ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Programa de Tecnología en Mecánica

PROYECTO DE GRADUACIÓN

Previa Obtención del Título en:

TECNÓLOGO EN PLÁSTICOS

TEMA

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas Inyectoras de Termoplásticos"

AUTORES
DIEGO ALONSO MITE VILLACRES
HAMILTON STIVEN MERA MONTES

GUAYAQUIL-ECUADOR AÑO: 2015 **AGRADECIMIENTOS**

Mi infinito agradecimiento a Dios quien nos ha guiado y nos ha dado la

fortaleza para seguir adelante.

A los directivos de la Escuela Superior Politécnica del Litoral y en especial a los

docentes que forman parte del Programa de Tecnología en Mecánica, al

Tecnlg. Luis Vargas Ayala por brindarnos su apoyo incondicional y su

colaboración día a día permitiéndonos la culminación del presente proyecto de

grado.

Queremos dar las gracias a la empresa Plásticos Industriales C.A (PICA), por

permitirnos la oportunidad de realizar nuestro proyecto de grado en dicha

empresa, en especial a los Ingenieros Ricardo Aguilera Director de Planta de

Inyección, Juan Suescum Gerente de Producción y a la Licenciada Susana

Monge Gerente de Gestión Humana.

También quiero agradecer de manera muy especial a nuestros compañeros y

amigos y maestros, al Sr. Luis Icaza por sus consejos, enseñanzas,

profesionalismo y por todo lo que se aprendió durante este proceso.

Conocimiento que nos permitió aumentar de manera considerable para llegar

hacer ahora un especialista en el proceso de inyección.

A todos ellos, muchas gracias

Mite Villacres Diego Alonso

Mera Montes Hamilton Stiven

Ш

DEDICATORIA

El presente trabajo lo dedicamos muy cariñosamente a las personas que nos

ayudaron hacer realidad este proyecto en especial a nuestros profesores por

transmitirnos sus valiosos conocimientos durante nuestro proceso académico,

a nuestros padres, quienes nos brindaron su apoyo, valores y por su

motivación incondicional permanente que nos empujaron a ser persona de

bien, pero más que nada, por su paciencia y amor.

Mite Villacres Diego Alonso

Mera Montes Hamilton Stiven

IV

TRIBUNAL DE SUSTENTACIÓN

Tecnlg. Luis Vargas Ayala Director

Tecnlg. Miguel Pisco López
Vocal principal del Tribunal de sustentación

D E4		Š NI – N	DD 5 0.4	
DEC	CLARACIÓ	ON EX	PRESA	
La responsabilidad del corresponde exclusivame ESCUELA SUPERIOR PC	nte y el pa	atrimonio	intelectual del	
Mita Villagras Diago Alan	_		Mera Montes Ha	amiltan Stivan
Mite Villacres Diego Alons	SU		iviera iviontes H	amilion Stiven

RESUMEN

El presente proyecto se realizó en una empresa procesadora de plástico ubicada en la ciudad de Guayaquil, enfocada especialmente en el campo de la inyección de termoplástico; aquí se ha observado que las máquinas inyectoras modernas permiten su regulación desde una pantalla o panel de control para de esta manera incrementar la productividad; pero en cuanto a su manejo o regulación los operarios no tiene inicialmente ningún conocimiento de cómo realizarlo.

Todo esto originará que el operario aprendan de forma empírica sobre la operación y funcionamiento de la máquina inyectora; al pasar los años crean su propia forma de maniobrar el equipo, utilizando ciertos artificios para obtener el producto final, lo que origina largos tiempo de arranque de máquinas, altos volúmenes de scrap y riesgos en la calidad del artículo lo cual se verá reflejado en los indicadores de producción de la empresa.

Durante la aplicación de este método matemático, fácil y sencillo se dará mucho énfasis en obtener un óptimo arranque de máquinas inyectoras, una mejor calidad del producto, reducir el tiempo ciclo y el volumen de scrap producido por regulación de máquina.

Para poder aplicar este método se realizaron fichas técnicas las cuales sirvieron para tomar datos de regulaciones y tiempos de arranque de máquina de los 8 moldes seleccionados en los que se realizará un análisis de la fuerza de cierre, velocidad y presiones de prensa, gramaje de inyección, temperatura de barril, presión y velocidad de inyección y tiempo de enfriamiento.

Después de haber analizado todos estos parámetros se calculará cada una de las variables analizadas anteriormente, aplicando un método sistemático y sencillo para poder programar correctamente las máquinas. Después se realizarán las pruebas respectivas en las máquinas inyectoras de termoplástico trabajando en paralelo con el operador de máquina cuando se esté haciendo un arranque de la misma.

Una vez determinados los cálculos de cada una de las variables del proceso de inyección se procederá a realizar las pruebas respectivas en la máquina inyectora de termoplástico, trabajando en paralelo con el operador de máquina cuando se esté haciendo un arranque de ella.

Finalmente se realizará un análisis de cada uno de los resultados obtenidos por la aplicación de este método, para luego ver las ventajas que se obtiene en relación a los tiempos de arranque de máquina y SCRAP producido (por unidades malas) por los ajustes aleatorios vs ajustes óptimos.

ÍNDICE

AGRADECIMIENTO	III
DEDICATORIA	IV
TRIBUNAL DE SUSTENTACIÓN	V
DECLARACION EXPRESA	VI
RESUMEN	VII
ÌNDICE GENERAL	IX
TABLAS	XIV
FIGURAS	XIX
CAPÍTULO 1	
PRESENTACIÓN DEL PROYECTO	
1.1. Introducción	22
1.2. Antecedentes	23
1.3. Justificación	24
1.4. Objetivo	25
1.4.1. Objetivo general	25
1.4.2. Objetivos específicos	25

CAPÍTULO 2

PLANIFICACIÓN DEL PROYECTO

2.1. Plan de trabajo a realizar27
2.1.1. Primera fase27
2.1.2. Segunda fase27
2.1.3. Tercera fase28
2.1.4. Cuarta fase28
2.1.5. Quinta fase28
2.2. Diagrama de gantt29
CAPÍTULO 3
TOMA DE DATOS DE LOS 8 MOLDES SELECCIONADOS
3.1. Levantamiento de información de tiempos de arranque de máquinas3
3.2. Elaboración de ficha técnica de regulación de máquinas inyectoras34
3.3. Toma de los parámetros de regulación de máquinas inyectoras de
termoplástico35
3.3.1. Gaveta36
3.3.2. Cajoneta37
3.3.3. Ecopiso38
4.3.4. Techo de armario39
3.3.5. Casto

3.3.6. Tablero de mesa41
3.3.7. Canasta42
3.3.8. Pallet43
CAPÍTULO 4
ANÁLISIS Y REVISIÒN DE LOS DATOS OBTENIDOS
4.1. Funcionalidad del artículo vs materia prima45
4.2. Área proyectada del artículo vs fuerza de cierre63
4.3. El peso del artículo vs capacidad de inyección de máquina88
4.4. Material a inyectar vs temperatura del barril100
4.5. Presiones y velocidades de inyección vs llenado del articulo112
4.6. Tiempo de enfriamiento vs espesor del articulo125
CAPÍTULO 5
CALCULOS Y APLICACIÓN DE LOS PARAMETROS DE REGULACIÓN
PARA CADA UNO DE LOS MOLDES SELECCIONADOS
5.1. Gaveta133
5.2. Cajoneta141
5.3. Ecopiso149
5.4. Techo de armario157

5.5. Cesto
5.6. Tablero de mesa171
5.7. Canasta178
5.8. Pallet
CAPÍTULO 6
ANÁLISIS DE COSTO DE PRODUCCIÓN
6.1. Financiamiento194
6.2. Costos para la implementación del método técnico de inyección194
CAPÍTULO 7
ANÁLISIS DE RESULTADOS
7.1. Tiempo de arranque de máquinas inyectoras de termoplástico197
7.2. Tiempo ciclo
7.3. Scrap generado
7.4. Costos de producción209
CAPÍTULO 8
CONCLUSIONES Y RECOMENDACIONES
8.1. Conclusiones

8.2. Recomendaciones220
CAPÍTULO 9
ANEXOS
9.1. Archivos Fotográficos222
9.2. Regulación de los 8 moldes de inyección aplicando el método
matemático223
9.3. Bibliografía231

TABLAS

Tabla 3-1-1: Tiempos de regulación de máquina y scrap generado	33
Tabla 4-1-1: Funcionalidad de la gaveta vs materia prima	47
Tabla 4-1-2: Funcionalidad de la cajoneta vs materia prima	49
Tabla 4-1-3: Funcionalidad del ecopiso vs materia prima	51
Tabla 4-1-4: Funcionalidad del techo de armario vs materia prima	53
Tabla 4-1-5: Funcionalidad del cesto vs materia prima	55
Tabla 4-1-6: Funcionalidad del tablero de mesa vs materia prima	57
Tabla 4-1-7: Funcionalidad de la canasta vs materia prima	59
Tabla 4-1-8: Funcionalidad del pallet vs materia prima	62
Tabla 4-2-1: Resultado de análisis de relación de fuerza de cierre re	querida vs
máquina programada	86
Tabla 4-3-1: Análisis de relación diámetro del tornillo vs recorrido	98
Tabla 4-4-1: Temperaturas de materia prima	98
Tabla 4-4-2: Análisis de tiempo de residencia de la materia prima	dentro del
barril o cilindro	110
Tabla 4-5-1: Página de inyección de regulación del molde gaveta	115
Tabla 4-5-2: Página de inyección de regulación del molde cajoneta	116
Tabla 4-5-3: Página de inyección de regulación del molde ecopiso	117
Tabla 4-5-4: Página de inyección de regulación del molde techo de ar	mario .118

Tabla 4-5-6: Página de inyección de regulación del molde tablero de mesa122
Tabla 4-5-7: Página de inyección de regulación del molde canasta123
Tabla 4-5-8: Página de inyección de regulación del molde pallet124
Tabla 4-6-1: Tiempo de enfriamiento vs espesor del articulo129
Tabla 5-1: Duración de cada perfil
Tabla 5-2: Valores resultantes de velocidad
Tabla 5-3: Resultados de cálculos de los parámetros de la gaveta140
Tabla 5-4: Resultados de cálculos de los parámetros de la cajoneta148
Tabla 5-5: Resultados de cálculos de los parámetros del ecopiso156
Tabla 5-6: Resultados de cálculos de los parámetros del techo de armario
techo
Tabla 5-7: Resultados de cálculos de los parámetros del cesto170
Tabla 5-8: Resultados de cálculos de los parámetros del tablero de mesa177
Tabla 5-9: Resultados de cálculos de los parámetros de la canasta184
Tabla 5-10: Resultados de cálculos de los parámetros del pallet192
Tabla 6-2-1: Lista de costo195
Tabla 6-2-2: Costo total para la implementación195
Tabla 7-1-1: Tiempos de arranque de máquina198
Tabla 7-2-1: Tiempo ciclo de artículos198
Tabla 7-2-2: Comparación de parámetros de regulación de la gaveta200
Tabla 7-2-3: Análisis de productividad de la gaveta200

Tabla 7-2-4: Comparación de parámetros de regulación de la cajoneta20
Tabla 7-2-5: Análisis de productividad de la cajoneta20
Tabla 7-2-6: Comparación de parámetros de regulación del ecopiso202
Tabla 7-2-7: Análisis de productividad del ecopiso202
Tabla 7-2-8: Comparación de parámetros de regulación del techo de armario
203
Tabla 7-2-9: Análisis de productividad del techo de armario203
Tabla 7-2-10: Comparación de parámetros de regulación del cesto204
Tabla 7-2-11: Análisis de productividad del cesto204
Tabla 7-2-12: Comparación de parámetros de regulación del tablero de
mesa
Tabla 7-2-13: Análisis de productividad del tablero de mesa205
Tabla 7-2-14: Comparación de parámetros de regulación de la canasta200
Tabla 7-2-15: Análisis de productividad de la canasta206
Tabla 7-2-16: Comparación de parámetros de regulación del pallet207
Tabla 7-2-17: Análisis de productividad del pallet207
Tabla 7-3-1: Scrap generado por arranque de máquina208
Tabla 7-4-1: Análisis de producción de 1000 unidades de la gaveta210
Tabla 7-4-2: Análisis de rendimiento en 1000 unidades de la gaveta210
Tabla 7-4-3: Análisis de costos de producción de la gaveta210
Tabla 7-4-4: Análisis de producción de 1000 unidades de la caioneta21

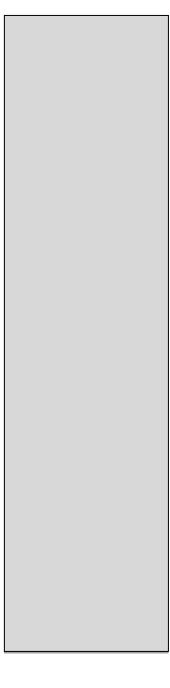

Tabla 7-4-5: Análisis de rendimiento en 1000 unidades de la cajoneta211
Tabla 7-4-6: Análisis de costos de producción de la cajoneta211
Tabla 7-4-7: Análisis de producción de 1000 unidades del ecopiso212
Tabla 7-4-8: Análisis de rendimiento en 1000 unidades del ecopiso212
Tabla 7-4-9: Análisis de costos de producción del ecopiso212
Tabla 7-4-10: Análisis de producción de 1000 unidades del techo de armario
213
Tabla 7-4-11: Análisis de rendimiento en 1000 unidades del techo de
armario213
Tabla 7-4-12: Análisis de costos de producción del techo de armario213
Tabla 7-4-13: Análisis de producción de 1000 unidades del cesto214
Tabla 7-4-14: Análisis de rendimiento en 1000 unidades del cesto214
Tabla 7-4-15: Análisis de costos de producción del cesto214
Tabla 7-4-16: Análisis de producción de 1000 unidades del tablero de
mesa
Tabla 7-4-17: Análisis de rendimiento en 1000 unidades del tablero de
mesa215
Tabla 7-4-18: Análisis de costos de producción del tablero de mesa215
Tabla 7-4-19: Análisis de producción de 1000 unidades de la canasta216
Tabla 7-4-20: Análisis de rendimiento en 1000 unidades de la canasta216

Tabla 7-4-21: Análisis de costos de producción de la canasta	216
Tabla 7-4-22: Análisis de producción de 1000 unidades del pallet	217
Tabla 7-4-23: Análisis de rendimiento en 1000 unidades del pallet	217
Tabla 7-4-24: Análisis de costos de producción del pallet	217

FIGURAS

Figura 3-1-1: Gaveta	45
Figura 3-1-2: Cajoneta	48
Figura 3-1-3: Ecopiso	50
Figura 3-1-4: Techo de armario	52
Figura 3-1-5: Cesto	54
Figura 3-1-6: Tablero de mesa	56
Figura 3-1-7: Canasta	58
Figura 3-1-8: Pallet	60
Figura 3-2-1: Área proyectada de la gaveta (2400 cm2)	64
Figura 3-2-2: Plano de la gaveta	65
Figura 3-2-3: Área proyectada de la cajoneta (3844 cm2)	67
Figura 3-2-4: Plano de la cajoneta	68
Figura 3-2-5: Área proyectada del ecopiso (2400 cm2)	70
Figura 3-2-6: Plano del ecopiso	71
Figura 3-2-7: Área proyectada del techo de armario (3150 cm2)	73
Figura 3-2-8: Plano del techo de armario	73
Figura 3-2-9: Área proyectada del cesto (704 cm2)	75
Figura 3-2-10: Plano del cesto	75
Figura 3-2-11: Área proyectada del tablero de mesa (3364 cm2)	77

Figura 3-2-12: Plano del tablero de mesa78
Figura 3-2-13: Área proyectada de la canasta (3364 cm2)80
Figura 3-2-14: Plano de la canasta81
Figura 3-2-15: Área proyectada del pallet (12000 cm2)83
Figura 3-2-16: Plano del pallet84
Figura 3-5-1: Artículo corto119
Figura 3-5-2: Articulo con quemaduras121
Figura 3-5-3: Articulo con rechupe122
Figura 9-1-1: Supervisión del método técnico de inyección por parte del tutor
tecnlg Luis Vargas228
Figura 9-2-1: Inspección de calidad de los artículos invectados228

<u>CAPÍTULO 1</u> PRESENTACIÓN DEL PROYECTO

1. PRESENTACIÓN DEL PROYECTO

1.1 INTRODUCCIÓN

En las empresas ecuatorianas dedicadas a la fabricación de artículos plásticos se observa un problema fundamental en los largos tiempos de arranque o regulación de máquinas inyectoras de termoplásticos para un proceso productivo en general, debido a que estaría de una forma empírica, realizándose ajustes aleatorios por parte del operador de máquina.

Esta situación genera altos volúmenes de scrap y riesgos en la calidad de un producto o artículo manufacturado, lo cual se verá reflejado en los indicadores de producción de la empresa.

Ante esta situación se plantea el proyecto de optimizar el proceso de inyección con respecto a los parámetros de regulación, mediante la aplicación de un método que permita al trabajador operar de forma correcta y tener además una fuente de apoyo que le ayude a tener un mejor desempeño en su trabajo.

PROTMEC Página # 22 ESPOL

1.2. ANTECEDENTES

En la actualidad en las industrias ecuatorianas procesadoras de plásticos, específicamente en el campo de la inyección, se observan máquinas inyectoras de termoplásticos modernas debido a los constante avances tecnológicos que permiten regular la máquina desde una pantalla o panel de control para, de esta manera, incrementar su productividad; pero en cuanto a su manejo o calibración no existe en el Ecuador un instituto que esté capacitando para su manejo.

Debido a esta situación los operarios aprenden de forma empírica sobre la operación y funcionamiento de la máquina inyectora; al pasar los años crean su propia forma de maniobrar el equipo utilizando ciertos artificios para obtener el producto final. Además de esto no se tiene una fuente de información que ayude de forma rápida a la digitación de los parámetros de inyección después de cada molde y especialmente en el arranque de máquina cuando más se necesita que un artículo salga en buen estado y en el menor tiempo posible.

Para conseguir la elaboración de piezas de buena calidad, no sólo se debe contar con el molde, la máquina y el material adecuado, sino también se debe tener un modelo para optimizar la regulación de los parámetros de inyección ya que las máquinas inyectoras juegan un papel clave en la rentabilidad de la empresa

PROTMEC Página # 23 ESPOL

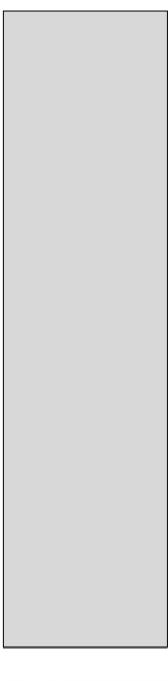
"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas Invectoras de Termoplásticos"

1.3. JUSTIFICACIÓN

La metodología propuesta en esta tesina busca reducir los largos tiempos de arranque de máquinas y scrap generado durante la regulación, ya que con este método se logrará que todo el personal de planta programe una máquina inyectora de termoplástico de manera idéntica. Así, de esta manera, se obtendrán valiosos beneficios para la empresa como es el hecho de aprovechar mejor el recurso humano, prolongar la vida útil de nuestros equipos (máquinas inyectoras y moldes) y sobre todo generar mejores ganancias.

PROTMEC Página # 24 ESPOL

1.4. OBJETIVO


1.4.1. OBJETIVO GENERAL

Obtener un óptimo arranque de máquinas inyectoras, una mejor calidad del producto, reducir el volumen de scrap producido por regulación de máquina y aprovechar mejor el recurso humano para que, con todas estas mejoras la empresa tenga más posibilidades de competir en el mercado cumpliendo así con los altos estándares de calidad y requerimientos internacionales.

1.4.2. OBJETIVOS ESPECÍFICOS

- Reducir los largos tiempos de arranque de las máquinas inyectoras por medio de la aplicación de un método matemático, fácil y sencillo que ayude de forma rápida a la digitación de los parámetros de inyección.
- Reducir los altos volúmenes de SCRAP producidos por regulación de máquina mediante la aplicación de un método sencillo, rápido y seguro.
- Reducir el tiempo de ciclo de los artículos mediante la aplicación de este método

PROTMEC Página # 25 ESPOL

CAPÍTULO 2 PLANIFICACIÓN DEL PROYECTO

2. PLANIFICACIÓN DEL PROYECTO

2.1. PLAN DE TRABAJO A REALIZAR

La metodología de trabajo utilizada para el desarrollo del proyecto será mejorar la regulación de las máquinas inyectora de termoplástico y lograr los objetivos antes mencionados, se dividieron en cinco fases las cuales se detallan a continuación.

2.1.1. PRIMERA FASE

Elaboración de fichas técnica y levantamiento de información

En esta fase se procederá a realizar una ficha técnica para poder tomar los parámetros de regulación de máquinas inyectoras de una media de 8 artículos (moldes), con el fin de tener los datos antes de que se realice la mejora para comparaciones futuras.

2.2.2. SEGUNDA FASE

Análisis y revisión de los datos obtenidos

En esta fase se realizará el análisis respectivo de los 8 moldes seleccionados en los cuales se determinará lo siguiente:

- Análisis de materia prima vs Funcionalidad del artículo
- Fuerza de cierre vs Área proyectada del artículo
- Gramaje de inyección vs Peso del artículo
- Temperatura del barril vs Materia prima a inyectar
- Presión y velocidad de inyección vs llenado del artículo
- Tiempo de enfriamiento vs Espesor del artículo

PROTMEC Página # 27 ESPOL

2.2.3. TERCERA FASE

Cálculos de los parámetros de regulación o reglaje

En esta fase se procederá a calcular a cada uno de los moldes seleccionados los parámetros de regulación mediante la aplicación de un método sistemático y sencillo para poder programar correctamente.

2.2.4. CUARTA FASE

Pruebas en las máquinas inyectora aplicando un método matemático, fácil y sencillo.

Una vez determinado los cálculos de cada una de las variables del proceso de inyección se procederá a realizar las pruebas respectivas en la máquinas inyectora de termoplástico, trabajando en paralelo con el operador de máquina cuando se esté haciendo un arranque de la misma, específicamente en el momento que se esté esperando que la máquina alcance la temperatura programada en el barril, aprovecharemos este tiempo para realizar el cálculo respectivo para aplicar el método de inyección.

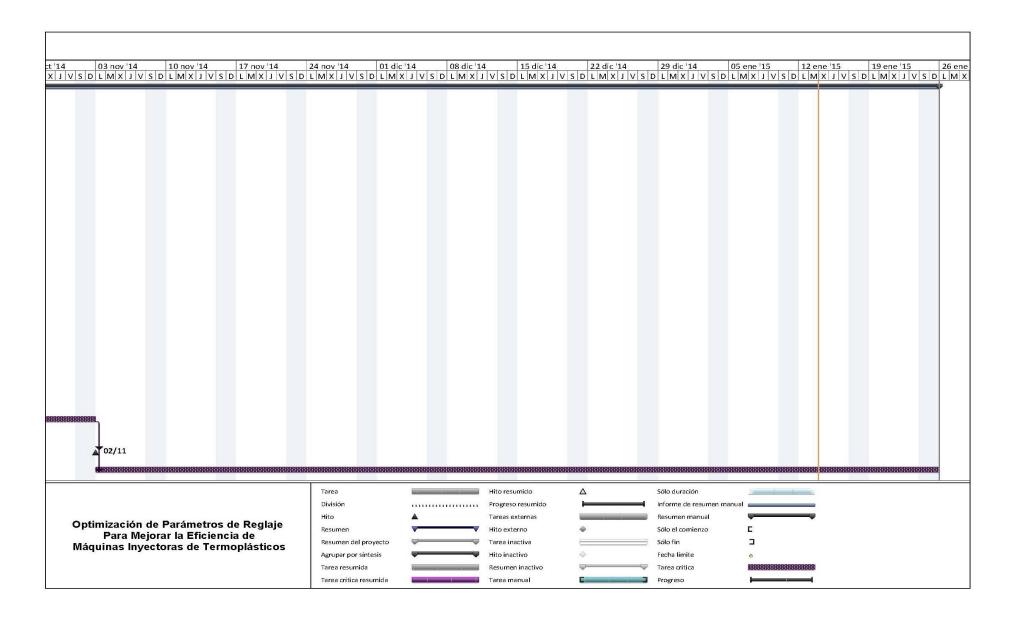
2.2.5. QUINTA FASE

Análisis de resultados obtenidos

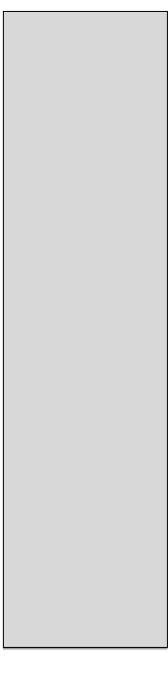
Luego de haber culminado con las pruebas se procederá a realizar un análisis de los resultados obtenidos por la aplicación de este método. Para luego proceder analizar las ventajas que se obtiene en relación a los tiempos de arranque de máquina y scrap producido (por unidades malas) por los ajustes aleatorios vs ajustes óptimos.

PROTMEC Página # 28 ESPOL

2.2.6. DIAGRAMA DE GANTT


PROTMEC Página # 29 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas Inyectoras de Termoplásticos"


jul '14 M X J V S	04 ago '14	11 ago '14	18 ago '14 D L M X J V S	25 ago '14 0	1 sep '14	p '14	22 sep '14 S D L M X J V	29 sep '14 S D L M X J V S D	06 oct '14	13 oct '14 2	0 oct '14 27 c
	,=,=,,,,,,,,=,=,=,										
27/07											
88888888888											
			17/08								
			400000000000000000000000000000000000000]		
								à	05/10		
				Tarea		Hito resumido	Δ	Sólo duración			
				División Hito		Progreso resumido Tareas externas		Informe de resumen manua Resumen manual		; ;	
Opt	imización de Para Meior	Parámetros de ar la Eficiencia	Reglaje de	Resumen	▼ 	Hito externo	*	Sólo el comienzo	С		
Mác	uinas Inyect	oras de Termo	plásticos	Resumen del proyecto		Tarea inactiva	<u> </u>	Sólo fin	-		
				Agrupar por síntesis Tarea resumida		Hito inactivo Resumen inactivo	<u> </u>	Fecha limite Tarea crítica		1	
				Tarea crítica resumida		Tarea manual	-	Progreso	······································		

PROTMEC Página # 30 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas Inyectoras de Termoplásticos"

PROTMEC Página # 31 ESPOL

CAPÍTULO 3 TOMA DE DATOS DE LOS 8 MOLDES SELECCIONADOS

3. TOMA DE DATOS DE LOS 8 MOLDES SELECCIONADOS

4.1. LEVANTAMIENTO DE INFORMACIÓN DE TIEMPOS DE ARRANQUES DE MÁQUINAS INYECTORAS DE TERMOPLÁSTICO.

Se realizó una toma de tiempo al pie de las máquinas de cada uno de los 8 moldes seleccionados como se puede observar en la tabla 3-1-1 mostrada a continuación en donde se detalla las máquinas, la hora de inicio y final de la actividad que realizo el regulador, las unidades malas que se generaron, el peso y los defectos que se presentaron en el proceso hasta obtener el artículo inyectado y en óptimas condiciones.

							SCRAP GENERADO		
N	l°	MAQUINA	MOLDE	INICIO DE ACTIVIDAD	FIN DE ACTIVIDAD	DURACIÓN	CANTIDAD	PESO C/U (KG)	DEFECTO
	1	800 TON	Gaveta	10h00	11h00	1h	28	2,0	Artículos Cortos y con Rebabas
	2	1000 TON	Cajoneta	08h00	08h50	0h50'	22	3,0	Artículos con Remarcaciones y Deformaciones
:	3	780 TON	Ecopiso	11h00	12h00	1h	18	2,7	Artículo con Deformaciones y Rebabas
	4	800 TON	Techo de Armario	09h30	10h40	1h10'	24	1,6	Artículo con Deformaciones y Linea de Flujo
	5	468 TON	Cesto	14h00	15h30	1h30'	45	0,46	Artículo Cortos e Incompletos
	6	700 TON	Tablero de Mesa	10h00	10h50	0h50'	20	1,4	Artículos con Mancha de Gases y Rechupes
	7	800 TON	Canasta	13h00	14h00	1h	35	0,93	Artículos con Linea de union y Remarcaciones
[8	2800 TON	Pallet	11h00	12h20	1h20'	15	15,0	Artículos con Exceso de Rebabas y cortos

Tabla 3-1-1: Tiempos de regulación de máquina y scrap generado

PROTMEC Página # 33 ESPOL

3.2. ELABORACIÓN DE FICHA TÉCNICA DE REGULACIÓN DE MÁQUINAS INYECTORAS.

Para el desarrollo de este proyecto se elaboró una ficha técnica para proceder a registrar los datos de los parámetros de regulaciones de máquinas Inyectoras de Termoplástico sobre los 8 moldes seleccionados.

En esta ficha técnica se detallan lo siguiente;

- Tonelaje de cierre
- Capacidad de máquina
- Datos del molde
- Peso del artículo
- Tiempo ciclo
- Parámetros de regulación.

En los parámetros de regulación se detalla cada variable necesaria para la calibración del grupo inyector y grupo de prensa de una máquina inyectora de termoplástico como:

- Ajuste de Prensa
- Ajuste de Carga (los perfiles de posición, presión, velocidades, contrapresión y descompresión)
- Ajuste de Temperaturas del Barril
- Ajuste de Inyección (los perfiles de la primera y segunda presión de inyección)

PROTMEC Página # 34 ESPOL

3.3 TOMA DE LOS PARAMETROS DE REGULACIÓN DE MÁQUINAS INYECTORAS DE TERMOPLÁSTICOS.

Se adjunta hojas de datos de las regulaciones de los 8 moldes sin método:

- 1. Gaveta
- 2. Cajoneta
- 3. Ecopiso
- 4. Techo de armario
- 5. Cesto
- 6. Tablero de mesa
- 7. Canasta
- 8. Pallet

PROTMEC Página # 35 ESPOL

3.3.1. **GAVETA**

				FICHA TECN	IICA			
				.JIA ILON				
FICHA TECNICA DE RE		AQUINA	AMATERIAL	POLIETILENO		FFCUA :	4.4/02/204.4	
MAQUINA: GRAMAJE:	800 TON 4800 GRAMOS		MATERIAL: COLOR:	BEIGE		FECHA: PESO ESTANDAR:	14/03/2014 2048 GRAMOS	
MOLDE:	GAVETA					PESO REAL:	2080 GRAMOS	
REFERENCIA:	07 - 2013					CICLO ESTANDAR:	80 SEGUNDOS	
CAVIDADES:	1					CICLO REAL: REALIZADO POR:	80 SEGUNDOS ANDRES	
						REALIZADO POR.	ANDRES	
GRUPO DE PRENSA:								
MAX PRESION DE CIERRE: 14		DISTANCIA ENTRE		_	AREA PROYECTADA:	371 PULG ²	FUERZA DE CIERRE:	
ABRIR MOLDE ABRIR # 1	POS. INICIAL (MM)	PRESION (BAR) 40	VELOCIDAD (%) 40	-	CERRAR MOLDE CERRAR #1	POS. INICIAL (MM)	PRESION (BAR) 50	VELOCIDAD (%) 50
ABRIR # 2	100	25	20	-	CERRAR #2	980	140	90
ABRIR # 3	180	35	35		CERRAR #3	250	140	99
ABRIR # 4	500	30	30		PROTECION	30	20	20
ABRIR # 5	750	22	22	_	PRESION ALTA:	10	140	50
LIMITE	860							
SISTEMA DE ALIMENT	racion:				TEMPERATURA DEI	L PROCESO:		
CARGA:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%) - RPM	CONTRA PRESIÓN		S DEL BARRIL (°C):	1	
CARGA #1	47	50	50	6	ZONA #1	230	ZONA #8	
CARGA #2 CARGA #3	100 140	60 60	52 55	6 7	ZONA #2 ZONA #3	280 280	ZONA #9 ZONA #10	
CARGA #4	150	60	52	6	ZONA #3 ZONA #4	280	ZONA #10 ZONA #11	
CARGA LIMITE:	232	50	50	6	ZONA #5	280	ZONA #12	
				7	ZONA #6	230		
DESCOMPRESION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	TIEMPO	ZONA #7	195	-	
	230	48	48	1	ZONA #8		J	
SISTEMA DE EXPULSI	ION				SISTEMA DE CORE			
EXPULSION (OUT)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	7	NOYOS	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (SEG
EXPULSION #1	(,	5	5		NOYOS A IN	99	99	860
EXPULSION #2	1	5	5		NOYOS A OUT	70	70	135
EXPULSION LIMITE	7			_	NOYOS B IN			
					NOYOS B OUT NOYOS C IN			
					NOYOS C IN NOYOS C OUT			
				_		!	1	1
EXPULSION (IN)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		MODO EXPULSION:	_		
EXPULSION #1		60	65	4	DESACTIVADO:	· ·	CONTINUO:	
EXPULSION #2 EXPULSION LIMITE	7	60	65	1	ADELANTE (ASIM) :	Х	VIBRACION: MULTIPLE:	GOLPES#
								1000000
GRUPO DE INYECCION	t							
INYECCION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		SEGUNDA PRESION	PRESION (BAR)	VELOCIDAD (%)	TIEMPO (SEGUNDOS)
INYECCION #1		100	99		PRESION POST #1	40	40	2
INYECCION #2 INYECCION #3	170 120	100 100	99 99	-	PRESION POST #2 PRESION POST #3			
	90	100	99	1	FRESION FOST #3		!	!
INTECCION #4		100	99		COJIN	0	7	
INYECCION #4 INYECCION #5	40	100						
		100	99			T		
INYECCION #5	40		99			POR POSICION POR PRESION	X TIEMPO	POR TIEMPO 18 SEG
INYECCION #5 LIMITE:	40 25		99			POR POSICION POR PRESION	X TIEMPO	POR TIEMPO 18 SEG
INYECCION #5 LIMITE:	40 25		99					
INYECCION #5 LIMITE:	40 25		99					
INYECCION #5 LIMITE: DETAILES ESPECIALI TEMPERATURA DEL EQUIPO	40 25		99 20NA#3	ZONA #4	ZONA #5			
INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE	40 25 ES: DE CALEFACION: ZONA#1	ZONA #2	ZONA #3			POR PRESION ZONA #6	ZONA #7	18 SEG ZONA #8
INYECCION #5 LIMITE: DETALLES ESPECIALI TEMPERATURA DEL EQUIPO	40 25 ES1 DE CALEFACION:	100		ZONA #4 20	ZONA #5 18,6	POR PRESION	TIEMPO	18 SEG
INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C)	40 25 ES: DE CALEFACION: ZONA#1	ZONA #2	ZONA #3			POR PRESION ZONA #6	ZONA #7	18 SEG ZONA #8
INVECCION #5 LIMITE: DETALLES ESPECIALI TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE	40 25 ES1 DE CALEFACION: ZONA #1 20	20NA #2	ZONA #3 20	20	18,6	POR PRESION ZONA #6 18,6	ZONA #7 24,6	20NA#8
INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C)	40 25 ES1 DE CALEFACION: ZONA #1 20	20NA #2	ZONA #3 20	20	18,6	POR PRESION ZONA #6 18,6	ZONA #7 24,6	20NA#8
INVECCION #5 LIMITE: DETALLES ESPECIALI TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C)	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA#2	ZONA #3 20	20	18,6	POR PRESION ZONA #6 18,6	ZONA #7 24,6	20NA#8
INVECCION #S LIMITE: DETALLES ESPECIALI TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA#2	ZONA #3 20	20	18,6	POR PRESION ZONA #6 18,6	ZONA #7 24,6 ZONA #15	20NA#8 40 20NA#16
INYECCION #S LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA#2	ZONA #3 20	20	18,6	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6	20NA#8 40 20NA#16
INYECCION #S LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA#2	ZONA #3 20	20	18,6	POR PRESION ZONA #6 18,6	ZONA #7 24,6 ZONA #15	20NA#8 40 20NA#16
INVECCION #5 LIMITE: DETALLES ESPECIALI TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA#2	ZONA #3 20	20	18,6	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA#8 40 20NA#16
INVECCION #S LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA#2	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA#8 40 20NA#16
INYECCION #S LIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA#2	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA#8 40 20NA#16
INYECCION #S LIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA#2	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA#8 40 20NA#16
INVECCION #5 LIMITE: DETALLES ESPECIALI TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA#2	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA#8 40 20NA#16
INYECCION #S LIMITE: DETALLES ESPECIALI TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA #10	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA#8 40 20NA#16
INYECCION #S LIMITE: DETALLES ESPECIALI TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (18+2)	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA #10	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA#8 40 20NA#16
INYECCION #S LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (18+2) CIERRA PRENSA	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA #10	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA #8 40 ZONA #16
INVECCION #5 LIMITE: DETALLES ESPECIAL! TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (18+2)	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA #10	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA #8 40 ZONA #16
INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (18+2) CIERRA PRENSA	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA #10	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA #8 40 ZONA #16
INYECCION #S LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (18+2) CIERRA PRENSA	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA #10	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA#8 40 20NA#16
INVECTION #S LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (18+2) CIERRA PRENSA	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA #10	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA #8 20NA #16
INVECTION #S LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (18+2) CIERRA PRENSA	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA #10	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA #8 20NA #16
INVECTION #S LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (18+2) CIERRA PRENSA	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA #10	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA #8 20NA #16
INVECTION #S LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (18+2) CIERRA PRENSA	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA #10	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA #8 20NA #16
INVECTOON #5 LIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (18+2) CIERRA PRENSA	40 25 DE CALEFACION: 20NA #1 20 20NA #9	20NA #10	ZONA #3 20 ZONA #11	20	18,6 ZONA #13	ZONA#6 20NA#6 20NA#14	ZONA #7 24,6 ZONA #15	20NA #8 20NA #16

3.3.2. CAJONETA

				FICHA TEC	CNICA			
PIOUS TROUBLES	PAIN 101011 PT **	ACHINA						
FICHA TECNICA DE RI MAQUINA: GRAMAJE: MOLDE: REFERENCIA: CAVIDADES:	1000 TON 4200 GRAMOS CAJONETA 916 1	AQUINA	MATERIAL: COLOR:	POLIPROPILENO BLANCO		FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO REAL: REALIZADO POR:	24/01/2014 3020 GRAMOS 2914 GRAMOS 120 SEGUNDOS 120 SEGUNDOS ALVARADO	
GRUPO DE PRENSA:								
MAX PRESION DE CIERRE: 1	40 BAR	DISTANCIA ENTRE	PLACAS: 1017 MM		AREA PROYECTADA:	576 PULG ²	FUERZA DE CIERRE:	1152 TON
ABRIR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		CERRAR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)
ABRIR # 1 ABRIR # 2	50	35 65	20 65		CERRAR #1 CERRAR #2	990	35 95	40 85
ABRIR # 3	200	85	85		CERRAR #3	400	95	85
ABRIR # 4 ABRIR # 5	800 980	85 68	85 68	-	PROTECION PRESION ALTA:	60 25	35 140	35 60
LIMITE	1017				THE STORY TETT			3.0
SISTEMA DE ALIMENT	TACION:				TEMPERATURA DEL I	PROCESO:		
CARGA:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%) - RPM	CONTRA PRESIÓN	TEMPERATURA	S DEL BARRIL (°C):	٦	
CARGA #1		67	67	7	ZONA #1	200	ZONA #8	
CARGA #2	150	67	67	8 -	ZONA #2	230	ZONA #9	+
CARGA #3 CARGA #4	250 355	67	67	7	ZONA #3 ZONA #4	250 260	ZONA #10 ZONA #11	
CARGA LIMITE:	555				ZONA #5	250	ZONA #12	
				_	ZONA #6	200		
DESCOMPRESION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	TIEMPO	ZONA #7	155	_	
	4	25	25	-	ZONA #8			
SISTEMA DE EXPULS	ION				SISTEMA DE CORE			
EXPULSION (OUT)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		NOYOS	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (SE
EXPULSION #1				_	NOYOS A IN			
EXPULSION #2 EXPULSION LIMITE				_	NOYOS A OUT NOYOS B IN			
	1				NOYOS B OUT			
					NOYOS C IN			
					NOYOS C OUT			
EXPULSION (IN)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		MODO EXPULSION:			
EXPULSION #1					DESACTIVADO:		CONTINUO:	
EXPULSION #2 EXPULSION LIMITE				_	ADELANTE (ASIM) :		VIBRACION: MULTIPLE:	GOLPES#
GRUPO DE INYECCIO	W-						moen ee	00012511
			ı	7				
INYECCION: INYECCION #1	POS. INICIAL (MM)	PRESION (BAR) 130	VELOCIDAD (%)		SEGUNDA PRESION PRESION POST #1	PRESION (BAR)	VELOCIDAD (%)	TIEMPO (SEGUNDOS)
INYECCION #1 INYECCION #2	180	130 130	70 70		PRESION POST #1 PRESION POST #2	PRESION (BAR) 45	VELOCIDAD (%) 40	
INYECCION #1 INYECCION #2 INYECCION #3		130	70		PRESION POST #1			
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4	180	130 130	70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3	45		
INYECCION #1 INYECCION #2 INYECCION #3	180	130 130	70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	0		3
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4 INYECCION #5	180	130 130	70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3	0 POR POSICION		
INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE:	180 60 30	130 130	70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	0		3
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE:	180 60 30	130 130	70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	0 POR POSICION		3
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE:	180 60 30	130 130	70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	0 POR POSICION		3
INYECCION #1 INYECCION #2 INYECCION #2 INYECCION #3 INYECCION #4 INYECCION #5 INITECON #5 IDMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO	180 60 30	130 130	70 70	ZONA #4	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	0 POR POSICION		3
INYECCION #1 INYECCION #2 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE	180 60 30 DE CALEFACION:	130 130 130	70 70 70	ZONA #4	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X	0 POR POSICION POR PRESION	40	3 POR TIEMPO
INYECCION #1 INYECCION #2 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #5 IUMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO	180 60 30 DE CALEFACION:	130 130 130	70 70 70	ZONA #4	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X	0 POR POSICION POR PRESION	40	3 POR TIEMPO
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAIE PIROMETRO (°C)	180 60 30 DE CALEFACION:	130 130 130	70 70 70	ZONA #4 ZONA #12	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X	0 POR POSICION POR PRESION	40	POR TIEMPO
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE	180 60 30 BE CALEFACION:	130 130 130 20NA #2	70 70 70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 20NA #7	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAIE PIROMETRO (°C) POCCENTAIE PIROMETRO (°C)	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 20NA #7	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAIE PIROMETRO (°C) POCCENTAIE PIROMETRO (°C)	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 20NA #7	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #5 INYEC	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 20NA #7	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAIE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECILE	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #5 INVECCION #2 INVECCION #3 INVEC	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #5 INVECCION #2 INVECCION #3 INVEC	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #5 INVEC	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #5 INVEC	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 INVECCION #6 INVEC	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECILE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (6+3)	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (6+3) CIERRA PRENSA	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #5 LIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO DIAGRAMA DEL CICLO EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (6+3)	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (6+3) CIERRA PRENSA	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 INVECCION #6 INVEC	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 INVECCION #6 INVEC	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 INVECCION #6 INVEC	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 INVECCION #6 INVEC	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 INVECCION #6 INVEC	180 60 30 30 ES: ZONA #1 ZONA #9	130 130 130 20NA #2	70 70 70 70 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8

