

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Desarrollo de una Técnica Lagrangiana para el Dimensionamiento y Análisis Paramétrico de Secadores Rotativos."

TESIS DE GRADO

Previa a la obtención del Título de:

INGENIERO MECÁNICO

Presentada por:

Carlos Geovanny Durán Oscuez

GUAYAQUIL – ECUADOR

2014

AGRADECIMIENTO

A Dios y a mi familia. Al Ing. Vicente Adum Gilbert, por su colaboración en la realización de este trabajo. DEDICATORIA

A MIS PADRES Y

HERMANOS

TRIBUNAL DE GRADUACIÓN

Dr. Kleber Barcia V., Ph.D. DECANO DE LA FIMCP PRESIDENTE Ing. Vicente Adum G., M.Sc. DIRECTOR

Dr. Guillermo Soriano I., Ph.D. VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, me corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

Carlos Geovanny Durán Oscuez

RESUMEN

En este trabajo se pretende probar la hipótesis de que es factible analizar secadores rotativos desde una perspectiva lagrangiana, la cual combine la transferencia de calor y masa con el movimiento de una partícula individual a través del secador.

Un secador rotativo es un cilindro metálico giratorio dispuesto de forma horizontal, con o sin inclinación, por el cual pasa aire caliente para extraer humedad del producto. En el interior del cilindro se encuentran montadas unas paletas que recogen el material granular desde el fondo y lo descargan hacia la corriente de aire para formar una cascada de partículas.

En la primera parte del estudio, se desarrolla un análisis termodinámico del secador para obtener el flujo másico y las propiedades del aire requeridas para secar cierta cantidad de producto húmedo. Luego se establece un ángulo de caída representativo de toda la cortina de sólidos, con el cual se estima la altura promedio de caída. A partir de allí, el análisis se concentra en simular el movimiento de una sola partícula que cae desde dicha altura hacia el fondo del tambor, donde es nuevamente recogida por una paleta para repetir el ciclo de levantamiento y caída a lo largo del secador.

Durante su recorrido, se determina la tasa de transferencia de calor y masa en pasos de tiempo definidos, registrando las variaciones en las propiedades de la partícula y del aire, y sumando los desplazamientos sucesivos de la partícula hasta obtener la longitud de tambor correspondiente al nivel de humedad deseado en el producto.

Para medir la validez de este planteamiento, se diseñó un software que permitió aplicar la metodología propuesta a dos secadores rotativos previamente analizados con otros modelos existentes, uno para partículas de madera y otro para concentrados de zinc. De este modo, se compararon los datos teóricos obtenidos con el modelo propuesto contra aquellos de los modelos existentes, y contra la información experimental disponible.

Los resultados indican una diferencia relativa de 6.36% entre las estimaciones del modelo propuesto y las del modelo existente para el contenido de humedad final en la madera. Asimismo, se encontró un buen ajuste entre el perfil de humedad teórico generado por el modelo propuesto y los datos experimentales de humedad para concentrados de zinc, en función de la posición axial en el secador, obteniéndose un error relativo de 4.62% en el contenido de humedad final del producto.

ÍNDICE GENERAL

II
VII
VIII
XI
XIV
XV

CAPÍTULO 1

1. (GENERALIDADES	
1.1	.1 Caracterización de los sólidos granulares	
1.2	.2 Fundamentos en el secado de sólidos	22
1.3	.3 Transporte de líquido en los sólidos	27
1.4	.4 Equipos de secado	30
1.5	.5 Características del secador rotativo	32

CAPÍTULO 2

2. ME	ÉTODOLOGÍAS DE DISEÑO DE SECADORES ROTATIVOS	46
2.1	Diseño mediante correlaciones disponibles	47
2.2	Diseño basado en pruebas de planta	50
2.3	Avances en el estudio de secadores rotativos	51
2.4	Metodología propuesta	57

CAPÍTULO 3

3.	ANA	ÁLISIS TERMODINÁMICO	60
3	8.1	Calentador	60
З	3.2	Secador	64
3	3.3	Determinación del flujo másico del aire de secado	67

CAPÍTULO 4

4. M0	OVIMIENTO DE LOS SÓLIDOS EN EL SECADOR	72
4.1	Caída de las partículas desde las paletas	74
4.2	Ángulo representativo y altura promedio de caída	88
4.3	Suposiciones sobre la partícula rastreada	
4.4	Movimiento longitudinal	
4.4	4.1 Flujo paralelo	100
4.4	4.2 Contraflujo	105

CAPÍTULO 5

TRANSFERENCIA DE CALOR Y DE MASA	109
1 Suposiciones generales	110
2 Capa límite y grupos adimensionales de importancia	113
3 Transferencia de calor	114
4 Transferencia de masa	116
5 Analogía de la transferencia de calor y masa	122
6 Enfriamiento evaporativo	124
	 TRANSFERENCIA DE CALOR Y DE MASA Suposiciones generales Capa límite y grupos adimensionales de importancia Transferencia de calor Transferencia de masa Analogía de la transferencia de calor y masa Enfriamiento evaporativo

CAPÍTULO 6

6. IMF	PLEMENTACIÓN DE SOFTWARE DE ANÁLISIS DE SECADORE	ΞS
ROTAT	IVOS	127
6.1	EES (Engineering Equations Solver)	127
6.2	Análisis termodinámico	130
6.3	Masa de producto en las paletas en función del tiempo	133
6.4	Ángulo representativo y altura promedio de caída	142
6.5	Secado en flujo paralelo	145
6.6	Secado en contraflujo	160

CAPÍTULO 7

7. R	ESULTADOS Y ANÁLISIS 163
7.1	Parámetros de operación y dimensiones de secadores tipo 163
7.2	Resultados obtenidos en EES 177
7.3	Comparaciones
7.4	Análisis sobre el modelo lagrangiano 196

CAPÍTULO 8

APÉNDICES

REFERENCIAS BIBLIOGRÁFICAS

ABREVIATURAS

- Constante cte. CFD Dinámica de Fluidos Computacional EES **Engineering Equations Solver** FCA Factor de Corrección de Área ΡI Información de Proceso SCLR Sistema de Coordenadas Local Rotatorio SCG Sistema de Coordenadas Global No Rotatorio gPROMS Software de Modelado de Procesos Centímetro cm Metro m Milímetro mm ft Pie hr Hora Minuto min Segundo s Grado Centígrado °C °F Grado Fahrenheit Κ Kelvin J Joule
 - BTU Unidad Térmica Británica
 - ° Grado
 - CFM Pies cúbicos por minuto
 - rpm Revoluciones por minuto
 - atm Atmósferas

SIMBOLOGÍA

g	Aceleración de la gravedad	m/s²
m _w	Agua evaporada desde una partícula	kg
Ϋ́	Altura promedio de caída	m
$\theta_{vaciado}$	Ángulo de vaciado	°, rad
φ	Ángulo dinámico de reposo	°, rad
α _A	Ángulo entre segmentos de paleta	°, rad
$\bar{\Theta}$	Ángulo representativo de la caída de sólidos	°, rad
А	Área	m ²
Q	Calor agregado	W
C _p	Calor específico	J/kg-K
h _{fa}	Calor latente de vaporización	J/kg
ΔĒC	Cambio de energía cinética	J
ΔΕΡ	Cambio de energía potencial	J
DAR	Coeficiente de difusión binario	m²/s
u U	Coeficiente de fricción dinámico	
	Coeficiente global de transferencia de	W/m ³ -K
Ua	calor volumétrico	
Б.	Coeficiente promedio de transferencia de	W/m²-K
n	calor	
ħ	Coeficiente promedio de transferencia de	m/s
пш	masa	
C _D	Coeficiente de arrastre	
k	Conductividad térmica	W/m-K
X_{bs}^{*}	Contenido de humedad en el equilibrio (Base Seca)	
X ₂	Contenido de humedad final (Base Húmeda)	
X	Contenido de humedad inicial (Base	
X ₁	Húmeda)	
γ	Desalineamiento angular con respecto a la	°, rad
•	línea radial que va desde el centro del	
	tambor a la raíz de la paleta.	_
$ ho_{bulk}$	Densidad al granel o aparente	kg/m ³
ρα	Densidad de grano seco	kg/m ³
95	Desplazamiento de la partícula en el i-	m
ΔZ _i	ésimo ciclo	
D	Diámetro del tambor	m
D _{grano}	Diámetro promedio de grano o partícula	m

R ₀	Distancia desde el centro del tambor hasta	m
h	Entalnía	l/ka
	Espaciamiento entre naletas	° rad
rin L	Eluio másico de aqua	, rau ka/s
Шw	Fluio másico de aire (mezcla aire-vapor de	kg/s
ṁ _{aire}	agua)	. /
m _{dg}	Flujo másico de aire seco	kg/s
m̀ _p	Flujo másico de producto húmedo	kg/s
m̀ _s	Flujo másico de producto seco	kg/s
m _{wv}	Flujo másico de vapor de agua	kg/s
N _{partículas}	Fluio total de partículas	UND/s
f:	Fracción de producto que ha caído desde	
1	la paleta	
$F_{D,Z}$, $F_{D,Y}$	Fuerzas de arrastre en las direcciones Z y Y	N
W	Humedad absoluta del aire	kg agua/kg aire seco
φ, HR	Humedad relativa del aire	
α	Inclinación del tambor	0
2	Longitud de la base de la paleta	m
$\overline{I_1}$	Longitud del labio	m
Ĺ	Longitud del tambor	m
m	Masa	kg
m _{as}	Masa de grano seco	kg
Marana	Masa del grano búmedo	ka
n	Número de ciclos de secado	5
le	Número de Lewis	
Nu	Número de Nusselt	
Pr	Número de Prandtl	
Re	Número de Revnolds	
A	Posición angular de la paleta	° rad
d	Profundidad o ancho de naleta	, ruu m
R	Radio del tambor	m
	Tasa de evaporación de aqua desde una	ka/s
n _A	partícula	Ng/0
Δṁ"	Tasa total de agua evaporada	kq/s
Т	Temperatura	°C
t	Tiempo	S
t _{res}	Tiempo de residencia de la partícula	min
t _{secado}	Tiempo de secado	S
+	Tiempo de vuelo de la partícula en el i-	S
ι _i	ésimo ciclo	

Ŵ	Trabajo mecánico	J
V	Velocidad	m/s
(.)		rpm,
ω	Velocidad angular del tambor	rad/s
G	Velocidad másica del gas	kg/s- m²
μ _B	Viscosidad dinámica del aire	kg/m-s
V	Volumen	m ³
Vgrano	Volumen de grano	m ³
V	Volumen específico	m³/kg

ÍNDICE DE FIGURAS

		Pág.
Figura 1.1	Flujo de energía y masa en el secado	23
Figura 1.2	Contenido de agua en el equilibrio de algunos materiales -	
	Adaptado de (3)	26
Figura 1.3	Secador rotatorio de contraflujo	32
Figura 1.4	Secador rotatorio de flujo paralelo	33
Figura 1.5	Sistema de secado	33
Figura 1.6	Modelos de paletas elevadoras	44
Figura 1.7	Sellos de aire – Tomado de (4)	45
Figura 2.1	Modelo de compartimientos – Tomado de (12)	56
Figura 3.1	Diagrama termodinámico del calentador	63
Figura 3.2	Proceso de calentamiento del aire	63
Figura 3.3	Idealización del proceso de secado	65
Figura 3.4	Proceso isoentálpico	66
Figura 3.5	Proceso de evaporación	68
Figura 4.1	Ubicación del sistema de coordenadas	72
Figura 4.2	Primer cuadrante de la sección transversal del tambor	75
Figura 4.3	Determinación de R_0 y δ	77
Figura 4.4	Recorrido de la paleta	79
Figura 4.5	Etapas del vaciado	81
Figura 4.6	Relación entre X_W , Y_W y x_w , y_w	83
Figura 4.7	Coordenadas del punto F	84
Figura 4.8	Área de material en paleta - Caso 1	85
Figura 4.9	Área de material en paleta - Caso 2	86
Figura 4.10	Teorema del valor medio	89
Figura 4.11	Aparato para medición del ángulo dinámico de reposo –	
	Tomado de (18)	95
Figura 4.12	Recorrido de la partícula en el secador	97
Figura 4.13	DCL de la partícula y diagrama de velocidades	100
Figura 4.14	Coeficientes de resistencia de cuerpos lisos - Tomado de	(19)
		102
Figura 4.15	Curva de ajuste para el coeficiente de resistencia del aire	104
Figura 4.16	DCL de la partícula y diagrama de velocidades (contraflujo)). 106
Figura 5.1	Transferencia de masa	117

Figura 5.2	Intercambio de calor latente y sensible en una interfaz gas-
	líquido – Copiado de (21) 125
Figura 6.1	Diagrama de flujo para el análisis de secadores rotativos en
	EES
Figura 7.1	Partículas de madera Douglas-fir - Tomado de (21) 167
Figura 7.2	Secador de partículas de madera - Tomado de (11) 168
Figura 7.3	Posibles configuraciones de paletas para el modelo de secado
	A – Tomado de (11)
Figura 7.4	Comparación entre los resultados experimentales y simulados
	para un secador con paletas de relleno central – Tomado de
	(11)
Figura 7.5	Comparación entre las simulaciones para un secador con y sin
	paletas de relleno central – Tomado de (11) 170
Figura 7.6	Representación esquemática de la cámara de combustión y del
	secador rotativo – Tomado de (12) 171
Figura 7.7	Resultados teóricos y experimentales para el contenido de
	humedad en los sólidos – Tomado de (12) 173
Figura 7.8	Ajuste del perfil de humedad en los sólidos con FCA variable –
	Tomado de (12) 174
Figura 7.9	Simulación del perfil de temperatura de los sólidos con FCA
	variable – Tomado de (12) 175
Figura 7.10	Simulación del perfil de temperatura del aire con FCA variable -
	Tomado de (12) 176
Figura 7.11	Trayectoria de la partícula 182
Figura 7.12	Trayectoria de la partícula (acercamiento)182
Figura 7.13	Terfiles de humedad (madera) 183
Figura 7.14	Perfiles de temperatura (madera) 183
Figura 7.15	Trayectoria de la partícula (Región B) 185
Figura 7.16	Trayectoria de la partícula (Región C) 185
Figura 7.17	Trayectoria de la partícula (Región D) 186
Figura 7.18	Perfiles de humedad (zinc) 186
Figura 7.19	Perfiles de temperatura (zinc) 187
Figura 7.20	Humedad de partícula vs Posición axial 189
Figura 7.21	Temperatura del aire vs Posición axial 189
Figura 7.22	Temperatura de partícula vs Posición190
Figura 7.23	Humedad de partícula vs Posición axial 191
Figura 7.24	Temperatura del aire vs Posición 192
Figura 7.25	Temperatura de partícula vs Posición193

Figura 7.26	Humedad de partícula vs Posición (Diámetro de Partícula	
	Constante)	194
Figura 7.27	Temperatura del aire vs Posición (Diámetro de Partícula	
	Constante)	195
Figura 7.28	Temperatura de partícula vs Posición (Diámetro de Partícula	
	Constante)	195
Figura 7.29	Efecto de la variación del tamaño de partícula	205
Figura 7.30	Efecto de la variación del flujo de producto húmedo	205
Figura 7.31	Efecto de la variación del flujo másico de aire de secado	206
Figura 7.32	Efecto de la variación de la temperatura inicial del aire	206
Figura 7.33	Efecto de la variación del contenido de humedad inicial del	
	producto	207

ÍNCIDE DE TABLAS

	Pág.
Tabla 1 Datos del secador analizado con el Modelo A	. 165
Tabla 2 Datos del secador analizado con el Modelo B	. 166
Tabla 3 Resumen de resultados para madera	. 181
Tabla 4 Resumen de resultados para zinc	. 184

INTRODUCCIÓN

Los secadores continuos de tipo rotativo son ampliamente utilizados para secar productos granulados en la industria alimenticia, farmacéutica, mineral y de fertilizantes. Su desempeño está gobernado por tres factores: movimiento, transferencia de masa y transferencia de calor. Estos factores están acoplados.

La literatura presenta modelos matemáticos basados en la determinación experimental de transferencia de masa y coeficientes globales de transferencia de calor para obtener los perfiles de humedad y temperatura del producto y del aire de secado. Sin embargo, estos modelos son aplicables solamente a ciertos tipos de secadores, con configuraciones y parámetros de operación particulares.

Un modelo simple, rápidamente ajustable a diferentes condiciones de trabajo, le permitiría al diseñador contar con una herramienta para analizar el comportamiento de secado en función de los parámetros de operación. Con ello, eventualmente se podría optimizar el diseño para disminuir los costos operativos y de fabricación.

Con ese horizonte, el presente trabajo plantea una estrategia de análisis basada en principios básicos de ingeniería, en la que se escoge a una partícula y se la rastrea durante su paso por el secador, llevando el registro de la variación en sus propiedades debido a la transferencia de calor y masa ocasionada por la interacción con el aire de secado. A esta metodología se la denomina aquí como lagrangiana.

En mecánica de fluidos existen dos representaciones del flujo, la euleriana que es la que generalmente se utiliza, y la lagrangiana. La primera dirige su atención a un volumen de control fijo en el espacio, mientras que la segunda persigue a un volumen de material específico e identificable que es arrastrado con el flujo. De este modo, la trayectoria de una partícula en un campo lagrangiano se define como $\xi = \xi(A, t)$, donde *A* es la posición inicial de la partícula y *t* es el tiempo.

En el caso del secador rotativo, la posición inicial *A* de la partícula está dada por la altura promedio de caída de los sólidos desde las paletas elevadoras. Luego, estudiando la interacción de la partícula con la corriente de aire, ambos de propiedades variables en el tiempo *t*, se dibuja su trayectoria ξ a través del secador.

El capítulo 1 de este documento es una introducción a las propiedades de los sólidos granulares, el secado, y el funcionamiento de los secadores rotativos. En el capítulo 2 se presentan algunas de las teorías desarrolladas y avances con respecto al modelado de secadores rotativos. En el capítulo 3 se realiza un análisis termodinámico del secador, del cual se obtiene el flujo másico de aire y sus condiciones en los extremos para condiciones de operación definidas. En los capítulos 4 y 5 se presentan todas las ecuaciones y

correlaciones básicas que permitirán resolver, de manera simultánea, los problemas de movimiento, transferencia de calor y transferencia de masa. Posteriormente, el capítulo 6 describe paso a paso la estructura del software desarrollado en EES para el análisis de secadores rotativos.

Este software es luego ejecutado en dos secadores previamente analizados por otros investigadores. En cada caso, se comparan los perfiles de humedad y de temperatura del producto y del aire obtenidos de la simulación en EES contra los datos de los modelos planteados por cada investigador. En algunos casos se cuenta con información experimental, en otros no.

Los resultados y las conclusiones con respecto a la metodología de análisis planteada en este trabajo se exponen en el capítulo 7 y 8, respectivamente.

CAPÍTULO 1

1. GENERALIDADES

1.1 Caracterización de los Sólidos Granulares.

Una de las primeras características a ser evaluadas en la manipulación de sólidos al granel es la 'fluidez' o 'pegajosidad', que se relaciona principalmente con las fuerzas de cohesión entre las partículas constituyentes. Así, cuando estas fuerzas de atracción son bajas, el material granular puede fluir libremente bajo la influencia de la gravedad con partículas moviéndose de forma individual una con respecto a otra.

El aumento de las fuerzas de cohesión, que puede ser provocado por la humedad o por cargas electrostáticas, resulta en la tendencia de generar aglomerados que hacen que el material se mueva erráticamente en forma de 'grumos'. Ejemplos de solidos al granel que normalmente exhiben este comportamiento son harina de trigo, cacao en polvo y azúcar en polvo (1). En secadores rotativos, el parámetro que mide la fluidez de un material dado es el ángulo dinámico de reposo, que es el ángulo formado entre la superficie libre de material en una paleta y la horizontal. Existen materiales para los cuales el ángulo dinámico de reposo es fuertemente dependiente del contenido de humedad en el producto, así como también hay otros materiales, generalmente los que presentan buena fluidez en cierto rango de humedad, en los que el ángulo dinámico de reposo se puede considerar independiente de la humedad en el producto.

Otras propiedades importantes en el ámbito de los materiales de tipo granular se presentan a continuación.

Pureza: se refiere a la cantidad de partículas extrañas presentes en un grano individual.

Color: propiedad relacionada con la composición mineral y, por ende, es una medida aproximada del índice de pureza.

Tamaño de grano: puede ser determinado mediante varios métodos clasificados de acuerdo al mecanismo de operación, el cual puede incluir principios mecánicos, ópticos y electrónicos, dinámicos, físicos y químicos. El tamizado, el cual está basado en principios mecánicos, es la técnica más simple y la más utilizada para determinar distribuciones de tamaños de partícula (2). Los

tamices, cuyas medidas están estandarizadas, son mallas de alambre tejido que tienen aperturas de forma cuadrada.

Diámetro equivalente: es el diámetro que hace que la partícula no esférica sea equivalente a una partícula esférica; su definición depende del criterio de equivalencia empleado. Así, se puede tener diámetro de tamiz, diámetro de *Martin*, diámetro de *Feret*, diámetro del área proyectada, diámetro de superficie equivalente, diámetro de volumen equivalente, diámetro de *Sauter*, o diámetro dinámico. El diámetro de tamiz, por ejemplo, se define como el ancho mínimo de la apertura cuadrada a través de la cual pasará la partícula (2).

Distribución de tamaños: se puede definir ya sea por el número de partículas o por la masa de las partículas en un determinado rango de tamaños; ambos tipos de distribuciones son intercambiables. La primera se puede obtener usando microscopía o algún otro método óptico; la segunda se puede obtener por tamizado.

Tamaño promedio: se establece en función de la distribución de tamaños empleada. Para cada distribución, se utiliza un factor de ponderación según la aplicación. Así, se puede tener un diámetro medio aritmético, un diámetro medio superficial, un diámetro volumétrico medio, un diámetro medio de *Sauter*, o un diámetro

medio de *DeBroucker*. El diámetro medio aritmético, por ejemplo, es el diámetro promedio basado en la función de densidad de la muestra.

Refractariedad: habilidad de un material para soportar temperaturas elevadas sin fundirse o desmoronarse.

Forma: se refiere a la esfericidad del grano (o angularidad). Toma el valor de 1 para un grano perfectamente esférico.

Granulometría: es la determinación de la distribución de tamaños de un conjunto de granos o partículas.

Tenacidad: resistencia del grano a desintegrarse (o partirse) durante su manipulación y procesamiento.

Porosidad: valor entre 0 y 1 que define la fracción del volumen de grano que es ocupada por poro o espacio vacío.

Gravedad específica: relación entre la densidad del grano seco y la densidad del agua.

Índice de vacío: cantidad relativa de intersticios en muestras al granel. El porcentaje de espacios es función de la granulometría y forma. Tiene que ver con el empaquetamiento de los granos, mas no con la porosidad de un grano individual.

Peso: es función del índice de vacío y de la gravedad específica. Usualmente se expresa en términos de la **densidad al granel** o **densidad aparente**. La densidad aparente depende del contenido de humedad en la muestra.

1.2 Fundamentos en el Secado de Sólidos.

El *secado* habitualmente se refiere a la remoción de líquido desde un sólido húmedo mediante evaporación. Los métodos mecánicos utilizados para este efecto, como el exprimido o el centrifugado, no se consideran operaciones de secado (3).

Denotando al grano húmedo como un sistema termodinámico, éste estaría conformado por el material sólido a secar, el agua líquida y el vapor de agua generado a partir de la evaporación. En este caso particular, el entorno será una corriente de aire a una determinada velocidad, temperatura y humedad relativa. Este es un sistema termodinámico abierto porque existe intercambio de masa y energía entre el sistema y el entorno. Es preciso notar, además, que en el interior del sistema habrá una transformación de fase líquidogaseosa debido a la evaporación del agua, así como movimiento de humedad en el interior del sólido. En el diagrama de la figura 1.1 se indica el flujo de energía y masa del sistema aquí descrito.

FIGURA 1.1 FLUJO DE ENERGÍA Y MASA EN EL SECADO

Visto de este modo, el secado comprendería dos procesos simultáneos:

- 1. se transfiere calor hacia el sistema para evaporar el líquido;
- se transfiere masa en forma de líquido o vapor dentro del sistema, y en forma de vapor desde la frontera del sistema hacia el entorno.

Los factores que gobiernan la rapidez de estos procesos determinan la tasa o rapidez de secado. Estos factores pueden ser

externos o internos a la partícula. Los factores externos se vinculan principalmente con las condiciones del aire de secado (presión, temperatura, humedad relativa) y su velocidad; los factores internos están relacionados con el mecanismo de transporte de líquido o vapor en el interior de la partícula (difusión, capilaridad, gradientes de presión, etc.).

A medida que el sistema de la figura 1.1 recibe energía del aire caliente, cierta masa de líquido se evapora en el interior del mismo. Así como la transferencia de calor, la transferencia de masa ocurre cuando existe una diferencia de concentraciones entre dos regiones contiguas. Dado que la mayor parte del vapor de agua se encuentra en una zona cercana a la interfaz gas-líquido, donde inicialmente ocurre la evaporación, la concentración de vapor en el aire en esta región es más alta que la concentración de vapor en el entorno, generando la transferencia de masa hacia la región de menor concentración. El vapor que se desplaza hacia fuera del sistema es entonces arrastrado por la corriente de aire, cuya humedad relativa aumenta paulatinamente con su avance en el secador.

La diferencia de concentraciones es lo que promueve la transferencia de masa. Mientras más amplia es esta diferencia, mayor es la velocidad de secado. Por eso es importante que el aire entre al secador con una humedad relativa baja; la humedad

24

relativa es una medida de la concentración de vapor de agua en el mismo. El perfil de la capa límite de concentración (véase figura 1.1) es una forma de representar la variación de la concentración de cierta especie en función de la posición con respecto a la interfaz gas-líquido, teniéndose la concentración más alta en dicha interfaz y la más baja en regiones alejadas de la partícula.

En etapas avanzadas del secado, generalmente cuando el contenido de humedad en el sólido es bajo, puede ser que la concentración de vapor en la región cercana a la interfaz gas-líquido se acerque a la concentración de vapor en el entorno, ya sea por la disminución de líquido en el sistema o por el aumento de la humedad relativa del aire. Esto achataría el perfil de concentraciones, disminuyendo la tasa de transferencia de masa entre el sistema y el entorno.

Cuando las concentraciones de vapor son iguales, la transferencia de masa se cancela; la cantidad de agua presente en el sistema en ese instante, por unidad de masa de sólido seco, es lo que se conoce como contenido de humedad en el equilibrio, X_{bs}^* . Por ejemplo, si un trozo de madera húmeda es expuesto a una corriente de aire con una humedad relativa del 60%, punto A en la figura 1.2, la madera perderá agua hasta que el contenido de humedad de la misma sea de mas o menos el 12%. Una exposición de la madera a

esta misma corriente de aire durante tiempos más prolongados no logrará efecto alguno en su contenido de humedad (3).

Aquí se considerará al contenido de humedad en el equilibrio como un indicador, referencial solamente, de cuánta agua se puede extraer bajo determinadas condiciones de humedad y temperatura del aire, y condiciones de humedad en los sólidos. Es referencial porque, en ocasiones, es posible extraer humedad más allá del contenido de humedad en el equilibrio.

FIGURA 1.2 CONTENIDO DE AGUA EN EL EQUILIBRIO DE

ALGUNOS MATERIALES – ADAPTADO DE (3)

El anterior es un tema importante en el diseño de secadores convectivos de tipo continuo. En estos secadores, la humedad relativa del aire aumenta y el contenido de humedad en los sólidos disminuye a medida que se produce el secado. Si se quiere llegar a niveles de humedad muy bajos en el producto, es necesario que el contenido de humedad en el equilibrio del material manipulado sea cercano a cero para cualquier valor de humedad relativa del aire de secado; esto equivale a tener una curva mas o menos vertical en el diagrama de la figura 1.2. De otro modo, existirá un punto en el secador donde el aire ya no será capaz de extraer agua de los sólidos, tornándose en una operación ineficiente.

1.3 Transporte de Líquido en los Sólidos.

El mecanismo de transporte de líquido en el interior de los sólidos depende de su estructura. Estos mecanismos pueden incluir difusión, flujo capilar, flujo causado por gradientes de presión, flujo causado por gravedad, y flujo causado por una secuencia de vaporización-condensación (4).

Es difícil saber con certeza cuál de estos mecanismos de transporte predomina en alguna etapa del secado. Cuando se habla de "etapa de secado" se hace referencia al contenido de humedad en los sólidos en cierto momento del secado. Existen experimentos que han sido diseñados para, de alguna manera, tener una idea de qué mecanismo de transporte se acoplaría mejor a la etapa de secado dada.

Cuando un sólido es secado bajo la acción de un entorno de propiedades constantes, por ejemplo, se suele medir su contenido de humedad en base seca durante intervalos de tiempo controlados. Luego se grafica la velocidad de evaporación contra el contenido de humedad en el sólido.

Bajo estas condiciones experimentales, en el secado de algunos materiales se pueden identificar dos periodos. En el primero, la velocidad de evaporación es constante debido a que la humedad en los sólidos puede migrar fácilmente hacia el exterior. En el segundo, la rapidez de migración de líquido decrece provocando que en la superficie se generen islas secas; esto hace que la velocidad de evaporación también disminuya.

Así, quien ejecuta el experimento podría asociar a la primera etapa de secado con los mecanismos de flujo capilar y gravedad, y a la segunda etapa con el mecanismo de difusión, por ejemplo. Esto se hace en base a criterios previamente establecidos, los cuales están relacionados con la estructura interna de los materiales. Si no se hace un análisis profundo, esto puede llegar a ser muy subjetivo.

En un secador convectivo continuo se tiene un escenario diferente al del experimento descrito anteriormente. Los sólidos en este caso están expuestos a corrientes de aire con propiedades psicrométricas variables, lo que haría aún más complicado identificar los mecanismos de transporte implicados a diferentes niveles de humedad.

En este trabajo se supondrá que la migración de líquido desde el interior de los sólidos es suficientemente rápida como para mantener una superficie expuesta "mojada". En otras palabras, se trabajará bajo la suposición de que siempre habrá líquido uniformemente distribuido en la superficie de los sólidos, y en contacto directo con la corriente de aire. Esto independiza el problema de la estructura interna de los sólidos y da lugar a que el secado sea controlado única y exclusivamente por la tasa de transferencia de calor convectivo desde el entorno hacia la superficie evaporativa, y no por el mecanismo de transporte interno de líquido.

1.4 Equipos de Secado.

Los equipos de secado comúnmente se clasifican de acuerdo al método de transferencia de calor empleado para este propósito. Los más importantes son los secadores de tipo directo y los secadores de tipo indirecto. En los secadores directos o convectivos, la transferencia de calor se logra por contacto directo entre el sólido húmedo y un gas a mayor temperatura, el cual arrastra consigo al líquido vaporizado. En los secadores de tipo indirecto, el medio de calentamiento es separado físicamente de los sólidos mediante una pared o tubo metálico.

Los secadores convectivos se pueden subdividir en secadores continuos y secadores por lotes (tipo batch). En aquellos del primer tipo, la operación es continua y sin interrupción, siempre y cuando la materia prima sea suministrada de manera constante. Por otro lado, en el secado por lotes los equipos son diseñados para operar con cierto tamaño definido de lote de producto para ciclos de tiempo dados.

Este estudio se fundamenta en el análisis de secadores rotativos, los cuales se incluyen en el grupo de secadores directos de tipo continuo. Estos secadores están constituidos por un cilindro giratorio que puede tener una ligera inclinación con respecto a la horizontal. El producto a secar es suministrado en un extremo del cilindro, moviéndose a través del mismo debido a la rotación, efecto del arrastre de la corriente de gas, inclinación del cilindro si existiese, o a la combinación de estos factores. Finalmente, el producto es descargado en el otro extremo para su procesamiento posterior.

Los gases que circulan a través del cilindro pueden retardar o incrementar la velocidad de avance de los sólidos, dependiendo si el gas se mueve en la misma dirección (flujo paralelo) o en dirección opuesta al avance del producto (contraflujo). La dirección del flujo de gas relativa a los sólidos depende principalmente de las propiedades del material procesado. El flujo paralelo es utilizado para materiales sensibles al calor, inclusive para altas temperaturas de gas a la entrada, debido al enfriamiento rápido del aire durante la evaporación inicial de la humedad superficial. Para otro tipo de materiales, donde el control de temperatura en el producto no es tan importante, se usa el secado en contraflujo ya que es posible alcanzar una mayor eficiencia térmica de esta forma (5).

Comercialmente, los secadores rotativos son muy utilizados para el secado de sólidos granulares no muy pegajosos que pueden ser arrojados sin temor de romperlos (materiales tenaces).

1.5 Características del Secador Rotativo.

Las figuras 1.3 y 1.4 son esquemas de secadores rotatorios de contraflujo y de flujo paralelo, respectivamente. Aquí se pueden observar las partes más importantes que constituyen al secador. La figura 1.5 es un diagrama general típico del sistema de secado, donde se pueden observar equipos auxiliares y accesorios como el calentador, ventilador, ciclón, transportador y chimenea.

FIGURA 1.3 SECADOR ROTATORIO DE CONTRAFLUJO

FIGURA 1.4 SECADOR ROTATORIO DE FLUJO PARALELO

FIGURA 1.5 SISTEMA DE SECADO

Tambor

El secador rotatorio de tipo directo es un cilindro de metal que puede estar aislado térmicamente o no, dependiendo de la temperatura de operación; en cilindros aislados se puede utilizar lana de vidrio como aislamiento. La temperatura de operación, que es la temperatura del aire a la salida del calentador, está limitada por varios factores:

- la resistencia del metal empleado para la fabricación casco, que generalmente es de acero al carbono o acero inoxidable;
- la resistencia del material granular al desmoronamiento o al cambio de fase (fusión);
- aspectos relacionados con el procesamiento del material, principalmente en productos alimenticios.

En la práctica comercial, se ha encontrado que la longitud de los secadores más eficientes varía entre 4 y 10 veces su diámetro, que normalmente está entre 0.3 y 3 m (4) (5). La pendiente del tambor con respecto a la horizontal varía de 0 a 8 cm/m, o sea que es de, a lo mucho, 5°.

Transmisión

Se suelen emplear dos métodos de transmisión de potencia para brindar el carácter giratorio al cilindro del secador. El primero consiste en fijar un engrane exterior en el tambor, el cual se acopla a un piñón que se encarga de transmitir el movimiento proveniente de un moto reductor. El segundo método remplaza al engrane por una catarina sobre la cual se monta una cadena, también movida por un motor.

La potencia del motor estará en función del tamaño del secador y de la velocidad de giro en la que se trabaje. Estos equipos operan a velocidades angulares muy bajas, generalmente entre 3 y 8 revoluciones por minuto.

Adicionalmente, el cilindro tiene instalado, dependiendo de su longitud, uno o más anillos metálicos, llamados cintas de apoyo, que descansan sobre rodillos giratorios. Estos sirven como soportes simples de rodadura para brindar estabilidad y evitar la eventual flexión de la estructura del tambor.

Calentador

Para calentar el aire se puede utilizar un quemador, un intercambiador de calor, o alguna otra forma de energía disponible.

En el primer caso el calentamiento es directo. Este método se utiliza cuando los sólidos pueden someterse a elevadas temperaturas sin temor a ser contaminados por los productos de la combustión. Para ello, se coloca una cámara de combustión en un extremo del secador, donde se quema la mezcla aire-combustible y los productos generados a partir de la combustión son arrastrados a través del tambor por medio de un ventilador. Se puede utilizar diesel o gas natural para este fin.

En el segundo caso el calentamiento es indirecto. Este método se utiliza cuando existe riesgo de contaminación de los sólidos debido a los productos de la combustión, o cuando los sólidos no pueden calentarse excesivamente. De un lado del secador se instala un intercambiador de calor, el cual puede estar conformado por una carcasa metálica y unos serpentines aleteados. El fluido de calentamiento puede ser gas caliente de un quemador o vapor de una caldera.

Ventilador

Los gases son forzados a pasar por el tambor mediante un ventilador. La velocidad del aire en el interior del tambor rara vez es menor a 0.5 m/s en un diseño económico (4).

En principio, el ventilador puede ser colocado antes (tiro forzado) o después del secador (tiro inducido). Normalmente, se utilizan ventiladores centrífugos movidos por una banda acoplada a la polea de un motor eléctrico exterior a la carcasa; lo anterior es para evitar la rápida contaminación por polvo de las partes móviles del motor.

El uso de un ventilador en tiro forzado (o blower) por sí solo es una práctica inusual debido a que el aire de secado, junto con el material particulado, tal vez sea soplado hacia los sellos y luego hacia el exterior, en caso de tener un sellado deficiente. Esto se puede dar porque la presión en el interior del tambor estaría por encima de la presión atmosférica (cilindro en presión positiva).

Si se usa un ventilador en tiro inducido, por otro lado, la presión en el interior del tambor sería ligeramente menor que la presión del entorno (cilindro en presión negativa), provocando que la eventual filtración de aire sea hacia adentro; esto ayuda a controlar la generación de polvo. Si la caída de presión en el intercambiador de calor es grande, se puede colocar un blower aguas arriba para compensar aquello, adicional al ventilador en tiro inducido ubicado después del ciclón o colector de polvos. Esta combinación blower-extractor ayuda a tener un mejor control de la presión en el secador.

La presión en el interior del tambor debe estar entre 0.25 y 2.5 mm de agua por debajo de la presión atmosférica (4). Las variaciones de presión por caídas de presión en el tambor son despreciables. En este estudio se supondrá que la presión en el secador es constante e igual a la presión barométrica.

La presión barométrica tiene mucha importancia si se desea operar en ciudades de altura como Quito o La Paz. Las variaciones en el desempeño del equipo son significativas para estos casos, si se compara con ciudades del llano como Guayaquil.

Ciclón

Cuando el producto a secar contiene partículas muy finas, el aire probablemente arrastre consigo una cantidad considerable de material particulado. El material acarreado por la corriente de aire saliente es comúnmente removido en colectores o separadores de ciclón. Un ciclón es como un embudo metálico con un sello en la parte inferior y un tubo de escape en la parte superior. El aire entra por la parte de arriba tangencialmente a la circunferencia del embudo, y va formando una espiral a medida que desciende por el mismo. Este movimiento, o efecto ciclón, hace que el material particulado se dispare hacia las paredes metálicas del separador por acción de la fuerza centrífuga, y luego se deposite en el fondo por gravedad. Como el aire parcialmente limpio no tiene otra salida más que el tubo en la parte superior, éste asciende por el centro del embudo y es llevado por el ventilador hacia la chimenea.

El sello en la parte inferior del ciclón puede ser un roto-feeder o alimentador rotatorio. El roto-feeder es un cilindro metálico giratorio con pedazos de plancha montados en su interior, de forma radial, que dividen al cilindro en varios compartimientos. En cada compartimiento se hace un agujero por la parte exterior del cilindro de tal modo que el diámetro proyectado coincida con el del orificio en la parte baja del ciclón. El roto-feeder se instala con su eje longitudinal perpendicular al eje longitudinal del ciclón. El orifico inferior del ciclón se fabrica de tal modo que la chapa sea siempre tangencial al movimiento giratorio del roto-feeder; se hace una "boca de pescado". De ese modo, cuando un agujero del rotofeeder coincide con el agujero del ciclón, una cantidad justa de material cae hacia el compartimiento del roto-feeder donde se encuentra el agujero; cuando no, la superficie cilíndrica del rotofeeder se encarga de sellar el agujero del ciclón impidiendo la salida de aire y producto.

Este accesorio tiene dos propósitos. El primero es impedir que se escape el aire por la parte inferior del ciclón y el segundo es suministrar (o evacuar del ciclón) cantidades precisas de material en intervalos de tiempo definidos por su velocidad de giro. Los granos recogidos tal vez sean enviados de vuelta al secador para un reproceso o simplemente son depositados en un transportador mecánico, que puede ser un tornillo sinfín, para ser llevados, junto con el producto seco proveniente del secador, a una siguiente etapa del proceso. Se puede instalar un tamiz antes del roto-feeder, adentro del ciclón, para separar el producto de granulometría inadecuada. Este afrecho es luego removido del ciclón mediante una compuerta instalada en el ciclón.

Existen también otros sistemas donde en lugar de utilizar un ciclón, se instala un lavador de aire. Este equipo es una torre cilíndrica alta que tiene instalado en el interior unas duchas de agua. Cuando el aire asciende por la torre, el agua proveniente de las duchas cae y arrastra consigo al material particulado. Abajo del lavador se puede colocar una bomba que lleva el agua con producto a una etapa de reproceso.

Suministro de material

El método de suministro de material en el secador rotatorio depende de las características de los sólidos y de la ubicación y tipo del equipo de proceso ubicado antes del secador.

Cuando el material viene desde arriba, se utiliza una tolva que se extiende hacia el interior del cilindro, tal como se muestra en las figuras 1.3 y 1.4.

Por propósitos de sellado, o si el suministro por gravedad resulta inconveniente, normalmente se utiliza un tornillo sinfín. Con el tornillo sinfín se puede controlar mejor el aprovisionamiento de la materia prima al secador.

En equipos de flujo paralelo, se recomienda el uso de chaquetas de agua fría para la tolva o transportador si éstos están en contacto con la corriente de gas caliente. Esto impediría que la temperatura de la plancha metálica suba demasiado, evitando el sobrecalentamiento de los sólidos sensibles al calor (4).

Paletas elevadoras

El secador rotativo está usualmente equipado con paletas montadas en el interior para el levantamiento y duchado de los sólidos hacia la corriente de gas durante su paso a través del cilindro. Estas paletas pueden estar soldadas o empernadas al cilindro. A medida que la materia prima es depositada en un extremo del tambor, ya sea mediante una tolva o con un tornillo sinfín, las paletas recogen este material y lo llevan consigo mediante el giro del cilindro. Existe un punto en el cual el material empieza a caer desde las paletas, formando una cascada de producto dentro de la corriente de aire. Este patrón se repite a lo largo de todo el secador.

Con el uso de paletas se promueve el contacto íntimo entre los sólidos y los gases calientes, siempre y cuando la geometría de la paleta sea la adecuada.

Las paletas usualmente se ubican de manera seguida, en el sentido longitudinal del tambor, para asegurar que las cortinas de sólidos en el gas sean lo más continuas y uniformes como sea posible.

La longitud radial de las paletas suele variar desde un doceavo a un octavo del diámetro del tambor (4).

La forma de las paletas depende de cuán pegajosos son los sólidos. Para los materiales que fluyen fácilmente, por ejemplo, se puede utilizar una paleta de labio recto o a 45°. Para materiales pegajosos, se suele utilizar una paleta radial plana sin labio.

Cuando las características del material cambian durante el secado, el diseño de la paleta puede ser modificado de acuerdo a la evolución del producto a través del secador. Algunos secadores de diseño estándar emplean paletas sin labio en el primer tercio del secador, paletas con labio de 45° en la parte media y paletas con labio de 90° en el último tercio del cilindro. También se suelen colocar paletas espirales justo después de la descarga de la tolva de alimentación, o transportador mecánico, para que el material se acelere hacia adelante y para prevenir filtraciones de sólidos hacia los sellos de aire (5).

En la figura 1.6 se presentan algunos ejemplos de configuraciones comunes de paletas comerciales.

FIGURA 1.6 MODELOS DE PALETAS ELEVADORAS

Cuando se utilizan secadores de flujo paralelo, es recomendable dejar el último metro del secador libre de paletas elevadoras para reducir el material granular que es arrastrado por la corriente de aire hacia el ducto de escape. Esto ayuda de cierto modo a disminuir la cantidad de material recogido en el ciclón.

Sellos de aire

Existen varios métodos para sellar el cilindro rotatorio y prevenir la fuga de aire a través de la abertura anular entre el tambor y las partes estacionarias (cabezales de carga y descarga). En la figura 1.7 se muestran tres ejemplos comunes de sellos de aire.

En los secadores rotatorios directos no se espera que los sellos impidan por completo la filtración de aire, pero con un control cuidadoso de la presión interna se puede prevenir la producción de polvo hacia el exterior, si el cilindro está en presión positiva, o la filtración del aire exterior hacia el interior, si el cilindro está en presión negativa.

FIGURA 1.7 SELLOS DE AIRE – TOMADO DE (4)

CAPÍTULO 2

2. MÉTODOLOGÍAS DE DISEÑO DE SECADORES ROTATIVOS

El problema principal en el análisis teórico y diseño de secadores rotativos está en desarrollar un modelo que combine el movimiento en cascada de las partículas con la transferencia de calor y de masa a lo largo del tambor. Hasta el momento, el diseño de secadores industriales se ha basado en la experiencia de los fabricantes y proveedores, quienes han usado información obtenida de secadores rotativos en plantas piloto y de las características operativas de unidades ya instaladas (5).

En este capítulo se citan algunas de las teorías desarrolladas, avances y resultados obtenidos por diferentes investigadores con respecto a este tema. Posteriormente, se propone un enfoque alternativo, o complementario, para el diseño y estudio paramétrico de secadores rotativos.

2.1 Diseño mediante Correlaciones Disponibles.

Un método común de diseño suele expresar al secado directo como un mecanismo de transferencia de calor, solamente, de la siguiente manera:

$$\dot{Q}_t = UaV(\Delta T)_m$$

Donde

 \dot{Q}_t = calor total transferido, J/s

Ua = coeficiente global de transferencia de calor volumétrico, $J/(s \cdot m^3 \cdot K)$

V = volumen del secador, m^3

 $(\Delta T)_m$ = diferencia media real entre el gas caliente y el material, K

Según Moyers, cuando se desconoce la temperatura de los sólidos, una buena aproximación para $(\Delta T)_m$ es la media logarítmica entre las depresiones de bulbo húmedo a la entrada y a la salida del secador (4). La depresión de bulbo húmedo es la diferencia entre la temperatura de bulbo seco y la temperatura de bulbo húmedo del aire en una sección.

Sin embargo, Friedman y Marshall afirman que el uso de la diferencia de temperatura media logarítmica es incorrecto, debido a

que la temperatura de los sólidos no varía linealmente con la temperatura del gas (6).

Para evaluar el coeficiente de transferencia de calor volumétrico, se han desarrollado correlaciones de la forma $Ua = KG^n/D$, donde *K* es una constante de proporcionalidad, *G* la velocidad másica del gas, *D* el diámetro del secador, y *n* una constante.

Por ejemplo, para la fabricación de secadores comerciales modernos con una cuenta de paleta por ciclo de 2.4 a 3.0 veces el diámetro, y operando a velocidades periféricas de tambor entre 0.3 y 0.4 m/s, se recomienda el uso de la ecuación 2.1 (4) (5).

$$\dot{Q}_t = \left(\frac{0.5G^{0.67}}{D}\right) V(\Delta T)_{ml} = 0.4LDG^{0.67}(\Delta T)_{ml}$$
(2.1)

Donde

 \dot{Q}_t = calor total transferido, Btu/hr

L =longitud del secador, ft

D = diámetro, ft

G = velocidad másica del aire, $lb/(hr \cdot ft^2 de sección transversal)$

 $(\Delta T)_{ml}$ = temperatura media logarítmica entre la depresión de bulbo húmedo del gas a la entrada y la depresión de bulbo húmedo del gas a la salida del tambor, °*F* Si se efectúa un análisis termodinámico al secador (referirse al capítulo 3 de este documento), es posible determinar el calor total transferido durante la evaporación. Con esta información, y haciendo uso de la ecuación 2.1, se puede determinar la longitud del secador para un correspondiente diámetro de tambor, o viceversa. No obstante, debe notarse que los resultados que se obtengan son aplicables solamente para secadores con una configuración similar a la que se usó para derivar la ecuación anterior.

En ningún momento se especifica, por ejemplo, el tipo o las características del material a secar, las dimensiones de las paletas, inclinación del tambor, su velocidad de giro, o la dirección de flujo del aire con respecto al movimiento del producto. Tampoco se toma en cuenta el fenómeno de transferencia de masa.

El punto es que, si se desea obtener un resultado medianamente confiable con este método para alguna aplicación en particular, es necesario contar con varias correlaciones de *Ua* para configuraciones de secadores rotativos tipo. Así, quien construye estos equipos podría asociar la aplicación de secado requerida a alguno de estos modelos y seguir adelante en el proceso de diseño.

2.2 Diseño Basado en Pruebas de Planta.

Los modelos matemáticos existentes solo son aplicables a diseños específicos de secadores rotativos con modos de operación y configuraciones particulares. Es más, en la literatura se encuentra muy poca información con respecto al coeficiente global de transferencia de calor volumétrico, *Ua*, aplicable al diseño de secadores rotativos industriales.

