

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS

"DISEÑO DE UN PLAN DE MEJORA CONTINUA DE PRODUCCIÓN DE CHOCOLATES Y CARAMELOS PARA UNA EMPRESA DE ALIMENTOS"

PROYECTO DE GRADUACIÓN

PREVIA A LA OBTENCIÓN DEL TÍTULO DE: INGENIERÍA EN AUDITORÍA Y CONTROL DE GESTIÓN

PRESENTADO POR:

PAZMIÑO CÁCERES STALYN ORLANDO

GUAYAQUIL - ECUADOR 2015

AGRADECIMIENTO

Para la familia, amigos de vida y seres queridos por el apoyo brindado de diversas maneras para la culminación de este proyecto. A ese ser supremo que me permite cumplir lo propuesto.

Stalyn Pazmiño Cáceres.

DEDICATORIA

Dedicado **a** mis padres, sob**r**ino, novia, familia, amigos de la vida y sobre todo a los que piensan que nunca es tarde para cumplir con sus sueños.

Stalyn Pazmiño Cáceres.

TRIBUNAL DE GRADUACIÓN

MIM Elkin Angulo Ramírez Director de Proyecto de Graduación MAE Jorge Ugarte Fajardo Presidente

MAE Lorena Bernabé Argandoña Vocal del FCNM

DECLARACIÓN EXPRESA

La responsabilidad del contenido de este trabajo final de graduación de Grado, corresponde exclusivamente al señor Stalyn Orlando Pazmiño Cáceres; y el patrimonio intelectual de la misma a la Escuela Superior Politécnica del Litoral.

Stalyn Pazmiño Cáceres

RESUMEN

En una empresa donde se producen chocolates y caramelos de reconocimiento a nivel nacional, se propone como objetivo principal buscar proyectos rentables para el beneficio del personal y los accionistas, por esta razón se implementó un proyecto de mejora continua como plan piloto en las áreas de producción.

Para conocer cuáles son las áreas, procesos, máquinas y operaciones con menor eficiencia productiva, se realizó por medio de recolección de datos y tablas estadísticas la identificación de los mismos. Luego de esto clasificaron y registraron los tipos de paros en producción recurrentes o de mayor impacto.

A continuación se procedió a generar una presentación para dar a conocer el proyecto de mejora continua ante el personal operativo y administrativo, con el fin de que luego de esto, se involucren y generen ideas que ayuden a la mejora de los procesos. Para esto, el personal cuenta con el apoyo de "tutores" los cuales asesoran, formalizan la presentación y sustentación de cada uno de los proyectos planteados.

Luego de la presentación de los proyectos, se recopilaron cada uno de ellos y se los coloca en una lista para su posterior análisis y aprobación por parte de la Gerencia Operativa. Se escogen los proyectos factibles para implementarlos previo a un análisis de pay-back, con el fin de obtener el retorno mejor posible y así sustentar su implementación.

Se implementaron los proyectos escogidos y se da el seguimiento, luego de la implementación por medio de indicadores de gestión productiva, se monitorear los cambios obtenidos y en caso de que existiera alguna desviación hacia el objetivo planteado, realizar las respectivas correcciones.

Por último, se registraron y presentaron las conclusiones de los proyectos implementados para verificar el cumplimiento de los objetivos de cada uno de ellos.

ÍNDICE GENERAL

RE	SUMEN	VI
ĺNI	DICE GENERAL\	/
ĺNI	DICE DE TABLAS	ΧI
ĺNI	DICE DE FIGURAS	(III
ÍNI	DICE DE GRÁFICOS	ΧV
IN	RODUCCIÓN X	VII
1.	GENERALIDADES	18
	1.1. ANTECEDENTES	18
	1.2. OBJETIVO GENERAL	18
	1.3. OBJETIVOS ESPECÍFICOS	19
	1.4. METODOLOGÍA	19
2.	MARCO TEÓRICO	20
	2.1. DEFINICIONES BÁSICAS	20
	2.2. GENERALIDADES DE LA MEJORA CONTINUA	23
	2.3. HERRAMIENTAS DE LA MEJORA CONTINUA	24
	2.3.1. CICLO DE DEMING	24
	2.3.2. PAY BACK	25
	2.3.3. DIAGRAMA DE PARETO	26

	2.3.4.	DIAGRA	AMA DE ISHIKAWA	27
	2.3	.4.1.	APLICACIÓN DEL DIAGRAMA DE ISHIKAWA	. 29
	2.4. ASPEC	TOS LEG	ALES Y NORMATIVOS	31
	2.4.1.	NORMA	A ISO 9001:2008 (0.2 ENFOQUE BASADO EN PROCESOS)	. 31
	2.4.2.	NORMA	A ISO 9001:2008 (8.4 ANÁLISIS DE DATOS)	33
	2.4.3.	NORMA	ISO 9001:2008 (8.5.1 MEJORA CONTINUA)	. 34
3.	DIAGNÓST	ICO DE L	A SITUACIÓN INICIAL	. 35
	3.1. HISTO	RIA DE L	A EMPRESA	. 35
	3.2. DEFIN	ICIONES	ESTRATÉGICAS DE LA EMPRESA	. 36
	3.2.1.	VISIÓN		36
	3.2.2.	MISIÓN	I	. 36
	3.2.3.	POLÍTIC	CA INTEGRADA DE GESTIÓN	. 37
	3.2.4.	MAPA I	DE PROCESOS	. 37
	3.3. DESCR	RIPCIÓN I	DE LOS PRINCIPALES PROBLEMAS Y ANÁLISIS DE CAUSA	
	RAÍZ			. 39
4.	ELABORAC	IÓN DEL	PROYECTO DE MEJORA CONTINUA	. 45
	4.1. SOCIA	BILIZACI	ÓN AL PERSONAL	. 45
	4.1.1.	CRONO	GRAMA DEL PROYECTO	. 55
	4.1.2.	LISTAD	O DE IDEAS GENERADAS	. 57
	4.1.3.	IDEAS F	INALES PARA ANÁLISIS DE IMPLEMENTACIÓN	67
	4.2. PROYE	CTOS A	IMPLEMENTACIÓN	85

	4.2.1.	PROYECTO 7 SERVCO	85
	4.2.2.	PROYECTO 3 VACUUMS	91
	4.2.3.	PROYECTO 2 SCHIB#1	94
5.	CONCLUSI	IONES Y RECOMENDACIONES	98
	5.1. CONC	CLUSIONES	98
	5.2. RECO	MENDACIONES	99
DIE	OLIOCDATÍA		101

ÍNDICE DE TABLAS

TABLA 3.1 TABLA GENERAL DE HORAS DE PAROS NO PROGRAMADOS DE	
FEBRERO A MARZO 2012	42
TABLA 3.2 TABLA POR ÁREAS DE HORAS DE PAROS NO PROGRAMADOS DE	
FEBRERO A MARZO 2012	43
TABLA 4.1 CRONOGRAMA DE PROYECTO MEJORA CONTINUA	55
TABLA 4.2 RESUMEN DE LOS PROYECTOS RECOPILADOS	56
TABLA 4.3 LISTADO DE IDEAS GENERADAS	57
TABLA 4.4 CLASIFICACIÓN DE IDEAS APROBADAS	. 66
TABLA 4.5 IDEAS DE MEJORAS FACTIBLES PARA IMPLEMENTACIÓN	67
TABLA 4.6 PAY BACK CLASIFICADOR DE CARAMELOS	69
TABLA 4.7 PAY BACK REDISEÑO GUÍA DE PLATOS	71
TABLA 4.8 VARIACIÓN EN DOSIFICACIÓN DE GLUCOSA	73
TABLA 4.9 DISMINUCIÓN EN EL CONSUMO DE AGUA Y MANO DE OBRA	
ΕΝ ΙΙΜΡΙΕΖΑ	75

TABLA 4.10 AUMENTO DE PRODUCTIVIDAD EN MÁQUINAS EMPAQUE PRIMARIO	
DE COCOA	77
TABLA 4.11 REDUCCIÓN DE RETRABAJO EN BARRAS DE 28 G	79
TABLA 4.12 REDUCCIÓN DE DESPERDICIO DE CHOCOLATE MICRO II	81
TABLA 4.13 IDEAS DE MEJORA FINALES PARA IMPLEMENTACIÓN	83
TABLA 4.14 DATOS DE SOBRE CONSUMO PROMEDIO POR BATCH DE GLUCOSA	
MES DE ILINIO 2012	92

ÍNDICE DE FIGURAS

FIGURA 2.1 DIAGRAMA CAUSA-EFECTO ILISTRACIÓN	31
FIGURA 3.1 MAPA DE PROCESOS	38
FIGURA 3.2 DIAGRAMA CAUSA-EFECTO DE PRODUCTIVIDAD EN LA PLANTA	41
FIGURA 4.1 INTRODUCCIÓN AL TEMA	46
FIGURA 4.2 EJEMPLO DE POSIBLES CAUSAS DE DAÑOS	46
FIGURA 4.3 CICLO PARA LA BÚSQUEDA DE LA MEJORA CONTINUA	47
FIGURA 4.4 CONCEPTOS DE MEJORAMIENTO CONTINUO EN LA EMPRESA	
CICLO PARA LA BÚSQUEDA DE LA MEJORA CONTINUA	47
FIGURA 4.5 CONCEPTO IDEAL DE MEJORAMIENTO CONTINUO	
FIGURA 4.6 OBJETIVOS ESTRATÉGICOS	
FIGURA 4.7 OBJETIVOS ESPECÍFICOS	
FIGURA 4.8 GRUPOS DE MEJORA	
FIGURA 4 O TUTORES DE CRUROS	Ε0

FIGURA 4.10 EQUIPOS O GRUPOS DE MEJORA CONTINUA	
POR ÁREAS	50
FIGURA 4.11 PROCEDIMIENTO PARA ELABORACIÓN DE PROYECTOS	. 51
FIGURA 4.12 PRIMERA ETAPA (PLANTEAMIENTO DE IDEAS)	. 51
FIGURA 4.13 SEGUNDA ETAPA (ANÁLISIS DE PROPUESTAS)	. 52
FIGURA 4.14 TERCERA ETAPA (DESARROLLO DE PROPUESTAS)	. 52
FIGURA 4.15 CUARTA ETAPA (SEGUIMIENTO DE RESULTADOS)	53
FIGURA 4.16 QUINTA ETAPA (ANÁLISIS DE LOS PROYECTOS PLANTEADOS)	. 53
FIGURA 4.17 FECHA DE INICIO DEL PROYECTO	. 54
FIGURA 4.18 HERRAMIENTAS PARA LA EJECUCIÓN DEL	
PROYECTO	54
FIGURA 4.19 DIAGRAMA CAUSA-EFECTO DISMINUCIÓN DE RETRABAJO EN BARRA	'S
DF 28 G	87

ÍNDICE DE GRÁFICOS

GRÁFICO 2.1 TIPOS DE PAROS NO PROGRAMADOS 2	7
GRÁFICO 3.1 CLASIFICACIÓN DE PAROS NO PROGRAMADOS4	0
GRÁFICO 4.1 IDEAS GENERADAS DEL PROYECTO DE MEJORA CONTINUA5	6
GRÁFICO 4.2 PORCENTAJE DE RETRABAJO MENSUAL EN EL 2011 8.	5
GRÁFICO 4.3 PORCENTAJE DE RETRABAJO GENERADO LUEGO DE	
MPLEMENTACIÓN DE PROYECTO DE MEJORA CONTINUA 8	9
GRÁFICO 4.4 PORCENTAJE DE PAROS NO PROGRAMADOS GENERADO LUEGO D	ÞΕ
MPLEMENTACIÓN DE PROYECTO DE MEJORA CONTINUA9	0
GRÁFICO 4.5 SOBRE CONSUMO GENERADO LUEGO DE IMPLEMENTACIÓN	
DE PROYECTO DE MEJORA CONTINUA9	3
GRÁFICO 4.6 RETRABAJO GENERADO LUEGO DE IMPLEMENTACIÓN DE	
PROYECTO DE MEJORA CONTINUA95	5
GRÁFICO 4.7 DESPERDICIO DE EMPAQUE PRIMARIO LUEGO DE	
IMPLEMENTACIÓN DE PROVECTO DE MEJORA CONTINUA 96	6

GRÁFICO 4.8	PAROS NO	PROGRAMADO	GENERADO	LUEGO	DE IMPLEI	MENTACIÓN
DE PROYECTO	D DE MEJORA	A CONTINUA				97

INTRODUCCIÓN

Las empresas a lo largo de su vida buscan obtener mayor rentabilidad para llegar a los objetivos propuestos. Para alcanzar estos objetivos, se plantean varios proyectos por parte de las cabezas principales de las áreas claves. Estos proyectos por lo general son a corto o largo plazo que se enfocan en lanzamiento de nuevos productos, campañas publicitarias, mejora del ambiente de trabajo, etc.

