

ESCUELA SUPERIOR POLITECNICA DEL LITORAL "ESPOL"

EXAMEN DE MEJORAMIENTO

Guayaquil, 07 de febrero del 2013

Nombre del	Estudiante:			
1. Dispositive energía es:	vo que convierte energí	a electrica de un nivel de	e voltaje AC a otro nivel de v	oltaje AC, manteniendo practicamente la
	a) Motor	b) Generador	c) transformador	d) Paneles Solares
2. Grafiq	ue el circuito equivalent	te de un motor DC en de	rivación (Ubicar las variables	en el grafico I _A , I _F , I _L , V _T , E _A , R _A R _F , L _S)

3. Se requiere determinar las impedancias del circuito equivalente de un transformador de 15kVA, 7620/240, 60Hz. Las pruebas de circuito abierto y cortocircuito se hicieron en el lado del primario del transformador y arrojaron los siguientes resultados: (obtener fpoc, fpcc, R_C, X_M, Req, Xeq) → vale 3 puntos

Circuito	Abierto	Cortocircuito		
Voc		Vcc	850	
Ioc	0.6A	Icc		
Poc	870W	Pcc	1400W	

$$fpoc = \frac{Poc}{Voc * Ioc} \qquad fpcc = \frac{Pcc}{Vcc * Icc}$$

$$Y_E = \frac{1}{Rc} + j\frac{1}{X_M} = \frac{Ioc}{Voc} \angle -\cos^{-1}(fpoc)$$

$$Z_{SE} = \text{Re } q + jXeq = \frac{Vcc}{Icc} \angle \cos^{-1}(fpcc)$$

Un motor de inducción de 208 V, 4 polos de 60Hz conectado en delta, tiene un deslizamiento de 7% a plena carga, y tiene las siguientes cargas, $X1=1.4~\Omega$ $X2=0.5~\Omega$ $XM=30~\Omega$ $R1=0.7~\Omega$ $R2=0.2~\Omega$

$$Z_{2} = \frac{R_{2}}{s} + jX_{2}$$

$$Z_{f} = \frac{1}{\frac{1}{jX_{M}} + \frac{1}{Z_{2}}}$$

$$Z_{tot} = Z_{stat} + Z_{f}$$
4. Cual es su factor de potencia y su eficiencia?
$$Z_{f} = \frac{1}{\frac{1}{jX_{M}} + \frac{1}{Z_{2}}}$$

$$Z_{tot} = Z_{stat} + Z_{f}$$

$$\begin{aligned} P_{entrada} &= \sqrt{3} * V_T * I_L * \cos \theta \\ P_{SCL} &= 3 * I_1^2 * R_1 \\ P_{AG} &= P_{entrada} - P_{SCL} \\ P_{conv} &= (1 - s) * P_{AG} \\ P_{salida} &= P_{conv} - P_{rot} \end{aligned}$$

5. Grafique el diagrama fasorial de un generador sincrono en adelanto (ubicar I_A , I_AR_A , V_{Φ} , E_A , jX_SI_A)