Otro método consiste en dimensionar los secadores rotativos mediante procedimientos de prueba y error en plantas piloto. Como una primera aproximación, se puede utilizar el procedimiento planteado en la sección anterior, haciendo uso de la información que se encuentre disponible.

Desde este punto de vista, la experiencia del fabricante desempeña un rol importarte porque se necesita seleccionar un diámetro de secador adecuado, escoger la geometría de paleta, definir el modo de secado (contraflujo o flujo paralelo) y jugar con las condiciones del aire caliente (temperatura, humedad, y velocidad), para optimizar la operación y economía del secado. La habilidad de quien diseña tendrá afectación directa sobre el consumo de tiempo y recursos durante la fabricación. En lugar de seguir un proceso de optimización en el diseño, aun cuando los costos capitales y operativos son mayores, es una práctica común construir secadores sobredimensionados e ineficientes, pero mecánicamente funcionales y bien probados en operación (5).

2.3 Avances en el Estudio de Secadores Rotativos.

En 1993 se propone un modelo matemático que predice el tiempo de residencia del producto en un secador rotatorio. El modelo se basa en las ecuaciones diferenciales que describen el movimiento de las partículas (7). Esta propuesta considera la interacción entre los granos individuales y la corriente de aire, así como distintas configuraciones de paletas e inclinaciones de tambor. Se ignoran los cambios en las propiedades tanto del aire como de los sólidos a través de su paso por el secador.

En el año 2007 se presenta un estudio sobre el desempeño de un secador rotativo en función del número de paletas elevadoras (8). Una parte importante de este trabajo es que se logra determinar la cantidad de material presente en la paleta y la altura de caída para diferentes posiciones angulares de tambor y geometrías de paleta. Esto fue posible gracias a una relación derivada por Schofield y Glikin en 1962, la cual evalúa el ángulo de reposo de un polvo en función de su coeficiente de fricción dinámico (9).

En el 2009 se presenta una metodología para el modelado y control de secadores rotativos directos continuos en flujo paralelo (10). La estrategia consiste en dividir el secador en un número finito de elementos volumétricos dispuestos en serie y aplicar a cada uno de ellos las ecuaciones diferenciales de conservación de masa y energía. El modelo hace uso del concepto de coeficiente volumétrico de transferencia de calor, el cual se determinó a partir de pruebas efectuadas en una planta piloto de secado de arena fina ubicada en el Departamento de Ingeniería de Sistemas y Automática de la Universidad de Sevilla.

A continuación se exponen dos trabajos que se tomarán como referencia para establecer comparaciones con el modelo a plantearse en este estudio.

Secado de partículas de madera

En su tesis doctoral presentada en 1983 en la Universidad Estatal de Oregon, "*Engineering Analysis of a Rotary Dryer: Drying of Wood Particles*", Frederick A. Kamke, desarrolla un modelo de simulación computacional para un secador rotativo de partículas de madera, con y sin paletas de relleno central (11). Para la ejecución del programa, se necesita conocer el diámetro y la longitud del secador, su velocidad de rotación, la geometría de las paletas, y las propiedades del material. Con ello, se efectúa un análisis del tiempo de residencia de las partículas en el tambor, y luego se incorporan los procesos de transferencia de calor y de masa.

La estrategia consiste primero estimar la altura y el tiempo de caída promedio de una partícula para poder determinar el avance horizontal de la misma. Con esta información, y considerando el tiempo que la partícula permanece en la paleta, se estima el número de ciclos de secado y se divide al secador en segmentos de longitud igual al desplazamiento longitudinal de la partícula que desciende desde la altura promedio de caída. Se considera a cada segmento como un volumen de control, en donde se resuelven los problemas de transferencia de calor y de masa, asumiendo que las propiedades de las partículas y del gas son constantes, y considerando que el tiempo de vuelo y los desplazamientos horizontales de la partícula son siempre los mismos.

Los problemas de movimiento, transferencia de calor y transferencia de masa se resuelven de forma separada. No se involucran constantes empíricas o ecuaciones de transferencia de calor desarrolladas para un sistema de secado particular. El estudio está basado en principios elementales y relaciones empíricas que normalmente se pueden encontrar en los libros de transferencia de calor. No se utilizaron correlaciones obtenidas a partir de estudios previos en secadores rotativos.

Se considera, entre otras cosas, el arrastre del aire, la pérdida de calor desde el cilindro, la transferencia de calor en el interior de los sólidos y varios modelos de secado de la madera.

En el trabajo de Kamke se ejecutaron experimentos en un secador rotativo industrial para verificar el desempeño del modelo de simulación como un pronosticador del comportamiento de secado. Las variables de control fueron la rapidez de giro del tambor, flujo másico de aire, y temperatura de entrada del gas. Las mediciones de temperatura del gas, temperatura de las partículas, y contenido de humedad de las partículas, se obtuvieron a lo largo de la longitud del tambor.

La comparación entre los resultados predichos por el modelo de Kamke y los resultados experimentales fue buena, indicando un porcentaje de error cuadrático medio de 22.2 en la predicción de contenido de humedad de las partículas al final del secado. No se ejecutaron ensayos experimentales en un secador sin paletas de relleno central, pero sí hay datos de simulación computacional.

Secado de concentrados de zinc

En el 2011, Olukayode Ajayi, de la Universidad James Cook en Australia, presenta una tesis doctoral que tiene por tema "*Multiscale modelling of industrial flighted rotary dryers*", donde se desarrolla un modelo que simula los mecanismos de transporte, transferencia de masa y transferencia de calor para un secador rotativo industrial de concentrados de zinc (12).

El secador utilizado para el estudio está constituido por secciones con paletas (B, C y D) y secciones sin paletas (A y E). El análisis del transporte de sólidos en la zona con paletas se basa en una técnica computacional de modelado de compartimientos que divide al flujo de sólidos en una fase pasiva y una activa, con varios compartimientos o "tanques" bien mezclados dispuestos en paralelo y en serie. La fase activa es la que está en contacto con la corriente de aire, mientras que la fase pasiva es la que se desplaza en la parte baja del tambor debido a su inclinación y rotación (kilning). Existe intercambio de masa entre fases. La proporción de partículas en contacto con el aire se determina utilizando una técnica de simulación en CFD (Computational Fluid Dynamics) basada en un enfoque euleriano.

Entre compartimiento y compartimiento, se resuelven las ecuaciones diferenciales de balance de masa y energía. El calor es transferido por convección y radiación en la fase activa. Se considera la pérdida de calor desde el tambor hacia el entorno. La figura 2.1 es una representación del modelo planteado.

FIGURA 2.1 MODELO DE COMPARTIMIENTOS – TOMADO DE (12)

Se llevaron a cabo varias simulaciones utilizando el programa gPROMS (software de modelado de procesos). El modelo de transporte de sólidos fue validado mediante comparaciones contra distribuciones de tiempo de residencia bajo diferentes condiciones experimentales. La validación de los balances de energía y masa se basó en Información de Proceso (PI), distribución experimental de tiempo de residencia y datos del perfil de humedad de los sólidos. Se manipularon parámetros del modelo relacionados con el área superficial en contacto con el aire de secado para ajustar el perfil de humedad teórico con el experimental. También se estimaron los perfiles de temperatura del aire y de los sólidos, pero no existe información experimental que los corrobore.

2.4 Metodología Propuesta.

En el presente trabajo se reúnen algunas de las ideas presentadas en publicaciones anteriores y se genera una estrategia de análisis y dimensionamiento de secadores rotativos para materiales de tipo granular.

Primero, se hace un análisis termodinámico del secador para obtener el flujo másico de aire necesario para secar cierta cantidad de producto húmedo bajo condiciones dadas, en un tiempo determinado.

Partiendo de un diámetro de secador, se estudia el movimiento de los granos en la sección transversal y se calcula un ángulo de caída representativo de toda la cortina de sólidos. Con dicho ángulo, se procede a determinar una altura de caída promedio. Esta altura de caída, junto con la velocidad de la corriente de aire (obtenida a partir del flujo másico y de la sección transversal del tambor), sirven como punto de partida para simular el movimiento de una partícula individual a través del secador, utilizando los modelos matemáticos pertinentes.

Simultáneamente, es decir, a medida que la partícula avanza en la dirección axial, se calcula la tasa de transferencia de calor y de masa en intervalos de tiempo o pasos previamente definidos. Con ello, y bajo la suposición de que la partícula es representativa de todas las demás, se extienden los resultados hacia todo el flujo de partículas y se corrigen las propiedades tanto del aire como de los sólidos en cada paso consecutivo. Esto se hace simplemente multiplicando la cantidad de agua evaporada desde la partícula, en un intervalo de tiempo dado, por el flujo total de partículas; las propiedades del aire se actualizan en base este último resultado.

En el proceso, se van sumando los desplazamientos sucesivos de la partícula hasta que ésta adopte el nivel de humedad final requerido, obteniéndose así la longitud de tambor correspondiente.

Con este enfoque lagrangiano, donde se rastrea a una partícula a través del secador, se espera obtener la evolución histórica de humedades, temperaturas, flujos de masa y energéticos de ambos, los sólidos y el aire de secado. En los capítulos que siguen se explica más detenidamente el procedimiento seguido y la herramienta computacional empleada para el desarrollo de esta propuesta teórica.

CAPÍTULO 3

3. ANÁLISIS TERMODINÁMICO

En el presente capítulo se desarrollarán balances de masa y energía en el calentador y en el secador con el objetivo de encontrar las condiciones del aire y su flujo másico, requeridos para determinados parámetros de operación. No se incluyen análisis de exergía.

3.1 Calentador.

Previo al ingreso al secador, el aire debe ser calentado para incrementar su potencial de secado. Ya sea que el aire se caliente directamente mediante un quemador, o indirectamente en un intercambiador de calor, lo que se produce es un aumento de temperatura que conlleva a una disminución sustancial de su humedad relativa. Hay que saber diferenciar entre la humedad absoluta del aire, w, y su humedad relativa, ϕ . La humedad absoluta constituye la cantidad real de agua presente en el aire, mientras que la humedad relativa es un indicador de cuánta agua adicional se podría introducir en el aire antes de que éste alcance el estado de saturación. En la saturación, el aire no puede recibir más agua y su potencial de secado disminuye a cero.

La humedad absoluta se suele expresar en libras de agua por libra de aire seco, mientras que la humedad relativa es una cantidad porcentual. Por ejemplo, una humedad relativa del 40% a 25°C indica que, a esa temperatura, el aire aún puede recibir un 60% de agua antes de llegar a la saturación.

El manejo de humedades y temperaturas para mezclas de gases se conoce como psicrometría. En este documento, cuando se hable de mezcla de gases siempre se hará referencia al aire y al vapor de agua. El tratamiento será el mismo ya sea que el calentamiento se de en un intercambiador de calor o en una cámara de combustión. Si bien es cierto que en el último caso el aire se mezcla con los productos de la combustión del quemador, la mezcla sigue siendo sustancialmente aire y agua, y se lo idealizará como tal. Adicional a esto, frecuentemente se utilizará el término "aire" de manera indistinta para hacer referencia a la mezcla aire/vapor de agua. Cuando se desee hacer referencia solamente al flujo másico de aire como tal, sin agua, se utilizará el término "aire seco", simbolizado por \dot{m}_{dg} . El vapor de agua arrastrado por el aire será representado por \dot{m}_{wv} .

La figura 3.1 es un diagrama termodinámico del calentador, el cual recibe aire a presión atmosférica, con una temperatura de bulbo seco y humedad relativa dada por las condiciones ambientales. Estas tres propiedades (presión, temperatura y humedad) definen por completo el estado termodinámico de la mezcla a la entrada del calentador. La humedad absoluta puede ser determinada en base a las tres propiedades anteriores.

El calentador es un medio cerrado que no permite el ingreso de humedad exterior. Tampoco existe condensación en su interior porque el aire está siendo calentado y no enfriado. Por lo tanto, el contenido real de humedad o humedad absoluta permanece constante en este volumen de control. El resultado del calentamiento es un aire con mayor temperatura y menor humedad relativa, es decir, con mayor capacidad de secado. La figura 3.2 muestra como luciría este proceso en un diagrama pricrométrico.

FIGURA 3.1 DIAGRAMA TERMODINÁMICO DEL CALENTADOR

FIGURA 3.2 PROCESO DE CALENTAMIENTO DEL AIRE

El calor agregado generalmente proviene de un combustible fósil, que puede ser diesel o gas natural, o del vapor generado en una caldera. Considerando los supuestos listados en la parte inferior, la energía requerida para calentar el aire de una temperatura T_1 a una temperatura T_2 está dada por la ecuación 3.1. Si se divide este calor para la eficiencia del calentador, se obtiene la energía total que debe ser entregada por la combustión en el caso de que se utilice un quemador. Dependiendo del poder calorífico del combustible, y de su dosificación, se puede determinar el consumo. El mismo principio se aplica cuando se utiliza vapor como fluido de calentamiento.

Supuestos:

- Estado estable • $\dot{W} = 0$ $\dot{Q} = \dot{m}_{aire}c_p(T_2 - T_1)$ (3.1) • $\Delta EP = \Delta EC = 0$
- $c_P = constante$

En la ecuación anterior, c_p es el calor específico promedio de la mezcla aire/agua entre las temperaturas de entrada y salida en el calentador. Este valor puede aproximarse mediante el calor específico del aire solamente sin provocar errores apreciables en los cálculos.

3.2 Secador.

Una vez en el tambor giratorio, la mezcla atraviesa un proceso diferente al que ocurre en el calentador. Durante su paso por el secador, el aire cede energía en forma de calor hacia los sólidos, que están a menor temperatura, para producir la evaporación de la humedad superficial. La masa de agua evaporada sale de las partículas debido a una diferencia de presiones parciales de vapor (ver sección 1.2) y es arrastrada por la corriente de aire, incrementando su humedad absoluta y relativa. Aquí el intercambio neto de energía es cero, ya que la misma energía que cede el aire para la evaporación es devuelta hacia él en forma de vapor de agua. Como resultado, se obtiene un proceso donde la entalpía de entrada del aire es igual a su entalpía de salida. Las pérdidas de calor hacia el entorno se suponen despreciables a pesar de que el casco del secador no necesariamente está aislado. Este proceso se representa en las figuras 3.3 y 3.4. Por fines didácticos, se ha simbolizado a la humedad de los sólidos como una masa de agua depositada en el secador.

FIGURA 3.3 IDEALIZACIÓN DEL PROCESO DE SECADO

FIGURA 3.4 PROCESO ISOENTÁLPICO

El párrafo anterior es la descripción de lo que ocurriría en una situación ideal; sin embargo, existen algunos detalles que merecen ser citados.

Al entrar en contacto con el aire, los sólidos húmedos a menor temperatura adquieren calor sensible hasta que su superficie alcanza la temperatura de evaporación bajo las condiciones del medio en ese momento. Esta etapa de ajuste de temperaturas ocurre solamente en un pequeño tramo del secador (a la entrada de los sólidos), donde el calor sensible cedido por el aire es relativamente pequeño en comparación al calor total que cede para la evaporación del agua (5). Por ese motivo, este calor no será tomado en cuenta para los cálculos, sino que se asumirá que todo el proceso en el interior del secador es netamente evaporativo. Para ello, se supondrá que los sólidos siempre estarán abrigados por una película de agua.

3.3 Determinación del Flujo Másico del Aire de Secado.

A parte de modelar el fenómeno psicrométrico, el objetivo principal de realizar un análisis termodinámico global del secador es encontrar el flujo másico de aire necesario, y sus propiedades, para las condiciones de secado dadas. Adicionalmente, se pueden derivar otros parámetros como la cantidad de agua a evaporar, el calor total de vaporización, la energía requerida para calentar el aire y el consumo de combustible en el calentador si es el caso.

Para ello, se debe partir de los siguientes datos, necesarios para el diseño o dimensionamiento de secadores rotativos:

- condiciones ambientales: presión, temperatura y humedad relativa del aire;
- flujo másico de producto a la entrada o a la salida del secador;
- humedad inicial y final del producto;
- temperatura del aire después del calentador;
- humedad relativa del aire a la salida del secador

Los dos últimos son parámetros que están ligados directamente a la economía del equipo. A mayor flujo y temperatura del aire, mayor será el costo operativo por tonelada de producto seco. Aquí entran en juego factores como el tipo de calentamiento, la eficiencia del calentador, y la clase de combustible u alguna otra fuente de energía empleada.

En la figura 3.5 se puede observar que, durante el secado, la masa sólida del producto permanece constante. Lo que varía es la masa del sistema agua-sólido debido a la evaporación (véase también la figura 1.1). Lo anterior se cumple siempre y cuando el sólido posea una tenacidad y refractariedad suficiente como para no desmoronarse debido al impacto o a la temperatura.

FIGURA 3.5 PROCESO DE EVAPORACIÓN
Los valores X_1 y X_2 representan el porcentaje de agua en base húmeda antes y después del secado. Normalmente, son datos conocidos. Se dice que es de base húmeda porque se mide con respecto a la masa total del sistema, sólido más agua.

Si \dot{m}_p es la cantidad de producto húmedo suministrada por hora, \dot{m}_w el flujo másico de agua y \dot{m}_s la masa sólida, se puede afirmar lo siguiente:

$$\begin{split} \dot{m}_p &= \dot{m}_w + \dot{m}_s \\ \dot{m}_w &= X \, \dot{m}_p \\ \dot{m}_s &= \dot{m}_p - \dot{m}_w = \dot{m}_p - X \, \dot{m}_p = (1 - X) \, \dot{m}_p \end{split}$$

Entonces, con el dato inicial de producto húmedo a secar y su contenido de humedad respectivo, se puede calcular fácilmente el flujo másico de sólidos secos:

$$\dot{m}_s = (1 - X_1) \left(\dot{m}_p \right)_1$$
 (3.2)

La cantidad de agua a evaporar, $\Delta \dot{m}_w$, se puede determinar como sigue:

$$\Delta \dot{m}_w = (\dot{m}_w)_1 - (\dot{m}_w)_2 = (\dot{m}_p)_1 - (\dot{m}_p)_2$$

$$\Delta \dot{m}_{w} = \frac{\dot{m}_{s}}{1 - X_{1}} - \frac{\dot{m}_{s}}{1 - X_{2}}$$
(3.3)

El agua evaporada pasa al aire de secado aumentando su humedad absoluta. El calor total de vaporización se puede determinar multiplicando la cantidad de agua evaporada por el calor latente de vaporización, el cual se evalúa a la temperatura superficial de los sólidos, tal como se expresa en la ecuación 3.4. Este es el calor al cual se hace referencia en la sección 2.1.

$$\dot{Q}_t = \Delta \dot{m}_w \cdot h_{fg} @ T_s$$
(3.4)

Partiendo de la definición de humedad absoluta, y considerando que $(\dot{m}_{wv})_2$ representa el contenido inicial de vapor de agua en el aire, se obtiene que

$$w_3 - w_2 = \frac{(\dot{m}_{wv})_2 + \Delta \dot{m}_w}{\dot{m}_{dg}} - \frac{(\dot{m}_{wv})_2}{\dot{m}_{dg}} = \frac{\Delta \dot{m}_w}{\dot{m}_{dg}}$$

$$\dot{m}_{aire} = \dot{m}_{dg} + (\dot{m}_{wv})_2 = \dot{m}_{dg} + w_2 \dot{m}_{dg} = \dot{m}_{dg} (1 + w_2)$$

$$w_2 \approx 0 \Rightarrow \dot{m}_{aire} \approx \dot{m}_{dg}$$

$$\therefore \dot{m}_{aire} = \frac{\Delta \dot{m}_w}{w_3 - w_2} \tag{3.5}$$

A manera de resumen, se puede seguir el siguiente procedimiento para calcular el flujo de aire y el calor suministrado en el quemador o intercambiador de calor:

- 1. Datos: $X_1, X_2, (\dot{m}_p)_1$
- 2. Calcular \dot{m}_s mediante la ecuación 3.2
- 3. Calcular $\Delta \dot{m}_w$ mediante la ecuación 3.3
- 4. Datos: P_1 , ϕ_1 , T_1 (propiedades del aire atmosférico)
- 5. Calcular w_1
- 6. $w_2 = w_1$
- Dato: T₂ → Temperatura a la salida del horno o intercambiador de calor (la escoge el diseñador)
- 8. Con T_2 y w_2 , determinar h_2
- 9. $h_3 = h_2$
- 10. Dato: $\phi_3 \rightarrow$ humedad relativa a la salida del secador (la escoge el diseñador)
- 11. Con h_3 y ϕ_3 , calcular w_3
- 12. Calcular maire mediante la ecuación 3.5
- 13. Calcular Q mediante la ecuación 3.1

CAPÍTULO 4

4. MOVIMIENTO DE LOS SÓLIDOS EN EL SECADOR

Para abordar este capítulo, se considerará al secador como un cilindro circular horizontal, con o sin inclinación, y se empleará un sistema de coordenadas alineado con sus ejes principales, tal como se muestra en la figura 4.1.

FIGURA 4.1 UBICACIÓN DEL SISTEMA DE COORDENADAS

Primero se estudiará el movimiento en el plano XY, donde los granos son recogidos por las paletas y luego arrojados para formar una cascada de sólidos. Para ello, se utilizará una metodología geométrica que fue inicialmente desarrollada por Glikin (13), y que ha sido publicada en obras de autores más recientes (8) (11) (14) (15).

Luego se determinará un ángulo de caída representativo de toda la cortina de sólidos, en base al teorema del valor medio para integrales, y se calculará la altura promedio de caída correspondiente a dicho ángulo.

La contribución de este trabajo empieza con el análisis del avance de una partícula individual en el secador, la misma que es recogida por una paleta en la parte inferior del tambor y arrojada hacia la corriente de aire desde la altura calculada previamente. Este movimiento toma lugar en el plano YZ y se repite a lo largo de todo el secador. Aquí es importante el efecto que pueda tener la inclinación del tambor sobre el movimiento de la partícula, ya sea para secadores en flujo paralelo o en contraflujo.

En el análisis se considerará, entre otras cosas, la influencia de la gravedad, el arrastre del aire, y las variaciones de las propiedades tanto de los sólidos como las del medio de secado a medida que la partícula avanza en el secador.

4.1 Caída de las Partículas desde las Paletas.

Si se tiene material granular en un recipiente y este último es volteado lentamente para depositarlo sobre una superficie plana, se puede observar la formación un pilo cónico a medida que los granos caen paulatinamente. El ángulo interno formado entre la superficie del pilo cónico y la superficie horizontal se conoce como ángulo de reposo (16).

En un tambor rotatorio ocurre un efecto similar. Desde la parte baja del tambor, las paletas elevadoras recogen cierta cantidad de material que en un principio es máxima, y luego va disminuyendo a medida que el material cae desde las paletas por gravedad. La capa superior de material forma con la horizontal un ángulo que depende del volumen de material presente en la paleta. Este ángulo es análogo al ángulo de reposo mencionado anteriormente. Sin embargo, se lo denomina **ángulo dinámico de reposo** debido a que el marco de referencia (tambor) está en movimiento (9).

La figura 4.2 es un diagrama donde se definen algunas de las variables a utilizarse en el método geométrico a exponerse a continuación. En este caso, se trabajará con una paleta de dos segmentos paralela al eje longitudinal del tambor. Sin embargo, existen investigadores que han desarrollado tratamientos matemáticos para otras geometrías de paletas (17).

En la figura 4.2 se representa una paleta con labio de dimensiones arbitrarias, dadas por la longitud del labio, \overline{OA} , y la longitud de la paleta, \overline{AB} . El ángulo formado entre estos dos segmentos es α_A . Nótese que el segmento \overline{AB} no necesariamente está radialmente alineado con el centro del tambor. Se supondrá que las paletas son paralelas al eje longitudinal del tambor.

El segmento \overline{OW} representa la capa superior de material siendo transportado por la paleta en un instante dado. Los sólidos están representados por la región punteada. El ángulo formado entre esta línea y la horizontal (eje X) es el ángulo dinámico de reposo, ϕ .

La posición angular de la paleta está dada por θ , que es el ángulo formado entre la línea que va desde el centro del tambor hasta el filo del labio de la paleta, 0, y el eje horizontal. Al rotar, el punto 0dibuja una circunferencia de radio R_0 . El radio del tambor es R.

Otro detalle a considerar es la utilización de dos sistemas de coordenadas, X-Y y x-y. El primero es un sistema de coordenadas global no rotatorio (SCG) con origen en el centro del tambor, mientras que el segundo es un sistema de coordenadas local rotatorio (SCLR) con origen en el filo del labio. El eje x de este último sistema está alineado con el labio. El ángulo δ representa el desfase instantáneo entre los sistemas de coordenadas global y local, medido con respecto a la horizontal; en la figura 4.2 δ es positivo. De ahora en adelante, las letras en mayúsculas denotarán puntos del plano referenciados al SCG, mientras que las letras en minúsculas denotarán puntos referenciados al SCLR.

La figura 4.3 es un esquema que permitirá deducir las cantidades R_o y δ . El ángulo γ es un valor dado por el diseñador y define el grado de desalineamiento angular (offset) de la paleta con respecto a la línea radial del tambor.

FIGURA 4.3 DETERMINACIÓN DE R_0 Y δ

De la figura anterior, se obtiene lo siguiente:

$$\frac{\sin \alpha_A}{\overline{OB}} = \frac{\sin \varphi}{\overline{OA}}$$

$$\overline{OB} = \sqrt{\overline{OA}^2 + \overline{AB}^2 - 2 \overline{OA} \overline{AB}} \cos \alpha_A = \sqrt{l_1^2 + l_2^2 - 2l_1 l_2} \cos \alpha_A$$

Donde $\overline{OA} = l_1$, $\overline{AB} = l_2$, son las longitudes de labio y paleta respectivamente.

Entonces,

$$\varphi = \sin^{-1} \left(\frac{l_1 \sin \alpha_A}{\overline{OB}} \right)$$
$$R_0 = \sqrt{\overline{OB}^2 + R^2 - 2 \overline{OB} R \cos(\gamma + \varphi)}$$

Por otro lado,

$$\overline{OB}^2 = R_0^2 + R^2 - 2R_0 R \cos \zeta$$

$$\zeta = \cos^{-1} \left(\frac{R_0^2 + R^2 - \overline{OB}^2}{2R_0 R} \right)$$

$$\psi + \gamma + \pi - (\theta - \zeta) = \pi \quad \Rightarrow \quad \psi = \theta - \zeta - \gamma$$

$$\psi + \alpha_A + \delta = \pi \quad \Rightarrow \quad (\theta - \zeta - \gamma) + \alpha_A + \delta = \pi$$

$$\therefore \quad \delta = \pi + \zeta + \gamma - \alpha_A - \theta$$

Como ya se mencionó, los ángulos α_A y γ deben ser proporcionados por el diseñador. Vale la pena indicar que γ puede ser positivo o negativo; en la figura 4.3 éste se asumió como positivo.

La figura 4.4 es un intento de simular lo que ocurre durante el recorrido ascendente de la paleta. Es preciso indicar que ϕ siempre es mayor que cero, desde que empieza el recorrido de vaciado

 $(\theta = 0)$ hasta que se ha descargado por completo el material $(\theta = \theta_{vaciado}).$

FIGURA 4.4 RECORRIDO DE LA PALETA

En 1962, Schofield y Glikin desarrollaron una relación que permite estimar la variación del ángulo dinámico de reposo en función de la posición angular de la paleta (9). Dicha relación se presenta a continuación.

$$\tan \phi = \frac{\mu + R_0 \frac{\omega^2}{g} (\cos \theta - \mu \sin \theta)}{1 - R_0 \frac{\omega^2}{g} (\sin \theta + \mu \cos \theta)}$$
(4.1)

En la ecuación anterior, ω es la velocidad angular del tambor y μ es el coeficiente de fricción dinámico entre capas adyacentes de

material granular. Este coeficiente es una medida de la resistencia que presentan los granos al deslizamiento durante el movimiento giratorio del secador. La relación de Schofield y Glikin es válida solamente para ciertos materiales, generalmente los que presentan buena fluidez. El ángulo dinámico de reposo es la única propiedad del producto involucrada en este análisis.

Volviendo a la figura 4.4, se puede apreciar que en la primera parte del recorrido, el extremo derecho de la capa superior de material (superficie libre) está en contacto con el cilindro del secador. Mientras se produce el vaciado, existe un momento en que esta capa de sólidos deja de hacer contacto con la pared del tambor, y solamente toca a la paleta.

En este punto, se deben diferenciar dos etapas del vaciado:

- 1. Material en contacto con paleta y tambor
- 2. Material en contacto solo con paleta

Para distinguir el primer caso del segundo, se utilizan los subíndices "*W*" y "*F*", respectivamente, en las variables que se presentan a continuación.

FIGURA 4.5 ETAPAS DEL VACIADO

El objetivo consiste en determinar las coordenadas locales de los puntos O, A, B, W y F, para luego realizar el cálculo del área delimitada por estos puntos, según sea el caso.

A y B son puntos fijos en el sistema de coordenadas local, que están dados por las coordenadas (x_A , y_A) y (x_B , y_B). Así,

$$x_A = l_1 \; ; \; y_A = 0$$
$$x_B = l_1 + l_2 \cos(\pi - \alpha_A) = l_1 - l_2 \cos \alpha_A$$
$$y_B = l_2 \sin(\pi - \alpha_A) = l_2 \sin \alpha_A$$

En el sistema de coordenadas global, el punto 0 está dado por

$$X_O = R_O \cos \theta$$
; $Y_O = R_O \sin \theta$

La recta que contiene a los puntos O y W, referida al SCG, tiene por ecuación

$$Y = \tan \phi \left(X - X_0 \right) + Y_0$$

Por otro lado, la circunferencia del tambor está definida por

$$X^2 + Y^2 = R^2$$

La intersección de estos dos lugares geométricos, la recta y la circunferencia, da como resultado las coordenadas del punto *W* referido al SCG. El siguiente paso consiste en representar este punto en el sistema de coordenadas local.

Del esquema presentado en la figura 4.6, se puede deducir lo siguiente:

$$\tan \delta = \frac{a}{x_w} \quad \Rightarrow \quad a = x_w \tan \delta$$

 $c = b \cos \delta = (y_w - x_w \tan \delta) \cos \delta = y_w \cos \delta - x_w \sin \delta$

 $b = y_w - a = y_w - x_w \tan \delta$

Dado que $Y_w = Y_o + c$, se obtiene

$$Y_w = R_0 \sin \theta + y_w \cos \delta - x_w \sin \delta$$

También se puede verificar que

$$X_W = R_O \cos \theta + x_w \cos \delta + y_w \sin \delta$$

FIGURA 4.6 RELACIÓN ENTRE (X_W, Y_W) y (x_w, y_w)

Resolviendo estas dos últimas ecuaciones de manera simultánea, se pueden obtener las coordenadas del punto *W* referidas al SCLR, o sea, (x_w , y_w). Con esto se soluciona parcialmente el primer caso; está pendiente determinar el área.

El segundo caso se ilustra en la figura 4.7, de la cual se deducen las ecuaciones de las rectas cuya intersección genera el punto F.

FIGURA 4.7 COORDENADAS DEL PUNTO F

Recta 1:

$$y = m_1 x = x \tan(\phi + \delta)$$

Recta 2:

$$y = m_2 x + b \implies y - 0 = \tan(\pi - \alpha_A) (x - x_A)$$

 $y = -\tan \alpha_A (x - l_1)$

La intersección entre las rectas 1 y 2 arroja las coordenadas (x_f, y_f) .

Hasta el momento, se ha expuesto un método para determinar las coordenadas de los puntos *O*, *A*, *B*, *W* y *F*. Ahora se procede a

calcular el área correspondiente a la sección transversal de la cama de material en la paleta.

FIGURA 4.8 ÁREA DE MATERIAL EN PALETA - CASO 1

$$y \ge y_B \equiv \phi + \delta \ge \tan^{-1}\left(\frac{y_B}{x_B}\right)$$

 $A_1 = \frac{1}{2}l_1l_2\sin\alpha_A$

Aquí la coordenada y representa la posición vertical del extremo derecho de la capa superior de material.

Para A_2 se hace una aproximación mediante la cuerda \overline{BW} .

$$\beta = \phi + \delta - \tan^{-1} \left(\frac{y_B}{x_B} \right)$$

$$\overline{OB} = \sqrt{x_B^2 + y_B^2}$$
$$\overline{OW} = \sqrt{x_W^2 + y_W^2}$$
$$A_2 = \frac{1}{2}\overline{OB}\,\overline{OW}\sin\alpha_A$$

El área total es $A = A_1 + A_2$.

Caso 2:

$$y < y_B \equiv \phi + \delta < \tan^{-1}\left(\frac{y_B}{x_B}\right)$$
$$\overline{AF} = \sqrt{(x_F - x_A)^2 + (y_F - y_A)^2} = \sqrt{(x_F - l_1)^2 + y_F^2}$$
$$A = \frac{1}{2}l_1\overline{AF}\sin\alpha_A$$

Cuando y = 0, que es equivalente a $\phi + \delta = 0$, la paleta está completamente vacía y, por lo tanto, A = 0. Como ϕ siempre es mayor o igual que cero, entonces debe existir un instante del recorrido en el que el ángulo δ cambia de signo positivo a negativo. Esto ocurre cuando el labio está completamente horizontal, alineado con el eje *X* del SCG.

Si *d* es la profundidad de la paleta, medida a lo largo del eje *Z*, y asumiendo una sección transversal constante, el volumen de material en la paleta estaría dado por $V = A(\theta)d$, donde *A* depende de la posición de la paleta, θ .

La masa de material está relacionada con el volumen mediante la densidad al granel o densidad aparente, ρ_{bulk} .

$$m(\theta) = \rho_{bulk} A(\theta) d \tag{4.2}$$

Ahora ya es posible conocer la cantidad de material granular presente en una paleta en función de la posición angular de la misma, o en función del tiempo, lo cual representa un gran paso en el desarrollo de este estudio.

4.2 Ángulo Representativo y Altura Promedio de Caída.

Las partículas presentes en la cascada de sólidos experimentan trayectorias diferentes, dependiendo de la posición inicial en la que dejaron la paleta elevadora. Por lo tanto, es imposible que los sólidos compartan exactamente las mismas propiedades al final de la operación de secado. Entonces, cuando se hable de contenido de humedad, tamaño de grano, posición, velocidad, o algún otro parámetro que haga referencia a los sólidos, el lector deberá pensar en seguida en promedios o distribuciones.

Habiendo dicho esto, se propone escoger una de las tantas partículas presentes en el secador, seguirla a lo largo de su trayectoria, y llevar el registro de la variación de sus propiedades. Esta técnica lagrangiana permitirá, mediante el uso de extrapolaciones, tener una visión general sobre la variación de humedad en el producto durante su paso por el secador.

La primera etapa de este método consiste en hallar un ángulo que sea representativo de toda la caída de material durante un ciclo o revolución de paleta. Para ello, se utilizará el teorema del valor medio para integrales.

Este teorema establece que, si una función es continua en un intervalo cerrado, entonces existe un punto en el interior del intervalo tal que la integral (área bajo la curva) es igual a la diferencia entre los valores extremos del intervalo multiplicada por la función evaluada en el valor interior.

En este caso, la función será la cantidad de masa en la paleta, m, y la variable independiente será la posición angular, θ .

Por el momento, suponga que la masa en la paleta está relacionada con la posición angular del tambor de una manera similar a la que se muestra en la figura 4.10.

FIGURA 4.10 TEOREMA DEL VALOR MEDIO

Aplicando el teorema del valor medio, se deduce lo siguiente:

$$\int_{0}^{\theta_{vaciado}} m \, d\theta = \int_{0}^{m_{0}} \theta \, dm = (m_{0} - 0)\bar{\theta}$$

$$\therefore \quad \bar{\theta} = \frac{\int_{0}^{m_{0}} \theta \, dm}{m_{0}}$$
(4.2)

La ecuación anterior puede ser expresada de forma numérica como sigue:

$$\bar{\theta} = \frac{\int_0^{m_0} \theta dm}{m_0} = \frac{1}{m_0} \sum_{i=1}^N \theta_i (m_i - m_{i-1}) = \sum_{i=1}^N \theta_i f_i$$
(4.3)

Donde f_i es la fracción de producto que ha caído desde la paleta en el intervalo *i*.

La altura de caída correspondiente a este ángulo medio estaría dada por

$$\bar{Y} = \bar{Y}_0 + \sqrt{R^2 - \bar{X}_0^2} = R_0 \sin\bar{\theta} + \sqrt{R^2 - (R_0 \cos\bar{\theta})^2}$$
(4.4)

Esta altura promedio de caída es importante porque representa el punto de partida para el estudio del movimiento en el plano YZ. El tiempo de vuelo de la partícula, tomando como referencia esta altura, es el tiempo de secado por revolución de tambor.

Dado que las condiciones en el secador no son constantes de una sección a otra, es inevitable pensar que, tanto la altura promedio de caída, como el tiempo de vuelo, son parámetros variables en la dirección Z. Si se observa con cuidado la deducción presentada en la sección 4.1, el lector podrá notar que la única propiedad de los sólidos que tiene influencia directa sobre la altura promedio de caída es el ángulo dinámico de reposo.

En 1969, Kelly investigó experimentalmente los factores que contribuyen a la variación del ángulo dinámico de reposo de polvos de azúcar en las paletas de un tambor rotativo (18). Los resultados mostraron que el tamaño de partícula, la velocidad de giro y el tipo de material sí tienen un efecto sobre el ángulo dinámico de reposo. No obstante, cuando se tiene un control de la granulometría del producto a la entrada del secador, y si se opera con una velocidad angular constante, esta dependencia deja de ser relevante para el análisis aquí presentado.

Más importante es la afectación que pueda tener el contenido de humedad en los sólidos sobre el ángulo dinámico de reposo. Este parámetro es una medida de la capacidad de flujo del producto en la paleta. Si aumenta el contenido de humedad de la muestra al granel, es lógico pensar que habrá una mayor resistencia al movimiento. No es lo mismo voltear un vaso con arena húmeda que un vaso con arena seca.

4.3 Suposiciones sobre la Partícula Rastreada.

La propuesta de este trabajo consiste en registrar la evolución en las propiedades de una partícula a medida que éste avanza en el secador, y luego extender los resultados para todo el flujo de producto. Por lo tanto, se supondrá que las propiedades de la partícula a ser analizada son típicas de todo el material que ingresa al secador.

Al hablar de las propiedades, se hace referencia a la pureza, tamaño de grano, refractariedad, forma, tenacidad, porosidad, gravedad específica, textura, índice de vacío, peso, entre otras. Inicialmente, el analista debe conocer, por lo menos, la siguiente información:

- 1. tipo de material granular (azúcar, sal, madera, arena, etc.);
- 2. densidad de la partícula seca;
- 3. densidad al granel;
- 4. esfericidad (se asumirá una esfericidad de 1);
- 5. distribución de tamaños de partícula (granulometría);

 variación del ángulo dinámico de reposo en función del contenido de humedad.

Tipo de material

El tipo de material granular se refiere principalmente a la resistencia del material al impacto y a la temperatura, pegajosidad o fluidez dentro de los niveles de humedad especificados, y facilidad de los sólidos para evacuar agua.

El conocer estas características del producto dará una pauta para saber hasta qué punto es aplicable la teoría desarrollada en este trabajo.

Densidad real y densidad aparente

La densidad de la partícula seca es la densidad real del grano, y se mide cuando el porcentaje de humedad en el mismo es aproximadamente igual a cero. Esta propiedad será necesaria para estimar la masa sólida del grano.

Por otro lado, la densidad al granel o densidad aparente es la masa de un conjunto de granos apilados, y está directamente relacionada con el nivel de compactación en el pilo. Esta densidad se utilizará principalmente para determinar la cantidad de masa presente en una paleta en base al volumen de material en la misma.

Esfericidad

La esfericidad se refiere a la forma del grano o angularidad del mismo. La esfericidad es igual a 1 para un grano perfectamente esférico.

En los concentrados de sílice, por ejemplo, pueden existir granos completamente irregulares en forma, así como también granos casi esféricos. La partícula de madera (astilla), por otro lado, es completamente irregular en forma.

Si bien es cierto que estos sólidos no poseen forma redonda, puede resultar válido introducir una aproximación a grano esférico cuando se analiza el problema macroscópicamente. La suposición de grano esférico simplifica mucho el análisis de movimiento. En este trabajo se lo hará de esa forma.

Distribución de tamaños

El diámetro del grano, que pasa a ser representativo de todo el producto en el secador, se determina como sigue:

$$D_{grano} = \sum_{i=1}^{N_p} x_i D_{pi}$$
(4.5)

En la ecuación anterior, N_p es el número de clases en la distribución de tamaños de grano, D_{pi} es el valor medio (marca de clase) de la clase *i* y x_i es el porcentaje de las partículas (frecuencia relativa) presentes en la clase *i*. Esta ecuación es similar a la ecuación 4.4, derivada para obtener el ángulo representativo de la caída.

A pesar de que las partículas pierden masa líquida durante su paso por el secador, se asumirá que la variación en su diámetro promedio es insignificante. No hay encogimiento.

Coeficiente de fricción dinámico

El aparato utilizado para medir el coeficiente de fricción dinámico es similar al que aparece en la figura 4.11.

FIGURA 4.11 APARATO PARA MEDICIÓN DEL ÁNGULO

DINÁMICO DE REPOSO – TOMADO DE (18)

El aparato consiste de un tambor rotatorio horizontal que tiene instalado un motor con ajuste variable de velocidad. En este caso, se tienen ocho paletas distribuidas a intervalos de 45° en el interior del tambor; estas paletas se llenan parcialmente con el material granular a ser analizado. Durante la prueba, se toman varias fotografías del tambor a diferentes velocidades de giro, y luego se mide el ángulo dinámico de reposo, ϕ , y la posición angular, θ , para cada paleta en las fotografías. Para cualquier set de condiciones, estas lecturas son analizadas en un programa de computadora que genera el valor del coeficiente de fricción, μ , con la menor desviación estándar a partir de la ecuación 4.1.

Se debe tener cuidado al utilizar la ecuación de Schofield y Glikin, puesto que pierde validez cuando se trata con materiales cuyo ángulo dinámico de reposo varía mucho con el contenido de humedad del producto. Deben efectuarse pruebas experimentales para descifrar esta dependencia.

4.4 Movimiento Longitudinal.

Una vez encontrado el ángulo representativo y la altura de caída correspondiente, se concentrará el análisis en un solo grano o partícula que cae desde dicha posición, partiendo del reposo. Este grano es rastreado durante todo su recorrido, tal como se muestra en la figura 4.12, para el caso de un secador en contraflujo.

FIGURA 4.12 RECORRIDO DE LA PARTÍCULA EN EL SECADOR

En la figura anterior se representan los desplazamientos sucesivos de un grano a medida que éste avanza en el secador. Cuando el grano cae existe un pequeño rebote cuya dirección es difícil de predecir debido a la aleatoriedad característica del choque entre partículas. En este estudio se supondrá que el choque entre los granos y la chapa metálica es perfectamente inelástico.

Consiguientemente, el único desplazamiento que contribuye a la longitud del secador es aquel provocado por el arrastre del aire, la acción de la gravedad, o ambos. En los secadores donde el aire se mueve en dirección opuesta al desplazamiento de los sólidos, la gravedad es el único parámetro que contribuye al avance de las partículas; en este caso, mientras más inclinado esté el tambor, mayor será la componente de la fuerza de gravedad a favor del movimiento.

A diferencia de los secadores en flujo paralelo, la inclinación del tambor es un factor crítico en el diseño de los secadores en contraflujo; no se puede prescindir de ella cuando las paletas son paralelas al eje longitudinal del tambor.

Ya sea para un secador en flujo paralelo o en contraflujo, el cálculo de la "longitud térmica" del secador se realizará mediante la siguiente ecuación:

$$L = \sum_{i=1}^{n} \Delta Z_i$$
(4.6)

Donde n es el número de ciclos de secado necesarios para que el producto alcance cierto nivel de humedad bajo determinadas condiciones de diseño térmico y mecánico del secador.

Se puede derivar una ecuación similar para el tiempo mínimo de secado:

$$t_{secado} = \sum_{i=1}^{n} t_i$$
(4.7)

Donde t_i es el tiempo de vuelo de la partícula en el intervalo *i*. Este tiempo es el tiempo en el que los sólidos se encuentran en contacto directo con la corriente de aire. No debe confundirse con el tiempo de residencia del producto. Para determinar el tiempo de residencia, se debe sumar el tiempo que le toma a la partícula subir desde la zona inferior del tambor hasta la posición de caída. Este desplazamiento es provocado únicamente por el ascenso de la paleta, donde se asume un secado nulo. El tiempo de residencia aproximado, en la longitud térmica del secador, se puede aproximar mediante la siguiente ecuación:

$$t_{res} = t_{secado} + n \frac{\left|\frac{2\bar{\theta}}{e}\right| \times e}{\omega}$$
(4.8)

En la ecuación anterior, *e* es la separación angular entre paletas consecutivas.

El diagrama de cuerpo libre y el diagrama de velocidades de la figura 4.13 muestran la interacción entre la partícula y el aire de secado cuando este último se mueve en la dirección de avance del producto.

FIGURA 4.13 DCL DE LA PARTÍCULA Y DIAGRAMA DE VELOCIDADES (FLUJO PARALELO)

El grano o partícula de masa m_{grano} está bajo la influencia del campo gravitacional, g, y de la fuerza de arrastre del aire, F_D . Se considera un sistema de coordenadas alineado con el eje longitudinal del tambor, el cual puede tener una inclinación α . La fuerza de arrastre depende de la magnitud de la velocidad relativa del aire con respecto al grano, V_{rel} . Haciendo una sumatoria de fuerzas en Z y en Y, se obtiene

$$(+) \rightarrow \sum F_{Z}: \qquad F_{D,Z} + m_{grano}g\sin\alpha = m_{grano}\frac{dV_{Z}}{dt}$$
(4.9)

$$(+) \downarrow \sum F_{Y}: \quad m_{grano}g \cos \alpha - F_{D,L} = m_{grano}\frac{dV_{Y}}{dt}$$
(4.10)

Las componentes de la fuerza de arrastre se pueden determinar como sigue:

$$F_{D,Z} = \frac{1}{2} \rho_B C_D V_{rel}^2 A_{proy} \cos \theta$$
$$F_{D,L} = \frac{1}{2} \rho_B C_D V_{rel}^2 A_{proy} \sin \theta$$

donde

$$V_{rel} = \sqrt{(V_{aire} - V_z)^2 + {V_Y}^2}$$
; $\theta = \tan^{-1}\left(\frac{-V_Y}{V_{aire} - V_z}\right)$

En las ecuaciones anteriores, ρ_B es la densidad del aire evaluada a la temperatura fílmica, θ es el ángulo formado entre los vectores velocidad relativa y velocidad del aire, V_Z y V_Y son las componentes Z y Y de la velocidad absoluta de la partícula, V_{aire} es la velocidad absoluta promedio del aire en una sección del tambor, A_{proy} es el área proyectada de la partícula esférica, y C_D es el coeficiente de resistencia para una esfera lisa.

Los coeficientes de resistencia dependen del número de Reynolds, el cual se evalúa a la temperatura fílmica. En la figura 4.14 se muestran los coeficientes de resistencia de cuerpos lisos a bajos números de Mach (flujos incompresibles).

FIGURA 4.14 COEFICIENTES DE RESISTENCIA DE CUERPOS LISOS – TOMADO DE (19)

Existen dos dificultades con respecto al manejo de las ecuaciones 4.10 y 4.11.

Primero, los coeficientes de resistencia del aire dependen de la velocidad instantánea de la partícula, la cual cambia paulatinamente durante su caída desde la paleta hacia la parte baja del tambor. En cada punto de la trayectoria existirá, por ende, un coeficiente de resistencia diferente que dependerá del valor de la velocidad relativa entre el aire y la partícula.

Segundo, en cada sección del tambor o plano Z = k, las propiedades del aire son diferentes debido a que las condiciones de temperatura y humedad están cambiando; por lo tanto ρ_B , μ_B y V_{aire} son variables en la dirección Z.

La primera dificultad se resuelve expresando el coeficiente de resistencia en términos del número de Reynolds, haciendo uso de la curva presentada en la figura 4.14 para el caso de una esfera lisa. Se toman varios puntos de dicha curva y se selecciona la ecuación que presente un mejor ajuste. En la figura 4.15 se presenta el resultado obtenido.