El modelo de mejora continua se enfoca básicamente en los procesos productivos, es decir, que busca mejorar los procesos que actualmente existen mediante herramientas estadísticas de control y seguimiento en procesos eficientes para con esto obtener ahorros significativos que se derivan en costos de producción bajos y a la vez mayor rentabilidad "casa adentro".

En conclusión, es la identificación y reducción de problemas constantes en los procesos productivos y su continua evolución.

CAPÍTULO 1

1. GENERALIDADES

1.1. ANTECEDENTES

La empresa tiene una larga trayectoria en el campo de la producción y comercialización de chocolates y confites, tomando en cuenta el mejoramiento continuo de los procesos, se vio la necesidad de implementar un proyecto de mejora continua, con la finalidad de aumentar la productividad, reducir los costos de producción y aumentar la eficacia de las líneas de procesos. Este proyecto permite realizar la recolección, clasificación y evaluación de las posibles oportunidades de mejoras con el fin de que las mismas sean ejecutadas para cumplir con el objetivo principal.

1.2. OBJETIVO GENERAL

Diseñar un Plan de Mejora continua a una empresa de alimentos especializada en chocolates y caramelos.

1.3. OBJETIVOS ESPECÍFICOS

- Realizar la sociabilización del proyecto de mejora continua por medio de reuniones con el personal operativo, con el fin de que se integren y propongan las ideas que se plasmarán en proyectos.
- Realizar el análisis de las ideas expuestas por los trabajadores de la empresa y clasificarlas con el fin de exponer el análisis de factibilidad para obtener su aprobación.
- Desarrollar los proyectos aprobados por parte de gerencia en conjunto con los generadores de los mismos, con el fin de darle seguimiento a las actividades realizadas y obtener los resultados esperados.

1.4. METODOLOGÍA

La metodología para realizar este trabajo es mediante la observación directa de las actividades que realizan los trabajadores en su jornada laboral, recolección de datos que permitan analizar y medir cada uno de los proyectos aprobados; y realizar el seguimiento de los mismos para realizar los correctivos oportunos y lograr las metas propuestas.

El diseño del plan de mejora continua se enfoca en la planta de producción de una empresa de alimentos especializada en chocolates y caramelos.

CAPÍTULO 2

2. MARCO TEÓRICO

2.1. DEFINICIONES BÁSICAS

Objetivo: Meta que se pretende alcanzar, por medio de actividades planificadas y controladas periódicamente.

Procesos de producción: Es un conjunto de acciones que se encuentran interrelacionadas de forma dinámica y que se orientan a la transformación de ciertos elementos de entrada que tras un proceso se convierten en elementos de salida (productos).

Eficiencia: Es la obtención de los objetivos planteados utilizando menos recursos (insumos, tiempo, mano de obra) que los programados.

Eficacia: Es el cumplimiento de los objetivos planteados con los recursos (insumos, tiempo, mano de obra) asignados desde el inicio.

Productividad: Es la relación que existe entre los elementos, llamados insumos, y la producción realizada en una serie de actividades, que dan

como resultado un producto. Teniendo como objetivo la utilización eficiente de estos recursos.

Paros programados: Es el tiempo tomado para realizar actividades cotidianas (ej. Limpiezas por cambio de turnos, reuniones, alimentación, ir a sanitarios, etc.).

Paros No programados: Es el tiempo asociado a paros imprevistos, no contemplados y no justificados (ej. Falta de material, falla de energía eléctrica, etc.)

Cuello de botella: Máquina o proceso que limita la velocidad de la línea de producción. Es específico de cada línea, cada producto y cada versión del producto.

Indicadores de producción: Son datos que nos ayudan a identificar alguna desviación que exista cuando elaboramos un producto o brindamos un servicio, los mismos que pueden ser cualitativos y cuantitativos:

 Cualitativos: Estos indicadores están ligados básicamente a la calidad de un servicio o producto. Cuantitativos: Estos indicadores están basados en parámetros de cantidad y tiempo. El objetivo principal es medir la productividad de los procesos productivos.

Control: Es la observación y vigilancia periódica de uno o varios procesos con el fin de que se cumpla lo planificando reduciendo o eliminando los productos no conformes.

Producto no conforme: Es un producto o servicio que no cumple con los parámetros o requisitos requeridos.

Calidad: Grado en el que un conjunto de característica inherentes cumplen con los requisitos [1].

Lluvia de ideas: Conocido también como brainstorming, es la participación de un grupo determinado de personas con el fin de contribuir con ideas (soluciones) de un tema específico o punto de mejora.

Análisis: Identificar, clasificar y examinar un determinado grupo de elementos, para lograr el objetivo propuesto.

Estándares de Mano de Obra: Colección de datos claves de la operación establecidos para una línea específica, un producto o grupo de productos similares

2.2. GENERALIDADES DE LA MEJORA CONTINUA

Las empresas, instituciones e industrias al momento de ser creadas realizan sus actividades con el fin de obtener los objetivos planteados. A medida que pasa el tiempo, dichos objetivos van cambiando y por ende las empresas van evolucionando, buscando cada día ser eficaces, buscando mantenerse en el mercado y con esto se identifican y analizan sus procesos, reducen lo que consideran ineficiente y aumentan su capacidad de producción. Es por esta razón que se emplea el concepto de Mejora continua [2].

El concepto de mejora continua es sino el hecho de considerar que ningún tipo de proceso está terminado, ya que siempre hay algo por hacer. Es decir, que habrá una evolución hacia la eficiencia de dichos procesos los mismos que no son estáticos, sino mas bien dinámicos. La mejora continua ayuda a identificar áreas de mejora, planea como realizar dichas mejoras, implementa, verifica los resultados obtenidos de esa implementación y a la vez actúa para corregir una o varias desviaciones surgidas. Este ciclo permite desarrollar las respuestas a necesidades que se generan por el entorno

actual con el fin de dar un mejor producto o servicio a los clientes o usuarios.

2.3. HERRAMIENTAS DE LA MEJORA CONTINUA

2.3.1. Ciclo de Deming

Una herramienta principal de la mejora continua en todas las empresas es el Ciclo de Deming (William Edwards Deming) o más conocido Ciclo PDCA (Plan, Do, Check, Act) (Planear, Hacer, Verificar, Actuar).

- Planear: Establecer objetivos, Identificar las áreas y procesos a mejorar.
- Hacer: Aplicar las ideas generadas, documentar las acciones.
- Verificar: Dar seguimiento a los cambios que se hayan generado a lo largo de la implementación de los proyectos.
- Actuar: Corregir en el camino las desviaciones detectadas en la verificación.

2.3.2. Pay-back

También llamado "periodo de maduración", es un proceso mediante el cual las empresas se hacen una idea aproximada del tiempo que tardarán en recuperar el desembolso inicial invertido en el proceso productivo, es decir, el tiempo (días, meses o inclusive años) que tarda el proyecto en hacer cero el valor invertido. Este criterio proporciona más una medida de la liquidez del proyecto, que de su rentabilidad [3].

Para saber cuáles son las mejores inversiones a escoger, se consideran las que tengan un menor tiempo de. En caso de que se plantee un proyecto, se decidirá la aprobación de mismo referenciándolo con el pay-back máximo que se establezca.

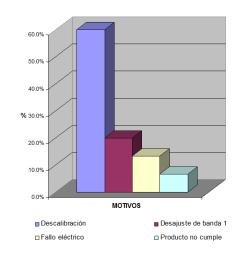
Este método muestra varias observaciones, las que se dan a conocer a continuación:

- Mide tiempo en el que se va a tomar la recuperación del proyecto, mas no la rentabilidad del mismo.
- El valor del dinero en el tiempo, no está considerado.
- El flujo de efectivo posterior a la recuperación de la inversión tampoco está considerado.

2.3.3. Diagrama de Pareto

Es una técnica de representación gráfica que estable que de un determinado número de elementos presentados, se clasifican los pocos vitales de los muchos triviales, es decir, que prioriza los problemas relevantes para buscar soluciones, implantarlas y dar el seguimiento oportuno. Esta regla dice: "el 80% de los problemas vienen del 20% de las causas".

El procedimiento consiste en:


- Definir qué problemas se van a investigar y como recolectar la información relacionada.
- Registrar la información obtenida en una tabla y ordenarla en forma descendente según los parámetros (frecuencia, costos, etc.).
- Calcular el porcentaje individual y el acumulado con relación al total del parámetro medido.
- Graficar los resultados medidos.

En siguiente el siguiente gráfico [2.1] se muestra un ejemplo de un diagrama de Pareto relacionado a los tipos de paros no programados de en una máquina de empaques.

Gráfico 2.1 Tipos de Paros no programados

DIAGRAMA DE PARETO DE LOS PAROS NO PROGRAMADOS EN EMPAQUE 1

MOTIVO	FREC.	%	% ACUM
Descalibración	9	60.0%	60.0%
Desajuste de banda 1	3	20.0%	80.0%
Fallo eléctrico	2	13.3%	93.3%
Producto no cumple	1	6.7%	100.0%
TOTAL	15	100 0%	

Fuente: Balcón estadístico de la empresa.

2.3.4. Diagrama de Ishikawa

El diagrama de causa – efecto que es llamado también como el "diagrama de las espinas de pescado" **por** la forma que tiene. Pero también es llamado por el apellido de su creador Ishikawa quien lo desarrolló para facilitar el análisis de uno o varios problemas mediante la representación de la relación entre un efecto y todas sus causas o factores posibles que originan dicho efecto, por este motivo recibe el nombre de "Diagrama de causa – efecto" o diagrama causal [4].

Este diagrama fue creado por Kaoru Ishikawa y su forma se asemeja a una espina de pescado, el objetivo de esta herramienta es tener a la mano un gráfico fácil y rápido de interpretar y a la vez dar conocer la relación entre los efectos y las causas que producen determinado problema objeto de estudio, hasta obtener el verdadero objetivo que es llegar a la causa raíz.

El diagrama de espina de pescado es una herramienta ordenada y sistemática que genera posibles causas a un determinado tema.

Sus aplicaciones son muy variadas, las que se muestran a continuación:

- Identificar las posibles causas de una situación problema y agruparlas por categorías para un análisis eficaz.
- Analizar aquellas relaciones entre las posibles causas y efectos de un proceso productivo en el cual se planea mejorar.
- Iniciar o continuar la mejora de los procesos productivos.
- Juntar las ideas que generan los miembros del equipo sobre determinada actividad relacionadas con los procesos y la calidad.
- Fomentar el pensamiento crítico del personal, con el fin de que aporten con soluciones efectivas.

 Tener una visión macro y estructurada de una situación previo a la identificación de los posibles factores de origen de dicho cuestionamiento,

2.3.4.1. Aplicación del diagrama de Ishikawa.

El objetivo de realizar un Diagrama de Causa – Efecto, se presenta a continuación:

- Establecer el efecto cuyas causas van a identificarse y colocarlos en el diagrama.
- Dibujar una línea horizontal larga y colocar en un extremo el efecto definido.
- Identificar los factores primarios a través de una tormenta en forma de líneas diagonales.
- Escribir los siguientes factores llamados secundarios,
 luego los factores terciarios, etc., con el mismo
 método de una tormenta de ideas.
- Para ayudar a determinar las posibles causas las preguntas comunes de ¿Quién? ¿Qué? ¿Dónde? ¿Cuándo? ¿Cómo? ¿Cuánto?
- Luego se analiza y a la vez se selecciona las posibles causas reales.

 Probar la validez de la secuencia causal, es decir, empezando desde la causa raíz seguir el razonamiento hasta el efecto investigado y comprobar que tiene sentido lógico.