3.3.3. **ECOPISO**

				FICHA TEC	NICA			
FICHA TECNICA DE R MAQUINA: GRAMAJE: MOLDE: REFERENCIA: CAVIDADES:	780 TON 2915 GRAMOS ECOPISO 13-2000	QUINA	MATERIAL: COLOR:	SCRAP DE POLIETI NEGRO	LENO	FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO REAL:	26/06/14 2770 GRAMOS 2770 GRAMOS 150 SEGUNDOS 150 SEGUNDOS	
						REALIZADO POR:	ANDRES	
GRUPO DE PRENSA:								
MAX PRESION DE CIERRE: 78	800 KN	DISTANCIA ENTRE	PLACAS: 350 MM		AREA PROYECTADA:	371 pulg ²	FUERZA DE CIERRE:	742 Ton
ABRIR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)]	CERRAR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)
ABRIR # 1 ABRIR # 2	35	20 50	20 35	-	CERRAR #1 CERRAR #2	30	65 65	65 6
ABRIR # 3 ABRIR # 4	250 350	25	20		CERRAR #3 PROTECION	128 15	25 50	40 25
ABRIR # 5	330				PRESION ALTA:	15	50	25
LIMITE				_				
SISTEMA DE ALIMEN	TACIONI				TEMPERATURA DEL	. PROCESO:		
CARGA:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%) - RPM	CONTRA PRESIÓN		DEL BARRIL (°C):		
CARGA #1 CARGA #2	417		90	-	ZONA #1 ZONA #2	160 260	ZONA #8 ZONA #9	
CARGA #3					ZONA #3	240	ZONA #10	
CARGA #4 CARGA LIMITE:				-	ZONA #4 ZONA #5	230 220	ZONA #11 ZONA #12	
				- 1	ZONA #6	220		1
DESCOMPRESION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%) 25	TIEMPO	ZONA #7 ZONA #8	200 170	-	
SISTEMA DE EXPULS	ION		•		SISTEMA DE CORE	•	_	
EXPULSION (OUT) EXPULSION #1	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		NOYOS NOYOS A IN	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (SEC
EXPULSION #2					NOYOS A OUT			
EXPULSION LIMITE					NOYOS B IN NOYOS B OUT			
					NOYOS C IN			
					NOYOS C OUT			
EXPULSION (IN)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		MODO EXPULSION:	_	T	Т
EXPULSION #1 EXPULSION #2					DESACTIVADO: ADELANTE (ASIM) :		CONTINUO: VIBRACION:	
EXPULSION LIMITE							MULTIPLE:	GOLPES#
GRUPO DE INYECCIO	Ni							
INYECCION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	٦	SEGUNDA PRESION	PRESION (BAR)	VELOCIDAD (%)	TIEMPO (SEGUNDOS)
INYECCION #1		110	70		PRESION POST #1	20	25	12
INVECCION #2	110		70		DDECION DOCT #2			
	110 100	110 110	70 70		PRESION POST #2 PRESION POST #3			
INYECCION #3 INYECCION #4	100 80	110 110 110	70 70		PRESION POST #3		1	
INYECCION #3 INYECCION #4 INYECCION #5	100	110 110	70	-	PRESION POST #3 COJIN	0		
INYECCION #3 INYECCION #4 INYECCION #5	100 80 20	110 110 110	70 70	-	PRESION POST #3			POR TIEMPO
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE:	100 80 20 5	110 110 110	70 70		PRESION POST #3 COJIN	0 POR POSICION		
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL	100 80 20 5	110 110 110	70 70		PRESION POST #3 COJIN	0 POR POSICION		
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL	100 80 20 5	110 110 110	70 70		PRESION POST #3 COJIN	0 POR POSICION		
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO	100 80 20 5	110 110 110	70 70	ZONA #4	PRESION POST #3 COJIN	0 POR POSICION	ZONA#7	
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL	100 80 20 5	110 110 110 110	70 70 70	ZONA #4	PRESION POST #3 COJIN X	O POR POSICION POR PRESION		POR TIEMPO
INVECCION #3 INVECCION #4 INVECCION #5 ILMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE	100 80 20 5 De CALEFACION: ZONA #1	110 110 110 110 110 20NA #2	70 70 70 70		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 UMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE	100 80 20 5	110 110 110 110	70 70 70	ZONA #4 ZONA #12	PRESION POST #3 COJIN X	O POR POSICION POR PRESION		POR TIEMPO
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 IUMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C)	100 80 20 5	110 110 110 110 110 20NA #2	70 70 70 70		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C)	100 80 20 5	110 110 110 110 110 20NA #2	70 70 70 70		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #5 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO DIAGRAMA DEL CICLO	100 80 20 5	110 110 110 110 110 20NA #2	70 70 70 70		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRANA DEL CICLA PAUSA O RECICLE	100 80 20 5	110 110 110 110 110 20NA #2	70 70 70 70		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLA PAUSA O RECICLE EXPULSION Y RECUPERACION	100 80 20 5	110 110 110 110 110 20NA #2	70 70 70 70		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLA PAUSA O RECICLE EXPULSION Y RECUPERACION	100 80 20 5	110 110 110 110 110 20NA #2	70 70 70 70		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA	100 80 20 5	110 110 110 110 110 20NA #2	70 70 70 70		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICL. PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO	100 80 20 5	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICL. PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION	100 80 20 5	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRANA DEL CICL. PAUSA O RECIU E EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA	100 80 20 5	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRANA DEL CICLA EXPUISION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA	100 80 20 5	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRANA DEL CICL. PAUSA O RECIU E EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA	100 80 20 5 ESt DE CALEFACION: ZONA #1 ZONA #9	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	100 80 20 5 ESt DE CALEFACION: ZONA #1 ZONA #9	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	100 80 20 5 ESt DE CALEFACION: ZONA #1 ZONA #9	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLA PAUSA O RECICLE EXPUSSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	100 80 20 5 ESt DE CALEFACION: ZONA #1 ZONA #9	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLA PAUSA O RECICLE EXPUSSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	100 80 20 5 ESt DE CALEFACION: ZONA #1 ZONA #9	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
PIROMETRO (°C) PORCENTAJE	100 80 20 5 ESt DE CALEFACION: ZONA #1 ZONA #9	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	100 80 20 5 ESt DE CALEFACION: ZONA #1 ZONA #9	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLA PAUSA O RECICLE EXPUSSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	100 80 20 5 ESt DE CALEFACION: ZONA #1 ZONA #9	110 110 110 110 110 20NA #2	70 70 70 70 20NA #3		PRESION POST #3 COJIN X ZONA #5	POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8

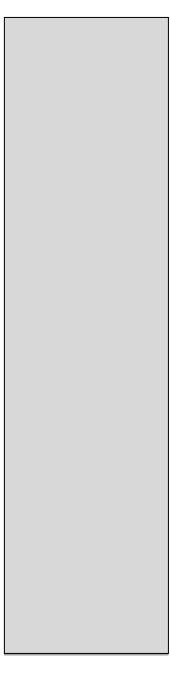
3.3.4. TECHO DE ARMARIO

				FICHA TEC	NICA			
FICHA TECNICA DE RE	GULACION DE MA	AQUINA						
MAQUINA: GRAMAJE: MOLDE: REFERENCIA: CAVIDADES:	800 TON 4000GRAMOS ARMARIO MODULAR 1D - 2013 1		MATERIAL: COLOR:	POLIPROPILENO CAFÉ		FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO REAL: REALIZADO POR:	16/06/14 1600 GRAMOS 1640 GRAMOS 90 SEGUNDOS 90 SEGUNDOS GOMEZ	
GRUPO DE PRENSA:								
MAX PRESION DE CIERRE: 140			PLACAS: 550 MM		AREA PROYECTADA:	487 pulg ²	FUERZA DE CIERRE:	974 Ton
ABRIR MOLDE ABRIR # 1	POS. INICIAL (MM)	PRESION (BAR) 30	VELOCIDAD (%) 30		CERRAR MOLDE CERRAR #1	POS. INICIAL (MM)	PRESION (BAR) 80	VELOCIDAD (%) 99
ABRIR # 2	65,0	40	40		CERRAR #2	300,0	80	99
ABRIR # 3 ABRIR # 4	150,0 160,0	45 35	45 35	\dashv	CERRAR #3 PROTECION	150,0 50,0	80 20	99
ABRIR # 5	450,0	20	20		PRESION ALTA:	10,0	140	60
LIMITE	550,0							
BISTEMA DE ALIMENT	'ACION:				TEMPERATURA DEL	PROCESO:		
CARGA:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%) - RPM	CONTRA PRESIÓN	TEMPERATURA	S DEL BARRIL (°C):	_	
ARGA #1	45	70	70	0	ZONA #1	230	ZONA #8	
CARGA #2	85	90	90	0	ZONA #2	225	ZONA #9	
CARGA #3 CARGA #4	100 120	70	70	0	ZONA #3 ZONA #4	255 255	ZONA #10 ZONA #11	
CARGA LIMITE:	220	1			ZONA #5	210	ZONA #11 ZONA #12	1
	DOC INICOS (CO.	porcion (p.s.	VELOCO		ZONA #6	155	\dashv	
DESCOMPRESION:	POS. INICIAL (MM)	PRESION (BAR) 45	VELOCIDAD (%) 45	TIEMPO 1	ZONA #7 ZONA #8	+	\dashv	
SISTEMA DE EXPULSIO	ON				SISTEMA DE CORE			
			1	_		_		
EXPULSION (OUT) EXPULSION #1	POS. INICIAL (MM) 25	PRESION (BAR) 20	VELOCIDAD (%) 15	-	NOYOS NOYOS A IN	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (
EXPULSION #2	79	15	15		NOYOS A OUT			
EXPULSION LIMITE					NOYOS B IN			
					NOYOS B OUT NOYOS C IN			
					NOYOS C OUT			
EXPULSION (IN)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	\neg	MODO EXPULSION:			
EXPULSION #1	25	30	30		DESACTIVADO:		CONTINUO:	
XPULSION #2	14	30	32	_	ADELANTE (ASIM) :		VIBRACION:	GOLPES #
EXPULSION LIMITE							MULTIPLE:	GOLPES#
GRUPO DE INYECCION								
INYECCION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		SEGUNDA PRESION	PRESION (BAR)	VELOCIDAD (%)	TIEMPO (SEGUNDOS)
INYECCION #1		110	50		PRESION POST #1	0	0	0
INYECCION #2 INYECCION #3	150,0 60,0	110 110	50 50	_	PRESION POST #2 PRESION POST #3			
INYECCION #4	30,0	110	50					
INYECCION #5 LIMITE:	15				COJIN	0		
LIMITE.					Х	POR POSICION		POR TIEMPO
						POR PRESION		
DETALLES ESPECIALE	!S:							
TEMPERATURA DEL EQUIPO I	DE CALEFACION:							
	ZONA #1	ZONA #2	ZONA #3	ZONA #4	ZONA #5	ZONA #6	ZONA #7	ZONA #8
PORCENTAJE		EGIW(#E	LOWING	20101114	2010(113	2010(110	LOWAN	2010110
PIROMETRO (°C)	270	I .	<u> </u>					
	ZONA #9	ZONA #10	ZONA #11	ZONA #12	ZONA #13	ZONA #14	ZONA #15	ZONA #16
PORCENTAJE								
PIROMETRO (°C)	·	<u> </u>	l	1	1	<u> </u>		
DIAGRAMA DEL CICLO	TOTAL:							
DESMONTAJE MANUAL	i						12	
EXPULSION Y RECUPERACION						5	_	
					5			
					7			
ABRE PRENSA			50		<u> </u>			
ABRE PRENSA ENFRIAMIENTO					1			
ABRE PRENSA ENFRIAMIENTO			50		<u>.l</u>			
ABRE PRENSA ENFRIAMIENTO ALIMENTACION		12			4			
ABRE PRENSA ENFRIAMIENTO ALIMENTACION NYECTA		12			.			
ABRE PRENSA ENFRIAMIENTO ALIMENTACION NYECTA	4	12						
ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA	4	12			•		88	
ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA CIERRA PRENSA OBSERVACIONI	4	12					88	
ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA CIEBRA PRENSA	4	12					88	
ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA CIERRA PRENSA	4	12					88	
ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA CIEBRA PRENSA	4	12					58	
ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	4	12					88	
ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	4	12					88	
ABRE PRENSA ENFRIAMIENTO ALIMENTACION NYECTA	4	12					.88	
ABRE PRENSA ENFRIAMIENTO ALIMENTACION NYECTA	4	12					88	

3.3.5. CESTO

				FICHA TECN	ICA			
FICHA TECNICA DE REC MAQUINA: GRAMAJE: MOLDE: REFERENCIA: CAVIDADES:	468 TON 1115 GRAMOS CESTO 20 - 2013	QUINA	MATERIAL: COLOR:	POLIETILENO ROJO		FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO REAL: REALIZADO POR:	17/04/2014 462 GRAMOS 490GRAMOS 58 SEGUNDOS 58 SEGUNDOS ANDRES	
GRUPO DE PRENSA:								
MAX PRESION DE CIERRE: 135	BAR	DISTANCIA ENTRE	PLACAS: 700 MM		AREA PROYECTADA:	108 pulg ²	FUERZA DE CIERRE:	324 Ton
ABRIR MOLDE ABRIR # 1	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%) 20		CERRAR MOLDE CERRAR #1	POS. INICIAL (MM)	PRESION (BAR) 75	VELOCIDAD (%) 75
ABRIR # 2	50	35	45		CERRAR #2	400	75	75
ABRIR # 3 ABRIR # 4	100 200	45 45	45 35	_	CERRAR #3 PROTECION	210 70	58 0	60 60
ABRIR # 5	400	24	24		PRESION ALTA:	20	135	40
LIMITE	700							
SISTEMA DE ALIMENTA	ACION:				TEMPERATURA DEL I	PROCESO:		
CARGA:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%) - RPM	CONTRA PRESIÓN	TEMPERATURAS	DEL BARRII (°C):	٦	
CARGA #1	FOS. HVICIAE (WIN)	120	80	CONTRATRESION	ZONA #1	220	ZONA #8	
CARGA #2	50	135	90		ZONA #2	225	ZONA #9	
CARGA #3 CARGA #4	75 143	120	80	-	ZONA #3 ZONA #4	225 220	ZONA #10 ZONA #11	
CARGA LIMITE:	140				ZONA #5	220	ZONA #12	
	T		I		ZONA #6	160		
DESCOMPRESION:	POS. INICIAL (MM) 15	PRESION (BAR) 45	VELOCIDAD (%) 50	TIEMPO	ZONA #7 ZONA #8		1	
SISTEMA DE EXPULSIO	N .				SISTEMA DE CORE			
EXPULSION (OUT)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	-	NOYOS	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (SE
EXPULSION #1 EXPULSION #2	120	140 140	30 30	_	NOYOS A IN NOYOS A OUT			
EXPULSION LIMITE	180				NOYOS B IN			
					NOYOS B OUT			
					NOYOS C IN NOYOS C OUT			
					NOTOSCOOT	1	1	
EXPULSION (IN)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		MODO EXPULSION:		1	
EXPULSION #1 EXPULSION #2	10	120 120	99 99		DESACTIVADO: ADELANTE (ASIM) :		CONTINUO: VIBRACION:	
EXPULSION LIMITE	2	120	35	_	ADELANTE (ASINI) .	1		GOLPES#
GRUPO DE INYECCION:								
INYECCION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		SEGUNDA PRESION	PRESION (BAR)	VELOCIDAD (%)	TIEMPO (SEGUNDOS)
INYECCION #1		140	95	-	PRESION POST #1	35	35	2
INYECCION #2 INYECCION #3	90 60	140 140	95 95	-	PRESION POST #2 PRESION POST #3			
INYECCION #4	30	140	95				_	
INYECCION #5	25	140	95	_	COJIN	0		
LIMITE:	24				Х	POR POSICION		POR TIEMPO
						POR PRESION		
DETALLES ESPECIALES	8:							
TEMPERATURA DEL EQUIPO D	E CALEEACION:							
TEMPERATORA DEL EQUIPO D	E CALLIACION.							
0000517715	ZONA #1	ZONA #2	ZONA #3	ZONA #4	ZONA #5	ZONA #6	ZONA #7	ZONA #8
PORCENTAJE PIROMETRO (°C)								
			1					
PORCENTAJE	ZONA #9	ZONA #10	ZONA #11	ZONA #12	ZONA #13	ZONA #14	ZONA #15	ZONA #16
PIROMETRO (°C)								
DIAGRAMA DEL CICLO 1	TOTAL:							
PAUSA O RECICLE	Ì						2	
EXPULSION Y RECUPERACION						8		
ABRE PRENSA					6			
						-		
ENFRIAMIENTO			25					
ALIMENTACION			21]			
INYECTA		11						
CIERRA PRENSA								
CIERRA PRENSA	4							
							56	
OBSERVACION:								
OBSERVACION:								
OBSERVACIONI								
OBSERVACIONI								
OBSERVACION:								
OBSERVACIONI								
OBSERVACIONI								
OBSERVACION								

3.3.6. TABLERO DE MESA


			,	ICHA TECN	ICA			
FICHA TECNICA DE RE MAQUINA: GRAMAJE: MOLDE: REFERENCIA: CAVIDADES:	700 TON 1800 GRAMOS TABLERO DE MESA 13A-2009	QUINA	MATERIAL: COLOR:	POLIPROPILENO ROSADO		FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO REAL: REALIZADO POR:	19/06/14 1475 GRAMOS 1480 GRAMOS 150 SEGUNDOS 150 SEGUNDOS QUINDE	
GRUPO DE PRENSA:								
MAX PRESION DE CIERRE: 17	O BAR	DISTANCIA ENTRE	PLACAS: 450 MM		AREA PROYECTADA:	520 pulg ²	FUERZA DE CIERRE:	1040 TON
ABRIR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)]	CERRAR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)
ABRIR # 1 ABRIR # 2	85 300	35 120	20 99	-	CERRAR #1 CERRAR #2	450 105	65 45	65 45
ABRIR # 3 ABRIR # 4	400 450	120 65	65 45	7	CERRAR #3 PROTECION	57	20	20
ABRIR # 5 LIMITE					PRESION ALTA:	5	170	65
SISTEMA DE ALIMENT	ACION-				TEMPERATURA DEL	DDACESO.		
			Les eaux au	7			7	
CARGA: CARGA #1	POS. INICIAL (MM) 80	PRESION (BAR) 100	VELOCIDAD (%) - RPM 80	CONTRA PRESIÓN	TEMPERATURAS ZONA #1	40%	ZONA #8	
CARGA #2 CARGA #3	200 330	100 100	80 80	+	ZONA #2 ZONA #3	250 260	ZONA #9 ZONA #10	
CARGA #4 CARGA LIMITE:				-	ZONA #4 ZONA #5	250 240	ZONA #11 ZONA #12	
DESCOMPRESION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	TIEMPO	ZONA #6 ZONA #7	230		
DESCONFRESION.	340	25	25	TIEWFO	ZONA #7 ZONA #8		1	
SISTEMA DE EXPULSI	ON				SISTEMA DE CORE			
EXPULSION (OUT)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		NOYOS	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (SEG
EXPULSION #1 EXPULSION #2				-	NOYOS A IN NOYOS A OUT			
EXPULSION LIMITE					NOYOS B IN NOYOS B OUT			
					NOYOS C IN			
	T	T		7	NOYOS C OUT	1		
EXPULSION (IN) EXPULSION #1	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		MODO EXPULSION: DESACTIVADO:	Х	CONTINUO:	
EXPULSION #2 EXPULSION LIMITE					ADELANTE (ASIM) :		VIBRACION: MULTIPLE:	GOLPES #
GRUPO DE INYECCION	h							
INYECCION:	POS. INICIAL (MM)	I	VELOCIDAD (%)	7		PRESION (BAR)		TIEMPO (SEGUNDOS)
		PRESION (BAR)			I SEGUNDA PRESION		VELOCIDAD (%)	
INYECCION #1		PRESION (BAR) 120	80	-	SEGUNDA PRESION PRESION POST #1	20	VELOCIDAD (%) 20	1
INYECCION #1 INYECCION #2 INYECCION #3	190 110	120 120 120	80 80 80					
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4 INYECCION #5	190 110 65 45	120 120	80 80		PRESION POST #1 PRESION POST #2			
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4	190 110 65	120 120 120 120	80 80 80 80		PRESION POST #2 PRESION POST #3	20		
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE:	190 110 65 45 10	120 120 120 120	80 80 80 80		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	20		1
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4 INYECCION #5	190 110 65 45 10	120 120 120 120	80 80 80 80		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	1 POR POSICION		1
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE:	190 110 65 45 10	120 120 120 120	80 80 80 80		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	1 POR POSICION		1
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO I	190 110 65 45 10	120 120 120 120	80 80 80 80	ZONA #4	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	1 POR POSICION		1
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE:	190 110 65 45 10	120 120 120 120 120 120	80 80 80 80 80	ZONA #4	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X	1 POR POSICION POR PRESION	20	POR TIEMPO
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO I	190 110 65 45 10	120 120 120 120 120 120	80 80 80 80 80	ZONA #4 ZONA #12	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X	1 POR POSICION POR PRESION	20	POR TIEMPO
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO I	190 110 65 45 10 ESE 20NA #1	120 120 120 120 120 120	80 80 80 80 80 80		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	20 ZONA #7	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO (PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C)	190 110 65 45 10 10 ESE 20NA #1 200 20NA #9	120 120 120 120 120 120	80 80 80 80 80 80		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	20 ZONA #7	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO # PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO DIAGRAMA DEL CICLO	190 110 65 45 10 10 ESE 20NA #1 200 20NA #9	120 120 120 120 120 120	80 80 80 80 80 80		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO I PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE	190 110 65 45 10 10 ESE 20NA #1 200 20NA #9	120 120 120 120 120 120	80 80 80 80 80 80		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	20 ZONA #7	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO (PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION	190 110 65 45 10 10 ESE 20NA #1 200 20NA #9	120 120 120 120 120 120	80 80 80 80 80 80		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO (PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA	190 110 65 45 10 10 ESE 20NA #1 200 20NA #9	120 120 120 120 120 120	80 80 80 80 80 80 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO (PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION	190 110 65 45 10 10 ESE 20NA #1 200 20NA #9	120 120 120 120 120 120	80 80 80 80 80 80 ZONA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO (PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA	190 110 65 45 10 10 ESE 20NA #1 200 20NA #9	120 120 120 120 120 120	80 80 80 80 80 80 20NA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL PEMPERATURA DEL EQUIPO I PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO	190 110 65 45 10 10 ESE 20NA #1 200 ZONA #9	120 120 120 120 120 120	80 80 80 80 80 80 ZONA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO I PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION	190 110 65 45 10 10 ESE 20NA #1 200 ZONA #9	120 120 120 120 120 120 120	80 80 80 80 80 80 ZONA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO I PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (12+1)	190 110 65 45 10 ESI 20NA#1 200 ZONA#9	120 120 120 120 120 120 120	80 80 80 80 80 80 ZONA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO I PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (12+1)	190 110 65 45 10 ESI 20NA#1 200 ZONA#9	120 120 120 120 120 120 120	80 80 80 80 80 80 ZONA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	20 ZONA #7 ZONA #15 18	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO (PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (12+1) CIERRA PRENSA	190 110 65 45 10 ESI 20NA#1 200 ZONA#9	120 120 120 120 120 120 120	80 80 80 80 80 80 ZONA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	20 ZONA #7 ZONA #15 18	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO (PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (12+1) CIERRA PRENSA	190 110 65 45 10 ESI 20NA#1 200 ZONA#9	120 120 120 120 120 120 120	80 80 80 80 80 80 ZONA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	20 ZONA #7 ZONA #15 18	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO (PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (12+1) CIERRA PRENSA	190 110 65 45 10 ESI 20NA#1 200 ZONA#9	120 120 120 120 120 120 120	80 80 80 80 80 80 ZONA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	20 ZONA #7 ZONA #15 18	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO (PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (12+1) CIERRA PRENSA	190 110 65 45 10 ESI 20NA#1 200 ZONA#9	120 120 120 120 120 120 120	80 80 80 80 80 80 ZONA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	20 ZONA #7 ZONA #15 18	POR TIEMPO ZONA #8
INYECCION #1 INYECCION #2 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #4 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO (PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (12+1) CIERRA PRENSA	190 110 65 45 10 ESI 20NA#1 200 ZONA#9	120 120 120 120 120 120 120	80 80 80 80 80 80 ZONA #3		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	20 1 POR POSICION POR PRESION ZONA #6	20 ZONA #7 ZONA #15 18	POR TIEMPO ZONA #8

3.3.7. CANASTA

				FICHA TEC	NICA			
FICHA TECNICA DE R	EGIII ACION DE MA	ACHINA						
MAQUINA: GRAMAJE: MOLDE: REFERENCIA: CAVIDADES:	800 TON 4800 GRAMOS CANASTA 1 16 A – 2013	MONA	MATERIAL: COLOR:	POLIPROPILENO ROSADO		FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO ESTANDAR:	08/04/14 930 GRAMOS 935 GRAMOS 75 SEGUNDOS 75 SEGUNDOS	
AVIDADES.	10 A - 2015					REALIZADO POR:	GUILLERMO	
GRUPO DE PRENSA	1							
MAX PRESION DE CIERRE: 1	15 BAR	DISTANCIA ENTRE	PLACAS: 800 MM		AREA PROYECTADA:	293 pulg ²	FUERZA DE CIERRE:	880 Ton
ABRIR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)]	CERRAR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)
ABRIR # 1 ABRIR # 2	15 80	15 15	20 20		CERRAR #1 CERRAR #2	550 350	30 35	30 35
ABRIR#3 ABRIR#4	250 550	20 25	20 25		CERRAR #3 PROTECION	80 10	30 20	30 20
ABRIR # 5	800	25	25		PRESION ALTA:	10	115	40
LIMITE SISTEMA DE ALIMEN	TACION-				TEMPERATURA DEL I	DDOCESO.		
		DDECION (DAD)	MELOCIDAD (W) DDM	Tegnita apeción				
CARGA: CARGA #1	POS. INICIAL (MM) 25	PRESION (BAR) 32	VELOCIDAD (%) - RPM 35	CONTRA PRESIÓN 1	ZONA #1	DEL BARRIL (°C): 225	ZONA #8	
CARGA #2	30 45	35 37	35	3	ZONA #2	250	ZONA #9 ZONA #10	
CARGA #4	75	35	35 35	3	ZONA #3 ZONA #4	255 245	ZONA #10 ZONA #11	
CARGA LIMITE:	115	32	35	1	ZONA #5 ZONA #6	225 200	ZONA #12	
DESCOMPRESION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	TIEMPO	ZONA #7	190	1	
	10	40	40		ZONA #8		_	
SISTEMA DE EXPULS	SION				SISTEMA DE CORE			
EXPULSION (OUT) EXPULSION #1	POS. INICIAL (MM)	PRESION (BAR) 25	VELOCIDAD (%)	-	NOYOS NOYOS A IN	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (
EXPULSION #2	5	25	22		NOYOS A OUT			
EXPULSION LIMITE	50				NOYOS B IN NOYOS B OUT			-
					NOYOS C IN			
					NOYOS C OUT			
EXPULSION (IN)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	-	MODO EXPULSION:		CONTINUO	_
EXPULSION #1 EXPULSION #2	7	42 35	42 35		DESACTIVADO: ADELANTE (ASIM) :		CONTINUO: VIBRACION:	
EXPULSION LIMITE	5			J			MULTIPLE:	GOLPES#
GRUPO DE INYECCIO	Ni.							
INIVECCIONI								
INYECCION: INYECCION #1	POS. INICIAL (MM)	PRESION (BAR) 60	VELOCIDAD (%) 90	-	SEGUNDA PRESION PRESION POST #1	PRESION (BAR)	VELOCIDAD (%)	
INYECCION #1 INYECCION #2	60	60 90	90 90		PRESION POST #1 PRESION POST #2	PRESION (BAR) 40 30	VELOCIDAD (%) 40 30	TIEMPO (SEGUNDOS) 3 3
INYECCION #1		60	90		PRESION POST #1 PRESION POST #2 PRESION POST #3	40	40	3
INYECCION #1 INYECCION #2 INYECCION #3	60 55	60 90 90	90 90 90		PRESION POST #1 PRESION POST #2	40	40	3
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4 INYECCION #5	60 55 20 10	90 90 90	90 90 90 90		PRESION POST #1 PRESION POST #2 PRESION POST #3	40 30	40	3
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE:	60 55 20 10 5	90 90 90	90 90 90 90		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	40 30 0 POR POSICION	40	3
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE:	60 55 20 10 5	90 90 90	90 90 90 90		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	40 30 0 POR POSICION	40	3
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #4 INVECCION #5 IUMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO	60 55 20 10 5	90 90 90	90 90 90 90	ZONA #4	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN	40 30 0 POR POSICION	40	3
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DRYALLES ESPECIAL	60 55 20 10 5	60 90 90 90 60	90 90 90 90 90	ZONA #4 190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X	40 30 0 POR POSICION POR PRESION	40 30	3 3 POR TIEMPO
INYECCION #1 INYECCION #2 INYECCION #3 INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE	60 55 20 10 5 5 DE CALEFACION:	60 90 90 90 60	90 90 90 90 90 90		PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X	40 30 0 POR POSICION POR PRESION	40 30	3 3 POR TIEMPO
INVECCION #1 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PROMETRO (°C) PORCENTAJE	60 55 20 10 5 5 DE CALEFACION:	60 90 90 90 60	90 90 90 90 90 90	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 30 30	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C)	60 55 20 10 5 D DE CALEFACION: 20NA #1	60 90 90 90 60	90 90 90 90 90 90	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 30 30	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICL.	60 55 20 10 5 D DE CALEFACION: 20NA #1	60 90 90 90 60	90 90 90 90 90 90	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 30 30	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICL.	60 55 20 10 5 D DE CALEFACION: 20NA #1	60 90 90 90 60	90 90 90 90 90 90	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 30 30	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLA PAUSA O RECICLE EXPULSION Y RECUPERACION	60 55 20 10 5 D DE CALEFACION: 20NA #1	60 90 90 90 60	90 90 90 90 90 90	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 30 30	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #5 LIMITE: DETAILLES ESPECIA TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICL. PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA	60 55 20 10 5 D DE CALEFACION: 20NA #1	60 90 90 90 60	90 90 90 90 90 90	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5 ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 30 30	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #5 ILIMITE: DETALLES ESPECIA TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLI PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO	60 55 20 10 5 D DE CALEFACION: 20NA #1	60 90 90 90 60	90 90 90 90 90 90 20NA #3	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5 ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 30 30	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLI PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION	60 55 20 10 5 D DE CALEFACION: 20NA #1	60 90 90 90 60 60 ZONA #2 20NA #10	90 90 90 90 90 90 20NA #3 20NA #11	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5 ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 30 30	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICL. PAUSA O RECILLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA	60 55 20 10 5 5 20 10 5 DE CALEFACION: ZONA #1 197 ZONA #9	60 90 90 90 60	90 90 90 90 90 90 20NA #3 20NA #11	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5 ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 30 30	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICL. PAUSA O RECILLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA	60 55 20 10 5 D DE CALEFACION: 20NA #1	60 90 90 90 60 60 ZONA #2 20NA #10	90 90 90 90 90 90 20NA #3 20NA #11	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5 ZONA #5	0 POR POSICION POR PRESION ZONA #6	20NA #7 ZONA #15	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICL. PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	60 55 20 10 5 5 20 10 5 DE CALEFACION: ZONA #1 197 ZONA #9	60 90 90 90 60 60 ZONA #2 20NA #10	90 90 90 90 90 90 20NA #3 20NA #11	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5 ZONA #5	0 POR POSICION POR PRESION ZONA #6	40 30 30	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICL. PAUSA O RECILE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA	60 55 20 10 5 5 20 10 5 DE CALEFACION: ZONA #1 197 ZONA #9	60 90 90 90 60 60 ZONA #2 20NA #10	90 90 90 90 90 90 20NA #3 20NA #11	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5 ZONA #5	0 POR POSICION POR PRESION ZONA #6	20NA #7 ZONA #15	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) DIAGRANIA DEL CICL. PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	60 55 20 10 5 5 20 10 5 DE CALEFACION: ZONA #1 197 ZONA #9	60 90 90 90 60 60 ZONA #2 20NA #10	90 90 90 90 90 90 20NA #3 20NA #11	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5 ZONA #5	0 POR POSICION POR PRESION ZONA #6	20NA #7 ZONA #15	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO ("C) DIAGRANIA DEL CICL. PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	60 55 20 10 5 5 20 10 5 DE CALEFACION: ZONA #1 197 ZONA #9	60 90 90 90 60 60 ZONA #2 20NA #10	90 90 90 90 90 90 20NA #3 20NA #11	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5 ZONA #5	0 POR POSICION POR PRESION ZONA #6	20NA #7 ZONA #15	3 3 POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICL PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA LICERRA PRENSA	60 55 20 10 5 5 20 10 5 DE CALEFACION: ZONA #1 197 ZONA #9	60 90 90 90 60 60 ZONA #2 20NA #10	90 90 90 90 90 90 20NA #3 20NA #11	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5 ZONA #5	0 POR POSICION POR PRESION ZONA #6	20NA #7 ZONA #15	3 3 POR TIEMPO POR TIEMPO ZONA #8
INVECCION #1 INVECCION #2 INVECCION #2 INVECCION #3 INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICL PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA LICERRA PRENSA	60 55 20 10 5 5 20 10 5 DE CALEFACION: ZONA #1 197 ZONA #9	60 90 90 90 60 60 ZONA #2 20NA #10	90 90 90 90 90 90 20NA #3 20NA #11	190	PRESION POST #1 PRESION POST #2 PRESION POST #3 COJIN X ZONA #5 ZONA #5	0 POR POSICION POR PRESION ZONA #6	20NA #7 ZONA #15	3 3 POR TIEMPO ZONA #8

3.3.8. PALLET

				FICHA TECN	IICA			
FICHA TECNICA DE RE(MAQUINA: GRAMAJE: MOLDE: REFERENCIA: CAVIDADES:	2800 TON 29232 GRAMOS PALLET 22-2001	QUINA	MATERIAL: COLOR:	SCRAP POLIETILEN NEGRO	0	FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO REAL: REALIZADO POR:	07/05/14 15 KILOGRAMOS 15 KILOGRAMOS 240 SEGUNDOS 240 SEGUNDOS GOMEZ	
MAX PRESION DE CIERRE: 14	0 BAR	DISTANCIA ENTRE	PLACAS: 1180 MM		AREA PROYECTADA:	1855 pulg ²	FUERZA DE CIERRE:	3709 Ton
ABRIR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	٦	CERRAR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)
ABRIR # 1		22	22		CERRAR #1		40	40
ABRIR # 2	50	65	30	4	CERRAR #2	1150	85	85
ABRIR # 3 ABRIR # 4	200 400	65 65	30 50	+	CERRAR #3 PROTECION	500 50	85 40	85 75
ABRIR # 5	1150	30	30	_	PRESION ALTA:	10	140	70
LIMITE	1180							
SISTEMA DE ALIMENTA	ACION:				TEMPERATURA DEL P	PROCESO:		
	T		I	7				
CARGA: CARGA #1	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%) - RPM 83	CONTRA PRESIÓN 5	TEMPERATURAS ZONA #1	DEL BARRIL (°C):	ZONA #8	240
CARGA #1	100	120	83	5	ZONA #1	250	ZONA #9	210
CARGA #3	400	120	83	5	ZONA #3	245	ZONA #10	200
CARGA #4	600	ļ		_	ZONA #4	240	ZONA #11	190
CARGA LIMITE:	618	_			ZONA #5	245 245	ZONA #12	l .
DESCOMPRESION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	TIEMPO	ZONA #6 ZONA #7	255	+	
	20	40	40		ZONA #8	240		
SISTEMA DE EXPULSIO	N				SISTEMA DE CORE			
313 I EMA DE EXPULSIC	UR				SISTEMA DE CORE			
EXPULSION (OUT)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		NOYOS	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (SEG
EXPULSION #1				4	NOYOS A IN			
EXPULSION #2				4	NOYOS A OUT			
EXPULSION LIMITE					NOYOS B IN NOYOS B OUT			
					NOYOS C IN			
					NOYOS C OUT			
	1	1	ı	7				
EXPULSION (IN) EXPULSION #1	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	_	MODO EXPULSION: DESACTIVADO:	T	CONTINUO:	1
EXPULSION #1					ADELANTE (ASIM) :		VIBRACION:	
EXPULSION LIMITE					ribecriffe (rolling)			GOLPES#
GRUPO DE INYECCION								
INYECCION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	7	SEGUNDA PRESION	PRESION (BAR)	VELOCIDAD (%)	TIEMPO (SEGUNDOS)
INYECCION #1		90	99		PRESION POST #1	50	50	8
			99	I	PRESION POST #2	45	40	5
INYECCION #2	520	85		-		43		
INYECCION #3	400	75	99		PRESION POST #3			
INYECCION #3 INYECCION #4	400 280	75 80	99 99		PRESION POST #3	0	1	
INYECCION #3	400	75	99		COJIN	0		
INYECCION #3 INYECCION #4 INYECCION #5	400 280 140	75 80	99 99			0 POR POSICION		POR TIEMPO
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE:	400 280 140 35	75 80	99 99		COJIN	0		
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE:	400 280 140 35	75 80	99 99		COJIN	0 POR POSICION		
INYECCION #3 INYECCION #4 INYECCION #5 ILMITE: DETALLES ESPECIALE	400 280 140 35	75 80	99 99		COJIN	0 POR POSICION		
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE	400 280 140 35	75 80 85	99 99 99		COJIN	0 POR POSICION POR PRESION		PORTIEMPO
INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETAILES ESPECIALE TEMPERATURA DEL EQUIPO D	400 280 140 35	75 80	99 99	ZONA #4	COJIN	0 POR POSICION	ZONA #7	
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE	400 280 140 35	75 80 85	99 99 99	ZONA #4	COJIN	0 POR POSICION POR PRESION		POR TIEMPO
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D	400 280 140 35	75 80 85	99 99 99	ZONA #4	COJIN	0 POR POSICION POR PRESION		POR TIEMPO
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (*C)	400 280 140 35	75 80 85	99 99 99	ZONA #4 ZONA #12	COJIN	0 POR POSICION POR PRESION		POR TIEMPO
INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIAL TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (°C) PORCENTAJE	400 280 140 35 SE CALEFACION: ZONA #1	75 80 85 85	99 99 99 99		X X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (*C)	400 280 140 35 SE CALEFACION: ZONA #1	75 80 85 85	99 99 99 99		X X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C)	400 280 140 35 200 200 200 200 200 200 200 200 200 20	75 80 85 85	99 99 99 99		X X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO	400 280 140 35 200 200 200 200 200 200 200 200 200 20	75 80 85 85	99 99 99 99		X X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO	400 280 140 35 35 35 20 20 20 20 20 20 20 20 20 20 20 20 20	75 80 85 85	99 99 99 99		X X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO 'BRAZO ROBOT	400 280 140 35 35 35 20 20 20 20 20 20 20 20 20 20 20 20 20	75 80 85 85	99 99 99 99		X X ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INYECCION #3 INYECCION #4 INYECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO 'BRAZO ROBOT	400 280 140 35 35 35 20 20 20 20 20 20 20 20 20 20 20 20 20	75 80 85 85	99 99 99 99		X X ZONA #5	0 POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO" BRAZO ROBOT EXPULSION Y RECUPERACION	400 280 140 35 35 35 20 20 20 20 20 20 20 20 20 20 20 20 20	75 80 85 85	99 99 99 99		X X ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA	400 280 140 35 35 35 20 20 20 20 20 20 20 20 20 20 20 20 20	75 80 85 85	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA	400 280 140 35 35 35 20 20 20 20 20 20 20 20 20 20 20 20 20	75 80 85 85	99 99 99 99		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETAILES ESPECIAL TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO D BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO	400 280 140 35 35 35 20 20 20 20 20 20 20 20 20 20 20 20 20	75 80 85 85	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO" BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION	400 280 140 35 35 35 20 20 20 20 20 20 20 20 20 20 20 20 20	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION	400 280 140 35 35 35 20 20 20 20 20 20 20 20 20 20 20 20 20	75 80 85 85	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 IJIMITE: DETAILES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (°C) PIROMETRO (°C) DIAGRAMA DEL CICLO BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA	400 280 140 35 35 35 20 20 20 20 20 20 20 20 20 20 20 20 20	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA	400 280 140 35 E CALEFACION: ZONA #1 ZONA #9	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA	400 280 140 35 E CALEFACION: ZONA #1 ZONA #9	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO " BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	400 280 140 35 E CALEFACION: ZONA #1 ZONA #9	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO" BRAZO ROBOT EXPULSION Y RECUPERACION	400 280 140 35 E CALEFACION: ZONA #1 ZONA #9	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO " BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	400 280 140 35 E CALEFACION: ZONA #1 ZONA #9	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO " BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	400 280 140 35 E CALEFACION: ZONA #1 ZONA #9	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO " BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	400 280 140 35 E CALEFACION: ZONA #1 ZONA #9	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO " BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	400 280 140 35 E CALEFACION: ZONA #1 ZONA #9	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #4 INVECCION #4 INVECCION #5 LIMITE: DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO " BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	400 280 140 35 E CALEFACION: ZONA #1 ZONA #9	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETAILES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO " BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	400 280 140 35 E CALEFACION: ZONA #1 ZONA #9	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8
INVECCION #3 INVECCION #3 INVECCION #4 INVECCION #5 ILIMITE: DETAILES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO " BRAZO ROBOT EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA CIERRA PRENSA	400 280 140 35 E CALEFACION: ZONA #1 ZONA #9	75 80 85 85 ZONA #2	99 99 99 20NA #3		ZONA #5	O POR POSICION POR PRESION ZONA #6	ZONA #7 ZONA #15	POR TIEMPO ZONA #8

CAPÍTULO 4 ANÁLISIS Y REVISIÓN DE LOS DATOS OBTENIDOS

4. ANÁLISIS Y REVISIÓN DE LOS DATOS OBTENIDOS.

4.1. FUNCIONABILIDAD DEL ARTÍCULO VS MATERIA PRIMA

GAVETA

Es una caja llamada GAVETA con base y paredes totalmente caladas usado principalmente para almacenamiento de cárnicos, camarones y pescado, debido a que resiste bajas temperaturas de 0 °C hasta 40 °C bajo cero, también se puede usar en la agroindustria en general como por ejemplo para transportar hortalizas y en industria lácteas porque son apilables, su nervaduras están diseñadas para apilamiento vertical y sus esquinas están reforzadas con fuertes nervios.

