ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"Implantación de una Red de Control Geodésica enlazados a la REGME (Red GNSS de Monitoreo Continuo del Ecuador) del Instituto Geográfico Militar dentro del campus Gustavo Galindo de la Escuela Superior Politécnica del Litoral"

TESIS DE GRADO

Previo la obtención del Título de:

INGENIERO CIVIL

Presentada por:

Ulices Douglas Cedeño Mosquera

GUAYAQUIL-ECUADOR

AÑO: 2015

AGRADECIMIENTO

A Jehová, por los cuidados y las bendiciones otorgadas.

A mi abuelo Ulises, a mi tía Irma y a mi madre Carmen, por su entereza.

A Rita e Isaac, por ser mis complementos.

A mi director de tesis, Ing. Juan Carlos Pindo por su apoyo y tiempo.

A mi querida ESPOL, por abrirme sus puertas y permitir mi preparación como profesional.

Ulices Cedeño Mosquera

TRIBUNAL DE GRADUACIÓN

MSc. Kenny Escobar Segovia

Presidente del Tribunal

Ing. Juan Pindo Macas

Dr. Mijail Arias Hidalgo

Vocal Principal

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado me corresponde
exclusivamente; y el patrimonio intelectual de la misma a la Escuela Superior
Politécnica del Litoral"
(Reglamento de Graduación de la ESPOL).
Ulices Cedeño Mosquera

RESUMEN

El auge de la construcción, de los sistemas de información geográfica, de catastros, etc. que está ocurriendo en la actualidad, obligan a mantener puntos de control con coordenadas precisas bajo un mismo datum y a la vez altitudes referenciadas con el nivel medio del mar. Por tal razón el interés de apoyar con una red geodésica dentro de la ESPOL para que los futuros proyectos que necesiten el uso de una localización precisa se enlacen con la red. Para esto, se colocaron ocho placas de manera uniforme dentro del área habilitada para la construcción en el campus politécnico. Estas placas fueron georreferenciadas con receptores GNSS a partir de una estación permanente del Instituto Geográfico Militar ubicada en la Base Naval Sur. Los resultados fueron óptimos, ya que los datos de postproceso muestran que los factores incidentes a errores estuvieron dentro de los parámetros permisibles. De igual manera la nivelación geométrica contribuyó a la confirmación de las altitudes que el enlace GNSS efectuó.

ÍNDICE GENERAL

RES	UMEN		V
ÍNDI	CE GENE	RAL	VI
ABR	EVIATUR	AS	IX
SIME	BOLOGÍA		11
ÍNDI	CE DE FIC	GURAS	12
ÍNDI	CE DE TA	BLAS	13
ÍNDI	CE DE FO	тоs	14
CAP	ÍTULO 1		15
1. (SENERAL	IDADES	15
1.1.	Plantear	miento del problema y justificación	15
1.2.	Objetivo	S	16
	1.2.1.	Objetivo General	16
	1.2.2.	Objetivos Específicos	16
1.3.	Anteced	lentes	17
1.4.	Metodol	ogía	18
CAP	ÍTULO 2		19
2. N	NOCIONES	S BÁSICAS DEL SISTEMA GNSS	19
2.1.	Introduc	ción	19
2.2.	Descripo	ción de un Sistema de Navegación por Satélites	21
	2.2.1.	Segmento Espacial	21
	2.2.2.	Segmento de Control y Monitorización	23
	2.2.3.	Segmento de Usuarios	24
2.3.	Funcion	amiento del sistema GNSS	25
	2.3.1.	Desplazamiento Doppler	25

	2.3.2.	Pseudodistancia	26
	2.3.3.	Diferencia de Fase	26
2.4.	Métodos	de Posicionamiento	26
	2.4.1.	Método Estático	26
	2.4.2.	Método Cinemático	27
2.5.	Precisió	n y Errores	27
	2.5.1.	Error Ionosférico	27
	2.5.2.	Error Atmosférico	28
	2.5.3.	Disponibilidad Selectiva	28
	2.5.4.	Error del receptor	28
	2.5.5.	Error Multitrayectoria (Multipath)	29
CAP	ÍTULO 3		30
3. F	RED DE C	ONTROL GEODÉSICA EN EL ECUADOR	30
3.1.	Introduc	ción	30
3.2.	Compon	entes	31
	3.2.1.	Receptor	31
	3.2.2.	Antena	32
	3.2.3.	Programas	33
3.3.	Formato	de Datos	33
	3.3.1.	Formato RINEX	34
3.4.	Red de l	Estaciones Permanentes SIRGAS y REGME	35
	3.4.1.	SIRGAS	35
	3.4.2.	REGME	36
CAP	ÍTULO 4		38
		CONTROL GEODÉSICA DENTRO DEL CAMPUS	
4.1.	Introduc	ción	38
4.2.	Ubicació	ón	39
4.3.	Monume	entación de la Red Geodésica ESPOL	42
4.4.	Georrefe	erenciación de la Red Geodésica	47

	4.4.1.	Trabajo de Campo	47
	4.4.2.	Trabajo de Oficina	62
4.5.	Equipos		69
	4.5.1.	Receptores GNSS	69
	4.5.2.	Nivel Electrónico	69
CAPÍ	TULO 5		70
5. C	ONCLUS	SIONES Y RECOMENDACIONES	70
5.1.	Conclusi	iones	70
5.2.	Recome	ndaciones	71
ANEX	KOS		
BIBL	IOGRAFÍ	A	

ABREVIATURAS

AS Anti Spoofing

CEPGE Centro de Procesamiento de Datos GNSS del Ecuador

COPOL Colegio Politécnico

DOP Dilution of Precision

EGNOS European Geostationary Navigation Overlay Services

ESPOL Escuela Superior Politécnica del Litoral

FICT Facultad de Ingeniería en Ciencias de la Tierra

FIEC Facultad de Ingeniería Eléctrica y Computación

GAGAN GPS and GEO Augmented Navigation

GLONASS Global Navigation Satellite System

GNSS Global Navigation Satellite System

GPS Global Position System

IGM Instituto Gegráfico Militar

IGS International GNSS Service

INOCAR Instituto Oceanográfico de la Armada

IRNSS Indian Regional Navigation Satellite System

ITRF Marco de Referencia Terrestre Internacional

MSAS Multi-Functional Satellite Augmentation

NAVSTAR Navigation System by Timing and Ranging

PARCON Parque del Conocimiento

PDOP Position Dilution of Precision

QZSS Quasi Zenith Satellite System

REGME Red GNSS de Monitoreo Continuo del Ecuador

RINEX Receiver Independent Exchange Format

SBAS Satellite Based Augmentation System

SIRGAS Sistema Regional Geocéntrico para América del sur

WASS Wide Area Augmentation System

WGS84 World Geodetic System 84

SIMBOLOGÍA

m.s.n.m. Metros sobre el nivel del mar

% Porcentaje

² Grados

m Metro

km Kilómetro

ha Hectárea

mm Milímetro

ÍNDICE DE FIGURAS

Fig.	3-1: No usar Sistemas de Referencias consistentes	.35
Fig.	3-2: Usar Sistemas de Referencia consistentes	.36
Fig.	3-3: REGME, Radio de Cobertura 50 km	.37
Fig.	4-1: Polígono rojo encierra el área de estudio	.39
Fig.	4-2: Características Ideales para la distribución de Puntos de Control.	40
Fig.	4-3: Ubicación de los puntos de la Red Geodésica	.41
Fig.	4-4: Lapso de medición, Disponibilidad de Satélites y DOP	.47
Fig.	4-5: A: Placa IGM C-C-M-P-4, B: Enlace con Placa IGM	.48
Fig.	4-6 Estación permanente GUEC en el INOCAR	.49
_	4-7: Enlace entre la estación GUAYAQUIL-GUEC de la REGME cor a IGM y la Red Geodésica en la ESPOL	
Fig.	4-8: Enlace entre la placa IGM y la Red Geodésica en la ESPOL	.53
Fig.	4-9: Ajuste entre la estación GUEC y la placa IGM	64
Fig.	4-10: Parámetros de medición	.65
Fig.	4-11: Ajuste entre la placa IGM y la Red	.65
_	4-12: Medición con receptores GNSS realizando la triangulación entre F désica, placa IGM y Estación GUEC	

ÍNDICE DE TABLAS

Tabla I Estado de la Constelación GPS Marzo 2015	22
Tabla II Estado de la Constelación GLONASS Marzo 2015	23
Tabla III Distancias entre la placa IGM y los puntos de la Red	41
Tabla IV Dimensiones de los Hitos	42
Tabla V Coordenadas oficiales de Estación GUEC	49
Tabla VI Tiempo de medición entre Placa IGM y puntos de la Red	67
Tabla VII Tiempo de medición entre estación GUEC y puntos de la Red	68
Tabla VIII Coordenadas y cotas de la Red Geodésica de la ESPOL	68

ÍNDICE DE FOTOS

Foto 4-1: A: Ubicación de Placa ESPOL-1, B: Monumentación	43
Foto 4-2: A: Ubicación de Placa ESPOL-2, B: Monumentación	43
Foto 4-3: A: Ubicación de Placa ESPOL-3, B: Monumentación	44
Foto 4-4: A: Ubicación de Placa ESPOL-4, B: Monumentación	44
Foto 4-5: A: Ubicación de Placa ESPOL-5, B: Monumentación	45
Foto 4-6: A: Ubicación de Placa ESPOL-6, B: Monumentación	45
Foto 4-7: A: Ubicación de Placa ESPOL-7, B: Monumentación	46
Foto 4-8: A: Ubicación de Placa ESPOL-8, B: Monumentación	46
Foto 4-9: Georreferenciación placa ESPOL-1	53
Foto 4-10: Georreferenciación placa ESPOL-2	54
Foto 4-11: Georreferenciación placa ESPOL-3	54
Foto 4-12: Georreferenciación placa ESPOL-4	55
Foto 4-13: Georreferenciación placa ESPOL-5	55
Foto 4-14: Georreferenciación placa ESPOL-6	56
Foto 4-15: Georreferenciación placa ESPOL-7	56
Foto 4-16: Georreferenciación placa ESPOL-8	57
Foto 4-17: Nivelación de placa ESPOL-1	58
Foto 4-18: Nivelación de placa ESPOL-2	59
Foto 4-19: Nivelación de placa ESPOL-3	59
Foto 4-20: Nivelación de placa ESPOL-4	60
Foto 4-21: Nivelación de placa ESPOL-5	60
Foto 4-22: Nivelación de placa ESPOL-6	61
Foto 4-23: Nivelación de placa ESPOL-7	61
Foto 4-24: Nivelación de placa ESPOL-8	62

CAPÍTULO 1

1.GENERALIDADES

1.1. Planteamiento del problema y justificación

Uno de los contratiempos que generalmente se tiene en el área de la Ingeniería Civil, es encontrar puntos de control geodésicos para la medición en campo. En la actualidad la mayoría de los trabajos de geomática son enlazados a partir de placas metálicas que el Instituto Geográfico Militar del Ecuador tiene instalados en todo el territorio nacional; sin embargo, muchas de las placas se pierden por el auge constructivo que vive el país, y por no encontrarse en lugares seguros.

Además, un gran número de las placas existentes aún, fueron instaladas hace mucho tiempo, encontrándose placas de las décadas 1980, 1990 y 2000, con cambios en los valores de las coordenadas y altitudes que indican la respectiva monografía. Estos cambios son debido a los continuos movimientos telúricos que muchas veces son imperceptibles pero generan asentamientos y cambios a los ejes de la Tierra.

Por tal razón, se plantea la creación de una Red Geodésica dentro del Campus Gustavo Galindo de la Escuela Superior Politécnica del Litoral para que sirva de apoyo a los programas académicos, sector privado, sector civil y ciudadanía en general.

1.2. Objetivos

1.2.1. Objetivo General

Implantar una Red Geodésica dentro del Campus de la ESPOL utilizando receptores GNSS.

1.2.2. Objetivos Específicos

1. Planificar la ubicación de placas metálicas en la Red Geodésica.

- Instalar ocho placas en los sitios establecidos, tres placas empotradas en hitos y cinco en aceras.
- Registrar la Georreferenciación y el Enlace Altimétrico de la Red Geodésica a partir de una estación permanente y placa del Instituto Geográfico Militar respectivamente.

1.3. Antecedentes

Dentro de la ESPOL se encuentra una placa del Instituto Geográfico Militar C-C-P-M-4 del año 1984, la cual según la monografía correspondiente tiene una altitud de primer orden de 115.305 metros sobre el nivel del mar; empero, no tiene su localización mediante coordenadas planas o geográficas.

Se han presentado situaciones académicas, constructivas, de planificación, y de otras índoles, donde se necesitan enlazar coordenadas de sitios dentro o cerca de la ESPOL; sin embargo, al no tener un punto en común de enlace alrededor o dentro de la institución se podrían presentar desfases al cruzarse información entre entidades administrativas.

Por tal razón, el presente estudio fijará las coordenadas de la placa IGM mencionada y de una red geodésica, a partir de una estación permanente GNSS situada en el INOCAR en la Base Naval Sur de Guayaquil.

Las estaciones permanentes GNSS, otorgan buena calidad geodésica debido a las correcciones constantes a los datos obtenidos, teniendo como resultado valores de coordenadas actualizados del punto estacionario.

1.4. Metodología

La metodología usada para el trabajo consiste en:

Fabricar e instalar ocho hitos con sus respectivas placas. Donde no se pueda instalar los hitos, se colocaran las placas sobre aceras o losas de hormigón estable.

Se georreferenciará cada una de las placas correspondientes a la red geodésica con receptores de tecnología GNSS, las cuales se enlazarán a la placa IGM. Al mismo tiempo del enlace de la red, se georreferenciará la placa IGM con la estación permanente del INOCAR.

Se procederá también a enlazar altimétricamente desde la placa IGM a cada una de las placas de la red geodésica. Una vez obtenida la información de campo, se procesará y se obtendrán los respectivos resultados.