Cuando se terminar un diagrama de pescado se puede descubrir que una "rama" tiene pocas causas en comparación al resto, esto podría ser que dicha rama requiere un estudio más en profundidad, debido a que posiblemente el equipo que está realizando el análisis no conoce suficientemente bien alguna parte del problema investigado. Se recomienda estudiar detenidamente esta rama, por si en ella se encontrase la causa raíz.

En cuanto a los errores que se originan al realizar esta herramienta, uno de los más comunes es tomar como reales las primeras causas que aparecen, sin contrastarlas con información del problema objeto de estudio. El diagrama causa-efecto es una herramienta sencilla y útil para el análisis de causas. Para concluir, se recomienda primero analizar los datos reales del problema originado antes den comenzar a utilizar esta herramienta llamada diagrama de Ishikawa.

En la figura [2.1] se muestra una ilustración de diagrama Causa-Efecto o "espina de pescado".

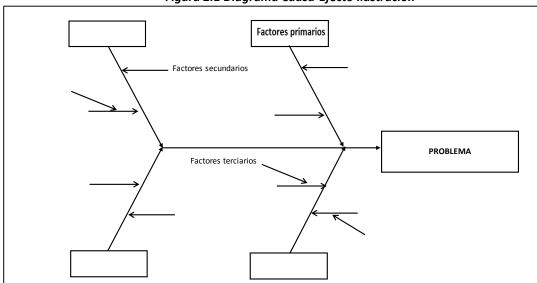


Figura 2.1 Diagrama Causa-Efecto Ilustración

Autor: Stalyn Pazmiño.

2.4. ASPECTOS LEGALES Y NORMATIVOS.

2.4.1. NORMA ISO 9001:2008 (0.2 ENFOQUE BASADO EN PROCESO)

Esta Norma Internacional promueve la adopción de un enfoque basado en procesos cuando se desarrolla, implementa y mejora la eficacia de un sistema de gestión de la calidad, para aumentar la satisfacción del cliente mediante el cumplimiento de sus requisitos [5].

Para que una organización o empresa funcione de manera eficaz, tiene que determinar numerosas actividades relacionadas entre sí. Un conjunto de actividades que utiliza recursos, q se controla y que se

gestiona con el fin de permitir que los elementos de entrada se transformen en resultados o elementos de salida, se considera como un proceso. Es decir que el resultado de un proceso es simplemente el elemento de entrada del siguiente proceso.

La implementación de un sistema de procesos dentro de la organización, en conjunto con la identificación de estos procesos, así como su gestión para producir el resultado deseado, se denomina como "enfoque basado en procesos". Una ventaja de este enfoque basado en procesos es el control continuo que proporciona sobre los procesos y las interacciones de los mismos dentro del sistema de procesos, así como sobre su combinación e interacción.

Un enfoque de este tipo, cuando se utiliza dentro de un sistema de gestión de la calidad, enfatiza la importancia de:

- a) la comprensión y el cumplimiento de los requisitos,
- b) la necesidad de considerar los procesos en términos que aporten valor,
- c) la obtención de resultados del desempeño y eficacia del proceso, y
- d) la mejora continua de los procesos con base en mediciones objetivas,

El modelo de un sistema de gestión de la calidad basado en procesos muestra los vínculos que existen entre los procesos. Este escenario muestra que los clientes son importantes a la hora de definir los requisitos como elementos de entrada y posteriormente como elemento de salida. El seguimiento de la satisfacción del cliente requiere la evaluación de la información obtenida que se genera por la percepción del cliente acerca de si la organización ha cumplido sus requisitos o no satisfacen los mismos.

2.4.2. NORMA ISO 9001:2008 (8.4 ANÁLISIS DE DATOS)

La organización debe determinar, recopilar y analizar los datos apropiados para demostrar la idoneidad y la eficacia del sistema de gestión de la calidad y para evaluar dónde puede realizarse la mejora continua de la eficacia del sistema de gestión de la calidad. Esto debe incluir los datos generados del resultado del seguimiento y medición y de cualesquiera otras fuentes pertinentes.

El análisis de datos debe proporcionar información sobre:

- a) la satisfacción del cliente (véase 8.2.1),
- b) la conformidad con los requisitos del producto (véase 8.2.4),

- c) las características y tendencias de los procesos y de los productos, incluyendo las oportunidades para llevar a cabo acciones preventivas (véase 8.2.3 y 8.2.4), y
- d) los proveedores (véase 7.4).

2.4.3. NORMA ISO 9001:2008 (8.5.1 MEJORA CONTINUA)

Esta Norma Internacional promueve La organización debe mejorar continuamente la eficacia del sistema de gestión de la calidad mediante el uso de la política de la calidad, los objetivos de la calidad, los resultados de las auditorías, el análisis de datos, las acciones correctivas y preventivas y la revisión por la dirección.

Esta medida hace que las organizaciones sean dinámicas, con el fin de que busquen maneras efectivas para llegar al objetivo principal, productos o servicios con calidad en conjunto con la satisfacción del cliente sobre los mismos.

CAPÍTULO 3

3. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

3.1. Historia de la empresa

La empresa centenaria, fundada en el año de 1889 en la ciudad de Guayaquil en manos de señores de nacionalidad italiana. Fue la empresa pionera en la elaboración de confites en esta ciudad.

En 1911 empieza a tomar posicionamiento en el mercado con marcas fuertes de chocolates, toma el mando total de la empresa en 1927 y empieza a exportar productos a Latinoamérica. El tiempo sigue su marcha y en 1993 abre su segunda planta ubicada en el sur de la ciudad. A comienzos del año 2000, sufre una crisis financiera y finalmente sale del mercado.

Conscientes de la importancia y la tradición que representaban los productos de esta empresa, un consorcio importante del país durante el año 2005 y mediante Escritura Pública celebró el Contrato de Fideicomiso Mercantil Irrevocable, adquiriendo el terreno, edificio, maquinarias, las fórmulas y procedimientos de fabricación, así como las marcas.

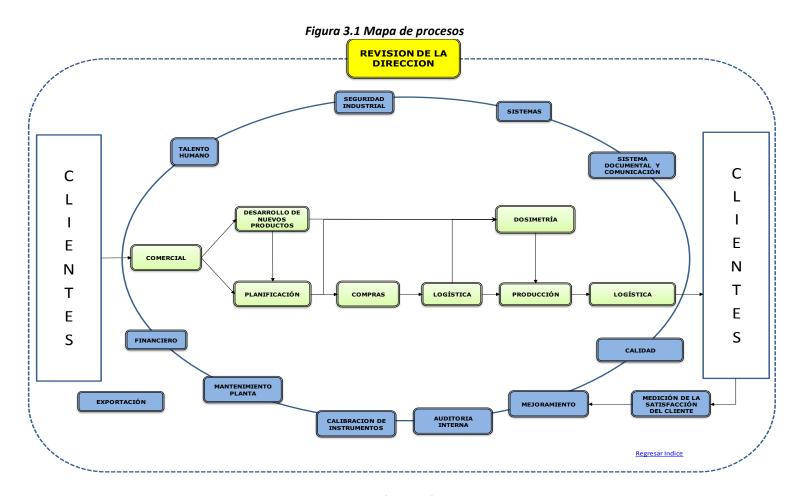
En 2006 se compra la empresa, le cambia el nombre y vuelve al mercado con todas sus marcas. Sin embargo la empresa comercialmente sigue manteniendo el nombre de original. En la actualidad tiene un gran posicionamiento en el mercado.

3.2. Definiciones estratégicas de la empresa

3.2.1. Visión

En el 2019 ser una empresa de alimentos líder en lo nacional y destacada internacionalmente por su innovación, preocupada por la salud de los consumidores, con procesos eficientes y tecnología que ayude al desarrollo de productos con calidad, con talento totalmente calificado y orientado hacia los resultados; generando valor para nuestros accionistas, colaboradores y clientes, con responsabilidad social y ambiental

3.2.2. Misión


Creamos momentos de placer y diversión, a través de productos confiables y cercanos a nuestros consumidores

3.2.3. Política Integrada de Gestión

Somos una empresa que tenemos el compromiso de fabricar y comercializar chocolates, caramelos, cocoa en polvo y recubiertos de chocolate con calidad, para satisfacer a nuestros consumidores, cumpliendo las leyes tanto nacionales como internacionales, así también cumpliendo como las normas de calidad, ambientales, de salud y seguridad aplicables, proporcionando las mejores condiciones al personal, los recursos necesarios para la gestión, buscando la mejora continua en todos los ámbitos, lo cual dará como resultado beneficios para nuestros accionistas, colaboradores, la sociedad y el medio ambiente.

3.2.4. Mapa de procesos

En la siguiente figura [3.1] se muestra el mapa de procesos de la empresa de chocolates y caramelos. En la que se incluye a los clientes y los procesos para la producción.

Fuente: Balcón estadístico de la empresa

3.3. Descripción de los principales problemas y análisis de la causa raíz.

Mediante la recolección de datos estadísticos, entrevistas con los operarios de planta y tabulación de datos, se identifica que el existe un bajo rendimiento en la producción de caramelos, chocolates y recubiertos de chocolates por diversos factores tales como:

- Daños en máquinas (eléctricas y mecánicas).
- Falta de producto en las líneas de producción.
- Calibración de máquina.
- Cambio de repuestos.
- Problemas en materia prima.
- Falla en calidad de material de empague.

En el siguiente gráfico [3.1] se clasifican los tipos de paros *no programados* los cuales son: *técnicos* que se refieren a los problemas originados por daños mecánicos, eléctricos; *operacionales*, los que se refieren a lo ocurrido por las operaciones realizadas por el personal y *otros*, los cuales se falta de materia prima, empaques, cortes de energía, etc.

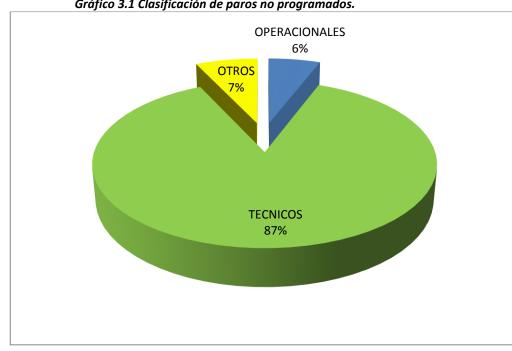


Gráfico 3.1 Clasificación de paros no programados.

Fuente: Balcón estadístico de la empresa.

Como se puede apreciar en el gráfico [3.1], de una muestra de tomada en el mes de enero del 2012 (del 2 al 31 de enero), arrojaron como resultado 484 horas de daños en el total de las máquinas, en el que un 87% se concentra en los daños netamente técnicos (422 horas), seguidos por un 7% (34 horas) de daños otros o diversos y el 6% operacionales (28 horas).

Con el fin de llegar a la causa raíz del problema actual, se obtiene el siguiente resultado, utilizando un diagrama de Ishikawa como se muestra la figura [3.2]:

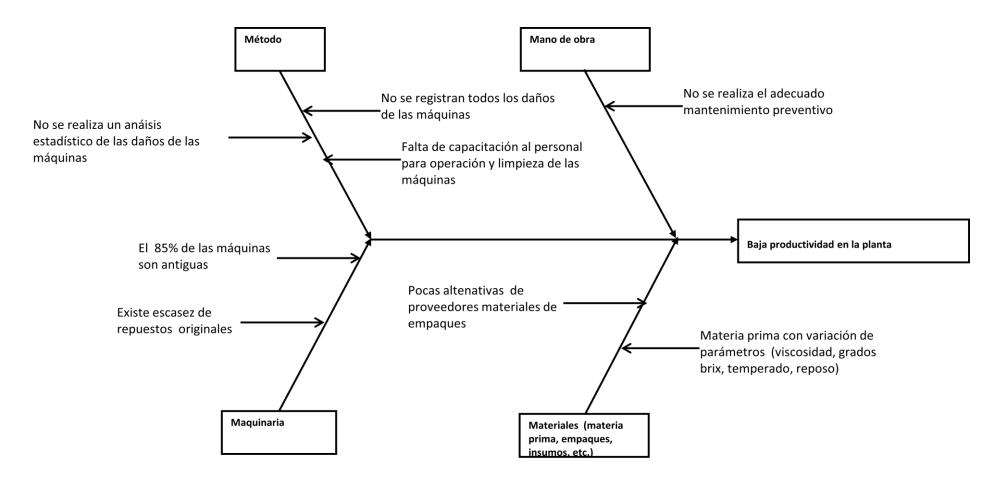


Figura 3.2 Diagrama Causa-Efecto De Productividad en la planta

Autor: Stalyn Pazmiño Cáceres

Se realiza la recolección de datos de los tres siguientes meses del 2012, obteniendo en la tabla [3.1] el siguiente resultado:

Tabla 3.1 General de Horas de Paros No Programados de febrero a abril 2012.

