto al c. La estructura que soporta las cargas del tráfico esfuerzo de compresión sobre la subrasante y las transmite a la subrasante sin fisurarse ni que causa el eje patrón deformarse b. La relación entre la pérdida de serviciabilidad causada por una carga dada de un tipo de eje y d. Las capas de base y sub base granular debajo de la carpeta asfáltica o de la losa de hormigón la producida por el eje estándar en el mismo La relación de la deformación unitaria a tensión debajo de la capa asfáltica que produce el eje con respecto a la que produce el eje patrón 5. Se considera como período de diseño: El índice de regularidad internacional (IRI) es una medida de: a. El número de años que tiene que durar una estructura sin someterse a mantenimiento y a. La macro textura del pavimento sin sufrir deterioro alguno b. La resistencia estructural del pavimento b. El tiempo que tiene que durar una estructura c. El movimiento vertical acumulado por sometida a un proceso de mantenimiento, distancia horizontal de movimiento que refuerzos y rehabilitación determinados y soporta un pasajero al viajar en un prestando un servicio por encima de un vehículo normalizado determinado nivel de serviciabilidad d. La resistencia de un pavimento a la c. El tiempo que dura una estructura desde que se fricción de un vehículo que frena

ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

EXAMEN PRIMER PARCIAL - CARRETERAS I PARALELO 2 LUNES 30 DE JUNIO 2014 18H30 - 20H30

IICA DEL LITORAL
NCIAS DE LA TIERRA
TERAS I PARALELO 2
2014

ESTUDIANTE:

 7. La serviciabilidad es una medida de: a. El servicio que presta una vía en función de su capacidad y nivel de saturación de tráfico b. La capacidad de un pavimento para permitir el viaje de los vehículos a la velocidad de diseño y en condiciones de seguridad, comodidad y economía c. La condición presente del pavimento en función de la cantidad de fisuras y de la gravedad de las mismas d. La condición presente del pavimento en función de la cantidad de baches y de la profundidad y tamaño de los mismos 	 8. El método de diseño de la guía AASHTO 1993, para pavimentos flexibles, contempla unos coeficientes estructurales para capas de rodadura, cuyos valores son función de: a. El tipo de mezcla asfáltica que se está usando b. La temperatura de funcionamiento de la mezcla en el proyecto c. El módulo elástico de la mezcla asfáltica a una temperatura determinada d. La resistencia de la mezcla a la rotura por tracción indirecta
 9. En el Experimento Vial de la AASHO (nombre original de la AASHTO de hoy) se calibró los valores del índice de serviciabilidad presente en función de: a. Una calificación de los payimentos hechas por usuarios, mediante encuestas b. Un panel de ingenieros que determinó las fallas que afectaban a los usuarios y el valor relativo que estas fallas tenían c. Mediciones de índices usados anteriormente y que se adaptaron al nuevo sistema d. Una correlación con el índice de regularidad internacional (IRI) 	 10. El módulo resiliente de un material granular es función de: a. La calidad del material, establecida por su CBR b. La calidad del material y el estado de humedad del mismo c. La calidad del material, el estado de humedad y el estado de esfuerzos totales a que está sometido el material d. El estado de humedad del material
 11. Si usamos el mismo material para la base y para la sub base, el coeficiente estructural a3 será, con toda probabilidad: a. Igual al coeficiente de la base, a₂ b. Diferente al coeficiente de la base, a₂ 	 12. La resistencia a la fatiga de las losas de hormigón se la determina en función de: a. La deformación unitaria a tensión ε_t en la parte inferior de la losa b. El esfuerzo a tracción σ en la parte inferior de la losa c. El módulo de rotura (MR, o S_c) del hormigón de la losa d. La relación σ/S_c
13. El Índice de Condición del Pavimento (PCI por sus siglas en inglés) es una medida de: a. La condición estructural del pavimento b. La serviciabilidad que presta el pavimento al usuario c. La condición funcional del pavimento d. La vida remanente que le queda a un pavimento	14. Un "parche" (bache que ha sido tapado) es considerado como un defecto en los pavimentos asfálticos, en las siguientes circunstancias: a. Solo cuando está en mal estado b. Cuando presenta protuberancias y hundimientos que afecten a la regularidad c. Cuando muestra huellas de humedad en sus bordes d. Siempre

ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

EXAMEN PRIMER PARCIAL - CARRETERAS I PARALELO 2 LUNES 30 DE JUNIO 2014

18H30 - 20H30

ESTUDIANTE:

 15. Cuando se determina que un pavimento debe reforzarse estructuralmente con una capa de hormigón asfáltico caliente, el espesor de esa capa se lo define mediante: a. Las tablas de uso de la institución, que se definen por la categoría de la carretera b. La opinión de un ingeniero experto c. La evaluación estructural del pavimento y la proyección de tráfico futuro d. La historia de reparaciones que ha tenido el pavimento 	 16. En el método "PAVER" para administrar pavimentos de carreteras, aeropuertos o parqueaderos, a cada defecto, según su grado de severidad, se le asigna: a. Una metodología de estudio particular que permite definir lo que costaría el dejarlo sin hacer nada b. Una o varias políticas de reparación o mantenimiento que solucionarían o mitigarían el problema c. Un ensayo de laboratorio que defina la gravedad del problema d. Un ingeniero especialista dedicado a resolver este problema
 17. Las fisuras de bloque son causadas por: a. Las cargas repetidas sobre el pavimento b. Los ciclos diarios de tensión en el pavimento que se dan por los cambios de temperatura c. Las temperaturas frías extremas que se dan en pavimentos con asfaltos demasiado duros d. La adherencia deficiente entre el asfalto y los áridos de la mezcla 19. Cuando el área total de los parches en un pavimento, más la piel de cocodrilo y más los baches abiertos, supera el 30% del área total del pavimento; la política más recomendable es: a. Parchar los baches abiertos y las áreas con piel de cocodrilo b. Sellar superficialmente las áreas con piel de cocodrilo, y parchar los baches abiertos c. Rehabilitar el pavimento mediante un reciclado de la capa de superficie (o base y superficie) y una nueva carpeta d. Parchar sólo los baches abiertos 	 18. Las fisuras transversales son causadas por: a. Las cargas repetidas sobre el pavimento b. Los ciclos diarios de tensión en el pavimento que se dan por los cambios de temperatura c. Las temperaturas frías extremas que se dan en pavimentos con asfaltos demasiado duros d. La adherencia deficiente entre el asfalto y los áridos de la mezcla 20. Las fisuras de "piel de cocodrilo " son causadas por: a. Las cargas repetidas sobre el pavimento b. Los ciclos diarios de tensión en el pavimento que se dan por los cambios de temperatura c. Las temperaturas frías extremas que se dan en pavimentos con asfaltos demasiado duros d. La adherencia deficiente entre el asfalto y los áridos de la mezcla
 21. Las fisuras de reflejo de juntas se dan: a. Sobre antiguas fisuras en el hormigón que funciona como base de la mezcla asfáltica b. Sobre antiguas fisuras en un pavimento asfáltico que ha recibido una sobre-carpeta c. Sobre las juntas de contracción y construcción que se han construido en el hormigón que funciona como base de la mezcla asfáltica 	 22. Una fisura que no ha sido sellada, se la considera de severidad media si tiene una apertura: a. Menor a 3mm y mayor a 1mm b. Mayor a 76mm y menor a 105mm c. Mayor a 10mm y menor a 76mm d. Mayor a 3mm y menor a 10mm

ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

EXAMEN PRIMER PARCIAL - CARRETERAS I PARALELO 2 LUNES 30 DE JUNIO 2014 18H30 - 20H30

ESTUDIANTE:

- 23. Cuando el esfuerzo desviador, en un material fino, aumenta, el Módulo Resiliente del mismo:
 - a. Aumenta
 - b. **Disminuve**

c. Permanece igual

 $M_{R}\!\!=\!\!K_{1}\left(\sigma_{D}\right)^{K2}$

 $\sigma_{D=} \; \sigma_{1-} \; \sigma_3$

- 24. Cuando el estado de esfuerzos (invariante de esfuerzos) en un material granular, aumenta; el Módulo Resiliente del mismo:
 - a. Aumenta

b. Disminuve

 $M_R=K_1 (\Theta_3)^{K2}$ $\Theta_{3=} \sigma_1 + \sigma_2 + \sigma_3$

c. Permanece igual

- 25. El "coeficiente de daño", uf, en el método de diseño AASHTO 93, es:
 - a. Un valor que se utiliza para calcular el Mr de la subrasante, teniendo en cuenta las variaciones espaciales en las características de la misma
 - b. Un valor que se utiliza para calcular la capacidad estructural de la base y sub base granular, cuando estas no son estabilizadas con asfalto o con cemento
 - Un valor que se utiliza para calcular el Mr de la sub rasante, teniendo en cuenta las variaciones estacionales en las características de la misma
 - d. Un valor que sirve para determinar la resistencia relativa de dos capas granulares de diferente módulo resiliente