CAPÍTULO 2

2. NOCIONES BÁSICAS DEL SISTEMA GNSS

2.1. Introducción

El Sistema Global de Navegación por Satélite cuyo acrónimo en inglés GNSS es un conjunto de satélites que provee a los usuarios información de gran precisión utilizada en el posicionamiento y localización de un punto en cualquier parte del mundo (Elliot Kaplan, Christopher Hegarty, 2006).

El origen de los GNSS data de los años 70 con el sistema estadounidense NAVSTAR GPS, que se usó exclusivamente para fines militares y cuya dirección estaba a cargo del Departamento de Defensa de los Estados Unidos.

Por la preocupación de que el sistema estadounidense GPS emita señales distorsionadas o deje de emitir señales en casos de conflicto, surgió la necesidad para los demás países tener su propio sistema de navegación por satélite, que les permita de manera autónoma disponer de esta tecnología sin depender de los Estados Unidos

Es por tal razón, que en la actualidad se cuenta con los siguientes sistemas:

- El Sistema Global de Posicionamiento estadounidense NAVSTAR GPS reciben el nombre de Sistema de Posicionamiento Global o GPS.
- Sistema de Navegación Global con Satélites ruso recibe el nombre de GLONASS.
- El sistema europeo de navegación por satélite se lo denomina GALILEO.
- El sistema chino de navegación por satélite se lo llama BEIDOU 2 o COMPASS.
- El sistema japonés de navegación por satélite se lo llama QZSS.
- El sistema indio de navegación por satélite, se lo llama IRNSS.

Estos sistemas emplean mecanismos para mejorar sus precisiones como el SBAS. Existen sistemas que emplean satélites geoestacionarios para este fin:

- WASS en Estados Unidos.
- EGNOS en Europa.

- MSAS en Japón.
- GAGAN en India.

En la actualidad se encuentran operativos los sistemas GPS y GLONASS, los demás están en proceso de pruebas y algunos de ellos como el japonés e indio son sistemas regionales.

2.2. Descripción de un Sistema de Navegación por Satélites

Los sistemas GNSS tienen una estructura definida, dividida por tres segmentos distintos: un segmento espacial, un segmento de control y un segmento de usuarios.

2.2.1. Segmento Espacial

Es el segmento compuesto por los satélites que forman el sistema, tanto de navegación como de comunicación. Mientras que los primeros orbitan alrededor de la Tierra, repartiéndose en distintos planos orbitales, los segundos son los que forman los llamados sistemas de aumento que sirven para la corrección de errores de posicionamiento.

2.2.1.1. Constelación de Satélites NAVSTAR GPS

En un principio constaba de 24 satélites distribuidos por igual en seis planos orbitales circulares distribuidos uniformemente con una inclinación de 55° sobre la línea del horizonte y una altitud de unos 20200 km. El período de cada satélite para completar una órbita es de unas doce horas, siendo la posición la misma al cabo de un día sideral.

Esto garantizaba un mínimo de cinco satélites disponibles en cualquier parte del mundo (normalmente seis), sin embargo se han ido añadiendo satélites que mejoren las prestaciones de servicio del GPS.

En la actualidad hay un total de 31 satélites en el segmento espacial del GPS, distribuidos uniformemente y que garantizan unas mejores prestaciones en cuanto a disponibilidad e integridad que la constelación de 24. Además se encuentra en etapa de producción el satélite GPS III, que vendrá a sumarse a los demás en futuro cercano. (Fuerza Aérea EUA, 2015)

Tabla I Estado de la Constelación GPS Marzo 2015

Total de Satélites en Constelación	32 SC
Operativo	30 SC
En Fase de desarrollo	1 SC
En Mantenimiento	1 SC

Fuente: (Centro de Información Analítica Rusa, 2015)

2.2.1.2. Constelación de Satélites GLONASS

La constelación está formada por 21 satélites activos y 3 de reserva situados en tres planos orbitales separados por 120° con lo que se pueden divisar 4 satélites de forma continua. Los satélites del Sistema GLONASS tienen un periodo orbital de 11 horas y 15 minutos. La configuración del sistema proporciona datos de navegación a usuarios por encima de los 2000 km. sobre la superficie terrestre. (Centro de Información Analítica Rusa, 2015)

Tabla II Estado de la Constelación GLONASS Marzo 2015

Total de Satélites en Constelación	28 SC
Operativos	24 SC
Bajo Chequeo	1 SC
Repuesto	1 SC
En fase de prueba de vuelo	2 SC

Fuente: (Centro de Información Analítica Rusa, 2015)

2.2.2. Segmento de Control y Monitorización

El segmento de control está formado por un conjunto de estaciones en tierra que reciben los datos de los satélites de las diferentes constelaciones, siendo propio de cada país o coalición de países, configurándolos o estructurándolos en función a sus criterios o conveniencias.

Este segmento garantiza la prestación del sistema de navegación, mediante el monitoreo del segmento espacial y la aplicación de correcciones de posición orbital y temporal a los satélites, enviando información de sincronización de relojes atómicos y correcciones de posicionamiento de órbitas a los diferentes satélites.

2.2.3. Segmento de Usuarios

Este segmento está formado por los receptores GNSS que reciben señales del segmento espacial. El dispositivo GNSS está conformado por un conjunto de elementos básicos que son:

- Antena receptora GNSS, a la frecuencia de funcionamiento del sistema, de cobertura hemiesférica omnidireccional. Puede ser de muchas formas y materiales dependiendo de las aplicaciones y del coste del receptor.
- Receptor, es del tipo heterodino, basado en la mezcla de frecuencias que permite pasar la frecuencia recibida en la antena a una baja frecuencia.
 Contiene un reloj, altamente estable y un pantalla donde muestra la información del posicionamiento.

2.3. Funcionamiento del sistema GNSS

El funcionamiento de los sistemas de navegación por satélite se estructura básicamente en la trilateración inversa en tres dimensiones, que consiste en conocer la distancia entre un receptor que se requiere conocer su posición y un conjunto de satélites cuya posición se conoce con precisión. Para medir estas distancias existen tres métodos:

2.3.1. Desplazamiento Doppler

El desplazamiento Doopler es la variación aparente entre el valor de la frecuencia en función de la velocidad de acercamiento/alejamiento de la fuente emisora.

$$\Delta F = \frac{Vr}{Vo}$$

ΔF = Variación de Frecuencia

Vr = Velocidad radial de alejamiento/ acercamiento

Vo = Velocidad propagación onda

2.3.2. Pseudodistancia

La pseudodistancia se obtiene calculando el tiempo que tarda una señal electromagnética emitida por el satélite en llegar hasta el dispositivo receptor, multiplicándolo por la velocidad de la luz.

2.3.3. Diferencia de Fase

Este método consiste en observar continuamente la evolución del desfase entre la señal recibida y la generada en el receptor; el observable es el desfase, y éste cambia según lo hace la distancia entre el satélite y el receptor.

2.4. Métodos de Posicionamiento

Estos métodos consisten en conocer las coordenadas de un punto a partir de otro con coordenadas conocidas. Dependiendo de la precisión y el tiempo con las que se requerirá las coordenadas se utilizará en método respectivo. Los métodos más utilizados son los siguientes:

2.4.1. Método Estático

Este método es el más preciso, sin embargo es el que conlleva más tiempo para su medición. Se tiene un receptor base en el punto con coordenadas

conocidas y un receptor móvil en el punto con coordenadas a calcular. El tiempo de la medición dependerá de las distancias entre los puntos o vértices.

2.4.2. Método Cinemático

Estos métodos son menos precisos, pero podrá determinarse en segundos la posición de un punto con un alto grado de confianza. Entre los más comunes están el método cinemático y stop & go.

2.5. Precisión y Errores

Los sistemas GPS y GLONASS están sujetos a varios errores que afectan la precisión de la posición calculada. Estos errores en conjunto pueden estar en el rango de 10 a 25 metros, dependiendo del tipo de receptor, la posición relativa del satélite y la magnitud de otros errores.

2.5.1. Error lonosférico

Es el error más significativo y se ocasiona durante el paso de la señal del satélite a través de la ionosfera de la Tierra. Debido que al desplazarse las señales de radiofrecuencia a través de la ionosfera, se hacen más lentas en una magnitud que varía dependiendo de la hora del día, la actividad solar y otros factores.

2.5.2. Error Atmosférico

Se produce este error cuando la señal pasa a través de la atmósfera. El vapor de agua de la atmósfera hace más lentas a las señales de radiofrecuencia y reduce adicionalmente la exactitud del sistema.

2.5.3. Disponibilidad Selectiva

Este error llamado Disponibilidad Selectiva, es introducido intencionalmente por el Departamento de Defensa de los Estados Unidos, con la finalidad de restringir los beneficios de la precisión del sistema GPS en situaciones de conflictos Bélicos.

2.5.4. Error del receptor

El receptor puede introducir una cierta cantidad de error durante las diversas etapas del procesamiento de las señales recibidas de los satélites. Este tipo de error puede ser causado por el ruido térmico, la precisión del software, y el error de vías entre canales de recepción.

2.5.5. Error Multitrayectoria (Multipath)

Los efectos de la multi-trayectoria de la señal GPS ocurren cuando la señal no solo es recibida directamente desde el satélite sino desde las superficies cercanas a la antena del receptor debido a la reflexión de la señal. La señal de multi-trayectoria se superpone con la señal directa y produce errores de fase, los cuales traen como consecuencia medidas erradas de las distancias a los satélites en varios metros. Con receptores estos errores se pueden reducir a unos cuantos centímetros.

Utilizando diseños de antenas apropiadas se puede evitar el efecto de multitrayectoria.

CAPÍTULO 3

3. RED DE CONTROL GEODÉSICA EN EL ECUADOR

3.1. Introducción

La Red de Control Geodésica del Ecuador está compuesta por estaciones permanentes que son ocupadas por receptores GNSS de tipo geodésico de forma permanente.

La función de este tipo de estaciones es la de recopilar datos constantemente, y con la ayuda de programas poder realizar procesos que verifiquen la calidad de los datos, almacenamiento de la información y distribución de la misma.

3.2. Componentes

Para la instalación de una red permanente son necesarios los siguientes elementos para su puesta en marcha:

- Un receptor, preferiblemente GNSS con su respectiva antena.
- Un computador con sus respectivos programas para la administración de datos.
- Conexión a Internet.
- Fuente permanente de Energía para su funcionamiento.

3.2.1. Receptor

Los receptores de las estaciones permanentes deben cumplir normas, para lo cual el SIRGAS recomienda lo siguiente:

- a) El receptor GNSS debe estar registrado en el inventario del IGS.
- b) El receptor debe rastrear los códigos y fases en L1 y L2, bajo condiciones con AS y sin AS. Los observables mínimos requeridos con L1, L2, P2 y por lo menos uno de los dos C1 o P1.
- c) El receptor debe rastrear señales sobre un ángulo mínimo de elevación de 5 grados.

- d) El receptor debe captar señales de al menos 10 satélites en total de cualquiera de las constelaciones, independientemente del estado de los satélites.
- e) El receptor debe sincronizar el instante real de medición con el tiempo GPS verdadero dentro de ± 1 milisegundo con respecto al segundo entero de la época de observación.

3.2.2. Antena

Al igual que los receptores, la antena también debe cumplir especificaciones que recomienda el SIRGAS:

- a) Las antenas GNSS deben estar registradas en el inventario del IGS al igual que su descripción.
- b) La antena debe estar totalmente nivelada y orientada hacia el norte verdadero tomando como referencia la marca correspondiente en el equipo.
- c) La antena debe estar instalada de tal manera que garantice la estabilidad total tanto al corto y largo plazo, y las distancias este, norte y vertical desde el punto de referencia de la antena con respecto a la marca con la de la estación deben ser medidas al milímetro de precisión.

3.2.3. Programas

Los programas para el control de las estaciones deben cumplir con al menos las siguientes características:

- a) Administrar el servidor para la colección de datos provenientes del log del receptor.
- b) Verificación de las conexiones, funcionamiento de los receptores, seguimiento de los satélites, configuración de las estaciones.
- c) Correcciones de datos.

3.3. Formato de Datos

Los receptores GNSS de las estaciones permanentes llevan a cabo mediciones las 24 horas del día. Los datos almacenados crean una serie de ficheros de observación con un formato propio de la marca del receptor.

En la práctica y por las múltiples marcas comerciales que existen en la actualidad de receptores GNSS, se puede presentar una incompatibilidad al tratar ficheros de marcas distintas de usuarios al realizar el post proceso con los ficheros de los receptores de las redes permanentes. Para el caso, se debe encontrar un formato aceptado para la comunidad geodésica como estándar.

3.3.1. Formato RINEX

El RINEX, son las siglas de un formato de ficheros orientado a almacenar de manera estandarizada medidas proporcionadas por receptores GNSS.

El formato RINEX se compone de cuatro archivos:

- El Fichero de datos de observación.
- El fichero de datos meteorológicos.
- El fichero con el mensaje de navegación.
- El fichero del mensaje de navegación del sistema GLONASS

Es con el formato RINEX que existe la compatibilidad para un post-proceso entre ficheros de receptores de marcas diferentes.

Cada marca de receptor GNSS tiene su propio programa para el post-proceso de sus ficheros. Es en estos mismos programas se pueden convertir el tipo de formato propio del receptor al formato estándar RINEX.

En la actualidad el formato ha evolucionado habiendo hasta la versión 3.

3.4. Red de Estaciones Permanentes SIRGAS y REGME

3.4.1. SIRGAS

El Sistema de Referencia Geocéntrico Para Las Américas (SIRGAS) estableció un marco de referencia único para el continente sudamericano, en conexión con el Marco de Referencia Terrestre Internacional (ITRF), cuyos objetivos principales son:

- Definir y establecer un sistema de referencia geocéntrico para América del Sur.
- Definir y establecer un datum geocéntrico.
- Definir y establecer un Datum vertical unificado.

Fig. 3-1: No usar Sistemas de Referencias consistentes **Fuente:** (SIRGAS, 2015)

Fig. 3-2: Usar Sistemas de Referencia consistentes. **Fuente:** (SIRGAS, 2015)

3.4.2. **REGME**

El Instituto Geográfico Militar, como organismo rector de la cartografía en el Ecuador, se ha propuesto de mantener un Marco Geodésico de Referencia Nacional actualizado y compatible con las técnicas de posicionamiento disponibles en la actualidad, como son los satélites de navegación global GPS, GLONASS y en un futuro GALILEO. (IGM, REGME, 2015).