PAROS NO	Febrero	Marzo	
PROGRAMADOS	2012	2012	Abril 2012
CARAMELOS DUROS	473:44:00	348:55:00	228:41:00
RECUBIERTOS	244:58:00	96:57:00	251:00:00
CHOCOLATERIA	173:20:00	112:38:00	87:55:00
COCOA	57:20:00	99:30:00	79:42:00
CARAMELOS BLANDOS	13:55:00	28:35:00	27:00:00
Total general	963:17:00	686:35:00	674:18:00

Autor: Stalyn Pazmiño Cáceres.

PAROS NO PROGRAMADOS POR AREAS

En la tabla [3.2] se muestran los paros No programados por áreas específicas.

Tabla 3.2 Áreas de Horas de Paros No Programados de febrero a abril 2012.

	Febrero	Marzo	
CHOCOLATERIA	2012	2012	Abril 2012
OPERACIONALES	69:30:00	18:55:00	18:00:00
TECNICOS	95:00:00	73:13:00	61:35:00
OTROS	8:50:00	20:30:00	8:20:00
Total general	173:20:00	112:38:00	87:55:00

	Febrero	Marzo	
CARAMELOS DUROS	2012	2012	Abril 2012
OPERACIONALES	74:00:00	44:41:00	194:06:00
TECNICOS	378:29:00	275:59:00	14:35:00
OTROS	21:15:00	28:15:00	20:00:00
Total general	473:44:00	348:55:00	228:41:00

CARAMELOS	Febrero	Marzo	
BLANDOS	2012	2012	Abril 2012
OPERACIONALES	11:25:00	10:30:00	0:00:00
TECNICOS	2:00:00	10:50:00	26:15:00
OTROS	0:30:00	7:15:00	0:45:00
Total general	13:55:00	28:35:00	27:00:00

COCOA	Febrero 2012	Marzo 2012	Ab:: 2012
COCOA	2012	2012	Abril 2012
OPERACIONALES	30:00:00	10:17:00	26:15:00
TECNICOS	27:20:00	33:22:00	37:17:00
OTROS		55:51:00	16:10:00
Total general	57:20:00	99:30:00	79:42:00

	Febrero	Marzo	
RECUBIERTOS	2012	2012	Abril 2012
OPERACIONALES	161:05:00	49:37:00	144:05:00
TECNICOS	61:33:00	45:20:00	88:10:00
OTROS	22:20:00	2:00:00	18:45:00
Total general	244:58:00	96:57:00	251:00:00

Autor: Stalyn Pazmiño Cáceres.

Luego del análisis realizado durante esto meses, se logró definir tres tipos o clases de Paros No Programados, los cuales se definieron de la siguiente manera:

- Operacionales: Originados por la poca experiencia del operador, procesamiento fuera de parámetros de procesos anteriores, aumento en el número de limpiezas, tiempo excesivo en arranques de línea.
- Técnicos: Originados por fallas mecánicas, eléctricas, cambio de piezas o repuestos
- Otros: Paros no programados originados por cortes de energía o agua sin previo aviso, cambios en las condiciones de la materia prima o empaque.

Con este estudio se podrá elaborar un Plan de Mejora Continua, con el objetivo de obtener una mayor productividad y eficiencia en el área operativa y sobre todo obtener ahorros significativos

CAPÍTULO 4

4. ELABORACION DEL PROYECTO MEJORA CONTINUA

4.1. SOCIABILIZACIÓN AL PERSONAL

Se realiza la presentación del proyecto al personal de la empresa, tanto

operativo como administrativo. El cual se inició con una introducción de

parte del Gerente de operaciones, luego de esto se presentó una obra de

teatro o parodia con la finalidad de que el personal observe la "realidad

actual" en la que se desenvuelve el entorno.

Se siguió con la presentación de las diapositivas, en las cuales se dio a

conocer las razones, conceptos, objetivos y explicación del programa de

mejora continua. Las cuales se muestra a continuación:

Capacitación: Mejoramiento Continuo

Objetivo: Sociabilizar al personal de la empresa sobre el plan de Mejora

continua.

Dirigido

a: Todo el personal operativo

de

producción.

En la figura [4.1] se da una introducción a cerca de como en la actualidad se tratan los problemas repercusiones.

Figura 4.1 Introducción al tema.

En la figura [4.2] se presenta un ejemplo de las posibles causas por daños en una máquina de empaques.

Figura 4.2 Ejemplo de posibles causas de daños.

En la figura [4.3] se da a conocer los pasos para alcanzar la mejora continua.

MEJORAMIENTO CONTINUO USI Estándares de calidad altos Controles Productos de calidad (pero no eficientes) ·Nos hace eficientes ·Disminuye costos de Proceso de Mejora Continua producción Más competitivos •Ahorro = Utilidades

Figura 4.3 Ciclo para la búsqueda de la mejora continua.

En la figura [4.4] se presentan los conceptos que tiene el personal sobre la mejora continua.

MEJORAMIENTO CONTINUO USI CONCEPTO USI: *"CORREGIR ALGO Y HACERLO SIEMPRE BIEN" *"BUSCAR UNA MEJOR MANERA DE HACER UN TRABAJO (ACTIVIDAD) " "CORREGIR LO QUE ESTA DAÑADO" • "BUSCAR FORMAS DE QUE UNA MÁQUINA , SI SE PUEDE, FUNCIONE MEJOR"

Figura 4.4 Conceptos de mejoramiento continuo en la empresa.

En la figura [4.5] se presentan el concepto ideal.

Figura 4.5 Concepto ideal de mejoramiento continuo.

MEJORAMIENTO CONTINUO USI

CONCEPTO:

Es parte de todo lo que hacemos, para beneficio de nuestro desenvolvimiento y constante superación personal y laboral, lo cual constituye una cultura de vida.

En la figura [4.6] se presentan los objetivos estratégicos del proyecto a implementar.

Figura 4.6 Objetivos estratégicos.

MEJORAMIENTO CONTINUO USI OBJETIVOS ESTRATÉGICOS:

*Lograr el involucramiento y participación de todos en la Mejora Continua.

*Fomentar la motivación y la perseverancia.

En la figura [4.7] se presentan los objetivos específicos del proyecto.

Figura 4.7 Objetivos específicos.

MEJORAMIENTO CONTINUO USI OBJETIVOS ESPECÍFICOS:

- * Formar GRUPOS DE MEJORA.
- * Formar TUTORES DE GRUPO
- Establecer métodos para el desarrollo e implementación de la mejora continua.

En la figura [4.8] se da a conocer e que consisten los grupos de mejora.

Figura 4.8 Grupos de Mejora.

MEJORAMIENTO CONTINUO USI GRUPOS DE MEJORA

Son grupos de personas con intereses comunes, que se interrelacionan en sus respectivas áreas de trabajo o de servicios.

Serán una herramienta de Mejora Continua, a través de la preocupación de los involucrados en el logro de los objetivos de cada área.

En la figura [4.9] se da a conocer e que consisten los grupos de mejora.

Figura 4.9 Tutores de Grupos.

MEJORAMIENTO CONTINUO USI TUTORES DE GRUPO Son personas externas al Grupo de Mejora Continua, que colaboran de una manera más Técnica, dando el soporte necesario para que el análisis causa – efecto del problema, sea el más óptimo.

En la figura [4.10] se da a conocer la conformación de los equipos o grupos de mejora continua.

CHOCOLATES

*CQUIPO MICRO2 (18)

*CQUIPO MICRO2 (18)

*CQUIPO MICRO2 (18)

*CQUIPO MICRO2 (18)

*CQUIPO MORNO-CREMA-CORTADORA (18)

*CQUIPO STARIBLI/CRUPETES (18)

*CQUIPO CARAMELOS BLANDOS (15)

No. Equipos x Área: 2

No. Equipos x Área: 2

Figura 4.10 Equipos o Grupos de mejora continua por áreas.

En la figura [4.11] se da una breve explicación del procedimiento para la elaboración de los proyectos.

Figura 4.11 Procedimiento para elaboración de proyectos.

En la figura [4.12] se presenta la primera etapa y sus responsables.

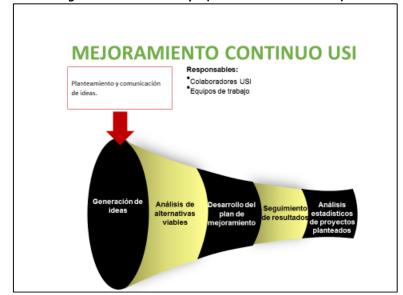


Figura 4.12 Primera etapa (Planteamiento de ideas).

Análisis de propuestas
Análisis de propuestas
Aprobación de idea.
Reunión de equipos de trabajo
Establecimiento de la Estrategia.

Análisis de alternativas viables

Pesarrollo del plan de nejoramiento

Análisis de alternativas viables

Pesarrollo del plan de nejoramiento

Análisis de alternativas viables

Análisis de alternativas viables

Pesarrollo del plan de nejoramiento

Análisis estadisticos de resultados de resultados planteados planteados

En la figura [4.13] se presenta la segunda etapa y sus responsables.

En la figura [4.14] se presenta la tercera etapa y sus responsables.

Figura 4.14 Tercera etapa (Desarrollo de propuestas).

Responsables:

Gerente Frioducción

Coordinador Mejoramiento
Continuo

Análisis de alternativas viables

Análisis de pian de mejoramiento
Continuo

Ceneración de resultados.

Ceneración de lideas

Análisis de pian de mejoramiento de resultados de proyectos planteados

En la figura [4.15] se presenta la tercera etapa y sus responsables.

En la figura [4.16] se presenta la tercera etapa y sus responsables.

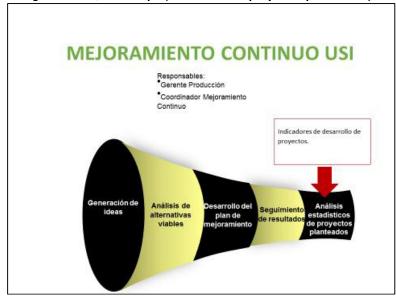


Figura 4.16 Quinta etapa (Análisis de los proyectos planteados).

En la figura [4.17] se presenta la fecha de inicio del proyecto.

Figura 4.17 Fecha de inicio del proyecto.

MEJORAMIENTO CONTINUO USI

INICIO DEL PROCESO DE MEJORA CONTINUA
PLAN PILOTO...

A PARTIR DEL 03 MAYO del 2012 RECEPCIÓN DE IDEAS

En la figura [4.18] se presenta las herramientas para ejecutar el proyecto.

Figura 4.18 Herramientas para la ejecución del proyecto

MEJORAMIENTO CONTINUO USI

MEJORA CONTINUA (PLAN PILOTO) HERRAMIENTAS

- 1.- PLANTILLA DE GENERACIÓN DE IDEAS
- 2.- CAPACITACIÓN: LIDERES DE GRUPO ANÁLISIS TÉCNICOS
- 3.- ESTABLECER REUNIONES DE PROGRAMACIÓN Y SEGUIMIENTO DE RESULTADOS
- 4.- ESTABLECER CRONOGRAMA DE IMPLEMENTACION Y SEGUIMIENTO

4.1.1. Cronograma del proyecto

Se presenta en la tabla [4.1] el cronograma de implementación del proyecto, con sus etapas respectivas.

Tabla 4.1 Cronograma de proyecto Mejora Continua

IMPLEM	ENTACIÓN	Υ	SEGUIMIENTO	DEL	MESES DE IMPLEMENTACIÓN DE PROYECTO							
PROYECT	го				Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
1 ETAPA	GENERACIÓ	N DE	IDEAS									
2 ETAPA	APROBACIÓ	N DE	IDEAS									
3 ЕТАРА	DESARROLL LAS MEJORA		IMPLEMENTACIÓ	N DE								
4 ETAPA	SEGUIMIEN	то ү	CONTROL									
5 ETAPA	BENEFICIOS	Y CIE	ERRRE DE PROYECT	os								

Autor: Stalyn Pazmiño Cáceres.