Figura 4-1-1: Gaveta

Datos del artículo:

Peso del artículo: 2.048,00 gramos

Capacidad de carga: 35 kilogramos

Dimensiones: 60 cm L x 40 A x 25.5 cm. H

Capacidad de apilamiento: 350 kg. (10 gavetas x 35 kg apilados)

PROTMEC Página # 45 **ESPOL**

DESCRIPCIÓN DE LA MATERIA PRIMA

POLIETILENO.- La materia prima de este artículo es el polietileno de alta densidad, es un polímero de adición, conformado por unidades repetitivas de etileno. En el proceso de polimerización, se emplean catalizadores tipo Ziegler-Natta, y el Etileno es polimerizado a bajas presiones, mediante radicales libres.

El polietileno de alta densidad tiene una excelente resistencia al impacto y resistencia al resquebrajamiento bajo tensión y procesabilidad. Este polietileno a utilizarse debería tener un grado de fluidez de 7 g /10 min y una densidad de 0.952 g /cm³.

PROTMEC Página # 46 ESPOL

CARACTERÍSTICAS DEL ARTÌCULO: GAVETA	CARACTERÌISTICAS DEL MATERIAL POLIETILENO
Son apilables, resistente al impacto y su uso es para el	Tiene alta resistencia a la tensión, compresión y tracción.
almacenamiento de cárnicos, camarones y pescados, están en cuartos fríos con temperaturas de	Presenta buena resistencia a bajas temperaturas.
40 grados centígrado bajo cero.	Tiene una buena resistencia al impacto y a la abrasión
	Resistente a bacterias y químicos
	Es un plástico homologado para estar en contacto con cualquier clases de alimentos
	Es impermeable al agua
	Se puede mezclar con aditivos anti oxidantes, agentes UV, elastómeros

Tabla 4-1-1: Funcionalidad de la gaveta vs materia prima

PROTMEC Página # 47 ESPOL

CAJONETA

Es una pieza utilizada en el área de la construcción empleada para hacer losas

reticulares y antisísmica, se conoce así puesto que en ella se forma "retículas",

o huecos, La funcionalidad es facilitar la realización de estos agujeros

mencionados ya que por su bajo peso permiten ser manipuladas, ensamblada

y desencofrado rápidamente sin la necesidad de requerir equipos. Además las

paredes del artículo están reforzadas con fuertes nervios para hacerlo más

resistente al impacto o esfuerzo mecánico que esté sometido.

Figura 4-1-2: Cajoneta

Datos del artículo:

Peso del artículo: 3.020,00 gramos

Dimensiones: 62 cm L x 62 cm A x 25 cm H

DESCRIPCION DE LA MATERIA PRIMA

POLIPROPILENO.- Es un polímero termoplástico, parcialmente cristalino, que

se obtiene de la polimerización del propileno (o propeno), pertenece al grupo

de la Poliolefinas, al añadir entre un 5 % y un 30 % de etileno en la

polimerización,

PROTMEC Página #48 **ESPOL**

Se obtiene el copolimero que posee mayor resistencia al impacto. Tiene una densidad de 0.90 g /cm3 y una fluidez de 6 g /10min.

CARACTERÍSTICAS DEL ARTÍCULO: CAJONETA	CARACTERÌSTICAS DEL MATERIAL: POLIPROPILENO
Se usa en el área de la construcción para fabricación de losas reticulares	Tiene excelente balance impacto/rigidez.
antisísmicas.	Optima resistencia química
	Muy baja absorción de agua
	A diferencia del polipropileno homopolímero, el copolimero presenta una mejor resistencia en caso de choque a las bajas temperaturas, y un alargamiento de rotura más elevado.
	Este material admite reforzantes como fibra de vidrio, talco, carbonatos. No admite plastificantes, pero se puede añadir lubricantes.

Tabla 4-1-2: Funcionalidad de la cajoneta vs materia prima

PROTMEC Página # 49 ESPOL

ECOPISO

Es una pieza de uso industrial, son anti deslizables, son apilable y acoplables por los cuatro lados. Se utiliza como sobre piso para proteger del agua en bodegas, furgones, caminos en plantas industriales, rejillas de canales, piso para granjas porcinas, avícolas y cuartos fríos.

Figura 4-1-3: Ecopiso

Datos del artículo:

Peso del artículo: 2.270,00 Gramos

Dimensiones: 60 cm L x 40 cm A x 4 cm H

Capacidad de Carga: 2 Ton / Pulg ²

DESCRIPCIÓN DE LA MATERIA PRIMA

SCRAP POLIETILENO.- Está mezcla está compuesta por un polietileno de alta densidad reprocesado, que se obtiene del scrap generado de otros artículos inyectados en la planta de inyección, este material tiene una densidad promedio de 0.95 g /cm3 y una fluidez aproximada de 5 a 7 g /10min.

PROTMEC Página # 50 ESPOL

El polietileno de alta densidad es un material rígido, tiene una buena resistencia a los ácidos, buen aislante eléctrico por lo que lo hace un material apto para la elaboración de ecopisos.

CARACTERÌSTICAS DEL ARTÍCULO: ECOPISO	CARACTERÌSTICAS DEL MATERIAL: POLIETILENO DE
Se utiliza para pisos de granjas	Resistente a bacterias y químicos
porcinas, avícolas y cuartos fríos, son anti deslizable y acoplables.	Presenta buena resistencia a bajas temperaturas.
	Tiene una buena resistencia al impacto y a la abrasión
	Son buenos aislantes eléctricos
	Tiene alta resistencia a la tensión, compresión y tracción
	Es impermeable al agua
	Se puede mezclar con aditivos anti oxidantes , agentes UV y elastómeros

Tabla 4-1-3: Funcionalidad del ecopiso vs materia prima

PROTMEC Página # 51 ESPOL

TECHO DE ARMARIO

Esta es una pieza o componente de paredes delgadas que al ser ensamblado

con sus otras partes forman un armario de plástico pequeño, es de uso

múltiple; se utiliza para guardar herramientas, ropa, útiles de limpieza, juguetes

e incluso comidas.

Figura 4-1-4: Techo de armario

Datos del artículo:

Peso del artículo: 1.600,00 Gramos

Dimensiones: 70 cm L x 45 cm A x 5.5 cm

DESCRIPCIÓN DE LA MATERIA PRIMA

POLIPROPILENO.- Es un polipropileno copolimero que se obtiene de la

polimerización del propileno (o propeno), pertenece al grupo de la Poliolefinas,

al añadir entre un 5 % y un 30 % de etileno en la polimerización, se obtiene el

copolimero, posee un buen balance rigidez/impacto.

PROTMEC Página # 52 **ESPOL**

Este material es recomendado para inyectar artículos con paredes delgadas y ciclos cortos, debido a que tiene una fluidez promedio de 60 g /10min y una densidad de 0.90 g /cm3.

CARACTERÍSTICAS DEL ARTÍCULO: CARACTERIÍSTICAS DEL **TECHO DE ARMARIO MATERIAL: POLIPROPILENO** Tiene una fluidez aproximada de Es una pieza de paredes delgadas que al 60 g /10min muy buena para ser ensambla forma un armario, es de uso artículos de paredes delgadas. múltiple donde se puede guardar ropa, Tiene excelente balance herramientas y hasta comidas. impacto/rigidez. Optima resistencia química Muy baja absorción de agua Este material admite reforzantes como fibra de vidrio, talco. carbonatos. No admite plastificantes, pero se puede añadir lubricantes. A diferencia del polipropileno homopolímero, el copolimero presenta una mejor resistencia en caso de choque a las bajas temperaturas, y un alargamiento de rotura más elevado.

Tabla 4-1-4: Funcionalidad del techo de armario vs materia prima

PROTMEC Página # 53 ESPOL

CESTO

Es un cesto o tacho de paredes delgada (1.5 mm) usado para el hogar o la

oficina, tradicionalmente se lo coloca en la cocina o baño, en donde se puede

Almacenar basura o papeles.

Figura 4-1-5: Cesto

Datos del artículo:

Peso del artículo: 462 Gramos

Capacidad: 15 litros

Dimensiones: L 32 cm x A 22 cm x H 29.8 cm

DESCRIPCIÓN DE LA MATERIA PRIMA

POLIETILENO.- La materia prima de este artículo es el polietileno de alta

densidad, Es un polímero de adición, conformado por unidades repetitivas de

etileno. En el proceso de polimerización, se emplean catalizadores tipo Ziegler-

Natta, y el Etileno es polimerizado a bajas presiones, mediante radicales libres.

PROTMEC Página # 54 **ESPOL**

El polietileno de alta densidad tiene una excelente resistencia al impacto y resistencia al resquebrajamiento bajo tensión y procesabilidad ambiental y procesabilidad. Es ideal para utilizarse en artículos domésticos, juguetes y recipientes.

Este material es recomendado para inyectar artículos con paredes delgadas debido a que tiene una fluidez promedio de 20 g /10min y una densidad de 0.954 g /cm3

CARACTERÌSTICAS DEL ARTICULO: CESTO	CARACTERÌSTICAS DEL MATERIAL: POLIETILENO
Es un cesto de paredes delgadas de 1.5 mm promedio, su uso para	Resistente a bacterias y químicos
almacenar basura o papeles.	Tiene una fluidez aproximada de 20 gr/10min muy buena para artículos de paredes delgadas.
	Tiene alta resistencia a la tensión, compresión y tracción.
	Es impermeable al agua
	Se puede mezclar con aditivos anti oxidantes, agentes UV, elastómero.

Tabla 4-1-5: Funcionalidad del cesto vs materia prima

PROTMEC Página # 55 ESPOL

TABLERO DE MESA

Está artículo que está diseñado con la finalidad de brindar una zona de

descanso o de juegos en la cual un niño podrá hacer sus tareas, colorear, jugar

o comer. Este artículo suele permanecer en lugares cerrados a temperaturas

de 19 °C Y 30° C, por lo que no va hacer expuesto necesariamente a la luz

solar ni a la intemperie.

Figura 4-1-6: Tablero de mesa

Datos del artículo:

Peso del artículo: 1.475,00 Gramos

Dimensiones: 60 cm L x 60 cm A x 8.5 cm H

DESCRIPCIÓN DE LA MATERIA PRIMA

POLIPROPILENO.- La materia prima está compuesta por un polipropileno

homopolímero cuya estructura molecular está hecha de solo propileno, es una

resina altamente cristalina y tiene un aditivo nucleante para que los artículos

producidos con este material presentan alta rigidez, dureza, resistencia a la

deformación por calor, tensión y buena resistencia a diversos productos

químicos. Esta resina tiene una densidad de 0.90 g /cm3 y una fluidez de 20 g

/10min.

PROTMEC Página # 56 **ESPOL**

CARACTERÌSTICAS DEL ARTÍCULO: CARACTERÍSTICAS DEL TABLERO DE MESA **MATERIAL: POLIPROPILENO HOMOPOLIMERO** Tiene una fluidez aproximada de 20 g /10min muy buena para Es una tablero de mesa que tiene paredes gruesa, su uso es para el hogar artículos de paredes gruesa. Se utiliza en aplicaciones que requieren alta rigidez Óptima resistencia química Muy baja absorción de agua Este material admite reforzantes como fibra de vidrio, talco. carbonatos. admite No plastificantes, pero se puede añadir lubricantes.

Tabla 4-1-6: Funcionalidad del tablero de mesa vs materia prima

PROTMEC Página # 57 ESPOL

CANASTA

Este es un artículo con tejido especial, sus paredes tiene un labrado que se

asemeja a un cesto de mimbre. Es de uso doméstico para ropas, útiles e

insumo del hogar.

Figura 4-1-7: Canasta

Datos del artículo:

Peso del artículo: 930 gramos

Dimensiones: 53 cm L x 36 cm A x 24 cm H

DESCRIPCIÓN DE LA MATERIA PRIMA:

POLIPROPILENO.- Es un polipropileno copolimero que se obtiene de la

polimerización del propileno (o propeno), pertenece al grupo de la Poliolefinas,

al añadir entre un 5 % y un 30 % de etileno en la polimerización, se obtiene el

copolimero, posee un buen balance rigidez/impacto.

PROTMEC Página # 58 **ESPOL**

Este material es recomendado para inyectar artículos con paredes delgadas y ciclos cortos, debido a que tiene una fluidez promedio de 60 g /10min y una densidad de 0.91 g /cm3.

CANASTA	MATERIAL: POLIPROPILENO
Es una pieza de paredes delgadas que tienen un labrado especial, es de uso doméstico para ropas útiles e insumos	Tiene una fluidez aproximada de 60 g /10min muy buena para artículos de paredes delgadas. Tiene excelente balance impacto/rigidez.
	Optima resistencia química Muy baja absorción de agua Este material admite reforzantes como fibra de vidrio, talco, carbonatos. No admite plastificantes, pero se puede añadir lubricantes. A diferencia del polipropileno homopolímero, el copolimero presenta una mejor resistencia en caso de choque a las bajas temperaturas, y un alargamiento

Tabla 4-1-7: Funcionalidad de la canasta vs materia prima

PROTMEC Página # 59 ESPOL

PALLET

Es un artículo de paredes gruesas reforzadas con fuertes nervaduras, La funcionalidad del pallet es utilizarlo como base para almacenar y transportar mercancías o cargas, me permite brindar estabilidad y facilitar el transporte de la mercancía.

Figura 4-1-8: Pallet

Datos del artículo:

Peso del artículo: 15.000,00 Gramos

Capacidad de carga dinámica: 600 Kg

Capacidad de carga estacionaria: 1.200,00 Gramos

PROTMEC Página # 60 ESPOL

Dimensiones: 100 cm L x 120 cm A x 13.5 cm H

DESCRIPCIÓN DE LA MATERIA PRIMA

SCRAP POLIETILENO .- La materia prima es PELETIZADO PEAD SCRAP,

está compuesta por un polietileno de alta densidad reciclado el cual tiene una

densidad de 0.95 g /cm3 y una fluidez aproximada de 7.8 g /10min.

PROTMEC Página # 61 **ESPOL**

CARACTERÍSTICAS DEL ARTÍCULO: PALLET	CARACTERÌSTICAS DEL MATERIAL: POLIETILENO
➤ Es un artículo de paredes gruesa y	Resistente a bacterias y químicos
se utiliza como base para almacenar y transportar mercancía o carga	Presenta buena resistencia a bajas temperaturas.
	Tiene una buena resistencia al impacto y a la abrasión
The state of the s	Son buenos aislantes eléctricos
	Tiene alta resistencia a la tensión, compresión y tracción
	Es impermeable al agua
	Se puede mezclar con aditivos anti oxidantes , agentes UV y elastómeros

Tabla 4-1-8: Funcionalidad del pallet vs materia prima

PROTMEC Página # 62 ESPOL

4.2. ÀREA PROYECTADA DEL ARTÍCULO VS FUERZA DE CIERRE

Para este estudio se analizará si los moldes programados para las máquinas inyectoras, están siendo seleccionados adecuadamente.

Por lo que se procederá a realizar el cálculo de tonelaje de prensa en función del área proyectada del artículo (molde).

Primero para establecer el tonelaje de prensa es necesario tomar en cuenta varios factores como:

- Espesor de pared del artículo.
- La fluidez del plástico.
- La geometría del artículo.
- La longitud del disparo.
- Detalles del diseño tales como nervaduras, postizos y otras piezas móviles a existir.

El cálculo del tonelaje de fuerza de cierre, es necesario para cerrar un molde y no producir rebaba, esto se calcula de acuerdo a la dificulta que presenta el producto para ser inyectado, en este caso si se tiene un artículo con una longitud de inyección o disparo de 100 mm tomaremos 0.31 toneladas por centímetros cuadrados y si la longitud de inyección es igual o mayor a 200 mm tomaremos 0.47 toneladas por centímetros cuadrados.

A continuación se procederá a realizar el cálculo para cada uno de los moldes seleccionados:

PROTMEC Página # 63 ESPOL

Artículo: Gaveta

Datos:

• Dimensiones: Largo 60 cm x Ancho 40 cm

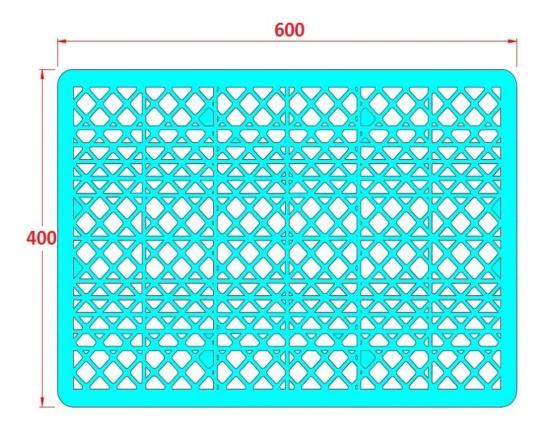


Figura 4-2-1. Área proyectada de la gaveta (2400 cm2)

PROTMEC Página # 64 ESPOL

Longitud del disparo:113 mm +255 mm = 368 mm

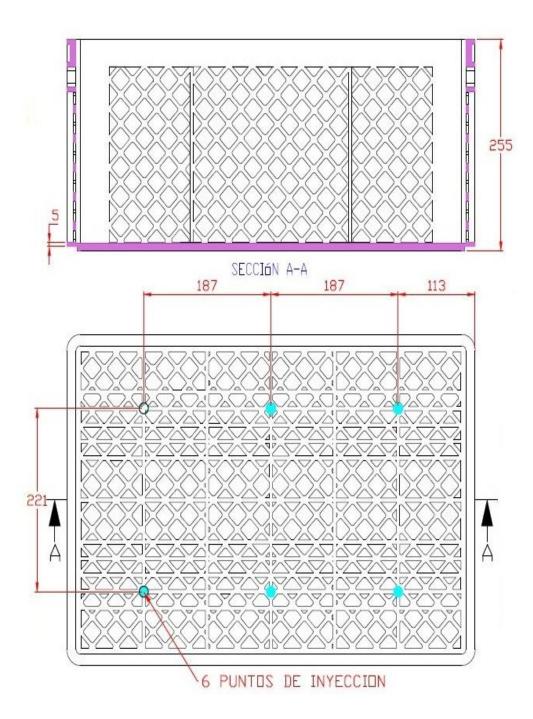


Figura 4-2-2: Plano de la gaveta

- Espesor medio de pared: 3.5 mm
- Tonelaje de cierre de máquina inyectora donde trabaja: 800 Ton

PROTMEC Página # 65 ESPOL

Cálculo del Área Proyectada del Artículo:

Desarrollo:

Área Proyectada = Largo x Ancho

Área Proyectada = 60 cm x 40 cm

Área Proyectada = 2400 cm ²

Cálculo de la Fuerza de Cierre Requerida:

Fuerza de Cierre = Área Proyectada X $\frac{0.31 \ Ton}{cm^2}$

Fuerza de Cierre = 2400 cm
2
 x $\frac{0.31 \ Ton}{cm^2}$

Fuerza de Cierre = 744 Ton

PROTMEC Página # 66 ESPOL

Artículo: Cajoneta

Datos

• Dimensiones: Largo 62 cm x Ancho 62 cm

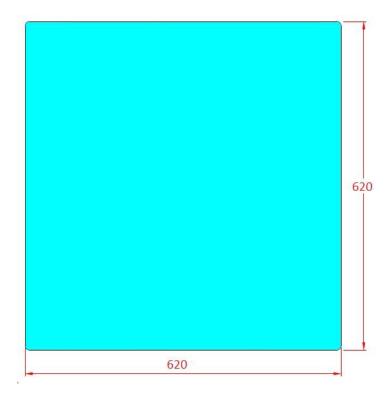


Figura 4-2-3: Área proyectada de la cajoneta (3844 cm2)

PROTMEC Página # 67 ESPOL

Longitud del disparo: 250 mm + 438 mm = 688 mm

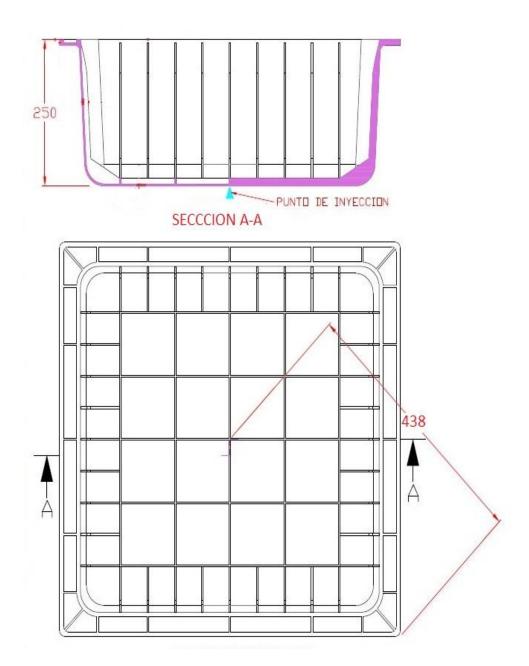


Figura 4-2-4: Plano de la cajoneta

- Espesor medio de pared: 3.5 mm
- Tonelaje de cierre de máquina inyectora donde trabaja :1000 Ton

PROTMEC Página # 68 ESPOL

Cálculo del Área Proyectada del Artículo:

Desarrollo:

Área Proyectada = Largo x Ancho

Área Proyectada = 62 cm x 62 cm

Área Proyectada = 3844 cm²

Cálculo de la Fuerza de Cierre Requerida:

Fuerza de Cierre = Área Proyectada x $\frac{0.31 \ Ton}{cm^2}$

Fuerza de Cierre = 3844 cm 2 x $\frac{0.31 \, Ton}{cm^2}$

Fuerza de Cierre = 1192 Ton

PROTMEC Página # 69 ESPOL

• Artículo: Ecopiso

Datos:

Dimensiones: Largo 60 cm x Ancho 40 cm

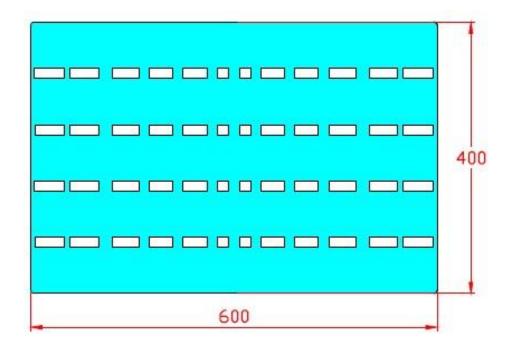


Figura 4-2-5: Área proyectada del ecopiso (2400 cm2)

PROTMEC Página # 70 ESPOL

Longitud de recorrido : 40 mm + 300 mm + 83 mm = 423 mm

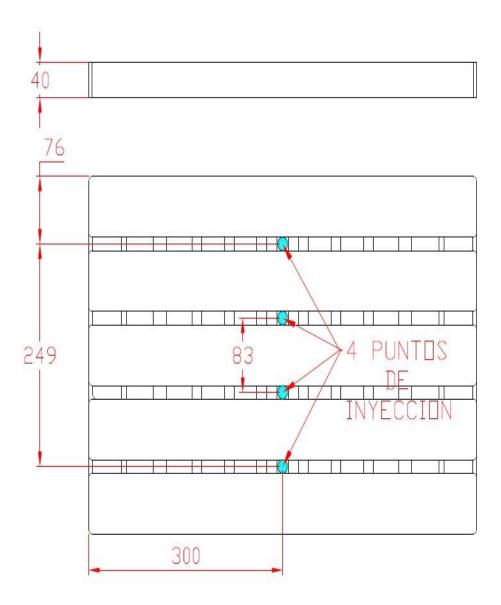


Figura 4-2-6: Plano del ecopiso

- Espesor medio de pared: 6 mm
- Tonelaje de cierre de máquina inyectora donde trabaja: 780 Ton

PROTMEC Página # 71 ESPOL

Cálculo del Área Proyectada del Artículo:

Desarrollo:

Cálculo de la Fuerza de Cierre Requerida:

Fuerza de Cierre = Área Proyectada X
$$\frac{0.31 \ Ton}{cm^2}$$

Fuerza de Cierre = 2400 cm
2
 x $\frac{0.31 \ Ton}{cm^2}$

Fuerza de Cierre = 744 Ton

PROTMEC Página # 72 ESPOL

• Artículo: Techo de armario

Datos:

• Dimensiones: Largo 70 cm x Ancho 45 cm

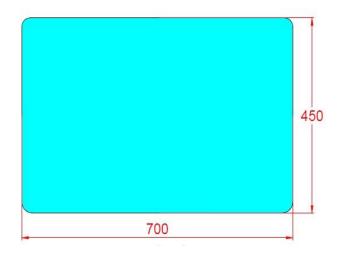


Figura 4-2-7: Área proyectada del techo de armario (3150 cm2)

• Longitud del disparo: 416 mm + 55 mm = 471 mm

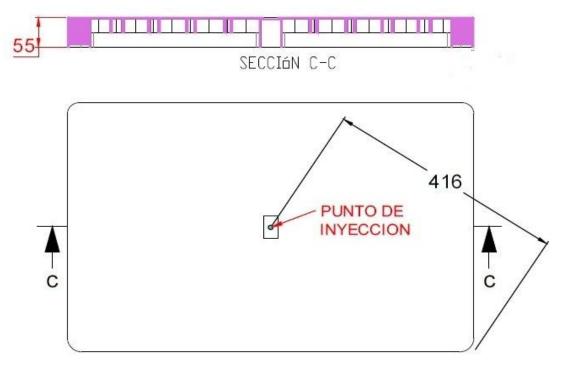


Figura 4-2-8: Plano del techo de armario

PROTMEC Página # 73 ESPOL

- Espesor medio de pared: 1.5 mm
- Tonelaje de cierre de máquina inyectora donde trabaja:800 Ton

Cálculo del Área Proyectada del Artículo:

Desarrollo:

Cálculo de la Fuerza de Cierre Requerida:

Fuerza de Cierre = Área Proyectada X
$$\frac{0.31 \, Ton}{cm^2}$$

Fuerza de Cierre = 3150 cm
2
 x $\frac{0.31 \ Ton}{cm^2}$

Fuerza de Cierre: 977 Ton

PROTMEC Página # 74 ESPOL

Artículo: Cesto

Datos:

Dimensiones: Largo 32 cm x Ancho 22 cm

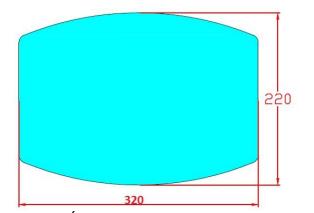


Figura 4-2-9: Área proyectada del cesto (704 cm2)

Longitud del disparo: 301 mm + 170 mm = 471 mm

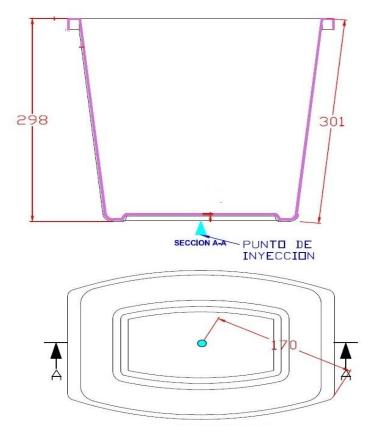


Figura 4-2-10: Plano del cesto

PROTMEC Página # 75 ESPOL

- Espesor medio de pared: 2 mm
- Tonelaje de cierre de máquina inyectora donde trabaja: 468 Ton

Cálculo del Área Proyectada del Artículo:

Desarrollo:

Área Proyectada = Largo x Ancho

Área Proyectada = 32 cm x 22 cm

Área Proyectada = 704 cm²

Cálculo de la Fuerza de Cierre Requerida:

Fuerza de Cierre = Área Proyectada x $\frac{0.47 \ Ton}{cm^2}$

Fuerza de Cierre = 704 cm 2 x $\frac{0.47 \ Ton}{cm^2}$

Fuerza de Cierre = 331 Ton

PROTMEC Página # 76 ESPOL

Artículo: Tablero de Mesa

Datos:

• Dimensiones: Largo 58 cm x Ancho 58 cm

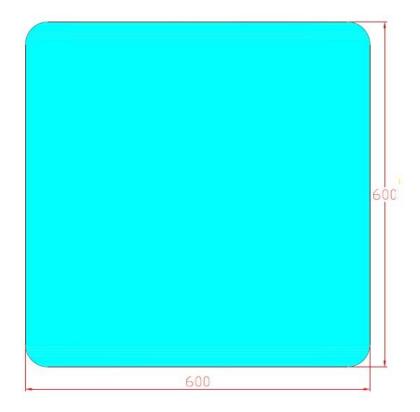


Figura 4-2-11: Área proyectada del tablero de mesa (3364 cm2)

PROTMEC Página # 77 ESPOL

Longitud del disparo : 408 mm + 85 mm = 493 mm

Figura 4-2-12: Plano del tablero de mesa

- Espesor medio de pared: 3 mm
- Tonelaje de cierre de máquina inyectora donde trabaja :780 Ton

PROTMEC Página # 78 ESPOL

Cálculo al Área Proyectada del Artículo:

Desarrollo:

Área Proyectada = Largo x Ancho

Área Proyectada = 58 cm x 58 cm

Área Proyectada = 3364 cm²

Cálculo de la Fuerza de Cierre Requerida:

Fuerza de Cierre = Área Proyectada X $\frac{0.31 \ Ton}{cm^2}$

Fuerza de Cierre = 3364 cm 2 x $\frac{0.31 \ Ton}{cm^2}$

Fuerza de Cierre = 1043 Ton

PROTMEC Página # 79 ESPOL

Artículo: Canasta

Datos:

• Dimensiones : Largo 53 cm x Ancho 36 cm

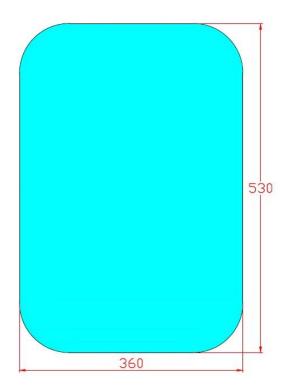


Figura 4-2-13: Área proyectada de la canasta (1908 cm2)

PROTMEC Página # 80 ESPOL

Longitud del disparo: 214 mm + 240 mm = 454 mm

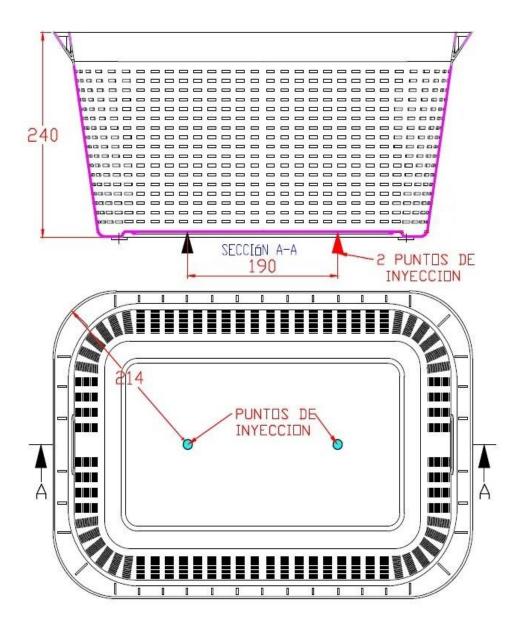


Figura 4-2-14: Plano de la canasta

- Espesor medio de pared: 2.5 mm
- Tonelaje de cierre de máquina inyectora donde trabaja :800 Ton

PROTMEC Página # 81 ESPOL

Cálculo del Área Proyectada del Artículo:

Desarrollo:

Área Proyectada = Largo x Ancho

Área Proyectada = 53 cm x 36 cm

Área Proyectada = 1908 cm²

Cálculo de la Fuerza de Cierre Requerida:

Fuerza de Cierre = Área Proyectada x $\frac{0.47 \ Ton}{cm^2}$

Fuerza de Cierre = 1908 cm 2 x $\frac{0.47 \ Ton}{cm^2}$

Fuerza de Cierre = 897 Ton

PROTMEC Página # 82 ESPOL

Artículo: Pallet

Datos:

• Dimensiones : Largo 100 cm x Ancho 120 cm

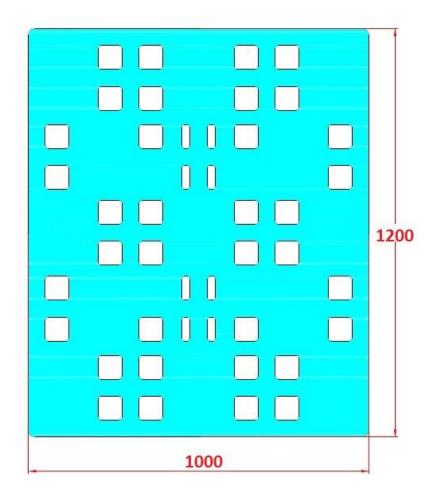


Figura 4-2-15: Área proyectada del pallet (12000 cm2)

PROTMEC Página # 83 ESPOL

Longitud del disparo: 135 mm + 400 mm = 535 mm

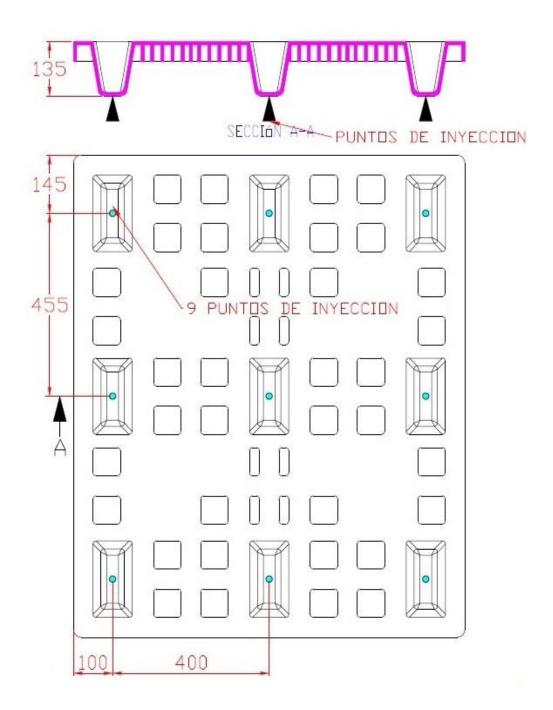


Figura 4-2-16: Plano del pallet

- Espesor medio de pared: 10 mm
- Tonelaje de cierre de máquina inyectora donde trabaja : 2800 Ton

PROTMEC Página # 84 ESPOL

Cálculo del Área Proyecta del Artículo:

Desarrollo:

Área Proyectada = Largo x Ancho

Área Proyectada = 100 cm x 120 cm

Área Proyectada = 12000 cm²

Cálculo de Fuerza de Cierre Requerida:

Fuerza de Cierre = Área Proyectada x $\frac{0.31 \ Ton}{cm^2}$

Fuerza de Cierre = 12000 cm
2
 x $\frac{0.31 \ Ton}{cm^2}$

Fuerza de Cierre = 3720 Ton

PROTMEC Página # 85 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas Inyectoras de Termoplásticos"

	RELACIÓN FUERZA DE CIERRE REQUERIDA VS MÁQUINA PROGRAMADA									
Nº	ARTÍCULO	ÁREA PROYECTADA	FUERZA DE CIERRE MINIMA REQUERIDA	MÁQUINA PROGRAMADA	OBSERVACIÒN					
1	Gaveta	2400 cm 2	744 Ton	800 Ton	Cumple					
2	Cajoneta	3844 cm 2	1192 Ton	1000 Ton	No cumple					
3	Ecopiso	2400 cm 2	744 Ton	780 Ton	Cumple					
4	Techo de armario	3150 cm 2	977 Ton	800 Ton	No cumple					
5	Cesto	704 cm 2	331 Ton	468 Ton	Cumple					
6	Tablero de Mesa	3364 cm 2	1043 Ton	700 Ton	No cumple					
7	Canasta	1908 cm 2	897 Ton	800 Ton	No cumple					
8	Pallet	12000 cm 2	3720 Ton	2800 Ton	No cumple					

Tabla 4-2-1: Resultado de análisis de relación de fuerza de cierre requerida vs máquina programada

Conclusiones del Análisis:

Con estos resultados se determina que los molde señalados con la descripción; "cumple", quiere decir que el molde está acorde a la máquina donde normalmente es programada, ya que la máquina cumple con el tonelaje de fuerza de cierre mínima requerida para cerrar el molde y no producir rebaba.