FIGURA 4.15 CURVA DE AJUSTE PARA EL COEFICIENTE DE RESISTENCIA DEL AIRE

De este modo, se tiene que C_D puede ser aproximado mediante la ecuación 4.12. La ventaja de tener esta ecuación es que C_D queda en función de la velocidad de la partícula.

$$C_D = 32.628 R e_D^{-0.646} = 32.628 \left[\frac{\rho_B D_{grano} V_{rel}}{\mu_B} \right]^{-0.646}$$
(4.11)

donde μ_B es la viscosidad dinámica del aire a la temperatura fílmica correspondiente.

Para tratar el segundo problema, se dividirá el tiempo de vuelo de la partícula en pequeños intervalos y se resolverán las ecuaciones de movimiento para cada uno de ellos, incorporando los cambios en las propiedades de ambos, aire
y partícula, ocasionados por la transferencia de calor y masa. El paso en el tiempo será constante.

El problema de movimiento está totalmente resuelto cuando se encuentra la trayectoria de la partícula. Para ello, se debe hallar la velocidad en cada punto de la trayectoria, resolviendo las ecuaciones diferenciales para V_Z y V_Y , e integrar los resultados con respecto al tiempo. En el capítulo 6 se expone la solución simultánea de estas ecuaciones mediante el uso del software EES, el cual emplea el método numérico de Runge Kutta para este efecto.

4.4.2 Contraflujo.

En la figura 4.16 se muestra el DCL y el diagrama de velocidades la partícula en interacción con el aire de secado cuando este último se mueve en dirección contraria al avance del producto.

FIGURA 4.16 DCL DE LA PARTÍCULA Y DIAGRAMA DE VELOCIDADES (CONTRAFLUJO)

El tratamiento es similar al caso del secador en flujo paralelo; la única diferencia radica en la dirección horizontal del vector fuerza de arrastre. Nótese que, para que exista avance de producto, la componente Z del peso del grano debe ser mayor que la fuerza de arrastre provocada por la corriente de aire.

De acuerdo a la figura anterior, la sumatoria de fuerzas en Z y en Y quedaría como sigue:

$$(+) \rightarrow \sum F_{Z}: \qquad -F_{D,Z} + m_{grano}g\sin\alpha = m_{grano}\frac{dV_{Z}}{dt}$$
(4.12)

$$(+) \downarrow \sum F_{Y}: \quad m_{grano} g \cos \alpha - F_{D,Y} = m_{grano} \frac{dV_{Y}}{dt}$$
(4.13)

Las fuerzas de arrastre y sustentación se determinan de la misma forma que en el secador en flujo paralelo, con la diferencia de que la magnitud de la velocidad relativa del aire con respecto a la partícula es

$$V_{rel} = \sqrt{(V_{aire} + V_z)^2 + {V_Y}^2}$$

En este punto, deberá notarse que la selección del diámetro e inclinación del secador debe ser tal que se evite el estancamiento de producto. Como el flujo de aire necesario para el secado está dado netamente por un cálculo térmico, la única manera de jugar con la velocidad del aire, sin interferir con el ventilador, es variando el diámetro del tambor. Si en el diseño se selecciona un diámetro muy pequeño, la velocidad del aire puede crecer a tal punto de que la fuerza de arrastre en sentido contrario al avance del producto genere el estancamiento del mismo.

Bajo las mismas circunstancias o condiciones preliminares de diseño, el avance paulatino de una partícula en un secador en contraflujo puede ser menor que en uno de flujo paralelo. Este hecho, sumado a que la transferencia de calor global es

más efectiva en el secado en contraflujo, conlleva al pensamiento de que este tipo de secadores pueden llegar a ser más cortos que aquellos en flujo paralelo. Esto debe ser verificado para cada aplicación.

Cabe resaltar que la selección de uno u otro tipo de secador no solo depende de cuán efectiva es la transferencia de calor, sino también del control de temperatura en los sólidos. La temperatura del producto se vuelve un factor importante dependiendo de sus características o el tipo de proceso.

Con un secador en flujo paralelo, se puede controlar la temperatura del producto de una mejor manera. No es así en un secador en contraflujo, ya que el aire más caliente entra en contacto directo con los sólidos que tienen el menor porcentaje de humedad, aumentando la probabilidad de que éstos adquieran una cantidad significativa de calor sensible que derive en el aumento de su temperatura.

En el capítulo siguiente se abordará el problema de transferencia de calor y masa en la partícula, el cual debe resolverse simultáneamente con el problema de movimiento.

CAPÍTULO 5

5. TRANSFERENCIA DE CALOR Y DE MASA

En este capítulo se plantean las ecuaciones necesarias para resolver los problemas de transferencia de calor y masa relacionados al secador rotativo. Básicamente, la estrategia consiste en determinar el coeficiente de transferencia de masa a partir del conocimiento del coeficiente de transferencia de calor, encontrado mediante las correlaciones correspondientes al caso de flujo externo sobre una esfera. Para ello, se utilizará la analogía de transferencia de calor y masa.

El secado de la partícula se modelará como un caso de enfriamiento evaporativo. Solamente se considerará la transferencia de calor por convección. Se ignorarán las pérdidas de calor hacia el entorno, así como también la transferencia de calor por radiación desde el aire de secado hacia la partícula.

5.1 Suposiciones Generales.

Una vez establecido el modelo matemático del movimiento de los granos en el secador, se procede a estimar el intercambio de calor y masa experimentado durante su recorrido. Para esta parte del estudio, se supondrá lo siguiente:

- el calor transferido desde el secador hacia el ambiente no tiene una repercusión apreciable en el secado;
- el calor radiante emitido por el aire en el interior del secador es despreciable;
- la transferencia de calor y masa ocurre solamente durante la caída de los sólidos;
- 4. la interacción entre partículas adyacentes es nula.

En el secador, el aire adquiere la humedad del producto en forma de vapor de agua. El mecanismo más importante de vaporización es la transferencia de calor convectivo desde el aire hacia los sólidos; el movimiento relativo entre el fluido y los sólidos provoca que el aire ceda calor al producto, haciendo que el agua contenida en el mismo cambie de fase y se libere. Si se establece una comparación entre el calor que cede el aire hacia los sólidos y el calor transferido desde el aire hacia la chapa metálica del tambor, y posteriormente hacia el ambiente, se encontrará que la diferencia entre uno y otro es muy grande. La transferencia de calor más importante ocurre entre el aire y el producto húmedo. Por ende, se considerará al secador como un medio adiabático.

Los secadores rotativos muy pocas veces se aíslan en la parte exterior. Si bien es cierto que el aislamiento contribuye a que se aproveche mejor el recurso energético, el tener un tambor desnudo ayuda a que la temperatura de la chapa metálica no crezca demasiado, sobretodo a la entrada de aire caliente. Esto evita el sobrecalentamiento, a veces indeseado, del producto.

El aislamiento se vuelve un elemento importante en los hornos rotativos (que constructivamente son muy similares a los secadores rotativos), donde la temperatura es más elevada y la pérdida de calor por radiación hacia el exterior tiene mayor influencia sobre el desempeño y la economía del equipo. Aquí sí se busca el sobrecalentamiento de los sólidos.

La temperatura del aire de secado en un secador rotativo generalmente no va más allá de los 800 K. En un calentador de llama directa que trabaje con gas natural, por ejemplo, para calentar 1 kg/s de aire de 300 a 800 K, la cantidad aproximada de combustible requerida es de 0,012 kg/s. Suponiendo una combustión estequiométrica, sin exceso de aire, la concentración de

vapor de agua y dióxido de carbono en el aire de secado bajo estas condiciones sería menor al 1.2%. A esta concentración, la emisividad de los productos de la combustión antes mencionados es muy baja, volviéndose elementos no participativos en la transferencia de calor por radiación.

Finalmente, los granos no solamente ganan calor mientras interactúan con la corriente de aire. También existe transferencia de calor por contacto entre granos adyacentes, o entre granos y metal, mientras ascienden en la paleta o mientras reposan en el fondo del tambor; y transferencia de calor por convección entre la capa superior de producto en las paletas y el aire que pasa por encima (caso convectivo de placa plana). No obstante, estos modos secundarios de transferencia de calor no son comparables con aquella que ocurre mientras los granos son enfrentados por el aire en la ducha generada durante su caída. Por ese motivo, se considerará que el único aporte al secado de los sólidos es la transferencia de calor convectivo que ocurre durante su trayectoria de vuelo.

5.2 Capa Límite y Grupos Adimensionales de Importancia.

El concepto de capa límite surge a partir de la necesidad de medir la influencia que ejerce la presencia de una superficie sólida sobre un fluido, cuando este último se desplaza sobre esta superficie. La capa límite se caracteriza por tener un espesor, el cual está dado por la distancia entre la superficie sólida y la primera película fluida que deja de ser afectada por la presencia de la superficie sólida. Existen tres tipos de capas límite: hidrodinámica, térmica y de concentración. Las dos últimas, que son las que interesan en este capítulo, son una manifestación de la transferencia de calor y de masa, respectivamente. La primera está directamente relacionada con la fuerza de arrastre y sustentación que ejerce el fluido sobre el sólido cuando existe movimiento relativo entre ellos; esto ya se analizó en el capítulo anterior.

Para el flujo sobre cualquier superficie, siempre existirá una capa límite de velocidad y, por ello, fricción superficial. Sin embargo, una capa límite térmica y, de aquí la transferencia de calor por convección, existe solo si difieren las temperaturas de la superficie y del flujo libre (flujo no afectado por la superficie). De manera similar, una capa límite de concentración y la transferencia de masa por convección existen solo si la concentración superficial de una superficie difiere de su concentración en el flujo libre. En el caso particular del secador rotativo, están presentes las tres capas límite cuando los sólidos interactúan con la corriente de aire de secado.

El estudio de la capa límite se simplifica significativamente mediante el uso de grupos adimensionales tales como *Nusselt* (*Nu*), *Prandtl* (*Pr*), *Reynolds* (*Re*), *Lewis* (*Le*), entre otros. En Apéndices se presenta un resumen de los grupos adimensionales más importantes relacionados con la transferencia de calor y de masa.

Estos grupos adimensionales se relacionan entre ellos mediante correlaciones que han sido desarrolladas a través de estudios experimentales efectuados por varios investigadores con el pasar de los años. Su uso está dirigido principalmente a la determinación de los coeficientes promedio de transferencia de calor y de masa, \bar{h} y \bar{h}_m respectivamente.

5.3 Transferencia de Calor.

La transferencia de calor entre el aire y los sólidos en el secador ocurre principalmente debido a la convección forzada en flujo externo alrededor de partículas con diámetro igual al diámetro promedio de grano. Existen numerosas correlaciones de transferencia de calor propuestas para este caso. Whitaker (20) recomienda una expresión de la forma

$$\overline{Nu}_{D} = 2 + \left(0.4 R e_{D}^{1/2} + 0.06 R e_{D}^{2/3}\right) P r^{0.4} \left(\frac{\mu}{\mu_{s}}\right)^{1/4}$$
(5.1)

Donde

$$0.71 < Pr < 380$$

 $3.2 < Re_D < 7.6 \times 10^4$
 $1.0 < \frac{\mu}{\mu_s} < 3.2$

Solamente la viscosidad dinámica del aire, μ_s , se evalúa en la temperatura superficial del grano. Las demás propiedades se evalúan en T_{∞} , que es la temperatura del aire húmedo fuera de la capa límite térmica.

El coeficiente de transferencia de calor por convección puede determinarse a partir del número de Nusselt promedio mediante la siguiente expresión:

$$\bar{h} = \frac{\bar{N}u_D k}{D_{grano}}$$
(5.2)

En la ecuación anterior, el coeficiente de conducción para el aire húmedo, k, también se evalúa en T_{∞} .

Para poder hallar \bar{h} , es necesario resolver simultáneamente las ecuaciones de transferencia de calor y las ecuaciones de movimiento. Lo anterior se debe a que el número de Nusselt depende del número de Reynolds, el que a su vez está en función de la velocidad relativa entre la partícula y la corriente de aire. En el capítulo 6 se presenta una descripción detallada de la solución a este problema mediante EES.

5.4 Transferencia de Masa.

Existen dos modos de transferencia de masa: convección y difusión. El primero es análogo a la transferencia de calor por convección y el segundo a la transferencia de calor por conducción.

Así como la transferencia de calor se debe a una diferencia de temperaturas, la transferencia de masa es ocasionada por un desequilibrio de concentraciones. En este texto, cuando se hable de concentraciones, solamente se hará referencia a dos especies, A y B, donde B es la especie en mayor proporción. La especie A normalmente es un vapor que se transfiere en un flujo de gas debido a la evaporación o sublimación de una superficie líquida o sólida, respectivamente. Así, en el caso del secado, el aire

correspondería a la especie gaseosa *B* mientras que el vapor de agua a la especie *A*.

En el secador rotativo, la masa se transfiere primordialmente por convección. La figura 5.1 muestra un sólido de superficie arbitraria A_s con una concentración superficial $C_{A,s}$, que está siendo enfrentado por una corriente de aire que se mueve a una velocidad V y que tiene una concentración $C_{A,\infty}$; la concentración de agua es un parámetro que está relacionado directamente con la humedad absoluta del aire.

FIGURA 5.1 TRANSFERENCIA DE MASA

Asumiendo que la concentración de vapor de agua en la superficie líquida es mayor que la concentración de vapor de agua en la corriente de aire, la transferencia de masa por unidad de área diferencial está dada por

$$N_{A}^{"} = h_{m} (C_{A,s} - C_{A,\infty})$$
 (5.3)

Donde h_m es el coeficiente puntual de transferencia de masa por convección. Las unidades de las variables presentadas anteriormente son

$$\{N_A^{"}\} = \left\{\frac{kmol}{s \cdot m^2}\right\}$$
$$\{h_m\} = \left\{\frac{m}{s}\right\}$$

$$\{C_{A,s}\} = \{C_{A,\infty}\} = \left\{\frac{kmol}{m^3}\right\}$$

Si se integra el coeficiente puntual de transferencia de masa en toda la superficie A_s , se obtiene lo siguiente:

$$N_A = \bar{h}_m A_s (C_{A,s} - C_{A,\infty})$$
(5.4)

Donde

$$\bar{h}_m = \frac{1}{A_s} \int_{A_s} h_m \, dA_s$$

Al multiplicar la ecuación 5.4 por el peso molecular de la especie *A*, se obtiene

$$n_A = \bar{h}_m A_s (\rho_{A,s} - \rho_{A,\infty}) \tag{5.5}$$

Esta última expresión tiene mayor valor para el lenguaje de uso común, ya que al trabajar con las densidades de *A*, tanto para la superficie líquida como para la región fuera de la capa límite, n_A está dada directamente en kg/s.

La cantidad n_A representa la tasa de evaporación de agua desde una sola partícula. Para conocer la tasa total de evaporación, es necesario establecer el flujo de partículas que pasa por el secador. Si la densidad y masa del grano seco son ρ_{gs} y m_{gs} respectivamente, y la humedad inicial del producto es X_1 , la masa del grano a la entrada del secador se puede estimar como sigue:

$$m_{grano} = \frac{m_{gs}}{1 - X_1} = \frac{\rho_{gs} \cdot V_{grano}}{1 - X_1}$$
(5.6)

Donde

$$V_{grano} = \frac{4}{3} \pi \left(\frac{D_{grano}}{2}\right)^3$$

Si el flujo másico de producto húmedo antes del secado es \dot{m}_p , el flujo de partículas atravesando cualquier sección del secador está dado por

$$\dot{N}_{partículas} = \frac{\dot{m}_p}{m_{grano}} \qquad \left[\frac{unidades}{s}\right]$$
(5.7)

La ecuación anterior es equivalente a

$$\dot{N}_{partículas} = \frac{\dot{m}_p(1 - X_1)}{m_{grano}(1 - X_1)} = \frac{\dot{m}_s}{m_{gs}} = cte$$

Parte de la estrategia consiste en discretizar el análisis de movimiento, transferencia de calor y masa en intervalos de tiempo fijos. Así, la cantidad de agua transferida por una partícula en cada intervalo de tiempo sería

$$m_w = n_A (t_2 - t_1)$$
(5.8)

Donde $t_2 - t_1 = paso$ es una cantidad constante. Haciendo uso de la ecuación 5.7, se puede extender el resultado anterior al flujo total de partículas:

$$\dot{m}_w = m_w \times \dot{N}_{partículas} \tag{5.9}$$

La cantidad \dot{m}_w representa la tasa total de evaporación en un paso de tiempo.

De acuerdo a la ecuación 5.5, para determinar n_A es necesario conocer $\rho_{A,\infty}$, $\rho_{A,s}$ y \overline{h}_m . El primer parámetro puede ser deducido a partir de la siguiente expresión:

$$\phi_{\infty} = \frac{\rho_{A,\infty}}{\rho_{A,sat}@T_{\infty}}$$
(5.10)

En la ecuación anterior, ϕ_{∞} es la humedad relativa del aire fuera de la capa límite y $\rho_{A,sat}$ es la densidad del vapor de agua saturada evaluada a la temperatura del aire. Este valor de densidad se puede obtener fácilmente mediante el recíproco del volumen específico en la curva de vapor saturado, a la temperatura de saturación correspondiente.

Para determinar la densidad del vapor de agua en la superficie del sólido, se considerarán las siguientes suposiciones:

- Existe equilibrio termodinámico en la interfaz entre el gas y el líquido. Por ende, la temperatura del vapor en la interfaz es igual a la temperatura superficial, T_s.
- 2. El vapor se encuentra en estado saturado; por lo tanto, se pueden utilizar las tablas termodinámicas del agua para obtener la densidad a partir de T_s . Por ejemplo, de la tabla se leerá el volumen específico $v_{A,s}@T_s$, lo que lleva a $\rho_{A,s} = 1/v_{A,s}$.

Finalmente, el coeficiente promedio de transferencia de masa por convección puede obtenerse de dos maneras. La primera consiste en utilizar la correlación de Whitaker, remplazando \overline{Nu}_D y Pr con los números de Sherwood y Schmidt, \overline{Sh}_D y Sc respectivamente (20). Esta alternativa es viable siempre y cuando se cuente con tablas que contengan información sobre los parámetros correspondientes a la transferencia de masa.

La segunda alternativa, que puede resultar más conveniente, consiste en aplicar la analogía de la transferencia de calor y masa. Este método se discute a continuación.

5.5 Analogía de la Transferencia de Calor y Masa.

Si dos o más procesos están gobernados por ecuaciones adimensionales de la misma forma, se dice que los procesos son análogos (21). Las transferencias de calor y de masa por convección son análogas. Por lo tanto, las relaciones adimensionales que gobiernan el comportamiento de la capa límite térmica deben ser las mismas que las que gobiernan la capa límite de concentración. Dicho de otro modo, las relaciones de transferencia de calor y masa para una geometría particular son intercambiables.

Lo anterior se refleja en la siguiente relación:

$$\frac{\bar{h}}{\bar{h}_m} = \frac{k}{D_{AB}Le^n} = \rho c_p L e^{1-n}$$
(5.11)

En la literatura muchas veces es difícil encontrar parámetros de los fluidos relacionados con la transferencia de masa; no ocurre lo mismo con aquellas propiedades asociadas a la transferencia de calor. El resultado anterior sirve para determinar uno de los coeficientes de convección, \overline{h}_m en este caso, a partir del conocimiento del otro coeficiente, y es aplicable tanto para flujo turbulento como para flujo laminar. Para la mayor parte de las aplicaciones es razonable suponer un valor n = 1/3 (21).

El coeficiente de difusión binario, D_{AB} , es un parámetro que relaciona a la transferencia de masa por conducción con el gradiente de concentración de A en B sobre una superficie líquida o sólida (Ley de Fick); este coeficiente depende de la temperatura. En este caso, para vapor de agua en aire, D_{AB} se obtiene mediante la ecuación 5.12, proporcionada por Nellis y Klein (22).

$$D_{AB} = -2.77 \times 10^{-6} \left[\frac{m^2}{s} \right] + 4.479 \times 10^{-8} \left[\frac{m^2}{s \cdot K} \right] T_f$$

+ 1.656 × 10⁻¹⁰ $\left[\frac{m^2}{s \cdot K^2} \right] T_f^2$ (5.12)

Donde la temperatura fílmica, T_f , es el promedio entre la temperatura superficial del sólido (o envolvente líquida de agua) y la temperatura del aire de secado.

El número de Lewis, Le, se determina de la siguiente forma:

$$Le = \frac{\mu_B}{\rho_B P r_B D_{AB}}$$
(5.13)

En casi todos los problemas prácticos, la concentración de la especie *A* es mucho mayor que la concentración de la especie *B* $(C_A \gg C_B)$. Por lo tanto, es razonable suponer que las propiedades de la capa límite $(\rho, \mu, Pr, k, c_p, \text{ etcétera})$ son las propiedades de la especie *B*.

Una aplicación importante de la analogía de transferencia de calor y masa tiene que ver con el proceso de enfriamiento evaporativo, que ocurre cada vez que un gas fluye sobre un líquido.

5.6 Enfriamiento Evaporativo.

En este estudio, el proceso de secado se va a modelar como un caso de enfriamiento evaporativo. Si se analiza a todo el secador como un volumen de control, lo anterior sería equivalente a un proceso de saturación adiabática, considerando pérdidas de calor despreciables hacia el entorno.

La evaporación debe ocurrir a partir de la superficie del líquido, y la energía asociada con el cambio de fase es el calor latente de vaporización del líquido. La energía que se requiere para mantener la evaporación debe provenir de la energía interna del líquido, que entonces experimenta una disminución de temperatura. Sin embargo, en condiciones de estado estable, la energía latente perdida por el líquido debido a la evaporación debe recuperarse mediante la transferencia de energía al líquido desde los alrededores, tal como se muestra en figura 5.2 (21). Considerando que los efectos de radiación son insignificantes, esta transferencia se debe a la convección de energía sensible del aire.

FIGURA 5.2 INTERCAMBIO DE CALOR LATENTE Y SENSIBLE EN UNA INTERFAZ GAS-LÍQUIDO – COPIADO DE (21)

Si no se agrega calor por otros medios, el balance entre la transferencia de calor por convección desde el gas y la pérdida de calor evaporativo desde el líquido se expresa como

$$\bar{h}(T_{\infty} - T_s) = h_{fg}\bar{h}_m[\rho_{A,sat}(T_s) - \rho_{A,\infty}]$$

Donde la densidad de vapor en la superficie es la que se asocia con las condiciones saturadas en T_s . Por ello, la magnitud del efecto de enfriamiento se expresa como

$$T_{\infty} - T_{s} = h_{fg} \left(\frac{\bar{h}_{m}}{\bar{h}}\right) \left[\rho_{A,sat}(T_{s}) - \rho_{A,\infty}\right]$$
(5.14)

El factor \bar{h}_m/\bar{h} se obtiene a partir de la ecuación 5.14, que está basada en la analogía de la transferencia de calor y de masa.

Las ecuaciones presentadas en este apartado funcionan siempre que exista una película de agua abrigando a los sólidos. Se supone que esto es así en el caso del secador rotativo.

CAPÍTULO 6

6. IMPLEMENTACIÓN DE SOFTWARE DE ANÁLISIS DE SECADORES ROTATIVOS

En el presente capítulo se exponen cada una de las etapas de este trabajo desarrolladas en EES, dando una breve explicación de las funciones, sentencias y algoritmos utilizados.

6.1 EES (Engineering Equations Solver).

En el área de termo-fluidos, EES es una herramienta muy usada porque, aparte de su cualidad de solver, cuenta con funciones predefinidas que permiten acceder a las propiedades termodinámicas y de transporte de muchas sustancias durante la solución de ecuaciones. Además, EES toma capacidades de programación estructurada, permitiendo el uso de sentencias lógicas como *if...then...else* o *repeat...until*, que son útiles cuando se requiere ejecutar operaciones repetitivas.

Para un mejor manejo y organización en la programación, se ha dividido el problema del secador rotativo en librerías, programas, sub-programas y funciones. La figura 6.1 es un diagrama de flujo que muestra la secuencia e análisis utilizada.

FIGURA 6.1 DIAGRAMA DE FLUJO PARA EL

ANÁLISIS DE SECADORES ROTATIVOS EN ESS

6.2 Análisis Termodinámico.

Los datos de entrada o *inputs* para esta parte del análisis son las humedades de entrada y salida del producto, que pueden ser expresadas en base seca o en base húmeda, el flujo másico de producto a secar o de producto seco, la humedad relativa y temperatura del aire ambiental, la temperatura del aire a la salida del calentador, y la humedad relativa del aire después del secado. Si el análisis trata sobre un secador existente, y no se conoce alguno de estos parámetros, hay que medirlo o estimarlo de algún modo. En EES, la escritura de las variables de entrada se hace de la siguiente manera:

X_1=xxx {Humedad inicial del producto en base húmeda} X_2=xxx {Humedad final del producto en base húmeda} m_DOT_p=xxx*CONVERT(kg/h;kg/s) {Flujo másico del producto a secar} phi_1=xxx {Humedad relativa del aire ambiental} T_1=xxx {Temperatura aire ambiental} T_2=xxx {Temperatura del aire a la salida del calentador} phi_3=xxx {Humedad relativa del aire después del secado} P1=xxx*CONVERT(psi;kPa) {Presión de trabajo}

Con esta información, se ingresan las ecuaciones expuestas en el resumen presentado al final de la sección 3.3. No es necesario seguir el orden que allí se especifica; sin embargo, es aconsejable hacerlo para un mejor entendimiento.

```
m_DOT_s = (1-X_1) * m_DOT_p
DELTAm_DOT_w=m_DOT_s * (1/(1-X_1)-1/(1-X_2))
w 1=HUMRAT(AirH2O;T=T 1;P=P1;R=phi 1)
w 2=w 1
h 2=ENTHALPY(AirH2O;T=T 2;P=P1;w=w 2)
phi 2=RELHUM(AirH2O;T=T 2;P=P1;w=w 2)
h 3=h 2
T 3=TEMPERATURE (AirH2O;R=phi 3;P=P1;h=h 3)
w 3=HUMRAT(AirH2O;h=h 3;P=P1;T=T 3)
DELTAw=w_3-w_2
m DOT aire=DELTAm DOT w/DELTAw
rho_aire_3=DENSITY(AirH2O;R=phi_3;P=P1;w=w_3)
rho_aire_2=DENSITY(AirH2O;T=T_2;P=P1;w=w_2)
V_DOT_aire_out=(m_DOT_aire/rho_aire_3)*CONVERT(m^3/s;cfm)
V_DOT_aire_in=(m_DOT_aire/rho_aire_2)*CONVERT(m^3/s;cfm)
cp aire1=SPECHEAT(AirH2O;T=T 1;P=P1;R=phi 1)
cp_aire2=SPECHEAT(AirH2O;T=T_2;P=P1;R=phi_2)
cp aire=(cp aire1+cp aire2)/2
Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)
```

Los caracteres entre llaves son comentarios que ayudan a identificar cada variable o línea de programación. Las letras o números escritos después de un subguión representan el subíndice de la variable que lo precede. La palabra *DOT* seguida de un subguión indica una variación en función del tiempo. La función *CONVERT* sirve para convertir las unidades de la variable antecesora. Por ejemplo, en el caso de la variable \dot{m}_p , la función *CONVERT* arroja un factor multiplicador que sirve para transformar sus unidades de kilogramos por hora a kilogramos por segundo.

Así, hay muchas otras funciones predefinidas como HUMRAT, ENTHALPY, TEMPERATURE, DENSITY, SPECHEAT, cuyos valores de salida son obvios. Cada una de ellas, por supuesto, requiere de ciertos parámetros de entrada, colocados entre paréntesis, que hacen referencia a las condiciones o estado de la sustancia.

En total, se han planteado veintisiete ecuaciones para veintisiete variables existentes en este programa, el cual se almacena con el nombre de Análisis Termodinámico.EES.

Además del flujo másico de aire, los resultados o *outputs* también incluyen las condiciones del aire antes y después del secado, la cantidad de agua evaporada, el flujo volumétrico de aire a la entrada y salida del secador, el calor total agregado al aire en el calentador y el flujo másico de producto seco.

Con esta breve pero necesaria descripción del uso de EES, el lector podrá captar de forma más rápida la codificación presentada en las secciones posteriores, dirigiendo su concentración más hacia la lógica y estrategia de programación empleada.

6.3 Masa de Producto en las Paletas en Función del Tiempo.

Este análisis toma lugar en la sección transversal del tambor. De acuerdo a lo desarrollado en el capítulo 4, el área transversal de la cama de partículas transportada por una paleta está en función del ángulo dinámico de reposo, de la geometría de la paleta y de su posición angular.

El objetivo de cuantificar la cantidad de material en las paletas en función del tiempo es poder estimar el ángulo representativo y la altura promedio de caída de las partículas.

Para ello, se ha creado una función en EES cuyo nombre es $masa(\theta)$. Esta función puede ser almacenada en la librería de EES como un archivo de tipo *.LIB*. La ventaja de hacerlo de esta forma es que, así como cualquier otra función predefinida (*ENTHALPY* por ejemplo), ésta puede ser llamada o utilizada desde cualquier otro programa con extensión *.EES*.

Las funciones son generadas en la pantalla de trabajo habitual de EES, en cuya primera línea debe necesariamente aparecer la palabra *FUNCTION* seguida del nombre de la función y de la variable independiente entre paréntesis; la estructura finaliza con la palabra *END*:

```
FUNCTION masa(theta)
.
.
END
```

A diferencia del formato utilizado en *Análisis Termodinámico.EES*, aquí es obligatorio que las líneas de código posean un orden lógico y, además, las ecuaciones ingresadas deben ser expresadas de forma explícita, es decir, deben empezar con una variable seguida del signo igual.

A continuación se detallan los inputs de la función $masa(\theta)$:

```
FUNCTION masa(theta)
  "DATOS GEOMÉTRICOS Y CINEMÁTICOS"
  l 1=xxx
                 {Longitud del labio}
  1_2=xxx
                  {Longitud de la base de la paleta}
  alpha_A=xxx
                 {Ángulo entre segmentos de paleta}
  d=1
                  {Ancho de la paleta}
  gamma=0
                 {OFFSET}
                  {Radio del tambor}
  R=xxx
  omega=xxx*CONVERT(rpm;rad/s) {Velocidad de giro del tambor}
                             {Aceleración de la gravedad}
  g=9,81
  "DATOS DEL MATERIAL"
  mu=xxx
                        {Coeficiente de fricción dinámico}
  rho BULK=xxx
                       {Densidad al granel promedio}
  {...CONTINÚA...}
```

Los datos geométricos incluyen las dimensiones de la paleta y el radio o diámetro interior del tambor. En este caso se ha tomado el ejemplo de una paleta conformada por dos segmentos, base y labio. Algunos investigadores han desarrollado procedimientos geométricos para trabajar con paletas de tres o más segmentos, y paletas de sección circular inclusive (17). Lo único que cambia es la manera de determinar el área transversal de la cama de material.

El coeficiente de fricción dinámico y la densidad al granel son las únicas propiedades del producto que intervienen en esta parte del análisis.

El coeficiente de fricción dinámico es una medida de la fluidez entre capas adyacentes de producto. Este coeficiente se introduce en la ecuación 4.1 para hallar el ángulo dinámico de reposo. No obstante, la ecuación deducida por Schofield y Glikin es válida solamente para materiales no pegajosos que poseen buena fluidez (9). Aquí surge la interrogante de cómo saber si un material determinado cumple con estas características, o hasta qué punto las satisface. Una forma es ejecutando ensayos similares al de la figura 4.11.

Básicamente, la prueba consiste en hacer girar un tambor con producto en su interior. El ensayo se realiza generalmente a diferentes niveles de humedad, velocidades angulares, diámetros de tambor, y tamaños de partícula. Este último parámetro de control sirve para ver el efecto que tiene la compactación del producto sobre el ángulo dinámico de reposo.

A medida que el tambor gira, se toman fotografías consecutivas de la sección transversal y se las envía a una computadora para medir

135

el ángulo dinámico de reposo en cada posición angular de la paleta. Luego, se introducen estos valores en la ecuación 4.1 y se determina el coeficiente de fricción dinámico en cada caso. Si este coeficiente resulta ser aproximadamente constante, entonces el material dado satisface la relación de Schofield y Glikin. Por otro lado, si existe una alta variabilidad en los resultados, simplemente se concluye que el material no posee la fluidez suficiente. En ese caso, la ecuación 4.1 y el coeficiente de fricción dinámico son descartados del análisis y, en su lugar, se ingresa como valor de entrada el ángulo dinámico de reposo.

El ángulo dinámico de reposo depende fuertemente del contenido de humedad en el producto más que de cualquier otro parámetro (11) (12). También se ha identificado que este ángulo es aproximadamente constante para cualquier posición angular de paleta (7). Para materiales que fluyen de manera errática y en forma de grumos, siempre es importante conocer la variación del ángulo de reposo en función del contenido de humedad, previo al análisis de desempeño del secador rotativo. Aquí se recomienda graficar el ángulo dinámico de reposo con respecto al contenido de humedad, en base a pruebas experimentales, y a partir de allí establecer una relación o regla de correspondencia que pueda ser utilizada en la programación. Si la diferencia entre los niveles de humedad a la entrada y salida del secador es pequeña, un promedio sería suficiente. También puede ocurrir que la aleatoriedad de los resultados, debido al carácter pegajoso del producto, no permita establecer una relación precisa entre el ángulo dinámico de reposo y su contenido de humedad. Es muy importante que cada material sea evaluado en cuanto a su calidad de fluidez antes de empezar el análisis de secado.

Otra propiedad que depende de la humedad en los sólidos es la densidad aparente. Si se desea conocer la masa de material en la paleta, entonces la densidad al granel es importante. Sin embargo, no debe perderse de vista que lo que se está determinando realmente es un área transversal de material que varía de acuerdo a la posición angular. El único parámetro que interviene en esta variación es el ángulo dinámico de reposo, mas no la densidad aparente.

Para estimar la masa en la paleta, lo que se hace es multiplicar el área transversal de la cama de material, asumida uniforme, por la profundidad o ancho de paleta para obtener el volumen. Luego, se multiplica dicho volumen por la densidad al granel y se obtiene un estimado de la masa instantánea de producto. Sea que se calcule la masa de material o no, el ángulo representativo y la altura promedio de caída dependen única y exclusivamente de la tasa de variación de área de la cama de material en la paleta. Dicho de otra manera, para este análisis no importa si se conoce o no el ancho de paleta ni la densidad al granel, siempre y cuando se tenga claro cómo varía el ángulo dinámico de reposo en las diferentes secciones del tambor.

En este trabajo se utilizará un ancho de paleta unitario. Es decir, lo que la función $masa(\theta)$ arrojará realmente es una masa por unidad de longitud de paleta. Se pudo haber trabajado solamente con el área, pero se prefirió hacerlo de esta manera para no perder de vista el sentido físico del problema. De una u otra manera, los resultados referentes a la altura promedio de caída serían los mismos.

Una vez aclarados los puntos relacionados con las variables de entrada de la función $masa(\theta)$, se puede presentar ahora el código correspondiente a las ecuaciones de la sección 4.1. Para el caso de un material que obedece la relación de Schofield y Glikin, se tiene

```
{...CONTINUACIÓN...}
phi=arctan((mu+(R*omega^2/g)*(cos(theta)-mu*sin(theta)))/(1-
(R*omega^2/g)*(mu*cos(theta)+sin(theta))))
x A=l 1
y_A=0
x_B=l_1-l_2*cos(alpha_A)
y B=l 2*sin(alpha A)
  IF (phi+delta>arctan(y B/x B)) THEN
         X O g=R O*cos(theta)
        Y O g=R O*sin(theta)
         a=(tan(phi))^2+1
        b=2*tan(phi)*(Y_0_g-X_0_g*tan(phi))
         c=(X O g*tan(phi))^2-2*X O g*Y O g*tan(phi)+Y O g^2-R^2
        X W g=(-b+SQRT(b^2-4*a*c))/(2*a)
         Y W g=SQRT(R^2-X W g^2)
         y_W=Y_W_g*cos(delta)+X_W_g*sin(delta)-R_O*sin(theta+delta)
         x_W = (R_0*sin(theta)+y_W*cos(delta)-Y_W_g)/sin(delta)
        beta=phi+delta-arctan(y B/x B)
         OW=SQRT(x_W^2+y_W^2)
        A 1=0,5*1 1*1 2*sin(alpha A)
        A 2=0, 5*OB*OW*sin(beta)
        AREA=A 1+A 2
  ENDIF
  IF (phi+delta<=arctan(y_B/x_B)) THEN
         x P=(l 1*tan(alpha A))/(tan(phi+delta)+tan(alpha A))
         y_P=-tan(alpha_A)*(x_P-l_1)
        AP=SQRT((x P-1 1)^2+y P^2)
        AREA=0,5*1 1*AP*sin(alpha A)
         IF (phi+delta<=0) THEN
               AREA=0
         ENDIF
  ENDIF
  V=AREA*d
                           {Volumen de material en la paleta}
  masa=rho_BULK*V
                           {Masa de material en la paleta}
END
```

Si se tratase de un material que no obedece la relación de Schofield y Glikin, simplemente se remplaza la primera línea de código por

phi=phi_0

donde ϕ_0 es una constante igual al ángulo dinámico de reposo promedio en la sección. Este valor debe ser hallado experimentalmente para cada producto.

Como se mencionó previamente en el capítulo 4, existen dos etapas en el vaciado de las paletas: material en contacto con paleta y tambor, y material en contacto con paleta solamente. Otra etapa que está implícita es aquella en la que la paleta está completamente vacía. Para diferenciar, o más bien detectar, cada una de estas etapas en el programa, se han utilizado condicionales *IF* que evalúan el valor del ángulo $\phi + \delta$. Estas condiciones fueron oportunamente deducidas en el capítulo 4.

Para conocer el ángulo de vaciado de la paleta, se ha diseñado otra función muy simple en un programa llamado *theta_vaciado.EES*. Esta función consta de un contador *i* que varía grado a grado el valor de θ , evaluando la función $masa(\theta)$ hasta que su output sea igual a cero. En ese momento, el ángulo de vaciado, $\theta_{vaciado}$, toma el valor de la variable contadora *i*. Para ejecutar este procedimiento
se ha utilizado el lazo de repetición *REPEAT UNTIL*, tal como se detalla a continuación.

```
FUNCTION theta_vaciado(theta_0)
    i=theta_0
    REPEAT
        m_paleta=masa(i)
        i=i+1
    UNTIL m_paleta=0
    theta_vaciado=i-1
END
theta_0=0
theta_vaciado=theta_vaciado(theta_0)
```

La variable de entrada, θ_0 , es el ángulo donde inicia la caída de material desde la paleta y coincide con el ángulo que optimiza a la función área, es decir, es el ángulo en el cual la cantidad de material en la paleta es máxima. Al derivar la función de área con respecto a θ e igualar el resultado a cero, se encontrará que $\theta_0 = 0$.

Es muy importante actualizar los datos de la función $masa(\theta)$ para cada tipo de secador y material con que se trabaje. Dado que esta función se almacena en la librería de funciones de EES, cuya ubicación no está a simple vista del usuario, puede ser un error común actualizar los datos de entrada de todos los programas y olvidar actualizar los de esta función en particular.

6.4 Ángulo Representativo y Altura Promedio de Caída.

Esta sección se enfoca principalmente en la evaluación de las ecuaciones 4.4 y 4.5. La primera estima el ángulo representativo y la segunda la altura promedio de caída.

Como de costumbre, el programa *Altura promedio de caída.EES* inicia con la declaración de las variables de entrada:

"DATOS DE ENTRADA"	
l_l=xxx	{Longitud de labio}
1_2=xxx	{Longitud de paleta}
alpha_A=xxx	{Ángulo entre segmentos de paleta}
gamma=xxx	{OFFSET}
R=xxx	{Radio del tambor}
omega=xxx*CONVERT(rpm;rad/s)	{Velocidad angular del tambor}
theta_vaciado=xxx	{Ángulo de vaciado}
DELTAtheta=1/xxx	{Step angular en grados}
{CONTINÚA}	

El ángulo de vaciado se calcula en el programa *theta_vaciado.EES*. La variable $\Delta\theta$ representa el paso angular para la integración numérica que toma lugar en la ecuación 4.5; por supuesto, mientras más pequeño sea el valor de $\Delta\theta$, más preciso será el resultado arrojado por esta ecuación.

En este caso, para determinar el ángulo de caída representativo de un ciclo o revolución de tambor, se utilizó un conjunto de arreglos mediante el comando *DUPLICATE*, formulado como sigue:

```
{...CONTINUACIÓN...}
div=1/DELTAtheta
N=theta_vaciado*div
theta[0]=0
f[0]=0
producto[0]=0
theta_BAR[0]=0
DUPLICATE i=0;N
   theta[i+1]=theta[i]+DELTAtheta
   f[i+1]=(masa(i/div)-masa((i+1)/div))/masa(0)
   producto[i+1]=f[i+1]*theta[i+1]
   theta_BAR[i+1]=theta_BAR[i]+producto[i+1]
END
theta_BAR=theta_BAR[N]
{...CONTINÚA...}
```

En el código anterior, N representa el número de filas en cada arreglo y div es el número de divisiones que existen en un grado (es el inverso del paso angular). En total se han definido cuatro arreglos:

- $\theta[i] =$ ángulo correspondiente a la posición *i*;
- *f*[*i*] = fracción de partículas que han abandonado la paleta entre θ[*i*] y θ[*i* - 1];
- producto[i] = producto entre las variables θ[i] y f[i];
- $\bar{\theta}[i]$ = variable acumuladora o sumatoria de productos.

El valor final de $\bar{\theta}$, o sea $\bar{\theta}[N]$, es el ángulo representativo de toda la caída de sólidos. Nótese que el comando *DUPLICATE* es una abreviación de *REPEAT UNTIL*.

Una vez estimado el ángulo representativo de la caída, se procede a utilizar la ecuación 4.6 para determinar la altura promedio de caída, que no es más que la altura de caída correspondiente al ángulo previamente calculado. Para ello, se sigue el siguiente procedimiento:

```
{...CONTINUACIÓN...}
OB=SQRT(1_1^2+1_2^2-2*1_1*1_2*cos(alpha_A))
alpha_B=arcsin(1_1*sin(alpha_A)/OB)
R_O=SQRT(OB^2+R^2-2*OB*R*cos(gamma+alpha_B))
X_O_g=R_O*cos(theta_BAR)
Y_O_g=R_O*sin(theta_BAR)
Y_BAR=(Y_O_g+SQRT(R^2-X_O_g^2))
```

La variable R_o es la distancia desde la punta del labio de la paleta hacia el centro del tambor (u origen del SCG). Por otro lado, $X_{o,g}$ y $Y_{o,g}$ representan las coordenadas globales no rotatorias de la punta del labio. Se añadió el subíndice g a las variables anteriores para diferenciarlas de x_o y y_o , que son las coordenadas del mismo punto en el SCL; EES no es *case sensitive* (no diferencia entre mayúsculas y minúsculas).

Aquí finaliza el programa *Altura promedio de caída.EES*. Hasta el momento, todos los esfuerzos perpetrados en este capítulo han sido dirigidos exclusivamente a la determinación de \overline{Y} , que es uno de los datos de entrada para los programas de secado a desarrollarse en las secciones siguientes.

6.5 Secado en Flujo Paralelo.

En esta sección se resuelven de forma simultánea los problemas de transporte, transferencia de calor y transferencia de masa para una partícula que es *representativa* de todo el flujo de producto.

La estrategia consiste en suponer que una partícula cae desde una altura igual a \overline{Y} con una velocidad inicial nula. A medida que ésta desciende por gravedad, se calcula la transferencia de calor y de masa generada por la interacción con la corriente de aire caliente, cuya velocidad es determinada a partir de sus propiedades, flujo másico y diámetro del tambor. Simultáneamente, se resuelven las ecuaciones de movimiento que definen la trayectoria de la partícula, influenciada a su vez por el arrastre del aire.

Se asume que, al final de la caída, la partícula choca de forma inelástica con el fondo del tambor, donde es inmediatamente recogida por otra paleta para repetir el ciclo de ascenso y caída.

El programa principal, denominado *Secado en Flujo Paralelo.EES*, luce tal como se muestra en la parte inferior. Aquí se declaran las variables de entrada y se ejecuta la función $L_{secador}$.

X_1=xxx	{Humedad inicial de la partícula en base			
húmeda}				
X_2=xxx	{Humedad final de la partícula en base húmeda}			
T_s=xxx	{Temperatura inicial de la partícula, C}			
rho_grano_seco=xxx	{Densidad del grano seco, kg/m3}			
D_grano=xxx	{Diámetro promedio de grano, m}			
<pre>m_DOT_p=xxx*CONVERT(kg/h;kg/s){Flujo másico del producto a secar}</pre>				
m_DOT_aire=xxx	{Flujo másico de aire, kg/s}			
T_2=xxx	{Temperatura del aire antes del secado, C}			
phi_2=xxx	{Humedad relativa del aire antes del secado}			
P1=xxx*CONVERT (atm; k)	Pa) {Presión de trabajo, kPa}			
R=xxx	{Radio del tambor, m}			
alpha=xxx	{Inclinación del tambor, °}			
Y_BAR=xxx	{Altura promedio de caída, m}			
step=xxx	{Paso en el tiempo, s}			
L_secador=L_secador(2	<pre>K_1;X_2;T_s;rho_grano_seco;D_grano;m_DOT_p;</pre>			
m_DOT_aire;T_2;phi_2,	R;alpha;Y_BAR;step)			

Los parámetros X_1 y X_2 corresponden al contenido de humedad del producto antes y después del secado. En este caso, estos valores se expresan en base húmeda y son los mismos que se utilizaron para el análisis termodinámico efectuado en el apartado 6.2. Se asume que el contenido de humedad de la partícula es igual al del producto que se desplaza en el secador en el mismo instante.

El siguiente valor de entrada es la temperatura superficial inicial de la partícula, T_s . En realidad, este es un valor referencial solamente. Puede omitirse del programa sin generar consecuencias sobre los resultados finales. En este trabajo particularmente, se supuso que la transferencia de calor sensible que ganan los sólidos, antes de que su superficie llegue a la temperatura inicial de evaporación, ocurre en un pequeño tramo de cilindro que se asume despreciable. En otras palabras, el análisis se efectuará considerando que hay un salto escalón de temperatura superficial en el producto a la entrada del secador, el cual va desde su temperatura antes del secado, que no necesariamente es la temperatura ambiente, a su temperatura inicial de evaporación. De este modo, se supone que todo el proceso en el interior del secador es netamente evaporativo.

La densidad del grano seco es importante porque permitirá estimar la masa de la partícula cuando el contenido de humedad en la misma es cero. Esta densidad es la densidad de un grano individual, mas no la densidad al granel o aparente.

El diámetro promedio de grano se calcula de acuerdo a la distribución de tamaños determinada a partir del cribado de las partículas. Como se mencionó en su momento, se trabajará bajo la suposición de que la partícula es esférica y que su diámetro es constante durante el secado. El diámetro promedio de grano no solamente sirve para determinar el volumen de la partícula y con ello su masa, sino también para estimar el número de Reynolds y posteriormente el coeficiente de transferencia de calor a partir del número de Nusselt.

El flujo másico de producto a secar es el flujo de producto húmedo antes de su ingreso al secador. No debe confundirse ni con el flujo de producto seco ni con el flujo másico que se obtiene a la salida del secador. En este caso, el flujo de producto húmedo se utiliza para estimar el flujo de partículas, en unidades/segundo, que pasan por el secador bajo circunstancias estables; este cálculo se realiza mediante las ecuaciones 5.6 y 5.7.

El flujo másico de aire, \dot{m}_{aire} , y sus propiedades a la salida del calentador, T_2 y ϕ_2 , se determinan mediante el programa *Análisis Termodinámico.EES*. Se considera que el flujo másico de aire es constante durante su paso por el secador, y se utiliza para determinar su velocidad en cada sección a partir del área transversal y de su densidad, la que a su vez depende de la temperatura, humedad relativa (o absoluta), y de la presión de trabajo, que en este caso se considera constante e igual a la presión barométrica. Las propiedades del aire se actualizan a medida que éste va extrayendo la humedad de los sólidos.

Los únicos parámetros geométricos del secador que intervienen en esta parte del análisis son el radio interior del tambor, R, y su inclinación con respecto a la horizontal, α . El segundo tiene

influencia directa sobre el avance del producto en el interior del cilindro.

La altura de caída promedio, \overline{Y} , se obtiene del programa Altura promedio de caída. EES. En este caso particular, se ha considerado una altura de caída constante a lo largo del secador. Sin embargo, hay ocasiones en que no se tienen paletas de igual geometría en toda la longitud del secador, o que el ángulo dinámico de reposo del producto presenta variaciones considerables entre los niveles de humedad de entrada y salida. En esos casos, habría que considerar una altura promedio de caída variable durante la ejecución del programa; más establecer lo simple es una regla de correspondencia que relacione la altura promedio de caída con el contenido de humedad del producto.