Luego del seguimiento de la recolección de ideas, Se muestra a continuación en la tabla [4.2] las ideas recopiladas por áreas en el tiempo establecido:

Tabla 4.2 Resumen de los proyectos recopilados

TOTAL	20
Chocolatería	4
Recubiertos	2
Caramelos Duros	5
Caramelos Blandos	4
Calidad	5

Autor: Stalyn Pazmiño Cáceres.

En el gráfico [4.1] se observan las áreas y la cantidad de ideas generadas para el análisis respectivo

Ideas generadas por áreas 6 Caramelos Duros; Calidad; 5 5 Caramelos Chocolateria; 4 Blandos; 4 4 3 Recubiertos; 2 2 1 0 Caramelos Chocolateria Recubiertos Caramelos Duros Calidad Blandos

Gráfico 4.1 Ideas generadas del proyecto de Mejora Continua

Fuente: Balcón estadístico de la empresa.

Conformados los equipos de trabajo, se generaron las primeras ideas, las cuales fueron formuladas y se muestran a continuación:

4.1.2. Listado de ideas generadas

A continuación en la tabla [4.3] se establecen un listado con las ideas generadas:

Tabla 4.3 Listado de ideas generadas

Proceso/Equipo/Área	En la actualidad	Proyecto de Mejora
	Medida de bobina de	Mejoramiento de
	empaque genera mucho	impresión de medida y
	desperdicio y reproceso	taca, cambiar color
1CHOCOLATERÍA	de producto; Guía de	(negro) de la misma;
(PROMAQ - EMPAQUE	foto-centrado falla;	cambiar guía del foto-
PRIMARIO)	Problemas con cuchillas,	centrado; Instalar
	mala impresión de taca.	dosificador de cucharas y
		reducir el ancho de la
		tarrina (empaque base) y
		calentador de moldes.

Proceso/Equipo/Área	En la actualidad	Proyecto de Mejora
	Sobredosificación de	Disminuir
2CHOCOLATERÍA	chocolate y maní en	sobredosificación de masa
(MOLDEADORA SERVCO)	barras de 28 g.	y agregados.
		Cambiar: tubo formador,
		sinfín, cuellos
	Sobredosificación de	formadores; colocar un
3CHOCOLATERÍA	cocoa 2% en máquinas	servo-motor para más
(EMPAQUE PRIMARIO	de empaque primario.	precisión en pesos; tolvas
COCOA)		de almacenamiento con
		guías para que se
		encuentre todo centrado,
		cambiar gatas hidráulicas;
		Colocar sensores para
		parada automática de
		bobinas
	Alto consumo de agua e	Instalar piso epóxico: se
4CARAMELOS DUROS	insumos de limpieza.	ahorra detergente, evita
		humedad en limpieza, se
		limpia en menos tiempo.

entrada de alimentación, revis en cuello formador empaque máquina, diseñar carr para producto desnudo, sistema intercomunicador ent empaque primario moldeadora.
en cuello formador empaque máquina, diseñar carr para producto desnudo, sistema intercomunicador ent empaque primario
empaque máquina, diseñar carr para producto desnudo, sistema intercomunicador ent empaque primario
para producto desnudo, sistema intercomunicador ent empaque primario
sistema intercomunicador ent empaque primario
intercomunicador ent empaque primario
empaque primario
moldeadora.
desfogue Cambiar tanque
CUUM# 3 desfogue para mejora
bomba de operación del vacuum.
ontaminar
melo.
k

Proceso/Equipo/Área	En la actualidad	Proyecto de Mejora
	Se surte manualmente	Surtidor de acero
	caramelos para colocarlos	inoxidable con banda
	en tolva y realizar el	transportadora, para
7CARAMELOS DUROS	empaque secundario de	evitar el maltrato del
(CARAMELOS SURTIDOS)	caramelos surtidos.	producto con las
		herramientas que se
		utilizan actualmente y
		ahorro de mano de obra.
	Exceso de lámparas de luz	Reubicar y/o reducir
8CARAMELOS DUROS	en áreas.	lámparas en las áreas
		para ahorro de energía.
	Calentamiento y aumento	Generar mayor
	de temperatura en agua	temperatura para
	para funcionamiento de	disminuir el vacío.
9CARAMELOS BLANDOS	bombas de vacío en los	Separar cisterna de
(VACUUMS)	vacuums.	Caramelos Duros y
		Blandos, para obtener
		mejor vacío.

Proceso/Equipo/Área	En la actualidad	Proyecto de Mejora
	Existe variación en kilos	Sistema automático de
	de descarga de glucosa en	pesaje de glucosa, para
10CARAMELOS BLANDOS	los vacuums.	mantener un mejor
(VACUUMS)		control de consumo.
	Alto consumo de agua e	Instalar piso epóxico: se
11CARAMELOS BLANDOS	insumos de limpieza del	ahorra detergente, evita
	área.	humedad en limpieza, se
		limpia en menos tiempo.
	De acuerdo a los	Subcategorizar los
	indicadores de reclamos	defectos en la condición
	recibidos, el porcentaje	"FALLAS DEL PROCESO"
	más alto de defectos son	que corresponde a fallas
12CALIDAD	los causados por fallas del	propias en las líneas de
	proceso (72%) y no se	producción, para poder
	encuentran	controlar puntualmente y
	subcategorizados para	solucionar errores.
	identificación puntual.	

Proceso/Equipo/Área	En la actualidad	Proyecto de Mejora			
	Falta de trabajo en equipo	Presentaciones dentro de			
	por Desconocimiento y	cada área de las funciones			
	poco interés de las	de cada puesto de trabajo			
	labores realizadas por	con sus respectivas			
	compañeros del área,	funciones y			
	Falta de back-up de	procedimientos que se			
	puestos de trabajo.	realizan, Compartir			
		conocimientos para tener			
13CALIDAD		un mismo lenguaje de			
		trabajo, En caso de que el			
		principal y su back-up no			
		se encuentren en el área			
		por distintos motivos,			
		exista ayuda por sus			
		compañeros en sus			
		actividades y no exista			
		paralización de los			
		procesos y retraso en las			
		actividades.			

Proceso/Equipo/Área	En la actualidad	Proyecto de Mejora
	Incumplimiento de las	Generar una competencia
	Buenas Prácticas de	"sana" entre las áreas y
	Manufactura (BPM), falta	por medio de las
	de orden y limpieza en	capacitaciones y el apoyo
	áreas, falta de	del personal de
	compromiso del personal.	producción, inculcar en el
		personal el orden en las
		áreas y herramientas
14CALIDAD		limpias. Fomentar el
		trabajo en equipo para
		lograr el cumplimiento de
		un objetivo que a su vez
		es uno de los objetivos de
		la empresa y que esta
		competencia y la
		premiación de la misma
		sirva para crear un
		compromiso en los
		equipos que se agrupen.

Proceso/Equipo/Área	En la actualidad	Proyecto de Mejora
	Alto porcentaje de	Calibración de todas las
	desperdicio, placas	placas para que la galleta
	descalibradas, variación	salga uniforme y
15RECUBIERTOS	de peso en obleas.	modificación de la flauta
(HORNO)		dosificadora de pasta,
		reduciría exceso en
		consumo de materia
		prima y menor
		desperdicio.
		Instalar una bomba para
	Llenado de tanques de	el llenado de tanques de
16RECUBIERTOS	jarabe, la persona puede	jarabe invertido y
(PREPARACIÓN DE CREMA	sufrir lesiones en la	eliminación del uso de las
Y JARABE)	espalda y desgaste	ollas. Instalar sistema de
	continuo incluso en el	bombeo de crema
	llenado de baldes para el	mediante tuberías hacia
	traslado de crema.	la tolva de la cremadora y
		eliminación de utilización
		de baldes.

Proceso/Equipo/Área	En la actualidad	Proyecto de Mejora
		Realizar talonarios (sin
		dejar de registrar en SAP)
17CALIDAD	Se imprime requisiciones	de requisiciones, se
(CONSUMO DE PAPEL	de SAP en 3 copias.	ahorra consumo de papel
PARA IMPRESORA)		para imprimir. Talonarios
		o blocks que permitan
		poner clase de
		movimiento y número de
		documento.
18CALIDAD	Funda de empaque para	Hacer pedido de fundas
(EMPAQUES)	presentación graneles,	con impresiones para las
	falta de identificación del	diferentes presentaciones
	producto, obliga a	en las diferentes áreas.
	imprimir stickers	Crear códigos para las
	adhesivos y utilizar	diferentes clases de
	personal para el mismo	fundas, menos mano de
	en diferentes	obra.
	presentaciones.	

Proceso/Equipo/Área	En la actualidad	Proyecto de Mejora
	Exceso de lámparas de luz	Reubicar o reducir
19CARAMELOS BLANDOS		lámparas en las áreas
		para ahorro de energía.
20CARAMELOS DUROS	Caramelos con	Construir e instalar
(SCHIB #2)	deformidades pasan a	Clasificador de caramelos
	empaque primario	

Autor: Stalyn Pazmiño Cáceres.

Una vez recopiladas las ideas generadas, se procedió a analizarlas en conjunto con la Gerencia de operaciones y Gerencia financiera, con la finalidad de escoger los proyectos potenciales. De este análisis se pudo obtener los siguientes proyectos aprobados, mostrados en la tabla [4.4]:

Tabla 4.4 Clasificación de ideas aprobadas

ÁREAS		
CARAMELOS DUROS	2	
CARAMELOS BLANDOS	3	
CHOCOLARIA	3	
TOTAL	8	, and the second

Autor: Stalyn Pazmiño Cáceres.

4.1.3. Ideas finales para análisis de implementación.

Tabla 4.5 Ideas de mejoras factibles para implementación

IDEAS DE MEJORA FACTIBLES

IDEA	ODIFFILIO	ÁREA	146011111	CRUPO	TUTOR	DIAGRAMA CA	AUSA - EFECTO	LÍNEA	BASE	
IDEA	OBJETIVO	AKEA	MÁQUINA	GRUPO	TUTOR	Prioridades	Desventajas		Actual	Propuesta
1	Disminuir reprocesos, paros programados y aumento de productividad en Envolvedora Schib #02	CARAMELOS (DUROS)	SCHIB#02	MENTA	RAÚL ALVAREZ / RODRIGO ALVARADO	Construcción de un clasificador de caramelos	Tiempo de estudio del diseño e instalación del clasificador	Paros No programados	7%	3%
2	Disminución de fuga de productos para retrabajo en buen estado	CARAMELOS (DUROS)	SCHIB#01	MENTA	RODRIGO ALVARADO	Arreglo y/o rediseño del tamaño de guías del plato	•		4.0%	2.5%
3	Disminuir y/o eliminar las variaciones en las descargas de glucosa	CARAMELOS (BLANDOS)	VACUUMS	CARAMELOS BLANDOS	ALFREDO CELI / RODRIGO ALVARADO	Instalación de un sistema de pesaje de flujo de carga	Tiempo de instalación del sistema de pesaje	Reducción de sobre consumos	4.1 kg por batch	1 kg por batch
4	Disminuir consumo de: insumos de limpieza, agua, mano de obra y tiempos de limpieza	CARAMELOS (BLANDOS)	-	CARAMELOS BLANDOS	OLGA MOREIRA	Colocación de piso epóxico	Difusión e implementación en cultura de ahorro	Limpieza general	4 horas semana	2.5 horas semana
5	Mejorar calidad de masa de caramelos blandos, disminuir tiempos de cocción	CARAMELOS (BLANDOS)	VACUUMS	CARAMELOS BLANDOS	OMAR MOREIRA / RODRIGO ALVARADO	Arreglo del sistema y bomba	Presupuesto, tiempo de implementación	Productividad diaria	15 batch (paradas)	17 batch (paradas)
6	Aumentar producción en cocoa	CHOCOLATERIA	ROVEMAS A,B,C	COCOA	JOSÉ VERA / LUIS SANISACA	· •	Tiempo de compra e importación de servomotores	Productividad diaria	45 gpm 22 gpm 39 gpm	55 gpm 32 gpm 49 gpm
7	Disminuir retrabajo en barras de 28 g.	CHOCOLATERIA	SERVCO	SERVCO	LUIS SANISACA	Instalacion de Sistema de control de temperatura de la tolva dosificadora de chocolate	Inversión	Reduccion de retrabajo	9.2%	2.5%
8	Eliminar fugas de materia prima (chocolate)	CHOCOLATERIA	MICRO II	MICRO II	JOSÉ VERA / LUIS SANISACA	Eliminar fugas de chocolate en el dosificador Inyectores desgastado	-	Paros No programados	8%	2%

Autor: Stalyn Pazmiño Cáceres

A continuación se realiza el análisis de cada uno de los proyectos mediante el método de pay-back, con el objetivo de determinar el tiempo de recuperación de la inversión que se realizará en cada uno de los proyectos y así priorizar aquellos que tengan un retorno monetario mayor o igual a \$10000 anuales y el tiempo de recuperación menor o igual a 12 meses.