Con respecto a los moldes señalados con la descripción de; "no cumple", quiere decir que el molde no está acorde a la máquina donde normalmente es programada debido a que la fuerza de cierre de estas máquinas no es suficiente para cerrar el molde por lo tanto puede producir rebaba o abrirse la prensa al momento de inyección si no se trabaja con presiones de inyección moderadas.

PROTMEC Página # 86 ESPOL

Pero al investigar y analizar minuciosamente a cada uno de los moldes señalados como "no cumple" nos encontramos con las siguientes variables que permiten que estos moldes puedan ser programados en estas máquinas:

Moldes: Cajoneta y Tablero de mesa, son artículos que tienen un espesor de pared promedio de 3 mm y el Pallet de 10 mm, además todos tienen nervaduras gruesas en toda la superficie del artículo, por lo que influye esto directamente en el llenado del artículo debido a que ofrecen menor resistencia al ser inyectados.

Moldes: Techo de armario y Canasta son artículos que son de canal caliente, se trabaja con materiales muy fluidos (PP AI 60) y sobre todo tienen dos punto de inyección que facilitan el llenado del artículo debido a que ofrecen menor resistencia al ser inyectados.

PROTMEC Página # 87 ESPOL

4.3. EL PESO DEL ARTÍCULO VS CAPACIDAD DE INYECCIÓN DE MÁQUINA

En esta parte analizaremos si el peso del artículo está en relación a la capacidad de inyección de máquina.

Se entiende por capacidad de inyección el volumen de material que es capaz de suministrar la máquina en una inyección (cm³/inyección). Es común dar este valor en gramos, tomando como referencia la densidad del poliestireno.

En ocasiones también se expresa la capacidad de inyección de la máquina como el volumen barrido por el husillo de inyección en su recorrido hacia adelante, lo que resulta menos ambiguo que referirlo a un tipo concreto de material.

En una situación real la capacidad de inyección viene determinada por el diámetro y la carrera del pistón o husillo de inyección, así como por el tipo de molde utilizado, la temperatura que alcanza el polímero fundido, las presiones con que se inyecta y otras variables.

La unidad de inyección suele escogerse de forma que sea capaz de contener material suficiente para dos ciclos, en otras palabras el 50 % de la capacidad de inyección de un cilindro debería vaciarse en cada ciclo.

PROTMEC Página # 88 ESPOL

Por otra parte la cantidad de material introducida en el molde nunca deberá ser inferior al 20% ni superior al 80 % de la capacidad del cilindro, de modo que el tiempo de permanencia del material en la cámara de plastificación no sea excesivamente largo para evitar que el material se degrade, ni excesivamente corto para evitar que no se encuentre plastificado.

Para comprobar que estamos seleccionando correctamente la máquina con respecto al peso del artículo vamos aplicar el valor de relación entre el recorrido vs diámetro del tornillo, este debe de estar por encima de 1.5 diámetro del husillo para que podamos tener la máxima precisión que nos da el equipo y no superior a 4 veces debido a que no tendrá la capacidad de plastificar este volumen de plástico.

Se dice capacidad de plastificación a la cantidad máxima de material que es capaz de suministrar el tornillo, por hora, cuando plastifica el material; se da en kg/h.

Además cabe recalcar que la capacidad de plastificación de una máquina, se verá afectada directamente por las características del tornillos por ejemplo tornillo de doble barrera permite tener mejor plastificación de la resina y la relación longitud sobre diámetro del tornillo (L/D) no debe ser igual o mayor a 30/1 estas medidas superiores son inestables, estos largos tornillos se emplean en máquinas con desgasificación, por ello es recomendable para poliolefinas tener una relación 25:1

PROTMEC Página # 89 ESPOL

Artículo: Gaveta

- Peso del artículo: 2.048,00 gramos
- Peso específico del PEAD: 0.952 g / cm³
- Compensación de densidad por temperatura(PEAD): 84 %
- Capacidad de inyección máquina de 800 Ton: 4.480,00 gramos
- Diámetro del husillo: 120 mm

Desarrollo

Primer paso:

Encontrar el recorrido o tamaño del disparo.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.84 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{2048 \ gramos}{(0.84 \ x \ 0.952 \ g \ /cm^3) (\prod x (6 \ cm)^2)}$$

Recorrido = 22.62 cm

Recorrido =
$$226 mm$$

Segundo paso:

Calcular la relación que existe entre el diámetro del husillo y el recorrido que este hará para llenar el molde.

Relación diámetro / recorrido =
$$\frac{Recorrido}{\emptyset \text{ husillo}}$$

Relación diámetro / recorrido =
$$\frac{226 \, mm}{120 \, mm}$$

Relación diámetro / recorrido = 1.88 ø husillo

PROTMEC Página # 90 ESPOL

Artículo: Cajoneta

- Peso del artículo: 3.020,00 gramos
- Peso específico del PP: 0.900 g / cm³
- Compensación de densidad por temperatura (PP): 82 %
- Capacidad de inyección máquina de 1000 Ton: 3.920,00 gramos
- Diámetro del husillo: 110 mm

Desarrollo:

Primer paso:

Encontrar el recorrido o tamaño del disparo.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.82 \ x \ peso \ especifico) (||xr^2|)}$$

Recorrido =
$$\frac{3020 \ gramos}{(0.82 \ x \ 0.900 \ g \ / cm^3) (\prod x (5.5 \ cm)^2)}$$

Recorrido = 43.06 cm

Recorrido =
$$430 mm$$

Segundo paso:

Calcular la relación que existe entre el diámetro del husillo y el recorrido que este hará para llenar el molde.

Relación diámetro / recorrido =
$$\frac{Recorrido}{\emptyset husillo}$$

Relación diámetro / recorrido =
$$\frac{430 \text{ } mm}{110 \text{ } mm}$$

Relación diámetro / recorrido = 3.90 ø husillo

PROTMEC Página # 91 ESPOL

Artículo: Ecopiso

Peso del artículo: 2.500,00 gramos

Peso específico del PP: 0.952 g / cm³

• Compensación de densidad por temperatura (PEAD): 84 %

Capacidad de inyección máquina 780 Ton: 2.750,00 gramos

Diámetro del husillo: 100 mm

Desarrollo:

Primer paso:

Encontrar el recorrido o tamaño del disparo.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.84 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{2500 \ gramos}{(0.84 \ x \ 0.952 \ g \ / cm^3) (\prod x(5 \ cm)^2)}$$

Recorrido = 39.80 cm

Recorrido =
$$398 mm$$

Segundo paso:

Calcular la relación que existe entre el diámetro del husillo y el recorrido que este hará para llenar el molde.

Relación diámetro / recorrido =
$$\frac{Recorrido}{\emptyset husillo}$$

Relación diámetro / recorrido
$$= \frac{398 \ mm}{100 \ mm}$$

Relación diámetro / recorrido = 3.98 ø husillo

PROTMEC Página # 92 ESPOL

Artículo: Techo de armario

- Peso del artículo: 1.600,00 gramos
- Peso específico del PP : 0.900 g / cm³
- Compensación de densidad por temperatura (PP): 82 %
- Capacidad de inyección máquina de 800 Ton: 3.680,00 gramos
- Diámetro del husillo: 120 mm

Desarrollo:

Primer paso:

Encontrar el recorrido o tamaño del disparo.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.84 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{1600 \ gramos}{(0.82 \ x \ 0.900 \ g/cm^3) (\prod x(6 \ cm)^2)}$$

Recorrido = 19.17 cm

Recorrido =
$$191 mm$$

Segundo paso:

Calcular la relación que existe entre el diámetro del husillo y el recorrido que este hará para llenar el molde.

Relación diámetro / recorrido =
$$\frac{Recorrido}{\emptyset husillo}$$

Relación diámetro / recorrido
$$= \frac{191 \ mm}{120 \ mm}$$

Relación diámetro / recorrido = 1.59 ø husillo

PROTMEC Página # 93 ESPOL

Artículo: Cesto

Peso del artículo: 462 gramos

Peso específico del PP: 0.952 g / cm³

Compensación de densidad por temperatura (PEAD): 84 %

Capacidad de inyección máquina de 468 Ton: 1.050,00 gramos

Diámetro del husillo: 83 mm

Desarrollo:

Primer paso:

Encontrar el recorrido o tamaño del disparo.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.84 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{462 \ gramos}{(0.84 \ x \ 0.952 \ g \ /cm^3) (\prod x (4.15 \ cm)^2)}$$

Recorrido = 10.68 cm

Recorrido = 106 mm

Segundo paso:

Calcular la relación que existe entre el diámetro del husillo y el recorrido que este hará para llenar el molde.

Relación diámetro / recorrido =
$$\frac{Recorrido}{\emptyset husillo}$$

Relación diámetro / recorrido =
$$\frac{106 \, mm}{83 \, mm}$$

Relación diámetro / recorrido = 1.27 ø husillo

PROTMEC Página # 94 ESPOL

Artículo: Tablero de Mesa

- Peso del artículo: 1.475,00 gramos
- Peso específico del PP : 0.900 g / cm³
- Compensación de densidad por temperatura (PP): 82 %
- Capacidad de inyección máquina de 780 Ton: 2.750,00 gramos
- Diámetro del husillo: 100 mm

Desarrollo:

Primer paso:

Encontrar el recorrido o tamaño del disparo.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.82 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{1475 \ gramos}{(0.82 \ x \ 0.900 \ g/cm^3) \ (\prod x(5 \ cm)^2)}$$

Recorrido = 25.44 cm

Recorrido =
$$254 mm$$

Segundo paso:

Calcular la relación que existe entre el diámetro del husillo y el recorrido que este hará para llenar el molde.

Relación diámetro / recorrido =
$$\frac{Recorrido}{\emptyset husillo}$$

Relación diámetro / recorrido =
$$\frac{254 \text{ } mm}{100 \text{ } mm}$$

Relación diámetro / recorrido = 2.54 Ø

PROTMEC Página # 95 ESPOL

Artículo: Canasta

- Peso del artículo: 930 gramos
- Peso específico del PP: 0.900 g / cm³
- Compensación de densidad por temperatura (PP): 82 %
- Capacidad de inyección máquina de 800 Ton: 4.480,00 gramos
- Diámetro del husillo: 110 mm

Desarrollo:

Primer paso:

Encontrar el recorrido o tamaño del disparo.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.82 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{930 \ gramos}{(0.82 \ x \ 0.900 \ g/cm^3) \ (\prod x (5.5 \ cm)^2)}$$

Recorrido = 13.26 cm

Recorrido =
$$132 mm$$

Segundo paso:

Calcular la relación que existe entre el diámetro del husillo y el recorrido que este hará para llenar el molde.

Relación diámetro / recorrido =
$$\frac{Recorrido}{\emptyset husillo}$$

Relación diámetro / recorrido
$$= \frac{132 \ mm}{110 \ mm}$$

Relación diámetro / recorrido = 1.2 ø husillo

PROTMEC Página # 96 ESPOL

Artículo: Pallet

- Peso del artículo: 15.000,00 gramos
- Peso específico del PP: 0.952 g / cm³
- Compensación de densidad por temperatura (PEAD): 84 %
- Capacidad de inyección máquina de 2800 Ton: 29.230,00 gramos
- Diámetro del husillo: 200 mm

Desarrollo:

Primer paso:

Encontrar el recorrido o tamaño del disparo.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.84 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{15000 \ gramos}{(0.84 \ x \ 0.952 \ g/cm^3) \ (\prod x(10 \ cm)^2)}$$

Recorrido = 59.70 cm

Recorrido =
$$597 mm$$

Segundo paso:

Calcular la relación que existe entre el diámetro del husillo y el recorrido que este hará para llenar el molde.

Relación diámetro / recorrido =
$$\frac{Recorrido}{\emptyset \text{ husillo}}$$

Relación diámetro / recorrido =
$$\frac{597 \text{ } mm}{200 \text{ } mm}$$

Relación diámetro / recorrido = 2.98 ø husillo

PROTMEC Página # 97 ESPOL

#	ARTÍCULO	PESO DEL ARTÍCULO	RECORRIDO O TAMAÑO DEL DISPARO	DIAMETRO DEL HUSILLO	RELACION DIAMETRO VS RECORRIDO	OBSERVACION
1	Gaveta	2.048 g	226 mm	120 mm	1,88	Cumple
2	Cajoneta	3.020 g	430 mm	110 mm	3,90	Cumple
3	Ecopiso	2.500 g	398 mm	100 mm	3,98	Cumple
4	Techo de armario	1.600 g	191 mm	120 mm	1,59	Cumple
5	Cesto	462 g	106 mm	83 mm	1,27	No cumple
6	Tablero de Mesa	1.475 g	254 mm	100 mm	2,54	Cumple
7	Canasta	930 g	132 mm	110 mm	1.2	No cumple
8	Pallet	15.000 g	597 mm	200 mm	2,98	Cumple

Tabla 4-3-1: Análisis de relación diámetro del tornillo vs recorrido

Conclusiones del Análisis:

Los moldes cuya relación de diámetro del tornillo vs recorrido que estén superiores a 1.5 y no mayores a 4 veces son las adecuadas, estos nos indica que la unidad de inyección es la recomendada para el molde, debido a que nos permiten tener una buena relación de precisión de la inyección.

Con respecto al molde cesto cuya **relación es de 1.3 y canasta 1.2, no cumple** esta totalmente descartada como posible máquina de producción para montar el molde debido a que no nos permite tener mayor precisión de la inyección teniendo un llenado imperfecto y mayor contracción.

PROTMEC Página # 98 ESPOL

Como se observa no se tiene un molde con una relación mayor a 4 veces diámetro del husillo de inyección, pero si tuviese la unidad de inyección no fuera la adecuada debido a que no nos permite tener una buena plastificación teniendo como **consecuencia la degradación de la materia prima** y defectos en el artículo final como burbuja de aire, vetas y exceso de rebaba entre otros.

PROTMEC Página # 99 ESPOL

4.4. MATERIAL A INYECTAR VS TEMPERATURA DEL BARRIL

En estas partes se analizará uno de los temas más importantes, que es la temperatura que calienta al material, antes de introducirlo en el interior del molde.

Esta temperatura está dada en función del tipo de material a trabajar y no debe ser superior a la temperatura a la que comienza a descomponer (degradarse), pero debe de ser lo suficiente elevada para permitir que el material fluya correctamente. Por lo que debe de ser constante y uniforme ya que controla la densidad y contracción.

MATERIAL	SIMBOLO	TEMPERATURA DE FUSION ° C	TEMPERTURA DE TRABAJO º C
POLIPROPILENO	PP	165	220 - 260
POLIETILENO	PE	130	220 - 280

Tabla 4-4-1: Temperaturas de materia prima

Hay dos formas de transmitirle calor a la resina o materia prima, una es provocada **por la fricción**; que produce el movimiento de giro del husillo dentro del barril o cilindro generando un roce entre los pellet y la segunda manera de calentar el plástico es **por conducción** mediante las bandas calefactoras esto implica que los pellets debe tener un pleno contacto con las paredes del barril o cilindro.

Por eso es tan importante que tomemos en cuenta lo que llamaremos "El tiempo de residencia" este lapso de tiempo es aquel que se considera desde

PROTMEC Página # 100 ESPOL

que la resina toca el husillo, hasta el momento en que sale por la boquilla del cañón.

Para calcular el tiempo de residencia debemos saber en cuantas inyectadas podemos vaciar el barril, dividiendo los centímetros lineal máximo de la máquina para la carga o disparo con el que se llena el artículo.

Una vez obtenido el número de inyectadas con que se vacía el barril, se multiplicará por el ciclo total del artículo para obtener el tiempo de residencia de la resina en la máquina.

PROTMEC Página # 101 ESPOL

Cálculos:

Artículo: Gaveta

Datos:

- Peso del artículo: 2.048,00 gramos.
- Capacidad de inyección de la máquina de 800 Ton: 4.800,00 gramos
- Ciclo final del artículo: 80 segundos

Desarrollo:

Primer paso:

Se debe obtener en cuantas inyectadas se vacía el barril o cilindro

Descarga total del barril Inyección=
$$\frac{4800 \ gramos}{2048 \ gramos}$$

Descarga total del barril Inyección = 2.3 inyectadas

Segundo paso:

Una vez obtenido el número de inyectada con que se vacía el barril o cilindro, se multiplica por el ciclo final del artículo inyectado.

Tiempo de residencia = 2.3 invectadas x 80 segundos

Tiempo de residencia = 188 segundos

Tiempo de residencia = 188 segundos x $\frac{1 minuto}{60 segundos}$

Tiempo de residencia = 3 min

Artículo: Cajoneta

Datos:

- Peso del artículo: 3.020,00 gramos
- Capacidad de inyección de la máquina inyectora1000 Ton: 4.200,00 gramos
- Ciclo final del artículo: 120 segundos

Desarrollo:

Primer paso:

Se debe obtener en cuantas inyectadas se vacía el barril o cilindro

Descarga total del barril Inyección=
$$\frac{4200 \ gramos}{3020 \ gramos}$$

Descarga total del barril Inyección = 1.4 inyectadas

Segundo paso:

Una vez obtenido el número de inyectada con que se vacía el barril o cilindro, se multiplica por el ciclo final del artículo inyectado.

Tiempo de residencia = 1.4 inyectadas x 120 segundos

Tiempo de residencia = 167 segundos

Tiempo de residencia = 167 segundos x
$$\frac{1 minuto}{60 segundos}$$

Tiempo de residencia = 3 min

Artículo: Ecopiso

Datos:

- Peso del artículo: 2.270,00 gramos
- Capacidad de inyección de la máquina de 780 Ton: 2.915,00 gramos
- Ciclo final del artículo: 150 segundos

Desarrollo:

Primer paso:

Se debe obtener en cuantas inyectadas se vacía el barril o cilindro:

Descarga total del barril Inyección=
$$\frac{2915 \ gramos}{2270 \ gramos}$$

Descarga total del barril Inyección = 1.3 inyectadas

Segundo paso:

Una vez obtenido el número de inyectada con que se vacía el barril o cilindro, se multiplica por el ciclo final del artículo inyectado.

Tiempo de residencia = 1.3 inyectadas x 150 segundos

Tiempo de residencia = 193 segundos

Tiempo de residencia = 193 segundos x $\frac{1 \, minuto}{60 \, segundos}$

Tiempo de residencia = 3 min

Artículo: Techo de armario

Datos:

- Peso del artículo: 1.600,00 gramos
- Capacidad de inyección de la máquina de 800 Ton: 4.000,00 gramos
- Ciclo final del artículo: 90 segundos

Desarrollo:

Primer paso:

Se debe obtener en cuantas inyectadas se vacía el barril o cilindro:

Descarga total del barril Inyección =
$$\frac{4000 \ gramos}{1600 \ gramos}$$

Descarga total del barril Inyección = 2.5 inyectadas

Segundo paso:

Una vez obtenido el número de inyectada con que se vacía el barril o cilindro, se multiplica por el ciclo final del artículo inyectado.

Tiempo de residencia = $2.5 inyectadas \times 90 segundos$

Tiempo de residencia = 225 segundos

Tiempo de residencia = 225 segundos x $\frac{1 minuto}{60 segundos}$

Tiempo de residencia = 4 min

Artículo: Cesto

Datos:

- Peso del artículo: 462 gramos
- Capacidad de inyección de la máquina de 468 Ton: 1.115,00 gramos
- Ciclo final del artículo: 58 segundos

Desarrollo:

Primer paso:

Se debe obtener en cuantas inyectadas se vacía el barril o cilindro:

Descarga total del barril Inyección=
$$\frac{1115 \ gramos}{462 \ gramos}$$

Descarga total del barril Inyección = 2.5 inyectadas

Segundo paso:

Una vez obtenido el número de inyectada con que se vacía el barril o cilindro, se multiplica por el ciclo final del artículo inyectado.

Tiempo de residencia = $2.5 inyectadas \times 58 segundos$

Tiempo de residencia = 145 segundos

Tiempo de residencia = 145 segundos x $\frac{1 minuto}{60 segundos}$

Tiempo de residencia = 2 min

Artículo: Tablero de Mesa

Datos:

- Peso del artículo: 1.475,00 gramos
- Capacidad de inyección de la máquina de 780 Ton: 2.915,00 gramos
- Ciclo final del artículo: 135 segundos

Desarrollo:

Primer paso:

Se debe obtener en cuantas inyectadas se vacía el barril o cilindro:

Descarga total del barril Inyección =
$$\frac{2915 \ gramos}{1475 \ gramos}$$

Descarga total del barril Inyección = 1.9 inyectadas

Segundo paso:

Una vez obtenido el número de inyectada con que se vacía el barril o cilindro, se multiplica por el ciclo final del artículo inyectado.

Tiempo de residencia = $1.9 inyectadas \times 135 segundos$

Tiempo de residencia = 267 segundos

Tiempo de residencia = 267 segundos x
$$\frac{1 minuto}{60 segundos}$$

Tiempo de residencia = 4 min

Artículo: Canasta

Datos:

- Peso del artículo: 930 gramos
- Capacidad de inyección de la máquina de 800 Ton: 4.800,00 gramos
- Ciclo final del artículo: 75 segundos

Desarrollo:

Primer paso:

Se debe obtener en cuantas inyectadas se vacía el barril o cilindro:

Descarga total del barril Inyección=
$$\frac{4800\ gramos}{930\ gramos}$$

Descarga total del barril Inyección = 5.1 inyectadas

Segundo paso:

Una vez obtenido el número de inyectada con que se vacía el barril o cilindro, se multiplica por el ciclo final del artículo inyectado.

Tiempo de residencia = 5.1 inyectadas x 75 segundos

Tiempo de residencia = 387 segundos

Tiempo de residencia = 387 segundos x $\frac{1 minuto}{60 segundos}$

Tiempo de residencia = 7 min

Artículo: Pallet

Datos:

- Peso del artículo: 15.000,00 gramos
- Capacidad de inyección de la máquina de 2800 Ton : 29.232,00 gramos
- Ciclo final del artículo: 75 segundos

Desarrollo:

Primer paso:

Se debe obtener en cuantas inyectadas se vacía el barril o cilindro:

Descarga total del barril Inyección=
$$\frac{29232 \ gramos}{15000 \ gramos}$$

Descarga total del barril Inyección = 1.9 inyectadas

Segundo paso:

Una vez obtenido el número de inyectada con que se vacía el barril o cilindro, se multiplica por el ciclo final del artículo inyectado.

Tiempo de residencia = 1.9 inyectadas x 240 segundos

Tiempo de residencia = 468 segundos

Tiempo de residencia = 468 segundos x $\frac{1 minuto}{60 segundos}$

Tiempo de residencia = 8 min

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas Invectoras de Termoplásticos"

#	ARTÍCULO	PESO DEL ARTÍCULO	MÁQUINA	CAPACIDAD DE INYECCIÓN	TIEMPO DE RESIDENCIA	OBSERVACIÓN
1	Gaveta	2.048 g	800 Ton	4.800 g	3 Min	Cumple
2	Cajoneta	3.020 g	1000 Ton	4.200 g	3 Min	Cumple
3	Ecopiso	2.500 g	780 Ton	2.915 g	3 Min	Cumple
4	Techo de armario	1.600 g	800 Ton	4.000 g	4 Min	Cumple
5	Cesto	462 g	468 Ton	1.115 g	2 Min	No aceptable
6	Tablero de Mesa	1.475 g	700 Ton	2.915 g	4 Min	Cumple
7	Canasta	930 g	800 Ton	4.800 g	7 Min	No aceptable
8	Pallet	15.000 g	2800 Ton	29.232 g	8 Min	No aceptable

Tabla 4-4-2: Análisis de tiempo de residencia de la materia prima dentro del barril o cilindro

Conclusiones del Análisis:

Para los moldes que se obtiene como resultado un tiempo de residencia entre los 3 y 5 minutos es un tiempo muy aceptable ya que podemos estar seguro de que no se va a degradar el material por dos motivos: primero porque aunque estemos en la máxima temperatura propuesta por el fabricante de la resina, estamos considerando que esta debe aguantar al menos unos 10 minutos antes de comenzar su degradación, pero estos minutos empiezan a contarse a partir de que la resina ya alcanzo la temperatura de fusión.

Esto significa que del tiempo de residencia, apenas estamos hablando de un tercio de este tiempo total como tiempo probable para la degradación, lo cual Significa a su vez que si nos vamos al máximo posible probablemente tendremos a lo mucho 1.66 minutos de los 10 necesario para lograr degradarlo.

PROTMEC Página # 110 ESPOL

Con respecto a los moldes considerados como no aceptables lo vamos a dividir en dos grupos para una mejor explicación.

Los moldes que tienen un tiempo de residencia menor a 3 minutos como: el cesto se tendrá problemas en la producción por que generará unidades malas (scrap) o problemas de calidad, debido a que al inyectar un material muy frio nos va a generar varios tipos de problemas principalmente un exceso de estrés en la pieza terminada. Además deformación y fragilidad, la deformación de una pieza estresada puede ser tan grande que al enfriarse puede quedar totalmente torcida. Por otra parte una pieza estresada es sensiblemente más frágil que una pieza inyectada a una buena temperatura y esto lo notaremos principalmente a la hora de ensamblarlas, (veremos que la pieza se rompe fácilmente)

Con respecto a los moldes que tienen un tiempo de residencia mayor a 5 minutos como la canasta y pallet, se tendrá que bajar la temperatura debido a que el barril o cilindro es demasiado grande en relación con nuestro molde. Por ello se presentan serios problemas de precisión ya que se torna un material demasiado fluido y seguramente podemos tener un material degradado.

PROTMEC Página # 111 ESPOL

4.5. PRESIONES Y VELOCIDADES DE INYECCIÓN VS LLENADO DEL ARTÍCULO

Las velocidades y presiones de inyección son parámetros a controlar en el proceso de inyección.

Las Velocidades de Inyección:

La velocidad de inyección dependerá de los siguientes factores:

- Temperatura de la masa fundida
- Viscosidad del polímero
- Temperatura del molde
- Geometría del molde
- Tamaño y cantidad de puntos de entrada de material
- Tamaño de los canales o venas de alimentación del material
- Partes con secciones gruesas, ángulos que producen esfuerzos
- Salidas de gases o escape de aire

La velocidad de inyección tiene una marcada influencia sobre la calidad superficial de la pieza por lo tanto, se debe tener mucho cuidado al escoger la velocidad de inyección para un molde dado

Cuando se moldean piezas de secciones delgadas se requiere generalmente velocidades de inyección altas con objeto de llenar la pieza antes de que se solidifique.

PROTMEC Página # 112 ESPOL

El uso de una velocidad de inyección alta y una apropiada temperatura mejorara el aspecto y brillo superficial de la pieza, ya que la cavidad del molde se llenan completamente antes de que la resina comience su solidificación, variando la velocidad de inyección adecuadamente se puede reducir los defectos superficiales en la pieza tales como ráfagas y manchas en la zona del punto de inyección.

Las Presiones de Inyección:

La inyección del plástico propiamente dicha o sea los segundos que toma la inyección está dividido en dos fases: primera presión y segunda presión.

La primera presión de inyección, es la presión requerida para vencer las resistencias que el material fundido produce a lo largo de su trayectoria, desde el cilindro de plastificación hasta el molde, esta presión corresponde a la fase de llenado volumétrico de molde, con esta presión se llena aproximadamente el 95 %, para después terminar empacando la pieza con la segunda presión y velocidades

La primera presión de inyección en la mayoría de los casos dura entre 2 a 6 segundos, dependiendo de la dosificación y los espesores de la pieza a inyectarse. Durante el tiempo que dura la primera presión de inyección se puede proyectar varias velocidades, presiones y posiciones de inyección, es decir la cantidad y rapidez con que se inyecta podría ser graduada.

PROTMEC Página # 113 ESPOL

La segunda presión de inyección muchas veces llamada presión de sostenimiento o empaque sirve para completar el llenado del artículo, además, mantiene bajo presión el material fundido mientras se solidifica y se contrae en la cavidad del molde, La función de esta segunda presión es introducir un poco más de material fundido al molde y sobre todo en los puntos gruesos o cercano al bebedero.

La segunda presión usualmente emplea el 50 % de la presión inicial, las excepciones se dan más que nada en artículos con sesiones muy gruesas. Una segunda presión alta muchas veces es la responsable de rebabas o compactaciones tal que origina que la pieza se pegue en la hembra del molde (lado fijo).

Por ello se puede concluir que para conseguir la elaboración de piezas de buena calidad, no solo se debe contar con el molde, la máquina y el material, es necesario también que el operador de la máquina comprenda el proceso e intervenga en forma adecuada para corregir la presencia de problemas o defectos en el proceso productivo.

Bajo esta explicación de la importancia de las velocidades y presiones de inyección con respecto al llenado del artículo, se procederá a los análisis respectivos de cada uno de los moldes seleccionados:

PROTMEC Página # 114 ESPOL

Molde: Gaveta

INYECCIÓN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÓN # 1		100	99
INYECCIÒN # 2	170	100	99
INYECCIÒN #3	120	100	99
INYECCIÒN # 4	90	100	99
INYECCIÒN # 5	40	100	99
LIMITE:	25		

SEGUNDA PRESIÓN	PRESIÓN (BAR)	VELOCIDAD (%)	TIEMPO (SEG)
PRESIÓN POST # 1	40	40	2

POR POSICIÓN	x	POR TIEMPO
POR PRESIÒN	TIEMPO	18 SEG

Tabla 4-5-1: Página de inyección de regulación del molde gaveta

Como se puede observar en la tabla 3-5-1, se identifican tres tipos problemas con respecto al llenado del artículo:

- Se encuentra regulada por tiempo (18 segundos) de inyección más no por posición esto quiere decir que los límites de posición fijada no lo está controlando.
- Está trabajando con la máxima velocidad de Inyección en todos los perfiles esto dará como resultado que se pierda el control absoluto de inyección.
- Tiene un tiempo de sostenimiento de 2 segundos, un tiempo muy corto para un artículo que tiene nervaduras gruesas por lo que puede generarse rechupes.

PROTMEC Página # 115 ESPOL

Molde: Cajoneta

INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÓN # 1		130	70
INYECCIÓN # 2	180	130	70
INYECCIÓN # 3	60	130	70
LIMITE:	30		

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (SEG)
PRESIÓN POST # 1	45	40	3

X	POR POSICIÒN		POR TIEMPO
	POR PRESIÒN	TIEMPO	

Tabla 4-5-2: Página de inyección de regulación del molde cajoneta

Como se puede observar en la tabla 3-5-2, se identifican tres tipos de problemas con respecto al llenado del artículo:

- 1. Está trabajando con 130 bares de presión, es decir con más del 90 % de la presión máxima de inyección teniendo como referencia que la máxima presión es 140 bares, lo que puede ocasionar que las columnas de la prensa se estiren, se descentre el molde y se genere rebabas en el artículo.
- 2. Las maquina modernas tienen habilitados 5 o más perfiles de inyección para tener un buen control de inyección pero el operario solo utiliza 3.
- Las velocidades de inyección están en forma lineal lo que dificultara el llenado del articulo y además está ligado directamente con la presión de inyección.

PROTMEC Página # 116 ESPOL

Molde: Ecopiso

INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÒN # 1		110	70
INYECCIÓN # 2	110	110	70
INYECCIÓN #3	100	110	70
INYECCIÒN # 4	80	110	70
INYECCIÒN # 5	20	110	70
LIMITE:	5		

SEGUNDA PRESIÓN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (SEG)
PRESIÓN POST # 1	20	25	12

Х	POR POSICIÒN		POR TIEMPO
	POR PRESIÒN	TIEMPO	

Tabla 4-5-3: Página de inyección de regulación del molde ecopiso

Como se puede observar en la tabla 3-5-3, se identifican dos tipos de problemas con respecto al llenado del artículo:

- 1. La distancia de conmutación a segunda presión es de 5 milímetros extremadamente muy baja, esto quiere decir que al momento de compactar mi artículo va a quedar un cojín de cero y seguramente se generará variaciones de inyección y rechupe en el artículo final.
- Se tiene un tiempo de sostenimiento de 12 segundos, un tiempo muy prolongado que afecta directamente al ciclo final del artículo y con toda seguridad se puede decir que tenemos una máquina mal calibrada.

PROTMEC Página # 117 ESPOL

Molde: Techo de armario

INYECCIÒN	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)
INYECCIÓN # 1		110	50
INYECCIÓN # 2	150	110	50
INYECCIÓN #3	60	110	50
INYECCIÓN # 4	30	110	50
LIMITE:	15		

SEGUNDA PRESIÒN	PRESION (BAR)	VELOCIDAD (%)	TIEMPO (SEG)
PRESIÓN POST # 1	0	0	0

X	POR POSICIÒN		POR TIEMPO
	POR PRESIÒN	TIEMPO	

Tabla 4-5-4: Página de inyección de regulación del molde techo de armario

Como se puede observar en la tabla 3-5-4, se identifican tres tipos de problemas con respecto al llenado del artículo:

- 1. Presiones de inyección altas (110 bares) y velocidades de inyección medias (50%), lo que dificulta el llenado del artículo ya que se tiene paredes de 2 milímetros promedio. Es decir que el llenado del artículo está haciéndose con demasiada presión y baja velocidad lo que ocasionara que el artículo se deforme (contracciones).
- Como resultado de lo antes mencionado podemos señalar que se está inyectando demasiado material al molde con la primera presión por lo que el operador no utiliza la segunda presión o empaque.
- Debido a las velocidades bajas el artículo no llena con facilidad como se puede ver en la figura 3-5-7

PROTMEC Página # 118 ESPOL

Figura 3-5-1: Articulo corto

PROTMEC Página # 119 ESPOL

Molde: Cesto

INYECCION	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÒN # 1		140	95
INYECCIÓN # 2	90	140	95
INYECCIÓN #3	60	140	95
INYECCION # 4	30	140	95
INYECCIÒN # 5	25	140	95
LIMITE:	24		

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (SEG)
PRESIÓN POST # 1	35	35	2

X	POR POSICIÒN		POR TIEMPO
	POR PRESIÒN	TIEMPO	

Tabla 4-5-5: Página de inyección de regulación del molde cesto

Como se puede observar en la tabla 3-5-5, se identifican dos tipos de problemas con respecto al llenado del artículo:

1. Presiones de inyección de 140 bares y velocidades de inyección de 95 %, es decir está trabajando con la máxima presión y velocidad de inyección, lo que seguramente se reflejara el artículo final como exceso rebabas, líneas de unión, burbujas de aires y entre otros.

PROTMEC Página # 120 ESPOL

 Como podemos observar en la figura 3-5-2, tenemos el artículo con partes quemadas un defecto de artículo producido por las velocidades altas de inyección.

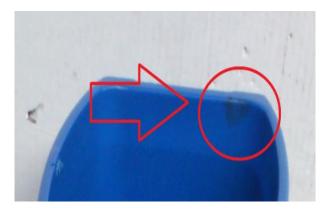


Figura 4-5-2: Articulo con quemaduras

Molde: Tablero de Mesa

INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÒN # 1		120	80
INYECCIÒN # 2	190	120	80
INYECCIÓN #3	110	120	80
INYECCIÓN # 4	65	120	80
INYECCIÒN # 5	45	120	80
LIMITE:	10		

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (SEG)
PRESIÓN POST # 1	20	20	1

X	POR POSICIÓN		POR TIEMPO
	POR PRESIÒN	TIEMPO	

Tabla 4-5-6: Página de inyección de regulación del molde tablero de mesa

Como se puede observar en tabla 3-5-6, se identifican dos tipos de problemas con respecto al llenado del artículo:

- Velocidades de inyección de 80 %, considerada alta para un artículos de paredes gruesa (3.5 mm promedio) lo que ocasiona que se genere manchas de gases y líneas de unión como se observar en la figura 3-5-3
- Tiempo de empaque o sostenimiento corto (1 segundo) para un artículo de paredes gruesas de 3.5 mm promedio, esto genera rechupes en el artículo final.

Figura 4-5-3 Articulo con rechupe

PROTMEC Página # 122 ESPOL

Molde: Canasta

INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÒN # 1		60	90
INYECCIÓN # 2	60	90	90
INYECCIÓN # 3	55	90	90
INYECCIÓN # 4	20	90	90
INYECCIÒN # 5	10	60	90
LIMITE:	5		

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (SEG)
PRESION POST # 1	40	40	3

X	POR POSICIÒN		POR TIEMPO
	POR PRESIÒN	TIEMPO	

Tabla 4-5-7: Página de inyección de regulación del molde canasta

Como se puede observar en la tabla 3-5-7, se identifican dos tipos de problemas con respecto al llenado del artículo:

- La distancia de conmutación a segunda presión es de 5 milímetros extremadamente muy baja, esto quiere decir que al momento de compactar mi artículo va a quedar un cojín de cero y seguramente se genere variaciones de inyección.
- Tiene velocidades de inyección del 90 % por lo que puede generar líneas de unión en el artículo final.

PROTMEC Página # 123 ESPOL

Molde: Pallet

INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÒN # 1		140	95
INYECCIÒN # 2	520	140	95
INYECCIÓN #3	400	140	95
INYECCIÓN # 4	280	140	95
INYECCIÒN # 5	140	140	95
LIMITE:	35		•

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (SEG)
PRESIÓN POST # 1	45	40	4

X	POR POSICIÓN		POR TIEMPO
	POR PRESIÒN	TIEMPO	

Tabla 4-5-8: Página de inyección de regulación del molde pallet

Como se puede observar en la tabla 3-5-8, se identifican dos tipos de problemas con respecto al llenado del artículo:

- 1. Presiones de inyección de 140 bar y velocidades de inyección de 95 %, es decir está trabajando con la máxima presión y velocidad de inyección, lo que seguramente se reflejara el artículo final como exceso rebabas, líneas de unión, burbujas de aires entre otros.
- El tiempo de sostenimiento es muy corto en relación a los espesores de pared del artículo cuyo espesores promedio son 6 mm

PROTMEC Página # 124 ESPOL

4.6. TIEMPO DE ENFRIAMIENTO VS ESPESOR DEL ARTÍCULO

El tiempo de enfriamiento es una de las variables más importantes para conseguir una pieza de buena calidad, el cual es el tiempo que la pieza requiere para enfriarse hasta solidificarse y además haya adquirido la rigidez suficiente para poder ser extraída del molde sin que se deforme.

La parte más extrema de la pieza se enfría a velocidad más rápida. El tiempo de enfriamiento debe de ser lo suficiente para que un espesor considerable de la pieza (al menos el 95% de la pieza) se encuentre frio para evitar que la pieza se deforme.

Lógicamente cuando mayor sea el espesor de la pieza que se está moldeando mayor será el tiempo de enfriamiento requerido, como por ejemplo una pieza de 1.5 mm de espesor requiere de 9 a 12 segundos para solidificar y adquirir suficiente resistencia para poder ser extraída del molde sin deformaciones.

El tiempo de refrigeración es aquel que comienza a contarse desde que todas las paredes de la cavidad tienen contacto con el plástico, o sea cuando se termina la etapa de 1ra inyección y hasta que llega el momento de abrir el molde. Obviamente sabemos que durante el tiempo de sostenimiento va a seguir entrando material al molde, pero solo para rellenar agujeros que se forman durante el enfriamiento de la pieza (rechupes y cavernas)

Entonces a partir del valor del espesor de pared del artículo podremos calcular el tiempo que durara la refrigeración bajo la siguiente formula:

Tiempo de Refrigeración = $2 (espesor de pared)^2$

Cabe recalcar que se debe extraer la pieza por lo menos a unos 60 o 80 grados centígrados.

