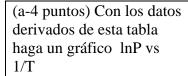
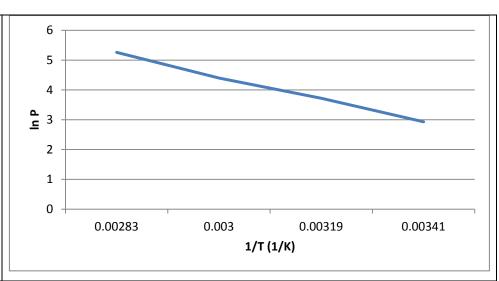


ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE CIENCIAS QUÍMICAS Y AMBIENTALES

EVALUACIÓN DE MEJORAMIENTO DE QUIMICA GENERAL I Resolución y rúbrica


1. Se permite que un trozo de papel de aluminio de 0.022 g reaccione con 8 mL de una solución de HCl 6M. Al respecto, de cada pregunta escriba la respuesta en la tabla y realice los cálculos en el espacio en blanco.


(0 ·) E !! 1 · !!	
(a-2 puntos) Escriba la reacción que ocurre	6HCl + 2Al → 2AlCl3 + 3H2
(b-2 puntos) ¿Cuántos moles tiene el trozo de aluminio?	$n = \frac{0.022 \text{ g}}{27 \text{ g}} x 1 mol = 8.15 x 10^{-4} mol Al$
(c-2 puntos) ¿Cuántos moles de HCl hay en la solución?	Moles = $6M \times 0.008 L = 0.048 \text{ moles HCl}$
(d-2 puntos) ¿Cuántas moles de exceso tiene el reactivo en	Según la estequiometria:
exceso?	$8.15x10^{-4} \text{ moles Al } x \frac{6 \text{ moles HCl}}{2 \text{ moles Al}}$ $= 0.002445 \text{ moles HCl}$
	$0.048 moles HCl x \frac{2 moles Al}{6 moles HCl} = 0.016 moles Al$
	Reactivo en exceso HCl = 0.048 -0.02245 = 0.0255 moles HCl en exceso
(e-2 puntos)¿Qué volumen a 25 °C y 1 at ocupa el producto	PV=nRT
gaseoso?	$(298 \text{ K x } 3 \text{ x } 0.082/2) * 8.15 \text{ x } 10^{-4} = 30 \text{ mL}$

Datos: Densidad del aluminio = 2.699 g/cm³; Pesos atómicos: Aluminio 27 y Cloro 35.5.

2. Un	compuesto	orgánico
desconocid	lo presen	ta las
presiones	de vapor a	diferentes
temperatura	as, como se i	ndica a la
derecha. C	Con esta in	formación
llene las	tablas que	e siguen
contestando	o a las pregun	ıtas

Temperatura (°C)	20+273=293	40+273=313	60+273=333	80+273=353
Presión (mmHg)	18.7	41.4	81.7	192.5
lnP	2,93	3,72	4,4	5,26
1/T	0.00341	0.00319	0.003	0.00283

(b-2 puntos) De la gráfica determine el calor de vaporización

Tomando 2 puntos del gráfico obtener la pendiente:

$$m = \frac{3.72 - 4.4}{0.00319 - 0.003} = 3578.9$$

 $\Delta H_{\text{vap}} = -m \times R$

$$\Delta H_{\text{vap}} = -3578.9 \ x \ 8.314 \ \frac{J}{mol-K} = \ 29754.97 \ \text{J/mol}$$

(c-2 puntos) De la gráfica determine la temperatura de ebullición normal (1 at)

Para determinar temperatura de ebullición normal se puede intersectar en la recta a 1 atm ó 760 mmHg o se puede calcular en la ecuación de Clausius Clapeyron Punto 2: Ln $P_2 = 6.633$ (ln 760 mmHg) T = ?

y si tomamos como punto 1 $\ln P_1 = 5.26$ y $T_1 = 353$

Aplicando la ecuación:

$$\frac{\text{Ln } \underline{P_2}}{P_1} = \frac{-\Delta H v}{R} \quad (\underline{1}_2 - \underline{1})$$

$$(6.63-5.26) = (29754.97) (\underline{1} - \underline{1})$$

$$T_2 = 353$$

$$T_2 = 347.32 \text{ K} - 273 = 74.32 \text{ }^{\circ}\text{C}$$

(d-2 puntos) A la presión de 0. 1 at cuál es la temperatura de vaporización?