Con este propósito el IGM, ha establecido la REGME, que es el conjunto de estaciones GNSS (GPS + GLONASS) de monitoreo continuo, enlazadas a las Red Nacional GPS del Ecuador (RENAGE) y a la Red Continental SIRGAS-CON.

REGME en la actualidad está conformada de 33 estaciones permanentes, distribuidas de manera homogénea a lo largo y ancho del territorio nacional.

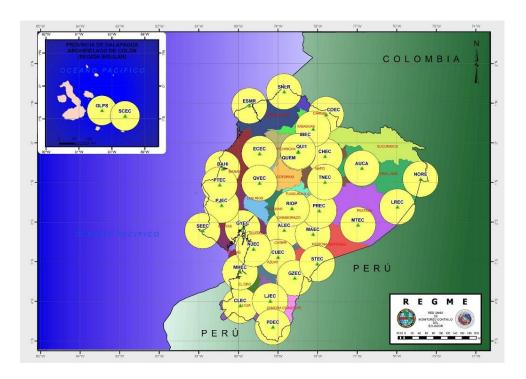


Fig. 3-3: REGME, Radio de Cobertura 50 km Fuente: (IGM, REGME, 2015)

Las estaciones de la REGME, son enlazadas también a la Red Continental SIRGAS. Estas son procesadas semanalmente por los Centros de Procesamiento SIRGAS Oficiales, incluido el CEPGE de Ecuador (instalado en el IGM, Quito). Las soluciones semanales semilibres son ajustadas al ITRF, obteniendo una solución combinada final de toda la red; con lo cual se garantiza la máxima precisión de sus coordenadas finales, referidas a la época actual y Marco de Referencia vigente.

CAPÍTULO 4

4. RED DE CONTROL GEODÉSICA DENTRO DEL CAMPUS GUSTAVO GALINDO DE LA ESPOL

4.1. Introducción

El Campus Gustavo Galindo de la ESPOL se encuentra ubicada en el Km 30.5 vía Perimetral.

La ESPOL comprende 690 ha de superficie. De este total 120 ha corresponden al área de desarrollo para la infraestructura física del Campus; las restantes 570 ha corresponden al Bosque Protector.

La red de control geodésica instalada en la ESPOL está conformada por ocho puntos de control distribuidas en tres hitos de hormigón con su respectiva placa metálica empotrada y cinco placas incrustadas en aceras. La figura 4.1 muestra el área de color verde que corresponde al área del campus de la ESPOL y el polígono rojo encierra el área donde se implantó la red geodésica.

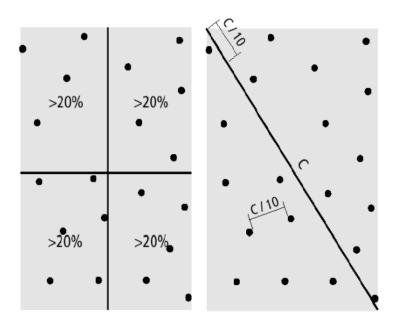


Fig. 4-1: Polígono rojo encierra el área de estudio Fuente: Autor

4.2. Ubicación

La selección de los sitios donde se ubicaron los puntos de la red geodésica se la realizó tomando como referencia el manual de Miguel Ruano del IGM (Ruano, 2012), donde se indica que se debe reunir las siguientes condiciones generales:

- Se aconseja distribuir homogéneamente los puntos para su selección en el campo. La distribución de estas zonas en lo posible estarán ubicadas no muy cerca de los extremos, centro y áreas urbanas.
- En relación a la distribución espacial, se dividirá el área de estudio en un plano cartesiano, en donde se cumpla que al menos el 20% de los puntos de control estén contenidos en un cuadrante, y la separación entre los puntos sea mínimo el 10% de la diagonal a evaluar.

Fig. 4-2: Características Ideales para la distribución de Puntos de Control. A la izquierda distribución espacial. A la derecha, separación entre puntos. **Fuente:** (Ruano, 2012)

Una vez seleccionada la ubicación de los puntos de control utilizando el método sugerido, se realizó una inspección in situ donde se especificó el lugar exacto de la instalación de tal manera constatar que no se provoque algún

daño en la infraestructura física del Campus; además que el sitio esté apartado de fallas geológicas y que el horizonte alrededor del punto esté libre de obstáculos.

Los puntos no se verán afectados por el efecto multipath (multi-trayectoria) ya que su entorno se encuentra libre de superficies reflectivas que puedan ocasionar ese efecto.

Fig. 4-3: Ubicación de los puntos de la Red Geodésica Fuente: Autor

Tabla III Distancias entre la placa IGM y los puntos de la Red.

DISTANCIA (M)	PLACA 1	PLACA 2	PLACA 3	PLACA 4	PLACA 5	PLACA 6	PLACA 7	PLACA 8
PLACA IGM	1002.58	1438.49	1048.1	609.05	612.179	607.259	1075.31	815.457

Fuente: Autor

4.3. Monumentación de la Red Geodésica ESPOL

La monumentación cumple con los requisitos estándar de una instalación de carácter geodésico de primer orden en lo concerniente a su estabilidad, durabilidad, mantenimiento, acceso y documentación.

Tabla IV Dimensiones de los Hitos

DESCRIPCIÓN	DIMENSIONES (m)
BASE SUPERIOR	0.25 X 0.25
BASE INFERIOR	0.30 X 0.30
ALTURA	0.2
PROFUNDIDAD	0.6

Fuente: (IGM, REGME, 2015)

Los hitos de hormigón fueron elaborados según sugiere el IGM para los mojones Tipo IGM-B, según indica la tabla IV.

Para identificar las placas se inscribió: Nombre de la Institución, Escuela Superior Politécnica del Litoral con su respectivo escudo. Nombre de la placa, ESPOL 1 hasta ESPOL 8. Año de la elaboración de la red: 2015.

A continuación se detallan las ubicaciones y monumentaciones realizadas con los ocho vértices de la red.

La placa ESPOL-1, se encuentra empotrada en un hito de hormigón ubicado al borde este del canal de descarga del lago PARCON.

Foto 4-1: A: Ubicación de Placa ESPOL-1, B: Monumentación Fuente: Autor

La placa ESPOL-2, se encuentra empotrada en el lado oeste de la acera de la vía de ingreso a la ESPOL desde la Vía Perimetral, a unos 30 metros aproximadamente de la garita.

Foto 4-2: A: Ubicación de Placa ESPOL-2, B: Monumentación Fuente: Autor

La placa ESPOL-3 se encuentra en la vía de acceso a la ESPOL desde la vía Perimetral, a unos 750 metros de la garita. Al sur del Centro de Tecnologías de Información (PARCON ESPOL).

Foto 4-3: A: Ubicación de Placa ESPOL-3, B: Monumentación **Fuente:** Autor

La placa ESPOL-4, se encuentra empotrada en acera del parqueadero del colegio COPOL, que se ubica al lado de área deportiva.

Foto 4-4: A: Ubicación de Placa ESPOL-4, B: Monumentación Fuente: Autor

La placa ESPOL-5, se encuentra empotrada en el bordillo de acera del parqueadero ubicado al lado del conjunto residencial de profesores. Cerca del sector donde la ESPOL desarrolla el proyecto de Huella Ecológica.

Foto 4-5: A: Ubicación de Placa ESPOL-5, B: Monumentación Fuente: Autor

La placa ESPOL-6, se encuentra en la esquina sur-este de la losa superior de bloque que se encuentra junto al parqueadero de la FICT.

Foto 4-6: A: Ubicación de Placa ESPOL-6, B: Monumentación Fuente: Autor

La placa ESPOL-7, se encuentra en acera ubicada al norte del área deportiva frente a la FIEC.

Foto 4-7: A: Ubicación de Placa ESPOL-7, B: Monumentación Fuente: Autor

La placa ESPOL-8, se encuentra en el CENAE, área de práctica para la Carrera de Agropecuaria.

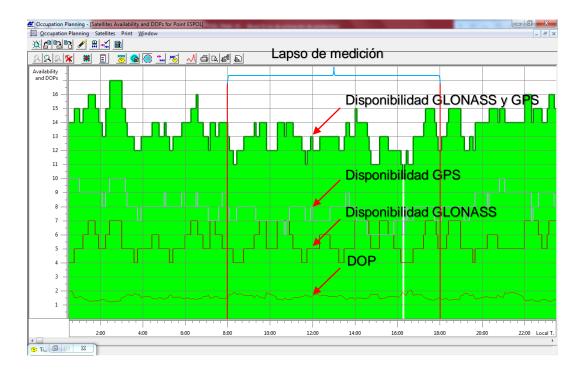


Foto 4-8: A: Ubicación de Placa ESPOL-8, B: Monumentación Fuente: Autor

4.4. Georreferenciación de la Red Geodésica

4.4.1. Trabajo de Campo

Antes de iniciar los trabajos de campo, se realizó un ejercicio para estimar la presencia de los satélites y el DOP de ciertos días específicos, y se estableció que las mejores condiciones empezaban en el mes de abril del 2015. Por lo que se definió que el día seis de abril iniciaban las mediciones. La figura 4.4 indica que habrá un mínimo de once satélites y un DOP menor a 4. Lo que facilitará que los datos a obtener tengan un grado de confianza.

Fig. 4-4: Lapso de medición, Disponibilidad de Satélites y DOP. **Fuente:** Autor

Habiendo ubicado e instalado las placas para la red, se procede definir desde que punto de referencia con coordenadas y altitud conocida se enlazará.

El enlace altimétrico se lo realizó a partir de la placa del Instituto Geográfico Militar IGM C-C-M-P-4 ubicado a la altura del reservorio de Agua Potable dentro del campus. Ingresando a la ESPOL siguiendo la ruta hacia el lago, al llegar a las viviendas de profesores avanzar por la vía asfaltada aproximadamente 110 metros; la placa se la encuentra del lado derecho de la vía empotrada en una losa. La altura geométrica que la monografía hace referencia es de 115.305 m.s.n.m.

Fig. 4-5: A: Placa IGM C-C-M-P-4, B: Enlace con Placa IGM Fuente: Autor

El enlace de coordenadas se la realizó con la estación de monitoreo continuo de la ciudad de Guayaquil – GUEC, ubicada en el tercer piso del edificio

principal del INOCAR, Instituto Oceanográfico de la Armada, en la ciudad de Guayaquil, Av. 25 de Julio vía Puerto Marítimo, Base Naval Sur.

Fig. 4-6 Estación permanente GUEC en el INOCAR. **Fuente:** (IGM, REGME, 2015)

La tabla V muestra las coordenadas de la estación GUEC, cuyo Datum es el SIRGAS 95, el cual se define como idéntico al datum WGS 84. (SIRGAS, 2015)

Tabla V Coordenadas oficiales de Estación GUEC

Coordenadas Planas Geodésicas					
Latitud	02º 16' 17.9986" S				
Longitud	79° 54' 14.3465" W				
Altura Elipsoidal	32.414 m.				
Coordenadas Planas (UTM 17 SUR)					
Norte	9748865.093 m.				
Este	621871.268 m.				

Fuente: (IGM, REGME, 2015)

4.4.1.1. Medición con Receptores GNSS

Para la georreferenciación de las placas ya descritas, se utilizaron los receptores GNSS marca TOPCON modelo Hiper II, usando la modalidad estática; la cual consiste en que los receptores GNSS reúnen datos "crudos" simultáneamente desde todos los satélites disponibles mientras permanecen estacionarios en sus respectivos puntos. Normalmente se utiliza este método en distancias largas y para obtener una elevada precisión. A partir de esas observaciones se obtienen posicionamientos relativos entre las estaciones, de manera que si se consideran conocidas las coordenadas absolutas de una de ellas se determinan las coordenadas de las demás.

Para establecer la metodología, es muy importante la longitud de las líneas base que se manejan entre los puntos de interés, en este caso los vértices de la red. De esto dependen factores como períodos de medición, frecuencias y número de equipos. Es bien conocido en términos de GPS la distorsión de la señal debido al paso del tren de ondas electromagnéticas por la ionosfera, que finalmente se traduce en un error en la posición obtenida; sin embargo, los modelos de corrección ionosférica permiten efectuar el ajuste para separaciones cortas entre estaciones (10 a 15 km) con equipos de frecuencia sencilla, y en casos de longitudes largas con la ayuda de cálculos de desfases con equipos de doble frecuencia.

El objetivo de éste método se basa en que durante la observación, los receptores realizan registros continuos de fase portadora con un mínimo de cinco satélites.

Con el fin de obtener una mayor fiabilidad se decidió realizar observaciones de mínimo 50 minutos de duración entre el punto estacionario y los móviles, ya que los receptores deben registrar datos durante un cierto periodo de tiempo y hay que tener en cuenta factores como la longitud de la línea base (a mayor distancia entre vértices se necesita mayor tiempo de observación para procesar las líneas base), hay que tener en cuenta el número de satélites y la geometría (DOP).

La medición se realizó tomando como punto estacionario por el lapso de nueve horas al receptor GNSS base sobre la placa del IGM dentro de la ESPOL. Durante este tiempo se enlazó el receptor GNSS base con el receptor GNSS móvil que se colocó sobre cada una de las ocho placas que conforman la red geodésica durante un lapso aproximado de 50 minutos en cada una de ellas. La longitud más distante dentro de la red fue entre la placa IGM y la placa ESPOL-2 de aproximadamente 1.4 km.

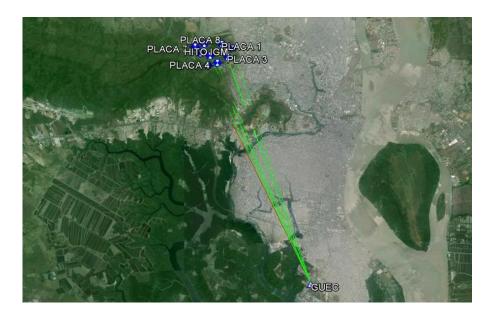


Fig. 4-7: Enlace entre la estación GUAYAQUIL-GUEC de la REGME con la placa IGM y la Red Geodésica en la ESPOL

Fuente: Autor

Al mismo tiempo que se enlazó el sistema antes mencionado, se estuvo georreferenciando también la placa IGM (que sirvió de base para el enlace interno de la red) con la estación permanente GUAYAQUIL-GUEC.