Cálculos:

Artículo: Gaveta

• Espesor del artículo: 3.5 mm

Desarrollo:

Tiempo de Refrigeración = $2 (espesor de pared)^2$

Tiempo de Refrigeración = $2(3.5 mm)^2$

Tiempo de Refrigeración = 25 segundos

Artículo: Cajoneta

Espesor del artículo: 3 mm

Desarrollo:

Tiempo de Refrigeración = $2 (espesor de pared)^2$

Tiempo de Refrigeración = $2(3mm)^2$

Tiempo de Refrigeración = 18 segundos

PROTMEC Página # 126 ESPOL

Artículo: Ecopiso

• Espesor del artículo: 6 mm

Desarrollo:

Tiempo de Refrigeración = $2 (espesor de pared)^2$

Tiempo de Refrigeración = $2 (6mm)^2$

Tiempo de Refrigeración = 72 segundos

Artículo: Techo de armario

Espesor del artículo: 2 mm

Desarrollo:

Tiempo de Refrigeración = $2 (espesor de pared)^2$

Tiempo de Refrigeración = $2(2mm)^2$

Tiempo de Refrigeración = 8 segundos

Artículo: Cesto

• Espesor del artículo: 2 mm

Desarrollo:

Tiempo de Refrigeración = $2 (espesor de pared)^2$

Tiempo de Refrigeración = $2(2 mm)^2$

Tiempo de Refrigeración = 8 segundos

PROTMEC Página # 127 ESPOL

Artículo: Tablero de Mesa

Espesor del artículo: 3 mm

Desarrollo:

Tiempo de Refrigeración = $2 (espesor de pared)^2$

Tiempo de Refrigeración = $2(3mm)^2$

Tiempo de Refrigeración = 18 segundos

Artículo: Canasta

Espesor del artículo: 2.5 mm

Desarrollo:

Tiempo de Refrigeración = $2 (espesor de pared)^2$

Tiempo de Refrigeración = $2(2.5mm)^2$

Tiempo de Refrigeración = 13 segundos

Artículo: Pallet

Espesor del artículo: 10 mm

Desarrollo:

Tiempo de Refrigeración = $2 (espesor de pared)^2$

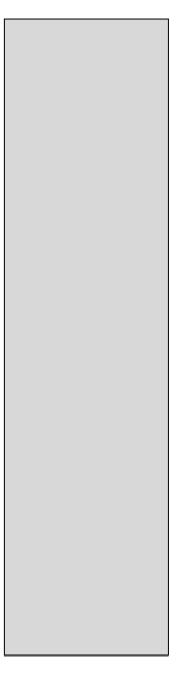
Tiempo de Refrigeración = $2(10 mm)^2$

Tiempo de Refrigeración = 200 segundos

PROTMEC Página # 128 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas Inyectoras de Termoplásticos"

#	ARTÍCULO	ESPESOR PROMEDIO DE PARED	TIEMPO ACTUAL DE ENFRIAMEINTO	TIEMPO DE ENFRIAMIENTO CALCULADO	OBSERVACIÓN
1	Gaveta	3,5 MM	38 segundos	25 segundos	No aceptable
2	Cajoneta	3,0 MM	85 segundos	18 segundos	No aceptable
3	Ecopiso	6,0 MM	105 segundos	72 segundos	No aceptable
4	Techo de armario	2,0 MM	50 segundos	8 segundos	No aceptable
5	Cesto	2,0 MM	22 segundos	8 segundos	No aceptable
6	Tablero de Mesa	3,0 MM	90 segundos	18 segundos	No aceptable
7	Canasta	2,5 MM	45 segundos	13 segundos	No aceptable
8	Pallet	10 MM	162 segundos	200 segundos	Aceptable


Tabla 4-6-1: Tiempo de enfriamiento vs espesor del artículo

Conclusiones del Análisis:

Para los artículos señalados como "no aceptable", quiere decir que estos tienen un tiempo de enfriamientos bastante largos y por lo tanto antieconómicos ya que afectan al ciclo final del producto. Es recomendable sacar la pieza caliente por lo menos a unos 60 o 80 grados centígrados.

También se debe revisar si el sistema de enfriamiento del molde esta en perfecta condiciones caso contrario no aplicaría el cálculo.

PROTMEC Página # 129 ESPOL

CAPÍTULO 5

CÁLCULOS Y APLICACIÓN DE LOS PARAMETROS DE REGULACIÓN PARA CADA UNO DE LOS MOLDES SELECIONADOS

5. CÁLCULOS Y APLICACIÓN DE LOS PARAMETROS DE REGULACIÓN PARA CADA UNO DE LOS MOLDES SELECIONADOS

Partiendo de la base que se tiene el peso de cada uno de los artículos se procede a poner en práctica esta metodología con una base en matemáticas básicas para poder calcular los valores de los parámetros que se programaran en las máquinas de inyección.

El objetivo de este sistema es que al programar una máquina todos los valores que se introduzcan tengan un sentido y una lógica matemática clara por lo cual se escogieron.

- 1. Cálculo del llenado volumétrico.
- 2. Cálculo del empaque o compactación del artículo.
- 3. Al recorrido total se le suma el cojín.
- 4. Cálculos de los perfiles de las posiciones de inyección.
- 5. Cálculos de los perfiles de la primera presión de inyección
- 6. Cálculos de la perfiles de la primera velocidad de inyección.
- 7. Cálculos de la segunda presión de inyección
- 8. Cálculos de la segunda velocidad de invección
- 9. Cálculos del tiempo de sostenimiento.

PROTMEC Página # 131 ESPOL

Fuente: Libro Técnicas Avanzadas de Inyección Ing. Alfredo Calderón Gómez

#	5	6	7	8	9	10
PERFILES	80,0%	83,7%	86,2%	88,0%	89,4%	90,5%
1	12,2%	10,2%	8,8%	7.7%	6.8%	6.1%
2	15,2%	12,2%	10,2%	8.7%	7.6%	6.8%
3	19,0%	14,6%	11,8%	9.9%	8.5%	7.5%
4	23,8%	17,4%	13,7%	11.2%	9.5%	8.3%
5	29,7%	20,8%	15,9%	12.8%	10.7%	9.1%
6		24,8%	18,4%	14.5%	11.9%	10.1%
7			21,4%	16.5%	13.3%	11.2%
8				18.7%	14.9%	12.3%
9					16.7	13.6%
10						15.0%
	100%	100%	100%	100%	100%	100%

Tabla. 5-1 Duración de cada perfil

Fuente: Libro Técnicas Avanzadas de Inyección Ing. Alfredo Calderón Gómez

#	5	6	7	8	9	10
PERFILES	80,0%	83,7%	86,2%	88,0%	89,4%	90,5%
1	50,0%	50,0%	50,0%	50,0%	50,0%	50,0%
2	40,0%	41,9%	43,1%	44,0%	44,7%	45,3%
3	32,0%	35,0%	37,2%	38,7%	40,0%	41,0%
4	25,6%	29,3%	32,0%	34,1%	35,8%	37,1%
5	20,5%	24,5%	27,6%	30,0%	32,0%	33,6%
6		20,5%	23,8%	26,4%	28,6%	30,4%
7			20,5%	23,3%	25,6%	27,6%
8				20,5%	22,9%	24,9%
9					20,5%	22,6%
10						20,5%

Tabla. 5-2 Valores resultante de velocidad

PROTMEC Página # 132 ESPOL

5.1. GAVETA

Datos:

• Máquina: 800 Ton

Diámetro del Husillo: 120 mm

• Capacidad de Inyección: 4.800,00 gramos

Longitud de Regla: 600 mm

Máxima Presión de Inyección : 140 Bar

Peso del Artículo: 2.048,00 gramos

Espesor de Pared Artículo: 3.5 mm

Peso Específico del PEAD: 0.952 g / cm³

Melt index del PEAD: 7 g / 10 min

Compensación de Densidad por Temperatura (PP): 82 %

1) Cálculo del Llenado Volumétrico.

Calcular el recorrido de la primera inyección.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.84 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{2048 \ gramos}{(0.84 \ x \ 0.952 \ g/cm^3) (\prod x(6 \ cm)^2)}$$

Recorrido = 22.62 cm

Recorrido = 226 mm

PROTMEC Página # 133 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas

Invectoras de Termoplásticos"

2) Cálculo del Empaque o Compactación del Artículo.

Al recorrido de la primera invección se le sumará un 5% de distancia extra, lo

que nos dará el recorrido total del husillo que corresponde al llenado

volumétrico más el empaque.

 $Recorrido\ total: = Recorrido\ 1era\ inyeccion\ *1.05$

 $Recorrido\ total:=226\ mm\ *1.05$

 $Recorrido\ total: = 237\ mm$

3) Al Recorrido Total se le Suma el Cojín.

Si tomamos solamente este nuevo valor y lo ponemos como el valor de la

carga en teoría nuestro husillo va llegar a 0 mm. Lo que significa que cualquier

pequeño problema que exista con la presión nuestro husillo va a chocar con la

brida. Por esta situación agregaremos un poco más de distancia a la carga

para que haya un cojín por encima de la brida.

Carga = Recorrido total + cojin

Carga = 237 mm + 15 mm

Carga = 252 mm

PROTMEC Página # 134 **ESPOL**

4) Cálculos de los Perfiles de las Posiciones de Inyección.

Posiciones de Inyección

Se Procederá a calcular el recorrido que el primer perfil tendrá, aplicando los porcentajes de duración de cada perfil de la tabla 5-1 en este caso se trabajará con 5 perfiles, donde encontramos que el primero de ellos tiene una duración o recorrido del 12.2 % con respecto al recorrido.

Recorrido x duracion

1ro Perfil) 226 mm x 12.2% = 28 mm

De esta manera ya sabemos que el primer perfil tendrá un recorrido exactamente de 28 mm y que terminando este pequeño recorrido comenzará el segundo.

Continuamos calculando todos los demás perfiles, el recorrido que tendrá cada uno de ellos será.

2do Perfil) 226 mm x 15.2% = 34 mm

3ro Perfil) 226 mm x 19.0% = 43 mm

4to Perfil) 226 mm x 23.8% = 54 mm

5to Perfil) 226 mm x 29.7% = 67 mm

Cada uno de estos valores que obtuvimos los vamos restando a partir de la carga o recorrido total que calculamos y partir de esta nueva posición resultante seguimos sucesivamente realizando los cálculos.

PROTMEC Página # 135 ESPOL

$$1ro Perfil) 252 mm - 28 mm = 224 mm$$

$$2do Perfil) 224 mm - 34 mm = 190 mm$$

$$3ro Perfil) 190 mm - 43 mm = 147 mm$$

4to Perfil)
$$147 \text{ mm} - 54 \text{ mm} = 93 \text{ mm}$$

5to Perfil)
$$93 \text{ mm} - 67 \text{ mm} = 26 \text{ mm}$$

5) Cálculos de los Perfiles de la Primera Presión de Inyección

Presiones de Inyección

Para calcular la presión fijaremos el 70% de la presión de inyección máxima de la maquina

Presiòn de inyeccion = Presiòn maxima de inyecciòn x 70%

Presiòn de inyecciòn = 140 Bar x 70%

Presiòn de inyecciòn = 98 Bares

De esta manera ya sabemos que la presión de inyección para cada uno de los 5 perfiles será de 98 bares.

PROTMEC Página # 136 ESPOL

6) Cálculos de la Perfiles de la Primera Velocidad de Inyección.

Es analizar con que velocidad de inyección comenzaremos a inyectar, para esto necesitamos conocer varios factores como:

- Espesor del artículo
- Longitud de disparo
- Materia prima (Melt índex y densidad)
- Geometría del artículo
- Molde (# de puntos de inyección, canales de distribución y colada fría o caliente)

El molde con que trabajaremos es de una gaveta el cual consta con 6 puntos de inyección y es un molde de colada caliente, este artículo trabaja con PEAD el cual tiene una fluidez muy baja de 7 g /10 min y una densidad de 0.952 g/cm3 como sabemos mientras mal alta su densidad más duro de inyectar pero a la vez nuestro artículo va a tener mejores propiedades mecánicas, aparte nuestro artículo tiene un espesor de 3.5 mm es totalmente calado y con nervaduras por lo que iniciaremos programando nuestra primera velocidad de inyección alta en este caso comenzaremos con el 100%.

Una vez definida nuestra primera velocidad de inyección se calculará las velocidades de los demás perfiles con la ayuda de la tabla 5-2, por lo que multiplicaremos nuestra primera velocidad de inyección por el coeficiente de ajuste que es de 80% para 5 perfiles de inyección.

Y así sucesivamente vamos multiplicando a partir de la nueva velocidad resultante por el coeficiente de ajuste.

PROTMEC Página # 137 ESPOL

Velocidad 2do Perfil) $100 \% \times 80\% = 80\%$

Velocidad 3ro Perfil) $80 \% \times 80\% = 64\%$

Velocidad 4to Perfil) $64 \% \times 80\% = 51\%$

Velocidad 5to Perfil) $51 \% \times 80\% = 41\%$

7) Cálculos de la Segunda Presión de Inyección

Para calcular la presión del primer perfil de sostenimiento tomaremos el 50 % de la presión de conmutación y el segundo perfil será el 80% del primer perfil.

Presiòn de sotenimiento = presiòn de conmutaciòn x 50%

Presiòn de sotenimiento = 98 Bares x 50%

Presiòn de sotenimiento = 49 Bares

Entonces el primer perfil de presión será 49 Bares

Perfil 2 = presiòn de sostenimiento x 80%

Perfil 2 = 49 Bares x 80%

Perfil 2 = 39 Bares

PROTMEC Página # 138 ESPOL

8) Cálculos de la Segunda Velocidad de Inyección

Velocidad de Sostenimiento

Para calcular la velocidad de sostenimiento de los 2 perfiles serán los mismos

pasos con los que la calculamos la presión de sostenimiento

Velocidad de sotenimiento = velocidad de conmutación x 50%

Velocidad de sotenimiento = 41% x 50%

Velocidad de sotenimiento = 21 %

Entonces el primer perfil de velocidad será 21%

Perfil 2 = velocidad de sostenimiento x 80%

Perfil 2 = 21 % * 80%

Perfil 2 = 17%

9) Cálculos del Tiempo de Sostenimiento.

Para calcular este valor, necesitaremos el espesor promedio del artículo

(pensando en una pieza bien diseñada) o el valor del espesor más grueso (en

piezas que no mantienen un espesor de pieza constante).

Tiempo de Sostenimiento = 2 (espesor de pared) 2 x 20%

PROTMEC Página # 139 ESPOL

Tiempo de Sostenimiento = $2 (3.5 \text{mm})^2 \times 20\%$

Tiempo de Sostenimiento = $24.5 \times 20\%$

Tiempo de Sostenimiento = 4.9 s

Procedemos a calcular el segundo perfil del tiempo de sostenimiento

$$Tiempo \ de \ Sostenimiento \ por \ perfil = \frac{Tiempo \ de \ sotenimiento}{\# \ de \ perfiles}$$

Tiempo de Sostenimiento por perfil =
$$\frac{4.9 \text{ segundos}}{2}$$

Tiempo de Sostenimiento por perfil = 2.45 s

Entonces nuestro tiempo de sostenimiento para el perfil 1 y 2 será de 2.5 segundos

INYECCIÓN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÓN # 1		98	100
INYECCIÒN # 2	224	98	80
INYECCIÒN #3	190	98	64
INYECCIÒN # 4	147	98	51
INYECCIÓN # 5	93	98	41
LIMITE:	26		

SEGUNDA PRESIÓN	PRESIÓN (BAR)	VELOCIDAD (%)	TIEMPO (S)
PRESIÓN POST # 1	49	21	2,5
PRESIÓN POST # 2	39	17	2,5

Tabla. 5-3 Resultado de cálculos de los parámetros de la Gaveta

PROTMEC Página # 140 ESPOL

5.2. CAJONETA

Datos:

Máquina: 1000 Ton

Diámetro del Husillo: 110 mm

• Capacidad de Inyección: 4.200,00 gramos

Longitud de Regla: 600 mm

Máxima Presión de Inyección: 140 Bar

• Peso del Artículo: 3.020,00 gramos

Espesor de Pared Artículo: 3.5 mm

Peso Específico del PP: 0.900 g / cm³

Melt Index PP: 6 g / 10 min

Compensación de Densidad por Temperatura (PP): 82 %

1) Cálculo del Llenado Volumétrico.

Calcular el recorrido de la primera inyección.

$$Recorrido = \frac{Peso \ del \ disparo}{(0.82 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{3020 \ gramos}{(0.82 \ x \ 0.900 \ g/cm^3) (\prod x (5.5 \ cm)^2)}$$

Recorrido = 43.06 cm

Recorrido = 430 mm

PROTMEC Página # 141 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas

Invectoras de Termoplásticos"

2) Cálculo del Empaque o Compactación del Artículo.

Al recorrido de la primera inyección se le sumará un 5% de distancia extra, lo

que nos dará el recorrido total del husillo que corresponde al llenado

volumétrico más el empaque.

 $Recorrido\ total: = Recorrido\ 1era\ inyeccion\ *1.05$

 $Recorrido\ total: = 430\ mm\ *1.05$

 $Recorrido\ total: = 452\ mm$

3) Al Recorrido Total se le Suma el Cojín.

Si tomamos solamente este nuevo valor y lo ponemos como el valor de la

carga en teoría nuestro husillo va llegar a 0 mm. Lo que significa que cualquier

pequeño problema que exista con la presión nuestro husillo va a chocar con la

brida. Por esta situación agregaremos un poco más de distancia a la carga

para que haya un cojín por encima de la brida.

Carga = Recorrido total + cojin

Carga = 452 mm + 15 mm

Carga = 467 mm

PROTMEC Página # 142 ESPOL

4) Cálculos de los Perfiles de las Posiciones de Inyección.

Posiciones de Inyección

Se Procederá a calcular el recorrido que el primer perfil tendrá, aplicando los porcentajes de duración de cada perfil de la tabla 5-1 en este caso se trabajará con 5 perfiles, donde encontramos que el primero de ellos tiene una duración o recorrido del 12.2 % con respecto al recorrido.

Recorrido x duracion

1ro Perfil) $430 \text{ mm} \times 12.2\% = 52 \text{ mm}$

De esta manera ya sabemos que el primer perfil tendrá un recorrido exactamente de 52 mm y que terminando este pequeño recorrido comenzará el segundo.

Continuamos calculando todos los demás perfiles, el recorrido que tendrá cada uno de ellos será.

2do Perfil) $430 \text{ mm} \times 15.2\% = 65 \text{mm}$

3ro Perfil) $430 \text{ mm} \times 19.0\% = 82 \text{ mm}$

4to Perfil) 430 mm x 23.8% = 102 mm

5to Perfil) 430 mm x 29.7% = 128 mm

Cada uno de estos valores que obtuvimos los vamos restando a partir de la carga o recorrido total que calculamos y partir de esta nueva posición resultante seguimos sucesivamente realizando los cálculos.

PROTMEC Página # 143 ESPOL

1ro Perfil)
$$467 \text{ mm} - 52 \text{ mm} = 415 \text{ mm}$$

$$2do Perfil) 415 mm - 65 mm = 350 mm$$

$$3ro Perfil) 350 mm - 82 mm = 268 mm$$

4to Perfil)
$$268 \text{ mm} - 102 \text{ mm} = \frac{166 \text{ mm}}{1000 \text{ mm}}$$

5to Perfil)
$$166 \text{ mm} - 128 \text{ mm} = 38 \text{ mm}$$

5) Cálculos de los Perfiles de la Primera Presión de Inyección

Presiones de Inyección

Para calcular la presión fijaremos el 70% de la presión de inyección máxima de la maquina

Presiòn de inyeccion = Presion maxima de inyecciòn x 70%

Presiòn de inyecciòn = 140 Bar x 70%

Presiòn de inyecciòn = 98 Bares

De esta manera ya sabemos que la presión de inyección para cada uno de los 5 perfiles será de 98 bares.

PROTMEC Página # 144 ESPOL

6) Cálculos de la Perfiles de la Primera Velocidad de Inyección.

Es analizar con que velocidad de inyección comenzaremos a inyectar, para esto necesitamos conocer varios factores como:

- Espesor del artículo
- Longitud de disparo
- Materia prima (melt index y densidad)
- Geometría del artículo
- Molde (# de puntos de inyección, canales de distribución y colada fría o caliente)

El molde con que trabajaremos es de una cajoneta el cual consta con 1 puntos de inyección y es un molde de colada fría, este artículo trabaja con PP el cual tiene una fluidez muy baja de 6 g/ 10 min y una densidad de 0.900 g/cm3, aparte nuestro artículo tiene un espesor de 3.5 mm y con nervaduras por lo que iniciaremos programando nuestra primera velocidad de inyección alta en este caso comenzaremos con el **100%.**

Una vez definida nuestra primera velocidad de inyección se calculará las velocidades de los demás perfiles con la ayuda de la tabla 5-2, por lo que multiplicaremos nuestra primera velocidad de inyección por el coeficiente de ajuste que es de 80% para 5 perfiles de inyección.

Y así sucesivamente vamos multiplicando a partir de la nueva velocidad resultante por el coeficiente de ajuste.

PROTMEC Página # 145 ESPOL

Velocidad 2do Perfil) $100 \% \times 80\% = 80\%$

Velocidad 3ro Perfil) $80 \% \times 80\% = 64\%$

Velocidad 4to Perfil) $64 \% \times 80\% = 51\%$

Velocidad 5to Perfil) $51 \% \times 80\% = 41\%$

7) Cálculos de la Segunda Presión de Inyección

Para calcular la presión del primer perfil de sostenimiento tomaremos el 50 % de la presión de conmutación y el segundo perfil será el 80% del primer perfil.

Presiòn de sotenimiento = presiòn de conmutaciòn x 50%

Presiòn de sotenimiento = 98 Bares x 50%

Presiòn de sotenimiento = 49 Bares

Entonces el primer perfil de presión será 49 Bares

Perfil 2 = presiòn de sostenimiento x 80%

Perfil 2 = 49 Bares x 80%

Perfil 2 = 39 Bares

PROTMEC Página # 146 ESPOL

8) Cálculos de la Segunda Velocidad de Inyección

Velocidad de Sostenimiento

Para calcular la velocidad de sostenimiento de los 2 perfiles serán los mismos

pasos con los que la calculamos la presión de sostenimiento

Velocidad de sotenimiento = velocidad de conmutación x 50%

Velocidad de sotenimiento = $41\% \times 50\%$

Velocidad de sotenimiento = 21%

Entonces el primer perfil de velocidad será 21%

Perfil 2 = velocidad de sostenimiento x 80%

Perfil 2 = $21\% \times 80\%$

Perfil 2 = 17%

9) Cálculos del Tiempo de Sostenimiento.

Para calcular este valor, se necesitará el espesor promedio del artículo

(pensando en una pieza bien diseñada) o el valor del espesor más grueso (en

piezas que no mantienen un espesor de pieza constante).

Tiempo de Sostenimiento = 2 (espesor de pared)² x 20%

Tiempo de Sostenimiento = $2 (3.5 \text{mm})^2 \times 20\%$

Tiempo de Sostenimiento = 24.5 x 20%

PROTMEC Página # 147 ESPOL

Tiempo de Sostenimiento = 4.9 s

Se procederá a calcular el segundo perfil del tiempo de sostenimiento

Tiempo de Sostenimiento por perfil =
$$\frac{\text{Tiempo de sotenimiento}}{\text{# de perfiles}}$$

Tiempo de Sostenimiento por perfil =
$$\frac{4.9 \text{ segundos}}{2}$$

Tiempo de Sostenimiento por perfil = 2.45 s

Entonces nuestro tiempo de sostenimiento para el perfil 1 y 2 será de 2.5 segundos

INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÓN # 1		98	100
INYECCIÓN # 2	415	98	80
INYECCIÓN #3	350	98	64
INYECCIÓN # 4	268	98	51
INYECCIÓN # 5	166	98	41
LIMITE:	38		

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (S)
PRESIÒN POST # 1	49	21	2,5
PRESIÒN POST # 2	39	17	2,5

Tabla. 5-4 Resultado de cálculos de los parámetros de la cajoneta

PROTMEC Página # 148 ESPOL

5.3. ECOPISO

Datos:

• Máquina: 780 Ton

Diámetro del Husillo: 100 mm

Capacidad de Inyección: 2.915,00 gramos

• Longitud de Regla: 530 mm

Máxima Presión de inyección: 175 Bar

• Peso del Artículo: 2.500,00 gramos

Espesor de Pared Artículo: 6 mm

Peso Específico del PEAD: 0.952 g / cm³

• Melt Index PEAD: 7 g / 10 min

Compensación de Densidad por Temperatura (PP): 82 %

1) Cálculo del Llenado Volumétrico.

Calcular el recorrido de la primera inyección.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.82 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{2500 \ gramos}{(0.82 \ x \ 0.952 \ gr/cm^3) \ (\prod x(5 \ cm)^2)}$$

Recorrido = 39.80 cm

Recorrido = 398 mm

PROTMEC Página # 149 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas

Invectoras de Termoplásticos"

2) Cálculo del Empaque o Compactación del Artículo.

Al recorrido de la primera invección se le sumará un 5% de distancia extra, lo

que nos dará el recorrido total del husillo que corresponde al llenado

volumétrico más el empaque.

 $Recorrido\ total: = Recorrido\ 1era\ inyeccion\ *1.05$

Recorrido total: = $398 \, mm * 1.05$

Recorrido total: = 418 mm

3) Al Recorrido Total se le Suma el Cojín.

Si tomamos solamente este nuevo valor y lo ponemos como el valor de la

carga en teoría nuestro husillo va llegar a 0 mm. Lo que significa que cualquier

pequeño problema que exista con la presión nuestro husillo va a chocar con la

brida. Por esta situación agregaremos un poco más de distancia a la carga

para que haya un cojín por encima de la brida.

Carga = Recorrido total + cojin

Carga = 418 mm + 15 mm

Carga = 433 mm

PROTMEC Página # 150 ESPOL

4) Cálculos de los Perfiles de las Posiciones de Inyección.

Posiciones de Inyección

Se procederá a calcular el recorrido que el primer perfil tendrá, aplicando los porcentajes de duración de cada perfil de la tabla 5-1 en este caso se trabajará con 5 perfiles, donde encontramos que el primero de ellos tiene una duración o recorrido del 12.2 % con respecto al recorrido.

Recorrido x duración

1ro Perfil) 398 mm x 12.2% = 49 mm

De esta manera ya sabemos que el primer perfil tendrá un recorrido exactamente de 49 mm y que terminando este pequeño recorrido comenzara el segundo.

Continuamos calculando todos los demás perfiles, el recorrido que tendrá cada uno de ellos será.

2do Perfil) $398 \text{ mm} \times 15.2\% = 60 \text{mm}$

3ro Perfil) $398 \text{ mm} \times 19.0\% = 76 \text{ mm}$

4to Perfil) 398 mm x 23.8% = 95 mm

5to Perfil) 398 mm x 29.7% = 118 mm

Cada uno de estos valores que obtuvimos los vamos restando a partir de la carga o recorrido total que nosotros calculamos y partir de esta nueva posición resultante seguimos sucesivamente realizando los cálculos.

PROTMEC Página # 151 ESPOL

5to Perfil) 153 mm - 118 mm = 35 mm

5) Cálculos de los Perfiles de la Primera Presión de Inyección

Presiones de Inyección

Presiòn de inyecciòn = Presiòn maxima de inyecciòn x 70%

Presiòn de inyecciòn = 175 Bar x 70%

Presiòn de inyecciòn = 123 Bares

De esta manera ya sabemos que la presión de inyección para cada uno de los 5 perfiles será de 123 bares.

6) Cálculos de la Perfiles de la Primera Velocidad de Inyección.

Es analizar con que velocidad de inyección comenzaremos a inyectar, para esto necesitamos conocer varios factores como:

- Espesor del artículo
- Longitud de disparo

PROTMEC Página # 152 ESPOL

Materia prima (Melt índex y densidad)

Geometría del artículo

Molde (# de puntos de inyección, canales de distribución y colada fría o

caliente)

El molde con que trabajaremos es de una ecopiso el cual consta con 4 puntos

de inyección y es un molde de colada fría, este artículo trabaja con PEAD scrap

+ aditivo el cual tiene una fluidez muy baja de 7 g / 10 min y una densidad de

0.952 g/cm3, por lo que iniciaremos programando la primera velocidad baja de

60% porque nuestro artículo tiene un espesor de 6mm.

Una vez definida nuestra primera velocidad de inyección se calculará las

velocidades de los demás perfiles con la ayuda de la tabla 5-2, por lo que

multiplicaremos nuestra primera velocidad de inyección por el coeficiente de

ajuste que es de 80% para 5 perfiles de inyección.

Y así sucesivamente vamos multiplicando a partir de la nueva velocidad

resultante por el coeficiente de ajuste.

Velocidad 2do Perfil) $60 \% \times 80\% = 48\%$

Velocidad 3ro Perfil) $48 \% \times 80\% = 39\%$

Velocidad 4to Perfil) $39 \% \times 80\% = 31\%$

Velocidad 5to Perfil) $31 \% \times 80\% = 25\%$

PROTMEC Página # 153 ESPOL

7) Cálculos de la Segunda Presión de Inyección

Para calcular la presión del primer perfil de sostenimiento tomaremos el 50 % de la presión de conmutación y el segundo perfil será el 80% del primer perfil.

Presiòn de sotenimiento = presiòn de conmutaciòn x 50%

Presiòn de sotenimiento = 123 Bares x 50%

Presiòn de sotenimiento = 62 Bares

Entonces el primer perfil de presión será 62 Bares

Perfil 2 = presion de sostenimiento x 80%

Perfil 2 = 62 Bares x 80%

Perfil 2 = 50 Bares

8) Cálculos de la Segunda Velocidad de Inyección

Velocidad de Sostenimiento

Para calcular la velocidad de sostenimiento de los 2 perfiles serán los mismos pasos con los que la calculamos la presión de sostenimiento

Velocidad de sotenimiento = velocidad de conmutación x 50%

Velocidad de sotenimiento = $25 \times 50\%$

Velocidad de sotenimiento = 13%

Entonces el primer perfil de velocidad será 13%

PROTMEC Página # 154 ESPOL

Perfil 2 = velocidad de sostenimiento x 80%

Perfil 2 =
$$13 \% \times 80\%$$

Perfil
$$2 = 10\%$$

9) Cálculos del Tiempo de Sostenimiento.

Para calcular este valor, necesitaremos el espesor promedio del artículo (pensando en una pieza bien diseñada) o el valor del espesor más grueso (en piezas que no mantienen un espesor de pieza constante).

Tiempo de Sostenimiento = 2 (espesor de pared) 2 x 20%

Tiempo de Sostenimiento = $2 (6 \text{ mm})^2 \times 20\%$

Tiempo de Sostenimiento = 72 x 20%

Tiempo de Sostenimiento = 14.4 s

Se Procederá a calcular el segundo perfil del tiempo de sostenimiento

$$\label{eq:time_power} \mbox{Tiempo de Sostenimiento por perfil} = \frac{\mbox{Tiempo de sotenimiento}}{\mbox{\# de perfiles}}$$

Tiempo de Sostenimiento por perfil =
$$\frac{14.4 \text{ segundos}}{2}$$

Tiempo de Sostenimiento por perfil = 7.2 s

Entonces nuestro tiempo de sostenimiento para el perfil 1 y 2 será de 7.2 segundos

PROTMEC Página # 155 ESPOL

INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÒN # 1		123	60
INYECCIÒN # 2	384	123	48
INYECCIÒN #3	324	123	39
INYECCIÒN # 4	248	123	31
INYECCIÒN # 5	153	123	25
LIMITE:	35		

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (S)
PRESIÒN POST # 1	62	13	7.2
PRESIÒN POST # 2	50	10	7.2

Tabla. 5-5 Resultado de cálculos de los parámetros del ecopiso

PROTMEC Página # 156 ESPOL

5.4. TECHO DE ARMARIO

Datos:

Máquina: 800 Ton

Diámetro del Husillo: 120 mm

• Capacidad de Inyección: 4.000,00 gramos

• Longitud de Regla: 500 mm

Máxima Presión de Inyección: 140 Bar

Peso del Artículo: 1.600,00 gramos

Espesor de Pared Artículo: 2 mm

Peso Específico del PP: 0.900 g / cm³

Melt Index: 60 g /10min

Compensación de Densidad por Temperatura (PP): 82 %

1) Cálculo del Llenado Volumétrico.

Calcular el recorrido de la primera inyección.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.84 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{1600 \ gramos}{(0.82 \ x \ 0.900 \ gr/cm^3) \ (\prod x(6 \ cm)^2)}$$

Recorrido = 19.17 cm

Recorrido = 191 mm

PROTMEC Página # 157 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas

Invectoras de Termoplásticos"

2) Cálculo del Empaque o Compactación del Artículo.

Al recorrido de la primera invección se le sumará un 5% de distancia extra, lo

que nos dará el recorrido total del husillo que corresponde al llenado

volumétrico más el empaque.

 $Recorrido\ total: = Recorrido\ 1era\ inyeccion\ *1.05$

 $Recorrido\ total: = 191\ mm\ * 1.05$

 $Recorrido\ total: = 201\ mm$

3) Al Recorrido Total se le Suma el Cojín.

Si tomamos solamente este nuevo valor y lo ponemos como el valor de la

carga en teoría nuestro husillo va llegar a 0 mm. Lo que significa que cualquier

pequeño problema que exista con la presión nuestro husillo va a chocar con la

brida. Por esta situación agregaremos un poco más de distancia a la carga

para que haya un cojín por encima de la brida.

Carga = Recorrido total + cojin

Carga = 201 mm + 15 mm

Carga = 216 mm

PROTMEC Página # 158 ESPOL

4) Cálculos de los Perfiles de las Posiciones de Inyección.

Posiciones de Inyección

Se Procederá a calcular el recorrido que el primer perfil tendrá, aplicando los porcentajes de duración de cada perfil de la tabla 5-1 en este caso se trabajará con 5 perfiles, donde encontramos que el primero de ellos tiene una duración o recorrido del 12.2 % con respecto al recorrido.

Recorrido x duracion

1ro Perfil) 191 mm x 12.2% = 23 mm

De esta manera ya sabemos que el primer perfil tendrá un recorrido exactamente de 23 mm y que terminando este pequeño recorrido comenzará el segundo.

Continuamos calculando todos los demás perfiles, el recorrido que tendrá cada uno de ellos será.

2do Perfil) 191 mm x 15.2% = 29 mm

3ro Perfil) 191 mm x 19.0% = 36 mm

4to Perfil) 191 mm x 23.8% = 45 mm

5to Perfil) 191 mm x 29.7% = 57 mm

Cada uno de estos valores que obtuvimos los vamos restando a partir de la carga o recorrido total que calculamos y partir de esta nueva posición resultante seguimos sucesivamente realizando los cálculos.

PROTMEC Página # 159 ESPOL

$$1ro Perfil) 216 mm - 23 mm = 193 mm$$

$$2do Perfil) 193 mm - 29 mm = 164 mm$$

$$3ro Perfil) 164 mm - 36 mm = 128 mm$$

4to Perfil)
$$128 \text{ mm} - 45 \text{ mm} = 83 \text{ mm}$$

5to Perfil)
$$83 \text{ mm} - 57 \text{ mm} = 26 \text{ mm}$$

5) Cálculos de los Perfiles de la Primera Presión de Inyección

Presiones de Inyección

Para calcular la presión fijaremos el 70% de la presión de inyección máxima de la maquina

Presiòn de inyecciòn = Presiòn maxima de inyecciòn x 70%

Presiòn de inyecciòn = 140 Bar x 70%

Presiòn de inyecciòn = 98 Bares

De esta manera ya sabemos que la presión de inyección para cada uno de los 5 perfiles será de 98 bares.

PROTMEC Página # 160 ESPOL

6) Cálculos de la Perfiles de la Primera Velocidad de Inyección.

Es analizar con que velocidad de inyección comenzaremos a inyectar, para esto necesitamos conocer varios factores como:

- Espesor del artículo
- Materia prima (Melt índex y densidad)
- Geometría del artículo
- Molde (# de puntos de inyección, canales de distribución y colada fría o caliente)

El molde con que trabajaremos es de un techo de armario el cual consta con 1 punto de inyección y es un molde de colada caliente, este artículo trabaja con PP el cual tiene una fluidez alta de 60 g/ 10 min y una densidad de 0.900 g/cm3, por lo que iniciaremos programando nuestra primera velocidad de inyección alta porque tiene un espesor muy delgado de 2mm a pesar de tener una fluidez alta en este caso comenzaremos con el 100%.

Una vez definida nuestra primera velocidad de inyección se calculará las velocidades de los demás perfiles con la ayuda de la tabla 5-2, por lo que multiplicaremos nuestra primera velocidad de inyección por el coeficiente de ajuste que es de 80% para 5 perfiles de inyección.

Y así sucesivamente vamos multiplicando a partir de la nueva velocidad resultante por el coeficiente de ajuste.

PROTMEC Página # 161 ESPOL

Velocidad 2do Perfil) $100 \% \times 80\% = 80\%$

Velocidad 3ro Perfil) $80 \% \times 80\% = 64\%$

Velocidad 4to Perfil) $64 \% \times 80\% = 51\%$

Velocidad 5to Perfil) $51 \% \times 80\% = 41\%$

7) Cálculos de la Segunda Presión de Inyección

Para calcular la presión del primer perfil de sostenimiento tomaremos el 50 % de la presión de conmutación y el segundo perfil será el 80% del primer perfil.

Presiòn de sotenimiento = **presion de conmutaciòn x 50**%

Presiòn de sotenimiento = 98 Bares x 50%

Presiòn de sotenimiento = 49 Bares

8) Cálculos de la Segunda Velocidad de Inyección

Velocidad de Sostenimiento

Para calcular la velocidad de sostenimiento los mismos pasos con los que la calculamos la presión de sostenimiento

Velocidad de sotenimiento = velocidad de conmutación x 50%

Velocidad de sotenimiento = $41 \times 50\%$

Velocidad de sotenimiento = 21%

PROTMEC Página # 162 ESPOL

9) Cálculos del Tiempo de Sostenimiento.

Para calcular este valor, necesitaremos el espesor promedio del artículo (pensando en una pieza bien diseñada) o el valor del espesor más grueso (en piezas que no mantienen un espesor de pieza constante).

Tiempo de Sostenimiento = 2 (espesor de pared)² x 20%

Tiempo de Sostenimiento = $2 (2 \text{ mm})^2 \times 20\%$

Tiempo de Sostenimiento $= 8 \times 20\%$

Tiempo de Sostenimiento = 1.6 s

INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÓN # 1		98	100
INYECCIÓN # 2	193	98	80
INYECCIÓN #3	164	98	64
INYECCIÓN # 4	128	98	51
INYECCIÒN # 5	83	98	41
LIMITE:	26		

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (S)
PRESIÓN POST # 1	49	21	1.6

Tabla. 5-6 Resultado de cálculos de los parámetros del techo de armario

PROTMEC Página # 163 ESPOL

5.5. CESTO

Datos:

Máquina: 468 Ton

• Diámetro del Husillo: 83 mm

Capacidad de Inyección: 1.115,00 gramos

• Longitud de Regla: 330 mm

Máxima Presión: 175 Bar

Peso del Artículo: 462 gramos

Espesor de Pared artículo: 2 mm

Peso Específico del PEAD: 0.952 g / cm³

Melt Index PEAD : 20 g / 10 min

Compensación de Densidad por Temperatura (PP): 82 %

1) Cálculo del Llenado Volumétrico.

Calcular el recorrido de la primera inyección.

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.84 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{462 \ gramos}{(0.84 \ x \ 0.952 \ g/cm^3) (\prod x (4.15 \ cm)^2)}$$

Recorrido = 10.68 cm

Recorrido = 106 mm

PROTMEC Página # 164 ESPOL

2) Cálculo del Empaque o Compactación del Artículo.

Al recorrido de la primera invección se le sumará un 5% de distancia extra, lo

que nos dará el recorrido total del husillo que corresponde al llenado

volumétrico más el empaque.

 $Recorrido\ total: = Recorrido\ 1era\ inyeccion\ *1.05$

 $Recorrido\ total: = 106\ mm\ *1.05$

 $Recorrido\ total: = 111\ mm$

3) Al Recorrido Total se le Suma el Cojín.

Si tomamos solamente este nuevo valor y lo ponemos como el valor de la

carga en teoría nuestro husillo va llegar a 0 mm. Lo que significa que cualquier

pequeño problema que exista con la presión nuestro husillo va a chocar con la

brida. Por esta situación agregaremos un poco más de distancia a la carga

para que haya un cojín por encima de la brida.

Carga = Recorrido total + cojin

Carga = 111 mm + 15 mm

Carga = 126 mm

PROTMEC Página # 165 ESPOL

4) Cálculos de los Perfiles de las Posiciones de Inyección.

Posiciones de Inyección

Se procederá a calcular el recorrido que el primer perfil tendrá, aplicando los porcentajes de duración de cada perfil de la tabla 5-1 en este caso se trabajara con 5 perfiles, donde encontramos que el primero de ellos tiene una duración o recorrido del 12.2 % con respecto al recorrido.

Recorrido x duracion

1ro Perfil) $106 \text{ mm} \times 12.2\% = 13 \text{ mm}$

De esta manera ya sabemos que el primer perfil tendrá un recorrido exactamente de 13 mm y que terminando este pequeño recorrido comenzara el segundo.

Continuamos calculando todos los demás perfiles, el recorrido que tendrá cada uno de ellos será.

2do Perfil) $106 \text{ mm} \times 15.2\% = 16 \text{ mm}$

3ro Perfil) $106 \text{ mm} \times 19.0\% = 20 \text{ mm}$

4to Perfil) 106 mm x 23.8% = 25 mm

5to Perfil) 106 mm x 29.7% = 31 mm

Cada uno de estos valores que obtuvimos los vamos restando a partir de la carga o recorrido total que calculamos y partir de esta nueva posición resultante seguimos sucesivamente realizando los cálculos.