01-CLASIFICADOR CARAMELOS EN SCHIB#2

	AÑO	MES	DIA	
PPTO VENTAS	274	21 20	1 42	TON
2012	3/4	31.20	1.42	ION

		SITUACIÓI	N ACTUAL			PROPL	JESTA	
	CANT.	No PERSONAS X DIA	KG X DIA	MENSUAL	CANT.	No PERSONAS X DIA	KG X DIA	MENSUAL
	ENVOLVEDORAS	(1 TURNOS 10.5H)	(1T 12H)	(22 DIAS)	ENVOLVEDORAS	(1 TURNOS 9.5H)	(1T 12H)	(22 DIAS)
FORMATO BOYITA (LIMON, UVA, PIÑA)	1	2	1,482	32,599	1	2	1,475	32,443
	1	2	1 482	32 599	1	2	1.475	32 443

COSTO PROMEDIO COSTO MENSUAL COSTO PROMEDIO DE KILOS RETRABAJO COSTO MENSUAL KILOS RETRABAJO DE CARAMELO PROMEDIO CARAMELO MENSUAL MENSUAL PROMEDIO RETRABAJADO RETRABAJADO COSTO RETRABAJO CARAMELO BOYITA 726.95 0.91 \$ 659 399.05 0.91 362

> KILOS DESPERDICIO COSTO MENSUAL COSTO MENSUAL KILOS DESPERDICIO E/P COSTO PROMEDIO COSTO PROMEDIO DE MENSUAL DE DESPERDICIO E/P DESPERDICIO E/P MENSUAL 21.04 6.23 \$ 131 6.23 \$ 98 15.78

TOTAL PERSONAS X TURNO	COSTO X HORA MANO DE OBRA		PROM	STO MENSUAL MEDIO MANO DE OBRA	TOTAL PERSONAS X TURNO	COSTO X HORA MANO DE OBRA		COSTO MENSUAL PROMEDIO MANO DE OBRA	
2	\$	1.66	\$	766.50	2	\$	1.66	\$	693.50

COSTO TOTAL \$ 1,557 \$ 1,154

COSTO INVERSIÓN PROYECTO (ESTIMADO) \$

\$ 2,500

CONTRIBUCION ADICIONAL

MANO DE OBRA

PAY-BACK APROXIMADO

COSTO DESPERDICIO E/P CARAMELO BOYITA

 MES
 ANUAL

 \$ 403
 \$ 4,837

 6.2
 MESES

Tabla 4.6 Pay back Clasificador de caramelos.

Autor: Stalyn Pazmiño Cáceres

En la tabla [4.6] se observa que basado en el presupuesto de ventas, se realiza una comparación entre la situación actual con la propuesta del proyecto la cual es clasificar el producto previo al envío en el plato de la máquina reducir el desperdicio en el consumo de empaque primario, ya que se empaca producto deforme e incluso vacío. Se toman como elementos de análisis la producción anual de los tres tipos de caramelos que se empacan en esta máquina que se mantienen en la propuesta. Se realiza la comparación de los kilos generados de retrabajo y costo de los mismos, los cuales se comparan con lo proyectado en la propuesta que se reduciría en 1%. Así mismo se analiza el desperdicio de empaque primario, el cual se reduciría un 25% en comparación con lo registrado en la situación inicial. En cuanto a la mano de obra, se reduciría 1 hora de trabajo extra pagada en la propuesta, por la limpieza diaria que se realiza en la situación inicial.

Se analizan los costos mensuales totales, los cuales generan una diferencia favorable y se lo proyecta a un año. El costo de la inversión de la propuesta del proyecto es \$2,500 y el tiempo de recuperación de esta inversión, sería de 6.2 meses.

02-REDISEÑO DE GUÍAS DE PLATOS EN SCHIB#1

	AÑO	MES	DIA	
PPTO VENTAS	coa	F7 76	2.62	
2012	693	57.76	2.63	TON

	SITUACIÓN	N ACTUAL		PROPUESTA						
CANT.	No PERSONAS X DIA	KG X DIA	MENSUAL	CANT.	No PERSONAS X DIA	KG X DIA	MENSUAL			
ENVOLVEDORAS	(2 TURNOS 12H)	(2T 12H)	(22 DIAS)	ENVOLVEDORAS	(2 TURNOS 12H)	(2T 12H)	(22 DIAS)			
1	5	2,452	53,945	1	5	2,452	53,945			
1	5	2,452	53,945	1	5	2,452	53,945			

COSTO RETRABAJO CARAMELO MENTA GLACIAL

KILOS RETRABAJO MENSUAL	COSTO PROMEDIO DE CARAMELO RETRABAJADO	COSTO MENSUAL PROMEDIO		KILOS RETRABAJO MENSUAL	COSTO PROMEDIO DE CARAMELO RETRABAJADO		COSTO MENSUAL PROMEDIO	
2152.39	\$ 0.98	\$	2,109	1348.62	\$	0.98	\$	1,322

MANO DE OBRA

FORMATO MENTA GLACIAL

TOTAL PERSONAS X TURNO			COSTO MENSUAL PROMEDIO MANO DE OBRA		TOTAL PERSONAS X TURNO	COST	O X HORA MANO DE OBRA	 STO MENSUAL MEDIO MANO DE OBRA
5	\$	1.66	\$	1,916.25	5	\$	1.66	\$ 1,733.75

COSTO TOTAL

\$ 4,026

3,055

COSTO INVERSIÓN PROYECTO (ESTIMADO)

\$ 1,551

CONTRIBUCION ADICIONAL

PAY-BACK APROXIMADO

MES ANUAL
\$ 970 \$ 11,642

1.6 MESES

Tabla 4.7 Pay back Rediseño Guía de platos.

Autor: Stalyn Pazmiño Cáceres

En la tabla [4.7] se realiza una comparación entre la situación actual con la propuesta del proyecto la cual es rediseñar el plato de la máquina envolvedora con el fin de que no exista fuga de producto en buen estado. Se analiza la producción anual del caramelo que se empacan en esta máquina que se mantienen en la propuesta. Se realiza la comparación de los kilos generados de retrabajo y costo de los mismos, los cuales se comparan con lo proyectado en la propuesta que se reduciría del 4% al 2.5%. Luego se incluye la mano de obra que se reduciría 1 hora de trabajo extra pagada por turno ya que en la propuesta se cumple del plan de producción.

Se analizan los costos mensuales totales, los cuales generan una diferencia favorable y se lo proyecta a un año. El costo de la inversión de la propuesta del proyecto es aproximadamente de \$1,500 y el tiempo de recuperación de esta inversión, sería de 1.6 meses y el ahorro mensual es de aproximadamente \$11,500.

03-VARIACIÓN EN DOSIFICACIÓN DE GLUCOSA (CARAMELOS BLANDOS)

	SIT	CON SISTEMA DE PESAJE FLUJO DE CARGA DE GLUCOSA						
	CANTIDAD DOSIFICACIÓN GLUCOSA (KILOS)	No PARADAS (1 TURNOS 08H)	CONSUMO KG X DIA (1T08H)	CONSUMO MENSUAL KG/MES (22 DIAS)	CANTIDAD DOSIFICACIÓN GLUCOSA (KILOS)	No PARADAS (1 TURNOS 08H)	CONSUMO KG X DIA (1T08H)	CONSUMO MENSUAL KG/MES (22 DIAS)
Д	77	16	1232	27104	73	16	1168	25696

CONSUMO GLUCOSA

COSTO GLUCOSA

CONSUMO MENSUAL KG/MES (22 DIAS) COSTO PROMEDIO DEL COSTO MENSUAL PROMEDIO EL COSTO MENSUAL PROMEDIO CONSUMO CONSUMO \$ 0.76 \$ 20,599

CONSUMO MENSUAL KG/MES	COSTO	PROMEDIO DEL	COST	O MENSUAL PROMEDIO
(22 DIAS)	KI	LO GLUCOSA		CONSUMO
25696	\$	0.76	\$	19,529

COSTO INVERSIÓN PROYECTO (ESTIMADO) \$ 8,000

	AH	AHORRO MENSUAL		AHORRO ANUAL	
CONTRIBUCION ADICIONAL	\$	1,070	\$	12,840.96	
PAY-BACK APROXIMADO		7.5	ME	SES	

Tabla 4.8 Variación en dosificación de glucosa. Autor: Stalyn Pazmiño Cáceres En la tabla [4.8] se analiza el proyecto de sobre consumo de glucosa, realizando un comparativo entre la situación actual y el proyecto a implementar, con la finalidad de que se elimine o reduzca el consumo de esta materia prima (glucosa). Se hace una comparación entre lo consumido actualmente y lo que se consumiría en la propuesta, tanto en kilos como en costo por kilo. Para esto se toma como referencia la cantidad de batch diaria a producir y el consumo propuesto de glucosas se basa en el porcentaje indicado en la receta del producto final.

El costo de inversión del proyecto es de \$8,000 aproximadamente, el mismo que se recuperaría en el tiempo de 7.5 meses, con un ahorro mensual de \$1,070 y anual de \$12,800 aproximadamente.

04-DISMINUCIÓN DE CONSUMO DE AGUA Y MANO DE OBRA EN LIMPIEZAS GENERALES (SEMANALES)

	SITUACIÓN ANTERIOR			STUACIÓN ACTUAL			
	Consumo en metros cúbicos para Limpieza General (mensual)	COSTO METRO CÚBICO PROMEDIO	COSTO CONSUMO TOTAL	Consumo en metros cúbicos para Limpieza General (mensual)	COSTO METRO CÚBICO PROMEDIO	COSTO CONSUMO TOTAL	
CONSUMO AGUA PARA LIMPIEZA	4.00	\$ 2.27	\$ 36.32	2.18	\$ 2.27	\$ 19.83	
	TOTAL PERSONAS X TURNO	COSTO X HORA MANO DE OBRA	COSTO MENSUAL PROMEDIO MANO DE OBRA	TOTAL PERSONAS X TURNO	COSTO X HORA MANO DE OBRA	COSTO MENSUAL PROMEDIO MANO DE OBRA	
MANO DE OBRA	22	\$ 1.66	\$ 584.00	10	\$ 1.66	\$ 165.91	
COSTO TOTAL			\$ 620			\$ 186	
				COSTO INVERSIÓN PROV	/ecto (estimado)	\$ 8,192.63	
		AHORRO MENSUAL	AHORRO ANUAL				
CONTRIBUCION ADICIONAL		\$ 435	\$ 5,214.96				
PAY-BACK APROXIMADO		18.9	MESES				

Tabla 4.9 Disminución en el consumo de agua y mano de obra en limpieza.

Autor: Stalyn Pazmiño Cáceres

En la tabla [4.9] el objetivo de este proyecto es reducir la mano de obra al momento de realizar la limpieza semanal de 20 a 11 personas, así como la de disminuir el consumo de agua por motivos de Buenas Prácticas de Manufactura. Con esta propuesta se analizan el consumo y costo de agua potable, número de personal y tiempo a utilizar para la limpieza semanal así como a los costos que se generan por medio de la instalación de piso epóxico en el área de caramelos duros.