La fórmula sugerida para calcular el tiempo de observación GPS según las Especificaciones Técnicas Generales para la realización de Cartografía Básica a cualquier escala del IGM es de = 30minutos + (2minutos * Distancia en km).

La distancia entre la placa IGM con la estación permanente GUAYAQUIL-GUEC es de aproximadamente 15 Km, por lo que el tiempo mínimo requerido de enlace entre ambos puntos es de 60 minutos; sin embargo, el tiempo de

medición fue de 540 minutos que corresponden las nueve horas que se enlazó continuamente el punto estacionario de la placa IGM con la red geodésica.

Fig. 4-8: Enlace entre la placa IGM y la Red Geodésica en la ESPOL Fuente: Autor

Foto 4-9: Georreferenciación placa ESPOL-1 Fuente: Autor

Foto 4-10: Georreferenciación placa ESPOL-2 Fuente: Autor

Foto 4-11: Georreferenciación placa ESPOL-3 Fuente: Autor

Foto 4-12: Georreferenciación placa ESPOL-4 Fuente: Autor

Foto 4-13: Georreferenciación placa ESPOL-5 Fuente: Autor

Foto 4-14: Georreferenciación placa ESPOL-6 Fuente: Autor

Foto 4-15: Georreferenciación placa ESPOL-7 Fuente: Autor

Foto 4-16: Georreferenciación placa ESPOL-8
Fuente: Autor

4.4.1.2. Nivelación Geométrica

Los receptores GNSS aparte de obtener con precisión las coordenadas de un punto, también obtienen su altura. A esta altura se la denomina elipsoidal, la cual es medida a partir del elipsoide del datum con el que se encuentra configurado el equipo al momento de la medición.

Para aprovechar el potencial de la tecnología GNSS, se pueden obtener alturas ortométricas, siempre que se pueda determinar la relación entre los sistemas de altura físico y geométrico, a través de la conocida fórmula aproximada:

H= Altura ortométrica

h= Altura elipsoidal

N= Separación Geoide - Elipsoide

Para el caso de este estudio, se enlazó la cota sobre el nivel del mar de la placa del IGM dentro de la ESPOL con las demás placas de la red geodésica siguiendo el método de nivelación geométrica.

Foto 4-17: Nivelación de placa ESPOL-1 Fuente: Autor

Foto 4-18: Nivelación de placa ESPOL-2 Fuente: Autor

Foto 4-19: Nivelación de placa ESPOL-3 Fuente: Autor

Foto 4-20: Nivelación de placa ESPOL-4 Fuente: Autor

Foto 4-21: Nivelación de placa ESPOL-5 Fuente: Autor

Foto 4-22: Nivelación de placa ESPOL-6 Fuente: Autor

Foto 4-23: Nivelación de placa ESPOL-7 Fuente: Autor

Foto 4-24: Nivelación de placa ESPOL-8
Fuente: Autor

4.4.2. Trabajo de Oficina

4.4.2.1. Proceso de Datos obtenidos con Receptores GNSS

Usando el programa Topcon Tools se procede a realizar el post-proceso de los datos obtenidos en campo. A partir del punto fijo, se pudo obtener las coordenadas de las estaciones que permitieron georreferenciar la red de control. Los parámetros a considerar para este tipo de proceso son los siguientes:

 Tiempo de observación: No menor a 50 minutos. El tiempo dependerá de las distancias entre los vértices a medir. Intervalo de captura máximo: 30 segundos

Angulo de elevación máximo: 10 grados. El ángulo dependerá de los

obstáculos que se presenten en el horizonte.

PDOP máximo: 4

Cantidad mínima de satélites: 11

La exactitud de la red al 95% de confiabilidad debe ser mejor o igual a \pm 2

centímetros.

En esta etapa se debe tener en cuenta la carga de la totalidad de las líneas y

su condición de fijas; en caso contrario, de no cargarse las líneas necesarias

o que algunas sean flotantes en lugar de fijas, se deben cargar por separado

las líneas faltantes y depurar los datos eliminando los satélites que presenten

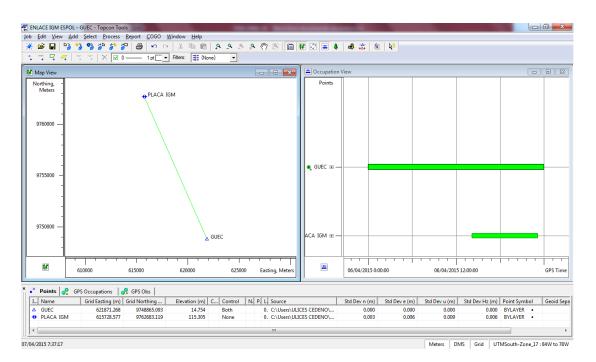
información con demasiada varianza, cortes en su aparición o poca

información. En ningún momento pueden quedar menos de once satélites

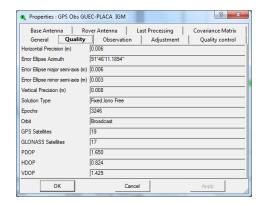
aportando datos. Además, pueden eliminarse periodos de toma al inicio o fin

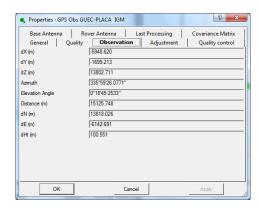
de la sesión de trabajo.

Una vez se encuentran todas las líneas fijas se efectúa el segundo


procesamiento consistente en el cálculo de la red de vectores previamente

cargados, obteniendo un reporte del método Chi-cuadrado, indicando si los


resultados del ajuste de la red aprueban con un 95% de confianza. Este


procesamiento se complementa fijando las coordenadas de los puntos de control horizontal y vertical, y adoptando una estrategia de pesos adecuada a los resultados obtenidos en el procesamiento de las líneas. Una vez aprueba el test genera un reporte estadístico de precisiones con las coordenadas finales y los errores obtenidos por punto. Como efecto de contrastar resultados, se procedió a realizar el post-proceso con dos escenarios distintos:

1. Se procesó individualmente el enlace entre la estación GUEC ubicada en el INOCAR con la placa IGM ubicada en la ESPOL. Posteriormente, con el valor de la coordenada ajustada de la placa IGM, se enlazaron las ocho placas que conforman la Red Geodésica.

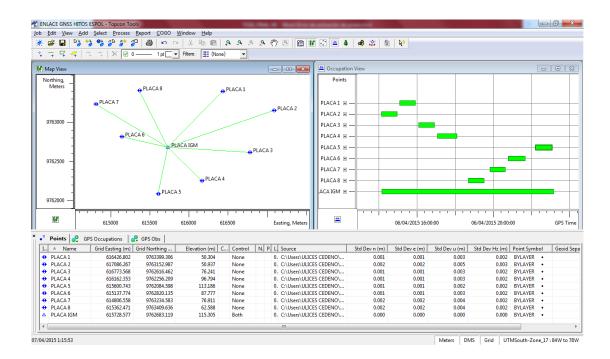


Fig. 4-9: Ajuste entre la estación GUEC y la placa IGM **Fuente:** Autor

Fig. 4-10: Parámetros de medición. A la izquierda, Condiciones. A la derecha, Observaciones. **Fuente:** Autor

Fig. 4-11: Ajuste entre la placa IGM y la Red **Fuente:** Autor

2. Para este segundo caso, se procesaron todos los datos conjuntamente. Es decir, se incluyeron en el proceso para generar una triangulación los datos de la placa IGM, los de la red y de la estación GUEC.

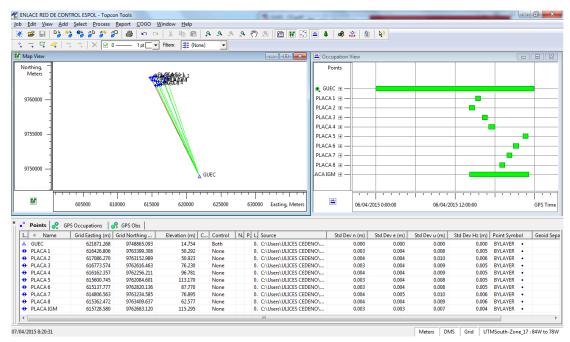


Fig. 4-12: Medición con receptores GNSS realizando la triangulación entre Red Geodésica, placa IGM y Estación GUEC

Fuente: Autor

4.4.2.2. Proceso de Datos de Nivelación Geométrica

Con los datos obtenidos en campo se procede a realizar el cálculo de cotas de la red, considerando la siguiente tolerancia admisible para la altimetría según especificaciones técnicas del IGM:

Error altimétrico en mm → e ≤ 4mm√k donde k= la distancia en kilómetros nivelados de ida y vuelta.

Según las tablas de cálculo de cotas presentadas en los anexos, no se tienen incertidumbres mayores a 4mm.

4.4.2.3. Resultados

Considerando los dos escenarios para el proceso de datos, las siguientes tablas muestran los tiempos requeridos según la ecuación sugerida por el IGM y los tiempos que se tomaron en la medición.

Tabla VI Tiempo de medición entre Placa IGM y puntos de la Red.

VECTOR	DISTANCIA	TIEMPO	TIEMPO	REFERENCIA	
VECTOR	(11======)	TEÓRICO	PRÁCTICO	UBICACIÓN	
	(METROS)	(MINUTO)	(MINUTO)	PLACA	
PLACA IGM-GUEC	15125.748	60.251	541.000	INOCAR	
PLACA IGM-PLACA 1	1002.577	32.005	50.330	LAGO PARCON	
PLACA IGM-PLACA 2	1438.491	32.877	49.000	GARITA PERIMETRAL	
PLACA IGM-PLACA 3	1048.103	32.096	51.500	PARCON	
PLACA IGM-PLACA 4	609.050	31.218	62.500	COPOL	
PLACA IGM-PLACA 5	612.179	31.224	52.000	RESIDENCIAS	
PLACA IGM-PLACA 6	607.259	31.215	55.000	PARQUEO FICT	
PLACA IGM-PLACA 7	1075.307	32.151	49.330	COLISEO FIEC	
PLACA IGM-PLACA 8	815.457	31.631	50.330	CENAE	

Fuente: Autor

Tabla VII Tiempo de medición entre estación GUEC y puntos de la Red.

	DISTANCIA	TIEMPO	TIEMPO	
VECTOR		TEÓRICO	PRÁCTICO	REFERENCIA
	(METROS)	(MINUTO)	(MINUTO)	
GUEC-PLACA IGM	15125.748	60.251	541.000	INOCAR
GUEC-PLACA 1	15524.091	61.048	50.330	LAGO PARCON
GUEC-PLACA 2	14275.706	58.551	49.000	GARITA PERIMETRAL
GUEC-PLACA 3	14669.340	59.339	51.500	PARCON
GUEC-PLACA 4	14560.895	59.122	62.500	COPOL
GUEC-PLACA 5	14635.069	59.270	52.000	RESIDENCIAS
GUEC-PLACA 6	15498.407	60.997	55.000	PARQUEO FICT
GUEC-PLACA 7	16016.141	62.032	49.330	COLISEO FIEC
GUEC-PLACA 8	15938.263	61.877	50.330	CENAE

Fuente: Autor

El tiempo medido en campo no satisface el tiempo requerido si se considera el proceso del segundo escenario, debido a las distancias entre los vértices. Por tal razón se toman los valores de las coordenadas del primer escenario con su respectiva cota geométrica para definir la Red Geodésica.

Tabla VIII Coordenadas y cotas de la Red Geodésica de la ESPOL

DESCRIPCIÓN RED	PROYECCIÓN UTM ESTE (M)	PROYECCIÓN UTM NORTE (M)	COTA (MSNM)
GUEC	621871.268	9748865.093	14.749
PLACA IGM	615728.577	9762683.119	115.305
PLACA 1	616426.802	9763399.306	50.300
PLACA 2	617086.267	9763152.987	50.968
PLACA 3	616773.568	9762616.462	76.272
PLACA 4	616162.353	9762256.209	96.813
PLACA 5	615600.743	9762084.598	113.226
PLACA 6	615137.774	9762820.135	87.795
PLACA 7	614806.558	9763234.583	76.957
PLACA 8	615362.471	9763409.636	62.588

Fuente: Autor

4.5. Equipos

4.5.1. Receptores GNSS

Para la georreferenciación de la red se utilizaron los receptores GNSS marca Topcon, modelo Hiper II. Estos receptores reciben y procesan señales GNSS en las frecuencias L1 y L2, tanto en sistemas de navegación GPS y GLONASS.

4.5.2. Nivel Electrónico

Para el levantamiento altimétrico se utilizó el nivel electrónico marca Topcon, modelo Orion 2LS. Este tipo de niveles tienen la ventaja de eliminar el error humano al leer la mira, ya que por medio de un botón se apunta a la estadia y el valor correspondiente se muestra en la pantalla.

CAPÍTULO 5

5. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

1. Analizando la desviación estándar del post-proceso de los dos escenarios de la red, se tiene que existe menos incertidumbre con el primer escenario; es decir, con el enlace entre la estación permanente del INOCAR y la placa IGM, y luego el enlace entre esta última con la red. Por tal razón se tomaron dichas coordenadas para la elaboración de las monografías.

 El DOP que resultó de la medición fue menor a 4, lo cual indica que la distribución geométrica de los satélites en el tiempo de la medición fue satisfactoria.

5.2. Recomendaciones

- 1. Valorando la desviación estándar, se recomienda el uso de las placas ESPOL-1, ESPOL-2, ESPOL-3 y ESPOL-8 para una georreferenciación. Sin embargo, los demás vértices son recomendables de igual manera; pero por su ubicación, se estima más tiempo en la medición según la presencia de los satélites en el horizonte.
- Todos los vértices son recomendables para el enlace altimétrico. Sin embargo, realizar cada cierto tiempo comprobaciones de los datos, para verificar si se han producido asentamientos.
- 3. Para el uso de la red geodésica como vértices para una poligonal que se utilizan en los trabajos geomáticos, se deberá realizar el respectivo cálculo de coeficiente de escala. Para convertir las distancias geodésicas a las planas.
- 4. Periódicamente se deberá dar el respectivo mantenimiento a la Red y considerarlas cuando se planifique algún cambio de la infraestructura física de la Institución para que no se destruyan.