El cálculo de la pendiente de la recta nos da: m = -4447.37 (Determinación de pendiente 2 puntos y considerando uno de los puntos 0.1 atm de presión) Igualando al término de la pendiente en la Ecuación de Clausius Clapeyron

$$m \dagger = -\Delta H v$$

$$-\Delta Hv \dagger = \frac{-4447.37 * 8.314 J}{\text{mol}^{\circ} K} = \frac{36975.42J}{\text{mol}}$$

3. Si la plata es un metal con celda unitaria centrada en las caras, masa atómica 107.9 g/mol y radio atómico 1.44 Å, responda a las preguntas dentro de la Tabla.

(a-2 puntos) Dibuje de forma esquemática la celda unitaria	Cúbica centrada en las caras
(b-2 puntos) Cuantas átomos contiene la celda unitaria?	4 átomos
(c-2 puntos) Calcule el volumen de la celda	$a = \sqrt{8r} = \sqrt{8} \times 1.44 \text{ Å} = 4.073 \text{ Å} \times \frac{10^{-8}}{1 \text{ Å}} = 4.073 \times 10^{-8} \text{ cm}$
	Si $V = a^3$
	$V = (4.073 \text{ x } 10^{-8} \text{ cm})^3 = 6.74 \text{ x } 10^{-23} \text{ cm}^3$
(d-2 puntos) Calcule la eficiencia	Las esferas ocupan el 74 % del volumen total de la estructura.
de empaquetamiento de la celda	
(e-2 puntos) Determine con estos el	6.022×10^{23}
Número de Avogadro	

4. Una solución acuosa que contiene 10 % en masa de NH_4OH tiene una densidad es de 1.02 g/mL. Calcule: a (2 puntos) Molaridad de la solución; b (2 puntos) Molalidad de la solución; c (2 puntos) Fracción molar del soluto; d (2 puntos) pH de la solución, e (2 puntos) Volumen en L de solución que contiene 0.125 moles de NH_4OH

Constante de ionización de $NH_4OH~Kb = 1.80~x10^{-5}$

	Pregunta	Cálculos	
a	Molaridad	$10 \ g \ x \ \frac{1 \ mol}{35 \ g \ NH4OH} = 0.286 \ moles \ NH4OH$	
		V = (100 g)(mL/1.02 g)(L/1000 mL) = 0.0980 L	
		M = 0.286 mol/0.0983 L = 2.91 M	
b	Molalidad	m = 0.286 mol/0.09 kg = 3.27 m	
c	Fracción molar	Xm = moles del componente/ moles totales de los componentes:	
		Xm= 0.286 moles NH4OH/5.22 moles componentes = 0.055 del NH4OH	
		Por diferencia la Xm del agua es 0.945 del H ₂ O	
d	pH de la	$[OH] = \sqrt{1.8 \times 10^{-5} \times 2.91 = 7.23 \times 10^{-3}}$	
	solución	$pOH = -\log(7.23x \ 10^{-3}) = 2.14$	
		pH = 14 - 2.14 = 11.86	
e	Volumen (L)	M = n/V despejando $V = n/M$	
		V = 0.125 mol/2.91 mol/L = 0.04296 L = 42.96 mL	

5. Aplicación del Principio de Le Chatelier: Considere el siguiente reacción en equilibrio: $N_2(g) + 3 H_2(g) \leftarrow \rightarrow 2 NH_3(g)$ $\Delta H^o = -46.2 \text{ kj/mol}$

Analice y pronostique la dirección en que se desplaza el equilibrio cuando:

(Pun-tos)	Acción o perturbación	Análisis	Dirección del desplazamiento
a (2)	La temperatura se eleva	Tratándose de un proceso exotérmico (ΔH <0) el calor es un producto. En la fórmula de la constante iría en el numerador. $K = [NH_3]^2/[H_2]^3[N_2]$ En una reacción exotérmica el calor se produce, aumenta el valor del denominador, por lo que los reactivos tienen que aumentar es decir el equilibrio se desplaza hacia los reactivos (izquierda).	
b (2)	Se agrega más N2 gaseoso a la mezcla de reacción	De acuerdo a la fórmula de la constante, aumentando N ₂ , el sistema tratará de ajustar dicha perturbación aumentando NH3, entonces la reacción se desplazará hacia los productos (derecha).	
c (2)	Se retira algo de NH3 de la mezcla	Si se disminuye NH3 también tienen que disminuir los reactivos. La reacción se desplazará hacia los productos (derecha).	
d (2)	La presión del sistema se incrementa	Al incrementar la presión el sistema tratará de dirigirse hacia el menor número, o sea hacia los reactivos.	
e (2)	Se agrega un catalizador a la mezcla de reacción	La función del catalizador es incrementar la velocidad de la reacción. La adición del catalizador no afectará a las concentraciones ni de productos ni de reactivos, por tanto, la reacción no sufrirá ningún desplazamiento.	No se desplaza