Luego de realizar la comparación de los costos generados, se obtiene como resultado un ahorro aproximadamente \$5,000 anuales con un tiempo de recuperación de 19 meses en la implementación del este proyecto.

06-AUMENTO DE PRODUCTIVIDAD E/P COCOA AÑO MES DIA PPTO VENTAS 2,328.49 194.04 8.82 TON 194,040.5 2012 SITUACION ACTUAL (1 TURNOS 12H) INSTALACIÓN SERVOMOTORES (1 TURNOS 8H) **ROVEMAS A,B,C ROVEMAS A,B,C** No PERSONAS X DIA KG X DIA MENSUAL No PERSONAS X DIA KG X DIA MENSUAL CANT. MÁQUINA CANT. MÁQUINA (1 TURNOS 12H) (1 TURNOS 8H) COCOA FORMATO 15 gr 437.4 8.748 356.4 7.841 COCOA FORMATO 170 gr 4,296.2 85,925 3,598.6 79,168 COCOA FORMATO 440 gr 6,272.6 125,453 6,082.6 133,816 11,006 220,126 10,038 220,825 TOTAL PERSONAS X COSTO X HORA TOTAL PERSONAS X COSTO X HORA TOTAL MENSUAL (22 DIAS) TOTAL MENSUAL (22 DIAS) TURNO MANO DE OBRA TURNO MANO DE OBRA TURNO 12H DIA 1.66 2,628 1.66 1,752 6 \$ TOTAL COSTO MANO DE OBRA 2,628 1,752 COSTO MANT ANUAL X COSTO MENSUAL X COSTO MANT ANUAL X COSTO MENSUAL X MAQUINA Envolvedora Envolvedora MAQUINA MAQUINA MANTENIMIENTO 500 500 125 125 Total Consumo Energia Costo Consumo de Total Consumo Energia Mensual No. Rovemas No. Rovemas energía de Rovemas ENERGIA ELÉCTRICA TURNO 12H DIA 0.55 3 \$ 436 0.55 3 \$ 290 TOTAL COSTO MANTENIMIENTO 561 \$ 415 COSTO TOTAL \$ 3,189 \$ 2,167 \$ 0.0200 \$ 0.0112 COSTO X KILO PRODUCIDO 0.0088 \$ AHORRO X KILO PRODUCIDO **OBSERVACIONES Y CONCLUSIONES** \$ 22,432.80 COSTO INVERSION MEJORAMIENTO ENVOLVEDORAS → MAYOR PRODUCTIVIDAD DE LA LINEA Y MENOS CONSUMO DE HORAS MANO DE OBRA → COSTO DE HORA DE MANO DE OBRA TOMADO EN BASE A UN SUELDO BASICO DE \$ 292 MES ANUAL → DISMINUCIÓN DE HORAS EN LOS TURNOS DE TRABAJO (DE 12 A 8 HORAS) CONTRIBUCION ADICIONAL 1,708 \$ 20,491 **PAY-BACK APROXIMADO 13.1 MESES**

Tabla 4.10 Aumento de productividad en máquinas empaque primario de Cocoa.

Autor: Stalyn Pazmiño Cáceres

En la tabla [4.10] se realiza una comparación entre la situación actual con la propuesta del proyecto la cual es incrementar la productividad de las máquinas de empaque primario de cocoa, para esto se propone instalar servomotores para el incremento de los golpes por minuto, así como realizar las demás adaptaciones para lograr con el objetivo. Se analizan en la situación actual los golpes por minuto de cada una de las máquinas y su producción mensual, los costos de mano de obra a la fecha, costos de mantenimiento y costo de energía eléctrica; Se compara con la propuesta de incrementar 10 golpes por minuto a cada máquina, así como la reducción de las horas laborable a 8 horas, se mantienen los costos de mantenimiento y consumo de energía eléctrica.

Esto da como resultado un ahorro por kilo producido de aproximadamente 1 centavo de dólar, que proyectado a anualidad aproximadamente de \$20,500 con una inversión de \$22,432 y un tiempo de retorno o recuperación de 13.1 meses.

07-CONTROL DE RETRABAJO EN BARRAS DE 28 g. AÑO MES DIA **PPTO VENTAS** 753.60 62.80 2.85 TON 62,800.2 2012 SITUACIÓN ACTUAL RETRABAJO 9.2% PROPUESTA RETRABAJO 2.5% CANTIDAD PROMEDIO PORCENTAJE DE KILOS RETRABAJO CANTIDAD PROMEDIO PORCENTAJE DE RETRABAJO KILOS RETRABAJO PRODUCCIÓN (KILOS) RETRABAJO MENSUAL MENSUAL PRODUCCIÓN (KILOS) MENSUAL MENSUAL CONSUMO CHOCOLATE 9.2% 62800.19 2.5% 1570.00 62800.19 5777.62 COSTO PROMEDIO DE COSTO MENSUAL KILOS RETRABAJO KILOS RETRABAJO COSTO PROMEDIO DE COSTO MENSUAL CHOCOLATE PROMEDIO MENSUAL MENSUAL CHOCOLATE RETRABAJADO PROMEDIO RETRABAJADO COSTO RETRABAJO CHOCOLATE 5777.62 2.94 \$ 16.986 1570.00 Ś 2.94 \$ 4,616 COSTO X HORA MANO DE TOTAL MENSUAL (22 TOTAL MENSUAL (22 TOTAL PERSONAS X TURNO TOTAL PERSONAS X TURNO COSTO X HORA MANO DE OBRA DIAS) 1.66 \$ MANO DE OBRA TURNO 12H DIA 2 \$ 2 \$ \$ 64 1.66 17 TOTAL COSTO MANO DE OBRA \$ 64 \$ 17 **COSTO TOTAL** \$ 17,050 \$ 4,633 COSTO INVERSIÓN PROYECTO (ESTIMADO) 14,000 AHORRO MENSUAL AHORRO ANUAL 12,417 \$ 149,003.03 CONTRIBUCION ADICIONAL **PAY-BACK APROXIMADO** 1.1 MESES

Tabla 4.11 Reducción de retrabajo en barras de 28 g.

Autor: Stalyn Pazmiño Cáceres

En la tabla [4.11] el objetivo de este proyecto es reducir el retrabajo que se originan en las barras de 28 gramos. La situación actual es la generación de 9.2% de retrabajo de chocolate, lo que da como resultado un costo promedio aproximado de \$16,900. Se toma en cuenta la mano de obra que se requiere para ordenar en bloques de 300 kilos el retrabajo generado. Esto se compara con el proyecto a implementar, el cual estable la reducción al 2.5% de retrabajo así como la reducción en el tiempo de la mano de obra que se requiere para la recolección y ordenamiento del mismo.

Se analiza el impacto de la propuesta, la cual generaría un ahorro de anual de aproximadamente \$149,000 con un costo de inversión de aproximadamente \$14,000 y un tiempo de recuperación, luego de la implementación de aproximadamente 1.1 mes.

08-CONTROL DE DESPERDICIO CHOCOLATE MICRO II

	AÑO	MES	DIA		_
PPTO VENTAS	200.46	25 70	1 17	TON	
2012	309.46	25.79	1.17		25,788.3

		DESPERDIC	IO CHOCOLATE ACT	UAL	PROPUESTA			
		CANTIDAD PROMEDIO PRODUCCIÓN (KILOS)	PORCENTAJE DE DESPERDICIO MENSUAL	KILOS DESPERDICIO MENSUAL	CANTIDAD PROMEDIO PRODUCCIÓN (KILOS)	PORCENTAJE DE DESPERDICIO MENSUAL	KILOS DESPERDICIO MENSUAL	
CONSUMO CHOCOLATE		25788.31	1.6%	418.00	25788.31	0.5%	128.94	
		KILOS DESPERDICIO MENSUAL	COSTO PROMEDIO DE CHOCOLATE RETRABAJADO	COSTO MENSUAL PROMEDIO	KILOS DESPERDICIO MENSUAL	COSTO PROMEDIO DE CHOCOLATE RETRABAJADO	COSTO MENSUAL PROMEDIO	
COSTO RETRABAJO CHOC	OLATE	418.00	\$ 2.07	\$ 865	128.94	\$ 2.07	\$ 267	
		TOTAL PERSONAS X TURNO	COSTO X HORA MANO DE OBRA	TOTAL MENSUAL (22 DIAS)	TOTAL PERSONAS X TURNO	COSTO X HORA MANO DE OBRA	TOTAL MENSUAL (22 DIAS)	
MANO DE OBRA	TURNO 12H DIA	2	\$ 1.66	\$ 5	2	\$ 1.66	\$ 1	
TOTAL COSTO MANO DE OBRA								
				\$ 5			\$ 1	
		***************************************			T		***************************************	
COSTO TOTAL		0000		\$ 870			\$ 268	

COSTO INIVERSIÓNI PROVESTO (ESTIMADO)	c	2 000
COSTO INVERSIÓN PROYECTO (ESTIMADO)	Ş	2,000

	AHORRO MENSUAL		AHORRO ANUAL	
CONTRIBUCION ADICIONAL	\$	602	\$	7,218.58
PAY-BACK APROXIMADO		3.3	ME	SES

Tabla 4.12 Reducción de desperdicio de chocolate Micro II

Autor: Stalyn Pazmiño Cáceres

En la tabla [4.12] el objetivo de este proyecto es reducir el excedente de consumo de chocolate que se origina en la máquina Micro II al producir barras pequeñas de 10 g al momento de dosificar por las boquillas hacia los moldes. Se toma como referencia el consumo promedio de chocolate mensual, así como el desperdicio que se origina y se registra mensualmente. Se establece el total estimado y costo mensual del mismo, así como la utilización de mano de obra para recolectar el desperdicio generado. Se hace una comparación con la propuesta la cual plantea reducir el consumo al 0.5% así como la disminución de la mano de obra utilizada para recolectar el desperdicio.

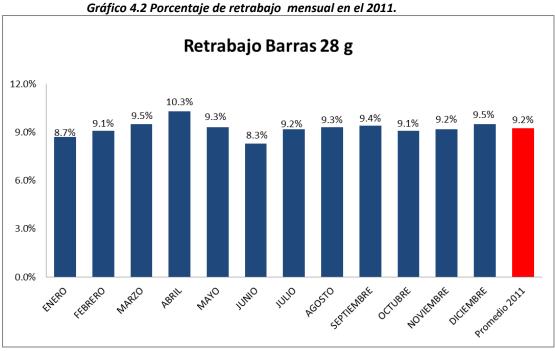
Se analiza esta comparación que da como resultado un ahorro anual aproximado de \$7,200 con una inversión de aproximadamente de \$2,000 y un tiempo de retorno del mismo de 3.3 meses.

	IDEAS DE MEJORA FINALES								
IDEA	OBJETIVO	ÁREA	DIAGRAMA CAUSA - EFECTO Prioridades	AHORRO ANUAL (\$)	INVERSIÓN (\$)	TIEMPO RECUPERACIÓN INVERSIÓN (MENSUAL)			
1	Disminuir retrabajos, paros programados y aumento de productividad en Envolvedora Schib #02	CARAMELOS DUROS	Construcción de un clasificador de caramelos	\$ 4,836.75	\$ 2,500.00	6			
2	Aumentar kilos producidos por disminución de fuga de productos en buen estado	CARAMELOS DUROS	Arreglo y/o rediseño del tamaño de guías del plato	\$11,642.41	\$ 1,551.20	2			
3	Disminuir y/o eliminar las variaciones en las descargas de glucosa		Instalación de un sistema de pesaje de flujo de carga	\$ 12,840.96	\$ 8,000.00	7			
4	Disminuir consumo de: insumos de limpieza, agua, mano de obra y tiempos de limpieza	CARAMELOS BLANDOS	Colocación de piso epóxico	\$ 5,214.96	\$ 8,192.63	19			

6	Aumentar producción en cocoa	COCOA	Instalación de servomotores para ganar precisión en pesos	\$ 1,164.24	\$ 2,432.80	25
7	Disminuir retrabajo en barras de 28 g.	CHOCOLATES	Instalación de Sistema de control de temperatura de la tolva dosificadora de chocolate	\$ 149,003.03	\$ 14,000.00	1
8	Eliminar fugas de materia prima (chocolate)	CHOCOLATES	Eliminar fugas de chocolate en el dosificador Inyectores desgastado	\$ 7,218.58	\$ 2,000.00	3
			AHORRO TOTAL ANUAL PROYECTOS	\$ 191,921		
			INVERSIÓN TOTAL PROYECTOS		\$ 38,677	
			AHORRO NETO PROYECTOS	\$ 153,244		

Tabla 4.13 Ideas de mejora finales para implementación Autor: Stalyn Pazmiño Cáceres.