ANEXO A.: Monografía Placa C-C-M-P-4 del IGM

INSTITUTO GEOGRAFICO MILITAI FORM. IGM III 01-N	R D	II DPTO. TRABAJOS DE CAMPO
	RAFIA DEL HITO DE NIV	
* 1001	CLAVO	AAARDQUIA O RECINTO.
ENTRE COLINA CEI BOS Y MOS XIV-L7-2 A LA MARCA ESTA A X 2 8 5.35 (A METROS DE SU EJE V SOBRESALE 0.00 EL PUNTO ANTERIOR SE HALLA A J. 2 B JICACION: LA PLACA SE EN	EN CIUSAS (KM) AL LADO N CENTIMETROS DEL TERRENO (MANAS)(KM) DE DISTANCIA CUENTRA EN POTRAS TON POLÍTECTUCO E	PARTIENDO DE (SITIO) PERSONELA LOS CEÍBOS E- DE LA RUTA A 5.00
REFERENCIAS PARA LLEGAR AL PUNTO DESDE EJE DE VIA ES QUINA 5-E- DE 1	HOJON	METROS AZ Mg
DESCRITO O RECUPERADO POR HE	Nº 4	HA 14 ENERO 84 DIBUJO O FOTOGRAFIA DEL HITO
POTREZOS	Се-HР-4	
	CEIBO	s (ec-HP-4)

ANEXO B.: Monografía Estación Guayaquil-GUEC

REGME - GUEC

REGME

RED GNSS DE MONITOREO CONTINUO DEL ECUADOR

Formulario Informativo Estación de Monitoreo Continuo GUAYAQUIL - GUEC

0. FORMULARIO

Equipo Técnico REGME - CEPGE Geo. David Mejía L. Preparado:

Autor: Revisado: Ing. Guillermo Freire C. 13 de octubre de 2014 13 de octubre de 2014 Fecha: Actualización:

Versión:

1. IDENTIFICACIÓN DE LA ESTACIÓN GNSS

Nombre de la Estación: Identificación de la Estación:

Código Internacional:

guec 20141014.log (log file Vigente) IGM - Ecuador Información Adicional:

Propietario Equipos:

Responsable mantenimiento: CEPGE

e-mail contacto: cepge@mail.igm.gob.ec

2. INFORMACIÓN SOBRE LA LOCALIZACIÓN

Provincia: Guayas Guayaquil

Tipo de Monumentación: Pilar de concreto de 2.30m de alto, en el centro se encuentra

empotrado el dispositivo de centrado forzoso:

(CF-IGM-IBGv1).

Ubicación: La estación se encuentra ubicada en el tercer piso del edificio

principal del INOCAR, Instituto Oceanográfico de la Armada, en la ciudad de Guayaquil, Av. 25 DE Julio vía puerto Marítimo,

Base Naval Sur.

Estación de Monitoreo Continuo GUEC

3. COORDENADAS OFICIALES

ITRF: 94 DATUM: SIRGAS 95 EPOCA DE REFERENCIA: 1995.4 ELIPSOIDE DE REFERENCIA: GRS80

	Coordenadas	Geodésicas	10
Latitud:	02° 16' 17.9986" S	Sigma:	0.012 m.
Longitud:	79° 54' 14.3465" W	Sigma:	0.001 m.
Altura Elipsoidal:	32.414 m.	Sigma:	0.012 m.
Altura Nivelada *:		Fuente:	IGM - CEPGE
	Coordenadas Plana	as (UTM 17 SUR)	
Norte:	9748865.093 m.	Sigma:	0.001 m.
Este:	621871.268 m.	Sigma:	0.012 m.

^{*}Altura Trigonométrica, referida al nivel medio del mar; con origen en el mareógrafo de La

Nota: Las coordenadas semanales fijas de esta estación se pueden encontrar en la página web de SIRGAS, en la siguiente dirección: http://www.sirgas.org/index.php?id=153

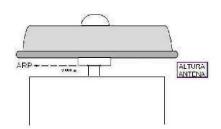
4. INFORMACIÓN DEL EQUIPO GNSS

4.1 Receptor

4.1.1 Tipo de Receptor: Número de Serie: TRIMBLE NETR9 5044K71335 Versión del Firmware: Sistema Satelital: 4.62 GPS+GLONASS Fecha de Instalación: 19 / Septiembre / 2014

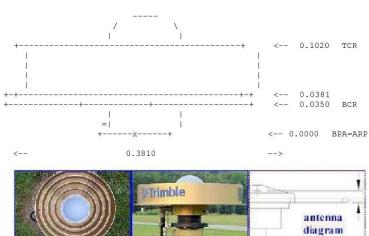
4.2 Antena

4.2.1 GNSS Choke TRM59800.00 34353905 GPS+GLONAS Tipo de Antena:


Número de Serie: Sistema Satelital: Altura de la Antena: 0.0090m.

Distancia vertical desde el tope del dispositivo de centrado forzoso hasta el ARP (Antenna Reference Point). Ver figura inferior. Detalle de Altura:

Cúpula (RADOME): Fecha de instalación: Ninguna (NONE) 19 / Septiembre / 2014



4.3 Esquema de Altura de la Antena

4.3.1 Esquema de la Antena

Información acerca de la antena

5. SENSOR METEREOLOGICO

5.1 Detalles Técnicos Sensor

5.1.1 Modelo de sensor: MET A4

Paroscientific, Inc. Fabricante sensor:

Numero de serie: 128683 Intervalo de registro: 60 segundos Altura de sensor: 2.00 m.

Humedad, Presión, Temperatura 11 de Noviembre de 2013 Información obtenida:

Fecha de Instalación:

ESTACION METEREOLOGICA GUEC

6. INFORMACIÓN COMPLEMENTARIA

(8) C1, L1, D1, S1, P2, L2, D2, S2 Observables:

Intervalo de Registro: 1 y 30 segundos.

0 grados Ángulo de Máscara:

Archivo Diario: Si

Formato de Archivo: Rinex (v 2.11). Trimble Original (T02). Servidor de Búsqueda: www.geoportaligm.gob.ec www.igm.gob.ec Transmite Correcciones Diferenciales por Internet en tiempo real: SI

7. INFORMES Y CONTACTOS

7.1 Para información técnica REGME-CEPGE contactar:

INSTITUTO GEOGRÁFICO MILITAR, Gestión Cartográfica, CEPGE GNSS Agencia:

Av. Seniergues E4-676 y Gral. Telmo Paz y Miño, El Dorado. Quito. (593) (2) 39 75 100 al 130, extensión 2013 Dirección:

Teléfono:

(593) (2) 39 75 186

Página Web: www.igm.gob.ec www.geoportaligm.gob.ec/index2.html lng. David Cisneros.

Contacto:

E - mail: david.cisneros@mail.igm.gob.ec

cepge@mail.igm.gob.ec

Contacto (2): Lic. Alberto Chavez
E – mail: alberto.chavez@mail.igm.gob.ec E - mail:

cepge@mail.igm.gob.ec

7.2 Para información sobre comercialización y adquisición de datos contactar:

INSTITUTO GEOGRÁFICO MILITAR, Gestión Mercadotecnia Agencia: Av. Seniergues E4-676 y Gral. Telmo Paz y Miño, El Dorado. Quito (593) (2) 39 75 194 Ext.2508 (593) (2) 39 75 194 Dirección:

Teléfono: Fax:

Contactos: Ing. Fabián Santamaría E – mail: fabian.santamaria@mail.igm.gob.ec

7.3 Instituciones participantes

La REGME cuenta con el apoyo de las siguientes instituciones:

INOCAR

INSTITUTO OCEANOGRAFICO DE LA ARMADA Inocar@inocar.mil.ec

INSTITUTO GEOGRÁFICO MILITAR ECUADOR www.igm.gob.ec

SIRGAS

Sistema de Referencia Geocéntrico para las Américas www.sirgas.org/

ANEXO C.: Tablas de Nivelación y Contranivelación

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
BM6	0.738		93.253	92.515
Φ	0.159	2.382	91.030	90.871
Φ	0.107	3.739	87.398	87.291
Φ	0.097	3.427	84.068	83.971
BM7	0.963	2.457	82.574	81.611
Φ	3.787	0.393	85.968	82.181
Φ	3.910	0.050	89.828	85.918
Φ	4.535	0.225	94.138	89.603
Φ	2.450	0.120	96.468	94.018
BM8	0.773	1.361	95.880	95.107
Φ	0.115	2.617	93.378	93.263
Φ	0.050	4.385	89.043	88.993
Φ	0.576	4.123	85.496	84.920
BM9		1.033		84.463
Φ	2.734	1.561	86.669	83.935
Φ	3.666	0.305	90.030	86.364
Ф	4.511	0.131	94.410	89.899
Φ	4.375	0.377	98.408	94.033
Ф	4.404	0.505	102.307	97.903
Φ	4.294	0.254	106.347	102.053
Φ	3.407	0.495	109.259	105.852
Ф	2.785	0.762	111.282	108.497
Φ	4.891	0.079	116.094	111.203
PLACA IGM	0.717	0.789	116.022	115.305
Φ	0.426	4.821	111.627	111.201
Φ	0.609	3.604	108.632	108.023
Ф	0.053	4.303	104.382	104.329
Φ	0.112	4.153	100.341	100.229
Φ	0.219	3.794	96.766	96.547
Ф	0.180	3.639	93.307	93.127
Ф	0.265	4.076	89.496	89.231
Ф	0.194	4.162	85.528	85.334
Ф	1.131	1.605	85.054	83.923

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
ВМ9	3.126	0.594	87.586	84.460
Ф	3.006	0.294	90.298	87.292
Φ	3.121	0.044	93.375	90.254
Φ	2.664	0.183	95.856	93.192
BM8	1.430	0.748	96.538	95.108
Ф	0.145	2.821	93.862	93.717
Φ	0.359	4.090	90.131	89.772
Φ	0.114	3.396	86.849	86.735
Φ	0.127	3.842	83.134	83.007
Ф	2.063	2.043	83.154	81.091
BM7		1.553		81.601
Ф	3.051	0.393	85.812	82.761
Ф	2.881	0.240	88.453	85.572
Ф	3.140	0.165	91.428	88.288
Φ	1.437	0.029	92.836	91.399
BM6		0.324	92.512	92.512

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
PLACA 4	0.133		96.944	96.811
Φ	0.016	3.969	92.991	92.975
Φ	0.250	3.325	89.916	89.666
Φ	0.485	2.825	87.576	87.091
Φ	2.469	0.375	89.670	87.201
Φ	2.457	1.312	90.815	88.358
Φ	1.198	0.589	91.424	90.226
PUNTO	2.253	1.127	92.550	90.297
Ф	1.448	0.837	93.161	91.713
BM6	0.641	0.648	93.154	92.513
Ф	0.556	1.555	92.155	91.599
PUNTO		1.856		90.299
Φ	1.272	1.980	91.447	90.175
Ф	0.554	1.729	90.272	89.718
Φ	0.637	1.874	89.035	88.398
Φ	2.118	2.647	88.506	86.388
Φ	2.480	0.928	90.058	87.578

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
Φ	3.198	0.391	92.865	89.667
Φ	3.470	0.457	95.878	92.408
Φ	1.353	0.278	96.953	95.600
PLACA 4		0.136		96.817

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
PLACA 5	1.422		114.650	113.228
Φ	0.221	3.289	111.582	111.361
Φ	0.364	3.825	108.121	107.757
Ф	0.172	3.337	104.956	104.784
Φ	0.319	3.390	101.885	101.566
Φ	0.120	3.548	98.457	98.337
BMR	0.394	3.403	95.448	95.054
Φ	0.307	3.136	92.619	92.312
Ф	0.298	3.637	89.280	88.982
Φ	1.233	4.138	86.375	85.142
Ф	1.292	2.685	84.982	83.690
ВМ9	0.590	0.520	85.052	84.462
Φ	1.877	1.571	85.358	83.481
Ф	2.163	0.480	87.041	84.878
Φ	4.656	0.381	91.316	86.660
Φ	4.437	0.015	95.738	91.301
BMR		0.693		95.045
Φ	4.870	0.038	100.570	95.700
Φ	3.896	0.296	104.170	100.274
Φ	4.838	0.084	108.924	104.086
Φ	4.853	0.008	113.769	108.916
PLACA 5		0.545		113.224

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
BM1	3.596		70.942	67.346
Φ	3.674	0.027	74.589	70.915
Φ	3.991	0.198	78.382	74.391

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
Φ	3.743	0.259	81.866	78.123
Φ	3.765	0.248	85.383	81.618
BM2	3.741	0.132	88.992	85.251
Φ	3.612	0.088	92.516	88.904
Φ	0.029	0.610	91.935	91.906
ВМ3		0.446		91.489
Φ	0.845	2.673	90.107	89.262
Φ	3.435	0.310	93.232	89.797
BM4		2.392		90.840
Φ	3.194	0.162	96.264	93.070
Φ	0.980	0.914	96.330	95.350
BM5		1.753		94.577
Φ	0.048	2.225	94.153	94.105
BM6	1.617	1.640	94.130	92.513
Φ	2.375	0.025	96.480	94.105
Φ	0.826	1.210	96.096	95.270
Φ	0.080	2.727	93.449	93.369
ВМ		1.622		91.827
Ф	0.069	2.319	91.199	91.130
Φ	2.111	2.560	90.750	88.639
Φ	2.448	0.038	93.160	90.712
Φ	0.323	2.057	91.426	91.103
Φ	0.298	3.324	88.400	88.102
BM2		3.153		85.247
Φ	0.104	3.916	84.588	84.484
Ф	0.213	3.516	81.285	81.072
Ф	0.268	3.384	78.169	77.901
Φ	0.232	2.583	75.818	75.586
Φ	0.216	3.177	72.857	72.641
Ф	0.237	2.693	70.401	70.164
BM1		3.057		67.344