PROTMEC Página # 166 ESPOL

$$1ro Perfil) 126 mm - 13 mm = 113 mm$$

2do Perfil)
$$113 \text{ mm} - 16 \text{ mm} = 97 \text{ mm}$$

$$3ro Perfil) 97 mm - 20 mm = 77 mm$$

4to Perfil) 77 mm
$$- 25 \text{ mm} = 52 \text{ mm}$$

5to Perfil)
$$52 \text{ mm} - 31 \text{ mm} = 21 \text{ mm}$$

5) Cálculos de los Perfiles de la Primera Presión de Inyección

Presiones de Inyección

Para calcular la presión fijaremos el 70% de la presión de inyección máxima de la maquina

Presiòn de inyecciòn = Presiòn maxima de inyecciòn x 70%

Presiòn de inyecciòn = 175 Bar x 70%

Presiòn de inyecciòn = 123 Bares

De esta manera ya sabemos que la presión de inyección para cada uno de los 5 perfiles será de 123 bares.

PROTMEC Página # 167 ESPOL

6) Cálculos de la Perfiles de la Primera Velocidad de Inyección.

Es analizar con que velocidad de inyección comenzaremos a inyectar, para esto necesitamos conocer varios factores como:

- Espesor del artículo
- Materia prima (melt index y densidad)
- Geometría del artículo
- Molde (# de puntos de inyección, canales de distribución y colada fría o caliente)

El molde con que trabajaremos es de un techo de armario el cual consta con 1 punto de inyección y es un molde de colada fria, este artículo trabaja con PEAD el cual tiene una fluidez de 20 g /10 min y una densidad de 0.952 gr/cm3, por lo que iniciaremos programando nuestra primera velocidad de inyección alta porque tiene un espesor muy delgado de 2mm en este caso comenzaremos con el 100%.

Una vez definida nuestra primera velocidad de inyección se calculará las velocidades de los demás perfiles con la ayuda de la tabla 5-2, por lo que multiplicaremos nuestra primera velocidad de inyección por el coeficiente de ajuste que es de 80% para 5 perfiles de inyección. Y así sucesivamente vamos multiplicando a partir de la nueva velocidad resultante por el coeficiente de ajuste.

PROTMEC Página # 168 ESPOL

Velocidad 2do Perfil) $100 \% \times 80\% = 80\%$

Velocidad 3ro Perfil) $80 \% \times 80\% = 64\%$

Velocidad 4to Perfil) $64 \% \times 80\% = 51\%$

Velocidad 5to Perfil) $51 \% \times 80\% = 41\%$

7) Cálculos de la Segunda Presión de Inyección

Para calcular la presión del primer perfil de sostenimiento tomaremos el 50 % de la presión de conmutación y el segundo perfil será el 80% del primer perfil.

Presiòn de sotenimiento = presiòn de conmutaciòn x 50%

Presiòn de sotenimiento = 123 Bares x 50%

Presiòn de sotenimiento = 62 Bares

8) Cálculos de la Segunda Velocidad de Inyección

Velocidad de Sostenimiento

Para calcular la velocidad de sostenimiento serán los mismos pasos con los que la calculamos la presión de sostenimiento

Velocidad de sotenimiento = velocidad de conmutación x 50%

Velocidad de sotenimiento = $41\% \times 50\%$

Velocidad de sotenimiento = 21%

PROTMEC Página # 169 ESPOL

9) Cálculos del Tiempo de Sostenimiento.

Para calcular este valor, necesitaremos el espesor promedio del artículo (pensando en una pieza bien diseñada) o el valor del espesor más grueso (en piezas que no mantienen un espesor de pieza constante).

Tiempo de Sostenimiento = 2 (espesor de pared)² x 20%

Tiempo de Sostenimiento = $2 (2 \text{ mm})^2 \times 20\%$

Tiempo de Sostenimiento $= 8 \times 20\%$

Tiempo de Sostenimiento = 1.6 s

INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÓN # 1		123	100
INYECCIÓN # 2	113	123	80
INYECCIÓN #3	97	123	64
INYECCIÓN # 4	77	123	51
INYECCIÓN # 5	52	123	41
LIMITE:	21		

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (S)
PRESIÓN POST # 1	62	21	1.6

Tabla. 5-7 Resultado de cálculos de los parámetros del cesto

PROTMEC Página # 170 ESPOL

5.6. TABLERO DE MESA

Datos:

Máquina: 780 Ton

Diámetro del Husillo: 100 mm

Capacidad de Inyección: 2.915,00 gramos

Longitud de Regla: 530 mm

Máxima Presión: 175 Bar

• Peso del Artículo: 1.475,00 gramos

Espesor de Pared Artículo: 3 mm

Peso Específico del PP: 0.900 g / cm³

Compensación de Densidad por Temperatura (PP): 82 %

1) Cálculo del Llenado Volumétrico.

Vamos a calcular el recorrido de la primera inyección.

$$\textbf{Recorrido} \ = \ \frac{\textit{Peso del disparo}}{(0.82 \, \textit{x peso especifico}) \, (\prod \textit{xr}^2)}$$

Recorrido =
$$\frac{1475 \ gramos}{(0.82 \ x \ 0.900 \ gr/cm^3) (\prod x(5 \ cm)^2)}$$

Recorrido = 25.44 cm

Recorrido = 254 mm

PROTMEC Página # 171 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas

Invectoras de Termoplásticos"

2) Cálculo del Empaque o Compactación del Artículo.

Al recorrido de la primera inyección se le sumara un 5% de distancia extra, lo

que nos dará el recorrido total del husillo que corresponde al llenado

volumétrico más el empaque.

 $Recorrido\ total$: = $Recorrido\ 1era\ inyeccion\ * 1.05$

 $Recorrido\ total:=254\ mm\ *1.05$

 $Recorrido\ total: = 267\ mm$

3) Al Recorrido Total se le Suma el Cojín.

Si tomamos solamente este nuevo valor y lo ponemos como el valor de la

carga en teoría nuestro husillo va llegar a 0 mm. Lo que significa que cualquier

pequeño problema que exista con la presión nuestro husillo va a chocar con la

brida. Por esta situación agregaremos un poco más de distancia a la carga

para que haya un cojín por encima de la brida.

Carga = Recorrido total + cojin

Carga = 267 mm + 15 mm

Carga = 282 mm

PROTMEC Página # 172 ESPOL

4) Cálculos de los Perfiles de las Posiciones de Inyección.

Posiciones de Inyección

Se procederá a calcular el recorrido que el primer perfil tendrá, aplicando los porcentajes de duración de cada perfil de la tabla 5-1 en este caso se trabajará con 5 perfiles, donde encontramos que el primero de ellos tiene una duración o recorrido del 12.2 % con respecto al recorrido.

Recorrido x duracion

1ro Perfil) $254 \text{ mm} \times 12.2\% = 31 \text{mm}$

De esta manera ya sabemos que el primer perfil tendrá un recorrido exactamente de 31 mm y que terminando este pequeño recorrido comenzara el segundo.

Continuamos calculando todos los demás perfiles, el recorrido que tendrá cada uno de ellos será.

2do Perfil) $254 \text{ mm} \times 15.2\% = 39 \text{ mm}$

3ro Perfil) $254 \text{ mm} \times 19.0\% = 48 \text{ mm}$

4to Perfil) 254 mm x 23.8% = 60 mm

5to Perfil) 254 mm x 29.7% = 75 mm

Cada uno de estos valores que obtuvimos los vamos restando a partir de la carga o recorrido total que n calculamos y partir de esta nueva posición resultante seguimos sucesivamente realizando los cálculos.

PROTMEC Página # 173 ESPOL

$$1ro Perfil) 282 mm - 31 mm = 251 mm$$

$$2do Perfil) 251 mm - 39 mm = 212 mm$$

$$3ro Perfil) 212 mm - 48 mm = 164 mm$$

4to Perfil)
$$164 \text{ mm} - 60 \text{ mm} = 104 \text{ mm}$$

5to Perfil)
$$104 \text{ mm} - 75 \text{ mm} = 29 \text{ mm}$$

5) <u>Cálculos de los Perfiles de la Primera Presión de Inyección</u>

Presiones de Inyección

Para calcular la presión fijaremos el 70% de la presión de inyección máxima de la maquina

Presiòn de inyecciòn = Presiòn maxima de inyecciòn x 70%

Presiòn de inyecciòn = 175 Bar x 70%

Presiòn de inyecciòn = 123 Bares

De esta manera ya sabemos que la presión de inyección para cada uno de los 5 perfiles será de 123 bares.

PROTMEC Página # 174 ESPOL

6) Cálculos de la Perfiles de la Primera Velocidad de Inyección.

Es analizar con que velocidad de inyección comenzaremos a inyectar, para

esto necesitamos conocer varios factores como:

Espesor del artículo

Materia prima (Melt índex y densidad)

Geometría del artículo

Molde (# de puntos de inyección, canales de distribución y colada fría o

caliente)

El molde con que trabajaremos es de tablero de mesa el cual consta con 1

punto de inyección y es un molde de colada fría, este artículo trabaja con PP el

cual tiene una fluidez de 20 g / 10 min y una densidad de 0.900 g/cm3, un poco

más baja que la del PEAD además tiene un espesor de 3mm por lo que la

primera velocidad de invección será de 80 %.

Una vez definida nuestra primera velocidad de inyección se calculará las

velocidades de los demás perfiles con la ayuda de la tabla 5-2, por lo que

multiplicaremos nuestra primera velocidad de inyección por el coeficiente de

ajuste que es de 80% para 5 perfiles de inyección. Y así sucesivamente vamos

multiplicando a partir de la nueva velocidad resultante por el coeficiente de

ajuste.

Velocidad 2do Perfil) $80 \% \times 80\% = 64\%$

Velocidad 3ro Perfil) $64 \% \times 80\% = 51\%$

Velocidad 4to Perfil) $51 \% \times 80\% = 41\%$

PROTMEC Página # 175 ESPOL

Velocidad 5to Perfil) $41 \% \times 80\% = 33\%$

7) Cálculos de la Segunda Presión de Inyección

Para calcular la presión del primer perfil de sostenimiento tomaremos el 50 %

de la presión de conmutación y el segundo perfil será el 80% del primer perfil.

Presiòn de sotenimiento = presiòn de conmutación x 50%

Presiòn de sotenimiento = 123 Bares x 50%

Presiòn de sotenimiento = 62 Bares

8) Cálculos de la Segunda Velocidad de Inyección

Velocidad de sostenimiento

Para calcular la velocidad de sostenimiento serán los mismos pasos con los

que la calculamos la presión de sostenimiento

Velocidad de sotenimiento = velocidad de conmutación x 50%

Velocidad de sotenimiento = 33 % x 50%

Velocidad de sotenimiento = 17%

PROTMEC Página # 176 ESPOL

9) Cálculos del Tiempo de Sostenimiento.

Para calcular este valor, necesitaremos el espesor promedio del artículo (pensando en una pieza bien diseñada) o el valor del espesor más grueso (en piezas que no mantienen un espesor de pieza constante).

Tiempo de Sostenimiento = 2 (espesor de pared articulo)² x 20%

Tiempo de Sostenimiento = $2 (3mm)^2 \times 20\%$

Tiempo de Sostenimiento = 18 x 20%

Tiempo de Sostenimiento = 3.6 s

INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÒN # 1		123	80
INYECCIÒN # 2	251	123	64
INYECCIÓN #3	212	123	51
INYECCIÒN # 4	164	123	41
INYECCIÒN # 5	104	123	33
LIMITE:	29		

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (S)
PRESIÓN POST # 1	62	17	3.6

Tabla. 5-8 Resultado de cálculos de los parámetros del tablero de mesa

PROTMEC Página # 177 ESPOL

5.7. CANASTA

Datos:

Máquina: 800 Ton

• Diámetro del Husillo: 110 mm

• Capacidad de Inyección: 4.800,00 gramos

• Longitud de Regla: 530 mm

Máxima Presión: 175 Bar

• Peso del Artículo: 1.475,00 gramos

Espesor de Pared artículo: 2.5 mm

Peso Específico del PP: 0.900 g / cm³

Melt Index: 60 g / 10 min

Compensación de Densidad por Temperatura (PP): 82 %

1) Cálculo del Llenado Volumétrico.

Calcular el recorrido de la primera inyección

Recorrido =
$$\frac{Peso \ del \ disparo}{(0.82 \ x \ peso \ especifico) \ (\prod xr^2)}$$

Recorrido =
$$\frac{930 \ gramos}{(0.82 \ x \ 0.900 \ g \ /cm^3) (\prod x (5.5 \ cm)^2)}$$

Recorrido = 13.26 cm

Recorrido = 132 mm

PROTMEC Página # 178 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas

Invectoras de Termoplásticos"

2) Cálculo del Empaque o Compactación del Artículo.

Al recorrido de la primera inyección se le sumará un 5% de distancia extra, lo

que nos dará el recorrido total del husillo que corresponde al llenado

volumétrico más el empaque.

 $Recorrido\ total$: = $Recorrido\ 1era\ inyeccion\ * 1.05$

 $Recorrido\ total:=132\ mm\ *1.05$

Recorrido total: = 139 mm

3) Al Recorrido Total se le Suma el Cojín.

Si tomamos solamente este nuevo valor y lo ponemos como el valor de la

carga en teoría nuestro husillo va llegar a 0 mm. Lo que significa que cualquier

pequeño problema que exista con la presión nuestro husillo va a chocar con la

brida. Por esta situación agregaremos un poco más de distancia a la carga

para que haya un cojín por encima de la brida.

Carga = Recorrido total + cojin

Carga = 139 mm + 15 mm

Carga = 154 mm

PROTMEC Página # 179 ESPOL

4) Cálculos de los Perfiles de las Posiciones de Inyección.

Se procederá a calcular el recorrido que el primer perfil tendrá, aplicando los porcentajes de duración de cada perfil de la tabla 5-1 en este caso se trabajará con 5 perfiles, donde encontramos que el primero de ellos tiene una duración o recorrido del 12.2 % con respecto al recorrido.

Recorrido x duracion

1ro Perfil) 132 mm x 12.2% = $\frac{16}{10}$ mm

De esta manera ya sabemos que el primer perfil tendrá un recorrido exactamente de 16 mm y que terminando este pequeño recorrido comenzará el segundo.

Continuamos calculando todos los demás perfiles, el recorrido que tendrá cada uno de ellos será.

2do Perfil) 132 mm x 15.2% = 20 mm

3ro Perfil) 132 mm x 19.0% = 25 mm

4to Perfil) 132 mm x 23.8% = 31 mm

5to Perfil) 132mm x 29.7% = 39 mm

Cada uno de estos valores que obtuvimos los vamos restando a partir de la carga o recorrido total que calculamos y partir de esta nueva posición resultante seguimos sucesivamente realizando los cálculos.

PROTMEC Página # 180 ESPOL

$$1ro Perfil) 154 mm - 16 mm = 138 mm$$

$$2do Perfil) 138 mm - 20 mm = 118 mm$$

$$3ro Perfil) 118 mm - 25 mm = 93 mm$$

4to Perfil)
$$93 \text{ mm} - 31 \text{ mm} = 62 \text{ mm}$$

5to Perfil)
$$62 \text{ mm} - 39 \text{ mm} = 23 \text{ mm}$$

5) <u>Cálculos de los Perfiles de la Primera Presión de Inyección</u>

Presiones de Inyección

Para calcular la presión fijaremos el 70% de la presión de inyección máxima de la maquina

Presiòn de inyecciòn = Presiòn maxima de inyecciòn x 70%

Presiòn de inyecciòn = 140 Bar x 70%

Presiòn de inyecciòn = 98 Bares

De esta manera ya sabemos que la presión de inyección para cada uno de los 5 perfiles será de 98 bares.

PROTMEC Página # 181 ESPOL

6) Cálculos de la Perfiles de la Primera Velocidad de Inyección.

Es analizar con que velocidad de inyección comenzaremos a inyectar, para esto necesitamos conocer varios factores como:

- Espesor del artículo
- Longitud del disparo
- Materia prima (Melt índex y densidad)
- Geometría del artículo
- Molde (# de puntos de inyección, canales de distribución y colada fría o caliente)

El molde con que trabajaremos es de una canasta el cual consta con 2 puntos de inyección y es un molde de colada caliente, este artículo trabaja con PP el cual tiene una fluidez de 60 g / 10 min y una densidad de 0.900 g/cm3 además tiene un espesor de 2.5 mm por lo que la primera velocidad de inyección será de 90 %.

Una vez definida nuestra primera velocidad de inyección se calculará las velocidades de los demás perfiles con la ayuda de la tabla 5-2, por lo que multiplicaremos nuestra primera velocidad de inyección por el coeficiente de ajuste que es de 80% para 5 perfiles de inyección. Y así sucesivamente vamos multiplicando a partir de la nueva velocidad resultante por el coeficiente de ajuste.

PROTMEC Página # 182 ESPOL

Velocidad 2do Perfil) $90 \% \times 80\% = 72\%$

Velocidad 3ro Perfil) $72 \% \times 80\% = 58\%$

Velocidad 4to Perfil) $58 \% \times 80\% = 46\%$

Velocidad 5to Perfil) $46 \% \times 80\% = 37\%$

7) Cálculos de la Segunda Presión de Inyección

Para calcular la presión del primer perfil de sostenimiento tomaremos el 50 % de la presión de conmutación y el segundo perfil será el 80% del primer perfil.

Presiòn de sotenimiento = presiòn de conmutaciòn x 50%

Presiòn de sotenimiento = 98 Bares x 50%

Presiòn de sotenimiento = 49 Bares

8) Cálculos de la Segunda Velocidad de Inyección

Velocidad de sostenimiento

Para calcular la velocidad de sostenimiento de los 2 perfiles serán los mismos pasos con los que la calculamos la presión de sostenimiento

Velocidad de sotenimiento = velocidad de conmutación x 50%

Velocidad de sotenimiento = 37% x 50%

Velocidad de sotenimiento = 19%

PROTMEC Página # 183 ESPOL

9) Cálculos del Tiempo de Sostenimiento.

Para calcular este valor, necesitaremos el espesor promedio del artículo (pensando en una pieza bien diseñada) o el valor del espesor más grueso (en piezas que no mantienen un espesor de pieza constante).

Tiempo de Sostenimiento = 2 (espesor de pared articulo)² x 20%

Tiempo de Sostenimiento = $2 (2.5 \text{mm})^2 \times 20\%$

Tiempo de Sostenimiento = $12.5 \times 20\%$

Tiempo de Sostenimiento = 2.5 seg

INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÒN # 1		98	90
INYECCIÓN # 2	138	98	72
INYECCIÓN #3	118	98	58
INYECCIÒN # 4	93	98	46
INYECCIÒN # 5	62	98	37
LIMITE:	23		

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (SEG)
PRESIÓN POST # 1	49	19	2.5

Tabla. 5-9 Resultado de cálculos de los parámetros de la canasta

PROTMEC Página # 184 ESPOL

5.8. PALLET

Datos:

Máquina: 2800 Ton

• Diámetro del Husillo: 200 mm

Capacidad de Inyección: 29.232,00 gramos

• Longitud de Regla: 1260 mm

Máxima Presión: 140 Bar

• Peso del Artículo: 15.000,00 gramos

Espesor de Pared Artículo: 9 mm

Peso Específico del PEAD: 0.952 g / cm³

• Melt Index: 7 g / 10 min

Compensación de Densidad por Temperatura (PP): 82 %

1) Cálculo del Llenado Volumétrico.

Vamos a calcular el recorrido de la primera inyección

$$\textbf{Recorrido} \ = \ \frac{\textit{Peso del disparo}}{(0.84 \, \textit{x peso especifico}) \, (\prod \textit{xr}^2)}$$

Recorrido =
$$\frac{15000 \ gramos}{(0.84 \ x \ 0.952 \ gr/cm^3) \ (\prod x (10 \ cm)^2)}$$

Recorrido = 59.70 cm

Recorrido = 597 mm

PROTMEC Página # 185 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas

Invectoras de Termoplásticos"

2) Cálculo del Empaque o Compactación del Artículo.

Al recorrido de la primera invección se le sumará un 5% de distancia extra, lo

que nos dará el recorrido total del husillo que corresponde al llenado

volumétrico más el empaque.

 $Recorrido\ total$: = $Recorrido\ 1era\ inyeccion\ * 1.05$

 $Recorrido\ total: = 597\ mm\ * 1.05$

 $Recorrido\ total: = 627\ mm$

3) Al Recorrido Total se le Suma el Cojín.

Si tomamos solamente este nuevo valor y lo ponemos como el valor de la

carga en teoría nuestro husillo va llegar a 0 mm. Lo que significa que cualquier

pequeño problema que exista con la presión nuestro husillo va a chocar con la

brida. Por esta situación agregaremos un poco más de distancia a la carga

para que haya un cojín por encima de la brida.

Carga = Recorrido total + cojin

Carga = 627 mm + 15 mm

Carga = 642 mm

PROTMEC ESPOL Página # 186

4) Cálculos de los Perfiles de las Posiciones de Inyección.

Se procederá a calcular el recorrido que el primer perfil tendrá, aplicando los porcentajes de duración de cada perfil de la tabla 5-1 en este caso se trabajara con 5 perfiles, donde encontramos que el primero de ellos tiene una duración o recorrido del 12.2 % con respecto al recorrido.

Recorrido x duracion

1ro Perfil) $597 \text{ mm} \times 12.2\% = \frac{73 \text{ mm}}{100}$

De esta manera ya sabemos que el primer perfil tendrá un recorrido exactamente de 73 mm y que terminando este pequeño recorrido comenzará el segundo.

Continuamos calculando todos los demás perfiles, el recorrido que tendrá cada uno de ellos será.

2do Perfil) 597 mm x 15.2% = 91 mm

3ro Perfil) $597 \text{ mm} \times 19.0\% = 113 \text{ mm}$

4to Perfil) 597 mm x 23.8% = 142 mm

5to Perfil) 597 mm x 29.7% = 177 mm

Cada uno de estos valores que obtuvimos los vamos restando a partir de la carga o recorrido total que calculamos y partir de esta nueva posición resultante seguimos sucesivamente realizando los cálculos.

PROTMEC Página # 187 ESPOL

$$1ro Perfil) 642 mm - 73 mm = 569 mm$$

$$2do Perfil) 569mm - 91 mm = 478 mm$$

$$3ro Perfil) 478 mm - 113 mm = 365 mm$$

4to Perfil)
$$365 \text{ mm} - 142 \text{ mm} = 223 \text{ mm}$$

5to Perfil) 223 mm
$$-$$
 177 mm $=$ 46 mm

5) Cálculos de los Perfiles de la Primera Presión de Inyección

Presiones de Inyección

Para calcular la presión fijaremos el 70% de la presión de inyección máxima de la maquina

Presiòn de inyecciòn = Presiòn maxima de inyecciòn x 70%

Presiòn de inyecciòn = 140 Bar x 70%

Presiòn de inyecciòn = 98 Bares

De esta manera ya sabemos que la presión de inyección para cada uno de los 5 perfiles será de 98 bares.

PROTMEC Página # 188 ESPOL

6) Cálculos de la Perfiles de la Primera Velocidad de Inyección.

Es analizar con que velocidad de inyección comenzaremos a inyectar, para esto necesitamos conocer varios factores como:

- Espesor del artículo
- Longitud del disparo
- Materia prima (Melt índex y densidad)
- Geometría del artículo
- Molde (# de puntos de inyección, canales de distribución y colada fría o caliente)

El molde con que trabajaremos es de un pallet el cual consta con 9 punto de inyección y es un molde de colada fría, este artículo trabaja con PEAD scrap + carga el cual tiene una fluidez de 6 g / 10 min y una densidad de 0.952 g/cm3, por lo que este materia es muy difícil de inyectar por la carga que se le ha adherido a pesar que tiene un espesor de 9 mm la primera velocidad de inyección será alta de **100%**.

Una vez definida nuestra primera velocidad de inyección se calculará las velocidades de los demás perfiles con la ayuda de la tabla 5-2, por lo que multiplicaremos nuestra primera velocidad de inyección por el coeficiente de ajuste que es de 80% para 5 perfiles de inyección. Y así sucesivamente vamos multiplicando a partir de la nueva velocidad resultante por el coeficiente de ajuste.

PROTMEC Página # 189 ESPOL

Velocidad 2do Perfil) $100 \% \times 80\% = 80\%$

Velocidad 3ro Perfil) $80\% \times 80\% = 64\%$

Velocidad 4to Perfil) $64 \% \times 80\% = 51\%$

Velocidad 5to Perfil) $51 \% \times 80\% = 41\%$

7) Cálculos de la Segunda Presión de Inyección

Para calcular la presión del primer perfil de sostenimiento tomaremos el 50 % de la presión de conmutación y el segundo perfil será el 80% del primer perfil.

Presiòn de sotenimiento = presiòn de conmutaciòn x 50%

Presiòn de sotenimiento = 98 Bares x 50%

Presiòn de sotenimiento = 49 Bares

Entonces el primer perfil de presión será 49 Bares

Perfil 2 = presion de sostenimiento x 80%

Perfil 2 = 49 Bares x 80%

Perfil 2 = 39 Bares

PROTMEC Página # 190 ESPOL

8) Cálculos de la Segunda Velocidad de Inyección

Velocidad de Sostenimiento

Para calcular la velocidad de sostenimiento de los 2 perfiles serán los mismos pasos con los que la calculamos la presión de sostenimiento

Velocidad de sotenimiento = velocidad de conmutación x 50%

Velocidad de sotenimiento = $41\% \times 50\%$

Velocidad de sotenimiento = 21%

Entonces el primer perfil de velocidad será

Perfil 2 = velocidad de sostenimiento x 80%

Perfil 2 = 21% * 80%

Perfil 2 = 17%

9) Cálculos del Tiempo de Sostenimiento.

<u>Tiempo de Sostenimiento</u>

Para calcular este valor, necesitaremos el espesor promedio del artículo (pensando en una pieza bien diseñada) o el valor del espesor más grueso (en piezas que no mantienen un espesor de pieza constante).

PROTMEC Página # 191 ESPOL

Tiempo de Sostenimiento = 2 (espesor de pared articulo)² x 20%

Tiempo de Sostenimiento = $2 (9 \text{ mm})^2 \times 20\%$

Tiempo de Sostenimiento = 162 x 20%

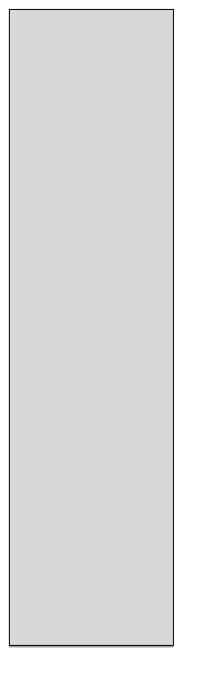
Tiempo de Sostenimiento = 32 s

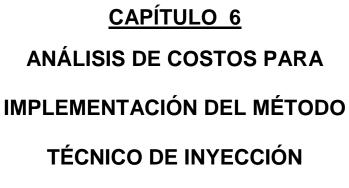
Procederemos a calcular el segundo perfil del tiempo de sostenimiento

$$Tiempo \ de \ Sostenimiento \ por \ perfil = \frac{Tiempo \ de \ sotenimiento}{\# \ de \ perfiles}$$

Tiempo de Sostenimiento por perfil =
$$\frac{32 \text{ segundos}}{2}$$

Tiempo de Sostenimiento por perfil = 16 s


Entonces nuestro tiempo de sostenimiento para el perfil 1 y 2 será de 16 segundos


INYECCIÒN	POS. INICIAL (MM)	PRESIÒN (BAR)	VELOCIDAD (%)
INYECCIÒN # 1		98	99
INYECCIÒN # 2	569	98	80
INYECCIÒN #3	478	98	64
INYECCIÒN # 4	365	98	51
INYECCIÒN # 5	223	98	41
LIMITE:	46		

SEGUNDA PRESIÒN	PRESIÒN (BAR)	VELOCIDAD (%)	TIEMPO (S)
PRESIÓN POST # 1	49	21	16
PRESIÓN POST # 2	39	17	16

Tabla. 5-10 Resultado de cálculos de los parámetros del pallet

PROTMEC Página # 192 ESPOL

6. ANÁLISIS DE COSTOS PARA IMPLEMENTACIÓN DEL MÉTODO TÉCNICO DE INYECCIÓN

6.1. FINANCIAMIENTO

En vista de ser un proyecto práctico operacional donde solo se necesita la mano de obra no fue necesario cubrir este costo por que se llegó a un mutuo acuerdo con la empresa procesadora de plásticos "PICA PLASTICOS INDUSTRIALES C.A" la cual nos dio la oportunidad y confianza para realizar este proyecto en sus instalaciones en el plazo establecido sin interrumpir la producción en ningún momento ya que se trabajó en paralelo con el operador de máquina cuando se estaba haciendo un arranque de la misma, por lo que no interrumpimos con la producción de la empresa ya que aprovechamos los recursos que se estaban usando en ese momento como molde, máquina y materia prima.

Los estudiantes que integran el proyecto, se encargaron de cubrir los gastos que dicho proyecto género como: traslado o logística, alimentación, entre otros desde el inicio del mismo hasta su culminación.

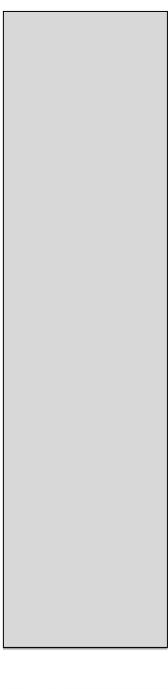
6.2. COSTOS PARA LA IMPLEMENTACIÓN DEL MÉTODO TÉCNICO DE INYECCIÓN

Este proyecto puede ser implementado en cualquier empresa procesadora de plástico dedicada a la inyección de termoplástico para esto se detalla a continuación los costos involucrados durante el proceso.

PROTMEC Página # 194 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas Inyectoras de Termoplásticos"

DESCRIPCIÓN	UNIDAD	VALOR
Duración de Capacitación Teórica	h	20
Duración de Capacitación Practica	h	60
Cantidad de Materia Prima	Kg	1200
Hora – Máquina Inyectora de Termoplástico	\$	8,7
Hora - Molde	\$	2,8
Hora – Máquina Chiller	\$	1,7
Consumo Promedio de Inyectora de 800 Ton	Kw/ h	52
Costo de Energía	\$ / Kw	0.09
Costo del kilogramo de materia Prima	\$	2
Costo de Mano de Obra	\$/h	4.2
Costo del Instructor por hora	\$	40


Tabla 6-2-1: Lista de costos

COSTO TOTAL DE LA INPLEMENTACIÓN							
DESCRIPCIÓN	VALOR						
Costo de la Capacitación al Personal de Reguladores	\$	3.200,00					
Mano de Obra del Operador	\$	336,00					
Costo de Máquina Inyectora de Termoplástico	\$	522,00					
Energía	\$	280.80					
Costo de Molde	\$	224,00					
Costo de Chiller	\$	136,00					
Costo de la Materia Prima	\$	2.400,00					
Material Didáctico	\$	60,00					
Trasporte y Logística	\$	50,00					
Total	\$	7208.80					

Tabla 6-2-2: Costo total de la implementación

Estas capacitaciones son de mucha importancia ya que los operadores tienen ciertas falencias o vacíos en la parte técnica con estas se quiere lograr un buen desempeño de los operadores de tal manera que estén capacitados para cualquier anomalía que se presente en el equipo y a su vez que se puedan evitar de una manera preventiva.

PROTMEC Página # 195 ESPOL

<u>CAPÍTULO 7</u> ANÁLISIS DE RESULTADOS

7. ANÁLISIS DE RESULTADOS

7.1. TIEMPO DE ARRANQUE DE MÁQUINAS INYECTORAS

Por lo general un arranque de máquina tarda alrededor de 65 minutos en todo este tiempo la máquina genera SCRAP, ya que el regulador no tiene una capacitación previa de cómo regular correctamente. Por lo que se presentan varios problemas durante la regulación ya que tratan de llenar de poco a poco el molde hasta obtener un artículo completamente bueno o en otras ocasiones configuran demasiada carga lo que provoca que el artículo especialmente en las partes donde hay nervaduras se peguen al molde, esto origina que se enfrié la boquilla de la máquina mientras el regulador trata de despegar el artículo.

Todos estos problemas se verán reflejados en los datos de producción ya que se generará tiempos de arranque de máquinas muy largos.

Con la aplicación de este método se obtuvo un tiempo promedio de arranque de 25 minutos, resultados muy favorables para la empresa ya que al calcular y analizar el recorrido del material, fuerza de cierre, temperaturas, presiones posiciones y velocidades de inyección se puede tener un óptimo arranque de máquina

PROTMEC Página # 197 ESPOL

"Optimización de Parámetros de Reglaje Para Mejorar la Eficiencia de Máquinas Inyectoras de Termoplásticos"

ARTÌCULO	TIEMPO DE ARRANQUE DE MÀQUINA (MIN)				
	ANTES	DESPUÉS			
Gaveta	60	24			
Cajoneta	50	30			
Ecopiso	60	22			
Techo de armario	70	30			
Cesto	90	25			
Tablero de Mesa	50	23			
Canasta	60	20			
Pallet	80	25			
PROMEDIO	65	25			

Tabla 7-1-1: Tiempos de arranque de máquina

5.2. TIEMPO CICLO

El tiempo ciclo es uno de los parámetros más importante, desde el punto de vista económico ya que de él depende la productividad y el costo del proceso. Mediante la aplicación de este método se obtuvo resultados muy favorables en la disminución del tiempo ciclo de los artículos como podemos ver en la tabla 5-2-1 se obtuvo un porcentaje de reducción del 15.7 %.

ARTÌCULOS		TIEMPO CICI	PORCENTAJE DE	
ARTICULUS	ANTES	DESPUÉS	DIFERENCIA	AHORRO
Gaveta	80	55	25	31,3%
Cajoneta	120	100	20	16,7%
Ecopiso	150	130	20	13,3%
Techo de armario	90	80	10	11,1%
Cesto	58	48	10	17,2%
Tablero de Mesa	135	125	10	7,4%
Canasta	75	60	15	20,0%
Pallet	240	220	20	8,3%
	•		PROMEDIO	15,7%

Tabla 7-2-1: Tiempo ciclo de artículos

PROTMEC Página # 198 ESPOL

Esta reducción del tiempo ciclo será muy favorable ya que se obtendrá un disminución en el costo de producción unitario esto será muy beneficioso para la empresa ya que las utilidades serán aún mayores, también disminuir nuestro tiempo ciclo nos ayudará a que nuestros productos lleguen a las manos de nuestros clientes de una manera más rápida

A continuación podemos ver cómo cambiar la manera de regular una máquina inyectora de termoplástico nos ayudó a reducir nuestro tiempo ciclo y por lo tanto aumentar nuestra productividad.