Finalmente, el *step* es el paso temporal en segundos. El step se utiliza en la discretización de los cálculos; mientras más pequeño es su valor, la precisión en los resultados incrementa.

El programa principal está constituido por una función llamada $L_{secador}$, la que a su vez contiene a un sub-programa denominado *SECADO*. Ambos poseen con sus propios valores de entrada y salida.

En el caso de la función $L_{secador}$, sus valores de entrada son los mismos que se describieron anteriormente para *Secado en Flujo Paralelo.EES*; su único valor de salida es la longitud del secador en metros. Esta función debe escribirse a partir de la primera línea en la pantalla principal de EES, detallando entre paréntesis todas las variables de entrada necesarias para su ejecución.

La función L_{secador} consta básicamente de dos lazos repetitivos anidados. El lazo principal se encarga de encerar el estado de la partícula, es decir, llevarla a sus condiciones iniciales de caída, y preguntar si ésta ha alcanzado el contenido de humedad deseado. El lazo secundario, el cual está "metido" dentro del principal, tiene como función evaluar punto a punto el movimiento, transferencia de masa y de calor, y propiedades del aire y de la partícula, cuando esta última se encuentra en su trayectoria de vuelo. Este lazo finaliza cuando la partícula se ha desplazado verticalmente una cantidad igual a \overline{Y} . Por otro lado, el lazo de repetición principal termina cuando la partícula ha alcanzado el nivel de humedad requerido. En ese instante, la función L_{secador} es dada por concluida, arrojando como resultado la longitud de secador que resulta de la suma de los desplazamientos consecutivos de la partícula en la dirección del eje longitudinal del tambor. El código que corresponde a la función $L_{secador}$ se presenta a continuación:

```
FUNCTION L_secador(X_1;X_2;T_s;rho_grano_seco;D_grano;m_DOT_p;
m_DOT_aire;T_2;phi_2;P1;R;alpha;Y_BAR;step)
```

Vol grano=(4/3)*pi*(D grano/2)^3 {Volumen del grano, m3} A s=4*pi*(D grano/2)^2 {Superficie del grano, m2} m_grano_seco=rho_grano_seco*Vol_grano {Masa del grano seco, kg} m grano=m grano seco/(1-X 1) {Masa inicial del grano húmedo, kg} cont agua=m grano-m grano seco {Contenido inicial de agua, kg} N DOT partículas=m DOT p/m grano {Flujo de partículas, UND/S} q=9,81 {Aceleración de la gravedad, m/s2} {Area transversal del tambor, m2} A trans=pi*R^2 h_2=ENTHALPY(AirH2O;T=T_2;P=P1;R=phi_2) w_2=HUMRAT(AirH2O;T=T_2;P=P1;R=phi_2) rho 2=DENSITY(AirH2O;T=T 2;P=P1;R=phi 2) V DOT 2=m DOT aire/rho 2 {Flujo volumétrico de aire, m3/s} L secador=0 {Variable acumuladora "Longitud de secador", m} i=1

REPEAT

t 1=0 t2=step V z 0=0 {Velocidad inicial de la partícula en "Z"} V y 0=0 {Velocidad inicial de la partícula en "Y"} h BAR=0 {Coef. inicial de T.C., W/m2-K} h BAR m=0 {Coef. inicial de T.M., m/s} z 0=0 y 0=0 lookup('Lookup 1';i;1)=L secador lookup('Lookup 1';i;2)=Y ac lookup('Lookup 1';i;3)=X 1 lookup('Lookup 1';i;4)=T s lookup('Lookup 1';i;5)=phi 2 lookup('Lookup 1';i;6)=T 2 lookup('Lookup 1';i;7)=V DOT 2 lookup('Lookup 1';i;8)=h BAR lookup('Lookup 1';i;9)=h BAR m i=i+1 REPEAT CALL SECADO (phi 2;w 2;h 2;T 2;D grano;m grano; m DOT aire; N DOT partículas;R;alpha;P1;g;V y 0;

V_z_0;z_0;y_0;A_trans;A_s;t_1;t2 : m_DOT_w;m_w;T_s; h_BAR_m;h_BAR;V_z;V_y;z;y)

```
w_2=w_2+m_DOT_w/m_DOT_aire
            T_2=TEMPERATURE(AirH2O;h=h_2;P=P1;w=w_2)
            phi 2=RELHUM(AirH2O;T=T 2;P=P1;w=w 2)
            rho aire=DENSITY(AirH2O;T=T aire;P=P1;w=w aire)
            V_DOT_2=m_DOT_aire/rho_2
            cont agua=cont agua-m w
            m_grano=m_grano-m_w
            X 1=cont agua/m grano
            L secador=L secador+(z-z 0)
            Y ac=Y_ac-(y-y_0)
            lookup('Lookup 1';i;1)=L secador
            lookup('Lookup 1';i;2)=Y_ac
            lookup('Lookup 1';i;3)=X 1
            lookup('Lookup 1';i;4)=T s
            lookup('Lookup 1';i;5)=phi_2
            lookup('Lookup 1';i;6)=T 2
            lookup('Lookup 1';i;7)=V_DOT_2
            lookup('Lookup 1';i;8)=h BAR
            lookup('Lookup 1';i;9)=h_BAR_m
            t_1=t2
            t2=t2+step
            V_Y_0=V_Y
            V z O=V z
            z = 0 = z
            y_0=y
            i=i+1
      UNTIL Y_ac<=0
UNTIL X 2>=X 1
```

Una vez declarada la función, y antes de entrar a los lazos de repetición, se ponen a punto todos aquellos parámetros necesarios para empezar la ejecución de la misma. En este caso, se desea conocer la masa inicial del grano o partícula, su contenido inicial de humedad, el área superficial del grano (este parámetro se asume constante durante el análisis), flujo de partículas, la sección

END

transversal del tambor, y las condiciones iniciales del aire. De allí se escriben las propiedades iniciales del aire y se inicializan las variables $L_{secador}$, que es un acumulador de los desplazamientos de la partícula en la dirección *Z*, e *i*, que es un índice o contador que permitirá llevar un registro y orden de cada paso consecutivo en el tiempo.

El primer lazo de repetición define el estado de la partícula cuando ésta se encuentra a punto de iniciar la caída, o el ciclo de secado. Al hablar del estado inicial de la partícula, se hace referencia principalmente a su posición vertical, $Y_{ac} = \overline{Y}$, velocidad inicial, $V_{Z,0} = V_{Y,0} = 0$, y coeficientes de transferencia de calor y de masa, $\overline{h} = \overline{h}_m = 0$. Aquí se incluyen todas las variables que deben ser reseteadas al inicio de cada ciclo. No se incluye, por ejemplo, el contenido de humedad de la partícula o su posición horizontal relativa al secador, dada por $L_{secador}$.

Las variables t_1 y t_2 definen el intervalo de tiempo en el que va a tomar lugar el análisis correspondiente al lazo repetitivo secundario. Por otro lado, z_0 y y_0 son variables que servirán para calcular los desplazamientos horizontal y vertical de la partícula en cada intervalo de tiempo. Para llevar un registro o historia de la variación de parámetros, los resultados arrojados por cada variable son almacenados en una tabla de tipo *LOOKUP*. Esta tabla se llena automáticamente durante la ejecución del programa principal. Al final, el usuario puede escoger cualquier par de variables y graficarlas en EES para tener una mejor visión de lo que está ocurriendo con el modelado del secador. En este caso, las variables que se seleccionaron para mostrar son las que se detallan en el código anterior, donde el índice *i* hace referencia al número de fila y el número ubicado inmediatamente a la derecha especifica el número de columna.

Una vez definido el estado inicial de la partícula, se da comienzo al ciclo de secado (o caída de la partícula) que toma lugar en el segundo lazo de repetición. En la primera línea de este lazo se hace un llamado o *CALL* al subprograma *SECADO*, el cual se presenta al final de esta sección. Este subprograma posee variables de entrada, en azul, y variables de salida, en rojo. La ventaja de un subprograma sobre una función, es que el primero permite trabajar con múltiples variables de resultado; la función puede tener varias entradas pero solo una variable de salida.

Para poder actualizar tanto las propiedades del aire como las de la partícula, es necesario obtener del subprograma *SECADO* el valor

resultante de los siguientes parámetros: el flujo másico total de agua evaporada entre t_1 y t_2 , \dot{m}_w , el agua evaporada por la partícula entre t_1 y t_2 , m_w , y la velocidad y coordenadas de la partícula en Z y en Y en el instante t_2 , o sea, V_z , V_Y , z y y.

El resto de variables de salida que aparecen en la declaración del subprograma (\bar{h} , \bar{h}_m y T_s) pueden ser omitidas sin problema; no tienen influencia alguna sobre la corrección de propiedades ya que el subprograma las calcula automáticamente en cada corrida. En este caso particular, se han incluido por fines informativos y de análisis; solo se desea conocer cuál es su variación a lo largo del secador. Si lo desea, el usuario puede dar seguimiento a la evolución de cualquier variable que se haya definido ya sea en el programa principal, en la función, o en el subprograma; solo es cuestión de incluirla en la tabla lookup.

Una vez obtenidos los valores de las variables de resultado requeridas, se corrigen las propiedades psicrométricas del aire, el contenido de agua y la masa total de la partícula rastreada. Todos estos valores son almacenados en una nueva fila de la tabla lookup para su posterior visualización. Al final, se "prepara" al lazo repetitivo para continuar con el análisis en el siguiente intervalo de tiempo. El procedimiento anterior se repite hasta que la partícula toca el fondo del tambor, o sea, $Y_{ac} = 0$. En ese instante, se plantea la pregunta de si la partícula ha alcanzado o no el nivel de humedad deseado. De ser negativa la respuesta, se repite el ciclo de secado, es decir, la partícula es inmediatamente recogida por una paleta y llevada a su posición inicial de caída.

Una vez que la partícula alcanza el nivel de humedad requerido, se da por finalizado el lazo repetitivo principal y, en seguida, la función $L_{secador}$ arroja como resultado la suma final de todos los desplazamientos en Z de la partícula. Otro resultado importante, por supuesto, es la tabla lookup que muestra la evolución de los parámetros durante el proceso de secado.

El subprograma *SECADO* es el que se encarga de realizar el "trabajo sucio", puesto que es el que resuelve de forma simultánea los problemas de movimiento, transferencia de calor y de masa. Es un programa típico de EES donde el número total de ecuaciones debe coincidir con el número de incógnitas existentes. El subprograma puede ser llamado, ya sea desde el programa principal o desde la función, cuantas veces se requiera, mediante el uso de la sentencia *CALL*. A continuación se presenta su desarrollo.

SUBPROGRAM SECADO (phi_2;w_2;h_2;T_2;D_grano;m_grano;m_DOT_aire; N_DOT_partículas;R;alpha;P1;g;V_y_0;V_z_0;z_0;y_0;A_trans;A_s;t_1; t2 : m_DOT_w;m_w;T_s;h_BAR_m;h_BAR;V_z;V_y;z;y)

T_f=(T_2+T_s)/2 {Temperatura filmica} C_D=32,628*abs(rho_B*(V_2-V_z)*D_grano/mu_B)^(-0,646) C_L=32,628*abs(rho_B*V_y*D_grano/mu_B)^(-0,646)

{INTEGRACIÓN PARA DETERMINAR LA COMPONENTE "Z" DE LA VELOCIDAD ABS DE LA PARTÍCULA en t=t2}

```
m_grano*dV_zdt=m_grano*g*sin(alpha)+0,5*rho_B*C_D*(V_2-
V_z)^2*(pi*(D_grano/2)^2)
V_z=V_z_0+integral(dV_zdt;Time;t_1;t2)
```

{INTEGRACIÓN PARA DETERMINAR LA COMPONENTE "Y" DE LA VELOCIDAD ABS DE LA PARTÍCULA en t=t2}

m_grano*dV_ydt=m_grano*g*cos(alpha) 0,5*rho_B*C_L*V_y^2*(pi*(D_grano/2)^2)
V_y=V_y_0+integral(dV_ydt;Time;t_1;t2)

{INTEGRACIÓN PARA DETERMINAR LA COORDENADA "Z" DE LA PARTÍCULA
en t=t2}
z=z 0+integral(V z;Time;t 1;t2)

{INTEGRACIÓN PARA DETERMINAR LA COORDENADA "Y" DE LA PARTÍCULA
en t=t2}
y=y 0+integral(V y;Time;t 1;t2)

{DETERMINACIÓN DE LA VELOCIDAD RELATIVA ENTRE EL AIRE Y LA PARTÍCULA}

V_DOT_2=m_DOT_aire/rho_2 {Flujo volumétrico de aire} V_2=V_DOT_2/A_trans {Velocidad del aire} V_rel=SQRT((V_2-V_z)^2+V_y^2) {Velocidad relativa entre el grano y el aire}

{Balance de energía}

h_BAR*(T_2-T_s)=h_fg*h_BAR_m*(rho_A_sat-rho_A_INFINITY) h_f=ENTHALPY(Water;T=T_s;X=0)*CONVERT(KJ/kg;J/kg) h_g=ENTHALPY(Water;T=T_s;X=1)*CONVERT(KJ/kg;J/kg)

```
h_fg=h_g-h_f {Calor latente de vaporización @ T_s}
rho_A_sat=DENSITY(Water;T=T_s;X=1)
rho_A_infinity=phi_2*DENSITY(Water;T=T_2;X=1)
```

{Evaluación de NUSSELT mediante la correlación de Whitaker. Todas las propiedades, excepto mu s se evalúan a T 2.}

NUSSELT_BAR_D=2+(0,4*Re_D^(1/2)+0,06*Re_D^(2/3))*Pr_2^0,4* (mu_2/mu_2_s)^(1/4) {Correlación de Whitaker} NUSSELT_BAR_D=h_BAR*D_grano/k_2 {Determinación del coef. de T.C} Re_D=(rho_2*V_rel*D_grano)/mu_2 {Número de Reynolds} rho_2=DENSITY(AirH2O;T=T_2;P=P1;w=w_2) mu_2=VISCOSITY(AirH2O;T=T_2;P=P1;w=w_2) mu_2_s=VISCOSITY(AirH2O;T=T_s;P=P1;w=w_2) Pr_2=PRANDTL(Air;T=T_2) k_2=CONDUCTIVITY(AirH2O;T=T_2;P=P1;w=w_2)

{Analogía de Reynolds. Las propiedades de la especie B se evalúan a la temperatura fílmica.}

h_BAR_m=(h_BAR*D_AB*abs(Le)^(1/3))/k_B rho_B=DENSITY(Air;T=T_f;P=P1) mu_B=VISCOSITY(Air;T=T_f) k_B=CONDUCTIVITY(Air;T=T_f) cp_B=CP(Air;T=T_f)*1000 Le=k_B/(rho_B*cp_B*D_AB) D_AB=-2,775E-6[m^2/s]+4,479E-8[m^2/s-K]*(T_f+273,15)+1,656E-10[m^2/s-K^2]*(T_f+273,15)^2 {Coeficiente de Difusión Aire-Vapor de Agua} n_A=h_BAR_m*A_s*(rho_A_sat-rho_A_INFINITY) {Transferencia de masa para una sola partícula, kg/s}

{Agua Evaporada}

```
m_w=n_A*(t2-t_1) {Agua que pierde una partícula entre
t_1 y t2, kg}
m_DOT_w=m_w*N_DOT_partículas {Flujo total de vapor de agua
entregado al aire entre t_1 y t2, kg/s}
END
```

La estructura del subprograma *SECADO* parece estar bastante clara. Se han utilizado comentarios entre llaves para explicar las distintas partes del código. Primero se determina la temperatura fílmica y los coeficientes de arrastre en ambas direcciones, Z y Y. En este caso, se han utilizado las relaciones determinadas a partir de la figura 4.14. No obstante, se recomienda realizar pruebas experimentales para cada material que se vaya a utilizar. Las irregularidades en la forma de la partícula pueden influir sobre los coeficientes de arrastre, sobretodo cuando se ha trabajado bajo una suposición de partícula esférica.

Posteriormente, se hace una doble integración para determinar la velocidad y posición de la partícula en el tiempo t_2 . Para la siguiente corrida, estos resultados se convierten en las condiciones iniciales de movimiento de la partícula, es decir, $V_{y,0}$, $V_{z,0}$, y_0 y z_0 .

Con el problema de movimiento resuelto, se plantea la ecuación de balance de energía de acuerdo al volumen de control presentado en la figura 5.2. Conjuntamente, se calculan las propiedades necesarias para resolver esta ecuación: calor latente de vaporización, h_{fg} , y densidades del vapor de agua inmediatamente sobre la interfaz gas-líquido y en el aire de secado, $\rho_{A,sat}$ y $\rho_{A,\infty}$ respectivamente.

En seguida, se determina el número de Nusselt a partir de la correlación de Whitaker y se calcula el coeficiente promedio de transferencia de calor. Haciendo uso de la analogía de transferencia de calor y de masa, se estima el coeficiente promedio de transferencia de masa.

Finalmente, se calcula la cantidad de agua evaporada por la partícula entre t_1 y t_2 y, en base a este resultado, se estima el flujo total de agua evaporada, por todas las partículas que atraviesan la sección del tambor, para el mismo intervalo de tiempo.

6.6 Secado en Contraflujo.

Al igual que en el caso anterior, la partícula será rastreada durante su recorrido por el secador desde su estado de humedad más alto hasta su estado de humedad más majo. Sin embargo, la inicialización de las variables correspondientes al aire se realizará en torno a sus propiedades posteriores al secado, es decir, con su humedad relativa más alta. A medida que transcurra el programa de secado en contraflujo, tanto el aire como la partícula irán perdiendo humedad en la misma dirección. En el programa principal, llamado *Secado en Contraflujo.E*ES, en lugar de introducir la temperatura y humedad relativa del aire después del calentamiento, T_2 y ϕ_2 respectivamente, se ingresa T_3 y ϕ_3 , que definen su estado a la finalización del proceso de secado (referirse a la figura 3.3). Estos parámetros se obtienen también del programa *Análisis Termodinámico.EES*.

Una vez declaradas las variables de entrada, se ejecuta la función $L_{secador}$, la cual posee una estructura similar a la que aparece en el programa de secado en flujo paralelo, con la diferencia de que en el lazo repetitivo secundario, en lugar de escribir $w_2 = w_2 + \dot{m}_w / \dot{m}_{aire}$, se escribe $w_3 = w_3 - \dot{m}_w / \dot{m}_{aire}$.

Así como la humedad absoluta, todas las variables que se refieran a las propiedades del aire, tales como densidad, humedad relativa, temperatura y entalpía, se escriben con el subíndice "3"; esto es solo para tener presente que el potencial de secado del aire va de menos a más durante la ejecución del programa.

Finalmente, las ecuaciones referentes al movimiento de la partícula, descritas en la sección 4.4.2, se escriben en el subprograma *SECADO* de la siguiente manera:

{**COEFICIENTES DE ARRASTRE EN Z Y Y**} C_D=32,628*abs(rho_B*(V_3+V_z)*D_grano/mu_B)^(-0,646) C_L=32,628*abs(rho_B*V_y*D_grano/mu_B)^(-0,646)

```
{INTEGRACIÓN PARA DETERMINAR LA COMPONENTE "Z" DE LA VELOCIDAD ABS
DE LA PARTÍCULA en t=t_2}
m_grano*dV_zdt=m_grano*g*sin(alpha)-
0,5*rho_B*C_D*(V_3+V_z)^2*(pi*(D_grano/2)^2)
V_z=V_z_0+integral(dV_zdt;Time;t_1;t_2)
```

{INTEGRACIÓN PARA DETERMINAR LA COMPONENTE "Y" DE LA VELOCIDAD ABS
DE LA PARTÍCULA en t=t_2}
m_grano*dV_ydt=m_grano*g*cos(alpha)0,5*rho_B*C_L*V_y^2*(pi*(D_grano/2)^2)
V_y=V_y_0+integral(dV_ydt;Time;t_1;t_2)

{INTEGRACIÓN PARA DETERMINAR LA COORDENADA "Z" DE LA PARTÍCULA en t=t_2} z=z 0+integral(V z;Time;t 1;t 2)

{INTEGRACIÓN PARA DETERMINAR LA COORDENADA "Y" DE LA PARTÍCULA en
t=t_2}
y=y_0+integral(V_y;Time;t_1;t_2)

{DETERMINACIÓN DE LA VELOCIDAD RELATIVA ENTRE EL AIRE Y LA
PARTÍCULA}
V_DOT_3=m_DOT_aire/rho_3
V_3=V_DOT_3/A_trans
V_rel=SQRT((V_3+V_z)^2+V_Y^2)

Notar que la única diferencia con respecto al subprograma de secado en flujo paralelo está en los signos de la sumatoria de fuerzas en Z y en el valor de la velocidad relativa entre el aire y la partícula. De allí en adelante, todo se mantiene igual.

CAPÍTULO 7

7. RESULTADOS Y ANÁLISIS

A continuación se presenta información referente a los casos de estudio de dos secadores rotativos previamente analizados con modelos desarrollados en otros trabajos. Los datos mostrados serán utilizados para comparaciones posteriores con el modelo teórico propuesto en este estudio.

7.1 Parámetros de Operación y Dimensiones de Secadores Tipo.

Las tablas 1 y 2 son una síntesis de las características del producto, geometría y parámetros de operación de los secadores estudiados por Kamke y Ajayi para el procesamiento de partículas de madera y concentrados de zinc, respectivamente. Las metodologías y modelos planteados por estos investigadores fueron brevemente descritos en el apartado 2.3.

Los datos que se mostrarán a continuación fueron extraídos de las publicaciones los autores mencionados anteriormente (11) (12); en algunos casos fue necesario deducir ciertos parámetros a partir de la información disponible. Luego de las tablas 1 y 2, se presenta un resumen de los procedimientos experimentales y resultados obtenidos en cada trabajo, que servirán después para establecer comparaciones con los resultados logrados en EES.

TABLA 1

DATOS DEL SECADOR ANALIZADO CON EL MODELO A

DATOS DEL PRODUCTO	Material a secar Densidad del grano seco (kg/m3) Densidad al granel promedio (kg/m3) Ángulo dinámico de reposo promedio (°) Diámetro promedio de partícula (mm)	Partículas de madera Douglas-Fir 450 200 82,6 1,81
	Flujo de aire con respecto al flujo de producto	Paralelo
	Diámetro del tambor (m)	1,2
ВО	Longitud del tambor (m)	5,5
OS CAL	Inclinación (°)	0
SEC	Longitud segmento 1 de paleta (m)	0,208
	Longitud segmento 2 de paleta (m)	0,029
	Ángulo entre segmentos 1 y 2 (°)	90
	Temperatura ambiente (°C)	17,5
	Humedad relativa ambiental	0,35
ШО_	Presión barométrica (atm)	1
0S IÓN	Velocidad de giro (r.p.m.)	5,5
AC	Flujo de producto seco (TON sólido seco / hr)	0,283
N N N	Contenido de humedad inicial (% BASE HÚMEDA)	58,39
, RÁ ОР	Contenido de humedad final (% BASE HÚMEDA)	39,28
PA	Temperatura del aire antes del secado (°C)	155,14
	Temperatura del aire después del secado (°C)	73,75
	Flujo volumétrico de aire a la salida (cfm)	4200

TABLA 2

DATOS DEL SECADOR ANALIZADO CON EL MODELO B

	Material a accor	Concentrados	
DEL 3TO	Material a secar	de 200	
	Densidad del grano seco (kg/m3)	4150	
		55.06	
	Angulo dinamico de reposo promedio REGION B (°)	53,90	
ATC ROE	Angulo dinámico de reposo promedio REGION C (°)	52,64	
25	Angulo dinámico de reposo promedio REGION D (°)	49,15	
	Diámetro promedio de partícula REGIÓN B (mm)	15	
	Diámetro promedio de partícula REGIÓN C (mm)	12	
	Diámetro promedio de partícula REGIÓN D (mm)	8	
	Flujo de aire con respecto al flujo de producto	Paralelo	
	Diámetro del tambor (m)	3,9	
	Inclinación (°)	4	
~	Longitud (m)	2,4	ш
SECADOR	Longitud segmento 1 de paleta (m)	0,120	ÓN
	Longitud segmento 2 de paleta (m)	0,210	Ш
	Ángulo entre segmentos 1 y 2 (°)	135	R
	Longitud (m)	3,3	C
D	Longitud segmento 1 de paleta (m)	0,130	ÓN
Ö	Longitud segmento 2 de paleta (m)	0,220	Ш
DA	Ángulo entre segmentos 1 y 2 (°)	150	R
	Longitud (m)	6,6	۵
	Longitud segmento 1 de paleta (m)	0,120	ÓN
	Longitud segmento 2 de paleta (m)	0,210	БG
	Ángulo entre segmentos 1 y 2 (°)	130	R
	Temperatura ambiente (°C)	28	
PARÁMETROS DE OPERACIÓN	Humedad relativa ambiental	0,7	
	Presión barométrica (atm)	1	
	Velocidad de giro del tambor (r.p.m.)	3	
	Flujo de producto seco (TON sólido seco / hr)	122,2	
	Humedad inicial del producto (% BASE HÚMEDA)	16,30	
	Humedad final del producto (% BASE HÚMEDA)	12,40	
	Temperatura del aire antes del secado (°C)	500	
	Temperatura del aire después del secado (°C)	131	

Secado de partículas de madera

El comportamiento de secado de partículas de madera Douglas-Fir (figura 7.1) se examinó mediante un sistema similar al que se muestra en la figura 7.2. El objetivo del experimento consistía en obtener los perfiles de humedad y temperatura para ambos, el gas y las partículas, en toda la longitud del secador. En este caso, las variables de control estudiadas fueron temperatura del aire en la caja de mezcla, flujo volumétrico de aire a la salida del secador y velocidad angular del tambor. Los rangos empleados para cada variable fueron, respectivamente, 550 a 750 °C, 3180 a 4240 cfm, y 2.8 a 5.5 rpm. El rango de temperaturas correspondiente a la caja de mezcla genera un rango de temperaturas de 150 a 270 °C en la entrada del secador (punto l en la figura 7.2).

FIGURA 7.1 PARTÍCULAS DE MADERA DOUGLAS-FIR – TOMADO DE (23)

FIGURA 7.2 SECADOR DE PARTÍCULAS DE MADERA – TOMADO DE (11)

En las pruebas experimentales, se utilizó una combinación de paletas periféricas y paletas internas o de llenado central, tal como se muestra en la parte derecha de la figura 7.3. Para la validación del modelo, se compararon los resultados experimentales con aquellos simulados en el software desarrollado por Kamke. Las mediciones de humedad y temperatura se realizaron en los puntos B, C, D, E y F (referirse a la figura 7.2).

FIGURA 7.3 POSIBLES CONFIGURACIONES DE PALETAS PARA EL MODELO DE SECADO A – TOMADO DE (11)

Los resultados obtenidos de la comparación entre los datos experimentales y teóricos, para los parámetros de operación de la tabla 1, se presentan en la figura 7.4.

Para mostrar las aplicaciones de su modelo, Kamke ejecutó una simulación para el mismo secador, operando bajo las mismas condiciones, utilizando solamente paletas pero periféricas. Entonces, en la figura 7.5, él compara los resultados entre las simulaciones de un secador con paletas internas y uno sin ellas. Las curvas de humedad y temperatura obtenidas de la simulación para el secador sin paletas internas son las que se utilizarán en este trabajo para establecer comparaciones contra el modelo lagrangiano.

FIGURA 7.4 COMPARACIÓN ENTRE LOS RESULTADOS EXPERIMENTALES Y SIMULADOS PARA UN SECADOR CON PALETAS DE RELLENO CENTRAL – TOMADO DE (11)

FIGURA 7.5 COMPARACIÓN ENTRE LAS SIMULACIONES PARA UN SECADOR CON Y SIN PALETAS DE RELLENO CENTRAL – TOMADO DE (11)

Secado de concentrados de zinc

La figura 7.6 muestra el proceso esquemático de secado de zinc en la mina MMG (Queensland, Australia). El producto es suministrado al secador mediante un tornillo sinfín, con una humedad inicial que varía entre 16 y 18%, alcanzando a una humedad mínima del 12% a la salida del secador. Luego de haber pasado por la cámara de combustión, el aire entra al secador con una temperatura de 500°C.

FIGURA 7.6 REPRESENTACIÓN ESQUEMÁTICA DE LA CÁMARA DE COMBUSTIÓN Y DEL SECADOR ROTATIVO – TOMADO DE (12)

El secador consta de cinco regiones, A, B C, D y E. La primera y última región no poseen paletas elevadoras; el avance del producto está dado únicamente por la rotación e inclinación del tambor. Por otro lado, las regiones B, C y D poseen paletas periféricas de dos segmentos, cuyas dimensiones se detallan en la tabla 2. Solo estas tres regiones serán objeto de análisis en el presente trabajo.

La distribución de tamaños de partícula de los concentrados de zinc de determinó mediante el cribado de muestras tomadas en diferentes secciones del secador. En total se tomaron 23 muestras, una por cada metro de tambor. Los diámetros promedio de partícula para las secciones A, B, C, D y E, fueron 20, 15, 12, 8 y 7 mm, respectivamente. La disminución en diámetro se debe al desmoronamiento de las partículas, mas no al encogimiento de las mismas.

Ajayi (12), quien modeló y estudió el desempeño de este secador rotativo, obtuvo el perfil de humedad experimental, *X*, a lo largo del tambor y también determinó el valor del ángulo dinámico de reposo para los concentrados de zinc, ϕ , a diferentes niveles de humedad. Las relaciones experimentales encontradas fueron

$$X = \frac{0.1006 \text{ Z} + 2.218}{\text{Z} + 13.51} \tag{7.1}$$

$$\phi = 419.6 X - 7.801 \tag{7.2}$$

En las ecuaciones anteriores, $12 \le X \le 17$ %*BH* y $0 \le Z \le 21.9 m$.

172

Las variables de control estudiadas en este caso fueron flujo másico de producto y velocidad angular del tambor, en rangos de 97 a 135 ton_{sólido_seco}/hr y 2 a 3 rpm, respectivamente. Los resultados de las comparaciones entre la información experimental y los datos obtenidos mediante el modelo de Ajayi, para los datos de la tabla 2, se presentan en la figura 7.7.

FIGURA 7.7 RESULTADOS TEÓRICOS Y EXPERIMENTALES PARA EL CONTENIDO DE HUMEDAD EN LOS SÓLIDOS – TOMADO DE (12)

Para determinar el área superficial de las partículas desnudas en contacto con la corriente de aire, Ajayi calculó el número de

partículas sólidas e introdujo un factor de corrección de área (FCA) para incluir la incertidumbre en el área superficial estimada. También asumió que la mitad del área superficial de las partículas estaba en contacto con el aire. En la figura 7.7 se muestran los resultados de la simulación sin factor de corrección de área y con un factor corrección de área constante. Se puede observar de la gráfica que ambos enfoques resultaron en un ajuste pobre del perfil de humedad experimental en los sólidos.

Para mejorar el ajuste, Ajayi utilizó diferentes factores de corrección para cada sección del tambor. Los factores de corrección para las secciones B, C y D, fueron 1.2, 0.6 y 0.42 respectivamente. Los resultados de la simulación corregida se muestran en la figura 7.8.

FIGURA 7.8 AJUSTE DEL PERFIL DE HUMEDAD EN LOS SÓLIDOS CON FCA VARIABLE – TOMADO DE (12)

Los perfiles reales de temperatura del aire y de los sólidos a través del secador no pudieron ser obtenidos debido al peligro que involucraba ejecutar ensayos experimentales en ese entorno industrial. Como consecuencia, en el estudio de Ajayi se asumió que si los valores de temperatura estimados a la salida del secador concordaban con los valores experimentales, entonces los perfiles de temperatura simulados se considerarían apropiados. Los resultados de estas simulaciones se presentan en las figuras 7.9 y 7.10.

FIGURA 7.9 SIMULACIÓN DEL PERFIL DE TEMPERATURA DE LOS SÓLIDOS CON FCA VARIABLE – TOMADO DE (12)

FIGURA 7.10 SIMULACIÓN DEL PERFIL DE TEMPERATURA DEL AIRE CON FCA VARIABLE – TOMADO DE (12)

En el presente estudio, se combinaron las ecuaciones 7.1 y 7.2 para determinar el ángulo dinámico de reposo promedio correspondiente a las regiones B, C y D. Con esta información, y tomando en cuenta la geometría de las paletas, se calculó la altura promedio de caída en cada región.

Para estimar las condiciones del aire de secado a la entrada de la región B, primero se realizó un balance de masa y energía global del secador para hallar el flujo másico de aire requerido. Para ello, se ejecutó el programa *Análisis termodinámico.EES* considerando las propiedades de entrada y salida tanto del aire como de los
concentrados de zinc. Luego, mediante la ecuación 7.1, se determinó el contenido de humedad a la entrada de la región B (Z = 2.1 m) y se calculó el porcentaje de agua evaporada en la región A. Finalmente, mediante un análisis termodinámico de la región A solamente, se estimaron las propiedades del aire a la salida de la región A (entrada región B).

Una vez obtenida la información necesaria, se ejecutó el programa *Secado en flujo paralelo.EES* para cada una de las regiones B, C y D, tomando en cuenta el diámetro promedio de partícula, la altura de caída y las condiciones del aire al comienzo de cada sección. Los resultados de las simulaciones en EES para el secador de concentrados de zinc, así como para el secador de partículas de madera, se presentan en el siguiente apartado.

7.2 Resultados Obtenidos en EES.

A partir de las características y parámetros de operación de los secadores presentados en las tablas 1 y 2, se ejecutaron los programas elaborados en este estudio para obtener los perfiles de humedad y temperatura de los sólidos y del aire de secado.

Se elaboraron tablas de resumen con algunos parámetros importantes que pueden dar una idea general del desempeño del secador. Entre estos parámetros se tienen el flujo másico de aire, tiempo de secado, número de ciclos de secado, ángulo y altura promedio de caída, tiempo de residencia de la partícula, temperatura de la partícula y propiedades del aire a la entrada y salida del secador.

El tiempo de secado se puede estimar multiplicando el número de ciclos de secado por el tiempo de vuelo de la partícula. En EES, el número de ciclos se puede obtener ya sea del programa principal de secado, agregando un contador en el lazo de repetición principal, o simplemente cuantificando manualmente los picos en la gráfica de trayectoria de la partícula.

El método anterior tal vez introduzca un pequeño error debido a que el tiempo de vuelo no necesariamente es el mismo en todos los ciclos. Una manera de evitar aquello, es dirigirse a la tabla lookup y observar el índice de la última fila registrada durante la ejecución del programa. En este caso, el tiempo de secado sería igual al número total de filas multiplicado por el paso temporal.

El tiempo de residencia, que es el tiempo que le toma a la partícula viajar de un extremo del secador al otro, se estima a partir de la

178

ecuación 4.9. El tiempo de secado es solo una pequeña fracción del tiempo de residencia. Hay que tener presente que, cuando se habla del tiempo de secado, número de ciclos, altura de caída y tiempo de residencia, se hace referencia a un "promedio" que corresponde a la partícula representativa que se está analizando.

Cuando se desea verificar la validez del modelo de movimiento en el secador, es común comparar las distribuciones de tiempo de residencia (DTR) generadas por el modelo teórico con los resultados experimentales obtenidos a partir de pruebas con trazadores. Esta última consiste en inyectar una cantidad conocida de químico inerte a la entrada del secador mientras su concentración es monitoreada a la salida como una función del tiempo.

En este estudio, no obstante, se ha idealizado la trayectoria de una partícula con el objeto de predecir la evolución de los parámetros de secado durante su recorrido. Para ello, se han planteado una serie de suposiciones gruesas tales como que no existe interacción entre partículas, o que el choque entre partícula y tambor es perfectamente inelástico. Es más, se ha supuesto que el secador está idealmente cargado; es decir, que la cantidad del producto que está ingresando en el mismo es la cantidad que garantiza el llenado

perfecto de las paletas en la posición $\theta = 0$. Por consiguiente, no se espera que el tiempo de residencia calculado con el modelo lagrangiano sea, necesariamente, un buen estimador de la media en la DTR que se obtendría mediante una prueba de trazadores.

Todos los códigos, ecuaciones, tablas y resultados brutos obtenidos de los diferentes programas elaborados en EES se adjuntan en la sección de Apéndices. Allí se incluyen análisis termodinámicos, cálculos de ángulo representativo y altura promedio de caída, y resultados de los programas de secado. En el caso del secador de concentrados de zinc, solo se mostrará una de las tres regiones analizadas a manera de ejemplo. Las tablas de tipo lookup que aparecen en Apéndices fueron elaboradas con un paso temporal de 0,05 segundos. No obstante, los resultados que aparecen en esta sección fueron obtenidos con un paso temporal de 0,01 segundos.

Secado de partículas de madera

TABLA 3

RESUMEN DE RESULTADOS PARA MADERA

$(\dot{m}_p)_1$ [kg sólido húmedo/s]		0,1891
X ₁ [% BH]		58,39
X ₂ [% BH]		41,82
ṁ _{aire} [kg/s]		1,892
t _{secado} [s]		20,36
Número de ciclos	n	44
$\overline{ heta}$ [°]		47,56
<u></u> <i>Y</i> [°]		0,8283
ω [rad/s]		0,576
t _{res} [min]		3,01
<i></i>	Entrada	38,06
T_s	Salida	38,83
	Entrada	0,001284
Фaire	Salida	0,1021
	Entrada	155,1
T _{aire} [°C]	Salida	81,2
	Entrada	4898
V [CFM]	Salida	4235

FIGURA 7.11 TRAYECTORIA DE LA PARTÍCULA

FIGURA 7.12 TRAYECTORIA DE LA PARTÍCULA (ACERCAMIENTO)

Nótese como algunos picos inferiores en la trayectoria de la partícula atraviesan al eje Z generando un desplazamiento negativo. Esto es un error que se introduce debido a que la discretización en

FIGURA 7.14 PERFILES DE TEMPERATURA (MADERA)

Secado de concentrados de zinc

TABLA 4

RESUMEN DE RESULTADOS PARA ZINC

Región	В	С	D
$\left(\dot{m}_p\right)_1 [kg \ soʻlido \ húmedo/s]$	40,56	39,91	39,50
X ₁ [% BH]	15,56	14,88	14,05
X ₂ [% BH]	14,88	14,05	12,53
m _{aire} [kg/s]	12,43	12,43	12,43
t _{secado} [s]	9,36	12,41	12,43
Número de ciclos n	12	17	31
$\overline{ heta}$ [°]	48,93	38,82	50,77
<u></u> <i>Y</i> <u></u> [°]	2,877	2,501	2,945
ω[rad/s]	0,3142	0,3142	0,3142
t _{res} [min]	1,24	1,43	3,12
Entrada	58,90	59,03	59,28
T _s Salida	59,03	59,28	61,27
Entrada	0,000312	0,0005522	0,00242
φ _{aire} Salida	0,0005522	0,002420	0,05857
Entrada	423,9	360,9	274,9
Taire [°C] Salida	360,9	274,9	139,0
Entrada	55794	52729	47646
V [CFM] Salida	52729	47646	38586

FIGURA 7.15 TRAYECTORIA DE LA PARTÍCULA (REGIÓN B)

FIGURA 7.16 TRAYECTORIA DE LA PARTÍCULA (REGIÓN C)

FIGURA 7.17 TRAYECTORIA DE LA PARTÍCULA (REGIÓN D)

FIGURA 7.18 PERFILES DE HUMEDAD (ZINC)

FIGURA 7.19 PERFILES DE TEMPERATURA (ZINC)

En las curvas de humedad de la partícula y temperatura del aire (figuras 7.18 y 7.19) se pueden observar unos quiebres en las transiciones de la región B a la C y de la C a la D. El mismo fenómeno se observa en la figura 7.7, para el caso del perfil de humedad de los sólidos obtenido a partir del modelo B sin factor de corrección de área.

La causa que provoca este comportamiento es que, en el modelado, se consideró un cambio brusco en diámetro de partícula de región a región.

7.3 Comparaciones.

Una vez simulados en EES los procesos de secado de partículas de madera y concentrados de zinc, se compararon los perfiles de humedad y temperatura obtenidos mediante el modelo lagrangiano, contra aquellos generados por los modelos A y B. En general, se puede verificar que existe una buena respuesta del modelo propuesto en este estudio.

Secado de partículas de madera

De acuerdo a la figura 7.20, la curva de humedad en los sólidos obtenida del modelo lagrangiano presenta un comportamiento similar a la del modelo A; pareciera que existe proporcionalidad entre ellas. A la salida del secador, se tiene una diferencia relativa de 6.36% entre ambas estimaciones. En este caso particular, el modelo lagrangiano es más conservador que el modelo A en cuanto a la predicción del contenido de humedad del producto en cualquier sección del secador.

FIGURA 7.20 HUMEDAD DE PARTÍCULA VS POSICIÓN AXIAL

FIGURA 7.21 TEMPERATURA DEL AIRE VS POSICIÓN AXIAL

Una situación parecida se tiene en la figura 7.21, donde la temperatura del aire estimada por el modelo lagrangiano es ligeramente mayor que la que predice el modelo A para cualquier valor de *Z*. Esto es congruente con las gráficas de humedad

189

presentadas anteriormente; el secado es más efectivo en el modelo A y por ende el aire pierde más energía. La diferencia relativa entre ambos valores teóricos de temperatura es de 9.94% a la salida del secador.

Kamke validó su modelo mediante pruebas experimentales en un secador con paletas internas. Luego simuló el comportamiento del mismo secador, operado bajo condiciones similares, utilizando solamente paletas periféricas. Los resultados, presentados en la figura 7.5, muestran que la temperatura de los sólidos no es afectada por la presencia de paletas internas. Considerando aquello, y de acuerdo a lo mostrado en la figura 7.22, los datos

experimentales de temperatura convergen hacia el perfil dibujado por el modelo lagrangiano en la dirección positiva de Z.

Secado de concentrados de zinc

La figura 7.23 presenta los datos teóricos y experimentales sobre el contenido de humedad en los concentrados de zinc. A la salida del secador, se tiene un error relativo de 4.62% para el modelo lagrangiano y de 6.44% para el modelo B. Si se considera toda la longitud del secador, se puede notar que el modelo lagrangiano se apega más hacia los datos experimentales. El error se hace más evidente en la última región del secador.

FIGURA 7.23 HUMEDAD DE PARTÍCULA VS POSICIÓN AXIAL

Para ajustar su modelo de evaporación, Ajayi utilizó distintos factores de corrección de área (FCA) para cada región del secador. Luego de obtener resultados satisfactorios, procedió a simular los perfiles de temperatura del aire y del producto, sin corroborarlos experimentalmente. Estos perfiles se presentan a continuación, junto a los que se obtuvieron del modelo lagrangiano.

FIGURA 7.24 TEMPERATURA DEL AIRE VS POSICIÓN

FIGURA 7.25 TEMPERATURA DE PARTÍCULA VS POSICIÓN

Suponiendo que la curva del modelo B sea correcta, el modelo lagrangiano predice bien la temperatura del aire dentro de las dos primeras regiones de secador analizadas. En la última etapa de secado se genera una divergencia pronunciada debido al cambio brusco en el tamaño promedio de partícula.

Esta disminución de diámetro no es producida por el encogimiento de las partículas, sino más bien por su rompimiento debido al impacto; es como si la curva de distribución de tamaños se sesgara a la izquierda. Los concentrados de sulfuro de zinc son poco resistentes al impacto. Una situación muy particular ocurre con el perfil de temperatura de los sólidos. La brecha existente entre el modelo B y el modelo lagrangiano es relativamente grande; la diferencia es de unos 18°C. Lamentablemente, no existe información experimental que dictamine cuál de los dos modelos se apega más a la situación real. Sin embargo, sí se puede asegurar que el cambio en el tamaño de partícula tiene poca o ninguna influencia sobre la evolución de temperatura superficial en el producto. Para demostrar lo anterior, se ejecutó nuevamente el programa de secado considerando esta vez un diámetro de partícula constante e igual a 15 mm; éste es el diámetro promedio que corresponde a la región B. Los resultados obtenidos se presentan a continuación.

FIGURA 7.26 HUMEDAD DE PARTÍCULA VS POSICIÓN (DIÁMETRO DE PARTÍCULA CONSTANTE)

FIGURA 7.28 TEMPERATURA DE PARTÍCULA VS POSICIÓN (DIÁMETRO DE PARTÍCULA CONSTANTE)

Con la utilización de un diámetro constante de partícula, el perfil de humedad de los sólidos mejoró notablemente en relación a los datos experimentales. Lo mismo se puede decir del perfil de temperatura del aire; ya no existen quiebres en la curva y la diferencia con respecto al modelo B es aproximadamente constante a lo largo de todo el secador.

Por otro lado, la curva de temperatura superficial de los sólidos se mantuvo prácticamente intacta a pesar de la modificación efectuada.

7.4 Análisis sobre el Modelo Lagrangiano.

Secado de partículas de madera

Los tres modelos despliegan características diferentes. El modelo A toma en cuenta la naturaleza del comportamiento de secado de la madera e introduce una ecuación que relaciona su contenido de humedad en el equilibrio con la humedad relativa del aire. También considera la transferencia de calor en el interior de los sólidos y la pérdida de calor a través de la pared del cilindro.

A pesar de estas consideraciones, y de acuerdo a la información experimental disponible, el modelo lagrangiano predice de mejor manera la temperatura de los sólidos en el secador. No obstante, existe una ligera variación en cuanto a los perfiles de humedad del producto y temperatura del aire predichos por ambos modelos. A continuación se analizan los factores que podrían provocar estas diferencias.

Si se consideraran las pérdidas de calor, por ejemplo, el perfil de temperatura del aire que resulta del modelo lagrangiano se acercaría más hacia la curva del modelo A; disminuiría su potencial de secado. Sin embargo, se tendría un efecto contrario al deseado en la curva de humedad de los sólidos. Aun cuando el modelo A sí considera las pérdidas de calor, éste predice un secado más eficiente.

También se descarta la posibilidad de que los mecanismos de transferencia de calor y de masa en el interior de los sólidos tengan mayor influencia sobre el secado bajo las condiciones de operación dadas. Para este caso particular, con una humedad inicial en la madera de 58.39% y una humedad final de 39.28%, y considerando que la humedad relativa máxima del aire predicha con el modelo lagrangiano es de solamente 10%, es muy poco probable que se alcance el contenido de humedad en el equilibrio en la madera; referirse a la figura 1.2. Es decir, hay suficiente humedad libre como

para que la evaporación se de manera continua. Es difícil que la difusión de humedad en el interior de los sólidos pudiese llegar a controlar la tasa de evaporación en su superficie en este caso.

El transporte de las partículas y el efecto que pueda llegar a tener el arrastre del aire sobre su movimiento, tiene gran influencia sobre la longitud final del secador; no tanto en los parámetros de secado.

Por otro lado, el área efectiva de transferencia de calor y de masa sí es un factor que podría alterar la forma de las curvas de humedad y temperatura de manera apreciable. En este caso, el área está dada a partir del diámetro medio en la distribución de tamaños, asumiendo la forma de partícula esférica. Esta suposición fue muy ligera considerando la forma irregular que poseen las astillas de madera (véase la figura 7.1). Tal vez el trabajar con partículas de forma cilíndrica, o utilizando un diámetro de partícula de área equivalente, arroje un área efectiva mayor, lo que aumentaría la tasa total de evaporación. Es probable que este factor de corrección de área sea el que compense la desproporcionalidad leve que existe entre los perfiles de humedad y temperatura en las figuras 7.20 y 7.21.

Otro factor que puede influenciar el área efectiva de transferencia de calor es el número real de partículas que se encuentran en contacto íntimo con el aire de secado durante la producción de la cascada. Aquí se ha supuesto que todas las partículas están completamente envueltas por el aire y que, además, no existe interacción entre ellas. En el caso del secador de madera, existe una buena dispersión en la sección transversal del secador debido a que el ángulo dinámico de reposo es elevado.

Secado de concentrados de zinc

El secador analizado con el modelo B es un caso especial porque tanto la altura promedio de caída como el tamaño promedio de partícula son diferentes en las distintas regiones del secador.

La altura promedio de caía afecta directamente al tiempo de secado.