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
PLACA 2	0.662		51.630	50.968
Φ	0.748	2.087	50.291	49.543

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
Φ	0.664	2.181	48.774	48.110
ВМ	0.654	2.152	47.276	46.622
BP	1.130	2.129	46.277	45.147
Ф	2.839	0.807	48.309	45.470
Φ	3.485	0.363	51.431	47.946
Φ	2.914	0.083	54.262	51.348
Φ	2.853	0.288	56.827	53.974
Φ	3.276	0.309	59.794	56.518
Φ	3.121	0.162	62.753	59.632
Φ	3.361	0.109	66.005	62.644
Φ	3.686	0.032	69.659	65.973
BM1		2.314		67.345
Φ	3.525	0.307	72.877	69.352
Φ	2.737	0.506	75.108	72.371
Φ	2.735	0.626	77.217	74.482
PLACA 3	0.987	0.945	77.259	76.272
Φ	0.560	2.778	75.041	74.481
Φ	0.291	3.077	72.255	71.964
Φ	0.390	2.667	69.978	69.588
BM1	0.128	2.632	67.474	67.346
Φ	0.046	3.418	64.102	64.056
Ф	0.170	3.723	60.549	60.379
Φ	0.423	3.652	57.320	56.897
Ф	0.403	3.525	54.198	53.795
Φ	0.370	3.378	51.190	50.820
Φ	0.122	4.007	47.305	47.183
Φ	1.380	2.159	46.526	45.146
BP		1.379		45.147
Ф	2.283	1.066	47.743	45.460
ВМ	2.139	1.118	48.764	46.625
Ф	2.134	0.721	50.177	48.043
Ф	2.059	0.665	51.571	49.512
Ф	1.461	0.731	52.301	50.840
PLACA 2		1.330		50.971

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
PLACA 2	0.805		51.776	50.971
Φ	1.335	2.552	50.559	49.224
Ф	1.379	2.210	49.728	48.349
Ф	0.676	0.907	49.497	48.821
Φ	0.917	2.993	47.421	46.504
Φ	1.264	1.715	46.970	45.706
Φ	1.375	1.356	46.989	45.614
Φ	1.456	1.467	46.978	45.522
Φ	1.511	1.432	47.057	45.546
Φ	1.636	1.500	47.193	45.557
Φ	2.963	0.230	49.926	46.963
Φ	1.477	0.122	51.281	49.804
PLACA 1	0.538	0.979	50.840	50.302
Φ	0.528	3.862	47.506	46.978
Φ	1.498	1.961	47.043	45.545
Ф	1.400	1.463	46.980	45.580
Φ	1.378	1.433	46.925	45.547
Φ	1.386	1.327	46.984	45.598
Φ	1.491	1.323	47.152	45.661
Φ	1.768	1.451	47.469	45.701
Φ	2.259	1.030	48.698	46.439
Φ	1.126	0.150	49.674	48.548
Ф	1.707	1.741	49.640	47.933
Ф	1.508	0.452	50.696	49.188
Φ	2.552	1.056	52.192	49.640
PLACA 2		1.223		50.969

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	COTA
PLACA IGM	0.787		116.092	115.305
Φ	1.559	4.785	112.866	111.307
Ф	0.196	2.160	110.902	110.706
BM1′		2.569		108.333
Ф	0.177	4.062	107.017	106.840
Ф	0.244	4.199	103.062	102.818
Ф	0.181	4.889	98.354	98.173

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
Ф	0.183	4.772	93.765	93.582
Φ	0.289	4.683	89.371	89.082
BM2′	0.102	4.625	84.848	84.746
Φ	0.937	3.972	81.813	80.876
Ф	1.365	1.295	81.883	80.518
Ф	1.513	1.497	81.899	80.386
Φ	3.826	0.615	85.110	81.284
BM3′		1.251		83.859
Ф	0.044	2.451	82.703	82.659
Ф	0.878	4.325	79.256	78.378
Ф	1.123	1.716	78.663	77.540
Ф	0.973	1.938	77.698	76.725
BM4′		1.233		76.465
Φ	1.689	1.588	77.799	76.110
Ф	1.511	0.776	78.534	77.023
BM5′	2.763	2.302	78.995	76.232
Φ	3.814	0.429	82.380	78.566
Φ	3.564	0.148	85.796	82.232
BM6′	0.564	0.227	86.133	85.569
HITO GLP		0.500		85.633

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
PLACA IGM	0.198		115.503	115.305
Ф	0.650	0.972	115.182	114.532
Ф	0.336	2.655	112.863	112.527
Ф	0.429	2.723	110.568	110.140
BM1′		2.243		108.325
Φ	0.201	2.840	107.929	107.728
Ф	0.527	2.796	105.660	105.133
Φ	0.317	2.856	103.122	102.805
Φ	0.167	2.893	100.396	100.229
Ф	0.278	2.862	97.812	97.534
Ф	0.342	2.960	95.194	94.852
Ф	0.195	2.795	92.595	92.400

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
Φ	0.521	2.683	90.433	89.913
Φ	0.212	2.848	87.798	87.586
Φ	0.106	2.849	85.055	84.949
BM2´		0.310		84.745
Φ	0.126	2.996	82.185	82.059
Φ	1.383	1.636	81.932	80.549
Φ	2.975	0.684	84.223	81.248
Φ	0.443	0.258	84.407	83.964
BM3′		0.544		83.863
Φ	0.243	2.633	82.017	81.774
Φ	0.214	2.773	79.458	79.244
Φ	0.985	1.997	78.446	77.461
BM4′	1.109	1.980	77.575	76.466
Φ	1.860	0.867	78.569	76.709
BM5′	2.015	2.333	78.251	76.236
Ф	2.538	0.469	80.319	77.782
Φ	2.778	0.528	82.569	79.792
Φ	2.737	0.525	84.782	82.045
Φ	2.075	0.348	86.508	84.434
BM6′		0.938		85.571
HITO GLP		0.870		85.639

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
PLACA 6	0.734		88.528	87.794
Φ	0.025	2.653	85.900	85.875
BM3*	2.011	2.039	85.872	83.861
Φ	2.926	0.260	88.538	85.612
PLACA 6		0.741		87.797

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
BM5*	1.970		78.202	76.232
Ф	1.614	1.285	78.531	76.917
Φ	1.298	1.287	78.542	77.244
PLACA 7	1.485	1.585	78.442	76.957
Φ	1.018	1.287	78.173	77.155

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
Φ	0.873	1.370	77.676	76.803
BM5*		1.443		76.233

PUNTO	LECTURA ATRÁS	LECTURA ADELANTE	COTA + L ATRÁS (H+I)	СОТА
PLACA 8	1.886		64.475	62.589
Ф	3.528	0.375	67.628	64.100
Ф	4.098	0.144	71.582	67.484
Φ	3.444	0.272	74.754	71.310
Φ	3.773	0.086	78.441	74.668
Φ	4.229	0.605	82.065	77.836
Φ	3.655	0.229	85.491	81.836
Φ	4.080	0.454	89.117	85.037
Φ	4.627	0.262	93.482	88.855
Ф	4.435	0.427	97.490	93.055
Ф	1.338	0.201	98.627	97.289
Φ	0.323	4.034	94.916	94.593
Φ	0.010	3.096	91.830	91.820
Φ	0.057	2.328	89.559	89.502
Φ	0.147	2.423	87.283	87.136
BM2*	2.270	2.538	87.015	84.745
Φ	2.298	0.718	88.595	86.297
Ф	3.229	0.193	91.631	88.402
Φ	3.803	0.169	95.265	91.462
Φ	3.880	0.228	98.917	95.037
Φ	0.209	1.758	97.368	97.159
Φ	0.244	3.570	94.042	93.798
Φ	0.284	4.238	90.088	89.804
Φ	0.201	3.709	86.580	86.379
Φ	0.209	3.972	82.817	82.608
Ф	0.512	4.083	79.246	78.734
Φ	0.258	4.325	75.179	74.921
Ф	0.396	3.989	71.586	71.190
Ф	0.183	4.586	67.183	67.000
Φ	0.521	3.083	64.621	64.100
PLACA 8		2.034		62.587

ANEXO D.: Constelación GPS Marzo del 2015

Plano	Espacio	NORAD	Tipo SC	Fecha de Lanzamiento	Inicio de Operación	Fin de Operación	Tiempo de Vida (meses)	Nota
	2	29486	IIR-M	25.09.06	13.10.06		102	
A								
n.	4	32711	IIR-M	15.03.08	24.03.08		84.6	
	5	38833	II-F	04.10.12	14.11.12		28.9	
	6	39533	II-F	21.02.14	30.05.14		10.4	
	1	27663	II-R	29.01.03	18.02.03		145.8	
	2	36585	II-F	28.05.10	27.08.10		55.5	
	3	26407	II-R	16.07.00	17.08.00		175.9	
В	4	29601	IIR-M	17.11.06	13.12.06		100	
	5	40534	II-F	25.03.15				En Fase de Desarrollo
	6	34661	IIR-M	24.03.09				Prueba de
	1				02.01.00		97.2	Vuelo
	1	32384	IIR-M	20.12.07	02.01.08		87.3	
	2	20100	II D	20.02.04	05.04.04		122.2	
C	3	28190	II-R	20.03.04	05.04.04		132.3	
	5	28874	IIR-M	26.09.05	13.11.05		113	
	3	39166	II-F	15.05.13	21.06.13		21.7	
	1	28474	II-R	06.11.04	22.11.04		124.7	
	2	37753	II-R II-F	16.07.11	14.10.11		124.7 41.9	
	3	27704	II-R	31.03.03	12.04.03		144.1	
D	4	22877	II-A	26.10.93	22.11.93		256.8	
	5	25933	II-R	07.10.99	03.01.00		183.4	
	6	39741	II-F	17.05.14	10.06.14		10	
	1	26360	II-R	11.05.00	01.06.00		178.4	
	2	28129	II-R	21.12.03	12.01.04		135	
	3	35752	IIR-M	17.08.09	27.08.09		67.5	
E	4	26690	II-R	30.01.01	15.02.01		169.9	
	5	20959	II-A	26.11.90	10.12.90		292.2	
	6	23953	II-A	16.07.96	15.08.96		224	
	1	40294	II-F	29.10.14	12.12.14		3.9	
	1	26605	II-R	10.11.00	10.12.00		172.1	
	2	32260	IIR-M	17.10.07	31.10.07		89.4	
	3	24876	II-R	23.07.97	31.01.98		206.4	
F	4	28361	II-R	23.06.04	09.07.04		129.1	
	6	40105	II-F	02.08.14	17.09.14		6.8	

ANEXO E.: Constelación GLONASS Marzo del 2015

Plano	Espacio	RF chnl	# GC	Fecha de Lanzamiento	Inicio de Operación	Fin de Operación	Tiempo de Vida (meses)	Nota
	1	1	730	14.12.09	30.01.10		63.9	
	2	-4	747	26.04.13	04.07.13		23.5	
	3	5	744	04.11.11	08.12.11		41.2	
1	4	6	742	02.10.11	25.10.11		42.3	
1	5	1	734	14.12.09	10.01.10		63.9	
	6	-4	733	14.12.09	24.01.10		63.9	
	7	5	745	04.11.11	18.12.11		41.2	
	8	6	743	04.11.11	20.09.12		41.2	
	9	-2	736	02.09.10	04.10.10		55.3	
	10	-7	717	25.12.06	03.04.07		99.6	
	11	0	723	25.12.07	22.01.08		87.6	
•	12	-1	737	02.09.10	12.10.10		55.3	
2	13	-2	721	25.12.07	08.02.08		87.6	
	14	-7	715	25.12.06	03.04.07		99.6	
	15	0	716	25.12.06	12.10.07		99.6	
	16	-1	738	02.09.10	11.10.10		55.3	
	17	4	746	28.11.11	23.12.11		40.4	
	18	-3	754	24.03.14	14.04.14		12.6	
	19	3	720	26.10.07	25.11.07		89.6	
	20	2	719	26.10.07	27.11.07		89.6	
3	21	4	755	14.06.14	03.08.14		9.9	
	22	-3	731	02.03.10	28.03.10		61.3	
	23	3	732	02.03.10	28.03.10		61.3	
	24	2	735	02.03.10	28.03.10		61.3	
2	9		702	01.12.14			4.3	Prueba de vuelo
	20	-5	701	26.02.11			49.5	Prueba de vuelo
3	17		714	25.12.05	31.08.06	11.04.14	111.6	Repuesto
	21		725	25.09.08	05.11.08	02.08.14	78.5	Bajo Chequeo