- 26. Cuando se definió el método de diseño empírico de la AASHTO, la "calificación de serviciabilidad presente (psr) se la definió por:
 - a. La calificación de los usuarios a la prestación de servicio del pavimento
 - b. La medición y puntuación prorrateada de varios defectos fundamentales en la prestación de servicio de un pavimento
 - c. La velocidad que se podía sostener en un pavimento sin poner en peligro a los ocupantes del vehículo
 - d. La comodidad que se podía tener al viajar en el vehículo a velocidades que no pongan en peligro a los ocupantes del vehículo
- 27. "So" en la ecuación AASHTO, es un término que representa:
 - a. El margen de seguridad que queremos darle al diseño
 - b. El porcentaje de variación inherente a todas las variables aleatorias en el proceso
 - c. La desviación estándar normalizada de todas las variables aleatorias inherentes al proceso
 - d. La varianza de todas las variables aleatorias inherentes al proceso.
- 28. Cuando diseñamos pavimentos flexibles mediante el método AASHTO 93, y queremos determinar el espesor de carpeta asfáltica a colocar sobre una base granular, es necesario que calculemos, para el tráfico y condiciones de confiabilidad, desviación estándar y serviciabilidad (inicial y terminal) que estamos considerando:
 - a. El número estructural de todo el pavimento SN
 - b. El número estructural parcial SN₁
 - c. El número estructural parcial SN₂
 - d. El número estructural parcial SN₃
- 29. Cuando calculamos el número estructural parcial SN2 (en una estructura de 4 capas), utilizamos como Mr en la ecuación AASHTO 93, el valor del módulo resiliente de:
 - a. La carpeta asfáltica
 - b. La base granular
 - c. La sub base granular
 - d. La sub rasante

- 30. En el diseño de pavimentos flexibles AASHTO 93, una vez que se ha determinado el espesor de la carpeta, y de la base, para determinar el espesor que se necesita para la sub base, es necesario determinar:
 - a. El número estructural de todo el pavimento SN
 - b. El número estructural parcial SN₁
 - c. El número estructural parcial SN₂
 - d. El número estructural parcial SN₃

ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

EXAMEN PRIMER PARCIAL - CARRETERAS I PARALELO 2 LUNES 30 DE JUNIO 2014 18H30 – 20H30

ESTUDIANTE:

31. Cuando calculamos el número estructural parcial SN ₁ (en una estructura de 4 capas), utilizamos como Mr en la ecuación AASHTO 93, el valor del módulo resiliente de: a. La carpeta asfáltica b. La base granular c. La sub base granular d. La sub rasante	 32. Cuando las fisuras en los pavimentos asfálticos están bien abiertas (más de 3mm), el tratamiento más adecuado para ellas es: a. Sellarlas con acanalamiento previo b. No hacer nada c. Cubrir toda la carpeta con un sello que puede ser de áridos por riego, o de un micropavimento d. Poner una carpeta gruesa sobre el pavimento con fisuras
33. Al elaborar un modelo para análisis estructural de pavimentos flexibles, la metodología más común es la de: a. Estructura de capas múltiples superpuestas, que sean homogéneas, isotrópicas, e infinitas en el plano horizontal b. Estructuras de elementos finitos (sus características pueden variar de un elemento a otro) c. Estructuras combinadas de capas superpuestas y elementos finitos.	34. La falla por fatiga de abajo hacia arriba que más se observa en pavimentos asfálticos, se la conoce como: a. Piel de cocodrilo b. Fisura de bloque c. Fisura transversal d. Desprendimientos
 35. "Z_R" en la ecuación AASHTO, es un término que representa: a. El porcentaje de variación inherente a todas las variables aleatorias en el proceso b. La varianza de todas las variables aleatorias inherentes al proceso. c. La confiabilidad o margen de seguridad que queremos darle al diseño d. La desviación estándar normalizada de todas las variables aleatorias inherentes al proceso 	