Por otro lado, la principal consecuencia del cambio de diámetro de partícula es el aumento del flujo promedio de partículas y la disminución del área total de transferencia de calor y de masa. Si el diámetro promedio disminuye en cierta proporción k, el flujo de partículas aumenta en k^3 mientras que el área total disminuye en k^2 . Se cree que esto provocó la divergencia pronunciada en la última región de la curva de temperatura mostrada en la figura 7.24. Se podría decir abiertamente que el efecto neto del cambio de

diámetro es igual a k, pero no es tan simple porque existen otros parámetros, afectados también por el cambio de diámetro, que influyen sobre la tasa de evaporación. Tal es el caso del coeficiente promedio de transferencia de calor.

Al igual que en el secador de partículas de madera, aquí también se descarta la posibilidad de que los mecanismos de transferencia de calor y de masa en el interior de los sólidos tengan mayor influencia sobre el secado, ya que la curva de humedad en el equilibrio para el óxido de zinc es casi vertical (ver figura 1.2).

Cuando el modelo B no utiliza ningún factor de corrección de área, el modelo lagrangiano predice con un poco más de precisión el contenido de humedad de los sólidos. El error es significativamente menor cuando se considera el mismo diámetro promedio de partícula en las tres regiones analizadas.

La temperatura del aire empleada para el secado de zinc fue mucho mayor que la que se utilizó para el secado de madera. Ajayi reportó temperaturas del casco sin aislamiento cercanas a los 300°C durante la prueba experimental (12). Entonces, aquí las pérdidas de calor hacia el entorno sí pueden llegar a ser significativas en el desempeño del secador. Puede ser que éste sea el motivo de la diferencia entre las temperaturas de los sólidos estimadas por el modelo B y el lagrangiano.

El modelo B, aparte de incluir las pérdidas de calor, considera que la energía es transferida hacia los sólidos por convección y radiación desde el aire de secado. Sin embargo, no existe mayor diferencia entre las curvas de humedad estimadas por dicho modelo y el modelo aquí propuesto, el cual no considera la transferencia de calor por radiación.

Aspectos relacionados con extender los resultados de una partícula hacia todo el flujo de partículas

En este trabajo, para calcular la tasa total de evaporación se multiplicó el agua evaporada por una partícula en un tiempo dado, por el flujo total de partículas, y en base a este resultado se corrigieron las propiedades del aire de secado. El flujo total de partículas, por otro lado, se determinó dividiendo el flujo másico de producto húmedo para la masa de una partícula de tamaño igual al tamaño promedio de la muestra, antes de su ingreso al secador. Todo esto fundamentado en la suposición de que una partícula es representativa de todas las demás.

Es posible que estas simplificaciones, necesarias para el desarrollo del modelo, traigan consecuencias sobre la precisión en las predicciones de los perfiles de humedad y temperatura, tanto del producto como del aire, a lo largo del secador.

La transferencia de masa y calor, así como el arrastre del aire, se estimaron bajo la suposición de que la partícula no es influenciada por la presencia de las demás. La validez de esta aproximación dependerá de cuán bien dispersos estén los sólidos en la sección transversal del tambor; aquí interviene la calidad en el diseño de las paletas elevadoras y la velocidad del aire. La dispersión de las partículas no solamente influye sobre el coeficiente de transferencia de calor y el coeficiente de arrastre, sino también en la cantidad real de partículas desnudas en contacto con el aire.

Cuando un secador rotativo se encuentra sobrecargado (flujo másico de producto mayor al flujo de diseño), es posible que cierta cantidad de material se desplace a través del mismo por efecto kilning: el producto que no es recogido por la paleta se balancea en la parte inferior del tambor y se desplaza hacia adelante debido a la rotación e inclinación del mismo. Entonces, esto puede dar lugar a que el flujo de partículas esté un poco sobre estimado con respecto a aquel que está siempre en contacto con el aire.

Los choques entre partículas, así como el arrastre del aire sobre la cortina de sólidos, afecta el desplazamiento de las mismas. Por lo

202

tanto, es posible que exista cierta diferencia entre el desplazamiento estimado de la partícula en el modelo lagrangiano y aquel desplazamiento medio de la cortina de sólidos. Asimismo, el tiempo de residencia estimado por el modelo lagrangiano tal vez difiera de la media en la DTR del secador debido a los factores antes mencionados.

Una modificación a la propuesta de este estudio podría ser trabajar con paquetes de partículas en lugar de hacerlo con una sola partícula, esperando mejoras en la predicción del comportamiento de secado.

El enfoque lagrangiano, o modelado de trayectoria, proporciona una descripción directa del flujo de partículas al llevar un registro del movimiento de partículas individuales, por lo que es un método conveniente para revelar la naturaleza discreta y transiente del movimiento de las partículas. Sin embargo, cuando se trabaja con paquetes de partículas. es necesario incluir tratamientos estadísticos basados en técnicas tales como el método numérico de Monte Carlo (24), que requieren grandes capacidades de cómputo para efectuar promedios estadísticos y cálculos de la interacción entre las fases sólida y gaseosa. Esta es la principal limitación de este enfoque.

Análisis paramétrico de humedad

Hasta el momento se ha considerado que los parámetros de operación que gobiernan el desempeño de los secadores se mantienen constantes durante su funcionamiento. Sin embargo, sería interesante observar cómo cambia la curva de humedad de los sólidos con la variación de estos parámetros.

A continuación se presentan unas gráficas que estudian lo anterior, tomando como ejemplo al secador de partículas de madera. Las variables de control consideradas fueron diámetro promedio de partícula, flujo de producto húmedo, flujo másico de aire, temperatura de entrada del aire y contenido inicial de humedad en el producto. Las condiciones de referencia son las mismas que aparecen en la tabla 1. Se han tomado variaciones de aproximadamente el 10% y 20% en cada parámetro, por encima y por debajo de la referencia.

FIGURA 7.32 EFECTO DE LA VARIACIÓN DE LA TEMPERATURA INICIAL DEL AIRE

FIGURA 7.33 EFECTO DE LA VARIACIÓN DEL CONTENIDO DE HUMEDAD INICIAL DEL PRODUCTO

CAPÍTULO 8

8. CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- I. Se ha desarrollado un modelo de simulación simple y versátil, aplicable a secadores rotativos de diferentes dimensiones, operando en flujo paralelo o en contraflujo. El modelo está basado en principios básicos de termodinámica, cinética del movimiento, dinámica de fluidos y transferencia de calor y masa. No se han utilizado relaciones empíricas ligadas a estudios previos sobre secadores rotativos.
- II. En base a los resultados experimentales y teóricos obtenidos por otros investigadores, y a las comparaciones establecidas en este trabajo, se puede decir que el modelo propuesto, para los dos casos estudiados, es capaz de predecir los perfiles de humedad para los sólidos y temperatura del aire en el secador con un porcentaje bajo de error.

- III. Considerando la similitud en las curvas de humedad obtenidas mediante los modelos A, B, y lagrangiano, el efecto de la difusión interna de calor y masa en los sólidos, considerada en los primeros dos modelos, es de menor importancia al predecir el comportamiento de secado bajo las condiciones examinadas.
- IV. Bajo la suposición de que los perfiles de humedad y temperatura obtenidos por los modelos A y B son correctos, el haber ignorado los efectos de radiación y pérdidas de calor en el secador no introdujo mayores errores en la simulación. Vale la pena indicar que el modelo A sí considera las pérdidas de calor, mientras que el modelo B considera ambas, las pérdidas de calor y la transferencia de calor por radiación.
- V. El ángulo dinámico de reposo, característica inherente del producto, tiene un efecto considerable sobre la altura promedio de caída, la que a su vez repercute en el tiempo de secado y en el número de ciclos necesarios para alcanzar determinada condición de humedad a la salida del secador.
- VI. El perfil de humedad del producto es bastante sensible a los cambios de flujo másico de producto, flujo de aire, y temperatura del aire a la salida del calentador. Cuando el contenido de humedad inicial de los sólidos cambia, la curva de humedad versus posición axial en el tambor se desplaza verticalmente. Pequeñas variaciones

en el tamaño promedio de partícula no generan mayores repercusiones en el perfil de humedad.

VII. En este trabajo se ha probado, en base a las comparaciones establecidas contra los dos casos de estudio presentados, que es viable analizar un secador rotativo desde una perspectiva lagrangiana, rastreando a una partícula representativa a lo largo de su paso por el secador.

En este caso, la representatividad de la partícula se midió en base al tamaño promedio de la muestra. A no ser que la distribución de tamaños cambie de manera significativa a lo largo del secador, ya sea por desmoronamiento o por encogimiento del producto, la precisión en la predicción del perfil de humedad a lo largo del secador depende más del control en los parámetros de operación que de la representatividad que pueda tener o no la partícula. Las figuras 7.29 a 7.33 demuestran lo anterior.

RECOMENDACIONES

- a. Para ejecutar el programa de simulación solamente se requiere conocer la geometría de la sección del tambor, y tres características del producto (ángulo dinámico de reposo, densidad real, y diámetro promedio de partícula), sin embargo, la integración de los resultados resulta un poco complicada para alguien que no está familiarizado con la secuencia de análisis o la estructura de programación, por lo que se recomienda mejorar estos aspectos para que el software adquiera una mayor aplicabilidad.
- b. Es importante analizar la naturaleza de los sólidos antes de aplicar el modelo propuesto. Por ejemplo, se debe conocer cómo varía el ángulo dinámico de reposo con el contenido de humedad del producto. Esto está relacionado directamente con la pegajosidad del producto.
- c. Se debe tener cuidado en seleccionar el diámetro de partícula más representativo de la muestra, que compute no solamente la media en la distribución de tamaños, sino también la forma de la partícula o esfericidad. Lo anterior tiene un efecto directo sobre el flujo total de partículas y sobre el área efectiva de transferencia de calor y de masa.

El modelo planteado puede no ser tan efectivo en el caso de materiales que se rompan con el impacto o que se encojan durante el secado. El software sí permite trabajar con un diámetro variable de partícula, pero hay que ser cauto al momento de cuantificar dicha variación.

- d. El coeficiente de arrastre tiene un efecto considerable sobre el desplazamiento de la partícula y, por ende, sobre la longitud final del secador. Es importante efectuar pruebas experimentales de arrastre para cada tipo de material, donde se tenga presente la forma de las partículas y el efecto de la interacción entre ellas.
- e. Es necesario llevar a cabo pruebas experimentales que verifiquen, de manera cuantitativa, hasta qué punto o para qué rango de valores es aplicable el modelo y qué restricciones presenta. Se debería estudiar la naturaleza de los materiales utilizados, y la respuesta del modelo propuesto a cambios en los parámetros de operación.
APÉNDICES

APÉNDICE A

GRUPOS ADIMENSIONALES DE TRANSFERENCIA DE CALOR Y MASA

Grupos adimensional	es seleccionados de t	ransferencia de calor y masa
Grupo	Definición	Interpretación
Número de Lewis	α	Razón de las difusividades
(<i>Le</i>)	D_{AB}	térmica y de masa
Número de Nusselt	hD	Gradiente de temperatura
(Nu_D)	k_f	adimensional en la superficie
Número de Prandtl	$c_p\mu _ \nu$	Razón de difusividades de
(<i>Pr</i>)	$\frac{1}{k} = \frac{1}{\alpha}$	momento y térmica
Número de Reynolds	VD	Razón de fuerzas de inercia y
(Re_D)	ν	viscosas
Número de Schmidt	ν	Razón de difusividades de
(Sc)	D_{AB}	momento y de masa
Número de Sherwood	$h_m D$	Gradiente de concentración
(Sh_D)	D_{AB}	adimensional en la superficie
Número de Stanton	$h _ Nu_D$	Número de Nueselt modificado
(<i>St</i>)	$\overline{\rho V c_p} = \overline{Re_D P r}$	Numero de Nusseit modificado
Número de Stanton	h Sha	Número de Sherwood
para transferencia de	$\frac{n_m}{V} = \frac{Sn_D}{R_0 S_C}$	modificado
masa (St_m)	v Re _D SC	

APÉNDICE B

RESULTADOS OBTENIDOS EN EES PARA EL SECADOR DE PARTÍCULAS DE MADERA

```
09/01/2014 12:55:48 Page 1
File:Altura promedio de caída.EES
"DATOS"
1_1=0,029
                                                     {Longitud de labio, m}
                                                      {Longitud de paleta, m}
1_2=0,208
                                                     {Àngulo entre segmentos de paleta, °}
{Desalineamiento angular de la paleta, °}
alpha_A=90
gamma=0
                                                      {Radio del tambor, m}
R=0.6
omega=5,5*CONVERT(rpm;rad/s) {Velocidad angular del tambor, rad/s}
                                                      {Ángulo de vaciado, °}
theta_vaciado=177
                                                     {Paso angular, °}
DELTAtheta=1/5
N=theta_vaciado/DELTAtheta
div=1/DELTAtheta
theta[0]=0
fraccion[0]=0
theta_BAR[0]=0
producto[0]=0
masa[0]=masa(0)
DUPLICATE i=0;N
           theta[i+1]=theta[i]+DELTAtheta
           fraccion[i+1]=(masa(i/div)-masa((i+1)/div))/masa(0)
          producto[i+1]=fraccion[i+1]*theta[i+1]
           theta_BAR[i+1]=theta_BAR[i]+producto[i+1]
          masa[i+1]=masa((i+1)/div)
END
theta_BAR=theta_BAR[N]
OB=SQRT(I_1^2+I_2^2-2*I_1*I_2*cos(alpha_A))
alpha_B=arcsin(I_1*sin(alpha_A)/OB)
R_O=SQRT(OB^2+R^2-2*OB*R*cos(gamma+alpha_B))
\label{eq:construction} \begin{split} & \mathsf{X}_{O} = \mathsf{R}_{O}^* \mathrm{cos}(\mathrm{theta}_{\mathsf{B}} \mathsf{BAR}) \\ & \mathsf{Y}_{O} = \mathsf{R}_{O}^* \mathrm{sin}(\mathrm{theta}_{\mathsf{B}} \mathsf{AR}) \\ & \mathsf{Y}_{\mathsf{B}} \mathsf{AR} = (\mathsf{Y}_{O}_{\mathsf{g}} + \mathsf{SQRT}(\mathsf{R}^*2 - \mathsf{X}_{O}_{\mathsf{g}}^*2)) \end{split}
                                                                                      DATOS
I_1 = 0,029
I_2 = 0,208
α<sub>A</sub> = 90
\gamma = 0
R = 0.6
\omega = 5.5 \cdot \left[ 0.10472 \cdot \frac{\text{rad/s}}{\text{rpm}} \right]
                                       rpm
\theta_{\text{vaciado}} = 177
\Delta \theta = 1 / 5
N = \frac{\theta_{\text{vaciado}}}{\Delta \theta}
div = \frac{1}{\Delta \theta}
```

 $\theta_0 = 0$

File:Altura promedio de caída.EES $fraccion_0 = 0$ $\overline{\theta}_0 = 0$ $producto_0 = 0$ $masa_0 = masa[0]$ $\theta_{i+1} = \theta_i + \Delta \theta$ for i = 0 to N $fraccion_{i+1} = \frac{masa\left[\frac{i}{div}\right] - masa\left[\frac{i+1}{div}\right]}{masa\left[0\right]} \quad for \ i = 0 \ to \ N$ $producto_{i+1} \ = \ fraccion_{i+1} \ \cdot \ \theta_{i+1} \qquad for \ i \ = \ 0 \ to \ N$ $\overline{\theta}_{i+1} \ = \ \overline{\theta}_i \ + \ \text{producto}_{i+1} \qquad \text{for} \ i \ = \ 0 \ \text{to} \ N$ $masa_{i+1} = masa\left[\frac{i + 1}{div}\right]$ for i = 0 to N $\overline{\Theta} = \overline{\Theta}_{885}$ $OB = \sqrt{I_1^2 + I_2^2 - 2 \cdot I_1 \cdot I_2 \cdot \cos [\alpha_A]}$ $\alpha_{B} = \arcsin\left[I_{1} \cdot \frac{\sin\left(\alpha_{A}\right)}{OB}\right]$ $R_{0} = \sqrt{OB^{2} + R^{2} - 2 \cdot OB \cdot R \cdot \cos [\gamma + \alpha_{B}]}$ $X_{0,g} = R_0 \cdot \cos\left[\overline{\theta}\right]$ $Y_{0;g} = R_0 \cdot sin \left[\overline{\theta}\right]$ $\overline{Y} = Y_{0:g} + \sqrt{R^2 - X_{0:g}^2}$

Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]

 $\Delta \theta = 0,2$ [°] I₁ = 0,029 [m] OB = 0,21 [m] R₀ = 0,3931 [m] X_{0,g} = 0,2483 [m]

09/01/2014 12:55:48 Page 2

SOLUTION

File:Análisis Termodinámico.EES

{----

09/01/2014 12:51:24 Page 1

{INGRESO DE DATO)S}
X_1=0,5839	{Humedad inicial BH}
X_2=0,3928	{Humedad deseada BH}
m_DOT_p=680,616*CONVERT(kg/h;kg/s)	{Flujo másico del producto a secar}
phi_1=0,35	{Humedad aire ambiental. Antes de entrar al HX}
T_1=17,5	{Temperatura aire ambiental. Antes de entrar al HX}
T_2=155,14	{Temperatura a la salida del HX. Entrada al secador}
T_3=73,75	{Temperatura a la salida del secador.}
P1=14,7*CONVERT(psi;kPa)	{Presión de trabajo}

phi_3=RELHUM(AirH2O;T=T_3;P=P1;w=w_3) {Humedad relativa a la salida del secador} m_DOT_s=(1-X_1)*m_DOT_p {Flujo másico del producto second DELTAM_DOT_w=m_DOT_s*(1/(1-X_1)-1/(1-X_2)) {Cantidad de agua a evaporar} {Flujo másico del producto seco} w_1=HUMRAT(AirH2O;T=T_1;P=P1;R=phi_1) {Humedad absoluta aire ambiental. Antes de entrar al HX} w_2=w_1 {Humedad absoluta a la salida del HX. Entrada al secador} h_2=ENTHALPY(AirH2O;T=T_2;P=P1;w=w_2) {Entalpia a la salida del HX. Entrada al secador} phi_2=RELHUM(AirH2O;T=T_2;P=P1;w=w_2) {Humedad relativa a la salida del HX. Entrada al secador} h_3=h_2 {Entalpía a la salida del secador.} w_3=HUMRAT(AirH2O;h=h_3;P=P1;T=T_3) {Humedad absoluta a la correspondiente HR y entalpía} DELTAw=w_3-w_2 {Variación de humedad absoluta} m_DOT_aire=DELTAm_DOT_w/DELTAw {Flujo másico de aire de secado} rho_aire_3=DENSITY(AirH2O;R=phi_3;P=P1;w=w_3) {Densidad del aire después del secado} rho_aire_2=DENSITY(AirH2O;T=T_2;P=P1;w=w_2) {Densidad del aire antes del secado} V_DOT_aire_out=(m_DOT_aire/rho_aire_3)*CONVERT(m^3/s;cfm) {Flujo volumétrico de aire después del secado} V_DOT_aire_in=(m_DOT_aire/rho_aire_2)*CONVERT(m^3/s;cfm) {Flujo volumétrico de aire antes del secado} cp_aire1=SPECHEAT(AirH2O;T=T_1;P=P1;R=phi_1) {Calor específico del aire antes del HX, kJ/kg-K} cp_aire2=SPECHEAT(AirH2O;T=T_2;P=P1;R=phi_2) {Calor específico del aire a la salida del HX, kJ/kg-K} cp_aire=(cp_aire1+cp_aire2)/2 {Calor específico promedio en el HX, kJ/kg-K} Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1) {Calor agregado al aire en el HX, kW}

--}

File:Análisis Termodinámico.EES

$$\begin{split} w_{1} &= \omega \left[\text{'AirH2O'}; \text{T} = \text{T}_{1}; \text{P} = \text{P1}; \text{R} = \phi_{1} \right] \\ w_{2} &= w_{1} \\ h_{2} &= h \left[\text{'AirH2O'}; \text{T} = \text{T}_{2}; \text{P} = \text{P1}; \text{w} = w_{2} \right] \\ \phi_{2} &= \text{RH} \left[\text{'AirH2O'}; \text{T} = \text{T}_{2}; \text{P} = \text{P1}; \text{w} = w_{2} \right] \\ h_{3} &= h_{2} \\ w_{3} &= \omega \left[\text{'AirH2O'}; \text{h} = h_{3}; \text{P} = \text{P1}; \text{T} = \text{T}_{3} \right] \\ \Delta w &= w_{3} - w_{2} \\ \dot{m}_{aire} &= \frac{\Delta \dot{m}_{w}}{\Delta w} \\ \rho_{aire,3} &= \rho \left[\text{'AirH2O'}; \text{R} = \phi_{3}; \text{P} = \text{P1}; \text{w} = w_{3} \right] \\ \rho_{aire,2} &= \rho \left[\text{'AirH2O'}; \text{T} = \text{T}_{2}; \text{P} = \text{P1}; \text{w} = w_{2} \right] \\ \dot{v}_{aire,out} &= \frac{\dot{m}_{aire}}{\rho_{aire,3}} \cdot \left| 2118,88 \cdot \frac{\text{cfm}}{\text{m}^{3}/\text{s}} \right| \\ \dot{v}_{aire,in} &= \frac{\dot{m}_{aire}}{\rho_{aire,2}} \cdot \left| 2118,88 \cdot \frac{\text{cfm}}{\text{m}^{3}/\text{s}} \right| \\ c_{paire1} &= \text{Cp} \left[\text{'AirH2O'}; \text{T} = \text{T}_{1}; \text{P} = \text{P1}; \text{R} = \phi_{1} \right] \\ c_{paire2} &= \text{Cp} \left[\text{'AirH2O'}; \text{T} = \text{T}_{1}; \text{P} = \text{P1}; \text{R} = \phi_{2} \right] \\ c_{paire1} &= \frac{c_{paire1}}{2} \cdot \frac{c_{paire2}}{2} \\ \dot{q} &= \dot{m}_{aire} \cdot c_{paire1} \cdot \left[\text{T}_{2} - \text{T}_{1} \right] \end{split}$$

SOLUTION Unit Settings: [k,J]/[C]/[kPa]/[kg]/[degrees] $cp_{aire} = 1.018$ [k,J/kg-K] $\Delta w = 0.03145$ $h_3 = 168.4$ [k,J/kg] $m_p = 0.1891$ [kg/s] P1 = 101.4 [kPa] $b_2 = 0.001284$ $\dot{Q} = 265$ [kW] $p_{aire,3} = 0.9625$ [kg/m³] $I_2 = 155.1$ [C] $\dot{V}_{aire,m} = 4896$ [CFM] $w_1 = 0.004327$ $w_3 = 0.03578$ $X_2 = 0.3928$

 $\begin{array}{l} cp_{aire1} = 1,014 \ [kJ/kg-K] \\ \Delta m_w = 0,0595 \ [kg/s] \\ h_2 = 168,4 \ [kJ/kg] \\ \hline m_{aire} = 1,892 \ [kg/s] \\ \hline m_s = 0,07867 \ [kg/s] \\ \phi_1 = 0,35 \\ \phi_3 = 0,1505 \\ \hline \rho_{aire,2} = 0,8188 \ [kg/m^3] \\ T_1 = 17,5 \ [C] \\ T_3 = 73,75 \ [C] \\ \hline \dot{v}_{aire,out} = 4165 \ [CFM] \\ w_2 = 0,004327 \\ X_1 = 0,5839 \end{array}$

```
File:SECADO EES
                                                                                           09/01/2014 13:20:40 Page 1
FUNCTION L_secador(X_1;X_2;T_s;rho_grano_seco;D_grano;m_DOT_p;m_DOT_aire;T_2;phi_2;R;alpha;Y_BAR;P1;step
)
       Vol_grano=(4/3)*pi*(D_grano/2)^3 {Volumen del grano, m3}
       A_s=4*pi*(D_grano/2)^2
                                                 {Superficie del grano, m2}
       m_grano_seco=rho_grano_seco*Vol_grano {Masa del grano seco, kg}
       m_grano=m_grano_seco/(1-X_1)
                                                 {Masa inicial del grano húmedo, kg}
       cont_agua=m_grano-m_grano_seco
                                                 {Contenido inicial de agua, kg}
       N_DOT_partículas=m_DOT_p/m_grano
                                                       {Flujo de partículas, UND/s}
       g=9,81
                                                 {Aceleración de la gravedad, m2/s}
                                                       {Area transversal del tambor, m2}
       A_trans=pi*R^2
       h 2=ENTHALPY(AirH2O;T=T 2;P=P1;R=phi 2)
                                                               {Entalpia del aire, kJ/kg}
       w_2=HUMRAT(AirH2O;T=T_2;P=P1;R=phi_2)
                                                               {Humedad absoluta del aire}
       rho_2=DENSITY(AirH2O;T=T_2;P=P1;R=phi_2)
                                                               {Densidad del aire antes del secado, kg/m3}
       V DOT 2=m DOT aire/rho 2
                                                 {Flujo volumétrico de aire antes del secado, m3/s}
       V_DOT_aireCFM=V_DOT_2*CONVERT(m^3/s;cfm){Flujo volumétrico de aire antes del secado, CFM}
       L secador=0
                                                        {Se encera la variable acumuladora "Longitud de secador", m}
       i=1
       REPEAT
             t 1=0
              t2=step
              V_z_0=0
              V_y_0=0
              h_BAR=0
                                  {Coef. inicial de T.C., W/m2-K}
              h_BAR_m=0
                                 {Coef. inicial de T.M., m/s}
              z_0=0
              y_0=0
              Y_ac=Y_BAR
                                   {Variable acumuladora para los decrementos de altura durante la caída, m}
              lookup('Lookup 1';i;1)=L_secador {Coordenada "Z" al inicio de la caída, m}
              lookup('Lookup 1';i;2)=Y_ac {Coordenada "Y" al inicio de la caída, m}
              lookup('Lookup 1';i;3)=X_1 {Humedad de los sólidos al inicio de la caída}
              lookup('Lookup 1';i;4)=T_s {Temperatura superficial de los sólidos al inicio de la caída, C}
              lookup('Lookup 1';i;5)=phi_2 {Humedad relativa del aire que afecta a la partícula al inicio de la caída, C}
              lookup('Lookup 1';i;6)=T_2 {Temperatura del aire que afecta a la partícula al inicio de la caída, C}
              lookup('Lookup 1';i;7)=V_DOT_aireCFM
                                                               {Flujo volumétrico del aire, CFM}
                                                       {Coef. T.C. al inicio de la caída, W/m2-K}
              lookup('Lookup 1':i:8)=h BAR
              lookup('Lookup 1';i;9)=h_BAR_m {Coef. T.M. al inicio de la caída, m/s}
              i=i+1
             REPEAT
                     CALL SECADO(phi_2;w_2;h_2;T_2;D_grano;m_grano;m_DOT_aire;N_DOT_particulas;R;alpha;P1;g
;V_y_0;V_z_0;z_0;y_0;A_trans;A_s;t_1;t2 : m_DOT_w;m_w;T_s;h_BAR_m;h_BAR;V_z;V_y;z;y)
                     w_2=w_2+m_DOT_w/m_DOT_aire
                                                                      {Humedad abs del aire para la siguiente pasada}
                     T_2=TEMPERATURE(AirH2O;h=h_2;P=P1;w=w_2) {Temperatura del aire en t=t_2}
                     phi_2=RELHUM(AirH2O;T=T_2;P=P1;w=w_2)
                                                                             {Humedad relativa del aire en t=t_2}
                     rho_2=DENSITY(AirH2O;T=T_2;P=P1;w=w_2)
                                                                             {Densidad del aire en t=t_2, kg/m3}
                     V_DOT_aireCFM=(m_DOT_aire/rho_2)*CONVERT(m^3/s;cfm) {Flujo volumétrico de aire en t=t_2,
CFM}
                     cont_agua=cont_agua-m_w {Contenido de agua en el grano en t=t_2, kg}
                     m_grano=m_grano-m_w {Masa total de un grano en t=t_2, kg} X_1=cont_agua/m_grano {Humedad del grano en t=t_2}
                     L_secador=L_secador+(z-z_0)
                                                      {Acumulador "Longitud de Secador", m}
                     Y_ac=Y_ac-(y-y_0) {Acumulador reverso "Posición vertical", m}
                     lookup('Lookup 1';i;1)=L_secador {Coordenada "Z" al inicio de la caída, m}
                     lookup('Lookup 1';i;2)=Y_ac {Coordenada "Y" al inicio de la caída, m}
                     lookup('Lookup 1',i;3)=X_1 {Humedad de los sólidos al inicio de la caída}
lookup('Lookup 1',i;4)=T_s {Temperatura superficial de los sólidos al inicio de la caída, C}
                     lookup('Lookup 1';i;5)=phi_2 {Humedad relativa del aire que afecta a la partícula al inicio de la caída,
C}
```

lookup('Lookup 1';i;6)=T_2 {Temperatura del ai lookup('Lookup 1';i;6)=h_BAR_CCOEF, T.C. al inicio lookup('Lookup 1';i;9)=h_BAR_m {Coef, T.M. i t_1=t2 t2=t2+step V_y_0=V_y V_z_0=V_z z_0=z y_0=y i=i+1 UNTIL Y_ac<=0 UNTIL L_secador>=5,5 END {	e que afecta a la partícula al inicio de la caída, C} {Flujo volumétrico del aire, CFM} e la caída, W/m2-K} inicio de la caída, m/s} H} } Jildos, C.} µ/m3} o, m} secar} Dato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
lookup('Lookup 1';i;7)=V_DOT_aireCFM lookup('Lookup 1';i;8)=h_BAR[Coef. T.C. al inicio lookup('Lookup 1';i;9)=h_BAR_m {Coef. T.M. i t_1=t2 t2=t2+step V_y_O=V_y V_z_O=V_z z_O=z y_O=y i=i+1 UNTIL L_secador>=5,5 END {	{Flujo volumétrico del aire, CFM} e la caída, W/m2-K} inicio de la caída, m/s} H} } H} } j lidos, C.} y/m3} o, m} secar} Dato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
L_I=12 t2=t2+step V_y_0=V_y V_z_0=V_z z_0=z y_0=y i=i+1 UNTIL V_ac<=0 UNTIL L_secador>=5,5 END {	 H} jbiidos, C.} y/m3} o, m} secar} bato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
L2=L2+step V_y_0=V_y V_z_0=V_z z_0=z y_0=y i=i+1 UNTIL V_ac<=0	 H} Jidos, C.} g/m3} o, m} secar} Dato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
V_Z_0=V_Y V_Z_0=V_Z Z_0=Z y_0=y i=i+1 UNTIL Y_ac<=0 UNTIL L_secador>=5,5 END {	 H} Jiidos, C.} g/m3} o, m} secar} Dato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
V_Z_U=V_Z z_0=z y_0=y i=i+1 UNTIL L_secador>=5,5 END {	 H} Jildos, C.} g/m3} o, m} secar} Dato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
2_0-2 y_0=y i=i+1 UNTIL L_secador>=5,5 END {	H} {} blidos, C.} g/m3} b, m} secar} bato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
y_ory i=i+1 UNTIL Y_ac<=0 UNTIL L_secador>=5,5 END {	 H} Jidios, C.} j/m3} , m} secar} >ato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
UNTIL L_secador>=5,5 END {	 H} Slidos, C.} y/m3} , m} secar} >ato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
UNTIL L_secador>=5,5 END {	 H} Slidos, C.} g/m3} o, m} secar} bato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
END {	 H} jblidos, C.} g/m3} o, m} secar} bato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
INGRESO DE DATOS X_1=0,5839 X_1=0,5839 X_1=0,5839 X_1=0,5839 X_1=0,5839 X_2=0,3928 (Humedad final del grano f T_s=17,5 (Temperatura inicial de los foo grano_seco=450 (Densidad del grano seco, D_grano=1,81E-3 (DotT_p=680,616*CONVERT(kg/h;kg/s) (Flujo másico de producto m_DOT_p=680,616*CONVERT(kg/h;kg/s) (Flujo másico de aire, kg/s, T_2=155,14 (Flujo másico de aire, kg/s, T_2=155,14 (Flujo másico de aire, kg/s, T_2=155,14 (Flujo másico de aire, kg/s, T_2=156,14 (Humedad relativa de termodinámico.EES) Phi_2=0,001284 (Humedad relativa de termodinámico.EES) R=0,6 (Radio del tambor, m) (Inclinación del tambor, °) Y_BAR=0,8283 P1=1[atm]*CONVERT(atm;kPa) (Paso en el tiempo, s) {	 SH} Shidos, C.} g/m3} o, m} secar} bato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
<pre>{</pre>	BH} } Jildos, C.} g/m3} o, m} secar} Dato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
X 1=0,5839 {Humedad inicial del grano f X 2=0,3928 {Humedad final del grano f T_s=17,5 {Temperatura inicial del grano seco, D_grano=seco=450 {Densidad del grano seco, D_grano=1,81E-3 {Diámetro promedio de grano seco, m_DOT_p=680,616*CONVERT(kg/h;kg/s) {Flujo másico de irre, kg/s T_2=155,14 {Flujo másico de irre, kg/s termodinámico.EES} {Humedad relativa of phi_2=0,001284 {Humedad relativa of termodinámico.EES} {Inclinación del tambor, m} glpha=0 {Inclinación del tambor, s} Y_BAR=0,8283 {Altura promedio de pt=11[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	8H} {} blidos, C.} g/m3} o, m} secar} bato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
X_2=0,3928 [Humedad final del grano f T_s=17,5 {Temperatura inicial de los rho_grano_seco=450 {Densidad del grano seco, D_grano=1,81E-3 {Diámetro promedio de gra m_DOT_p=680,616*CONVERT(kg/h;kg/s) {Flujo másico del producto m_DOT_aire=1,892 {Flujo másico de aire, kg/s T_2=155,14 {Temperatura del aire antex termodinámico.EES} {Humedad relativa e phi_2=0,001284 {Humedad relativa e termodinámico.EES} {Radio del tambor, m} glapha=0 {Inclinación del tambor, operativa e Y_BAR=0,8283 {Altura promedio de P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	} ólidos, C.} g/m3} o, m} secar})ato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
T_s=17,5 {Temperatura inicial de los rho_grano_seco=450 {Densidad del grano seco, D_grano=1,81E-3 {Diámetro promedio de granosico del producto m_DOT_p=680,616*CONVERT(kg/h;kg/s) {Flujo másico del producto m_DOT_aire=1,892 {Flujo másico de aire, kg/s T_2=155,14 {Temperatura del aire ante termodinámico.EES} {Humedad relativa de termodinámico.EES} phi_2=0,001284 {Humedad relativa de trabajo termodinámico.EES} {Radio del tambor, m} alpha=0 {Inclinación del tambor, operation de trabajo tep=0,05 {Paso en el tiempo, s} {	olidos, C.} g/m3} o, m} secar})ato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
rho_grano_seco=450 [Densidad del grano seco, D_grano=1,81E-3 {Diámetro promedio de granoseco, m_DOT_p=680,616*CONVERT(kg/h;kg/s) {Flujo másico del producto m_DOT_aire=1,892 {Flujo másico de aire, kg/s T_2=155,14 {Temperatura del aire ante termodinámico.EES} {Humedad relativa de transcription de transcripti de transcription de transcription de transcription de	g/m3} o, m} secar})ato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
D_grano=1,81E-3 [Diámetro promedio de gra m_DOT_p=680,616*CONVERT(kg/h;kg/s) {Flujo másico del producto m_DOT_aire=1,892 {Flujo másico de aire, kg/s T_2=155,14 {Temperatura del aire ante termodinámico.EES} phi_2=0,001284 {Humedad relativa termodinámico.EES} R=0,6 {Radio del tambor, m} alpha=0 {Inclinación del tambor, °} Y_BAR=0,8283 {Altura promedio de P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	o, m} secar})ato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
m_DOT_p=680,616*CONVERT(kg/h;kg/s) [Flujo másico del producto m_DOT_aire=1,892 {Flujo másico de aire, kg/s T_2=155,14 {Temperatura del aire ante termodinámico.EES} phi_2=0,001284 {Humedad relativa - termodinámico.EES} R=0,6 {Radio del tambor, m} alpha=0 {Inclinación del tambor, °} Y_BAR=0,8283 {Altura promedio de P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	secar})ato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
m_DOT_aire=1,892 {Flujo másico de aire, kg/s T_2=155,14 {Temperatura del aire anter termodinámico.EES} phi_2=0,001284 {Humedad relativa termodinámico.EES} R=0,6 {Radio del tambor, m} alpha=0 {Inclinación del tambor, m} Y_BAR=0,8283 {Altura promedio de P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	Dato obtenido de Análisis termodinámico.EES} del secado. Dato obtenido de Análisis
T_2=155,14 {Temperatura del aire ante termodinámico.EES} phi_2=0,001284 {Humedad relativa termodinámico.EES} R=0,6 {Radio del tambor, m} alpha=0 {Inclinación del tambor, °} Y_BAR=0,8283 {Altura promedio de P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	del secado. Dato obtenido de Análisis
termodinámico.EES} phi_2=0,001284 {Humedad relativa termodinámico.EES} R=0,6 {Radio del tambor, m} alpha=0 {Inclinación del tambor, °} Y_BAR=0,8283 {Altura promedio de P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	
phi_2=0,001284 {Humedad relativa { termodinámico.EES} R=0.6 {Radio del tambor, m} alpha=0 {Inclinación del tambor, °} Y_BAR=0,8283 {Altura promedio de P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	
termodinámico.EES} R=0,6 {Radio del tambor, m} alpha=0 {Inclinación del tambor, °} Y_BAR=0,8283 {Altura promedio de P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	al aire antes del secado. Dato obtenido de Análisi
R=0,6 {Radio del tambor, m} alpha=0 {Inclinación del tambor, °} Y_BAR=0,8283 {Altura promedio del trabajo step=0,05 P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {	
alpha=0 {Inclinación del tambor, °} Y_BAR=0,8283 {Altura promedio de P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	
Y_BAR=0,8283 {Altura promedio de P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	
P1=1[atm]*CONVERT(atm;kPa) {Presión de trabajo step=0,05 {Paso en el tiempo, s} {	caída, m. Dato obtenido de Altura promedio. EES
step=0,05 {Paso en el tiempo, s} {	(Pa}
<pre>{</pre>	
L_secador=L_secador(X_1;X_2;T_s;rho_grano_seco;D_grano;m_DOT SUBPROGRAM SECADO(phi_2;w_2;h_2;T_2;D_grano;m_grano;m_DO ;V_z_0;z_0;y_0;A_trans;A_s;t_1;t2 : m_DOT_w;m_w;T_s;h_BAR_m; T_f=(T_2+T_s)/2 {Temperatura filmica} C_D=(24/abs(rho_B*V_rel*D_grano/mu_B))*(1+0,15*abs(rho_B* del documento de referencia para partículas de madera} {INTEGRACIÓN PARA DETERMINAR LA COMPONENTE en t=t2}	
SUBPROGRAM SECADO(phi_2;w_2;h_2;T_2;D_grano;m_grano;m_DC ;V_z_0;z_0;y_0;A_trans;A_s;t_1;t2 : m_DOT_w;m_w;T_s;h_BAR_m; T_f=(T_2+T_s)/2 {Temperatura filmica} C_D=(24/abs(rho_B*V_rel*D_grano/mu_B))*(1+0,15*abs(rho_B* del documento de referencia para partículas de madera} {INTEGRACIÓN PARA DETERMINAR LA COMPONENTE en t=t2}	;m_DOT_aire;T_2;phi_2;R;alpha;Y_BAR;P1;ster
T_f=(T_2+T_s)/2 {Temperatura filmica} C_D=(24/abs(rho_B*V_rel*D_grano/mu_B))*(1+0,15*abs(rho_B* del documento de referencia para partículas de madera} {INTEGRACIÓN PARA DETERMINAR LA COMPONENTE en t=t2}	_aire;N_DOT_partículas;R;alpha;P1;g;V_y_0
C_D=(24/abs(rho_B*V_rel*D_grano/mu_B))*(1+0,15*abs(rho_B* del documento de referencia para partículas de madera} {INTEGRACIÓN PARA DETERMINAR LA COMPONENTE en t=t2}	
del documento de referencia para partículas de madera} {INTEGRACIÓN PARA DETERMINAR LA COMPONENTE en t=t2}	rel*D grano/mu B\^0 687) /Correlación saca
{INTEGRACIÓN PARA DETERMINAR LA COMPONENTE en t=t2}	
	'Z" DE LA VELOCIDAD ABS DE LA PARTÍCULA
m_grano*dV_zdt=m_grano*g*sin(alpha)+0,5*rho_B*C_D*V_rel^2	(pi*(D_grano/2)^2)*cos(theta)
V_z=V_z_0+integral(dV_zdt;Time;t_1;t2)	
(INTEGRACIÓN PARA DETERMINAR LA COMPONENTE	"Y" DE LA VELOCIDAD ABS DE LA PARTÍCULA
m grano*d\/ udt=m grano*a*aaa/alaba) 0.5*rba D*/ col4/	(ni*/D grano/2)/2)/*oin/(h -+-)
V_y=V_y_0+integral(dV_ydt;Time;t_1;t2)	
{INTEGRACIÓN PARA DETERMINAR LA COORDENAD/	(pr (b_granorz)"z)"sin(trieta)
z=z 0+integral(\/ z·Time:t 1:t2)	ریا را <u>پ</u> ranor2)*2) sin(ineta) 'Z" DE LA PARTÍCULA en t=t2}

```
09/01/2014 13:20:40 Page 3
File:SECADO.EES
             {INTEGRACIÓN PARA DETERMINAR LA COORDENADA "Y" DE LA PARTÍCULA en t=t2}
     y=y_0+integral(V_y;Time;t_1;t2)
            {DETERMINACIÓN DE LA VELOCIDAD RELATIVA ENTRE EL AIRE Y LA PARTÍCULA}
     V_DOT_2=m_DOT_aire/rho_2 {Flujo volumétrico de aire en un determinado "z"}
     V 2=V DOT 2/A trans
                                             {Velocidad del aire}
     V\_rel=SQRT((V\_2-V\_z)^2+V\_y^2) \quad \{Velocidad \ relativa \ entre \ el \ grano \ y \ el \ aire\}
     theta=arctan(-V_y/(V_2-V_z))
             {Existe equilibrio termodinámico en la interfaz entre el gas y el líquido. Por ende, la temperatura del vapor en
la interfaz es igual a la temperatura superficial Ts.}
             {El vapor se encuentra en estado saturado.}
             {En todos los problemas prácticos, C_A<<C_B, y es razonable suponer que las propiedades de la capa límite
(como k, mu, C_p, etc) son las de la especie B.}
      h_BAR*(T_2-T_s)=h_fg*h_BAR_m*(rho_A_sat-rho_A_INFINITY)
                                                                          {Balance entre calor sesible cedido por el
aire y calor de vaporización del agua)
      h_f=ENTHALPY(Water;T=T_s;X=0)*CONVERT(KJ/kg;J/kg)
                                                                   {Entalpía de líquido saturado @ T_s, J/kg}
      h_g=ENTHALPY(Water;T=T_s;X=1)*CONVERT(KJ/kg;J/kg)
                                                                          {Entalpía de vapor saturado @ T_s, J/kg}
                                                                   {Calor latente de vaporización del agua @T_s.
      h_fg=h_g-h_f
Unidades: J/kg}
                                                                    {Constante del gas del vapor de agua, J/kg-K}
      R A=461
      p_A_INFINITY=w_2*P1*1000/(0,622+w_2)
       rho_A_INFINITY=p_A_INFINITY/(R_A*(T_2+273,15))
       p_A_sat=P_SAT(Water;T=T_s)*CONVERT(kPa;Pa)
       rho_A_sat=p_A_sat/(R_A*(T_s+273,15))
             {Evaluación de NUSSELT mediante la correlación de Whitaker. Todas las propiedades, excepto mu_s se
evalúan a T_2.}
      NUSSELT_BAR_D=2+(0,4*abs(Re_D)^(1/2)+0,06*abs(Re_D)^(2/3))*abs(Pr_2)^0,4*abs(mu_2/mu_2_s)^(1/4)
{Correlación de Whitaker}
      NUSSELT_BAR_D=h_BAR*D_grano/k_2
                                                      {Determinación del coef. de T.C.}
      Re_D=(rho_2*V_rel*D_grano)/mu_2
                                                      {Número de Reynolds. Las propiedades del aire son las prop. en
t=t_1. La velocidad relativa es la velocidad en t=t_2}
      rho_2=DENSITY(AirH2O;T=T_2;P=P1;w=w_2)
                                                             {Densidad del aire en t=t_1, kg/m3}
       mu_2=VISCOSITY(AirH2O;T=T_2;P=P1;w=w_2)
                                                             {Viscosidad del aire en t=t_1 @T_2, kg/m-s}
       mu_2_s=VISCOSITY(AirH2O;T=T_s;P=P1;w=w_2) {Viscosidad del aire en t=t_1@T_s, kg/m-s}
       Pr_2=PRANDTL(Air;T=T_2)
                                                      {Número de Prandtl del aire en t=t_1}
       k_2=CONDUCTIVITY(AirH2O;T=T_2;P=P1;w=w_2) {Coef. de conductividad del aire en t=t_1}
       {Analogía de Reynolds. Las propiedades de la especie B se evalúan a la temperatura fílmica.}
       h_BAR_m=(h_BAR*D_AB*abs(Le)^(1/3))/k_B
       rho_B=DENSITY(Air;T=T_f;P=P1)
       mu_B=VISCOSITY(Air;T=T_f)
       k_B=CONDUCTIVITY(Air;T=T_f)
       cp_B=CP(Air;T=T_f)*1000
       Le=k_B/(rho_B*cp_B*D_AB)
       D_AB=-2,775E-6[m^2/s]+4,479E-8[m^2/s-K]*(T_f+273,15)+1,656E-10[m^2/s-K^2]*(T_f+273,15)^2
                                                                                                     {Coeficiente
de Difusión Aire-Vapor de Agua}
      n_A=h_BAR_m*A_s*(rho_A_sat-rho_A_INFINITY)
                                                                                        {Transferencia de masa
para una sola partícula, kg/s}
             {AGUA TOTAL EVAPORADA}
      m_w=n_A*(t2-t_1)
                                                      {Agua que pierde una partícula entre t_1 y t2, kg}
       m_DOT_w=m_w*N_DOT_particulas
                                                      {Flujo total de vapor de agua entregado al aire entre t_1 y t2, kg/s}
```

09/01/2014 13:20:40 Page 4

END $\label{eq:Function} \begin{array}{c} \text{L}_{\text{secador}}\left(X_{1}; X_{2}; \mathsf{T}_{s}; \, \rho_{\text{grano}; \text{seco}}; \, \mathsf{D}_{\text{grano}}, \, \overset{\bullet}{\mathsf{m}}_{\text{p}}; \, \overset{\bullet}{\mathsf{m}}_{\text{aire}}; \, \mathsf{T}_{2}; \, \phi_{2}; \, \mathsf{R}; \, \alpha; \, \overline{Y}; \, \mathsf{P1}; \, \mathsf{step}) \end{array}$ Vol_{grano} := 4 / 3 · $\pi \cdot \left[\frac{D_{grano}}{2}\right]^3$ $A_s := 4 \cdot \pi \cdot \left[\frac{D_{grano}}{2}\right]^2$ m_{grano;seco} := ρ_{grano;seco} · Vol_{grano} $m_{grano} := \frac{m_{grano;seco}}{1 - X_1}$ cont_{agua} := m_{grano} - m_{grano;seco} $\dot{N}_{particulas} := \frac{\dot{m}_{p}}{m_{grano}}$ g := 9,81 $A_{trans} := \pi \cdot R^2$ $h_2 := h ['AirH2O'; T = T_2; P = P1; R = \phi_2]$ $w_2 := \omega ['AirH2O'; T = T_2; P = P1; R = \phi_2]$ $\rho_2 := \rho ['AirH2O'; T = T_2; P = P1; R = \phi_2]$ $\dot{V}_2 := \frac{\dot{m}_{aire}}{\rho_2}$ $\dot{V}_{aireCFM} \quad := \dot{V}_2 \ \cdot \ \left| 2118,88 \ \cdot \ \frac{cfm}{m^3/s} \right|$ L_{secador} := 0 i := 1 Repeat t₁ := 0 t2 := step $V_{z;0} := 0$ V_{y:0} := 0 h := 0 $\overline{h}_m := 0$