PROTMEC Página # 199 ESPOL

Gaveta

Datos:

Material del Producto: Polietileno

• Maquina: 800 Toneladas

• Molde: 1 Cavidad

Parámetros de Inyección			Ar	ntes						Des	pués			
Perfil de	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7
Temperatura (°C)	230	280	280	280	280	230	195	230	230	230	230	230	230	230
Tiempo Ciclo (seg)				80							55			
Tiempo de Enfriamiento (seg)			•	41					29					
Tiempo Plastificación (seg)			•	41						:	24			
Tiempo Inyección (Seg)				18							8			
Tiempo de Sostenimiento (seg)		2							4					
Presión Inyección		#1	#2	#3	#4	#5	#6		#1	#2	#3	#4	#5	
(Bar)	Perfiles #	100	100	100	100	100	100	Perfiles #	105	105	105	105	105	
Velocidad de	Perfiles #	#1	#2	#3	#4	#5	#6	Perfiles #	#1	#2	#3	#4	#5	
Inyección (%)	T CHIICS #	99	99	99	99	99	99	T CIIICS #	99	80	64	51	41	
		•		•										
Segunda Presión	Doubles #	#	1	#	2	#	3	Dorfloo #	#	<u>1</u>	#	2	#	3
Inyección (Bar)	Pernies #	Perfiles # 40		Perfiles #	5	0	50							
Segunda Velocidad de	Perfiles #		:1	#	2	#	3	Perfiles #		:1		2	#	3
Inyección (%)		4	0						4	5		5		
Carga (mm)				232				255						
Peso (gramos)		2080								2	035			

Tabla 7-2-2: Comparación de parámetros de regulación de la Gaveta

ANÁLISIS DE PRODUCTIVIDAD								
ANTES	DESPUÉS							
Tiempo de Ciclo Antiguo (S)	80	Nuevo Tiempo de Ciclo Actual (S)	55					
Unidades por Hora	45	Unidades por Hora	65					
Unidades cada 24 Horas	1080	Unidades cada 24 Horas	1571					
Mejora de Productividad	45,5%	491 Unidades adicionales cada 24 horas						

Tabla 7-2-3: Análisis de productividad de la Gaveta

Cajoneta

Datos:

Material del Producto: Polipropileno

Maquina: 1000 Toneladas

• Molde: 1 Cavidad

Parámetros de Inyección	Antes									Des	pués					
Perfil de Temperatura (°C)	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7		
Temperatura (C)	200	230	250	260	250	200	155	200	240	240	240	240	240	200		
Tiempo Ciclo (seg)			1	20						1	00					
Tiempo de Enfriamiento (seg)				85				65								
Tiempo Plastificación (seg)			7	71				52								
Tiempo Inyección (Seg)				6							6					
Tiempo de Sostenimiento (seg)		3 4														
Presión Inyección		#1	#2	#3	#4	#5	#6		#1	#2	#3	#4	#5			
(Bar)	Perfiles #	130	130	130				Perfiles #	90	90	90	90	90			
Velocidad de	Perfiles #	#1	#2	#3	#4	#5	#6	Perfiles #	#1	#2	#3	#4	#5			
Inyección (%)	Permes #	70	70	70				Permes #	99	80	64	51	41			
Segunda Presión	Perfiles #	#	:1	#	2	#	3	#1 #2		#	3					
Inyección (Bar)	reilles #	4	5					Perfiles #	40		40					
Segunda Velocidad de	Perfiles #	#	<u>:</u> 1	#2		#2		#2 #3		Perfiles #	#1		#2		#	3
Inyección (%)		40						3	5	3	5					
Carga (mm)		355						435								
Peso (gramos)			29	914						30	020					

Tabla 7-2-4: Comparación de parámetros de regulación de la cajoneta

ANÁLISIS DE PRODUCTIVIDAD								
ANTES		DESPUÉS						
Tiempo de Ciclo Antiguo (S)	120	Nuevo Tiempo de Ciclo Actual (S)	100					
Unidades por Hora	30	Unidades por Hora	36					
Unidades cada 24 Horas	720	Unidades cada 24 Horas	864					
Mejora de Productividad	20.0%	144 Unidades adicionales cada 24 horas						

Tabla 7-2-5: Análisis de productividad de la cajoneta

Ecopiso

Datos:

• Material del Producto: Scrap Polietileno (PE)

• Maquina: 780 toneladas

• Molde: 1 cavidad

Parámetros de Invección			Ar	ntes				Después								
Perfil de	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7		
Temperatura (°C)	160	260	240	230	220	220	200	180	240	240	240	240	240	180		
Tiempo Ciclo (seg)			1	50				130								
Tiempo de Enfriamiento (seg)			1	105			90									
Tiempo Plastificación (seg)			;	38				45								
Tiempo Inyección (Seg)				4				6								
Tiempo de Sostenimiento (seg)			•	12				6								
Presión Inyección		#1	#2	#3	#4	#5	#6	Perfiles #	#1	#2	#3	#4	#5			
(Bar)	Perfiles #	110	110	110	110	110			50	50	50	50	50			
Velocidad de	Perfiles #	#1	#2	#3	#4	#5	#6	Perfiles #	#1	#2	#3	#4	#5			
Inyección (%)	T CHIICS #	70	70	70	70	70		T etilles #	60	48	38	31	25			
Segunda Presión	Perfiles #	#	1	#	2	#	3			ŧ1	#	2	#	:3		
Inyección (Bar)	reilles #	2	20					Perfiles #	4	10						
Segunda Velocidad de	Perfiles #	#	#1 #2		#3		Perfiles #	#1		#2		#	3			
Inyección (%)		25					30									
Carga (mm)			4	117				380								
Peso (gramos)			2491													

Tabla 7-2-6: Comparación de parámetros de regulación del ecopiso

ANÁLISIS DE PRODUCTIVIDAD											
ANTES DESPUÉS											
Tiempo de Ciclo Antiguo (S)	150	Nuevo Tiempo de Ciclo Actual (S)	130								
Unidades por Hora	24	Unidades por Hora	28								
Unidades cada 24 Horas	576	Unidades cada 24 Horas 655									
Mejora de Productividad 15.4% 89 Unidades adicionales cada 24 horas											

Tabla 7-2-7: Análisis de productividad del ecopiso

Techo de armario

Datos:

Material del Producto: Polipropileno

• Maquina: 800 Toneladas

• Molde: 1 Cavidad

Parámetros de Inyección			Ar	ntes				Después							
Perfil de Temperatura (°C)	zona 1	2	3	zona 4	5	6	zona 7	zona 1	2	3	4	5	zona 6	zona 7	
Temperatura (0)	230	225	255	255	210	155		235	235	235	235	235	210		
Tiempo Ciclo (seg)			!	90				80							
Tiempo de Enfriamiento (seg)				50			45								
Tiempo Plastificación (seg)				41			41								
Tiempo Inyección (Seg)				12				11,6							
Tiempo de Sostenimiento (seg)				0			2								
Presión Inyección		#1	#2	#3	#4	#5	#6		#1	#2	#3	#4	#5		
(Bar)	Perfiles #	110	110	110	110			Perfiles #	55	55	55	55	55		
Velocidad de	Perfiles #	#1	#2	#3	#4	#5	#6	Perfiles #	#1	#2	#3	#4	#5		
Inyección (%)	T CHIICS #	50	50	50	50			T enlies #	99	80	64	51	41		
Segunda Presión	Perfiles #	#	1	#	2	#	3	Perfiles #	#1		#2		#	3	
Inyección (Bar)	r ennes #							T ennes #	3	80					
Segunda Velocidad de Inyección (%)	Perfiles #	#	#1		#2		:3	Perfiles #			#2		#	3	
. ,				20		ļ		30 220							
Carga (mm)				220											
Peso (gramos)			10	640				1590							

Tabla 7-2-8: Comparación de parámetros de regulación del techo de armario

ANÁLISIS DE PRODUCTIVIDAD											
ANTES DESPUÉS											
Tiempo de Ciclo Antiguo (S)	90	Nuevo Tiempo de Ciclo Actual (S)	80								
Unidades por Hora	60	Unidades por Hora	45								
Unidades cada 24 Horas	940	Unidades cada 24 Horas	1080								
Mejora de Productividad	le Productividad 12.5 % 120 Unidades adicionales cada 24 horas										

Tabla 7-2-9: Análisis de productividad del techo de armario

PROTMEC Página # 203 ESPOL

Cesto

Datos:

• Material del Producto: Polietileno (PE)

Maquina: 468 Toneladas

• Molde: 1 Cavidad

Parámetros de Inyección			Ar	ntes			Después									
Perfil de Temperatura (°C)	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7		
Temperatura (*C)	220	225	225	220	220	160		200	230	230	230	230	200			
Tiempo Ciclo (seg)				58				48								
Tiempo de Enfriamiento (seg)			:	22			25									
Tiempo Plastificación (seg)			:	21			20									
Tiempo Inyección (Seg)				9				3,7								
Tiempo de Sostenimiento (seg)				2				2,5								
Presión Inyección	Perfiles #	#1	#2	#3	#4	#5	#6	Perfiles #	#1	#2	#3	#4	#5			
(Bar)		140	140	140	140	140			130	130	130	130	130			
Velocidad de	Perfiles #	#1	#2	#3	#4	#5	#6	Perfiles #	#1	#2	#3	#4	#5			
Inyección (%)	T etilles #	95	95	95	95	95		T ennes #	41							
Segunda Presión	Perfiles #	#	:1	#	2	#	3	Perfiles #	#	<u>+</u> 1	#	2	#	3		
Inyección (Bar)	Permes #	3	35					Permes #	5	55						
Segunda Velocidad de	Perfiles #	#1		#	#2		3	Perfiles #	#1		#	2	#	3		
Inyección (%)		35					20									
Carga (mm)			1	143				143								
Peso (gramos)		454														

Tabla 7-2-10: Comparación de parámetros de regulación del Cesto

ANÁLISIS DE PRODUCTIVIDAD											
ANTES DESPUÉS											
Tiempo de Ciclo Antiguo (S)	58	Nuevo Tiempo de Ciclo Actual (S)	48								
Unidades por Hora	62	Unidades por Hora	75								
Unidades cada 24 Horas	1490	Unidades cada 24 Horas	1800								
Mejora de Productividad 20.8 % 310 Unidades adicionales cada 24 horas											

Tabla 7-2-11: Análisis de productividad del cesto

Tablero de Mesa

Datos:

• Material del Producto: Polipropileno uso General 20 (PP UG 20)

• Maquina: 700 Toneladas

Molde: 1 cavidad

Parámetros de Inyección			Ar	ntes				Después								
Perfil de Temperatura (°C)	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7		
Temperatura (C)	40	250	260	250	240	230		40	250	250	250	250	250			
Tiempo Ciclo (seg)			1	150				130								
Tiempo de Enfriamiento (seg)			!	90				65								
Tiempo Plastificación (seg)				45			46									
Tiempo Inyección (Seg)				12				7								
Tiempo de Sostenimiento (seg)				1				2								
Presión Inyección	Perfiles #	#1	#2	#3	#4	#5	#6	Perfiles #	#1	#2	#3	#4	#5			
(Bar)		120	120	120	120	120			75	75	75	75	75			
Velocidad de	Perfiles #	#1	#2	#3	#4	#5	#6	Perfiles #	#1	#2	#3	#4	#5			
Inyección (%)	T Clilles #	80	80	80	80	80		T eilles #	80	64	51	41	33			
Segunda Presión	Perfiles #	#	÷1	#	2	#	3	Perfiles #	#	±1	#	2	#	3		
Inyección (Bar)	reilles #	2	0					reilles #	2	20						
Segunda Velocidad de	Perfiles #		#1 #2		2	#	3	Perfiles #			#2		#	3		
Inyección (%)		2	:0	<u> </u>				20								
Carga (mm)				330 480				330								
Peso (gramos)			1470													

Tabla 7-2-12: Comparación de parámetros de regulación del tablero de mesa

ANÁLISIS DE PRODUCTIVIDAD											
ANTES	DESPUÉS										
Tiempo de Ciclo Antiguo (S)	150	Nuevo Tiempo de Ciclo Actual (S)	130								
Unidades por Hora	24	Unidades por Hora	28								
Unidades cada 24 Horas	576	Unidades cada 24 Horas	655								
Mejora de Productividad 15.4 % 89 Unidades adicionales cada 24 horas											

Tabla 7-2-13: Análisis de productividad del tablero de mesa

Canasta

Datos:

Material del Producto: Polipropileno

• Maquina: 800 Toneladas

• Molde: 1 Cavidad

Parámetros de Inyección			Ar	ntes				Después								
Perfil de Temperatura (°C)	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7		
Temperatura (C)	225	250	255	245	225	200	190	190	230	230	230	230	230	200		
Tiempo Ciclo (seg)				75				65								
Tiempo de Enfriamiento (seg)			,	45			36									
Tiempo Plastificación (seg)			;	30			15									
Tiempo Inyección (Seg)				2			9									
Tiempo de Sostenimiento (seg)				6			3									
Presión Inyección		#1	#2	#3	#4	#5	#6	Perfiles #	#1	#2	#3	#4	#5			
(Bar)	Perfiles #	60	90	90	90	60			60	60	60	60	60			
Velocidad de	Perfiles #	#1	#2	#3	#4	#5	#6	Perfiles #	#1	#2	#3	#4	#5			
Inyección (%)	Pennes #	90	90	90	90	90		90 72 58 46 37								
Segunda Presión	Perfiles #	#	1	#	2	#	3	Perfiles #	#1		#	2	#	3		
Inyección (Bar)	Pennes #	4	40		0			Perilles #	2	5						
Segunda Velocidad de	Perfiles #	#	#1		#2		3	Perfiles #	#1		#	2	#	3		
Inyección (%)	40				30			1	2	:5						
Carga (mm)			1	15				114								
Peso (gramos)		935								903						

Tabla 7-2-14: Comparación de parámetros de regulación de la canasta

ANÁLISIS DE PRODUCTIVIDAD											
ANTES DESPUÉS											
Tiempo de Ciclo Antiguo (S)	75	Nuevo Tiempo de Ciclo Actual (S)	65								
Unidades por Hora	48	Unidades por Hora	55								
Unidades cada 24 Horas	1152	Unidades cada 24 Horas	1329								
Mejora de Productividad	roductividad 15.4 % 177 Unidades adicionales cada 24 horas										

Tabla 7-2-15: Análisis de productividad de la canasta

Pallet

Datos:

• Material del Producto: Scrap Polietileno

Maquina: 2800 Toneladas

• Molde: 1 Cavidad

Parámetros de Inyección				Ante	s			Después									
Perfil de	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7	zona 8	zona 1	zona 2	zona 3	zona 4	zona 5	zona 6	zona 7	zona 8	
Temperatura (°C)	200	250	245	240	245	245	255	240	250	280	280	280	280	280	280	280	
Tiempo Ciclo (seg)				240					220								
Tiempo de Enfriamiento (seg)				155					150								
Tiempo Plastificación (seg)				92					95								
Tiempo Inyección (Seg)				30				24									
Tiempo de Sostenimiento (seg)		13									5						
Presión Inyección		#1	#2	#3	#4	#5	#6	#7	Perfiles #	#1	#2	#3	#4	#5	#6	#7	
(Bar)	Perfiles #	90	85	75	80	85				65	65	65	65	65			
Velocidad de	Perfiles #	#1	#2	#3	#4	#5	#6	#7	Perfiles #	#1	#2	#3	#4	#5	#6	#7	
Inyección (%)	reilles #	99	99	99	99	99			reilles #	99	80	54	51	41			
									•								
Segunda Presión	Perfiles #	#	‡ 1	#	2		#3		Perfiles #	#	:1	#	‡2	#3			
Inyección (Bar)	reilles #	5	50	45					reilles #	4	5						
Segunda Velocidad de	Perfiles #	#	#1 #2		#3		Perfiles #	#1 Perfiles #		#2			#3				
Inyección (%)		5	50	4	0					4	0						
Carga (mm)				618					618								
Peso (gramos)	1500								1500								

Tabla 7-2-16: Comparación de parámetros de regulación del pallet

ANÁLISIS DE PRODUCTIVIDAD											
ANTES DESPUÉS											
Tiempo de Ciclo Antiguo (S)	240	Nuevo Tiempo de Ciclo Actual (S)	220								
Unidades por Hora	15	Unidades por Hora	16								
Unidades cada 24 Horas	360	Unidades cada 24 Horas	393								
Mejora de Productividad 9.1 % 33 Unidades adicionales cada 24 horas											

Tabla 7-2-17: Análisis de productividad del pallet

7.3. SCRAP GENERADO

Anteriormente con la regulación sin el método se generaba un promedio de 26 unidades malas por arranque de máquina sin contar las unidades malas que se generaban también por variación de inyección durante la producción .Con la aplicación de este método matemático fácil y sencillo se generó menos scrap un promedio de 10 unidades malas por arranqué de máquina y durante la producción no se presentaba ninguna variación de inyección.

ARTÍCULO	SCRAP (GENERADO
	ANTES	DESPUÉS
Gaveta	28	10
Cajoneta	22	10
Ecopiso	18	9
Techo de armario	24	12
Cesto	45	13
Tablero de Mesa	20	8
Canasta	35	12
Pallet	15	9
PROMEDIO	26	10

Tabla 7-3-1: Scrap generado por arranque de máquina

Todos estos resultados se obtienen al analizar si la máquina que se va dar arranque es correcta analizando las siguientes variables

- Área proyectada vs fuerza de cierre de la maquina
- Peso del artículo vs la capacidad de inyección de la maquina
- Relación entre el diámetro del tornillo y recorrido.

PROTMEC Página # 208 ESPOL

Una vez analizadas estas variables se podrá calcular los parámetros de inyección sin ningún problema de esta manera se generará un arranque óptimo de máquina por lo que se obtendrá menos scrap.

7.4. COSTOS DE PRODUCCIÓN

A continuación se analizará la factibilidad económica al desarrollar este proyecto en la empresa procesadora de plástico.

Basados en una producción de 1000 unidades, se obtienen los siguientes datos preliminares en base a mediciones e información otorgada por la empresa.

Como resultado del análisis se observa que al producir con un modelo o método técnico de inyección se obtiene una reducción del desperdicio o scrap, el cual se resume en ahorro en los costos de materia prima.

PROTMEC Página # 209 ESPOL

Gaveta

ANÁLISIS DE PRODUCCIÓN DE 1000 UNIDADES						
DESCRIPCIÓN	UNIDAD	VALOR				
Peso del artículo Gaveta	Kg	2,0				
Consumo Promedio Inyectora de 800 Toneladas	Kw/h	52,2				
Costo de Energía	Kw/h	0,09				
Costo del kilogramo de Materia Prima	\$	2				
Ciclo Antiguo	S	80				
Ciclo Actual	S	55				
Scrap sin la Aplicación del Método Técnico de Inyección	u	28				
Scrap Aplicando el Método Técnico de Inyección	u	7				

Tabla 7-4-1: Análisis de producción de 1000 unidades de la gaveta

ANALISIS DE RENDIMIENTO EN 1000 UNIDADES							
DETALLE UNIDAD ANTES DESPUÉ							
Ciclo	S	80	55				
Hora - Máquina	h	22,2	15,3				
Materia Prima	Kg	2000	2000				
Scrap (Unidades Malas)	Kg	56	14				
Consumo de Energía	Kw	1160	798				
Mano de Obra Operador	\$ - h	4,2	4,2				
Materia Prima + Scrap	Kg	2056	2014				

Tabla 7-4-2: Análisis de rendimiento en 1000 unidades de la gaveta

ANÁLISIS DE COSTOS DE PRODUCCIÓN						
DETALLE	ANTES DESPUÉS AHORRO					
Mano de Obra	\$	93,33	\$	64,17	\$	29,17
Energía	\$	104,40	\$	71,78	\$	32,63
Materia Prima	\$	4.112,00	\$	4.028,00	\$	84,00
Total	\$	4.309,73	\$	4.163,94	\$	145,79

Tabla 7-4-3: Análisis de costos de producción de la gaveta

PROTMEC Página # 210 ESPOL

Cajoneta

ANÁLISIS DE PRODUCCIÓN DE 1000 UNIDADES						
DESCRIPCIÓN	UNIDAD	VALOR				
Peso del Artículo Cajoneta	Kg	3,0				
Consumo Promedio Inyectora de 1000 Toneladas	Kw/h	61,3				
Costo de Energía	Kw/h	0,09				
Costo del Kilogramo de Materia Prima	\$	2				
Ciclo Antiguo	S	120				
Ciclo Actual	S	100				
Scrap sin la Aplicación del Método Técnico de						
Inyección	u	22				
Scrap Aplicando el Método Técnico de Inyección	u	6				

Tabla 7-4-4: Análisis de producción de 1000 unidades de la cajoneta

ANÁLISIS DE RENDIMIENTO EN 1000 UNIDADES									
DETALLE UNIDAD ANTES DESPUÉS									
Ciclo	S	120	100						
Hora - Máquina	h	33,3	27,8						
Materia Prima	Kg	3020	3020						
Scrap (Unidades Malas)	Kg	66	18						
Consumo de Energía	Kw	2043	1703						
Mano de Obra Operador	\$ - h	4,2	4,2						
Materia Prima + Scrap	Kg	3086	3038						

Tabla 7-4-5: Análisis de rendimiento en 1000 unidades de la cajoneta

ANÁLISIS DE COSTOS DE PRODUCCIÓN							
DETALLE ANTES DESPUÉS AHORRO							
Mano de Obra	\$	140,00	\$	116,67	\$	23,33	
Energía	\$	183,90	\$	153,25	\$	30,65	
Materia Prima	\$	6.172,88	\$	6.076,24	\$	96,64	
Total	\$	6.496,78	\$	6.346,16	\$	150,62	

Tabla 7-4-6: Análisis de costos de producción de la cajoneta

PROTMEC Página # 211 ESPOL

Ecopiso

ANÁLISIS DE PRODUCCIÓN DE 1000 UNIDADES						
DESCRIPCIÓN	UNIDAD	VALOR				
Peso del Artículo Ecopiso con Regatón	kg	2,2				
Consumo Promedio Inyectora de 780 Toneladas	Kw/h	52,2				
Costo de Energía	Kw/h	0,09				
Costo del Kilogramo de Materia Prima	\$	2				
Ciclo Antiguo	S	150				
Ciclo Actual	S	130				
Scrap sin la Aplicación del Método Técnico de						
Inyección	u	18				
Scrap Aplicando el Método Técnico de Inyección	u	6				

Tabla 7-4-7: Análisis de producción de 1000 unidades del ecopiso

ANÁLISIS DE RENDIMIENTO EN 1000 UNIDADES								
DETALLE UNIDAD ANTES DESPU								
Ciclo	S	150	130					
Hora - Máquina	h	41,7	36,1					
Materia Prima	Kg	2200	2200					
Scrap (Unidades Malas)	Kg	40	13					
Consumo de Energía	Kw	2175	1885					
Mano de Obra Operador	\$ - h	4,2	4,2					
Materia Prima + Scrap	Kg	2240	2213					

Tabla 7-4-8: Análisis de rendimiento en 1000 unidades del ecopiso

ANÁLISIS DE COSTOS DE PRODUCCIÓN						
DETALLE		ANTES DESPUÉS AHORRO				
Mano de Obra	\$	175,00	\$	151,67	\$	23,33
Energía	\$	195,75	\$	169,65	\$	26,10
Materia Prima	\$	4.479,20	\$	4.426,40	\$	52,80
Total	\$	4.849,95	\$	4.747,72	\$	102,23

Tabla 7-4-9: Análisis de costos de producción del ecopiso

PROTMEC Página # 212 ESPOL

Techo de armario

ANÁLISIS DE PRODUCCIÓN DE 1000 UNIDADES						
DESCRIPCIÓN	UNIDAD	VALOR				
Peso del Artículo Techo de armario	kg	1,6				
Consumo Promedio Inyectora de 800 Toneladas	Kw/h	52,2				
Costo de Energía	Kw/h	0,09				
Costo del Kilogramo de Materia Prima	\$	2				
Ciclo Antiguo	S	90				
Ciclo Actual	S	80				
Scrap sin la Aplicación del Método Técnico de						
Inyección	u	24				
Scrap Aplicando el Método Técnico de Inyección	u	6				

Tabla 7-4-10: Análisis de producción de 1000 unidades del techo de armario

ANÁLISIS DE RENDIMIENTO EN 1000 UNIDADES								
DETALLE UNIDAD ANTES DESPUÉ								
Ciclo	S	90	80					
Hora - Máquina	h	25,0	22,2					
Materia Prima	Kg	1600	1600					
Scrap (Unidades Malas)	Kg	38	10					
Consumo de Energía	Kw	1305	1160					
Mano de Obra Operador	\$ - h	4,2	4,2					
Materia Prima + Scrap	Kg	1638	1610					

Tabla 7-4-11: Análisis de rendimiento en 1000 unidades del techo de armario

ANÁLISIS DE COSTOS DE PRODUCCIÓN							
DETALLE		ANTES DESPUÉS AHORRO					
Mano de Obra	\$	105,00	\$	93,33	\$	11,67	
Energía	\$	117,45	\$	104,40	\$	13,05	
Materia Prima	\$	3.276,80	\$	3.219,20	\$	57,60	
Total	\$	3.499,25	\$	3.416,93	\$	82,32	

Tabla 7-4-12: Análisis de costos de producción del techo de armario

PROTMEC Página # 213 ESPOL

Cesto

ANÁLISIS DE PRODUCCIÓN DE 1000 UNIDADES					
DESCRIPCIÓN	UNIDAD	VALOR			
Peso del Articulo Cesto	Kg	0,460			
Consumo Promedio Inyectora de 468 Toneladas	Kw/h	27,6			
Costo de Energía	Kw/h	0,09			
Costo del Kilogramo de Materia Prima	\$	2			
Ciclo Antiguo	S	58			
Ciclo Actual	S	48			
Scrap sin la Aplicación del Método Técnico de					
Inyección	u	45			
Scrap Aplicando el Método Técnico de Inyección	u	5			

Tabla 7-4-13: Análisis de producción de 1000 unidades del cesto

ANÁLISIS DE RENDIMIENTO EN 1000 UNIDADES								
DETALLE	UNIDAD	ANTES	DESPUÉS					
Ciclo	S	58	48					
Hora - Máquina	h	16,1	13,3					
Materia Prima	Kg	460	460					
Scrap (Unidades Malas)	Kg	21	2					
Consumo de Energía	Kw	445	368					
Mano de Obra Operador	\$ - h	4,2	4,2					
Materia Prima + Scrap	Kg	481	462					

Tabla 7-4-14: Análisis de rendimiento en 1000 unidades del cesto

ANÁLISIS DE COSTOS DE PRODUCCIÓN							
DETALLE ANTES DESPUÉS AHORRO							
Mano de Obra	\$	67,67	\$	56,00	\$	11,67	
Energía	\$	40,02	\$	33,12	\$	6,90	
Materia Prima	\$	961,40	\$	924,60	\$	36,80	
Total	\$	1.069,09	\$	1.013,72	\$	55,37	

Tabla 7-4-15: Análisis de costos de producción del cesto

PROTMEC Página # 214 ESPOL

Tablero de mesa

ANÁLISIS DE PRODUCCIÓN DE 1000 UNIDADES					
DESCRIPCIÓN	UNIDAD	VALOR			
Peso del Artículo Tablero de Mesa	Kg	1,4			
Consumo Promedio Inyectora de 700 Toneladas	Kw/h	51,6			
Costo de Energía	Kw/h	0.09			
Costo del Kilogramo de Materia Prima	\$	2			
Ciclo Antiguo	S	150			
Ciclo Actual	S	130			
Scrap sin la Aplicación del Método Técnico de					
Inyección	u	20			
Scrap Aplicando el Método Técnico de Inyección	u	6			

Tabla 7-4-16: Análisis de producción de 1000 unidades del tablero de mesa

ANÁLISIS DE RENDIMIENTO EN 1000 UNIDADES								
DETALLE	UNIDAD	ANTES	DESPUÉS					
Ciclo	S	150	130					
Hora - Máquina	h	41,7	36,1					
Materia Prima	Kg	1400	1400					
Scrap (Unidades Malas)	Kg	28	8					
Consumo de Energía	Kw	2150	1863					
Mano de Obra Operador	\$ - h	4,2	4,2					
Materia Prima + Scrap	Kg	1428	1408					

Tabla 7-4-17: Análisis de rendimiento en 1000 unidades del tablero de mesa

ANÁLISIS DE COSTOS DE PRODUCCIÓN						
DETALLE	ANTES DESPUÉS AHORRO					ORRO
Mano de Obra	\$	175,00	\$	151,67	\$	23,33
Energía	\$	193,50	\$	167,70	\$	25,80
Materia Prima	\$	2.856,00	\$	2.816,80	\$	39,20
Total	\$	3.224,50	\$	3.136,17	\$	88,33

Tabla 7-4-18: Análisis de costos de producción del tablero de mesa

PROTMEC Página # 215 ESPOL

Canasta

ANÁLISIS DE PRODUCCIÓN DE 1000 UNIDADES					
DESCRIPCIÓN	UNIDAD	VALOR			
Peso del Artículo Canasta	Kg	0,94			
Consumo Promedio Inyectora de 800 Toneladas	Kw/h	52,2			
Costo de Energía	Kw/h	0,09			
Costo del Kilogramo de Materia Prima	\$	2			
Ciclo Antiguo	S	75			
Ciclo Actual	S	65			
Scrap sin la Aplicación del Método Técnico de					
Inyección	u	35			
Scrap Aplicando el Método Técnico de Inyección	u	5			

Tabla 7-4-19: Análisis de producción de 1000 unidades de la canasta

ANÁLISIS DE RENDIMIENTO EN 1000 UNIDADES								
DETALLE	UNIDAD	ANTES	DESPUÉS					
Ciclo	S	75	65					
Hora - Máquina	h	20,8	18,1					
Materia Prima	Kg	935	935					
Scrap (Unidades Malas)	Kg	33	5					
Consumo de Energía	Kw	1088	943					
Mano de Obra Operador	\$ - h	4,2	4,2					
Materia Prima + Scrap	Kg	968	940					

Tabla 7-4-20: Datos de producción de 1000 unidades de la canasta

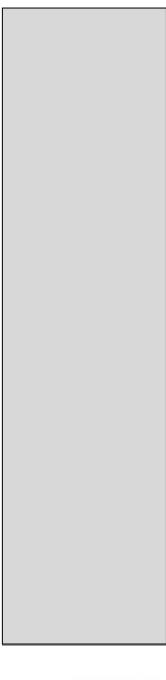
ANÁLISIS DE COSTOS DE PRODUCCIÓN						
DETALLE		ANTES DESPUÉS AHORRO				
Mano de Obra	\$	87,50	\$	75,83	\$	11,67
Energía	\$	97,88	\$	84,83	\$	13,05
Materia Prima	\$	1.935,45	\$	1.879,35	\$	56,10
Total	\$	2.120,83	\$	2.040,01	\$	80,82

Tabla 7-4-21: Análisis de costos de producción de la canasta

PROTMEC Página # 216 ESPOL

Pallet

ANÁLISIS DE PRODUCCIÓN DE 1000 UNIDADES					
DESCRIPCIÓN	UNIDAD	VALOR			
Peso del Artículo Pallet	Kg	15			
Consumo Promedio Inyectora de 2800 Toneladas	Kw/h	80,8			
Costo de Energía	Kw/h	0,09			
Costo del Kilogramo de Materia Prima	\$	2			
Ciclo Antiguo	S	240			
Ciclo Actual	S	220			
Scrap sin la Aplicación del Método Técnico de					
Inyección	u	15			
Scrap Aplicando el Método Técnico de Inyección	u	6			


Tabla 7-4-22: Análisis de producción de 1000 unidades del pallet

ANÁLISIS DE RENDIMIENTO EN 1000 UNIDADES								
DETALLE UNIDAD ANTES DESPL								
Ciclo	S	240	220					
Hora - Máquina	h	66,7	61,1					
Materia Prima	Kg	15000	15000					
Scrap (Unidades Malas)	Kg	225	90					
Consumo de Energía	Kw	5387	4938					
Mano de Obra Operador	\$ - h	4,2	4,2					
Materia Prima + Scrap	Kg	15225	15090					

Tabla 7-4-23: Datos de producción de 1000 unidades del pallet

ANÁLISIS DE COSTOS DE PRODUCCIÓN						
DETALLE	ANTES		DESPUÉS		AHORRO	
Mano de Obra	\$	280,00	\$	256,67	\$	23,33
Energía	\$	484,80	\$	444,00	\$	40,40
Materia Prima	\$	30.450,00	\$	30.180,00	\$	270,00
Total	\$	31.214,80	\$	30.881,07	\$	333,73

Tabla 7-4-24: Análisis de costos de producción del pallet

CAPÍTULO 8 CONCLUSIONES Y RECOMENDACIONES

8. CONCLUSIONES Y RECOMENDACIONES

8.1. CONCLUSIONES

Mediante el análisis realizado de los datos obtenidos de tiempos y scrap generado por arranque de máquina se pudo verificar que al momento de regular una máquina el regulador no cuenta con información sobre las características de la materia prima y máquina a usar, todo esta falta de información generaba pérdidas para la empresa como podemos ver en la tabla 7-1-1, los tiempos de arranque de máquina eran de 60 a 80 minutos y la cantidad de scrap generado era 15 a 45 unidades.

Conociendo las características de una máquina inyectora de termoplástico y del artículo se pudo determinar si el molde es apto para trabajar en la máquina programada. Una vez seleccionada la máquina inyectora de termoplástico correcta al regularla se utilizó menor fuerza de cierre presiones y velocidades de inyección por lo que es una gran beneficio para prolongar la vida útil de nuestros equipos (máquinas inyectoras y moldes) e incluso reducir los largos tiempos de arranque, ciclos y scrap generado por arranque de máquina.

Con este método se manejó un lenguaje común en cuanto a la regulación de máquinas inyectoras de termoplásticos ya que cualquier persona que regulara una máquina llegará al mismo resultado.

La experiencia obtenida durante la realización de este proyecto, nos permite concluir, que se obtuvo buenos resultados y sobre todo la satisfacción de la empresa y del personal.

PROTMEC Página # 219 ESPOL

8.2. RECOMENDACIONES

Para la aplicación de este método es necesario que los reguladores estén informados con que materia prima se va a trabajar y que se les facilite la ficha técnica del proveedor para de esta manera conocer la fluidez, densidad, temperatura de fusión y temperatura de trabajo de la materia prima. También es necesario que el regulador este a tanto de las características de la máquina como fuerza de cierre, capacidad de inyección, diámetro del tornillo, etc. Toda esta información será de gran ayuda para que el regulador logre regular correctamente una máquina inyectora de termoplástico.

Es necesario realizar un análisis antes de montar un molde en una máquina inyectora para de esta manera saber si la maquina programada es la correcta, esto será de gran ayuda para que durante la regulación de maquina no se presente ningún problema, como falta de carga, fuerza de cierre entre otros ya que si se presentaran se tendría que cambiar de máquina Todo estos problemas se verán refleja en los indicadores de producción de la empresa.

Para cumplir los objetivos deseados con la aplicación de este método, se debe comprometer al personal de planta con un cambio de mentalidad en cuanto a su manera de trabajar ya que es de suma importancia para lograr los objetivos establecidos. La aplicación de este método involucra a todo el personal de planta, por lo que la capacitación y entrenamiento es muy importante para que de esta manera se maneje un lenguaje en común en cuanto a regulación de máquinas inyectoras así se podrá obtener resultados en el menor tiempo posible.

PROTMEC Página # 220 ESPOL

CAPÍTULO 9
ANEXOS

9. ANEXOS

9.1. ARCHIVO FOTOGRÁFICO

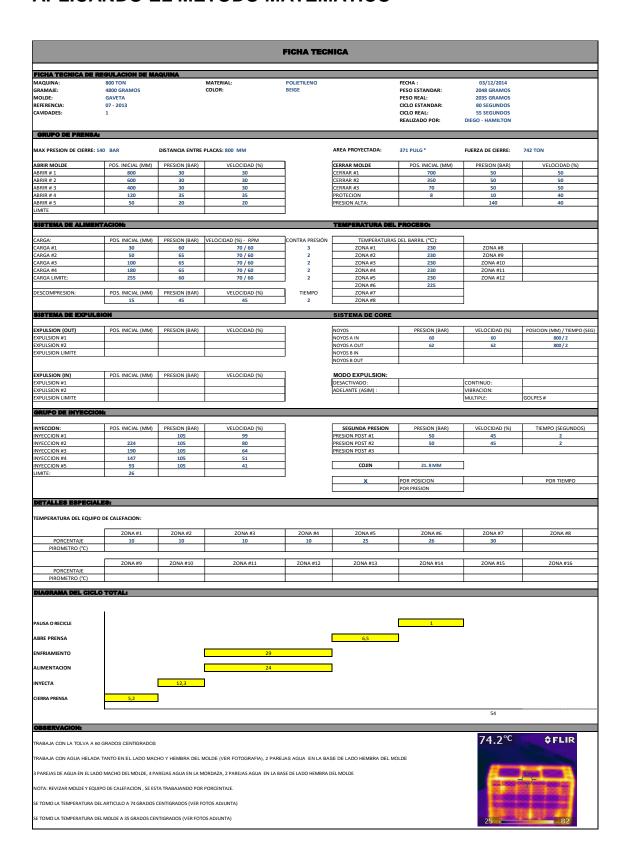

Figura: 9-1-1: Supervisión del método técnico de Inyección por parte del tutor tecnIg Luis Vargas

Figura 9-1-2: Inspección de calidad a los artículos inyectados

PROTMEC Página # 222 ESPOL

9.2. REGULACIÓN DE LOS 8 MOLDES DE INYECCCIÓN APLICANDO EL MÉTODO MATEMÁTICO

				FICHA TEC	ENICA			
FIGHA TECNICA DE RI MAQUINA: GRAMAIE: MOLDE: REFERENCIA: CAVIDADES:	1000 TON 4200 GRAMOS CAJONETA 916 1	AQUINA	MATERIAL: COLOR:	POLIPROPILENO BLANCO		FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO REAL: REALIZADO POR:	19/07/2014 3020 GRAMOS 2914 GRAMOS 120 SEGUNDOS 100 SEGUNDOS DIEGO - MERA	
GRUPO DE PRENSA:								
MAX PRESION DE CIERRE: 1	40 BAR	DISTANCIA ENTRE	PLACAS: 1017 MM		AREA PROYECTADA:	576 PULG ²	FUERZA DE CIERRE:	1152 TON
ABRIR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)]	CERRAR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)
ABRIR # 1 ABRIR # 2	50	35 65	20 65	+	CERRAR #1 CERRAR #2	990	35 95	40 85
ABRIR#3	200	85	85	1	CERRAR #3	400	95	85
ABRIR # 4 ABRIR # 5	800 980	85 68	85 68	+	PROTECION PRESION ALTA:	60 25	35 140	35 60
LIMITE	1017			1	THE STOTT TETT		240	33
BISTEMA DE ALIMENT	TACION:				TEMPERATURA DEL I	PROCESO:		
			T	7 .	-		7	
CARGA: CARGA #1	POS. INICIAL (MM)	PRESION (BAR) 67	VELOCIDAD (%) - RPM 67	CONTRA PRESIÓN 7	TEMPERATURAS ZONA #1	DEL BARRIL (°C):	ZONA #8	
CARGA #2	150	67	67	8	ZONA #2	240	ZONA #9	
CARGA #3 CARGA #4	250 355	67	67	7	ZONA #3 ZONA #4	240 240	ZONA #10 ZONA #11	
CARGA LIMITE:	333			†	ZONA #5	240	ZONA #11 ZONA #12	
DECCOMPRECIO:	DOC INICIAL (5.55)	DDECION (DAS)	VELOCIONO (M)	7 7151400	ZONA #6	240	-	
DESCOMPRESION:	POS. INICIAL (MM) 4	PRESION (BAR) 25	VELOCIDAD (%) 25	TIEMPO	ZONA #7 ZONA #8	200		
OLOTPIIA DE PUDIN O	ION				CICTEMA DE CODE	•		
SISTEMA DE EXPULS	ION				SISTEMA DE CORE			
EXPULSION (OUT)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		NOYOS	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (
EXPULSION #1 EXPULSION #2				+	NOYOS A IN NOYOS A OUT			
EXPULSION LIMITE				<u> </u>	NOYOS B IN			
					NOYOS B OUT			
					NOYOS C IN NOYOS C OUT			
		T		7				
EXPULSION (IN) EXPULSION #1	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		MODO EXPULSION: DESACTIVADO:		CONTINUO:	
EXPULSION #2					ADELANTE (ASIM) :		VIBRACION:	~~
EXPULSION LIMITE							MULTIPLE:	GOLPES#
GRUPO DE INYECCION	N:							
INVECCION	DOS INIIGIAI (AMA)	DDECION (DAD)	VELOCIDAD (N/)	7	CECURIDA PRECIONI	DDECLON (DAD)	VELOCIDAD (W)	TIENDO (CECUNDOS)
INYECCION: INYECCION #1	POS. INICIAL (MM)	PRESION (BAR) 90	VELOCIDAD (%) 99	†	SEGUNDA PRESION PRESION POST #1	PRESION (BAR)	VELOCIDAD (%) 40	TIEMPO (SEGUNDOS)
INYECCION #2	360	90	80]	PRESION POST #2			
INYECCION #3 INYECCION #4	230 180	90 90	64 51	+	PRESION POST #3			
INYECCION #5	60	90	41	1	COJIN	15		
LIMITE:	30				X	POR POSICION	1	POR TIEMPO
					^	POR PRESION		FOR HEIVIPO
NETALLES ESDECIAL	EQ.							
		ZONA #2	ZONA#3	ZONA #4	ZONA #5	ZONA #6	ZONA #7	ZONA #8
TEMPERATURA DEL EQUIPO PORCENTAJE	DE CALEFACION:	ZONA #2	ZONA #3	ZONA #4	ZONA #5	ZONA #6	ZONA #7	ZONA #8
TEMPERATURA DEL EQUIPO	DE CALEFACION:	ZONA #2	ZONA #3	ZONA #4	ZONA #5	ZONA #6	ZONA #7	ZONA #8
TEMPERATURA DEL EQUIPO PORCENTAJE PIROMETRO (°C)	DE CALEFACION:	ZONA #2 ZONA #10	ZONA #3 ZONA #11	ZONA #4 ZONA #12	ZONA #5 ZONA #13	ZONA #6 ZONA #14	ZONA #7 ZONA #15	ZONA #8 ZONA #16
PORCENTAJE PIROMETRO (*C) PORCENTAJE PIROMETRO (*C)	DE CALEFACION: ZONA #1							
PORCENTAJE PROMETRO (*C) PORCENTAJE PROMETRO (*C)	ZONA #1 ZONA #9							
PORCENTAJE PROMETRO (*C) PORCENTAJE PROMETRO (*C)	ZONA #1 ZONA #9							
PORCENTAJE PROMETRO (*C) PORCENTAJE PROMETRO (*C) PORCENTAJE PIROMETRO (*C) DIAGRAMA DEL CICLO	ZONA #1 ZONA #9							
PORCENTAJE PIROMETRO (*C) PORCENTAJE PIROMETRO (*C) PORCENTAJE PIROMETRO (*C) DIAGRAMA DEL CICLO PAUSA O RECICLE	ZONA #1 ZONA #9					ZONA #14		
PORCENTAJE PIROMETRO (*C) PORCENTAJE PIROMETRO (*C) PORCENTAJE PIROMETRO (*C) DIAGRAMA DEL CICLO PAUSA O RECICLE	ZONA #1 ZONA #9							
PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION	ZONA #1 ZONA #9					ZONA #14		
PORCENTALE PIROMETRO (°C) PORCENTALE PIROMETRO (°C) PORCENTALE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA	ZONA #1 ZONA #9		ZONA #11		ZONA#13	ZONA #14		
PORCENTALE PIROMETRO (°C) PORCENTALE PIROMETRO (°C) PORCENTALE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA	ZONA #1 ZONA #9				ZONA#13	ZONA #14		
PORCENTAIE PIROMETRO ("C) POLICIA GELLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO	ZONA #1 ZONA #9		ZONA #11		ZONA#13	ZONA #14		
PORCENTAJE PIROMETRO (*C) PORCENTAJE PIROMETRO (*C) PORCENTAJE PIROMETRO (*C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION	ZONA #1 ZONA #9		ZONA #11		ZONA#13	ZONA #14		
PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALLIMENTACION INYECTA (6+2)	DE CALEFACION: ZONA #1 ZONA #9 TOTAL	ZONA #10	ZONA #11		ZONA#13	ZONA #14		
PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALLIMENTACION INYECTA (6+2)	ZONA #1 ZONA #9	ZONA #10	ZONA #11		ZONA#13	ZONA #14		
PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (6+2)	DE CALEFACION: ZONA #1 ZONA #9 TOTAL	ZONA #10	ZONA #11		ZONA#13	ZONA #14		
PIROMETRO ("C) PORCENTAIE PIROMETRO ("C) DIAGRAMA DEL CIGLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (6+2) CIERRA PRENSA	DE CALEFACION: ZONA #1 ZONA #9 TOTAL	ZONA #10	ZONA #11		ZONA#13	ZONA #14	ZONA #15	
PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (6+2)	DE CALEFACION: ZONA #1 ZONA #9 TOTAL	ZONA #10	ZONA #11		ZONA#13	ZONA #14	ZONA #15	
PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (6+2) CIERRA PRENSA	DE CALEFACION: ZONA #1 ZONA #9 TOTAL	ZONA #10	ZONA #11		ZONA#13	ZONA #14	ZONA #15	
PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (6+2) CIERRA PRENSA	DE CALEFACION: ZONA #1 ZONA #9 TOTAL	ZONA #10	ZONA #11		ZONA#13	ZONA #14	ZONA #15	
PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABBRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (6+2) CIEBRA PRENSA	DE CALEFACION: ZONA #1 ZONA #9 TOTAL	ZONA #10	ZONA #11		ZONA#13	ZONA #14	ZONA #15	
PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (6+2) CIERRA PRENSA	DE CALEFACION: ZONA #1 ZONA #9 TOTAL	ZONA #10	ZONA #11		ZONA#13	ZONA #14	ZONA #15	
PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABBRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (6+2) CIEBRA PRENSA	DE CALEFACION: ZONA #1 ZONA #9 TOTAL	ZONA #10	ZONA #11		ZONA#13	ZONA #14	ZONA #15	
PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) PORCENTALE PIROMETRO ("C) DIAGRAMA DEL CICLO PAUSA O RECICLE EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALLIMENTACION NYECTA (6+2) JEIERRA PRENSA	DE CALEFACION: ZONA #1 ZONA #9 TOTAL	ZONA #10	ZONA #11		ZONA#13	ZONA #14	ZONA #15	