ANEXO F.: Estaciones Permanentes de la REGME

	RED GNSS DE MONITOREO CONTINUO DEL ECUADOR REGME					
		ESTACIO	NES PERMANENTES			
# NOMBRE	CODIGO	PROVINCIA	CIUDAD	SITIO	PROPIEDAD	
1 ESMERALDAS	ESMR	ESMERALDAS	ESMERALDAS	TERMINAL OCP	IGEPN	
2 PUENGASI	QUEM	PICHINCHA	QUITO	EMAAPQ	IGEPN	
3 RIOBAMBA	RIOP	CHIMBORAZO	RIOBAMBA	BCB 11 GALAPAGOS	IGEPN	
4 IBARRA	IBEC	IMBABURA	IBARRA	PATRONATO GPI	IGEPN	
5 TULCAN	COEC	CARCHI	TULCAN	CUEVA OSOS	IGEPN	
6 TENA	TNEC	NAPO	TENA	GADP NAPO	IGEPN	
7 AUCA	AUCA	ORELLANA	AUCA	TERMINAL PETROECUADOR	IGEPN	
8 SAN LORENZO	SNLR	ESMERALDAS	SAN LORENZO	ARMADA	IGEPN	
9 BAHIA	BAHI	MANABI	BAHIA DE CARAQUEZ	UNIVERSIDAD CATOLICA	IGEPN	
10 NUEVO ROCAFU	ERTE NORE	ORELLANA	NUEVO ROCAFUERTE	HOSPITAL FRANKLIN TELLO	IGEPN	
11 LOROCACHI	LREC	PASTAZA	LOROCACHI	BS 48 SANGAY	IGM	
12 MONTALVO	MTEC	PASTAZA	MONTALVO	BS 49 CAPT. CHIRIBOGA	IGM	
13 CUENCA	CUEC	AZUAY	CUENCA	ETAPA	IGM	
14 GUAYAQUIL	GYEC	GUAYAS	GUAYAQUIL	IGM REGIONAL	IGM	
15 LOJA	LJEC	LOJA	LOJA	UTPL	IGM	
16 MACAS	MAEC	MORONA	SANTIAGO	MACAS GADPMS	IGM	
17 PORTOVIEJO	PTEC	MANABI	PORTOVIEJO	COMIL7 GRAD MIGUEL ITURRALD	IGM	
18 QUEVEDO	QVEC	LOS	RIOS	QUEVEDO UTEQ	IGM	
19 SANTIAGO	STEC	MORONA	SANTIAGO	SANTIAGO BS 61 SANTIAGO	IGM	
20 MACHALA	MHEC	EL ORO	MACHALA	GAD EL ORO	IGM	
21 EL CARMEN	ECEC	MANABI	EL CARMEN	GAD CARMEN	IGM	
22 NARANJAL	NJEC	GUAYAS	NARANJAL	GAD NARANJAL	IGM	
23 EL`CHACO	CHEC	NAPO	EL CHACO	EDIFICIO GESTION AMBIENTAL	IGM	
24 GUALAQUIZA	GZEC	MORONA SANTIAGO	GUALAQUIZA	MUNICIPIO GUALAQUIZA	IGM	
25 CELICA	CLEC	LOJA	CELICA	GAD CELICA	IGM	
26 PALORA	PREC	MORONA SANTIAGO	PAALORA	CASA DE LA CULTURA PALORA	IGM	
27 PALANDA	PDEC	ZAMORA CHINCHIPE	PALANDA	BODEGAS MUNICIPIO	IGM	
28 PAJAN	PJEC	MANABI	PAJAN	GAD PAJAN	IGM	
29 SANTA ELENA	SEEC	SANTA ELENA	LIBERTAD	INOCAR	IGM	
30 ALAUSI	ALEC	CHIMBORAZO	ALAUSI	GAD ALAUSI	IGM	
31 SAN CRISTOBAL	SCEC	GALAPAGOS	SAN CRISTOBAL	CGREG	INST&OPT	
32 QUITO	QUI1	PICHINCHA	QUITO	IGM QUITO	NGA	
33 GALAPAGOS	GLPS	GALAPAGOS	SANTA CRUZ	ESTACION CHARLES DARWIN	UNAVCO	

ANEXO G.: Monografía de la Red de Control

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Monografía de Punto de Control ENTIDAD EJECUTORA: ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL PROYECTO: RED DE CONTROL GEODÉSICA ESPOL COD: ESPOL-1 ELIPSOIDE: GRS80 DÁTUM HORIZONTAL: SIRGAS 95 ÉPOCA DE REFERENCIA: 1995 DÁTUM VERTICAL: MAREÓGRAFO DE REFERENCIA: LOCALIZACIÓN DEL PUNTO CIUDAD PARROQUIA PROVINCIA SITIO PAÍS CANTÓN ECUADOR GUAYAS GUAYAQUIL GUAYAQUIL TARQUI CONTROL HORIZONTAL COORDENADAS COORDENADAS GEOGRÁFICAS COORDENADAS UTM FECHA DE DETERMINACIÓN PROYECCIÓN LOCAL LATITUD (°'"): 2° 8' 24.83" S ZONA: 17S TIPO DE PROYECCIÓN: MERCATOR ABRIL - 2015 LONGITUD (°'"): 79°57' 10.92" W NORTE (m): NORTE (m): 2005782.329 ORDEN ALTURA ELIPSOIDAL (m) : ESTE (m) : ESTE (m) : 491787.969 PARÁMETROS DE PROYECCIÓN FALSO NORTE: 2242320.51 FALSO ESTE: 500000.00 FACTOR ESCALA: 0.999272829 LONGITUD MERIDIANO CENTRAL: 79° 52' 45.16" W LATITUD ORIGEN DE LA PROYECCIÓN: 2° 11' 33.09" S CONTROL VERTICAL ELEVACIÓN (m) : 50.300 FECHA DE NIVELACIÓN : ABRIL - 2015 TIPO DE NIVELACIÓN: GEOMÉTRICA CROQUIS FOTOGRAFÍA PANORÁMICA

UBICACIÓN

La placa ESPOL-1, se encuentra empotrada en un hito de hormigón ubicado al borde este del canal de descarga del lago PARCON.

ACCESIBILIDAD

Ingresando a la ESPOL por la via Perimetral, se sigue 360 metros hacia la derecha por un camino de tierra hasta llegar a una vía asfaltada. Se continúa por esta vía hasta llegar al retorno donde termina. Carninar 45 metros hacia el canal donde se encontrará el hillo.

MATERIALIZACIÓN	INSCRIPCIÓN EN LA PLACA	OBSERVACIONES
HITO DE HORMIGÓN TIPO IGM-B	ESCUELA SUPERIOR POLITÈCNICA DEL LITORAL - ESPOL-1 - 2015 - SE PROHIBE DESTRUIR	
ELABORADO		SUPERVISADO

ULICES CEDEÑO MOSQUERA

SUPERVISADO

ING. JUAN CARLOS PINDO

Monografía de Punto de Control

 ENTIDAD EJECUTORA: ESCUELA SUPERIOR PUITÉCNICA DEL LITORAL

 PROYECTO: RED DE CONTROL GEODÉSICA EDUCA DE CONTROL GEODÉSICA DE CO

LOCALIZACIÓN DEL PUNTO

PAÍS	PROVINCIA	CANTÓN	CIUDAD	PARROQUIA	SITIO	_
ECUADOR	GUAYAS	GUAYAQUIL	GUAYAQUIL	TARQUI	ESPOL	

CONTROL HORIZONTAL

COORDENADAS GEOGRÁFICAS	COORDENADAS UTM	COORDENADAS PROYECCIÓN LOCAL	FECHA DE DETERMINACIÓN
LATITUD (° ' ") : 2° 8' 32.84" S	ZONA: 17S	TIPO DE PROYECCIÓN: MERCATOR	ABRIL - 2015
LONGITUD (°'") : 79° 56' 49.57" W	NORTE (m): 9763152.987	NORTE (m): 2005536.413	ORDEN
ALTURA ELIPSOIDAL (m) :	ESTE (m) : 617086.267	ESTE (m): 492447.733	2
PARÁMETROS DE PROYECCIÓN	FALSO NORTE: 2242320.51	FALSO ESTE: 500000.00 FAC	TOR ESCALA: 0.999272829
LOCAL	LONGITUD MERIDIANO CENTRAL: 79	52' 45.16" W LATITUD ORIGEN D	E LA PROYECCIÓN: 2° 11' 33.09" S

CONTROL VERTICAL

ELEVACIÓN (m) : 50.968 ORDEN: 1 FECHA DE NIVELACIÓN : ABRIL - 2015 TIPO DE NIVELACIÓN : GEOMÉTRICA

FOTOGRAFÍA PANORÁMICA

UBICACIÓN

La placa ESPOL-2, se encuentra empotrada en el lado derecho de la acera ingresando a la ESPOL desde la Via Perimetral, a unos 30 metros aproximadamente de la garita.

ACCESIBILIDAD

Ingresando a la ESPOL por la via Perimetral, se continúa 30 metros por la via de acceso de hormigón desde la garita y del lado derecho de la acera se encontrará empotrada la placa.

MATERIALIZACIÓN	INSCRIPCIÓN EN LA PLACA	OBSERVACIONES
PLACA EMPOTRADA EN ACERA	ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL - ESPOL-2 - 2015 - SE PROHIBE DESTRUIR	

ELABORADO SUPERVISADO

ULICES CEDEÑO MOSQUERA ING. JUAN CARLOS PINDO

Monografía de Punto de Control

ENTIDAD EJECUTORA: ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL COD: ESPOL- 3 NOMBRE DEL PUNTO: PLACA 3 PROYECTO: RED DE CONTROL GEODÉSICA ESPOL DÁTUM HORIZONTAL: SIRGAS 95 ÉPOCA DE REFERENCIA: 1995 ELIPSOIDE: GRS80 DÁTUM VERTICAL: MAREÓGRAFO DE REFERENCIA:

LOCALIZACIÓN DEL PUNTO

	20		7	110	
PAÍS	PROVINCIA	CANTÓN	CIUDAD	PARROQUIA	SITIO
ECUADOR	GUAYAS	GUAYAQUIL	GUAYAQUIL	TARQUI	ESPOL

CONTROL HORIZONTAL

COORDENADAS GEOGRÁFICAS	COORDENADAS UTM	COORDENADAS PROYECCIÓN LOCAL	FECHA DE DETERMINACIÓN
LATITUD (°'") : 2° 8' 50.31" S	ZONA: 17S	TIPO DE PROYECCIÓN: MERCATOR	ABRIL - 2015
LONGITUD (°'") : 79° 56′ 59.68" W	NORTE (m) : 9762616.462	NORTE (m): 2004999.567	ORDEN
ALTURA ELIPSOIDAL (m) :	ESTE (m): 616773.568	ESTE (m): 492135.341	2
PARÁMETROS DE PROYECCIÓN LOCAL	FALSO NORTE: 2242320.51 LONGITUD MERIDIANO CENTRAL: 79		TOR ESCALA: 0.999272829 E LA PROYECCIÓN: 2° 11' 33.09" S

CONTROL VERTICAL

ELEVACIÓN (m) : 76.272 ORDEN: FECHA DE NIVELACIÓN : ABRIL - 2015 TIPO DE NIVELACIÓN: GEOMÉTRICA

FOTOGRAFÍA PANORÁMICA

UBICACIÓN

La placa ESPOL-3 se encuentra en la vía de acceso a la ESPOL desde la vía Perimetral, a unos 750 metros de la garita. Al sur del Centro de Tecnologías de Información (PARCON ESPOL).

Ingresando a la ESPOL por la vía Perimetral, se continúa 750 metros aproximadamente por la vía de acceso de hormigón desde la garita y del lado derecho en una loma adyacente a la vía se encontrará la placa empotrada en un hito.

MATERIALIZACIÓN	INSCRIPCIÓN EN LA PLACA	OBSERVACIONES
HITO DE HORMIGÓN TIPO IGM-B	ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL - ESPOL-3 - 2015 - SE PROHIBE DESTRUIR	

ELABORADO SUPERVISADO

ULICES CEDEÑO MOSQUERA ING. JUAN CARLOS PINDO

POLITECTOR POLITECTOR

Monografía de Punto de Control

 ENTIDAD EJECUTORA: ESCUELA SUPERIOR PULITÉCNIC DEL LITORAL

 PROYECTO: RED DE CONTROL GEODÉSICA ED LA CONTROL GEODÉS

LOCALIZACIÓN DEL PUNTO

PAÍS	PROVINCIA	CANTÓN	CIUDAD	PARROQUIA	SITIO
ECUADOR	GUAYAS	GUAYAQUIL	GUAYAQUIL	TARQUI	ESPOL

CONTROL HORIZONTAL

COORDENADAS GEOGRÁFICAS	COORDENADAS UTM	COORDENADAS PROYECCIÓN LOCAL	FECHA DE DETERMINACIÓN
LATITUD (° ' ") : 2° 9' 2.06" S	ZONA: 17S	TIPO DE PROYECCIÓN: MERCATOR	ABRIL - 2015
LONGITUD (°'") : 79° 57' 19.46" W	NORTE (m): 9762256.209	NORTE (m): 2004638.821	ORDEN
ALTURA ELIPSOIDAL (m) :	ESTE (m) : 616162.353	ESTE (m) : 491524.248	2
PARÁMETROS DE PROYECCIÓN LOCAL	FALSO NORTE: 2242320.51		CTOR ESCALA: 0.999272829

CONTROL VERTICAL

ELEVACIÓN (m) : 96.813 ORDEN: 1 FECHA DE NIVELACIÓN : ABRIL - 2015 TIPO DE NIVELACIÓN: GEOMÉTRICA

FOTOGRAFÍA PANORÁMICA

UBICACIÓN

La placa ESPOL-4, se encuentra empotrada en acera del parqueadero del colegio COPOL, que se ubica al lado de área deportiva.

ACCESIBILIDAD

Ingresando a COPOL, seguir al parqueadero adyacente a áreas deportivas. La placa se encuentra empotrada en acera.

MATERIALIZACIÓN	INSCRIPCIÓN EN LA PLACA	OBSERVACIONES
PLACA EMPOTRADA EN ACERA	ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL - ESPOL-4 - 2015 - SE PROHIBE DESTRUIR	

ELABORADO SUPERVISADO

ULICES CEDEÑO MOSQUERA ING. JUAN CARLOS PINDO

Monografía de Punto de Control

	ENTIDAD EJECUTORA: ESCUELA SUPERIOR PI	OLITÉCNICA	DEL LIT	ORAL		
	PROYECTO: RED DE CONTROL GEODÉSICA ESPOL DÁTUM HORIZONTAL: SIRGAS 95 ÉPOCA DE		NOMBRE DEL PUNTO: PLACA 5		COD: ESPOL-5	
			REFERENCIA: 1995 ELIPS		ELIPS	OIDE: GRS80
	DÁTUM VERTICAL:	20		MAREÓGRAFO DE REFERENC	CIA:	

LOCALIZACIÓN DEL PUNTO

PAÍS	PROVINCIA	CANTÓN	CIUDAD	PARROQUIA	SITIO
ECUADOR	GUAYAS	GUAYAQUIL	GUAYAQUIL	TARQUI	ESPOL

CONTROL HORIZONTAL

COORDENADAS GEOGRÁFICAS	COORDENADAS UTM	COORDENADAS PROYECCIÓN LOCAL	FECHA DE DETERMINACIÓN
LATITUD (°'") : 2° 9' 7.66" S	ZONA: 17S	TIPO DE PROYECCIÓN: MERCATOR	ABRIL - 2015
LONGITUD (°'") : 79° 57' 37.63" W	NORTE (m): 9762084.598	NORTE (m) : 2004466.791	ORDEN
ALTURA ELIPSOIDAL (m) :	ESTE (m) : 615600.743	ESTE (m): 490962.640	2
PARÁMETROS DE PROYECCIÓN	FALSO NORTE: 2242320.51	FALSO ESTE: 500000.00 FA	CTOR ESCALA: 0.999272829
LOCAL	LONGITUD MEDIDIANO CENTRAL: 70	0° 52' 45 16" W LATITUD ORIGEN F	DE LA PROVECCIÓN: 2º 11' 33 00" S

CONTROL VERTICAL

ELEVACIÓN (m) : 113.226 FECHA DE NIVELACIÓN : ABRIL - 2015 TIPO DE NIVELACIÓN: GEOMÉTRICA

FOTOGRAFÍA PANORÁMICA

UBICACIÓN

La placa ESPOL-5, se encuentra empotrada en el bordillo de acera del parqueadero ubicado al lado del conjunto residencial de profesores. Cerca del sector donde la ESPOL desarrolla el proyecto de Huella Ecológica.