09/01/2014 13:20:40 Page 5

```
\begin{split} z_{0} &:= 0 \\ y_{0} &:= 0 \\ Y_{ac} &:= \overline{Y} \\ \\ & Lookup ['Lookup 1'; i; 'z'] &:= L_{secador} \\ & Lookup ['Lookup 1'; i; 'Y_{BI'}] &:= Y_{ac} \\ & Lookup ['Lookup 1'; i; 'X_{BH'}] &:= X_{1} \\ & Lookup ['Lookup 1'; i; 'T_{a'}] &:= T_{s} \\ & Lookup ['Lookup 1'; i; 'T_{a'}] &:= f_{s} \\ & Lookup ['Lookup 1'; i; 'T_{2'}] &:= T_{2} \\ & Lookup ['Lookup 1'; i; 'Y_{DOT'}] &:= \tilde{V}_{airoCFM} \\ & Lookup ['Lookup 1'; i; 'h_{BAR'}] &:= \overline{h} \\ & Lookup ['Lookup 1'; i; 'h_{BAR'm'}] &:= \overline{h}_{m} \end{split}
```

i := i + 1

Repeat

 $\begin{array}{c} \text{Call SECADO}\left[\phi_{2}\,;\,w_{2}\,;\,h_{2}\,;\,T_{2}\,;\,D_{\text{grano}}\,;\,m_{\text{grano}}\,;\,\dot{m}_{\text{aire}}\,;\,\dot{N}_{\text{particulas}}\,;\,R\,;\,\alpha\,;\,P1\,;\,g\,;\,V_{y,0}\,;\,V_{z,0}\,;\,z_{0}\,;\,y_{0}\,;\,A_{\text{trisc}}\,;\,t_{1}\,;\,t_{2}\,:\,\dot{m}_{w}\,;\,m_{w}\,;\,T_{s}\,;\,\dot{h}_{m}\,;\,\dot{h}\,;\,V_{z}\,;\,V_{z}\,;\,y\,\right] \end{array}$

09/01/2014 13:20:40 Page 6

```
Lookup ['Lookup 1'; i; 'T<sub>5</sub>'] := T<sub>5</sub>

Lookup ['Lookup 1'; i; 'phi<sub>2</sub>'] := \phi_2

Lookup ['Lookup 1'; i; 'T<sub>2</sub>'] := T<sub>2</sub>

Lookup ['Lookup 1'; i; 'V<sub>DOT</sub>'] := \dot{V}_{aireCFM}

Lookup ['Lookup 1'; i; 'h<sub>BAR</sub>'] := \bar{h}

Lookup ['Lookup 1'; i; 'h<sub>BAR</sub>'] := \bar{h}_m

t<sub>1</sub> := t2

t<sub>2</sub> := t<sub>2</sub> + step

V<sub>y,0</sub> := V<sub>y</sub>

V<sub>z,0</sub> := V<sub>y</sub>

V<sub>z,0</sub> := V<sub>z</sub>

z<sub>0</sub> := z

y<sub>0</sub> := y

i := i + 1

Until [Y<sub>ac</sub> <= 0]

Until [L<sub>secador</sub> >= 5,5]
```

End L_{secador}

 $\begin{array}{l} \text{SUBPROGRAM} \quad \textbf{SECADO} \; (\phi_2; \, w_2; \, h_2; \, T_2; \, \mathsf{D}_{\text{grano}}; \, m_{\text{grano}}; \, \mathring{m}_{\text{aire}}; \, \mathring{N}_{\text{particulas}}; \, \mathsf{R}; \, \alpha; \, \mathsf{P1}; \, \mathsf{g}; \, \mathsf{V}_{y,0}; \, \mathsf{V}_{z,0}; \, \mathsf{z}_0; \, \mathsf{y}_0; \, \mathsf{A}_{\text{trans}}; \, \mathsf{A}_{s}; \, t_1; \, \mathsf{t2}: \mathring{m}_w; \\ m_w; \, \mathsf{T}_s; \; \widetilde{h}_m; \; \widetilde{h}; \, \mathsf{V}_z; \, \mathsf{V}_y; \, \mathsf{z}; \, \mathsf{y}) \end{array}$

$$\begin{split} T_{f} &= \frac{T_{2} + T_{s}}{2} \\ C_{D} &= \frac{24}{\left| \rho_{B} \cdot V_{rel} \cdot \frac{D_{grano}}{\mu_{B}} \right|} \cdot \left[1 + 0.15 \cdot \left(\left| \rho_{B} \cdot V_{rel} \cdot \frac{D_{grano}}{\mu_{B}} \right| \right)^{0.667} \right] \\ m_{grano} &\cdot dV_{zdt} = m_{grano} \cdot g \cdot sin \left[\alpha \right] + 0.5 \cdot \rho_{B} \cdot C_{D} \cdot V_{rel}^{-2} \cdot \pi \cdot \left[\frac{D_{grano}}{2} \right]^{2} \cdot cos \left[\theta \right] \\ V_{z} &= V_{z,0} + \int_{\tau_{1}}^{\tau_{2}} \left[dV_{zdt} \right] d \text{ Time} \\ m_{grano} &\cdot dV_{ydt} = m_{grano} \cdot g \cdot cos \left[\alpha \right] - 0.5 \cdot \rho_{B} \cdot C_{D} \cdot V_{rel}^{-2} \cdot \pi \cdot \left[\frac{D_{grano}}{2} \right]^{2} \cdot sin \left[\theta \right] \end{split}$$

File:SECADOLES

$$V_{r} = V_{r0} + \int_{t_{1}}^{0} [dV_{r0}] d \text{ Time}$$

$$z = z_{0} + \int_{t_{1}}^{0} [V_{r}] d \text{ Time}$$

$$y = y_{0} + \int_{t_{1}}^{0} [V_{r}] d \text{ Time}$$

$$\frac{V_{2}}{V_{2}} = \frac{\tilde{m}_{wn}}{\rho_{2}}$$

$$V_{2} = \frac{\tilde{Q}_{2}}{A_{max}}$$

$$V_{wi} = \sqrt{(V_{2} - V_{2})^{2} + V_{r}^{2}}$$

$$\theta = \arctan\left[\frac{V_{2} - V_{r}}{V_{2} - V_{r}}\right]$$

$$\overline{h} \cdot [T_{2} - T_{1}] = h_{0} \cdot \overline{h}_{m} \cdot [p_{Aster} - p_{Ax_{0}}]$$

$$h_{r} = h \left[\text{Water}'; T = T_{r}; x = 0\right] \cdot \left|1000 \cdot \frac{JNg}{KJNg}\right|$$

$$h_{g} = h_{g} - h_{t}$$

$$R_{A} = 461$$

$$p_{Axw} = \frac{W_{2} \cdot P1 \cdot \left[\frac{1000}{0.622 + w_{2}}\right]}{P_{Axw} - \left[T_{A} + \frac{P_{Ax}}{T_{A}} + \frac{P_{$$

```
File:SECADO.EES
                                                                                                                        09/01/2014 13:20:40 Page 8
  \mu_{2;s} = \text{Visc} [ 'AirH2O' ; T = T_s ; P = P1 ; w = w_2 ]
   Pr_2 = Pr['Air'; T = T_2]
    k_2 = k ['AirH2O'; T = T_2; P = P1; w = w_2]
   \overline{h}_{m} = \frac{\overline{h} \cdot D_{AB} \cdot |Le|^{\left[1 / 3\right]}}{k_{B}}
   \rho_{B} = \rho['Air'; T = T_{f}; P = P1]
   \mu_B = \text{Visc} ['Air'; T = T_f]
   k_B = k ['Air'; T = T_f]
   cp_B = Cp['Air'; T = T_f] \cdot 1000
    Le = \frac{k_B}{\rho_B \cdot cp_B \cdot D_{AB}}
   D_{AB} = -0,000002775 \ [m^2/s] + 4,479 \times 10^{-8} \ [m^2/s-K] \cdot [T_f + 273,15] + 1,656 \times 10^{-10} \ [m^2/s-K^2] \cdot [T_f + 273,15]^2
   n_{A} = \overline{h}_{m} \cdot A_{s} \cdot \left[\rho_{A;sat} - \rho_{A;\infty}\right]
   m_w = n_A \cdot [t2 - t_1]
  \dot{m}_w = m_w \cdot \dot{N}_{particulas}
END SECADO
X_1 = 0,5839
X_2 = 0,3928
T_{s} = 17,5
p<sub>grano;seco</sub> = 450
D<sub>grano</sub> = 0,00181
\dot{m}_{p} = 680,616 \cdot \left| 0,000277778 \cdot \frac{\text{kg/s}}{\text{kg/h}} \right|
.
m<sub>aire</sub> = 1,892
T<sub>2</sub> = 155,14
\phi_2 = 0,001284
R = 0,6
\alpha = 0
¥ = 0,8283
```

09/01/2014 13:20:40 Page 9

P1 = 1 [atm] \cdot 101,325 $\cdot \frac{kPa}{atm}$

step = 0,05

 $L_{secador} = L_{secador} \begin{bmatrix} X_1 \; ; \; X_2 \; ; \; T_s \; ; \; \rho_{grano,seco} \; ; \; D_{grano} \; ; \; \overset{\bullet}{m}_p \; ; \; \overset{\bullet}{m}_{aire} \; ; \; T_2 \; ; \; \phi_2 \; ; \; R \; ; \; \alpha \; ; \; \overrightarrow{Y} \; ; \; P1 \; ; \; step \; \end{bmatrix}$

	z	У	X _{BH}	Ts	¢2	T ₂	ý	ħ	ħm
	[m]	[m]		[C]		[C]	[CFM]	[W/m ² -K]	[m/s]
Row 1	0	0,8283	0,5839	17,5	0,001284	155,1	4898	0	0
Row 2	0,001649	0,8161	0,5835	38,06	0,001326	154,8	4895	144,4	0,1639
Row 3	0,006487	0,7799	0,583	38,06	0,001369	154,6	4893	147,3	0,167
Row 4	0,01436	0,7207	0,5825	38,06	0,001413	154,3	4890	152,3	0,1727
Row 5	0,02512	0,6398	0,582	38,06	0,001461	153,9	4887	158,3	0,1794
Row 6	0,03863	0,5387	0,5815	38,06	0,00151	153,6	4885	164,6	0,1865
Row 7	0,05478	0,4191	0,581	38,06	0,001563	153,3	4882	170,7	0,1934
Row 8	0,07343	0,2826	0,5804	38,05	0,001617	152,9	4879	176,4	0,1997
Row 9	0,09447	0,1309	0,5799	38,05	0,001674	152,6	4876	181,5	0,2054
Row 10	0,1178	-0,03445	0,5793	38,05	0,001733	152,2	4873	186,1	0,2104
Row 11	0,1178	0,8283	0,5793	38,05	0,001733	152,2	4873	0	0
Row 12	0,1195	0,8161	0,5789	38,05	0,00178	151,9	4870	143,8	0,1626
Row 13	0,1243	0,7799	0,5784	38,05	0,001827	151,6	4868	146,7	0,1658
Row 14	0,1322	0,7207	0,5779	38,05	0,001877	151,3	4865	151,7	0,1714
Row 15	0,143	0,6399	0,5775	38,05	0,00193	151	4863	157,8	0,1782
Row 16	0,1566	0,5389	0,577	38,05	0,001985	150,7	4860	164,1	0,1853
Row 17	0,1728	0,4195	0,5764	38,05	0,002043	150,4	4857	170,2	0,1921
Row 18	0,1914	0,2832	0,5759	38,05	0,002103	150,1	4854	175,8	0,1983
Row 19	0,2125	0,1318	0,5753	38,05	0,002166	149,7	4851	180,9	0,204
Row 20	0,2359	-0,03309	0,5748	38,05	0,002232	149,4	4848	185,4	0,209
Row 21	0,2359	0,8283	0,5748	38,05	0,002232	149,4	4848	0	0
Row 22	0,2376	0,8161	0,5743	38,05	0,002283	149,1	4846	143,2	0,1614
Row 23	0,2425	0,7799	0,5739	38,05	0,002336	148,8	4843	146,1	0,1646
Row 24	0,2504	0,7208	0,5734	38,05	0,002391	148,5	4841	151,2	0,1702
Row 25	0,2612	0,64	0,5729	38,05	0,002449	148,2	4838	157,2	0,177
Row 26	0,2748	0,5391	0,5724	38,05	0,00251	147,9	4836	163,5	0,184
Row 27	0,291	0,4198	0,5719	38,05	0,002574	147,6	4833	169,6	0,1908
Row 28	0,3098	0,2838	0,5714	38,05	0,002641	147,3	4830	175,3	0,197
Row 29	0,3309	0,1327	0,5708	38,05	0,00271	146,9	4827	180,3	0,2027
Row 30	0,3544	-0,03174	0,5702	38,05	0,002783	146,6	4824	184,8	0,2076
Row 31	0,3544	0,8283	0,5702	38,05	0,002783	146,6	4824	0	0
Row 32	0,356	0,8161	0,5698	38,05	0,002839	146,3	4822	142,6	0,1602
Row 33	0,3609	0,7799	0,5694	38,05	0,002897	146,1	4820	145,6	0,1634
Row 34	0,3689	0,7208	0,5689	38,05	0,002958	145,8	4817	150,6	0,169
Row 35	0,3797	0,6401	0,5684	38,05	0,003022	145,5	4815	156,7	0,1758
Row 36	0,3934	0,5393	0,5679	38,05	0,003089	145,2	4812	163	0,1828
Row 37	0,4096	0,4202	0,5674	38,05	0,003159	144,9	4810	169,1	0,1896
Row 38	0,4284	0,2844	0,5669	38,05	0,003233	144,6	4807	174,7	0,1958
Row 39	0,4496	0,1337	0,5663	38,05	0,003309	144,2	4804	179,8	0,2014
Row 40	0,4731	-0,03041	0,5657	38,05	0,003389	143,9	4801	184,2	0,2063
Row 41	0,4731	0,8283	0,5657	38,05	0,003389	143,9	4801	0	0
Row 42	0,4748	0,8161	0,5653	38,05	0,003451	143,7	4799	142,1	0,159
Row 43	0,4797	0,7799	0,5649	38,05	0,003515	143,4	4797	145	0,1623
Row 44	0.4877	0.7208	0,5644	38.05	0,003581	143.1	4794	150,1	0,1679

Lookup Table:	Lookup 1								
	z	У	X _{BH}	Ts	\$ 2	T ₂	v	ħ	ħ _m
	[m]	[m]		[C]		[C]	[CFM]	[W/m ² -K]	[m/s]
Row 45	0,4986	0,6402	0,5639	38,05	0,003651	142,9	4792	156,2	0,1747
Row 46	0,5122	0,5395	0,5634	38,05	0,003725	142,6	4789	162,5	0,1817
Row 47	0,5286	0,4205	0,5629	38,05	0,003802	142,3	4787	168,6	0,1884
Row 48	0,5474	0,285	0,5624	38,06	0,003883	142	4784	174,2	0,1946
Row 49	0,5686	0,1346	0,5619	38,06	0,003967	141,6	4781	179,2	0,2001
Row 50	0,5922	-0,02909	0,5613	38,06	0,004054	141,3	4779	183,6	0,205
Row 51	0,5922	0,8283	0,5613	38,06	0,004054	141,3	4779	0	0
Row 52	0,5939	0,8161	0,5609	38,06	0,004121	141,1	4776	141,5	0,1579
Row 53	0,5988	0,7799	0,5604	38,06	0,004191	140,8	4774	144,5	0,1612
Row 54	0,6068	0,7209	0,56	38,06	0,004264	140,6	4772	149,6	0,1668
Row 55	0.6177	0,6403	0,5595	38,06	0,00434	140,3	4770	155,7	0,1736
Row 56	0.6314	0.5397	0.559	38,06	0,004421	140	4767	162	0,1805
Row 57	0.6478	0,4209	0,5585	38,06	0,004505	139,7	4765	168,1	0,1872
Row 58	0.6667	0.2856	0.558	38,06	0,004593	139,4	4762	173,6	0,1934
Row 59	0.688	0.1355	0.5574	38.06	0.004685	139,1	4759	178,6	0,1989
Row 60	0 7116	-0.02778	0.5569	38.06	0.00478	138.8	4757	183,1	0,2037
Row 61	0,7116	0.8283	0.5569	38.06	0.00478	138.8	4757	0	0
Row 62	0 7132	0.8161	0.5564	38.06	0.004854	138.6	4755	141	0,1568
Row 63	0 7182	0.78	0.556	38.06	0.00493	138.3	4752	144	0.1601
Row 64	0,7762	0 7209	0.5556	38.06	0.005009	138.1	4750	149.1	0.1657
Row 65	0,7202	0,6404	0.5551	38.06	0.005092	137.8	4748	155.2	0.1725
Row 66	0,7509	0,5399	0.5546	38.06	0.00518	137.5	4746	161.5	0.1795
Row 67	0,7503	0.4212	0.5541	38.06	0.005272	137.2	4743	167.6	0.1861
Row 67	0,7073	0,4212	0,5536	38.07	0.005368	137	4741	173.1	0.1922
Row 60	0,7002	0,2002	0,553	38.07	0.005467	136.7	4738	178 1	0 1977
Row 09	0,8070	0,1504	0.5525	38.07	0.005571	136.4	4735	182.5	0 2025
Row 70	0,0312	-0,02049	0,5525	38.07	0,005571	136 4	4735	102,0	0,2020
Row 71	0,0312	0,0203	0,5521	38.07	0,005651	136 1	4733	140 5	0 1558
Row 72	0,0329	0,0101	0,5521	29.07	0,005733	135.0	4731	143,5	0 1501
Row 73	0,8379	0,78	0,5510	30,07	0,005755	125.6	4731	149,5	0,1531
Row 74	0,8459	0,7209	0,5512	30,07	0,00502	135,0	4723	140,0	0,1047
Row 75	0,8569	0,6404	0,5507	38,07	0,00591	130,4	4725	104,7	0,1713
Row 76	0,8707	0,5401	0,5502	30,07	0,006005	130,1	4720	101,1	0,1704
Row 77	0,8872	0,4216	0,5497	38,07	0,006105	134,9	4722	107,1	0,100
Row 78	0,9061	0,2867	0,5492	38,07	0,006209	134,0	4720	172,0	0,1911
Row 79	0,9275	0,1372	0,5487	38,07	0,006317	134,3	4/1/	177,0	0,1905
Row 80	0,9512	-0,02522	0,5481	38,07	0,006429	134	4/15	181,9	0,2013
Row 81	0,9512	0,8283	0,5481	38,07	0,006429	134	4/15	140	0 1549
Row 82	0,9529	0,8161	0,5477	38,08	0,006516	133,8	4/13	140	0,1540
Row 83	0,9579	0,78	0,5473	38,08	0,006606	133,5	4/11	143	0,1581
Row 84	0,966	0,721	0,5468	38,08	0,006699	133,3	4708	148,1	0,1637
Row 85	0,977	0,6405	0,5464	38,08	0,006797	133	4706	154,3	0,1705
Row 86	0,9908	0,5403	0,5459	38,08	0,0069	132,8	4704	160,6	0,1774
Row 87	1,007	0,4219	0,5454	38,08	0,007008	132,5	4702	166,6	0,184
Row 88	1,026	0,2873	0,5449	38,08	0,007121	132,3	4699	172,1	0,19
Row 89	1,048	0,1381	0,5444	38,08	0,007238	132	4697	177,1	0,1954
Row 90	1,071	-0,02396	0,5438	38,08	0,007359	131,7	4694	181,4	0,2001
Row 91	1,071	0,8283	0,5438	38,08	0,007359	131,7	4694	0	0
Row 92	1,073	0,8161	0,5434	38,09	0,007453	131,5	4692	139,5	0,1538
Row 93	1,078	0,78	0,543	38,09	0,00755	131,2	4690	142,5	0,1571
Row 94	1,086	0,721	0,5425	38,09	0,00765	131	4688	147,7	0,1628
Row 95	1,097	0,6406	0,5421	38,09	0,007757	130,8	4686	153,8	0,1695
Row 96	1,111	0,5405	0,5416	38,09	0,007868	130,5	4684	160,1	0,1764
Row 97	1,128	0,4223	0,5411	38,09	0,007984	130,3	4682	166,2	0,183
Row 98	1,147	0,2879	0,5406	38,09	0,008106	130	4680	171,7	0,189

Row 99	Iml								
Row 99	fund	[m]		[C]		[C]	[CFM]	[W/m ² -K]	[m/s]
Bow 100	1,168	0,139	0,5401	38,09	0,008232	129,7	4677	176,6	0,1943
ROW TOO	1,192	-0,02271	0,5395	38,09	0,008363	129,5	4675	180,9	0,199
Row 101	1,192	0,8283	0,5395	38,09	0,008363	129,5	4675	0	0
Row 102	1,194	0,8161	0,5391	38,1	0,008464	129,2	4673	139	0,1528
Row 103	1,199	0,78	0,5387	38,1	0,008568	129	4671	142	0,1561
Row 104	1.207	0,721	0,5383	38,1	0.008677	128.8	4669	147,2	0,1618
Row 105	1.218	0.6407	0,5378	38,1	0.008791	128.6	4667	153,4	0,1685
Row 106	1.232	0.5406	0.5374	38.1	0.008911	128.3	4665	159.7	0.1754
Row 107	1.248	0.4226	0.5369	38.1	0.009037	128.1	4662	165.7	0.182
Row 108	1,268	0.2884	0.5364	38.1	0.009167	127.8	4660	171.2	0.1879
Row 109	1,289	0,1398	0.5358	38.1	0.009303	127.6	4658	176.1	0.1932
Row 110	1 313	-0.02148	0.5353	38.11	0.009444	127.3	4656	180.4	0.1979
Row 111	1 313	0.8283	0.5353	38 11	0.009444	127.3	4656	0	0,1010
Row 112	1 315	0,8161	0,5349	38 11	0.009552	127 1	4654	138 5	0 1519
Row 112	1 32	0.78	0.5345	38 11	0.009664	126.9	4652	141.6	0 1552
Row 114	1 328	0 7211	0,5341	38 11	0,000781	126,5	4650	146.8	0,1502
Row 114	1,320	0,7211	0,5336	29 11	0,009701	120,0	4030	140,0	0,1005
Row 115	1,009	0,0400	0,5330	20 11	0,009904	120,4	4040	150.2	0,1070
Row 110	1,353	0,5408	0,5331	30,11	0,01003	120,2	4040	109,5	0,1745
ROW 117	1,309	0,4229	0,5320	30,11	0,01017	125,9	4044	105,3	0,101
Row 118	1,389	0,289	0,5321	38,12	0,01031	125,7	4041	170,7	0,1869
Row 119	1,41	0,1407	0,5316	38,12	0,01045	125,4	4039	175,6	0,1922
Row 120	1,434	-0,02027	0,5311	38,12	0,01061	125,2	4637	1/9,9	0,1968
Row 121	1,434	0,8283	0,5311	38,12	0,01061	125,2	4637	0	0
Row 122	1,436	0,8161	0,5307	38,12	0,01072	125	4635	138,1	0,151
Row 123	1,441	0,78	0,5303	38,12	0,01084	124,8	4633	141,1	0,1543
Row 124	1,449	0,7211	0,5299	38,12	0,01097	124,6	4631	146,4	0,16
Row 125	1,46	0,6409	0,5294	38,12	0,0111	124,3	4629	152,6	0,1667
Row 126	1,474	0,541	0,529	38,13	0,01124	124,1	4627	158,9	0,1736
Row 127	1,491	0,4233	0,5285	38,13	0,01138	123,9	4625	164,8	0,1801
Row 128	1,51	0,2895	0,528	38,13	0,01153	123,6	4623	170,3	0,186
Row 129	1,532	0,1415	0,5275	38,13	0,01169	123,4	4621	175,1	0,1912
Row 130	1,555	-0,01907	0,5269	38,13	0,01185	123,1	4619	179,4	0,1958
Row 131	1,555	0,8283	0,5269	38,13	0,01185	123,1	4619	0	0
Row 132	1,557	0,8161	0,5265	38,13	0,01197	122,9	4617	137,6	0,1501
Row 133	1,562	0,78	0,5261	38,13	0,0121	122,7	4615	140,7	0,1535
Row 134	1,57	0,7211	0,5257	38,14	0,01224	122,5	4613	146	0,1592
Row 135	1,582	0,6409	0,5253	38,14	0,01238	122,3	4611	152,1	0,1659
Row 136	1,596	0,5412	0,5248	38,14	0,01253	122,1	4609	158,4	0,1727
Row 137	1,612	0,4236	0,5243	38,14	0,01268	121,9	4607	164,4	0,1792
Row 138	1,632	0,2901	0,5238	38,14	0,01284	121.6	4605	169.9	0.185
Row 139	1,653	0,1423	0,5233	38,14	0,01301	121,4	4603	174.7	0.1902
Row 140	1,677	-0.01789	0,5228	38.15	0.01318	121.1	4601	178.9	0.1948
Row 141	1.677	0.8283	0.5228	38.15	0.01318	121.1	4601	0	0
Row 142	1.679	0.8161	0.5224	38.15	0.01331	121	4599	137.2	0 1493
Row 143	1.684	0.78	0.522	38.15	0.01345	120.8	4598	140.3	0 1526
Row 144	1 692	0 7212	0.5216	38 15	0.01359	120,6	4596	145.5	0 1583
Row 145	1 703	0.641	0.5212	38 15	0.01374	120.4	4594	151 7	0.165
Row 146	1 717	0 5413	0.5207	38 15	0.0130	120,4	4502	158	0 1718
Row 147	1 734	0,0413	0.5207	38 16	0.01407	110.0	4500	164	0,1710
Row 147	1,754	0,4239	0,5202	39,10	0,01407	110.7	4590	104	0,1783
Row 148	1,/04	0,2906	0,5197	30,10	0,01424	119,7	4588	109,4	0,1841
Row 149	1,775	0,1431	0,5192	38,16	0,01442	119,4	4586	174,2	0,1893
Row 150	1,799	-0,01672	0,5187	38,16	0,0146	119,2	4584	178,4	0,1938
Row 151	1,799	0,8283	0,5187	38,16	0,0146	119,2	4584	0	0

	z	У	XBH	Ts	¢2	T ₂	ý	ħ	ħ"
	[m]	[m]		[C]		[C]	[CFM]	[W/m ² -K]	[m/s]
Row 153	1,806	0,78	0,5179	38,17	0,01489	118,8	4580	139,9	0,1518
Row 154	1.814	0.7212	0,5175	38,17	0.01504	118,6	4579	145,2	0,1575
Row 155	1.826	0.6411	0.5171	38.17	0.0152	118.4	4577	151.4	0.1642
Row 156	1.84	0.5415	0.5166	38.17	0.01537	118.2	4575	157.7	0.171
Row 157	1.856	0.4242	0.5162	38.17	0.01554	118	4573	163.6	0.1774
Row 158	1.876	0.2911	0.5157	38.17	0.01573	117.8	4571	169	0.1832
Row 159	1.897	0.1439	0.5152	38.18	0.01592	117.6	4569	173.8	0,1884
Row 160	1,922	-0.01556	0.5147	38,18	0.01611	117.3	4567	178	0,1928
Row 161	1,922	0.8283	0.5147	38.18	0.01611	117.3	4567	0	0
Row 162	1,923	0.8161	0.5143	38.18	0.01626	117,1	4565	136,3	0,1477
Row 163	1,928	0.78	0.5139	38.18	0.01642	117	4564	139.5	0.151
Row 164	1.937	0.7212	0.5135	38.18	0.01658	116.8	4562	144.8	0.1567
Row 165	1,948	0.6412	0.513	38.19	0.01675	116.6	4560	151	0.1634
Row 166	1.962	0.5417	0.5126	38,19	0.01693	116.4	4558	157.3	0.1702
Row 167	1,979	0.4245	0.5121	38,19	0.01712	116.2	4557	163.2	0.1766
Row 168	1 998	0 2916	0.5117	38,19	0.01731	116	4555	168.6	0.1824
Row 169	2 02	0 1447	0.5112	38,19	0.01751	115.7	4553	173.4	0.1875
Row 170	2 044	-0.01442	0.5107	38.2	0.01772	115.5	4551	177.5	0.1919
Row 171	2 044	0.8283	0.5107	38.2	0.01772	115.5	4551	0	0,1010
Row 172	2 046	0.8161	0.5103	38.2	0.01788	115.3	4549	135.9	0 1469
Row 173	2 051	0.78	0,5099	38.2	0.01804	115.2	4547	139.1	0.1503
Row 174	2,059	0 7212	0,5095	38.2	0.01822	115	4546	144 4	0 156
Row 175	2,000	0.6413	0.509	38.2	0.0184	114.8	4544	150.6	0 1627
Row 176	2 085	0.5419	0.5086	38.2	0.01859	114.6	4542	156.9	0 1694
Row 177	2 102	0 4249	0.5081	38 21	0.01878	114.4	4540	162.8	0 1758
Row 178	2 121	0 2921	0.5077	38 21	0.01899	114 2	4539	168.2	0 1815
Row 179	2 143	0 1455	0.5072	38 21	0.0192	113.9	4537	172.9	0 1866
Row 180	2 167	-0.0133	0.5067	38 21	0.01942	113.7	4535	177 1	0 191
Row 181	2 167	0.8283	0,5067	38 21	0.01942	113.7	4535	0	0,101
Row 182	2 169	0,8161	0.5063	38.22	0.01959	113.6	4533	135.5	0 1462
Row 183	2 174	0.78	0,5059	38.22	0.01977	113.4	4532	138.7	0 1495
Row 184	2 182	0 7213	0.5055	38 22	0.01995	113.2	4530	144	0 1552
Row 185	2 193	0,6413	0.5051	38 22	0.02014	113	4528	150.2	0 1619
Row 186	2 208	0.542	0.5047	38 22	0.02034	112.8	4527	156.5	0 1687
Row 187	2 225	0 4252	0.5042	38 22	0.02055	112,0	4525	162.5	0 175
Row 188	2 244	0,7202	0.5037	38 23	0.02077	112,0	4523	167.8	0 1807
Row 189	2,244	0 1463	0,5032	38 23	0.021	112,4	4521	172.5	0,1857
Row 190	2 29	-0.01219	0.5028	38 23	0.02123	112	4519	176.6	0 1901
Row 191	2 29	0.8283	0.5028	38 23	0.02123	112	4519	0	0,1001
Row 192	2 292	0,8161	0.5024	38 23	0.02141	111.8	4518	135.2	0 1454
Row 193	2 297	0.78	0.502	38 24	0.02159	111 7	4516	138.3	0 1488
Row 194	2 305	0 7213	0.5016	38 24	0.02178	111.5	4514	143.7	0 1545
Row 195	2,303	0,7213	0,5010	38 24	0,02100	111.3	4513	140,0	0,1612
Row 196	2 331	0,5422	0,5007	38 24	0.0222	111 1	4511	156.2	0,1679
Row 197	2 348	0.4255	0,5003	38 24	0.02242	110.9	4509	162 1	0 1742
Row 197	2,340	0,4200	0,0003	38.25	0,02242	110,5	4508	167.4	0,1742
Row 190	2,307	0,2331	0,4003	38.25	0,02200	110,7	4506	172.1	0,1799
Row 200	2,000	-0.01100	0,4080	38 25	0.02205	110,3	4504	176.2	0,1049
Row 201	2,413	0.8283	0,4989	38.25	0.02314	110,3	4504	170,2	0,1092
Row 201	2,415	0,0203	0,4909	38 25	0,02314	110,3	4504	124.9	0 1447
Row 202	2,415	0,8101	0,4900	38.25	0,02352	110,2	4502	134,8	0,1447
Row 203	2,42	0,7801	0,4901	38,25	0,02352	100.9	4001	142.0	0,1401
Row 204	2,429	0,7213	0,4977	30,20	0,02372	109,8	4499	143,3	0,1538
NUW 200	2,44	0,0415	0,4973	30,20	0,02394	109,7	4490	149,0	0,1005

Lookup Table: L	ookup 1								
	z	У	XBH	Ts	\$ 2	T ₂	v	ħ	ħ _m
	[m]	[m]		[C]		[C]	[CFM]	[W/m ² -K]	[m/s]
Row 207	2,471	0,4258	0,4964	38,26	0,02439	109,3	4495	161,7	0,1735
Row 208	2,491	0,2936	0,496	38,26	0,02464	109,1	4493	167,1	0,1791
Row 209	2,513	0,1478	0,4955	38,27	0,02489	108,9	4491	171,7	0,1841
Row 210	2,537	-0,01001	0,495	38,27	0,02515	108,7	4489	175,8	0,1884
Row 211	2,537	0,8283	0,495	38,27	0,02515	108,7	4489	0	0
Row 212	2,539	0,8161	0,4946	38,27	0,02535	108,5	4488	134,4	0,144
Row 213	2,544	0,7801	0,4943	38,27	0,02555	108,4	4486	137,6	0,1474
Row 214	2,552	0,7214	0,4939	38,28	0,02577	108,2	4485	143	0,1531
Row 215	2,564	0,6416	0,4935	38,28	0,02599	108	4483	149,2	0,1598
Row 216	2,578	0,5425	0,493	38,28	0,02623	107,9	4482	155,5	0,1665
Row 217	2,595	0,4261	0,4926	38,28	0,02647	107,7	4480	161,4	0,1727
Row 218	2.615	0.2941	0,4921	38.28	0.02673	107,5	4478	166,7	0,1784
Row 219	2.637	0.1486	0.4917	38.29	0.02699	107.3	4477	171.3	0,1833
Row 220	2 661	-0.008942	0.4912	38.29	0.02727	107.1	4475	175.4	0.1876
Row 221	2,661	0.8283	0 4912	38 29	0.02727	107 1	4475	0	0
Row 222	2 663	0.8161	0 4908	38 29	0.02748	106.9	4473	134.1	0.1434
Row 222	2,668	0,7801	0,4904	38.29	0.02769	106.8	4472	137.3	0 1468
Row 223	2,000	0,7001	0,4901	38.3	0.02792	106.6	4470	142.6	0 1525
Row 224	2,070	0,7214	0,4897	38.3	0.02815	106.5	4469	148.9	0 1591
Row 225	2,000	0,0410	0,4097	38.3	0,0284	106.3	4405	155.2	0,1551
Row 220	2,702	0,5427	0,4092	20.2	0,0204	106,5	4407	155,2	0,1030
Row 227	2,719	0,4204	0,4000	20,3	0,02000	105,1	4400	166.2	0,172
Row 228	2,739	0,2940	0,4003	20,3	0,02093	105,9	4404	100,3	0,1770
Row 229	2,761	0,1493	0,4879	30,31	0,02921	105,7	4402	171	0,1020
Row 230	2,785	-0,007889	0,4874	38,31	0,0295	105,6	4401	175	0,1000
Row 231	2,785	0,8283	0,4874	38,31	0,0295	105,6	4401	100 7	0 1 1 0 7
Row 232	2,787	0,8161	0,487	38,31	0,02972	105,4	4459	133,7	0,1427
Row 233	2,792	0,7801	0,4867	38,31	0,02994	105,3	4458	136,9	0,1461
Row 234	2,801	0,7214	0,4863	38,32	0,03018	105,1	4457	142,3	0,1518
Row 235	2,812	0,6417	0,4859	38,32	0,03043	104,9	4455	148,6	0,1585
Row 236	2,826	0,5428	0,4855	38,32	0,03069	104,8	4454	154,8	0,1651
Row 237	2,843	0,4266	0,485	38,32	0,03096	104,6	4452	160,7	0,1713
Row 238	2,863	0,2951	0,4846	38,33	0,03124	104,4	4450	166	0,1769
Row 239	2,885	0,15	0,4841	38,33	0,03153	104,2	4449	170,6	0,1818
Row 240	2,91	-0,006851	0,4837	38,33	0,03183	104	4447	174,6	0,186
Row 241	2,91	0,8283	0,4837	38,33	0,03183	104	4447	0	0
Row 242	2,911	0,8161	0,4833	38,33	0,03207	103,9	4446	133,4	0,1421
Row 243	2,917	0,7801	0,4829	38,34	0,0323	103,8	4444	136,6	0,1455
Row 244	2,925	0,7214	0,4826	38,34	0,03255	103,6	4443	142	0,1512
Row 245	2,936	0,6418	0,4822	38,34	0,03281	103,4	4442	148,3	0,1578
Row 246	2,951	0,543	0,4818	38,34	0,03309	103,3	4440	154,5	0,1645
Row 247	2,968	0,4269	0,4813	38,34	0,03337	103,1	4439	160,4	0,1707
Row 248	2,988	0,2956	0,4809	38,35	0,03367	102,9	4437	165,6	0,1762
Row 249	3,01	0,1507	0,4804	38,35	0,03397	102,8	4435	170,2	0,1811
Row 250	3,034	-0,005827	0,48	38,35	0,03429	102,6	4434	174,2	0,1853
Row 251	3,034	0,8283	0,48	38,35	0,03429	102,6	4434	0	0
Row 252	3,036	0,8161	0,4796	38,35	0,03453	102,4	4432	133	0,1415
Row 253	3,041	0,7801	0,4793	38,36	0,03478	102,3	4431	136,3	0,1449
Row 254	3.05	0.7215	0,4789	38,36	0,03504	102,2	4430	141,7	0,1506
Row 255	3.061	0.6419	0,4785	38.36	0.03531	102	4428	148	0,1572
Row 256	3.076	0.5431	0.4781	38.36	0.0356	101.8	4427	154.2	0,1638
Row 257	3,093	0.4272	0.4777	38.37	0.0359	101.7	4425	160 1	0.17
	3 113	0.296	0 4772	38.37	0.03621	101.5	4424	165.3	0.1755
Row 258			20.0		and a set but he are	the second se	the second se	1.200.00	
Row 258	3 135	0 1514	0.4768	38.37	0.03653	101.3	4422	169.9	0.1804

Lookup Table: L									_
	z	У	XBH	Ts	¢2	T ₂	v	ħ	h _m
	[m]	[m]		[C]		[C]	[CFM]	[W/m ² -K]	[m/s]
Row 261	3,159	0,8283	0,4763	38,37	0,03686	101,2	4421	0	0
Row 262	3,161	0,8161	0,476	38,38	0,03711	101	4419	132,7	0,1409
Row 263	3,166	0,7801	0,4756	38,38	0,03737	100,9	4418	136	0,1443
Row 264	3,175	0,7215	0,4752	38,38	0,03764	100,7	4417	141,4	0,15
Row 265	3,186	0,6419	0,4748	38,38	0,03793	100,6	4415	147,7	0,1566
Row 266	3,201	0,5433	0,4744	38,38	0,03822	100,4	4414	153,9	0,1632
Row 267	3,218	0,4275	0,474	38,39	0,03854	100,3	4413	159,7	0,1694
Row 268	3,238	0,2965	0,4736	38,39	0,03886	100,1	4411	165	0,1749
Row 269	3,26	0,1521	0,4731	38,39	0,03919	99,93	4409	169,5	0,1797
Row 270	3,284	-0,003822	0,4727	38,4	0,03954	99,76	4408	173,5	0,1838
Row 271	3,284	0,8283	0,4727	38,4	0,03954	99,76	4408	0	0
Row 272	3,286	0,8161	0,4723	38,4	0.0398	99,63	4407	132,4	0,1403
Row 273	3.291	0.7801	0.472	38.4	0.04007	99.5	4405	135.7	0.1437
Row 274	3.3	0.7215	0.4716	38.4	0.04036	99.36	4404	141.1	0.1494
Row 275	3.311	0.642	0.4712	38.4	0.04066	99.21	4403	147.4	0.156
Row 276	3.326	0.5434	0.4708	38.41	0.04097	99.06	4401	153.6	0.1626
Row 277	3,343	0.4278	0.4704	38.41	0.04129	98.9	4400	159.4	0.1688
Row 278	3 363	0 2969	0.47	38 41	0.04163	98 74	4399	164.6	0 1742
Row 279	3,385	0 1528	0 4696	38 41	0.04198	98.58	4397	169.2	0 179
Row 280	3.41	-0.00284	0 4691	38 42	0.04234	98 41	4396	173 1	0 1831
Row 281	3.41	0.8283	0,4691	38 42	0.04234	98.41	4396	0	0,1001
Row 282	3 412	0,8161	0,4688	38 42	0.04262	08.28	4304	132.1	0 1307
Row 283	3 417	0,7801	0,4684	38 42	0.04202	08 15	4303	135 4	0,1337
Row 284	3 425	0,7001	0,4681	38 42	0.0432	08.01	4303	140.8	0,1492
Row 285	3 437	0,7210	0,4677	38 43	0.04351	07.87	4301	147,0	0,1405
Row 285	3 451	0,5436	0,4673	38 43	0.04383	97,07	4391	153.3	0,1000
Row 200	3,460	0,0428	0,4660	28 42	0,04303	07.57	4303	150,5	0,1021
Row 207	3,409	0,420	0,4009	38 43	0,04417	97,07	4300	164.2	0,1002
Row 280	3,511	0,1535	0,466	38 44	0,04492	07.25	4300	169.0	0,1794
Row 209	3,535	0,1555	0,400	38 44	0,04409	97,20	4303	172 7	0,1704
Row 290	3,535	0.8283	0,4050	38 14	0,04526	97,09	4303	172,7	0,1024
Row 291	3,535	0,0200	0,4050	29.44	0,04555	06.07	4303	121.0	0 1202
Row 292	3,537	0,8101	0,4052	29.44	0,04555	90,97	4302	131,0	0,1392
Row 293	2 551	0,7001	0,4049	20 45	0,04504	90,04	4301	135,1	0,1420
Row 294	3,551	0,7210	0,4045	30,45	0,04615	90,71	4300	140,5	0,1403
Row 295	3,503	0,0421	0,4042	20,40	0,04047	90,57	4379	140,0	0,1049
Row 290	3,577	0,0437	0,4030	20,40	0,04001	90,42	4377	155	0,1015
Row 297	3,595	0,4203	0,4034	20,40	0,04717	90,27	4370	150,0	0,1070
Row 290	3,014	0,2978	0,4029	30,40	0,04753	90,12	4373	104	0,173
Row 299	3,037	0,1542	0,4020	30,40	0,04791	95,97	43/3	168,5	0,1777
Row 300	3,001	-0,0009174	0,4021	30,40	0,0483	95,81	4372	172,4	0,1818
Row 301	3,001	0,0203	0,4021	30,40	0,0483	95,61	4372	0	0
Row 302	3,003	0,8161	0,4617	38,40	0,0486	95,68	4370	131,5	0,1386
Row 303	3,008	0,7801	0,4014	38,47	0,04891	95,56	4369	134,8	0,1421
Row 304	3,677	0,7216	0,461	38,47	0,04923	95,43	4368	140,3	0,1478
Row 305	3,689	0,6422	0,4607	38,47	0,04956	95,3	4367	146,5	0,1544
Row 306	3,703	0,5439	0,4603	38,47	0,04992	95,16	4366	152,8	0,1609
Row 307	3,721	0,4286	0,4599	38,48	0,05028	95,01	4364	158,6	0,167
Row 308	3,74	0,2982	0,4595	38,48	0,05066	94,86	4363	163,7	0,1724
Row 309	3,763	0,1548	0,4591	38,48	0,05106	94,71	4362	168,2	0,1771
Row 310	3,788	0,00002333	0,4586	38,48	0,05146	94,55	4360	172,1	0,1811
Row 311	3,814	-0,1645	0,4582	38,49	0,05188	94,4	4359	175,3	0,1845
Row 312	3,814	0,8283	0,4582	38,49	0,05188	94,4	4359	0	0
Row 313	3,816	0,8161	0,4579	38,49	0,05219	94,28	4358	131,2	0,138
Row 314	3,822	0,7801	0,4575	38,49	0,05251	94,16	4356	134,5	0,1415

	z	У	XBH	Ts	¢2	T ₂	Ŷ	ħ	h _m
	[m]	[m]		[C]	2.5.5.8.9.6	[C]	[CFM]	[W/m ² -K]	[m/s]
Row 315	3,83	0,7216	0,4572	38,49	0,05284	94,03	4355	140	0,1472
Row 316	3,842	0,6423	0,4568	38,5	0,05319	93,9	4354	146,2	0,1538
Row 317	3,856	0,544	0,4564	38,5	0,05356	93,77	4353	152,5	0,1603
Row 318	3,874	0,4289	0,456	38,5	0,05395	93,62	4352	158,2	0,1664
Row 319	3,894	0,2987	0,4556	38,5	0,05434	93,48	4350	163,4	0,1717
Row 320	3,916	0,1555	0,4552	38,51	0,05475	93,33	4349	167,9	0,1764
Row 321	3,941	0,001069	0,4548	38,51	0,05518	93,18	4347	171,7	0,1804
Row 322	3,968	-0,1631	0,4543	38,51	0,05561	93,03	4346	174,9	0,1838
Row 323	3,968	0,8283	0,4543	38,51	0,05561	93,03	4346	0	0
Row 324	3,97	0,8161	0,454	38,52	0,05593	92,91	4345	130,9	0,1375
Row 325	3,975	0,7801	0,4537	38,52	0,05627	92,8	4344	134,2	0,1409
Row 326	3.984	0,7216	0,4533	38,52	0,05661	92,67	4343	139.7	0,1467
Row 327	3,995	0.6424	0.453	38.52	0.05698	92.55	4342	145.9	0.1532
Row 328	4.01	0.5442	0.4526	38.52	0.05736	92.41	4340	152.2	0.1597
Row 329	4 027	0 4291	0 4522	38 53	0.05776	92 28	4339	157.9	0 1658
Row 330	4 047	0,2992	0.4518	38.53	0.05818	92.14	4338	163.1	0.1711
Row 331	4 07	0 1563	0 4514	38 53	0.0586	91 99	4336	167.5	0 1758
Row 332	4 094	0.002097	0.451	38 54	0.05904	91.85	4335	171 3	0 1797
Row 333	4 121	-0 1617	0 4505	38.54	0.05949	91 7	4334	174.6	0 1831
Row 334	4 121	0.8283	0,4505	38 54	0.05949	91 7	4334	0	0,1001
Row 335	4 123	0,8161	0,4502	38 54	0.05983	91 59	4333	130.6	0 1369
Row 336	4 120	0,7801	0,4002	38 54	0,06018	01 47	4332	133.0	0 1404
2014 337	4,123	0,7001	0,4405	39.55	0,00010	01 35	4331	130,5	0,1461
10w 337	4,137	0,7217	0,4495	20,55	0,00004	01.00	4001	139,4	0,1401
NOW 330	4,149	0,0424	0,4492	30,00	0,00092	91,23	4329	145,7	0,1527
ROW 339	4,104	0,5443	0,4400	30,55	0,00132	91,1	4328	151,9	0,1592
ROW 340	4,101	0,4294	0,4404	30,00	0,00174	90,97	4327	157,0	0,1002
Row 341	4,201	0,2997	0,448	38,30	0,06217	90,83	4320	162,7	0,1705
Row 342	4,224	0,157	0,4476	38,56	0,06261	90,69	4324	167,2	0,1751
Row 343	4,248	0,003108	0,4472	38,56	0,06307	90,55	4323	1/1	0,179
Row 344	4,275	-0,1603	0,4468	38,56	0,06354	90,41	4322	174,2	0,1824
Row 345	4,275	0,8283	0,4468	38,56	0,06354	90,41	4322	0	0
Row 346	4,277	0,8161	0,4465	38,57	0,06389	90,3	4321	130,3	0,1364
Row 347	4,283	0,7801	0,4461	38,57	0,06425	90,19	4320	133,6	0,1398
Row 348	4,291	0,7217	0,4458	38,57	0,06462	90,07	4319	139,1	0,1456
Row 349	4,303	0,6425	0,4455	38,57	0,06502	89,95	4318	145,4	0,1521
Row 350	4,318	0,5445	0,4451	38,58	0,06543	89,83	4316	151,6	0,1586
Row 351	4,335	0,4297	0,4447	38,58	0,06587	89,7	4315	157,3	0,1646
Row 352	4,355	0,3001	0,4443	38,58	0,06631	89,57	4314	162,4	0,1699
Row 353	4,378	0,1577	0,4439	38,58	0,06677	89,43	4313	166,9	0,1745
Row 354	4,403	0,004103	0,4435	38,59	0,06725	89,29	4311	170,6	0,1784
Row 355	4,43	-0,159	0,4431	38,59	0,06773	89,15	4310	173,8	0,1817
Row 356	4,43	0,8283	0,4431	38,59	0,06773	89,15	4310	0	0
Row 357	4,431	0,8161	0,4428	38,59	0,0681	89,04	4309	130	0,1358
Row 358	4,437	0,7801	0,4425	38,6	0,06847	88,94	4308	133,3	0,1393
Row 359	4,446	0,7217	0,4421	38,6	0,06886	88,83	4307	138,8	0,1451
Row 360	4,457	0,6426	0,4418	38,6	0,06927	88,71	4306	145,1	0,1516
Row 361	4,472	0,5447	0,4414	38,6	0,0697	88,59	4305	151,3	0,1581
Row 362	4,49	0,43	0,441	38,6	0,07015	88,46	4304	157,1	0,164
Row 363	4.51	0.3006	0,4407	38,61	0,07061	88.33	4303	162.1	0,1693
Row 364	4.532	0.1584	0,4403	38.61	0.07109	88.2	4301	166.5	0,1739
Row 365	4.557	0,005081	0,4399	38.61	0.07158	88.07	4300	170.3	0.1778
Row 366	4.584	-0.1577	0,4394	38.62	0.07209	87.93	4299	173.5	0 181
Row 367	4 584	0.8283	0.4394	38.62	0.07209	87.93	4299	0	0,101
Dour 269	4 596	0.8161	0.4391	38 62	0.07246	87.83	4208	120 7	0 1252

	z	У	XBH	Ts	\$2	T ₂	V	ħ	h _m
	[m]	[m]		[C]		[C]	[CFM]	[W/m ² -K]	[m/s]
Row 369	4,591	0,7802	0,4388	38,62	0,07285	87,72	4297	133,1	0,1388
Row 370	4,6	0,7217	0,4385	38,62	0,07326	87,61	4296	138,6	0,1446
Row 371	4,612	0,6426	0,4382	38,63	0,07368	87,5	4295	144,8	0,1511
Row 372	4,627	0,5448	0,4378	38,63	0,07413	87,38	4294	151,1	0,1575
Row 373	4,644	0,4303	0,4374	38,63	0,07459	87,26	4293	156,8	0,1635
Row 374	4,664	0,301	0,437	38,63	0,07507	87,14	4292	161,8	0,1687
Row 375	4,687	0,159	0,4367	38,64	0,07557	87,01	4290	166,2	0,1733
Row 376	4,712	0,006043	0,4363	38,64	0,07608	86,88	4289	170	0,1771
Row 377	4,739	-0,1563	0,4358	38,64	0,0766	86,74	4288	173,1	0,1804
Row 378	4,739	0,8283	0,4358	38,64	0,0766	86,74	4288	0	0
Row 379	4,741	0,8161	0,4355	38,64	0,07699	86,64	4287	129,4	0,1348
Row 380	4,746	0.7802	0,4352	38.65	0.07739	86,54	4286	132,8	0,1383
Row 381	4,755	0,7218	0,4349	38,65	0,07781	86,44	4285	138,3	0,1441
Row 382	4,767	0.6427	0.4346	38.65	0.07825	86,33	4284	144.6	0,1506
Row 383	4.782	0.545	0.4342	38.65	0.07871	86.21	4283	150.8	0.157
Row 384	4,799	0.4305	0.4339	38.66	0.07919	86.09	4282	156.5	0.1629
Row 385	4 819	0.3015	0.4335	38.66	0.07969	85.97	4281	161.5	0.1682
Row 386	4 842	0 1597	0 4331	38 66	0.0802	85.85	4280	165.9	0.1727
Row 387	4 867	0.006988	0.4327	38.66	0.08072	85.72	4278	169.6	0.1765
Row 388	4 894	-0 1551	0.4323	38.67	0.08126	85 59	4277	172.8	0 1798
Row 380	4,004	0.8283	0,4323	38.67	0.08126	85 59	4277	0	0,1700
Row 309	4,094	0,8161	0,432	38.67	0.08167	85.49	4276	129 1	0 1344
Row 390	4,090	0,7802	0,4317	38.67	0,08208	85 4	4275	132.5	0,1379
Row 391	4,901	0,7002	0,4317	20,07	0,08208	95 20	4275	132,3	0,1379
ROW 392	4,91	0,7210	0,4314	30,07	0,08207	05,29	4274	144.2	0,1400
Row 393	4,922	0,0420	0,431	30,00	0,08297	05,19	4273	144,5	0,1501
Row 394	4,937	0,5451	0,4307	30,00	0,08344	00,07	4272	150,5	0,1000
Row 395	4,954	0,4308	0,4303	30,00	0,08394	04,90	4271	150,2	0,1024
Row 396	4,975	0,3019	0,43	38,68	0,08445	84,84	4270	101,3	0,1070
Row 397	4,997	0,1604	0,4296	38,69	0,08498	84,72	4269	165,6	0,1721
Row 398	5,022	0,007918	0,4292	38,69	0,08553	84,59	4268	169,3	0,1759
Row 399	5,05	-0,1538	0,4288	38,69	0,08608	84,47	4267	172,4	0,1792
Row 400	5,05	0,8283	0,4288	38,69	0,08608	84,47	4267	0	0
Row 401	5,051	0,8161	0,4285	38,7	0,0865	84,38	4266	128,9	0,1339
Row 402	5,057	0,7802	0,4282	38,7	0,08693	84,28	4265	132,3	0,1374
Row 403	5,066	0,7218	0,4279	38,7	0,08737	84,18	4264	137,8	0,1431
Row 404	5,077	0,6428	0,4276	38,7	0,08784	84,08	4263	144,1	0,1496
Row 405	5,092	0,5452	0,4272	38,7	0,08833	83,97	4262	150,3	0,156
Row 406	5,11	0,4311	0,4269	38,71	0,08884	83,86	4261	156	0,1619
Row 407	5,13	0,3023	0,4265	38,71	0,08937	83,74	4260	161	0,1671
Row 408	5,153	0,161	0,4261	38,71	0,08992	83,62	4259	165,3	0,1716
Row 409	5,178	0,008832	0,4258	38,72	0,09048	83,5	4258	169	0,1754
Row 410	5,205	-0,1526	0,4254	38,72	0,09105	83,38	4257	172,1	0,1786
Row 411	5,205	0,8283	0,4254	38,72	0,09105	83,38	4257	0	0
Row 412	5,207	0,8161	0,4251	38,72	0,09148	83,29	4256	128,6	0,1334
Row 413	5,213	0,7802	0,4248	38,72	0,09192	83,19	4255	132	0,1369
Row 414	5,221	0,7218	0,4245	38,73	0,09238	83,1	4254	137,6	0,1427
Row 415	5,233	0,6429	0,4241	38,73	0,09287	83	4253	143,9	0,1492
Row 416	5,248	0,5454	0,4238	38,73	0,09337	82,89	4252	150	0,1556
Row 417	5,266	0,4313	0,4235	38,73	0,0939	82,78	4251	155,7	0,1614
Row 418	5.286	0.3027	0,4231	38,74	0,09445	82,67	4250	160,7	0,1666
Row 419	5,309	0,1616	0,4227	38,74	0,09501	82,55	4249	165	0,1711
Row 420	5.334	0.00973	0,4223	38.74	0.09559	82.44	4248	168.7	0,1748
Row 421	5 361	-0 1513	0.422	38 74	0.09618	82.32	4247	171.8	0.178
Row 422	5 361	0.8283	0.422	38 74	0.09618	82 32	4247	0	0

