

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS

DEPARTAMENTO DE CIENCIAS QUÍMICAS Y AMBIENTALES

Año:2015	Período: Segundo Término
Materia: QUÍMICA GENERAL IB	Coordinador: Ing. Quím. Diego Muñoz, M.Sc.
Evaluación: Primera	Fecha: 11 de Diciembre/2015

COMPROMISO DE HONOR

a calcu sponsat la part otas, ni a	uladora <i>ordinaria</i> para cálculos ariti ble de la recepción del examen; y, cua te anterior del aula, junto con algún o apuntes adicionales a las que se entre	sente examen está diseñado para ser resuelto de manera individual, que puedo usa méticos, un lápiz o esferográfico; que solo puedo comunicarme con la person lquier instrumento de comunicación que hubiere traído, debo apagarlo y depositarlotro material que se encuentre acompañándolo. No debo además, consultar libros eguen en esta evaluación. Los temas debo desarrollarlos de manera ordenada. constancia de haber leído y aceptar la declaración anterior.	na Io
Como es piar".	studiante de ESPOL me comprome	eto a combatir la mediocridad y actuar con honestidad, por eso no copio ni dej	jo
rma		NÚMERO DE MATRÍCULA: PARALELO:	
EMA:	1: ESTRUCTURAS DE	LEWIS. (10 PUNTOS)	
1)	Grafique las estructuras de	e Lewis de los siguientes compuestos.	
	H ₂ O	AlF ₃	
-	NH ₃	HNO ₃	
-	go 2		
	SO ₄ ² -		

TEMA 2: ESTEQUIOMETRÍA. (10 PUNTOS)

2) Balancear la siguiente ecuación química y determinar:

 $HNO_3 + HBr \rightarrow Br_2 + NO + H_2O$

a) Los coeficientes estequiométricos.

b) Los gramos de ácido nítrico que se requieren para producir 650 g de Bromo.

Elemento

Br

N

O

Η

Masa

80

14

16

atómica (g/mol)

c) Al producir 650 g de Bromo, cuántos litros de NO se obtienen a condiciones normales.

d) Considerando el literal "c", calcule el rendimiento porcentual si experimentalmente se obtuvieron 55 L de NO.

TEMA 3: GEOMETRÍA MOLECULAR (10 PUNTOS)

3) Tomando en cuenta el átomo central, complete la tabla referente a la geometría molecular de las siguientes especies químicas: Fluoruro de fosforilo (POF₃) y Difluoruro de Azufre (SF₂).

Compuesto	# Dominio de electrones (pares enlazantes y pares no enlazantes)	Geometría por dominio de e ⁻ (gráfico)	Geometría por dominio de e ⁻ (nombre de la estructura)	Geometría molecular (gráfico)	Geometría molecular (Nombre de la estructura)
POF ₃					
SF ₂					

TEMA 4: DEFINICIONES VARIAS. (10 PUNTOS)

4) Seleccione el término que corresponde a cada definición planteada.

Fuerzas	Reacción	Geometría	Energía	Geometría	Enlace	Enlace	Estructura	Reacción
intermoleculares	endotérmica	molecular	de	de	covalente	iónico	de Lewis	exotérmica
			ionización	dominios				

No.	Definición	Término apropiado
1	Es la energía mínima requerida para separar un electrón del	
	estado basal del átomo o ion aislado en estado gaseoso.	
2	Se refiere a la fuerza que mantiene unidos a los átomos	
	compartiendo uno o más pares de electrones.	
3	Arreglo de electrones alrededor del átomo central de una	
	molécula o ion.	
4	Fuerza que existen entre las moléculas y está relacionada a	
	las propiedades físicas de líquidos y sólidos.	
5	Proceso en el que el sistema absorbe calor.	

TEMA 5: ECUACIONES QUÍMICAS. (10 PUNTOS)

5) Balancee la siguiente ecuación utilizando el método redox.

$$K_2Cr_2O_7 + KI + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + K_2SO_4 + I_2 + H_2O$$

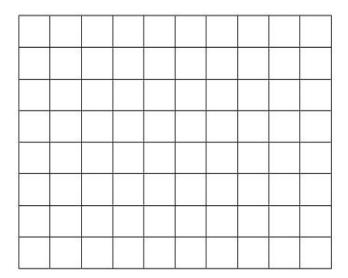
TEMA 6: LÍQUIDOS – CURVAS DE CALENTAMIENTO. (10 PUNTOS)

- 6) Un cambio de entalpía se presenta durante el proceso de enfriamiento de 50 g de vapor de agua que se encuentra a 150 °C y se congela a -30 °C a una presión constante de 1 atm. Se solicita realizar lo siguiente:
 - a) Graficar la curva de enfriamiento y con ayuda de flechas, indicar: la fase sólida, líquida, gaseosa, punto de fusión, punto de ebullición, equilibrio sólido-líquido y equilibrio líquido-vapor.
 - b) Calcular la cantidad de energía (en kJ) requerida para la conversión antes mencionada.
 - c) De acuerdo al resultado determine si la reacción es exotérmica o endotérmica, justifique su respuesta.

DATOS:

CALORES ESPECIFICOS AGUA EN TRES FASES (J / g - °C)								
VAPOR	VAPOR LÍQUIDO SÓLIDO							
1.99 J / g .°C	4.184 J / g . °C	2.09 J / g . °C						
Camb	Cambios de entalpía (kJ / mol)							
Calor de vaporización		Calor de fusión						
40.67 kJ/mol.		6.01 kJ/mol						

TEMA 7: DIAGRAMA DE FASES. (10 PUNTOS)


7	Construir	el	diagrama	de	fases	del	dióxido	de	carbono.	considerando o	que	tiene:
• ,	O 0 110 01 0711				10000				••••	• • • • • • • • • • • • • • • • • • • •	7	

Punto triple a -56.6 °C a 5.1 atm

Punto crítico a 31°C a 72.8 atm

Punto de sublimación normal a -78 °C

- a) Indicar los puntos y las fases del dióxido de carbono que se forman en el gráfico.
 En base al diagrama de fases:
- b) Indicar cuáles son los cambios de fases que podrían darse si a una presión constante de 10 atm. se aumenta la temperatura desde -60 °C hasta 50 °C.
- c) Indicar lo que habría que hacer para sublimar dióxido de carbono que se encuentra a -60 °C y a una presión constante de 4 atm.

α .		
Se	leccione	ı

b)		
c)		
<i>C)</i>		

TEMA 8 FUERZAS INTERMOLECULARES (10 PUNTOS)

8) De las siguientes especies químicas establezca el tipo de fuerzas, el punto de ebullición y la volatilidad de las mismas.

Especies Químicas	Tipos de fuerzas intermoleculares	Punto de ebullición (bajo o alto)	Presenta Volatilidad (si o no)
a. LiF			
b. SO ₂			
c. NH ₂ NH ₂			NO
d. CH ₄	Dispersión de London.		

TEMA 9: ECUACIÓN DE CLAUSIUS CLAPEYRON. (10 PUNTOS)

9) La presión de vapor del etanol es 115 torr a 307.9 K. Si ΔHvap del etanol es 40.5 kJ/mol, calcular la temperatura (K) cuando la presión de vapor es 760 torr.

Dato adicional:

 $R=8.314\ J/mol{\cdot}K$

TEMA: 10 SÓLIDOS. (10 PUNTOS)

10) Un metal cristaliza en una red cúbica centrada en el cuerpo. Si su radio atómico es 1.24 nm. ¿Cuántos átomos existirán en 1 cm³?