Ingresando a la ESPOL por la garita principal, continuar 960 metros por la via de acceso principal y al llegar a la Y seguir en dirección al Rectorado para girar hacia la izquierda y continuar por una vía hacia un cerro donde se encuentra el área de residencias de profesores. En el bordillo de la acera se encuentra empotrada la placa.

MATERIALIZACIÓN	INSCRIPCIÓN EN LA PLACA	OBSERVACIONES
PLACA EMPOTRADA EN ACERA	ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL - ESPOL-5 - 2015 - SE PROHIBE DESTRUIR	

ELABORADO SUPERVISADO

ING. JUAN CARLOS PINDO ULICES CEDEÑO MOSQUERA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Monografía de Punto de Control

ENTIDAD EJECUTORA: ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

NOMBRE DEL PUNTO: PLACA 6 PROYECTO: RED DE CONTROL GEODÉSICA ESPOL COD: ESPOL-6 ELIPSOIDE: GRS80 DÁTUM HORIZONTAL: SIRGAS 95 ÉPOCA DE REFERENCIA: 1995

DÁTUM VERTICAL: MAREÓGRAFO DE REFERENCIA:

LOCALIZACIÓN DEL PUNTO

PAÍS	PROVINCIA	CANTÓN	CIUDAD	PARROQUIA	SITIO
ECUADOR	GUAYAS	GUAYAQUIL	GUAYAQUIL	TARQUI	ESPOL

CONTROL HORIZONTAL

		A20 V	×
COORDENADAS GEOGRÁFICAS	COORDENADAS UTM	COORDENADAS PROYECCIÓN LOCAL	FECHA DE DETERMINACIÓN
LATITUD (°'") : 2° 8' 43.72" S	ZONA: 17S	TIPO DE PROYECCIÓN: MERCATOR	ABRIL - 2015
LONGITUD (°'") : 79° 57' 52.63" W	NORTE (m) : 9762820.135	NORTE (m) : 2005202.166	ORDEN
ALTURA ELIPSOIDAL (m) :	ESTE (m) : 615137.774	ESTE (m): 490499.076	2
PARÁMETROS DE PROYECCIÓN LOCAL	FALSO NORTE: 2242320.51 LONGITUD MERIDIANO CENTRAL: 7:		TOR ESCALA: 0.999272829 E LA PROYECCIÓN: 2° 11' 33.09" S
	CONTOUR MERCIDINATO OCITATORE. 1	0 02 10:10 11	E ETT THO TECOTOTILE TO COLOU C

CONTROL VERTICAL

ORDEN: ELEVACIÓN (m) : 87.795 FECHA DE NIVELACIÓN : ABRIL - 2015 TIPO DE NIVELACIÓN: GEOMÉTRICA

FOTOGRAFÍA PANORÁMICA

UBICACIÓN

La placa ESPOL-6, se encuentra en la esquina sur-este de la losa superior de bloque que se encuentra junto al parqueadero de la FICT.

ACCESIBILIDAD

Ingresando a la ESPOL por la garita principal, continuar hacia el parqueadero de la Facultad de Ingeniería en Ciencias de la Tierra FICT. En la esquina sur-este del bloque junto al edificio 20B se encuentra empotrada la placa.

MATERIALIZACIÓN	INSCRIPCIÓN EN LA PLACA	OBSERVACIONES
PLACA EMPOTRADA EN LOSA	ESCUELA SUPERIOR POLITÈCNICA DEL LITORAL - ESPOL-6 - 2015 - SE PROHIBE DESTRUIR	

ELABORADO

SUPERVISADO

ULICES CEDEÑO MOSQUERA

ING. JUAN CARLOS PINDO

Monografía de Punto de Control

ENTIDAD EJECUTORA: ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL						
PROYECTO: RED DE CONTROL GEODÉSICA ESPOL NOMBRE DEL PUNTO: PLACA 7 COD: ESPOL-7						
DÁTUM HORIZONTAL: SIRGAS 95 ÉPOCA DE REFERENCIA: 1995			ELIPSO	OIDE: GRS80		

DÁTUM VERTICAL:

MAREÓGRAFO DE REFERENCIA:

LOCALIZACIÓN DEL PUNTO

PAÍS	PROVINCIA	CANTÓN	CIUDAD	PARROQUIA	SITIO
ECUADOR	GUAYAS	GUAYAQUIL	GUAYAQUIL	TARQUI	ESPOL

CONTROL HORIZONTAL

COORDENADAS GEOGRÁFICAS	COORDENADAS UTM	COORDENADAS UTM COORDENADAS PROYECCIÓN LOCAL	
LATITUD (°'") : 2° 8' 30.23" S	ZONA: 17S	TIPO DE PROYECCIÓN: MERCATOR	ABRIL - 2015
LONGITUD (°'") : 79° 58' 3.36" W	NORTE (m): 9763234.583	NORTE (m): 2005616.475	ORDEN
ALTURA ELIPSOIDAL (m) :	ESTE (m) : 614806.558	ESTE (m) : 490167.512	2
PARÁMETROS DE PROYECCIÓN LOCAL	FALSO NORTE: 2242320.51 LONGITUD MERIDIANO CENTRAL: 79		TOR ESCALA: 0.999272829 E LA PROYECCIÓN: 2° 11' 33.09" S

CONTROL VERTICAL

ELEVACIÓN (m) : 76.957 ORDEN: 1 FECHA DE NIVELACIÓN : ABRIL - 2015 TIPO DE NIVELACIÓN : GEOMÉTRICA

FOTOGRAFÍA PANORÁMICA

UBICACIÓN

La placa ESPOL-7, se encuentra en acera ubicada al norte del área deportiva frente a la FIEC.

ACCESIBILIDAD

Ingresando a la ESPOL continuar por la vía principal 2.6 Km hasta llegar al área deportiva frente a la Facultad de Ingeniería Eléctrica y Computación. Seguir al sector norte de las canchas y se encontrará con una acera donde está empotrada la placa.

MATERIALIZACIÓN	INSCRIPCIÓN EN LA PLACA	OBSERVACIONES
PLACA EMPOTRADA EN ACERA	ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL - ESPOL-7 - 2015 - SE PROHIBE DESTRUIR	

ELABORADO

SUPERVISADO

ULICES CEDEÑO MOSQUERA

ING. JUAN CARLOS PINDO

Monografía de Punto de Control

ENTIDAD EJECUTORA: ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL COD: ESPOL-8 NOMBRE DEL PUNTO: PLACA 8 PROYECTO: RED DE CONTROL GEODÉSICA ESPOL DÁTUM HORIZONTAL: SIRGAS 95 ÉPOCA DE REFERENCIA: 1995 ELIPSOIDE: GRS80

DÁTUM VERTICAL: MAREÓGRAFO DE REFERENCIA:

LOCALIZACIÓN DEL PUNTO

PAÍS	PROVINCIA	CANTÓN	CIUDAD	PARROQUIA	SITIO
ECUADOR	GUAYAS	GUAYAQUIL	GUAYAQUIL	TARQUI	ESPOL

CONTROL HORIZONTAL

COORDENADAS GEOGRÁFICAS	COORDENADAS UTM	COORDENADAS PROYECCIÓN LOCAL	FECHA DE DETERMINACIÓN
LATITUD (° ' ") : 2° 8' 24.52" S	ZONA: 17S	TIPO DE PROYECCIÓN: MERCATOR	ABRIL - 2015
LONGITUD (°'") : 79° 57' 45.37" W	NORTE (m): 9763409.636	NORTE (m): 2005791.938	ORDEN
ALTURA ELIPSOIDAL (m) :	ESTE (m) : 615362.471	ESTE (m): 490723.419	2
PARÁMETROS DE PROYECCIÓN	FALSO NORTE: 2242320.51	FALSO ESTE: 500000.00 FAC	CTOR ESCALA: 0.999272829
LOCAL	LONGITUD MERIDIANO CENTRAL: 79	° 52' 45.16" W LATITUD ORIGEN D	E LA PROYECCIÓN: 2° 11' 33.09" S

CONTROL VERTICAL

ELEVACIÓN (m) : 62.588 ORDEN: FECHA DE NIVELACIÓN : ABRIL - 2015 TIPO DE NIVELACIÓN: GEOMÉTRICA

FOTOGRAFÍA PANORÁMICA

UBICACIÓN

La placa ESPOL-8, se encuentra en el CENAE, área de práctica para la Carrera de Agropecuaria.

Ingresando a la ESPOL continuar por la vía principal (girando en la Y hacia la derecha en dirección al reservorio de AAPP) unos 1600 metros. Antes de llegar a la curva que llega a la Facultad de Diseño y Comunicación Audiovisual (EDCOM), girar a la derecha siguiendo 640 metros camino al CENAE donde se encontrará el hito.

MATERIALIZACIÓN	INSCRIPCIÓN EN LA PLACA	OBSERVACIONES
HITO DE HORMIGÓN TIPO IGM-B	ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL - ESPOL-8 - 2015 - SE PROHIBE DESTRUIR	

ELABORADO SUPERVISADO

ING. JUAN CARLOS PINDO ULICES CEDEÑO MOSQUERA

Monografía de Punto de Control

ENTIDAD EJECUTORA: ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL NOMBRE DEL PUNTO: PLACA IGM COD: C-C-M-P-4 PROYECTO: RED DE CONTROL GEODÉSICA ESPOL DÁTUM HORIZONTAL: SIRGAS 95 ÉPOCA DE REFERENCIA: 1995 ELIPSOIDE: GRS80 DÁTUM VERTICAL: MAREÓGRAFO DE REFERENCIA:

LOCALIZACIÓN DEL PUNTO

	40		200		
PAÍS	PROVINCIA	CANTÓN	CIUDAD	PARROQUIA	SITIO
ECUADOR	GUAYAS	GUAYAQUIL	GUAYAQUIL	TARQUI	ESPOL

CONTROL HORIZONTAL

COORDENADAS GEOGRÁFICAS	COORDENADAS UTM	COORDENADAS PROYECCIÓN LOCAL	FECHA DE DETERMINACIÓN
LATITUD (°'") : 2° 8′ 48.17" S	ZONA: 17S	TIPO DE PROYECCIÓN: MERCATOR	ABRIL - 2015
LONGITUD (°'") : 79° 57' 33.51" W	NORTE (m): 9762683.119	NORTE (m): 2005065.523	ORDEN
ALTURA ELIPSOIDAL (m) ;	ESTE (m): 615728.577	ESTE (m): 491090.092	2
PARÁMETROS DE PROYECCIÓN	FALSO NORTE: 2242320.51	FALSO ESTE: 500000.00 FAC	CTOR ESCALA: 0.999272829
LOCAL	LONGITUD MERIDIANO CENTRAL: 79° 52' 45.16" W LATITUD ORIGEN DE LA PROYECCIÓN: 2° 11' 33.09" S		

CONTROL VERTICAL

ELEVACIÓN (m) : 115.305 ORDEN: FECHA DE NIVELACIÓN : TIPO DE NIVELACIÓN: GEOMÉTRICA

FOTOGRAFÍA PANORÁMICA

UBICACIÓN

La placa IGM C-C-M-P-4, se encuentra empotrada en base de cemento al pie de un hito. En el sector de residencias de profesores junto al reservorio de AAPP.

ACCESIBILIDAD

Ingresando a la ESPOL continuar por la vía principal (girando en la Y hacia la derecha en dirección al reservorio de AAPP) unos 1300 metros. Se encontrará con hito de hormigón del lado derecho de la vía.

MATERIALIZACIÓN	INSCRIPCIÓN EN LA PLACA	OBSERVACIONES
		VER DETALLES EN MONOGRAFÍA DEL IGM

ELABORADO SUPERVISADO

ULICES CEDEÑO MOSQUERA ING. JUAN CARLOS PINDO

BIBLIOGRAFÍA

- Centro de Información Analítica Rusa, A. F. (2015). Centro Analítico e Información Sistemas Glonass. Obtenido de https://glonassiac.ru/en/GPS/
- 2. Elliot Kaplan, Christopher Hegarty. (2006). Understanding GPS, principles and applications.
- 3. Fuerza Aérea EUA, G. d. (Abril de 2015). Official U.S. Government information about the Global Positioning System (GPS) and related topics. Obtenido de http://www.gps.gov/systems/gps/space/
- 4. IGM. (2006). Especificaciones Técnicas para cartografía topográfica a cualquier escala.
- 5. IGM. (2015). REGME. Obtenido de http://www.geoportaligm.gob.ec/wordpress/
- 6. Ruano, M. (2012). Control de la Exactitud Posicional en Cartografía. Obtenido de www.geoportaligm.gob.ec/portal
- 7. Scott Gleaso y Demoz Gebre-Egziabher. (2009). GNNS Aplications and Methods.
- 8. SIRGAS. (2015). Sistema de referencia Geocéntrico para las Américas. Obtenido de http://www.sirgas.org/index.php?id=15
- Topcon. (2015). Topcon Global Gateway. Obtenido de www.topcon.com/