Lookup Table: Lookup 1

	z	У	XBH	Ts	\$ 2	T ₂	v	h	hm
	[m]	[m]		[C]		[C]	[CFM]	[W/m ² -K]	[m/s]
Row 423	5,363	0,8161	0,4217	38,75	0,09662	82,23	4246	128,4	0.133
Row 424	5,369	0,7802	0,4214	38,75	0,09707	82,14	4245	131,8	0.136
Row 425	5,377	0,7219	0,4211	38,75	0,09755	82.04	4244	137.3	0.1422
Row 426	5.389	0.643	0.4208	38.75	0.09805	81.95	4243	143.6	0.148
Row 427	5.404	0.5455	0.4204	38.76	0.09857	81.84	4242	149.8	0.155
Row 428	5 422	0.4316	0 4201	38 76	0.09911	81 74	4241	155.5	0.16
Row 429	5 442	0.3032	0 4197	38 76	0.09967	81 63	4240	160,5	0 166
Row 430	5 465	0 1623	0 4194	38 76	0 1002	81.52	4239	164.8	0 170
Row 431	549	0.01061	0.419	38 77	0 1008	81.4	4238	168.4	0 174
Row 432	5 517	-0 1501	0.4186	38 77	0 1014	81 20	4237	171 5	0 177
Row 433	0,011	0,1001	0,1100	00,11	0,1014	01,20	4201	111,0	0,111
Row 434									
Row 435									
Row 435									
Row 430									
Row 437									
Row 430									
Row 439									
Row 440									
Row 441									
Row 442									
Row 443									
Row 444									
Row 445									
Row 446									
Row 447									
Row 448									
Row 449									
Row 450									
Row 451									
Row 452									
Row 453									
Row 454									
Row 455									
Row 456									
Row 457									
Row 458									
Row 459									
Row 460									
Row 461									
Row 462									
Row 463									
Row 464									
Row 465									
Row 466									
Row 467									
Row 468									
Row 469									
Row 470									
Row 470									
Row 4/1									
Row 472									
ROW 4/3									
ROW 4/4									
Row 475									
Row 476									

APÉNDICE C

RESULTADOS OBTENIDOS EN EES PARA EL SECADOR DE CONCENTRADOS DE ZINC

```
File:Altura promedio de caída REGIÓN B.EES
                                                                                                         09/01/2014 13:54:53 Page 1
"DATOS"
                        {Longitud de labio}
I_1=0,210
I_2=0,120
                        {Longitud de paleta}
alpha_A=135
                        {Ángulo entre segmentos de paleta}
gamma=0
                        {Ángulo formado entre la paleta y la línea que que va desde su raíz hasta el centro del tambor}
R=1,95
                        {Radio del tambor}
omega=3*CONVERT(rpm;rad/s)
theta_vaciado=107
DELTAtheta=1/10 {"Step" angular en grados}
N=theta_vaciado/DELTAtheta
div=1/DELTAtheta
theta[0]=0
fraccion[0]=0
theta_BAR[0]=0
producto[0]=0
masa[0]=masa(0)
DUPLICATE i=0;N
        theta[i+1]=theta[i]+DELTAtheta
       fraccion[i+1]=(masa(i/div)-masa((i+1)/div))/masa(0)
producto[i+1]=fraccion[i+1]*theta[i+1]
theta_BAR[i+1]=theta_BAR[i]+producto[i+1]
        masa[i+1]=masa((i+1)/div)
END
theta_BAR=theta_BAR[N]
OB=SQRT(I_1^2+I_2^2-2*I_1*I_2*cos(alpha_A))
alpha_B=arcsin(I_1*sin(alpha_A)/OB)
R_O=SQRT(OB^2+R^2-2*OB*R*cos(gamma+alpha_B))
                                                                         {Distancia entre el centro del tambor y la punta del labio}
X_O_g=R_O*cos(theta_BAR)
Y_O_g=R_O*sin(theta_BAR)
Y_BAR=(Y_O_g+SQRT(R^2-X_O_g^2))
                                DATOS
I_1 = 0,21
I_2 = 0,12
\alpha_A = 135
\gamma = 0
R = 1,95
\omega = 3 \cdot \left| 0,10472 \cdot \frac{\text{rad/s}}{\text{rpm}} \right|
\theta_{\text{vaciado}} = 107
\Delta \theta = \frac{1}{10}
N = \frac{\theta_{\text{vaciado}}}{\theta_{\text{vaciado}}}
         Δθ
div = \frac{1}{\Delta \theta}
```

SOLUTION

09/01/2014 13:54:53 Page 2

{INGRESO DE DATC X_1=0.163	{Humedad inicial}
X 2=0 124	(Humedad deseada)
m DOT p=146000*CONVERT(kg/b·kg/s)	{Fluip másico del producto a secar}
phi 1=0.70	{Humedad aire ambiental. Antes de entrar al HX}
T 1=28	{Temperatura aire ambiental. Antes de entrar al HX}
T 2=500	Temperatura a la salida del HX. Entrada al secador
T 3=131	{Temperatura a la salida del secador.}
P1=14,7*CONVERT(psi;kPa)	{Presión de trabajo}
{	}
Shi 2-DELULIMANU2OT-T 2.D-D1	2) [Humadad ralativa a la solida del sociador]
$p_{11} = -RELHOW(AIH20, 1 = 1_3, F = F1, W = W_1$	_5) {Fluin másico del producto seco}
$DELTAM DOT w=m DOT s^{(1/(1-X - 1)-1)/(1-X - 1)-1)}$	(1-X 2)) [Cantidad de aqua a evaporar]
w 1=HUMPAT(AirH2O:T=T 1:P=P1:R=phi	1) [Humedad absoluta aire ambiental Antes de entrar al HX]
w 2=w 1	{Humedad absoluta a la salida del HX. Entrada al secador\
h 2=ENTHAL PY(AirH2O'T=T 2'P=P1'w=w	(2) (Entalpia a la salida del HX Entrada al secador)
phi 2=RFI HUM(AirH2O:T=T_2:P=P1:w=w	 (Linupla a la salida del HX. Entrada al secador) (Humedad relativa a la salida del HX. Entrada al secador)
h 3=h 2	{Entalpía a la salida del secador }
w 3=HUMRAT(AirH2O:h=h 3:P=P1:T=T 3	(Humedad absoluta a la correspondiente HR v entalpía)
DELTAw=w 3-w 2	{Variación de humedad absoluta}
m DOT aire=DELTAm DOT w/DELTAw	{Flujo másico de aire de secado}
rho aire 3=DENSITY(AirH2O:R=phi 3:P=F	P1;w=w 3) {Densidad del aire después del secado}
rho aire 2=DENSITY(AirH2O:T=T 2:P=P1	;w=w 2) {Densidad del aire antes del secado}
V_DOT_aire_out=(m_DOT_aire/rho_aire_3	3)*CONVERT(m^3/s;cfm) {Flujo volumétrico de aire después del secado}
V_DOT_aire_in=(m_DOT_aire/rho_aire_2)*	*CONVERT(m^3/s;cfm) {Flujo volumétrico de aire antes del secado}
on aire1=SPECHEAT/AirU2O.T=T 4.D=D4	(Perbi 1) (Color conscilion del sire entre del LIX k l/kg K)
up_alle1=ofEUREAT(AllE20,1=1_1;P=P1	(Calor especifico del alte antes del EA, KJ/Kg-K)
cp_aire2=SPECHEAT(AirH20;T=T_1;P=P1	<pre>;;R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K}</pre>
cp_aire1=SFECHEAT(AirH2O;T=T_1;P=P1 cp_aire2=SPECHEAT(AirH2O;T=T_2;P=P1 cp_aire=(cp_aire1+cp_aire2)/2	(R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} (Calor especifico promedio en el HX, kJ/kg-K}
cp_aire1=orEchEAT(AirH2O;T=1_1;P=P1 cp_aire2=SPECHEAT(AirH2O;T=T_2;P=P1 cp_aire=(cp_aire1+cp_aire2)/2 Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)	<pre>;R=phi_1) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
cp_aire1=orECHEAT(AirH20,T=T_2;P=P1 cp_aire2=SPECHEAT(AirH20;T=T_2;P=P1 cp_aire=(cp_aire1+cp_aire2)/2 Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)	<pre>;R=phi_1) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
<pre>cp_aire1=or ECHEAT(AIrH20,T=1_[,P=P1 cp_aire2=SPECHEAT(AirH20,T=T_2;P=P1 cp_aire=(cp_aire1+cp_aire2)/2 Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)</pre>	<pre>;R=phi_1) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
<pre>cp_aire1=or ECHEAT(AirH20,T=1_[,P=P1 cp_aire2=SPECHEAT(AirH20;T=T_2;P=P1 cp_aire=(cp_aire1+cp_aire2)/2 Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)</pre>	<pre>;R=phi_1) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
<pre>cp_aire1=or ECHEAT(AirH20,T=1_[,P=P1 cp_aire2=SPECHEAT(AirH20;T=T_2;P=P1 cp_aire=(cp_aire1+cp_aire2)/2 Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)</pre>	<pre>;R=phi_1) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
<pre>cp_aire1=or ECHEAT(AirH20,1=1_[,P=P1 cp_aire2=SPECHEAT(AirH20;T=T_2;P=P1 cp_aire=(cp_aire1+cp_aire2)/2 Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)</pre>	<pre>;R=phi_1) {Calor especifico del aire altes del HX, KJ/Kg-K} ;R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
<pre>Q_aire1=orECHEAT(AirH20,T=1_T;P=P1 cp_aire2=SPECHEAT(AirH20;T=T_2;P=P1 cp_aire=(cp_aire1+cp_aire2)/2 Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)</pre>	<pre>;R=phi_1) {Calor especifico del aire altes del Ar, KJ/Kg-K} ;R=phi_2) {Calor específico del aire a la salida del HX, kJ/kg-K} {Calor específico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
<pre>cup_aire1-or ECHEAT(AirH20,T=1_[,P=P1 cp_aire2=SPECHEAT(AirH20,T=T_2;P=P1 cp_aire2(cp_aire1+cp_aire2)/2 Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1) X₁ = 0,163</pre>	<pre>;R=phi_1) {Calor especifico del aire a la salida del HX, kJ/kg-K} (Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
$\begin{aligned} & (AIII = 0, 163) \\ & (AIII = 0, 163) \\ & (AIII = 0, 163) \\ & (AIII = 0, 124) \end{aligned}$	<pre>;R=phi_1) {Calor especifico del aire a la salida del HX, kJ/kg-K} (Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
$cp_aire1-or ECHEAT(AirH20,T=1_[,P=P1 cp_aire2=SPECHEAT(AirH20,T=T_2;P=P1 cp_aire=(cp_aire1+cp_aire2)/2 Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1) X_1 = 0,163 X_2 = 0,124$	<pre>;R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
$x_1 = 0.163$ $x_2 = 0.124$ $x_2 = 0.124$ $x_1 = 0.163$ $x_2 = 0.124$ $x_2 = 0.124$ $x_1 = 0.000 + 0.000277778 + \frac{kg/s}{2}$	(R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{cp}_{aire1} = 0^{-1} \text{ECHEAR}(\text{AirH20}, \text{Te1}_{1}, \text{Perf}) \\ & \text{cp}_{aire2} = \text{SPECHEAR}(\text{AirH20}, \text{Te1}_{2}, \text{Perf}) \\ & \text{cp}_{aire2} = \text{SPECHEAR}(\text{AirH20}, \text{Te1}_{2}, \text{Perf}) \\ & \text{Q}_{paire2} = (\text{q}_{aire1} + \text{cp}_{aire2})/2 \\ & \text{Q}_{paire2} = (\text{q}_{aire1} + \text{cp}_{aire2})/2 \\ & \text{Q}_{paire2} = (\text{q}_{aire1} + \text{cp}_{aire2})/2 \\ & \text{A}_{1} = 0, 163 \\ & \text{A}_{2} = 0, 124 \\ & \text{m}_{p} = 146000 \cdot \left 0,000277778 \cdot \frac{\text{kg/s}}{\text{kg/h}} \right \end{aligned}$	(R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{cp}_{aire1} = 0^{-1} \text{ECHEAR}(\text{AirH20}, \text{Te1}_{1}, \text{Perf}) \\ & \text{cp}_{aire2} = \text{SPECHEAR}(\text{AirH20}, \text{Te1}_{2}, \text{Perf}) \\ & \text{cp}_{aire2} = \text{SPECHEAR}(\text{AirH20}, \text{Te1}_{2}, \text{Perf}) \\ & \text{Q}_{DOT} = \text{m}_{DOT}_{aire1} + \text{cp}_{aire2} / 2 \\ & \text{Q}_{DOT} = \text{m}_{DOT}_{aire1} + \text{cp}_{aire2} / 2 \\ & \text{Q}_{DOT} = \text{m}_{DOT}_{aire1} + \text{cp}_{aire2} / 2 \\ & \text{A}_{1} = 0,163 \\ & \text{A}_{2} = 0,124 \\ & \text{m}_{p} = 146000 \cdot \left 0,000277778 \cdot \frac{\text{kg/s}}{\text{kg/h}} \right \end{aligned}$	(,R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{cp_aire1-or ECHEAT(AirH20, T=1_{,})PPT} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2; P=P1 \\ & \text{cp_aire=(cp_aire1+cp_aire2)/2} \\ & \text{Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)} \\ & \text{X}_1 = 0,163 \\ & \text{X}_2 = 0,124 \\ & \text{m}_p = 146000 \cdot \left 0,000277778 \cdot \frac{\text{kg/s}}{\text{kg/h}} \right. \end{aligned}$	(R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} (Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{cp_aire1-or ECHEAT(AirH20, T=1_{,})=PT \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2; P=P1 \\ & \text{cp_aire2=cp_aire1+cp_aire2}/2 \\ & \text{Q_DOT=m_DOT_aire^cp_aire2}/2 \\ & \text{Q_DOT=m_DOT_aire^cp_aire2}/2 \\ & \text{X}_1 = 0,163 \\ & \text{X}_2 = 0,124 \\ & \text{\dot{m}}_p = 146000 \cdot \left 0,000277778 \cdot \frac{\text{kg/s}}{\text{kg/h}} \right \\ & \phi_1 = 0,7 \\ & \text{T_{acc}} = 0.2 \end{aligned}$	(R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{cp_aire1-or ECHEAT(AirH20, T=1_, PPT1} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2; P=P1} \\ & \text{cp_aire2=cp_aire1(cp_aire2)/2} \\ & \text{Q_DOT=m_DOT_aire*cp_aire2)/2} \\ & \text{Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)} \end{aligned}$ $\begin{aligned} & \text{X}_1 &= 0,163 \\ & \text{X}_2 &= 0,124 \\ & \text{m}_p &= 146000 \cdot \left 0,000277778 \cdot \frac{\text{kg/s}}{\text{kg/h}} \right \\ & \phi_1 &= 0,7 \\ & \text{T}_1 &= 28 \end{aligned}$	(R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{cp_aire1-or ECHEAT(AirH20, T=1_, PPT)} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2; P=P1)} \\ & \text{cp_aire2(cp_aire1+cp_aire2)/2} \\ & \text{Q_DOT=m_DOT_aire*cp_aire2)/2} \\ & \text{Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)} \end{aligned}$ $\begin{aligned} & \text{X}_1 &= 0.163 \\ & \text{X}_2 &= 0.124 \\ & \text{m}_p &= 146000 \cdot \left 0.000277778 \cdot \frac{\text{kg/s}}{\text{kg/h}} \right \\ & \phi_1 &= 0.7 \\ & \text{T}_1 &= 28 \\ & \text{T}_2 &= 600 \end{aligned}$	(,R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{cp_aire1-or ECHEAT(AirH20, T=1_, PPT)} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2, PPT)} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2, PPT)} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2, PPT)} \\ & \text{Q_DOT=m_DOT_aire*cp_aire2} \\ & Q_DOT=m_DO$	(,R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{cp_aire1-or ECHEAT(AirH20, T=1_1, PPT)} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2, PPT)} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2, PPT)} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2, PPT)} \\ & \text{Q_DOT=m_DOT_aire*cp_aire2} \\ & \text{Q_DOT=m_DOT_aire*cp_aire3} \\ & Q_DOT=m_D$	(,R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{cp_aire1-or ECHEAT(AirH20, T=1_1, PPT)} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2, PPT)} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2, PPT)} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2, PPT)} \\ & \text{Q_DOT=m_DOT_aire*cp_aire2} \\ & \text{Q_DOT=m_DOT_aire*cp_aire3} \\ & Q_DOT=m_D$	(,R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{cp_aire1-or ExtEXI(AirH20, T=1_{,} PPT1} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2; P=P1} \\ & \text{cp_aire=(cp_aire1+cp_aire2)/2} \\ & \text{Q_DOT=m_DOT_aire*cp_aire2}/2 \\ & \text{Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)} \end{aligned}$ $\begin{aligned} & \text{X}_1 &= 0,163 \\ & \text{X}_2 &= 0,124 \\ & \text{m}_p &= 146000 \cdot \left 0,000277778 \cdot \frac{\text{kg/s}}{\text{kg/h}} \right \\ & \phi_1 &= 0,7 \\ & \text{T}_1 &= 28 \\ & \text{T}_2 &= 500 \\ & \text{T}_3 &= 131 \end{aligned}$	(R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} (Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \left \begin{array}{c} c_{p,aire1-or} = c_{p,aire1}(AirH20, T=1_{,p}^{-})_{p=1} \\ c_{p,aire2} = SPECHEAT(AirH20, T=1_{,p}^{-})_{p=1} \\ c_{p,aire2} = c_{p,aire1+c_{p,aire2}/2} \\ Q_{DOT} = m_{DOT_aire^* cp_aire1}(T_{2}-T_{1}) \\ \\ & X_{1} = 0,163 \\ & X_{2} = 0,124 \\ \\ & \dot{m}_{p} = 146000 \cdot \left 0,000277778 \cdot \frac{kg/s}{kg/h} \right \\ & \phi_{1} = 0,7 \\ & T_{1} = 28 \\ & T_{2} = 500 \\ & T_{3} = 131 \\ \\ & P1 = 14,7 \cdot \left 6,89476 \cdot \frac{kPa}{a_{1}} \right \end{aligned}$	(,R-phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} (Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{Cy_anistropy} (All_{All_20}, \text{Term}_1, \text{PPr}_1, \text{Cy_anistropy}_1, \text{Cy_anistropy}_2, \text{Cy_anistropy}_2 \\ & \text{cp_aire2} \text{SPECHEAT}(\text{AirH20}, \text{Term}_2, \text{PPr}_1, \text{Cy_anistropy}_2) \\ & \text{Q_DOT=m_DOT_aire*cp_aire2} \\ & \text{Q_DOT=m_DOT_aire*cp_aire*}(\text{T_2-T_1}) \\ & \text{All_1} = 0, \text{Term}_2 \text{ or } \text{Cy_anistropy}_2 \\ & \text{All_1} = 0, \text{Term}_2 \text{ or } \text{Cy_anistropy}_2 \\ & \text{All_1} = 0, \text{Term}_2 \text{ or } \text{Cy_anistropy}_2 \\ & \text{All_1} = 0, \text{Term}_2 \text{ or } \text{Cy_anistropy}_2 \\ & \text{All_1} = 0, \text{Term}_2 \text{ or } \text{Cy_anistropy}_2 \\ & \text{Term}_2 \text{ or } C$	(,R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} (Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}
$\begin{aligned} & \text{cp}_{aire1} - \text{cp}_{cp} \text{Circ}_{Air}(\text{Air}_{20}, \text{Te}_{1}_{-1}, \text{Perf}_{20}, \text{Te}_{1}_{-1}, \text{Perf}_{20}, \text{Te}_{1}_{-1}, \text{Perf}_{20}, \text{Te}_{1}_{20}, \text{Te}_{1}_{-1}, \text{Perf}_{20}, \text{Te}_{20}, $	<pre>;R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
$\begin{aligned} & \text{GP}_{aire1} = \text{GP}_{a$	<pre>;R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
$\begin{aligned} & \text{Gy}_{ant} = 0^{-1} G$	<pre>;R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>
$\begin{aligned} & \text{cp_aire1-or ExtEXI(AirH20, T=1_{,})PPT} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2; P=P1} \\ & \text{cp_aire2=SPECHEAT(AirH20, T=T_2; P=P1} \\ & \text{cp_aire1+cp_aire2}/2 \\ & \text{Q_DOT=m_DOT_aire*cp_aire4}(T_2-T_1) \end{aligned}$ $\begin{aligned} & \text{X}_1 &= 0,163 \\ & \text{X}_2 &= 0,124 \\ & \dot{\text{m}}_p &= 146000 \\ & \dot{\text{m}}_p &= 14$	<pre>;R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K} {Calor especifico promedio en el HX, kJ/kg-K} {Calor agregado al aire en el HX, kW}</pre>

File:Análisis Termodinámico del Secador.EES $w_1 = \omega ['AirH2O'; T = T_1; P = P1; R = \phi_1]$ $w_2 = w_1$ $h_2 = h['AirH2O'; T = T_2; P = P1; w = w_2]$ $\phi_2 = \mathbf{RH} ['AirH2O' ; T = T_2 ; P = P1 ; w = w_2]$ $h_3 = h_2$ $w_3 = \omega ['AirH2O'; h = h_3; P = P1; T = T_3]$ $\Delta W = W_3 - W_2$ $\dot{m}_{aire} = \frac{\Delta \dot{m}_{w}}{\Delta w}$ $\rho_{\text{aire};3} = \rho \left[\text{'AirH2O'} ; R = \phi_3 ; P = P1 ; w = w_3 \right]$ $\rho_{aire;2} = \rho ['AirH2O' ; T = T_2 ; P = P1 ; w = w_2]$ $\dot{V}_{aire;out} = \frac{\dot{m}_{aire}}{\rho_{aire;3}} \cdot \left| 2118,88 + \frac{cfm}{m^3/s} \right|$ $\overset{\bullet}{V}_{aire;in} \hspace{0.1 in} = \hspace{0.1 in} \frac{\overset{\bullet}{m}_{aire}}{\rho_{aire;2}} \cdot \hspace{0.1 in} \left| \hspace{0.1 in} 2118,88 \hspace{0.1 in} \cdot \hspace{0.1 in} \frac{cfm}{m^3/s} \right|$ $cp_{aire1} = Cp['AirH2O'; T = T_1; P = P1; R = \phi_1]$ $cp_{aire2} = Cp ['AirH2O'; T = T_2; P = P1; R = \phi_2]$ $cp_{aire} = \frac{cp_{aire1} + cp_{aire2}}{2}$ $\dot{Q} = \dot{m}_{aire} \cdot cp_{aire} \cdot [T_2 - T_1]$

 $\begin{array}{l} \mbox{SOLUTION} \\ \mbox{Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]} \\ \mbox{cp}_{aire} = 1,087 \ [kJ/kg-k] \\ \mbox{cp}_{aire2} = 1,136 \ [kJ/kg-k] \\ \mbox{dw} = 0,1453 \\ \mbox{h}_3 = 573,1 \ [kJ/kg] \\ \mbox{m}_p = 40,56 \ [kg/s] \\ \mbox{P1} = 101,4 \ [kPa] \\ \mbox{dw}_2 = 0,0001201 \\ \mbox{Q} = 6375 \ [kV] \\ \mbox{p}_{aire,3} = 0,6932 \ [kg/m^3] \\ \mbox{T}_2 = 500 \ [C] \\ \mbox{V}_{aire,in} = 59208 \ [CFM] \\ \mbox{w}_1 = 0,01669 \\ \mbox{w}_3 = 0,162 \\ \mbox{\chi}_2 = 0,124 \end{array}$

 $\begin{array}{l} cp_{airc1} = 1,037 \; [kJ/kg-k] \\ \Delta m_w = 1,806 \; [kg/s] \\ h_2 = 573,1 \; [kJ/kg] \\ \hline m_{airc} = 12,43 \; [kg/s] \\ \hline m_s = 33,95 \; [kg/s] \\ \phi_1 = 0,7 \\ \phi_3 = 0,0752 \\ \rho_{airc2} = 0,4448 \; [kg/m^3] \\ T_1 = 28 \; [C] \\ T_3 = 131 \; [C] \\ \forall_{airc,out} = 37990 \; [CFM] \\ w_2 = 0,01669 \\ \chi_1 = 0,163 \end{array}$

09/01/2014 13:48:56 Page 2

File:Análisis Termodinámico REGIÓN A.EES

09/01/2014 13:51:48 Page 1

INGRESO DE DATO	S1
X 1=0.163	{Humedad inicial}
X 2=0.1556	{Humedad deseada}
m DOT p=146000*CONVERT(kg/h;kg/s)	{Fluio másico del producto a secar}
phi 1=0,70	{Humedad aire ambiental. Antes de entrar al HX}
T 1=28	{Temperatura aire ambiental. Antes de entrar al HX}
T 2=500	{Temperatura a la salida del HX. Entrada al secador}
m DOT aire=12,43	{Fluio másico de aire, ka/s}
P1=14.7*CONVERT(psi:kPa)	{Presión barométrica}
{	}
phi_3=RELHUM(AirH2O;T=T_3;P=P1;w=w_	_3) {Humedad relativa a la salida del secador}
m_DOT_s=(1-X_1)*m_DOT_p	{Flujo másico del producto seco}
DELTAm_DOT_w=m_DOT_s*(1/(1-X_1)-1/(1-X_2)) {Cantidad de agua a evaporar}
w_1=HUMRAT(AirH2O;T=T_1;P=P1;R=phi_	1) {Humedad absoluta aire ambiental. Antes de entrar al HX}
w_2=w_1	{Humedad absoluta a la salida del HX. Entrada al secador}
h_2=ENTHALPY(AirH2O;T=T_2;P=P1;w=w	_2) {Entalpía a la salida del HX. Entrada al secador}
phi_2=RELHUM(AirH2O;T=T_2;P=P1;w=w_	2) {Humedad relativa a la salida del HX. Entrada al secador}
h_3=h_2	{Entalpía a la salida del secador.}
w_3=HUMRAT(AirH2O;h=h_3;P=P1;T=T_3)	{Humedad absoluta a la correspondiente HR y entalpia}
DELTAw=w_3-w_2	{Variación de humedad absoluta}
m_DOT_aire=DELTAm_DOT_w/DELTAw	{Flujo másico de aire de secado}
rho_aire_3=DENSITY(AirH2O;T=T_3;P=P1;	w=w_3) {Densidad del aire después del secado}
rho_aire_2=DENSITY(AirH2O;T=T_2;P=P1;	w=w_2) {Densidad del aire antes del secado}
V_DOT_aire_out=(m_DOT_aire/rho_aire_3) V_DOT_aire_in=(m_DOT_aire/rho_aire_2)*	*CONVERT(m^3/s;cfm) {Flujo volumétrico de aire después del secado} CONVERT(m^3/s;cfm) {Flujo volumétrico de aire antes del secado}
cp_aire1=SPECHEAT(AirH2O;T=T_1;P=P1;	R=phi_1) {Calor específico del aire antes del HX, kJ/kg-K}
cp_aire2=SPECHEAT(AirH2O;T=T_2;P=P1;	R=phi_2) {Calor especifico del aire a la salida del HX, kJ/kg-K}
cp_aire=(cp_aire1+cp_aire2)/2	{Calor específico promedio en el HX, kJ/kg-K}
Q_DOT=m_DOT_aire*cp_aire*(T_2-T_1)	{Calor agregado al aire en el HX, kW}
X ₁ = 0,163	
X - 0.1550	

File:Análisis Termodinámico REGIÓN A.EES
w₁ =
$$\omega$$
 ['AirH2O'; T = T₁; P = P1; R = ϕ_1]
w₂ = w₁
h₂ = h ['AirH2O'; T = T₂; P = P1; w = w₂]
 ϕ_2 = RH ['AirH2O'; T = T₂; P = P1; w = w₂]
h₃ = h₂
w₃ = ω ['AirH2O'; h = h₃; P = P1; T = T₃]
 ΔW = w₃ - w₂
 $\dot{m}_{aire} = \frac{\Delta \dot{m}_w}{\Delta w}$
 $\rho_{aire,3} = \rho$ ['AirH2O'; T = T₃; P = P1; w = w₃]
 $\rho_{aire,2} = \rho$ ['AirH2O'; T = T₂; P = P1; w = w₂]
 $\dot{v}_{aire;out} = \frac{\dot{m}_{aire}}{\rho_{aire,3}} \cdot |2118,88 \cdot \frac{cfm}{m^3/s}|$
 $\dot{v}_{aire;in} = \frac{\dot{m}_{aire}}{\rho_{aire,2}} \cdot |2118,88 \cdot \frac{cfm}{m^3/s}|$
 $cp_{aire1} = Cp$ ['AirH2O'; T = T₁; P = P1; R = ϕ_1]
 $cp_{aire2} = Cp$ ['AirH2O'; T = T₂; P = P1; R = ϕ_1]
 $cp_{aire2} = cp$ ['AirH2O'; T = T₁; P = P1; R = ϕ_1]
 $cp_{aire2} = cp$ ['AirH2O'; T = T₁; P = P1; R = ϕ_1]
 $cp_{aire} = \frac{cp_{aire1} + cp_{aire2}}{2}$

 $\begin{array}{l} \mbox{SOLUTION} \\ \mbox{Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]} \\ \mbox{cp}_{aire} = 1.087 [kJ/kg-K] \\ \mbox{cp}_{aire2} = 1.136 [kJ/kg-K] \\ \mbox{d}_{\Delta w} = 0.02859 \\ \mbox{h}_3 = 573.1 [kJ/kg] \\ \mbox{m}_p = 40,56 [kg/s] \\ \mbox{P1} = 101.4 [kPa] \\ \mbox{d}_{2} = 0.0001201 \\ \mbox{Q} = 6375 [kW] \\ \mbox{paire.}^3 = 0.4722 [kg/m^3] \\ \mbox{T}_2 = 500 [C] \\ \mbox{V}_{aire.}^n = 59215 [CFM] \\ \mbox{w}_1 = 0.01669 \\ \mbox{w}_3 = 0.04528 \\ \mbox{X}_2 = 0.1556 \end{array}$

 $\begin{array}{l} cp_{aire1} = 1,037 \ [kJ/kg-K] \\ \Delta \dot{m}_w = 0,3554 \ [kg/s] \\ h_2 = 573,1 \ [kJ/kg] \\ \dot{m}_{aire} = 12,43 \ [kg/s] \\ \dot{m}_s = 33,95 \ [kg/s] \\ + = 0.7 \end{array}$

$\begin{array}{l} m_{s} = 33,95 \ [kg/s] \\ \phi_{1} = 0,7 \\ \phi_{3} = 0,000312 \\ p_{aire,2} = 0,4448 \ [kg/m^{3}] \\ T_{1} = 28 \ [C] \\ \hline T_{3} = 423,9 \ [C] \\ \dot{V}_{aire,out} = 55773 \ [CFM] \\ w_{2} = 0,01669 \\ X_{1} = 0,163 \end{array}$

09/01/2014 13:51:49 Page 2

```
File:SECADO EES
                                                                                            09/01/2014 14:07:04 Page 1
FUNCTION L_secador(X_1;X_2;T_s;rho_grano_seco;D_grano;N_DOT_particulas;m_DOT_aire;T_2;phi_2;R;alpha;Y_BAR
:P1:step)
       Vol_grano=(4/3)*pi*(D_grano/2)^3 {Volumen del grano, m3}
      A_s=4*pi*(D_grano/2)^2
                                                 {Superficie del grano, m2}
      m_grano_seco=rho_grano_seco*Vol_grano {Masa del grano seco, kg}
                                                {Masa inicial del grano húmedo, kg}
      m_grano=m_grano_seco/(1-X_1)
      cont_agua=m_grano-m_grano_seco
                                                 {Contenido inicial de agua, kg}
      g=9,81
                                                 {Aceleración de la gravedad, m2/s}
       A_trans=pi*R^2
                                                         {Área transversal del tambor, m2}
      h 2=ENTHALPY(AirH2O;T=T_2;P=P1;R=phi_2)
                                                         {Entalpia del aire, kJ/kg}
       w_2=HUMRAT(AirH2O;T=T_2;P=P1;R=phi_2)
                                                         {Humedad absoluta del aire}
       rho_2=DENSITY(AirH2O;T=T_2;P=P1;R=phi_2)
                                                         {Densidad del aire antes del secado, kg/m3}
       V_DOT_2=m_DOT_aire/rho_2
                                                         {Fluio volumétrico de aire antes del secado, m3/s}
      V_DOT_aireCFM=V_DOT_2*CONVERT(m^3/s;cfm){Flujo volumétrico de aire antes del secado, CFM}
      L_secador=2,1
                                                         {Se encera la variable acumuladora "Longitud de secador", m}
       i=1
      REPEAT
              t_1=0
              t2=step
              V_z_0=0
              V_y_0=0
              h_BAR=0
                           {Coef. inicial de T.C., W/m2-K}
              h_BAR_m=0 {Coef. inicial de T.M., m/s}
              z_0=0
              y_0=0
              Y ac=Y BAR
                                   {Variable acumuladora para los decrementos de altura durante la caída, m}
              lookup('Lookup 1';i;1)=L_secador {Coordenada "Z" al inicio de la caída, m}
              lookup('Lookup 1';i;2)=Y_ac {Coordenada "Y" al inicio de la caída, m}
              lookup('Lookup 1',i;3)=X_1 {Humedad de los sólidos al inicio de la caída}
lookup('Lookup 1',i;4)=T_s {Temperatura superficial de los sólidos al inicio de la caída, C}
              lookup('Lookup 1';i;5)=phi_2 {Humedad relativa del aire que afecta a la partícula al inicio de la caída, C}
              lookup('Lookup 1';i;6)=T_2 {Temperatura del aire que afecta a la partícula al inicio de la caída, C}
              lookup('Lookup 1';i;7)=V_DOT_aireCFM {Flujo volumétrico del aire, CFM}
              lookup('Lookup 1';i;8)=h_BAR {Coef. T.C. al inicio de la caída, W/m2-K}
lookup('Lookup 1';i;9)=h_BAR_m {Coef. T.M. al inicio de la caída, m/s}
              i=i+1
              REPEAT
                     CALL SECADO(phi_2;w_2;h_2;T_2;D_grano;m_grano;m_DOT_aire;N_DOT_particulas;R;alpha;P1;g
;V_y_0;V_z_0;z_0;y_0;A_trans;A_s;t_1;t2 : m_DOT_w;m_w;T_s;h_BAR_m;h_BAR;V_z;V_y;z;y)
                     w_2=w_2+m_DOT_w/m_DOT_aire {Humedad abs del aire para la siguiente pasada}
                     T_2=TEMPERATURE(AirH2O;h=h_2;P=P1;w=w_2) {Temperatura del aire en t=t_2}
                     phi_2=RELHUM(AirH2O;T=T_2;P=P1;w=w_2)
                                                                              {Humedad relativa del aire en t=t_2}
                     rho_2=DENSITY(AirH2O;T=T_2;P=P1;w=w_2)
                                                                              {Densidad del aire en t=t_2, kg/m3}
                     V_DOT_aireCFM=(m_DOT_aire/rho_2)*CONVERT(m^3/s;cfm) {Flujo volumétrico de aire en t=t_2,
CFM}
                                                         {Contenido de agua en el grano en t=t_2, kg}
                     cont aqua=cont aqua-m w
                     m_grano=m_grano-m_w
                                                         {Masa total de un grano en t=t_2, kg}
                     X_1=cont_agua/m_grano
                                                         {Humedad del grano en t=t 2}
                                                                {Acumulador "Longitud de Secador", m}
                     L_secador=L_secador+(z-z_0)
                     Y_ac=Y_ac-(y-y_0)
                                                         {Acumulador reverso "Posición vertical", m}
                     lookup('Lookup 1';i;1)=L_secador
                                                         {Coordenada "Z" al inicio de la caída, m}
                     lookup('Lookup 1';i;2)=Y_ac
                                                         {Coordenada "Y" al inicio de la caída, m}
                     lookup('Lookup 1';i;3)=X_1
                                                         {Humedad de los sólidos al inicio de la caída}
                     lookup('Lookup 1';i;4)=T_s
                                                         {Temperatura superficial de los sólidos al inicio de la caída, C}
                     lookup('Lookup 1';i;5)=phi_2
                                                         {Humedad relativa del aire que afecta a la partícula al inicio de la
caída, C}
```

	09/01/2014 14:07:04 Pa
caida C}	lookup(Lookup 1',i;o)=1_2 {lemperatura del aire que arecta a la particula al inicio de la
ourda, oj	lookup('Lookup 1':i:7)=V_DOT_aireCEM{Eluio volumétrico del aire_CEM}
	lookup('Lookup 1';;8)=h BAR {Coef, T.C. al inicio de la caída, W/m2-K}
	lookup('Lookup 1';i:9)=h BAR m {Coef. T.M. al inicio de la caída, m/s}
	t_1=t2
	t2=t2+step
	V_y_0=V_y
	V_z_0=V_z
	z_0=z
	y_0=y
	i=i+1
UNTIL	
UNTIL L_SEC	ador>=4,5
END	
{	-INGRESO DE DATOS
X 1=0.1556	{Humedad inicial del grano}
T s=58.9	{Temperatura inicial de los sólidos, C.}
rho grano seco=415	50 {Densidad del grano seco, kg/m3}
D_grano=15E-3	{Diámetro promedio de grano, m}
N_DOT_particulas=4	4670 {Flujo de partículas, UND/s}
m_DOT_aire=12,43	{Flujo másico de aire, kg/s. Dato obtenido de Análisis termodinámico.EES}
T_2=423,9	{Temperatura del aire antes del secado. Dato obtenido de Análisis termodinámico.EES}
phi_2=0,000312	{Humedad relativa del aire antes del secado. Dato obtenido de Análisis
termodinámico.EES	
R=1,95	{Radio del tambor, m}
alpha=4	{inclination del tambor, }
V BAD-2 977	(Altura promedio de caída m Data obtenido de Altura promedio EES)
Y_BAR=2,877 P1=1[atm]*CONVER	{Altura promedio de caída, m. Dato obtenido de Altura promedio. EES}
Y_BAR=2,877 P1=1[atm]*CONVER step=0.05	{Altura promedio de caída, m. Dato obtenido de Altura promedio. EES} {T(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s}
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	{Altura promedio de caída, m. Dato obtenido de Altura promedio. EES} {T(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s}
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	{Altura promedio de caída, m. Dato obtenido de Altura promedio. EES} {T(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s}
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	{Altura promedio de caída, m. Dato obtenido de Altura promedio. EES} {T(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s}
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} {T(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s}
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} cor(X_1;X_2;T_s;rho_grano_seco;D_grano;N_DOT_partículas;m_DOT_aire;T_2;phi_2;R;alpha;Y_BAF CADO(phi_2;w_2;h_2;T_2;D_grano;m_grano;m_DOT_aire;N_DOT_partículas;B;alpha;P1;g;V_y_0</pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caída, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s}</pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s}</pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caída, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caída, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
Y_BAR=2,877 P1=1[atm]*CONVER step=0,05 {	<pre>{Altura promedio de caida, m. Dato obtenido de Altura promedio. EES} tT(atm;kPa) {Presión de trabajo, kPa} {Paso en el tiempo, s} </pre>
File.SECADO.EES	03/01/2014 14.07.04 Page
---	--
y=y_0+integral(V_y;Time;t_1;t2)	
{DETERMINACIÓN DE LA VELOCIDAD R	volumétrico de aire en un determinado "z"
	volumento de are en un determinado 2 j
V_2-V_DOT_2/A_((a)(S) {Velocidad r	elativa entre el grano y el aire
$v_1e_3QKT((v_2-v_2) + v_y z) = \{v_1e_3QKT((v_2-v_2) + v_y z) = \{v_1e_3QKT(v_2-v_2) + v_1e_3QKT(v_2-v_2) + v_1e_3QKT(v_2-v_2))$	elativa entre el grano y el anoj
{Existe equilibrio termodinámico en la inte	rfaz entre el gas y el líquido. Por ende, la temperatura del vapor en
la interfaz es igual a la temperatura superficial Ts.}	······································
FI vapor se encuentra en estado saturado	2)
{En todos los problemas prácticos. C A<<	C B, y es razonable suponer que las propiedades de la capa límite
(como k, mu, C_p, etc) son las de la especie B.}	
h BAR*(T 2-T s)=h fa*h BAR m*(rho A sat-rh	o A INFINITY) {Balance entre calor sesible cedido por el aire y
calor de vaporización del agua}	<u></u>
h f=ENTHALPY(Water:T=T s:X=0)*CONVERT(K	J/kg:J/kg) {Entalpia de líquido saturado @ T s. J/kg}
h g=ENTHALPY(Water:T=T s:X=1)*CONVERT(H	(J/kg: J/kg) {Entalpia de vapor saturado @ T s, J/kg}
h fa=h a-h f	or latente de vaporización del agua @T s. Unidades: J/kg}
R A=461 {Con	stante del gas del vapor de agua. J/kg-K}
p A INFINITY=w 2*P1*1000/(0.622+w 2)	
rho A INFINITY=p A INFINITY/(R A*(T 2+273,	15))
p A sat=P SAT(Water:T=T s)*CONVERT(kPa:P	(a)
rho_A_sat=p_A_sat/(R_A*(T_s+273,15))	
NUSSELT_BAR_D=2+(0,4*abs(Re_D)^(1/2)+0,06 [Correlación de Whitaker] NUSSELT_BAR_D=h_BAR*D_grano/k_2	S*abs(Re_D)^(2/3))*abs(Pr_2)^0,4*abs(mu_2/mu_2_s)^(1/4) {Determinación del coef. de T.C.}
Re D=(rho 2*V rel*D grano)/mu 2	Número de Revnolds. Las propiedades del aire son las prop. er
t=t 1. La velocidad relativa es la velocidad en t=t 2}	(
rho 2=DENSITY(AirH2O;T=T 2;P=P1;w=w 2)	{Densidad del aire en t=t_1, kg/m3}
mu 2=VISCOSITY(AirH2O;T=T_2;P=P1;w=w_2)	{Viscosidad del aire en t=t_1 @T_2, kg/m-s}
mu 2 s=VISCOSITY(AirH2O;T=T s;P=P1;w=w 2	2) {Viscosidad del aire en t=t 1 @T s, kg/m-s}
Pr 2=PRANDTL(Air;T=T 2)	{Número de Prandtl del aire en t=t_1}
k_2=CONDUCTIVITY(AirH2O;T=T_2;P=P1;w=w_	2) {Coef. de conductividad del aire en t=t_1}
Analogía de Reynolds, Las propiedades de la es	specie B se evalúan a la temperatura filmica }
h BAR m=(h BAR*D AB*abs(Le)^(1/3))/k B	
rho_B=DENSITY(Air;T=T_f;P=P1)	
mu_B=VISCOSITY(Air;T=T_f)	
k_B=CONDUCTIVITY(Air;T=T_f)	
cp_B=CP(Air;T=T_f)*1000	
Le=k_B/(rho_B*cp_B*D_AB)	
D_AB=-2,775E-6[m^2/s]+4,479E-8[m^2/s-K]*(T_f	+273,15)+1,656E-10[m^2/s-K^2]*(T_f+273,15)^2 {Coeficiente
de Difusión Aire-Vapor de Agua}	
n_A=h_BAR_m*A_s*(rho_A_sat-rho_A_INFINITY	() {Transferencia de masa
para una sola particula, kg/s}	
para una sola particula, kg/s} {AGUA TOTAL EVAPORADA}	
AGUA TOTAL EVAPORADA} m_w=n_A*(12-t_1) {Agua que p	pierde una partícula entre t_1 y t2, kg}
para una sola particula, kg/s} {AGUA TOTAL EVAPORADA} m_w=n_A*(t2-t_1) {Agua que p m_DOT_w=m_w*N_DOT_particulas {Flujo total c	pierde una partícula entre t_1 y t2, kg} de vapor de agua entregado al aire entre t_1 y t2, kg/s}
para una sola particula, kg/s} {AGUA TOTAL EVAPORADA} m_w=n_A*(t2-t_1) {Agua que p m_DOT_w=m_w*N_DOT_partículas {Flujo total o END	bierde una partícula entre t_1 y t2, kg} de vapor de agua entregado al aire entre t_1 y t2, kg/s}

