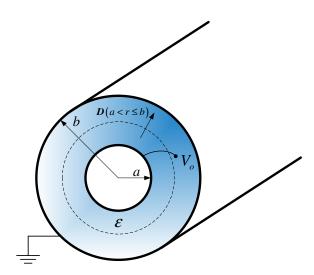
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL TEORÍA ELECTROMAGNÉTICA I

ING. JORGE FLORES MACÍAS ()
ING. ALBERTO TAMA FRANCO (✓)

PRIMERA EVALUACIÓN			Fecha: martes 1°. de julio del 2014		
Alumno:					
	Resumen de	Calificaciones			
Estudiante	Examen	Deberes	Lecciones	Total Primera Evaluación	

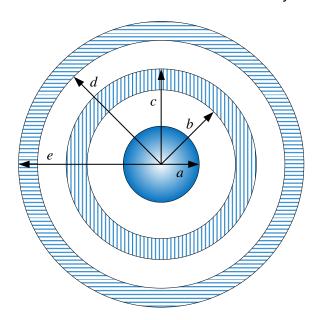

La solución de la presente evaluación, puede ser revisada en:

http://www.slideshare.net/albertama/te1pe20141s

Primer Tema:

Tal como se muestra en la siguiente figura, el espacio entre los conductores de un capacitor cilíndrico coxial, de radio interior a y exterior b, donde b > a, se encuentra ocupado por poliestireno (material dieléctrico), cuya permitividad absoluta y fortaleza dieléctrica se especifican en la tabla que se muestra a continuación.

- a) Determinar el valor de a que permita obtener el máximo voltaje V_0 a ser aplicado.
- b) Obtener el máximo voltaje V_0 (voltaje de ruptura) que puede soportar el mencionado capacitor antes de que se produzca el daño al dieléctrico del mismo.
- c) Esquematizar el comportamiento del voltaje V_0 versus el radio a.

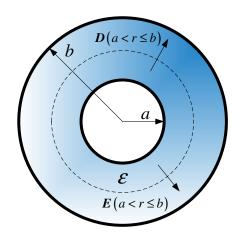


Dieléctrico			
Permitividad $arepsilon$	$2.56 \ \varepsilon_0 \ [F/m]$		
Fortaleza dieléctrica	$K = 20 \left[MV/m \right]$		
a = ?	b = 7 [mm]		

Segundo Tema:

En el espacio vacío, considere la existencia de tres conductores esféricos concéntricos, tal como se muestra en la siguiente figura. Asuma que las cargas eléctricas, contenidas en la esfera de radio a y en la concha esférica externa, de radio interior d y exterior e, tienen un valor de Q_1 y Q_3 , respectivamente; y que sus respectivos potenciales son iguales; es decir que $V_1 = V_3$. Bajo estas circunstancias:

- a) Determinar la carga eléctrica Q_2 de la concha esférica interior; es decir, de la concha esférica de radio interior b y exterior c.
- b) Hallar el potencial eléctrico V_1 de la esfera de radio a.
- c) Encontrar el potencial eléctrico V_2 de la concha esférica interior; es decir, de la concha esférica de radio interior b y exterior c.



$$a = 30 \ [mm]$$
 $b = 50 \ [mm]$
 $c = 60 \ [mm]$ $d = 90 \ [mm]$
 $e = 100 \ [mm]$
 $Q_1 = 2 \ [nC]$ $Q_3 = -2 \ [nC]$
 $V_1 = V_3$
 $Q_2 = ?$ $V_1 = ?$ $V_2 = ?$

Tercer Tema:

Un capacitor esférico con electrodos de radios "a" y "b", donde b>a, es llenado con un dieléctrico no homogéneo cuya permitividad $\varepsilon(r)$ es una función de la distancia "r" medida desde el centro del capacitor. Dado que la permitividad sobre el electrodo interno tiene un valor de ε_a determine entonces:

- a) $\varepsilon(r)$ de tal manera que la intensidad del campo eléctrico sea la misma en todos los puntos.
- b) Represente el comportamiento de dicha permitividad, graficando $\varepsilon(r)$ vs r.
- c) Obtenga la expresión de la capacitancia de dicho capacitor y las distribuciones de cargas de polarización.