				FICHA TEC	NICA			
REFERENCIA: CAVIDADES:	ROLLAGION DE MA 780 TON 2915 GRAMOS ECOPISO 13-2000 1	AQUINA	MATERIAL: COLOR:	SCRAP DE POLIETII NEGRO	LENO	FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO ESTANDAR: CICLO REAL: REALIZADO POR:	12/05/2014 2270 GRAMOS 2491 GRAMOS 150 SEGUNDOS 130 SEGUNDOS DIEGO - MERA	
MAX PRESION DE CIERRE: 78	00 KN	DISTANCIA ENTRE	PI ΔCΔS: 350 MM		AREA PROYECTADA:	371 pulg ²	FUERZA DE CIERRE:	742 Ton
				7				
ABRIR MOLDE ABRIR # 1	POS. INICIAL (MM) 35	PRESION (BAR) 20	VELOCIDAD (%)	_	CERRAR MOLDE CERRAR #1	POS. INICIAL (MM) 30	PRESION (BAR) 65	VELOCIDAD (%) 65
ABRIR # 2		50	35		CERRAR #2		65	6
ABRIR # 3 ABRIR # 4	250 350	25	20	+	CERRAR #3 PROTECION	128 15	25 50	40 25
ABRIR # 5	330			_	PRESION ALTA:	15	30	25
LIMITE								
SISTEMA DE ALIMENT	'ACION:				TEMPERATURA DEL	. PROCESO:		
CARGA:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%) - RPM	CONTRA PRESIÓN	TEMPERATURA.	S DEL BARRIL (°C):	7	
CARGA #1	400	FRESION (BAN)	90	CONTRA PRESION	ZONA #1	180	ZONA #8	
CARGA #2				4	ZONA #2	240	ZONA #9	
CARGA #3 CARGA #4				+	ZONA #3 ZONA #4	240 240	ZONA #10 ZONA #11	
CARGA LIMITE:]	ZONA #5	240	ZONA #12	
DESCOMBREGION	DOC INICIAL (S.C.C.	DDECION (2.42)	WELCOLDAD (AL)	TICAMOO	ZONA #6	240	-	
DESCOMPRESION:	POS. INICIAL (MM) 13	PRESION (BAR)	VELOCIDAD (%) 25	TIEMPO	ZONA #7 ZONA #8	240 180		
CICTEUS DE COMO								
EXPULSION (OUT) EXPULSION #1	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	7	NOYOS NOYOS A IN	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (SEG
EXPULSION #2					NOYOS A OUT			
EXPULSION LIMITE				1	NOYOS B IN NOYOS B OUT			
					NOYOS C IN			
					NOYOS C OUT			
EXPULSION (IN)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	7	MODO EXPULSION:			
EXPULSION #1	1 OS: INTENTE (INITY)	THESION (BAIL)	VELOCIONO (N)]	DESACTIVADO:		CONTINUO:	
EXPULSION #2				4	ADELANTE (ASIM):		VIBRACION:	GOLDES #
EXPULSION LIMITE	<u> </u>	<u> </u>		<u></u>			MULTIPLE:	GOLPES#
GRUPO DE INYECCION								
INYECCION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	٦	SEGUNDA PRESION	PRESION (BAR)	VELOCIDAD (%)	TIEMPO (SEGUNDOS)
INYECCION #1	380	50	60	1	PRESION POST #1	40	30	5
INYECCION #2 INYECCION #3	341 256	50 50	50 40	4	PRESION POST #2 PRESION POST #3		+	+
INYECCION #3	155	50	30	1				1
INYECCION #5	35	50	25	4	COJIN	0		
LIMITE:	21				Х	POR POSICION		POR TIEMPO
						POR PRESION		
DETALLES ESPECIALI	E8:							
TEMPERATURA DEL EQUIPO								
	ZONA #1	ZONA #2	ZONA#3	ZONA #4	ZONA #5	ZONA #6	ZONA #7	ZONA #8
PORCENTAJE								
PIROMETRO (°C)		<u> </u>	<u> </u>	1				
	ZONA #9	ZONA #10	ZONA #11	ZONA #12	ZONA #13	ZONA #14	ZONA #15	ZONA #16
PORCENTAJE				1		+	1	1
PIROMETRO (°C)	l	<u> </u>	<u> </u>	1	1			
DIAGRAMA DEL CICLO	TOTAL:							
PAUSA O RECICLE							3	
								=
EXPULSION Y RECUPERACION						8		
ABRE PRENSA					8			
					T	_		
ENFRIAMIENTO			90		1			
ALIMENTACION			45		1			
INYECTA		12	<u></u>					
INTECIA		12	Į					
CIERRA PRENSA	6							
	L						127	
OBSERVACION:								
İ								
Ì								

				FICHA TEC	ENICA			
REFERENCIA: CAVIDADES:	800 TON 4000GRAMOS TECHO DE ARMARIO 1D - 2013	QUINA	MATERIAL: COLOR:	POLIPROPILENO CAFÉ MADERA		FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO REAL: REALIZADO POR:	16/05/2014 1600 GRAMOS 1590 GRAMOS 90 SEGUNDOS 80 SEGUNDOS DIEGO - MERA	
GRUPO DE PRENSA: MAX PRESION DE CIERRE: 140	BAR	DISTANCIA ENTRE	PLACAS: 550 MM		AREA PROYECTADA:	487 pulg ²	FUERZA DE CIERRE:	974 Ton
ABRIR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	7	CERRAR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)
ABRIR # 1		30	30		CERRAR #1		80	99
ABRIR # 2 ABRIR # 3	65,0 150,0	40 45	40 45		CERRAR #2 CERRAR #3	300,0 150,0	80 80	99 99
ABRIR # 4	160,0	35	35		PROTECION	50,0	20	30
ABRIR # 5 LIMITE	450,0 550,0	20	20	\dashv	PRESION ALTA:	10,0	140	60
SISTEMA DE ALIMENT		<u> </u>			TEMPERATURA DEL	DDOCESO-		
313 I EMA DE ALIMEN I	ACIUNI			_	I EMPERATORA DEL	PROCESC	_	
CARGA:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%) - RPM	CONTRA PRESIÓN		S DEL BARRIL (°C):	70111 110	
CARGA #1 CARGA #2	45 85	45 50	45 50	0	ZONA #1 ZONA #2	235 235	ZONA #8 ZONA #9	
CARGA #3	100	50	50	0	ZONA #3	235	ZONA #10	
CARGA#4	120	50	50	0	ZONA #4	235	ZONA #11	
CARGA LIMITE:	220	45	45	0	ZONA #5 ZONA #6	235 210	ZONA #12	1
DESCOMPRESION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	TIEMPO	ZONA #7	210	1	
	0	45	45	1	ZONA #8		_	
SISTEMA DE EXPULSIO	ON				SISTEMA DE CORE			
EXPULSION (OUT)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	7	NOYOS	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (SEG
EXPULSION #1	25	20	15	-	NOYOS A IN	PRESION (BAR)	VELOCIDAD (76)	POSICION (IVIVI) / TIENIPO (SEG
EXPULSION #2	79	15	15		NOYOS A OUT			
EXPULSION LIMITE					NOYOS B IN			
					NOYOS B OUT NOYOS C IN			
					NOYOS C OUT			
	T		T	_				
EXPULSION (IN) EXPULSION #1	POS. INICIAL (MM) 25	PRESION (BAR) 30	VELOCIDAD (%) 30	_	MODO EXPULSION: DESACTIVADO:		CONTINUO:	
EXPULSION #2	14	30	32	-	ADELANTE (ASIM) :		VIBRACION:	
EXPULSION LIMITE							MULTIPLE:	GOLPES#
GRUPO DE INYECCION	1							
				_				
INYECCION: INYECCION #1	POS. INICIAL (MM) 201	PRESION (BAR) 55	VELOCIDAD (%) 99	-	SEGUNDA PRESION PRESION POST #1	PRESION (BAR) 30	VELOCIDAD (%)	TIEMPO (SEGUNDOS)
INYECCION #2	170	55	80		PRESION POST #2			
INYECCION #3	133	55	64		PRESION POST #3			
INYECCION #4 INYECCION #5	85 26	55 55	51 41	\dashv	COJIN	15	٦	
LIMITE:	20	33						
					X	POR POSICION POR PRESION		POR TIEMPO
						PORTRESION		
DETALLES ESPECIALE	8:							
TEMPERATURA DEL EQUIPO D	E CALEFACION:							
			I		1			
PORCENTAIE	ZONA #1	ZONA #2	ZONA #3	ZONA #4	ZONA #5	ZONA #6	ZONA #7	ZONA #8
PIROMETRO (°C)	270							
	70NA #0	70NA #10	70NA #11	70NA #13	70NA #13	70NA #14	70NA #15	70NA #16
PORCENTAJE	ZONA #9	ZONA #10	ZONA #11	ZONA #12	ZONA #13	ZONA #14	ZONA #15	ZONA #16
PIROMETRO (°C)								
DIAGRAMA DEL CICLO	TOTAL:							
DESMONTAJE MANUAL	I						12	_
EXPULSION Y RECUPERACION						5		
ABRE PRENSA					5	_		
POORE F NEWSM					3			
ENFRIAMIENTO			42		<u> </u>			
ALIMENTACION			41		T			
					_			
INYECTA (9 + 2)		11	ı					
CIERRA PRENSA	4]						
							79	
							/3	
OBSERVACION:								

				FICHA TEC	CNICA			
FICHA TECNICA DE RI MAQUINA: GRAMAIE: MOLDE: REFERENCIA: CAVIDADES:	468 TON 1115 GRAMOS CESTO 20 - 2013 1	AQUINA	MATERIAL: COLOR:	POLIETILENO ROJO		FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO REAL: REALIZADO POR:	01/08/2014 462 GRAMOS 454 GRAMOS 58 SEGUNDO 48 SEGUNDO DIEGO - MERA	
MAX PRESION DE CIERRE: 1	35 BAR	DISTANCIA ENTRE	PLACAS: 700 MM		AREA PROYECTADA:	108 pulg ²	FUERZA DE CIERRE:	324 Ton
ABRIR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	7	CERRAR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)
ABRIR # 1 ABRIR # 2	50	20 35	20 45		CERRAR #1 CERRAR #2	400	75 75	75 75
ABRIR # 3	100	45	45		CERRAR #3	210	58	60
ABRIR # 4 ABRIR # 5	200 400	45 24	35 24	_	PROTECION PRESION ALTA:	70 20	0 135	60 40
LIMITE	700	24	24		PRESION ALTA:	20	135	40
SISTEMA DE ALIMENT	TACION:			_	TEMPERATURA DEL	PROCESO:		
				¬ ,			7	
CARGA: CARGA #1	POS. INICIAL (MM)	PRESION (BAR) 90	VELOCIDAD (%) - RPM 75	CONTRA PRESIÓN	TEMPERATURAS ZONA #1	DEL BARRIL (°C): 200	ZONA #8	
CARGA #2	65	90	75	_	ZONA #2	230	ZONA #9	
CARGA #3	143			4	ZONA #3	230	ZONA #10	
CARGA #4 CARGA LIMITE:	 			+	ZONA #4 ZONA #5	230 230	ZONA #11 ZONA #12	+
C INON ENVITE.	1	·	<u> </u>	_	ZONA #5	200	20MA#12	1
DESCOMPRESION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	TIEMPO	ZONA #7]	
	148	353	30		ZONA #8		_	
SISTEMA DE EXPULS	ION				SISTEMA DE CORE			
EXPULSION (OUT)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	7	NOYOS	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (SEG
EXPULSION (OUT)	1 03. INICIAL (IVIVI)	140	VELOCIDAD (%)	7	NOYOS A IN	r AESIUN (BAR)	VELOCIDAD (76)	COSICION (ININ) / HEMPO (SEG
EXPULSION #2	120	140	30		NOYOS A OUT			
EXPULSION LIMITE	180				NOYOS B IN			
					NOYOS B OUT NOYOS C IN			
					NOYOS C OUT			
				_		•	•	•
EXPULSION (IN)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	_	MODO EXPULSION:		CONTINUO	
EXPULSION #1 EXPULSION #2	10	120 120	99 99		DESACTIVADO: ADELANTE (ASIM) :		CONTINUO: VIBRACION:	
EXPULSION LIMITE	2				, , ,		MULTIPLE:	GOLPES#
GRUPO DE INYECCION	4:							
ORDI O DE INTEGUIO	•							
INYECCION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		SEGUNDA PRESION	PRESION (BAR)	VELOCIDAD (%)	TIEMPO (SEGUNDOS)
INYECCION #1 INYECCION #2	138 118	130 130	99 80	+	PRESION POST #1 PRESION POST #2	55	20	2,5
INYECCION #3	93	130	64	7	PRESION POST #3			
INYECCION #4	62	130	51	I			_	•
INYECCION #5	23	130	41	4	COJIN	15		
LIMITE:	1			_	Х	POR POSICION		POR TIEMPO
						POR PRESION		
DETALLES ESPECIAL	E8:							
TEMPERATURA DEL EQUIPO	DE CALEFACION:							
	ZONA #1	ZONA #2	ZONA #3	ZONA #4	ZONA #5	ZONA #6	ZONA #7	ZONA #8
PORCENTAJE PIROMETRO (°C)								
PIROWETRO (C)	1			-1	I		1	
	ZONA #9	ZONA #10	ZONA #11	ZONA #12	ZONA #13	ZONA #14	ZONA #15	ZONA #16
PORCENTAJE PIROMETRO (°C)					 		+	
	1		1		·	1	1	<u> </u>
DIAGRAMA DEL CICLO	TOTAL:							
PAUSA O RECICLE							2	
								_
EXPULSION Y RECUPERACION						8		
ABRE PRENSA					6	<u> </u>		
					-	_		
ENFRIAMIENTO			22		_			
ALIMENTACION			20		1			
					-			
INYECTA (3.5+2.5)		6	I					
CIERRA PRENSA	4							
							48	
							45	
OBSERVACION:								
ESTE ARICUI O TRARAJARA ANT	FRIORMENTE CON LIN CIC	IO AITERADO POPO	UE TENIA DIFICULTAD EN EL LLENAI	DO X ESTA RAZON SE LII	CIFRON 2 MODIFICACIONES EN	FI MOIDE		
SE LE INCREMENTO EL DIAME			OL TENIA DIFICULTAD EN EL LLENAI	DO A ESTA KAZUN SE HI	CILION 2 MODIFICACIONES EN	LL WIJLDE		
EN LA BASE DEL CESTO SE LI	E DIO MAS RADIO (0.2MN		LLENADO DEL ARTICULO					
ESPESORES DE PARED PROM	MEDIO 2.2 MM							

				FICHA TE	CNICA			
FICHA TECNICA DE REI MAQUINA: GRAMAJE: MOLDE: REFERENCIA: CAVIDADES:	GULACION DE MA 700 TON 1800 GRAMOS TABLERO DE MESA 13A-2009	QUINA	MATERIAL: COLOR:	POLIPROPILENO ROSADO		FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO REAL: REALIZADO POR:	19/09/2014 1475 GRAMOS 1470 GRAMOS 150 SEGUNDOS 130 SEGUNDOS DIEGO - MERA	
MAX PRESION DE CIERRE: 170	O BAR	DISTANCIA ENTRE	PLACAS: 450 MM		AREA PROYECTADA:	520 pulg ²	FUERZA DE CIERRE:	1040 TON
ABRIR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	1	CERRAR MOLDE	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)
ABRIR # 1	85	35	20		CERRAR #1	450	65	65
ABRIR # 2	300	120	99		CERRAR #2	105	45	45
ABRIR # 3 ABRIR # 4	400 450	120 65	65 45		CERRAR #3 PROTECION	57	20	20
ABRIR # 5					PRESION ALTA:	5	170	65
LIMITE								
SISTEMA DE ALIMENT	ACION:				TEMPERATURA DEL I	PROCESO:		
CARGA:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%) - RPM	CONTRA PRESIÓN	TEMPERATURA	S DEL BARRIL (°C):	\neg	
CARGA #1	80	100	80	CONTRATRESION	ZONA #1	40%	ZONA #8	
CARGA #2	200	100	80	1	ZONA #2	250	ZONA #9	
CARGA #3 CARGA #4	330	100	80	1	ZONA #3 ZONA #4	250 250	ZONA #10 ZONA #11	+
CARGA #4 CARGA LIMITE:	<u> </u>			1	ZONA #4 ZONA #5	250	ZONA #11 ZONA #12	<u> </u>
		I	T	-	ZONA #6	250		
DESCOMPRESION:	POS. INICIAL (MM) 340	PRESION (BAR) 25	VELOCIDAD (%) 25	TIEMPO	ZONA #7 ZONA #8		-	
		45	45	<u> </u>		<u> </u>	<u> </u>	
SISTEMA DE EXPULSIO	ON				SISTEMA DE CORE			
EXPULSION (OUT)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	7	NOYOS	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (S
EXPULSION #1	TOS. INICIAE (IVIVI)	TRESION (BAR)	VEEDCIDAD (78)	1	NOYOS A IN	TRESION (BAR)	VELOCIDAD (A)	POSICION (MINI) / TIENPO (S
EXPULSION #2					NOYOS A OUT			
EXPULSION LIMITE					NOYOS B IN			
					NOYOS B OUT NOYOS C IN			
					NOYOS C OUT			
EVENTICION (IN)	DOS INIICIAI (MANA)	PRESION (BAR)	VELOCIDAD (%)	٦	MODO EXPULSION:			
EXPULSION (IN) EXPULSION #1	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	1	DESACTIVADO:	х	CONTINUO:	
XPULSION #2					ADELANTE (ASIM) :		VIBRACION:	
EXPULSION LIMITE							MULTIPLE:	GOLPES#
GRUPO DE INYECCION	la .							
		T	T	1				1
INYECCION #1	POS. INICIAL (MM) 190	PRESION (BAR) 75	VELOCIDAD (%) 80	4	SEGUNDA PRESION PRESION POST #1	PRESION (BAR) 20	VELOCIDAD (%) 20	TIEMPO (SEGUNDOS)
INYECCION #2	110	75	64	1	PRESION POST #2	20	20	
INYECCION #3	65	75	51		PRESION POST #3			
INYECCION #4	45	75	41	4	COJIN	15	_	
	20	75	33		COJIN	15		
INYECCION #5 LIMITE:				_	V			
LIMITE:		•			X	POR POSICION		POR TIEMPO
					Χ	POR POSICION POR PRESION		POR TIEMPO
LIMITE:	:S:				X			POR TIEMPO
LIMITE: DETALLES ESPECIALE					X			POR TIEMPO
LIMITE: DETALLES ESPECIALE					X			POR TIEMPO
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D		ZONA#2	ZONA #3	ZONA #4	ZONA #5		ZONA #7	POR TIEMPO ZONA #8
DETALLES ESPEGIALE TEMPERATURA DEL EQUIPO D PORCENTAJE	DE CALEFACION: ZONA #1	ZONA #2	ZONA #3	ZONA #4		POR PRESION	ZONA #7	
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D	DE CALEFACION:	ZONA #2	ZONA #3	ZONA #4		POR PRESION	ZONA #7	
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTALE PIROMETRO ("C)	DE CALEFACION: ZONA #1	ZONA #2 ZONA #10	ZONA #3 ZONA #11	ZONA #4 ZONA #12		POR PRESION	ZONA #7 ZONA #15	
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO E PORCENTAIE PIROMETRO (°C) PORCENTAIE	ZONA #1				ZONA #5	POR PRESION ZONA #6		ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C)	ZONA #1 200 ZONA #9				ZONA #5	POR PRESION ZONA #6		ZONA#8
IMITE: TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C)	ZONA #1 200 ZONA #9				ZONA #5	POR PRESION ZONA #6		ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO"	ZONA #1 200 ZONA #9				ZONA #5	POR PRESION ZONA #6	ZONA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO E PORCENTAJE PIROMETRO (°C) PARCENTAJE PIROMETRO (°C) DIAGRAMA DEL CACLO DESMONTE MANUAL/LAMINA	ZONA #1 200 ZONA #9				ZONA #5	POR PRESION ZONA #6 ZONA #14		ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO E PORCENTAJE PIROMETRO (°C) PARCENTAJE PIROMETRO (°C) DIAGRAMA DEL CACLO DESMONTE MANUAL/LAMINA	ZONA #1 200 ZONA #9				ZONA #5	POR PRESION ZONA #6	ZONA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO DE PORCENTAIE PIROMETRO (°C) PORCENTAIE PIROMETRO (°C) DIAGRAMA DEL CICLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION	ZONA #1 200 ZONA #9				ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	ZONA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO DE PORCENTAIE PIROMETRO (°C) PORCENTAIE PIROMETRO (°C) DIAGRAMA DEL CICLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION	ZONA #1 200 ZONA #9				ZONA #5	POR PRESION ZONA #6 ZONA #14	ZONA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION ABRE PRENSA	ZONA #1 200 ZONA #9				ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	ZONA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO	ZONA #1 200 ZONA #9		ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	ZONA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO	ZONA #1 200 ZONA #9		ZONA #11		ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	ZONA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAIE PIROMETRO (°C) DIAGRAMA DEL CICLO DIAGRAMA DEL CICLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION	ZONA #1 200 ZONA #9		ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	ZONA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO DE PORCENTAIE PIROMETRO (°C) PORCENTAIE PIROMETRO (°C) DIAGRAMA DEL CICLO DESMONTE MANUAL / LAMINA DESPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (7+2)	DE CALEFACION: ZONA #1 200 ZONA #9 TOTAL:	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	ZONA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO DE PORCENTAIE PIROMETRO (°C) PORCENTAIE PIROMETRO (°C) DIAGRAMA DEL CICLO DESMONTE MANUAL / LAMINA DESPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INYECTA (7+2)	ZONA #1 200 ZONA #9	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	ZONA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO DE PORCENTAJE PIROMETRO (°C) PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INIVECTA (7+2)	DE CALEFACION: ZONA #1 200 ZONA #9 TOTAL:	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	ZONA #15	ZONA#8
DETAILES ESPECIALE TEMPERATURA DEL EQUIPO DE PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGORAMA DEL CACLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (7+2) CIERRA PRENSA	DE CALEFACION: ZONA #1 200 ZONA #9 TOTAL:	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	20NA #15	ZONA#8
DETAILES ESPECIALE TEMPERATURA DEL EQUIPO DE PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGORAMA DEL CACLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (7+2) CIERRA PRENSA	DE CALEFACION: ZONA #1 200 ZONA #9 TOTAL:	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	20NA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO C PORCENTAJE PIROMETRO (*C) PORCENTAJE	DE CALEFACION: ZONA #1 200 ZONA #9 TOTAL:	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	20NA #15	ZONA#8
DETAILES ESPECIALE TEMPERATURA DEL EQUIPO DE PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGORAMA DEL CACLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (7+2) CIERRA PRENSA	DE CALEFACION: ZONA #1 200 ZONA #9 TOTAL:	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	20NA #15	ZONA#8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (7+2) CIERRA PRENSA	DE CALEFACION: ZONA #1 200 ZONA #9 TOTAL:	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	20NA #15	ZONA #8
DETALLES ESPECIALE TEMPERATURA DEL EQUIPO D PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO DESMONTE MANUAL / LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION INVECTA (7+2) CIERRA PRENSA	DE CALEFACION: ZONA #1 200 ZONA #9 TOTAL:	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	20NA #15	ZONA #8
DETAILES ESPECIALE PEMPERATURA DEL EQUIPO DE PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO DESMONTE MANUAL/ LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION NYECTA (7-2) LIERRA PRENSA	DE CALEFACION: ZONA #1 200 ZONA #9 TOTAL:	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	20NA #15	ZONA#8
DETAILES ESPECIALE PEMPERATURA DEL EQUIPO DE PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO DESMONTE MANUAL/ LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION NYECTA (7-2) LIERRA PRENSA	DE CALEFACION: ZONA #1 200 ZONA #9 TOTAL:	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	20NA #15	ZONA #8
DETAILES ESPECIALE PEMPERATURA DEL EQUIPO DE PORCENTAJE PIROMETRO ("C) PORCENTAJE PIROMETRO ("C) DIAGRAMA DEL CICLO DESMONTE MANUAL/ LAMINA EXPULSION Y RECUPERACION ABRE PRENSA ENFRIAMIENTO ALIMENTACION NYECTA (7-2) LIERRA PRENSA	DE CALEFACION: ZONA #1 200 ZONA #9 TOTAL:	ZONA #10	ZONA #11	ZONA #12	ZONA #5 ZONA #13	POR PRESION ZONA #6 ZONA #14	20NA #15	ZONA #8

				FICHA TEC	ENICA			
FIGHA TECNICA DE RE MAQUINA: GRAMAJE: MOLDE: REFERENCIA: CAVIDADES:	800 TON 4800 GRAMOS CANASTA 16 A – 2013	ANIUP	MATERIAL: COLOR:	POLIPROPILENO ROSADO		FECHA: PESO ESTANDAR: PESO REAL: CICLO ESTANDAR: CICLO REAL: REALIZADO POR:	01/09/2014 930 GRAMOS 903 GRAMOS 75 SEGUNDOS 65 SEGUNDOS DIEGO - MERA	
GRUPO DE PRENSA:								
MAX PRESION DE CIERRE: 11		DISTANCIA ENTRE		_	AREA PROYECTADA:	293 pulg ²	FUERZA DE CIERRE:	880 Ton
ABRIR MOLDE ABRIR # 1	POS. INICIAL (MM)	PRESION (BAR) 15	VELOCIDAD (%)		CERRAR MOLDE CERRAR #1	POS. INICIAL (MM) 550	PRESION (BAR) 30	VELOCIDAD (%) 30
ABRIR # 2 ABRIR # 3	80 250	15 20	20 20		CERRAR #2 CERRAR #3	350 80	35 30	35 30
ABRIR # 4	550	25	25		PROTECION	10	20	20
ABRIR # 5 LIMITE	800	25	25		PRESION ALTA:		115	40
SISTEMA DE ALIMENT	ACION				TEMPERATURA DEI	DDOCESO.		
CARGA: CARGA #1	POS. INICIAL (MM) 20	PRESION (BAR) 40	VELOCIDAD (%) - RPM 40	CONTRA PRESIÓN 1	TEMPERATUR ZONA #1	AS DEL BARRIL (°C):	ZONA #8	
CARGA #2	45	40	40	2	ZONA #2	230	ZONA #9	
CARGA #3	80 100	40 40	40 40	1 2	ZONA #3 ZONA #4	230 230	ZONA #10 ZONA #11	
CARGA #4 CARGA LIMITE:	114	40	40	1	ZONA #5	230	ZONA #11 ZONA #12	
		-		7	ZONA #6	230		•
DESCOMPRESION:	POS. INICIAL (MM)	PRESION (BAR) 35	VELOCIDAD (%) 35	TIEMPO	ZONA #7 ZONA #8	200	\exists	
SISTEMA DE EXPULSI	ON				SISTEMA DE CORE			
EXPULSION (OUT) EXPULSION #1 EXPULSION #2	POS. INICIAL (MM)	PRESION (BAR) 25 25	VELOCIDAD (%) 22 22		NOYOS NOYOS A IN NOYOS A OUT	PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO (SEC
EXPULSION LIMITE	50				NOYOS B IN NOYOS B OUT			
					NOYOS C IN NOYOS C OUT			
EXPULSION (IN)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		MODO EXPULSION:		İ	
EXPULSION #1 EXPULSION #2	7	42 35	42 35		DESACTIVADO: ADELANTE (ASIM) :	+	CONTINUO: VIBRACION:	
EXPULSION LIMITE	5				(,		MULTIPLE:	GOLPES#
GRUPO DE INYECCION	li .							
INYECCION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)	7	SEGUNDA PRESION	PRESION (BAR)	VELOCIDAD (%)	TIEMPO (SEGUNDOS)
INYECCION #1	110	60	90		PRESION POST #1	25	25	3
INYECCION #2 INYECCION #3	90	60	72		PRESION POST #2			
INYECCION #3	60 40	60 60	58 46		PRESION POST #3		-	
INYECCION #5 LIMITE:	20	60	37		COJIN	15		
LIMITE:					Х	POR POSICION		POR TIEMPO
						POR PRESION		
DETALLES ESPECIALE	i\$:							
TEMPERATURA DEL EQUIPO I	DE CALEFACION:							
	ZONA #1	ZONA #2	ZONA #3	ZONA #4	ZONA #5	ZONA #6	ZONA #7	ZONA #8
PORCENTAJE	200	200	210	210				
PIROMETRO (°C)	200	200	210	210				
PORCENTAJE	ZONA #9	ZONA #10	ZONA #11	ZONA #12	ZONA #13	ZONA #14	ZONA #15	ZONA #16
PIROMETRO (°C)								
DIAGRAMA DEL CICLO	TOTAL:							
PAUSA O RECICLE							2	
	1							_
EXPULSION Y RECUPERACION						6		
ABRE PRENSA	1				5			
ENFRIAMIENTO			36		1			
ALIMENTACION			15		J			
INYECTA		11]					
CIERRA PRENSA	3	ĺ						
							63	_
ORGEM/ACIGN							03	
OBSERVACION:								

MANAME STATE GAMES COOK MIGHT PLACE IS STATEMENT STATEME					FICHA TECNI	CA			
Control 23 (20)	MAQUINA: GRAMAJE:	2800 TON 29232 GRAMOS	AQUINA			ENO	PESO ESTANDAR:	15 KILOGRAMOS	
AM PRINCIPAD OF CERSE: 150 MAR	REFERENCIA:	22-2001					CICLO ESTANDAR: CICLO REAL:	240 SEGUNDOS 220 SEGUNDOS	
STATE OF S	GRUPO DE PRENSA								
SECONFISION PRISON RAND PRISON RAND VILLOCAD (N PRISON RAND VILLOCAD (N PRISON RAND VILLOCAD (N PRISON RAND VILLOCAD (N	MAX PRESION DE CIERRE:	140 BAR	DISTANCIA ENTRE	PLACAS: 1180 MM		AREA PROYECTADA:	1855 pulg ²	FUERZA DE CIERRE:	3709 Ton
SECONTION TOS NICAL (MM PRESON BAS) VELOCIDAD PS STEMA OF CONTROL TOS NICAL (MM PRESON BAS) VELOCIDAD PS STEMA OF CONTROL TOS NICAL (MM PRESON BAS) VELOCIDAD PS STEMA OF CONTROL TOS NICAL (MM PRESON BAS) VELOCIDAD PS STEMA OF CONTROL TOS NICAL (MM PRESON BAS) VELOCIDAD PS STEMA OF CONTROL TOS NICAL (MM PRESON BAS) VELOCIDAD PS TOWN AS STEMA OF CONTROL TOS NICAL (MM PRESON BAS) VELOCIDAD PS TOWN AS STEMA OF CONTROL TOS NICAL (MM PRESON BAS) VELOCIDAD PS TOWN AS STEMA OF CONTROL TOS NICAL (MM PRESON BAS) VELOCIDAD PS TOWN AS STEMA OF CONTROL TOWN AS STEMA OF CONTR	ABRIR MOLDE	POS. INICIAL (MM)					POS. INICIAL (MM)		VELOCIDAD (%)
SECONOMICON POS INCUL (MAI) PRESON (MAI) VELOCOMO PO PRESON (MAI) PRE		50					1150		
MINISTER 1100 30 30 30 30 30 30	ABRIR # 3	200	65	30		CERRAR #3	500	85	85
STEAL AND STANDARD									
## ADDRESS NOT ALL MAN PRESON (RAM) TRESON (RAM) TRESON (RAM) TRESON (RAM) TREMPO (RAM			30	30		FRESION ALTA.	10	140	70
## ADDRESS NOT ALL MAN PRESON (RAM) TRESON (RAM) TRESON (RAM) TRESON (RAM) TREMPO (RAM		TAGION.				TEMPERATURA DEL	DDOOFSO.		
AGE 100	SISTEMA DE ALIMEN	ITACION:				TEMPERATURA DEL	PROCESO:		
AGEN AS 100 140 130 15 200A 42 280 200A 49 230 200A 49 230A		POS. INICIAL (MM)							
MICHAEL 18		100							
2004 84 280 2004 93 180									
SECURMESCON POS. NICAL [MAI] PRESON [RAI] VELOCIDAD [N] PRESON [MAI] VELOCIDAD [N] PRESON [MAI]	CARGA #4							ZONA #11	
PESCON/PESCON POS NOCAL (MAI) PESSON (MAR) VELOCIDAD (PS) PESSON (MAR) PESSON (MAR) VELOCIDAD (PS) PESSON (MAR) PESSON (MAR	CARGA LIMITE:	618	J					ZONA #12	
TREATM DE EXPULSION	DESCOMPRESION:	POS. INICIAI (MM)	PRESION (BAR)	VELOCIDAD (%)	TIEMPO			+	
REPUISION (BUTT) POS. INCLAL (BMB) PRESON (BAR) VELOCIDAD (PG BOTTOS AR BOTTO]	
REPUISION (BUTT) POS. INCLAL (BMB) PRESON (BAR) VELOCIDAD (PG BOTTOS AR BOTTO	RIGTEMA NE EVDIII G	HON				SISTEMA DE CODE			
NOTES AND NOTE	DIO I EMA DE EAPOLO	JION				SISTEMA DE CORE			
REPUSSON 122 PRINCESON LIMITE PRESON (BAR) VELOCIDAD (N)	EXPULSION (OUT)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)			PRESION (BAR)	VELOCIDAD (%)	POSICION (MM) / TIEMPO
NOISS BOT NOISS BOT NOISS BOT NOISS BOT NOISS BOT NOISS EN NOISS BOT NOISS EN NOI		+							
NOTICE OF NOTI									
NOTES COUT		•		1		NOYOS B OUT			
### MODE EXPULSION: ####################################									
DESACTIVADO: CONTINUOS: PRESION PRESIO						NOYOS COOI			
ADELANTE (ASAM) : WBRACONE	EXPULSION (IN)	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)			_		
NULTIPLE COLPES #					_				
### PRESON POST II. ### PRESON (BAR) VELOCIDAD (%) ### PRESON ### PRESON (BAR) VELOCIDAD (%) ### PRESON POST II. ### PRESO						ADELANTE (ASINI) :			GOLPES #
NYECCON POS. INICIAL (MM) PRESION (BAR) VELOCIDAD (%)									•
NECCON #1	GRUPO DE INYECCIO	N:							
NECCON 82 588 65 80 NECCON 82 461 65 64 NECCON 83 461 65 64 NECCON 84 332 65 51 NECCON 85 72 NECCON 85 NECCON	NYECCION:	POS. INICIAL (MM)	PRESION (BAR)	VELOCIDAD (%)		SEGUNDA PRESION	PRESION (BAR)	VELOCIDAD (%)	TIEMPO (SEGUNDOS
MECCION #3 461 65 64 MECCION #3 MECCION #3 MECCION #3 MECCION #5 215 65 41 MECCION #5 MECION #5 MECCION #5 MECCION #5 MECCION #5 MECCION #5 MECION #	INYECCION #1						45	40	5
MYCCION 84 MYCCION 85 215 65 41 MTE: 60 X POR POSICION POR PRISION POR CENTALE PROMETRO (°C) 2 ONA 81 2 ONA 810 2 ONA 811 2 ONA 812 2 ONA 815 2 ONA 816 PROMETRO (°C) P									
MITE: 60	NYECCION #4		65	51				_	
X POR POSICION POR TIEMPO			65	41		COJIN	15		
PERFATURA DEL EQUIPO DE CALEFACION: 20NA #1 20NA #2 20NA #3 20NA #4 20NA #5 20NA #6 20NA #7 20NA #8	LIMITE:	60		1		Х	POR POSICION		POR TIEMPO
ZONA #1 ZONA #2 ZONA #3 ZONA #4 ZONA #5 ZONA #6 ZONA #7 ZONA #8							POR PRESION		
ZONA #1 ZONA #2 ZONA #3 ZONA #4 ZONA #5 ZONA #6 ZONA #7 ZONA #8	DETALLES ESPECIAL	LES:							
20NA #1 20NA #2 20NA #3 20NA #4 20NA #5 20NA #6 20NA #7 20NA #8									
PORCENTAJE PROMETRO (°C) 20NA #9 20NA #10 20NA #11 20NA #12 20NA #13 20NA #14 20NA #15 20NA #16 PROMETRO (°C)	TEMPERATURA DEL EQUIPO	D DE CALEFACION:							
PIROMETRO (°C) ZONA #9 ZONA #10 ZONA #11 ZONA #12 ZONA #13 ZONA #14 ZONA #15 ZONA #16 PORCENTAJE PIROMETRO (°C) DIAGRAMA DEL CICLO TOTALI RAZO ROBOT I3 XPULSION Y RECUPERACION LIBRE PRENSA 12 NERIAMIENTO 150 NYECTA (23+5) 28 JERRA PRENSA 7		ZONA #1	ZONA #2	ZONA #3	ZONA #4	ZONA #5	ZONA #6	ZONA #7	ZONA #8
ZONA #9 ZONA #10 ZONA #11 ZONA #12 ZONA #13 ZONA #14 ZONA #15 ZONA #16									
PORCENTALE PIROMETRO (°C) DIAGRAMA DEL CICLO TOTALI RAZO ROBOT 13 XPULSION Y RECUPERACION LIBRE PRENSA 12 NERIAMIENTO 150 NYECTA (23+5) 28 LIERRA PRENSA 7	PIROMETRO (°C)								
PORCENTALE PIROMETRO (°C) DIAGRAMA DEL CICLO TOTALI RAZO ROBOT 13 XPULSION Y RECUPERACION LIBRE PRENSA 12 NERIAMIENTO 150 NYECTA (23+5) 28 LIERRA PRENSA 7		70NA #9	70NA #10	70NA #11	70NA #12	70NA #13	70NA #14	70NA #15	70NA #16
DIAGRAMA DEL CICLO TOTALI RAZO ROBOT SUBJE PERNSA 12 150 LIMENTACION SUBJERA PRENSA 12 150 161 170 181 181 181 181 181 181 18									
RAZO ROBOT 13 XPULSION Y RECUPERACION 10 ABRE PRENSA 12 INFRIAMIENTO 150 NUCETA (23+5) 28 LERRA PRENSA 7	PIROMETRO (°C)			<u> </u>		<u> </u>			<u> </u>
RAZO ROBOT 13 XPULSION Y RECUPERACION 10 ABRE PRENSA 12 INFRIAMIENTO 150 NUCETA (23+5) 28 LERRA PRENSA 7 220	DIAGRAMA DEL CICL	O TOTAL:							
XPULSION Y RECUPERACION 10 IBRE PRENSA 12 INFRIAMIENTO 150 ALLIMENTACION 95 INFECTA (23+5) 28 IERRA PRENSA 7	PRAZO BOROT							42	 1
12 NRRIAMIENTO 150 LLIMENTACION 95 NYECTA (23+5) 28 220	DRAZU KUBU I	1						13	I
NFRIAMIENTO	EXPULSION Y RECUPERACION						10		
NFRIAMIENTO									
NLIMENTACION 95 NYECTA (23+5) 28 SIERRA PRENSA 7 220	ABKE PRENSA					12			
NYECTA (23+5) 28 IERRA PRENSA 7 220	ENFRIAMIENTO			150					
NYECTA (23+5) 28 IERRA PRENSA 7 220						1			
IERRA PRENSA 7	ALIMENTACION			95		I			
220	NYECTA (23+5)		28	1					
220	NEDDA DOSSOS		 1						
	LIEKKA PRENSA	7	J						
DBSERVACION:		-						220	
	OBSERVACION.								
	OERVACION:								

9.5. BIBLIOGRAFÍA

- Icaza Gómez Luis. Moldeando Bases tecnológicas para la inyección de materiales termoplástico Ecuador. 2013 .pág. 251.
- Calderón Gómez Alfredo Dionisio. Técnicas avanzadas de inyección.
 1era edición. México. 2011 Medios impresos servicios integrales S.A de
 C.V. 320 pág. ISBN: 03-2009-061712580400-01
- Apuntes de clase: Inyección de termoplástico como parte de la carrera de Tecnología en plástico .Escuela superior politécnica del litoral.
 Docente: Tnlgo Luis Vargas Ayala
- Moldeo por inyección: Wikipedia la enciclopedia libre [Consulta: 15 de septiembre del 2014.Disponible en: http://es.wikipedia.org/wiki/Moldeo_por_inyecci%C3%B3n
- Salario de operador de máquina inyectora de termoplástico :Ministerio de trabajo [Consulta: 1 de septiembre del 2015.Disponible en: http://www.trabajo.gob.ec/

PROTMEC Página # 231 ESPOL