 $\label{eq:second} \begin{array}{c} \text{Function} \quad \textbf{L}_{\text{secador}}\left(\textbf{X}_{1}; \textbf{X}_{2}; \textbf{T}_{s}; \, \rho_{\text{grano; seco;}} \right. \textbf{D}_{\text{grano;}} \\ \overset{\bullet}{\textbf{N}}_{\text{particulas;}} \\ \overset{\bullet}{\textbf{m}}_{\text{aire;}} \\ \textbf{T}_{2}; \, \phi_{2}; \ \textbf{R}; \, \alpha; \\ \overrightarrow{\textbf{Y}}; \ \textbf{P1}; \ \textbf{step}) \end{array}$

$$\begin{aligned} & \text{Vol}_{\text{grano}} := 4 \ / \ 3 \ \cdot \ \pi \ \cdot \left[\frac{\mathsf{D}_{\text{grano}}}{2} \right]^3 \\ & \text{A}_s := 4 \ \cdot \ \pi \ \cdot \left[\frac{\mathsf{D}_{\text{grano}}}{2} \right]^2 \\ & \text{m}_{\text{grano;seco}} := \rho_{\text{grano;seco}} \ \cdot \text{Vol}_{\text{grano}} \\ & \text{m}_{\text{grano}} := \frac{\mathsf{m}_{\text{grano;seco}}}{1 \ - \ X_1} \\ & \text{cont}_{\text{agua}} := \mathsf{m}_{\text{grano}} - \mathsf{m}_{\text{grano;seco}} \\ & \text{g} := 9,81 \\ & \text{A}_{\text{trans}} := \pi \ \cdot \ \mathbb{R}^2 \\ & \text{h}_2 := \mathsf{h} \left[\text{'AirH2O'} ; \mathsf{T} = \mathsf{T}_2 ; \mathsf{P} = \mathsf{P1} ; \mathsf{R} = \phi_2 \right] \\ & \text{w}_2 := \omega \left[\text{'AirH2O'} ; \mathsf{T} = \mathsf{T}_2 ; \mathsf{P} = \mathsf{P1} ; \mathsf{R} = \phi_2 \right] \\ & \text{w}_2 := \omega \left[\text{'AirH2O'} ; \mathsf{T} = \mathsf{T}_2 ; \mathsf{P} = \mathsf{P1} ; \mathsf{R} = \phi_2 \right] \\ & \tilde{\mathsf{v}}_2 := \frac{\mathring{\mathsf{m}}_{\text{aire}}}{\rho_2} \\ & \tilde{\mathsf{v}}_{\text{aireCFM}} := \mathring{\mathsf{v}}_2 \ \cdot \left[2118,88 \ \cdot \frac{\mathsf{cfm}}{\mathsf{m}^3/\mathsf{s}} \right] \\ & \mathsf{L}_{\text{secador}} := 2,1 \\ & \mathsf{i} := 1 \\ & \mathsf{Repeat} \\ & \mathsf{t}_1 := 0 \\ & \mathsf{t}_2 := \mathsf{step} \\ & \mathsf{V}_{z0} := 0 \\ & \mathsf{V}_{z0} := 0 \\ & \mathsf{N}_{m} := 0 \\ & \mathsf{c}_0 := 0 \\ & \mathsf{y}_0 := 0 \\ & \mathsf{y}_0 := 0 \\ & \mathsf{y}_0 := 0 \\ & \mathsf{Y}_{ac} := \overline{\mathsf{Y}} \\ & \mathsf{Lookup} ['Lookup 1'; \ i; 'z'] := \mathsf{L}_{\text{secador}} \\ & \mathsf{Lookup} ['Lookup 1'; \ i; 'y'] := Y_{ac} \end{aligned}$$

09/01/2014 14:07:04 Page 5

```
\begin{split} & \text{Lookup}\left[\text{'Lookup 1'; } i; \text{'X}_{BH'}\right] := X_1 \\ & \text{Lookup}\left[\text{'Lookup 1'; } i; \text{'T}_a^*\right] := T_a \\ & \text{Lookup}\left[\text{'Lookup 1'; } i; \text{'phi}_2'\right] := \phi_2 \\ & \text{Lookup}\left[\text{'Lookup 1'; } i; \text{'T}_2'\right] := T_2 \\ & \text{Lookup}\left[\text{'Lookup 1'; } i; \text{'V}_{DDT'}\right] := \hat{V}_{aireCFM} \\ & \text{Lookup}\left[\text{'Lookup 1'; } i; \text{'h}_{BAR'}\right] := \bar{h} \\ & \text{Lookup}\left[\text{'Lookup 1'; } i; \text{'h}_{BARm'}\right] := \bar{h}_m \\ & i := i + 1 \end{split}
```

Repeat

 $\begin{array}{c} \text{Call } \textbf{SECADO}\left[\phi_{2}\,;\,w_{2}\,;\,h_{2}\,;\,T_{2}\,;\,D_{grano}\,;\,m_{grano}\,;\,\dot{m}_{aire}\,;\,\dot{N}_{particulas}\,\;;\,R\,;\,\alpha\,;\,P1\,;\,g\,;\,V_{y,0}\,;\,V_{z,0}\,;\,z_{0}\,;\,y_{0}\,;\,A_{transking}\,;\,t_{1}\,;\,t_{2}\,:\,\dot{m}_{w}\,;\,m_{w}\,;\,T_{s}\,;\,\bar{h}_{m}\,;\,\bar{h}\,;\,V_{z}\,;\,V_{y}\,;\,z\,;\,y\,\right] \end{array}$

```
w_2 := w_2 + \frac{\dot{m}_w}{\dot{m}_{aire}}
T_2 := T ['AirH2O'; h = h_2; P = P1; w = w_2]
\phi_2 := \mathbf{RH} [ 'AirH2O' ; T = T_2 ; P = P1 ; w = w_2 ]
\rho_2 := \rho ['AirH2O'; T = T_2; P = P1; w = w_2]
 \overset{\bullet}{V}_{aireCFM} \quad := \frac{\overset{\bullet}{m}_{aire}}{\rho_2} \cdot \quad \left| 2118,88 - \frac{cfm}{m^3/s} \right| 
cont_{agua} := cont_{agua} - m_w
m<sub>grano</sub> := m<sub>grano</sub> - m<sub>w</sub>
X_1 := \frac{\text{cont}_{\text{agua}}}{m}
            m<sub>grano</sub>
L_{secador} := L_{secador} + z - z_0
Y_{ac} := Y_{ac} - [y - y_0]
Lookup ['Lookup 1'; i; 'z' ] := L<sub>secador</sub>
Lookup ['Lookup 1'; i; 'y' ] := Y<sub>ac</sub>
Lookup ['Lookup 1'; i; 'X<sub>BH</sub>'] := X_1
Lookup ['Lookup 1'; i; 'T<sub>s</sub>'] := T<sub>s</sub>
Lookup ['Lookup 1'; i; 'phi<sub>2</sub>'] := \phi_2
Lookup ['Lookup 1'; i; 'T<sub>2</sub>' ] := T<sub>2</sub>
Lookup ['Lookup 1'; i; 'V<sub>DOT</sub>' ] := \mathring{V}_{aireCFM}
\textbf{Lookup}\left[ \text{'Lookup 1';} \quad i \text{ ; 'h}_{BAR'} \ \right] := \overline{h}
```

09/01/2014 14:07:04 Page 6

```
Lookup ['Lookup 1'; i; 'h<sub>BAR,m</sub>'] := \overline{h}_m

t_1 := t2

t_2 := t2 + step

V_{y,0} := V_y

V_{z,0} := V_z

z_0 := z

y_0 := y

i := i + 1

Until [Y<sub>ac</sub> <= 0]

Until [L<sub>secador</sub> >= 4,5]
```

End L_{secador}

 $\begin{array}{l} \text{SUBPROGRAM} \quad \textbf{SECADO} \; (\phi_{2}; \, w_{2}; \, h_{2}; \, T_{2}; \, \mathsf{D}_{grano}; \, \mathring{m}_{aire}; \, \mathring{N}_{particulas}; \, \mathsf{R}; \, \alpha; \, \mathsf{P1}; \, \mathsf{g}; \, \mathsf{V}_{y,0}; \, \mathsf{V}_{z,0}; \, \mathsf{z}_{0}; \, \mathsf{y}_{0}; \, \mathsf{A}_{trans}; \, \mathsf{A}_{s}; \, \mathsf{t}_{1}; \, \mathsf{t2}: \mathring{m}_{w}; \\ m_{w}; \, \mathsf{T}_{s}; \, \overline{h}_{m}; \, \overline{h}; \, \mathsf{V}_{z}; \, \mathsf{V}_{y}; \, \mathsf{z}; \, \mathsf{y}) \end{array}$

$$T_{r} = \frac{T_{2} + T_{s}}{2}$$

$$C_{D} = 32.628 \cdot \left[\left| p_{B} \cdot V_{rel} \cdot \frac{D_{grano}}{\mu_{B}} \right| \right]^{-0.646}$$

$$m_{grano} \cdot dV_{zdt} = m_{grano} \cdot g \cdot sin \left[\alpha \right] + 0.5 \cdot \rho_{B} \cdot C_{D} \cdot V_{rel}^{-2} \cdot \pi \cdot \left[\frac{D_{grano}}{2} \right]^{2} \cdot cos \left[\theta \right].$$

$$V_{z} = V_{z,0} + \int_{t_{1}}^{t_{2}} \left[dV_{zdt} \right] d \text{ Time}$$

$$m_{grano} \cdot dV_{ydt} = m_{grano} \cdot g \cdot cos \left[\alpha \right] - 0.5 \cdot \rho_{B} \cdot C_{D} \cdot V_{rel}^{-2} \cdot \pi \cdot \left[\frac{D_{grano}}{2} \right]^{2} \cdot sin \left[\theta \right]$$

$$V_{y} = V_{y,0} + \int_{t_{1}}^{t_{2}} \left[dV_{ydt} \right] d \text{ Time}$$

$$C_{D} = 32.628 \cdot \left[\left| \rho_{B} \cdot V_{rel} \cdot \frac{D_{grano}}{\mu_{B}} \right| \right]^{-0.646}.$$

$$z = z_{0} + \int_{t_{1}}^{t_{2}} \left[V_{z} \right] d \text{ Time}$$

$$y = y_{0} + \int_{t_{1}}^{t_{2}} \left[V_{y} \right] d \text{ Time}$$

09/01/2014 14:07:04 Page 7 File:SECADO.EES $\dot{V}_2 = \frac{\dot{m}_{aire}}{\rho_2}$ $V_2 = \frac{V_2}{A_{trans}}$ $V_{rel} = \sqrt{[V_2 - V_z]^2 + V_y^2}$ $\theta = \arctan\left[\frac{-V_y}{V_2 - V_z}\right]$ $\overline{h} \, \cdot \, \left[\, T_2 \, - \, T_s \, \right] \, = \, h_{fg} \, \cdot \, \overline{h}_m \, \cdot \, \left[\, \rho_{A;sat} \, - \, \rho_{A_{\infty}} \right]$ $h_{f} = h ['Water'; T = T_{s}; x = 0] \cdot 1000 \cdot \frac{J/kg}{KJ/kg}$ $h_g = h \left["Water" ; T = T_s ; x = 1 \right] \cdot \left[1000 \cdot \frac{J/kg}{KJ/kg} \right]$ $h_{fg} = h_g - h_f$ $R_{A} = 461$ $p_{A_{i_{\infty}}} = w_2 \cdot P1 \cdot \left[\frac{1000}{0,622 + w_2}\right]$ $\rho_{A_{i_{\infty}}} = \frac{p_{A_{i_{\infty}}}}{R_{A} \cdot [T_{2} + 273, 15]}$ $p_{A;sat} = P_{sat} ['Water'; T = T_s] \cdot \left| 1000 \cdot \frac{Pa}{kPa} \right|$ $\rho_{A;sat} = \frac{p_{A;sat}}{R_A \cdot [T_s + 273,15]}$ $\overline{\text{NUSSELT}}_{D} = 2 + \begin{bmatrix} 0,4 \\ | \text{Re}_{D} | \begin{pmatrix} 1 & 2 \\ | & 2 \end{pmatrix} + 0,06 \\ | \text{Re}_{D} | \begin{pmatrix} 2 & 3 \\ | & 3 \end{pmatrix} \end{bmatrix} \cdot \left| \text{Pr}_{2} \right|^{0,4} \cdot \left[\left| \frac{\mu_{2}}{\mu_{2,s}} \right| \right]^{\begin{bmatrix} 1 & 4 \\ | & 4 \end{bmatrix}} \right]^{\left[1 & 4 \end{bmatrix}}$ $\overline{\text{NUSSELT}}_{D} = \overline{\text{h}} \cdot \frac{\text{D}_{\text{grano}}}{\text{k}_{2}}$ $Re_{D} = \frac{\rho_{2} \cdot V_{rel} \cdot D_{grano}}{\mu_{2}}$ $\rho_2 = \rho ['AirH2O'; T = T_2; P = P1; w = w_2]$ $\mu_2 = \text{Visc} ['AirH2O'; T = T_2; P = P1; w = w_2]$ $\mu_{2;s} = \text{Visc} ['AirH2O' ; T = T_s ; P = P1 ; w = w_2]$ $Pr_2 = Pr['Air'; T = T_2]$ $k_2 = k ['AirH2O'; T = T_2; P = P1; w = w_2]$ $\overline{h}_{m} = \frac{\overline{h} \cdot D_{AB} \cdot |Le|^{\left[1 / 3\right]}}{k_{B}}$ $\rho_B = \rho ['Air'; T = T_f; P = P1]$

```
File:SECADO.EES
                                                                                                              09/01/2014 14:07:04 Page 8
  \mu_B = \text{Visc} ['Air'; T = T_f]
  k_B = k ['Air'; T = T_f]
   cp_B = Cp['Air'; T = T_f] \cdot 1000
  Le = \frac{k_B}{\rho_B \cdot cp_B \cdot D_{AB}}
   D_{AB} = - \ 0,000002775 \quad \  \left[m^2/s\right] + \ 4,479 \times 10^{-8} \quad \  \left[m^2/s{-}K\right] \cdot \ \left[T_f \ + \ 273,15 \ \right] \ + \ 1,656 \times 10^{-10} \quad \  \left[m^2/s{-}K^2\right] \cdot \ \left[T_f \ + \ 273,15 \ \right]^2
   n_A = \overline{h}_m \cdot A_s \cdot [\rho_{A;sat} - \rho_{A;\infty}]
  m_w = n_A \cdot [t_2 - t_1]
 \dot{m}_w = m_w \cdot \dot{N}_{particulas}
END SECADO
X_1 = 0,1556
T_{s} = 58,9
pgrano;seco = 4150
D_{grano} = 0,015
N<sub>particulas</sub> = 4670
.
m<sub>aire</sub> = 12,43
T_2 = 423,9
\phi_2 = 0,000312
R = 1,95
\alpha = 4
¥ = 2,877
P1 = 1 [atm] · 101,325 · kPa atm
step = 0,05
L_{secador} = L_{secador} \begin{bmatrix} X_1 ; X_2 ; T_s ; \rho_{grano, seco} ; D_{grano} ; \mathring{N}_{particulas} ; \mathring{m}_{aire} ; T_2 ; \phi_2 ; R ; \alpha ; \overline{Y} ; P1 ; step \end{bmatrix}
Lookup Table: Lookup 1
                                                                                                ý
                                                                                                              ħ
                                          X<sub>BH</sub> T<sub>s</sub> φ<sub>2</sub> T<sub>2</sub>
                                                                                                                             ħm
                      z
                                 У
                                                                                              [CFM]
                                                                                                            [W/m<sup>2</sup>-K]
                                                                                                                            [m/s]
                      [m]
                              [m]
                                                          [C]
                                                                                    [C]
Row 1 2,1 2,877 0,1556 58,9 0,000312 423,9 55794
                                                                                                            0 0
```

	Z	v	Хен	Т.	\$2	T.	ý	ħ	ħ.,
	[m]	[m]	· · bh	[C]	42	[C]	[CFM]	[W/m ² -K]	[m/s]
Row 2	2,101	2,865	0,1556	58,74	0,0003127	423,6	55782	49,88	0,07605
Row 3	2,103	2,828	0,1555	58,74	0,0003133	423,4	55770	51,17	0,078
Row 4	2,108	2.767	0,1555	58,74	0.000314	423.1	55757	53,32	0.08126
Row 5	2,114	2.681	0.1555	58,74	0.0003148	422.8	55744	56,06	0.08541
Row 6	2,122	2.571	0.1555	58.74	0.0003155	422.5	55730	59.14	0.09008
Row 7	2,131	2.437	0.1554	58.74	0.0003164	422.2	55716	62.39	0.09501
Row 8	2.143	2.278	0.1554	58.74	0.0003172	421.9	55700	65.71	0.1
Row 9	2 156	2 095	0.1554	58.75	0.0003181	421.5	55684	69.04	0.1051
Row 10	2 171	1 887	0 1553	58 75	0.0003191	421.2	55667	72.33	0.1101
Row 11	2 187	1 655	0 1553	58.75	0.0003201	420.8	55650	75.58	0.115
Row 12	2 206	1 399	0 1552	58 75	0.0003211	420.4	55631	78 76	0 1198
Row 12	2,200	1 118	0,1552	58 75	0.0003221	420	55612	81.87	0 1244
Row 14	2 247	0.8120	0,1551	58 75	0.0003233	419.6	55593	84 92	0 129
Row 14	2,247	0,0129	0,1551	58 75	0,0003233	419,0	55572	87.0	0,123
Row 15	2,2/1	0,4000	0,1551	59.76	0,0003244	419,1	55552	00.91	0,1333
Row 10	2,290	0,1299	0,155	59.76	0,0003268	410,7	55520	03.66	0,1079
ROW 17	2,525	-0,2401	0,155	50,70	0,0003208	410,2	55530	93,00	0,1421
Row 10	2,323	2,011	0,155	50,70	0,0003208	410,2	55510	40.69	0.07527
Row 19	2,324	2,805	0,155	50,70	0,0003274	410	55507	49,00	0,07537
Row 20	2,321	2,020	0,1549	50,70	0,0003281	417,7	55507	50,96	0,07732
Row 21	2,331	2,767	0,1549	58,76	0,0003288	417,5	55495	53,14	0,08059
Row 22	2,337	2,681	0,1549	58,76	0,0003295	417,2	55482	55,89	0,08473
Row 23	2,345	2,5/1	0,1549	58,76	0,0003302	416,9	55468	58,98	0,08939
Row 24	2,354	2,437	0,1548	58,77	0,000331	416,6	55454	62,24	0,09431
Row 25	2,366	2,278	0,1548	58,77	0,0003319	416,3	55439	65,56	0,09932
Row 26	2,379	2,095	0,1548	58,77	0,0003327	415,9	55423	68,89	0,1043
Row 27	2,394	1,887	0,1547	58,77	0,0003337	415,6	55407	72,19	0,1093
Row 28	2,41	1,655	0,1547	58,77	0,0003346	415,2	55390	75,43	0,1142
Row 29	2,429	1,399	0,1546	58,77	0,0003356	414,8	55372	78,61	0,1189
Row 30	2,449	1,118	0,1546	58,77	0,0003367	414,4	55354	81,73	0,1236
Row 31	2,47	0,8129	0,1546	58,78	0,0003377	414	55334	84,77	0,1282
Row 32	2,494	0,4835	0,1545	58,78	0,0003389	413,6	55315	87,75	0,1326
Row 33	2,519	0,1299	0,1545	58,78	0,00034	413,1	55294	90,66	0,137
Row 34	2,546	-0,2481	0,1544	58,78	0,0003412	412,7	55273	93,51	0,1412
Row 35	2,546	2,877	0,1544	58,78	0,0003412	412,7	55273	0	0
Row 36	2,547	2,865	0,1544	58,78	0,0003418	412,5	55262	49,49	0,07471
Row 37	2,55	2,828	0,1544	58,78	0,0003424	412,2	55251	50,79	0;07667
Row 38	2,554	2,767	0,1543	58,79	0,0003431	412	55239	52,97	0,07993
Row 39	2,56	2,681	0,1543	58,79	0,0003438	411,7	55227	55,72	0,08407
Row 40	2,568	2,571	0,1543	58,79	0,0003446	411,4	55213	58,82	0,08872
Row 41	2,578	2,437	0,1542	58,79	0,0003453	411,1	55200	62,08	0,09362
Row 42	2,589	2,278	0,1542	58,79	0,0003462	410,8	55185	65,41	0,09862
Row 43	2,602	2,095	0,1542	58,79	0,000347	410,5	55170	68,75	0,1036
Row 44	2,617	1,887	0,1541	58,79	0,0003479	410,1	55154	72,04	0,1086
Row 45	2,633	1,655	0,1541	58,79	0,0003489	409,8	55137	75,29	0,1134
Row 46	2,652	1,399	0,1541	58,8	0,0003498	409,4	55120	78,47	0,1182
Row 47	2,672	1,118	0,154	58,8	0,0003508	409	55102	81,58	0,1228
Row 48	2,693	0,8129	0,154	58,8	0,0003519	408,6	55083	84,63	0,1273
Row 49	2,717	0,4835	0,1539	58,8	0,000353	408.2	55064	87.6	0.1318
Row 50	2.742	0.1299	0.1539	58.8	0.0003541	407.8	55044	90.51	0.1361
Row 51	2,769	-0.2481	0.1538	58.81	0.0003553	407.3	55024	93.36	0.1403
Row 52	2 769	2 877	0 1538	58 81	0.0003553	407.3	55024	0,00	0,1400
Row 53	2,703	2,865	0 1538	58.81	0.0003559	407 1	55013	49.3	0.07407
Row 54	2,11	2,000	0,1538	58.81	0,0003565	406.0	55002	49,3	0,07407
Daw 55	2,113	2,020	0,1530	59.94	0,0003505	400,9	54000	50,01	0,07003

.....

. . .

LOOKUD TADIe	LOOKUD 1							_	_
	z	У	XBH	Ts	¢2	T ₂	v	h	h _m
	[m]	[m]		[C]		[C]	[CFM]	[W/m ² -K]	[m/s]
Row 56	2,783	2,681	0,1537	58,81	0,0003578	406,4	54978	55,56	0,08343
Row 57	2,791	2,571	0,1537	58,81	0,0003585	406,1	54966	58,66	0,08807
Row 58	2,801	2,437	0,1537	58,81	0,0003593	405,8	54952	61,93	0,09296
Row 59	2,812	2,278	0,1536	58,82	0,0003601	405,5	54938	65,27	0,09794
Row 60	2,825	2,095	0,1536	58,82	0,0003609	405,2	54923	68,6	0,1029
Row 61	2,84	1,887	0,1536	58,82	0,0003618	404,9	54908	71,9	0,1078
Row 62	2,856	1,655	0,1535	58,82	0,0003627	404,5	54891	75,15	0,1127
Row 63	2,875	1,399	0,1535	58,82	0,0003637	404,1	54874	78,33	0,1174
Row 64	2,895	1,118	0,1534	58,82	0,0003647	403,8	54857	81,44	0,122
Row 65	2,916	0,8129	0,1534	58,83	0,0003657	403,4	54839	84,48	0,1265
Row 66	2,94	0,4835	0,1534	58,83	0,0003668	403	54820	87,46	0,1309
Row 67	2,965	0,1299	0,1533	58,83	0,0003679	402,6	54801	90,37	0,1353
Row 68	2,992	-0,2481	0,1533	58,83	0,000369	402,1	54781	93,21	0,1395
Row 69	2,992	2,877	0,1533	58,83	0,000369	402,1	54781	0	0
Row 70	2,993	2,865	0,1532	58,83	0,0003696	401,9	54770	49,11	0,07345
Row 71	2,996	2,828	0,1532	58,84	0,0003702	401,7	54760	50,43	0,07541
Row 72	3	2,767	0,1532	58,84	0,0003708	401,5	54749	52,63	0,07868
Row 73	3,006	2,681	0,1532	58,84	0,0003715	401,2	54737	55,4	0,08281
Row 74	3,014	2,571	0,1531	58,84	0,0003722	400,9	54724	58,51	0,08744
Row 75	3.023	2,437	0,1531	58,84	0,0003729	400,7	54711	61,79	0.09231
Row 76	3,035	2,278	0,1531	58,84	0,0003737	400,4	54698	65,12	0,09727
Row 77	3.048	2,095	0,153	58,84	0,0003745	400,1	54683	68,46	0,1022
Row 78	3,063	1,887	0,153	58,85	0,0003754	399,7	54668	71,76	0,1071
Row 79	3.079	1.655	0,153	58.85	0.0003763	399,4	54652	75,01	0,1119
Row 80	3.098	1,399	0.1529	58,85	0,0003772	399	54636	78,19	0,1166
Row 81	3,118	1,118	0.1529	58,85	0.0003782	398,7	54619	81.3	0,1213
Row 82	3.139	0.8129	0.1528	58.85	0.0003792	398.3	54601	84.34	0.1258
Row 83	3,163	0.4835	0.1528	58,86	0.0003802	397.9	54583	87,31	0,1301
Row 84	3,188	0.1299	0.1528	58,86	0.0003813	397.5	54564	90,22	0.1344
Row 85	3.215	-0.2481	0.1527	58,86	0.0003824	397,1	54545	93,06	0.1386
Row 86	3.215	2.877	0.1527	58.86	0.0003824	397.1	54545	0	0
Row 87	3.216	2.865	0.1527	58.86	0.000383	396.9	54535	48.93	0.07285
Row 88	3.219	2.828	0.1527	58.86	0.0003836	396.7	54524	50.25	0.07481
Row 89	3.223	2,767	0.1526	58.87	0.0003842	396.4	54513	52.46	0.07807
Row 90	3.229	2.681	0.1526	58.87	0.0003848	396.2	54502	55.24	0.0822
Row 91	3.237	2.571	0.1526	58.87	0.0003855	395.9	54490	58.36	0.08682
Row 92	3.246	2.437	0.1525	58.87	0.0003863	395.7	54477	61.64	0.09168
Row 93	3.258	2.278	0.1525	58.87	0.000387	395.4	54464	64,98	0.09662
Row 94	3.271	2.095	0.1525	58.87	0.0003878	395.1	54450	68.32	0.1016
Row 95	3.286	1.887	0.1524	58.88	0.0003887	394.8	54435	71.62	0.1064
Row 96	3,302	1.655	0.1524	58.88	0.0003895	394.4	54420	74 87	0 1112
Row 97	3.32	1.399	0.1524	58.88	0.0003904	394.1	54404	78.05	0 1159
Row 98	3.341	1,118	0.1523	58.88	0.0003914	393.7	54387	81.16	0.1205
Row 99	3.362	0.8129	0.1523	58.88	0.0003924	393.4	54370	84.2	0.125
Row 100	3.386	0.4835	0.1522	58.89	0.0003934	393	54352	87.17	0.1294
Row 101	3.411	0.1299	0.1522	58.89	0.0003944	392.6	54334	90.07	0.1336
Row 102	3 438	-0.2481	0.1522	58.89	0.0003955	392.2	54315	92 92	0.1378
Row 103	3,438	2.877	0.1522	58.89	0.0003955	392.2	54315	0	0
Row 104	3,439	2.865	0.1521	58.89	0.0003961	392	54305	48.75	0.07226
Row 105	3 441	2,828	0.1521	58.89	0.0003967	391.8	54295	50.08	0.07422
Row 106	3,446	2,767	0.1521	58.9	0.0003973	391.5	54284	52,29	0.07749
Row 107	3 452	2 681	0.1521	58.9	0.0003979	391.3	54273	55 09	0.08161
Row 108	346	2 571	0.152	58.9	0.0003986	391 1	54262	58 21	0.08622
Row 109	3469	2 437	0 152	58.9	0.0003993	390.8	54249	61.5	0.09107
100 100	0,400	2,401	0,102	00,0	0,0000000	000,0	04240	01,0	0,00101

	z	v	XRH	T.	\$2	Τ,	ý	ħ	h.
	[m]	[m]	UI	[C]	12	[C]	[CFM]	[W/m ² -K]	[m/s]
Row 110	3,481	2,278	0,152	58,9	0,0004	390,5	54236	64,84	0,096
Row 111	3,494	2,095	0,1519	58,9	0,0004008	390,2	54222	68,18	0,1009
Row 112	3,509	1,887	0,1519	58,91	0,0004016	389,9	54208	71,48	0,1058
Row 113	3,525	1.655	0,1519	58,91	0.0004025	389.6	54193	74.73	0.1105
Row 114	3.543	1.399	0.1518	58.91	0.0004034	389.3	54178	77.91	0.1152
Row 115	3,563	1,118	0.1518	58.91	0.0004043	388.9	54162	81.02	0.1198
Row 116	3 585	0.8129	0 1517	58 91	0.0004053	388.6	54145	84.06	0 1242
Row 117	3 609	0 4835	0.1517	58 92	0.0004062	388.2	54128	87 03	0 1286
Row 118	3 634	0 1299	0 1517	58 92	0.0004073	387.8	54110	89.93	0 1328
Row 119	3 661	-0 2481	0 1516	58.92	0.0004083	387.4	54091	92 77	0 137
Row 120	3 661	2 877	0 1516	58.92	0.0004083	387.4	54091	0	0,101
Row 121	3,662	2,865	0 1516	58 92	0,0004089	387.2	54082	48 57	0.07169
Row 121	3,664	2,000	0,1516	58 03	0,0004003	387	54072	40,01	0,07366
Row 122	3,660	2,020	0,1515	58.03	0,0004034	386.8	54062	52 13	0,07602
Row 123	3,003	2,707	0,1515	58.03	0.0004106	386.6	54051	54 93	0,07092
Row 124	3,075	2,001	0,1515	58.03	0,0004100	386.3	54031	59.06	0,08104
Row 125	3,003	2,071	0,1515	59.02	0,0004113	206 1	54020	61 25	0,00047
Row 120	3,092	2,437	0,1515	50,93	0,000412	300,1	54026	01,35	0,09047
ROW 127	3,704	2,270	0,1514	50,93	0,0004127	305,0	54015	04,7	0,09538
ROW 128	3,/1/	2,095	0,1514	50,94	0,0004135	385,5	54002	68,04	0,1003
Row 129	3,731	1,887	0,1514	58,94	0,0004143	385,2	53988	71,34	0,1051
Row 130	3,748	1,655	0,1513	58,94	0,0004151	384,9	53973	74,59	0,1099
Row 131	3,766	1,399	0,1513	58,94	0,000416	384,6	53958	77,77	0,1145
Row 132	3,786	1,118	0,1512	58,94	0,0004169	384,3	53942	80,88	0,1191
Row 133	3,808	0,8129	0,1512	58,95	0,0004178	383,9	53926	83,92	0,1235
Row 134	3,832	0,4835	0,1512	58,95	0,0004188	383,6	53909	86,88	0,1278
Row 135	3,857	0,1299	0,1511	58,95	0,0004198	383,2	53892	89,79	0,1321
Row 136	3,884	-0,2481	0,1511	58,95	0,0004208	382,8	53874	92,62	0,1362
Row 137	3,884	2,877	0,1511	58,95	0,0004208	382,8	53874	0	0
Row 138	3,885	2,865	0,1511	58,96	0,0004214	382,6	53865	48,39	0,07113
Row 139	3,887	2,828	0,151	58,96	0,0004219	382,4	53855	49,74	0,0731
Row 140	3,892	2,767	0,151	58,96	0,0004225	382,2	53845	51,98	0,07637
Row 141	3,898	2,681	0,151	58,96	0,0004231	382	53835	54,78	0,08048
Row 142	3,906	2,571	0,1509	58,96	0,0004238	381,7	53824	57,92	0,08507
Row 143	3,915	2,437	0,1509	58,97	0,0004244	381,5	53812	61,21	0,08989
Row 144	3,926	2,278	0,1509	58,97	0,0004251	381,2	53800	64,56	0,09479
Row 145	3,94	2,095	0,1509	58,97	0,0004259	381	53787	67,91	0;09967
Row 146	3,954	1,887	0,1508	58,97	0,0004267	380,7	53773	71,21	0,1045
Row 147	3,971	1,655	0,1508	58,97	0,0004275	380,4	53759	74,45	0,1092
Row 148	3,989	1,399	0,1508	58,98	0,0004284	380,1	53744	, 77,63	0,1139
Row 149	4,009	1,118	0,1507	58,98	0,0004292	379,7	53729	80,74	0,1184
Row 150	4,031	0,8129	0,1507	58,98	0,0004302	379,4	53713	83,78	0,1228
Row 151	4,054	0,4835	0,1506	58,98	0,0004311	379,1	53697	86,74	0,1271
Row 152	4,08	0,1299	0,1506	58,99	0,0004321	378,7	53680	89.64	0.1313
Row 153	4,107	-0,2481	0,1505	58,99	0.0004331	378.3	53663	92.48	0.1354
Row 154	4,107	2,877	0,1505	58,99	0,0004331	378,3	53663	0	0
Row 155	4,108	2.865	0,1505	58,99	0.0004336	378.1	53654	48.22	0.07059
Row 156	4,11	2,828	0,1505	58,99	0.0004342	377.9	53644	49.58	0.07257
Row 157	4,114	2.767	0.1505	58.99	0.0004347	377.7	53635	51.82	0.07583
Row 158	4,121	2.681	0.1505	59	0.0004353	377.5	53624	54.64	0.07994
Row 159	4,128	2.571	0.1504	59	0.0004359	377.3	53614	57 78	0.08452
Row 160	4 138	2 437	0 1504	59	0.0004366	377	53602	61.08	0.08933
Row 161	4 149	2 278	0 1504	59	0.0004373	376.8	53590	64.43	0.09421
Row 162	4 162	2 095	0 1503	50	0.000438	376.5	53578	67 77	0,00421
	7,102	2,000	0,1000	00	0,000400	010,0	00010	01,11	0,05901

	z	У	XBH	Ts	¢2	T ₂	Ŷ	ħ	h _m
	[m]	[m]		[C]		[C]	[CFM]	[W/m ² -K]	[m/s]
Row 164	4,194	1,655	0,1503	59,01	0,0004396	375,9	53551	74,32	0,1086
Row 165	4,212	1,399	0,1502	59,01	0,0004404	375,6	53536	77,5	0,1132
Row 166	4,232	1,118	0,1502	59,01	0,0004413	375,3	53522	80,6	0,1177
Row 167	4,254	0,8129	0,1502	59,02	0,0004422	375	53506	83,64	0,1221
Row 168	4,277	0,4836	0,1501	59,02	0,0004431	374,7	53490	86,6	0,1264
Row 169	4.303	0.1299	0.1501	59.02	0.0004441	374.3	53474	89.5	0.1306
Row 170	4.329	-0.2481	0.15	59.02	0.0004451	374	53457	92.34	0.1347
Row 171	4.329	2.877	0.15	59.02	0.0004451	374	53457	0	0
Row 172	4.33	2.865	0.15	59,03	0.0004464	373,7	53445	48.05	0.07007
Row 173	4.333	2.828	0.15	59,03	0,0004482	373,5	53431	49,42	0,07204
Row 174	4.337	2,767	0.15	59,03	0,0004502	373,2	53417	51,66	0,0753
Row 175	4.343	2.681	0.1499	59.03	0.0004523	373	53402	54.48	0.07939
Row 176	4.351	2.571	0.1499	59.03	0.0004545	372.7	53386	57.63	0.08395
Row 177	4.361	2.437	0.1499	59.03	0.0004568	372.4	53369	60.93	0.08874
Row 178	4 372	2 278	0.1498	59.03	0.0004593	372	53351	64.28	0.09359
Row 179	4 385	2 095	0.1498	59.03	0.0004619	371.7	53332	67.63	0.09843
Row 180	44	1 887	0 1498	59 03	0.0004646	371.3	53312	70.93	0 1032
Row 181	4 417	1 655	0 1497	59.03	0.0004675	371	53292	74 17	0 1079
Row 182	4 435	1,000	0 1497	59.03	0.0004705	370.6	53270	77 35	0 1125
Row 183	4 455	1 118	0 1497	59.03	0.0004737	370.2	53248	80.45	0 1169
Row 184	4 477	0.8129	0,1496	59.03	0.0004769	369.8	53225	83.48	0 1213
Row 185	4,411	0,0120	0,1406	59.03	0,0004803	369.3	53201	86.44	0 1256
Row 186	4 525	0,4000	0,1496	59,03	0,0004839	368.0	53176	80.34	0,1200
Row 187	4,520	-0 2481	0 1495	59.03	0,0004876	368.4	53151	92 17	0,1237
Row 107	4,002	-0,2401	0,1495	59,05	0,0004070	500,4	00101	52,17	0,1550
Row 180									
Row 109									
Row 190									
Row 191									
Row 192									
Row 195									
Row 194									
Row 195									
ROW 190									
Row 197									
Row 198									
Row 199									•
Row 200									
Row 201									
Row 202									
Row 203									
Row 204									
Row 205									
Row 206									
Row 207									
Row 208									
Row 209									
Row 210									
Row 211									
Row 212									
Row 213									
Row 214									
Row 215									
Row 216									

REFERENCIAS BIBLIOGRÁFICAS

1. **Woodcock, C.R.** Cohesion and adhesion. *Bulk Solids Handling.* Suffolk : Chapman & Hall, 1987, pp. 30-41.

2. Shih Fan, Liang and Zhu, Chao. Size and Properties of Particles. [ed.] Arvind Varma. *Principles of Gas-Solid Flows*. New York : Cambridge University Press, 1998, 1, pp. 3-10.

3. **Treybal, Robert.** Secado. *Operaciones de transferencia de masa.* México : McGraw-Hill, 1980, pp. 723-758.

4. **Moyers, Charles.** Psychrometry, Evaporative Cooling, and Solids Drying. [book auth.] Robert Perry. [ed.] Robert H. Perry. *Perry's Chemical Engineers' Handbook.* Seventh. New York : McGraw-Hill, 1997, 12, pp. 25-90.

5. **Mujumdar, Arun.** Rotary Drying. [book auth.] Taylor & Francis Group. *Handbook of Industrial Drying.* Florida : CRC Press, 2006, pp. 151-171.

6. *Studies in rotary drying.* **Friedman, S. J. and Marshall, W. R.** 45, s.l. : American Institute of Chemical Engineers, 1949, Chemical Engineering Progress, pp. 484, 573.

7. **Behie, Leo.** The Movement of Solids Through Flighted Rotating Drums. Part I: Model Formulation. *The Canadian Journal of Chemical Engineering.* Junio 1993, pp. 337-346.

8. Barrozo, M.A.S. A study about particle motion in rotary dryers. *Brazilian Journal of Chemical Engineering.* Febrero 2007, pp. 365-374.

9. Rotary Driers and Coolers for Granular Fertilizers. Schofield, F. R. and Glikin, P. G. 40, 1962, Trans. Inst. Chem. Eng, pp. 183-190.

10. *Modelado de Secaderos Rotatorios en Isocorriente*. **Castaño, F., Rubio, F. R. and Ortega, M. G.** 2009, Revista Iberoamericana de Automática e Informática Industrial, pp. 32-43.

11. Kamke, Frederick A. Engineering Analysis of a Rotary Dryer: Drying of Wood Particles. 1983. pp. 43-44, 89-130, PhD Thesis.

12. **Ajayi, Olukayode Oludamilola.** *Multiscale modelling of industrial flighted rotary dryers.* James Cook University. 2011. pp. 1-3,22-40,145-153, PhD Thesis.

13. Glikin, P. G. 56, 1978, Trans. Inst. Chem. Eng., p. 120.

14. Modeling and experimental study of hydrodynamic and drying characteristics of an industrial rotary dryer. **Barrozo, M. A. S.** 2, Uberlandia : s.n., Septiembre 26, 2009, Brazilian Journal of Chemical Engineering, Vol. XXVI, pp. 331-341. ISSN 0104-6632.

15. Barrozo, M.A.S. and Arruda, E.B. Acerca de nosotros: IOPscience. *sitio web de IOP Science*. [Online] 2008. [Cited: 11 2, 2013.] http://iopscience.iop.org/1742-6596/135/1/012063.

16. **Stroshine, Richard.** Friction of solids and flow of granular solids. *Physical Properties of Agricultural Materials and Food Products.* 2004, pp. 239-254.

17. *The Design of Flights in Rotary Dryers.* **Revol, D., Briens, C. L. E. and Chabagno, J. M.** 2001, Powder Technology, Vol. 121, pp. 230-238.

18. *The kinetic angle of repose of powders.* Kelly, J. J. 21, Dublin : Society of Costmetic Chemists of Great Britain, 1970, Journal of the society of cosmetic chemists, pp. 37-51.

19. White, Frank M. Flujo alrededor de cuerpos. *Mecánica de Fluidos.* Quinta. México : McGraw Hill, 2008, pp. 449-501.

20. Incropera, Frank. Flujo externo. *Fundamentos de Transferencia de Calor.* México : Prentice Hall, 1999, pp. 346-394.

21. —. Introducción a la convección. *Fundamentos de Transferencia de Calor.* México : Prentice Hall, 1999, pp. 284-332.

22. Nellis, Gregory and Klein, Sanford. Mass Transfer. *Heat Transfer.* New York : Cambridge University Press, 2008, pp. 974-978.

23. Leu, Shao Yuan. Robust enzymatic saccharification of a Douglas-fir forest harvest residue by SPORL. *Biomass and Energy.* August 1, 2013, p. 5.

24. Shih Fan Llian, Zhu Chao. Basic Equations. [ed.] Varma A. *Principles of Gas-Solid Flows.* New York : Cambridge University Press, 1998, 5, pp. 164-166.

25. **Incropera, Frank.** Transferencia de masa por difusión. *Fundamentos de Transferencia de Calor.* México : Prentice Hall, 1999, pp. 784-817.

26. **Sper, José and Torres, Iván.** *Proyecto de Graduación.* Escuela Superior Politécnica del Litoral, Guayaquil : 2009.

27. **Behie, Leo.** The Movement of Solids Trough Flighted Rotating Drums. Part II: Solids-Gas Interaction and Model Validation. *The Canadian Journal of Chemical Engineering*. Abril 1994, pp. 240-248.

28. **Wang, T. J.** Granule transport and mean residence time in horizontal drum with inclined flights. *Powder Technology.* Octubre 12, 2005, pp. 50-58.

29. Amanifard, N. and Haghi, A.K. On the drying process of a solid porous body: some important criteria, trends and developments. [book auth.] G.E. Zaikov. *Progress in Chemical, and Biochemical Physics, Kinetics and Thermodynamics.* New York : Nova, 2008.

30. **Malode, Parag.** DEM analysis of the role of lifter design on performance on rotary cooler. *Jamshedpur.* 2010, pp. 391-397.

31. Gas velocity effects on heat transfer in direct heat rotary dryers. **McCormick**, **P. Y.** New York : American Institute of Chemical Engineers, 1962, pp. 57-61. ISBN.

32. Cengel, Yanus A. and J., Ghajar Afshin. Radiation Heat Transfer. *Heat and Mass Transfer: Fundamentals & Applications.* Fourth. New York : McGraw Hill, 2011.

33. **Price, James F.** Woods Hole. [Online] June 7, 2007. [Cited: 10 10, 2013.] http://www.whoi.edu/science/PO/people/jprice. 02543.

34. **Barrozo, M.A.S. and Arruda, E.B.** *Experimental and Simulation Study of Fertilizer Drying in a Rotary Dryer.* Escuela de Ingeniería Química, Universidad Federal de Uberlândia. Minas Gerair : s.n., 2011. Paper.

35. *Modelling of Fertilizer Drying in a Rotary Dryer: Parametric Sensitivity Analysis.* **Barrozo, M.A.S. and Arruda, E.B.** 2, Minas Gerais : s.n., Septiembre 22, 2011, Brazilian Journal of Chemical Engineering, Vol. XXIX, pp. 359-369. ISSN 0104-6632.

36. Kamke, F. A. and B., Wilson J. Computer Simulation of a Rotary Dryer. *AIChE Journal.* February 1986, Vol. 32, 2, pp. 269-275.

37. Rastikian, K., Capart, R. and Benchimol, J. Modelling of sugar drying in a countercurrent cascading rotary dryer from stationary profiles of temperature and moisture. *Journal of Food Engineering.* 1999, 41, pp. 193-201.

38. **Konidis, Jordan.** *Design of Direct Heated Rotary Dryers.* Department of Mechanical Engineering, Concordia University. Montreal : s.n., 1984. Technical Report.

39. Drying and Heating Modelling of Granular Flow: Application to the Mix-Asphalt Processes. LeGuen, L. 2, Bouguenais: s.n., 2011, Journal of Applied Fluid Mechanics, Vol. 4, pp. 71-80. ISSN 1735-3572.

40. **Price, James F.** Lagrangian and Eulerian Representation of Fluid Flow: Kinematics and the Equations of Motion. Woods Hole Oceanographic Institution. Woods Hole : s.n., 2006. Essay.

41. **Fakuori, Alireza.** A new experimental method for flight design in rotary dryers. Department of Mechanical Engineering, URMIA University of Technology.

42. Lee, Andrew. *Modelling the Solids Transport Phenomena Within Flighted Rotary Dryers.* James Cook University. Queendland : s.n., 2008. PhD Thesis.

43. *Mathematical Modeling and Computer Simulation of Continuous Rotary Dryer.* **Hashemabadi, S. H.** Narmak : s.n., 2004. 9th Iranian Chemical Engineering Congress.

44. On modelling and control of a rotary sugar dryer. **Pierce, Robert.** San Diego : Pergamon, 2001, Control Engineering Practice, pp. 249-266.

45. **Cairo, Nadia, Colangelo, Gianpiero and Starace, Giuseppe.** *Performance analysis of two industrial dryers (cross flow and rotary) for ligno-cellulosic biomass desiccation.* Dipartimento di Ingegneria dell'Innovazione, Università del Salento. Lecce : s.n., 2012.

46. Process analysis for an alfalfa rotary dryer using an improved dimensional analysis method. **Xianzhe, Zheng.** 3, Harbin : s.n., 2009, Int J Agric & Biol Eng, Vol. 2, pp. 76-82.

47. Shih Fan, Liang and Zhu, Chao. Size and Properties of Particles. [ed.] Arvind Varma. *Principles of Gas-Solid Flows*. New York : Cambridge University Press, 1998, 1, pp. 3-10.

48. **Bostock**, **Pierce**. Acerca de nosotros: Thermal Energy Systems. *sitio web de Thermal Energy Systems*. [En línea] 22 de Abril de 2009. [Citado el: 10 de Noviembre de 2012.] http://www.thermalenergysystems.com/bsst/papers/2009agm3.pdf.