4.2 Proyectos a Implementación


4.1.1. PROYECTO 7 SERVCO

Objetivo:

Disminuir retrabajo de 9.2% a 2.5% generado en la producción de las barras de chocolate 28 g.

Antecedentes:

A partir de enero del 2011 se registra el retrabajo que se genera en las barras moldeadas en la máquina Servco en la cual se produce la barra de 28g. En cada arranque, en especial de inicio de semana, esta moldeadora genera un porcentaje de retrabajo descrito en el siguiente gráfico [4.2].

Análisis de causa

Se realiza el respectivo análisis de causa para encontrar los posibles puntos de mejora, que se muestra en la figura [4.19].

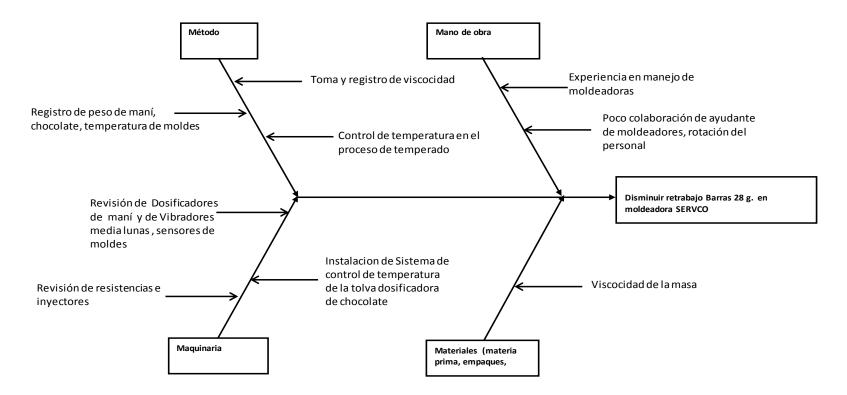
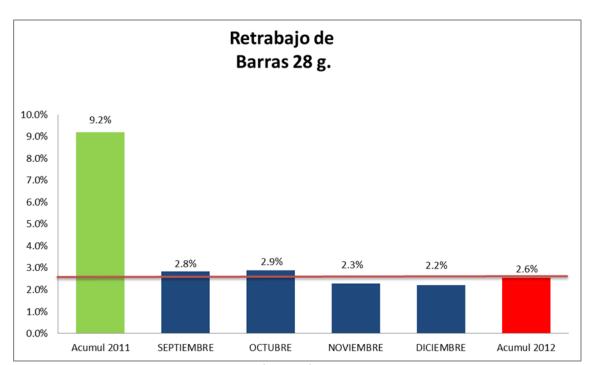


Figura 4.19 Diagrama Causa-Efecto disminución retrabajo en barras de 28 g Autor: Stalyn Pazmiño Cáceres.

Conclusiones del análisis de causa

- Instalación del sistema de control de temperatura de la tolva dosificadora de chocolate.
- 2. Control de temperatura en el proceso de atemperado.
- 3. Toma y registro de la viscosidad de la masa.
- Revisión de Dosificadores de maní y de Vibradores medias lunas, sensores de moldes.

Desarrollo


Se instala sistema de control de temperatura de la tolva dosificadora de chocolate con el fin de que se lleve el control del chocolate que sale de la atemperadora. Se instala un medidor de temperatura adicional en el panel de control, para su verificación y registro.

Se capacita al personal y se da el seguimiento al control de las temperaturas en el proceso de atemperado, con el fin de que se lleve a cabo una mejor cristalización del chocolate para evitar que luego del enfriamiento la barra se derrita.

Se capacita al preparador de masa para que realice el análisis de viscosidad de las masas de chocolates, con el fin de que dichas masas antes de entrar a

la moldeadora, tenga las características requeridas para un atemperado apropiado. Luego de realizados los puntos anteriores, se obtiene información de los siguientes indicadores en los meses del año 2012, demostrado en el gráfico [4.3].

Gráfico 4.3 Porcentaje de retrabajo generado luego de implementación de proyecto de mejora continua

Se muestra en el siguiente gráfico [4.4] el seguimiento del porcentaje de los paros no programados, luego de la implementación del proyecto de mejora continua

Seguimiento Paros No Programados Moldeadora **SERVCO** 8.0% 7.0% 6.0% 5.8% 5.0% 4.0% 3.4% 3.0% 2.2% 2.1% 1.9% 2.0% 0.8% 1.0% 0.0% NOVIEMBRE Acumul 2012 Acumul 2011 SEPTIEMBRE OCTUBRE DICIEMBRE

Gráfico 4.4 Porcentaje de paros no programados generado luego de implementación de proyecto de mejora continua

4.1.2. PROYECTO 3 VACUUMS

Objetivo:

Disminuir de 4 kg a 1 kg la variación en descargas de glucosa para la producción las masas de caramelos blandos.

Antecedentes:

Al momento de realizar la mezcla de los ingredientes en el vacuum, el único material que es vertido con medidas no estándar es la glucosa, componente o material esencial para la elaboración de las masas de caramelos blandos (toffees). Un análisis realizado en el mes de junio del 2012, logró detectar que por cada batch de masa se coloca un promedio de 4 kg de glucosa adicional. Esto conlleva un sobre consumo de dicho material de producción, el cual tiene una receta o cálculo de 73 kg por batch.

En la siguiente tabla [4.14] se muestran los datos los consumos reportados en el mes de junio

Tabla 4.14 Datos de sobre consumo promedio por batch de glucosa mes de junio 2012

Fecha	N° Batch	Consumo diario	Cálculo Kg	Diferencia Kg	Diferenci a por Batch Kg
10-jun	9	697	657	40	4.4
11-jun	14	1112	1022	90	6.4
12-jun	15	1157	1095	62	4.1
13-jun	15	1145	1095	50	3.3
14-jun	16	1241	1168	73	4.6
15-jun	13	1009	949	60	4.6
17-jun	9	689	657	32	3.6
18-jun	13	1035	949	86	6.6
19-jun	16	1231	1168	63	3.9
20-jun	16	1235	1168	67	4.2
21-jun	16	1222	1168	54	3.4
22-jun	15	1131	1095	36	2.4
24-jun	10	767	730	37	3.7
25-jun	16	1224	1168	56	3.5
26-jun	16	1219	1168	51	3.2
27-jun	15	1148	1095	53	3.5
28-jun	16	1239	1168	71	4.4
29-jun	16	1231	1168	63	3.9
30-jun	6	461	438	23	3.8
					4.1

Autor: Stalyn Pazmiño Cáceres.

Desarrollo

Se gestiona e instala sistema de control de pesos para descarga de glucosa, que se coloca en tubería de descarga sobre los vacuums de caramelos blandos. El sistema pesa según los parámetros indicados para que posteriormente dosifique lo señalado y así evitar el sobre consumo de este material.

También se considera un análisis del producto final luego del control que se realiza, con el objetivo de que dicho cambio no genere variaciones en la textura, calidad sensorial del producto.

Se toman los datos del consumo de glucosa en los meses posteriores del 2012, con los siguientes resultados, mostrados en el gráfico [4.5]:

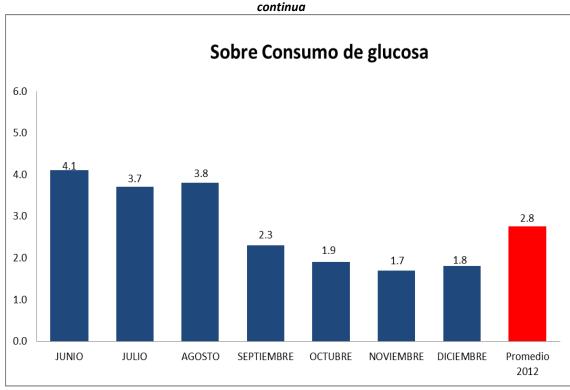


Gráfico 4.5 Sobre consumo de glucosa generado luego de implementación de proyecto de mejora

4.1.3. PROYECTO 2 SCHIB #1

Objetivo:

Disminuir de 4% a 2.5% el retrabajo que se genera de la fuga de producto en buen estado, el mismo que se transforma y se reporta como retrabajo.

Antecedentes:

En la máquina Schib #1, al momento de realizar la limpieza en cada cambio de turno existe fuga de caramelo en buen estado que junto a lo generado por caramelos deformes y cisco se convierten en retrabajo. Este producto al ser reprocesado, genera un costo adicional.

Desarrollo:

Para eliminar y/o disminuir que este producto en buen estado se convierta en retrabajo, se gestiona un rediseño del plato giratorio que va en la máquina envolvedora previo a su envoltura. Para esto se mide el tamaño del caramelo y se compara con el tamaño de los agujeros que existen en el plato de recepción. Con esto, se rediseñará un plato acorde a las dimensiones que tiene el caramelo y así evitar la fuga de dicho producto considerado en buen estado.

Se rediseña e instala el plato en la máquina envolvedora, luego de esto se realizan las pruebas respectivas para que entre en funcionamiento.

Se toman los datos luego de la instalación del plato modificado y del seguimiento se obtienen los siguientes datos mostrados en el gráfico [4.6]:

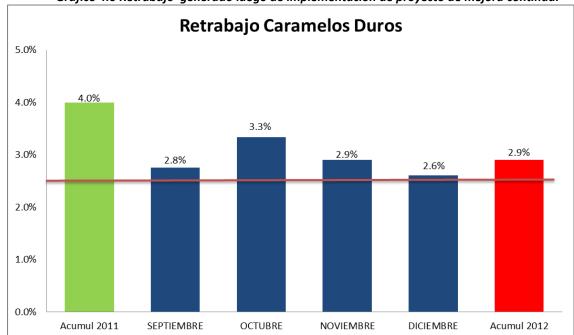


Gráfico 4.6 Retrabajo generado luego de implementación de proyecto de mejora continua.

Fuente: Balcón estadístico de la empresa.

Se muestra en el siguiente gráfico [4.7] el seguimiento del porcentaje de desperdicio de empaque primario, luego de la implementación del proyecto de mejora continua

Desperdicio de Empaque Primario Caramelos Duros 12.0% 11.0% 10.0% 9.0% 8.0% 8.0% 7.0% 6.0% 5.0% 4.2% 4.2% 3.5% 3.8% 4.0% 3.5% 3.0% 2.0% 1.0% Acumul 2011 SEPTIEMBRE OCTUBRE DICIEMBRE Acumul 2012 NOVIEMBRE

Gráfico 4.7 Desperdicio de empaque primario luego de implementación de proyecto de mejora continua.

Fuente: Balcón estadístico de la empresa.

Se muestra en el siguiente gráfico [4.8] el seguimiento del porcentaje de los paros no programados, luego de la implementación del proyecto de mejora continua

Seguimiento Paros No Programados Caramelos Duros 8.0% 6.9% 7.0% 6.0% 5.6% 5.0% 4.6% 4.3% 3.7% 4.0% 3.6% 3.0% 2.0% 1.0% 0.0% Acumul 2011 SEPTIEMBRE OCTUBRE NOVIEMBRE DICIEMBRE Acumul 2012

Gráfico 4.8 Paros no programado generado luego de implementación de proyecto de mejora continua.

CAPÍTULO 5

5. CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

Luego de la implementación de los proyectos, se pudo evidenciar que:

- En el proyecto de 7 SERVCO se logró reducir el retrabajo en los meses de septiembre a diciembre del 2012 del 9.2% al 2.6% así como los paros no programados del 5.2% al 2.1% luego de la implementación.
- En el proyecto 3 VACUUMS se logró disminuir el sobre consumo de los kilos de glucosa de 4.1 kg a 2.8 kg promedio de los meses de septiembre a diciembre del 2012.
- En el proyecto 3 SCHIB #1 se logró disminuir el retrabajo del 4% al
 2.9% promedio de los meses de septiembre a diciembre del 2012. Así mismo se redujo el consumo de empaque primario del 8% acumulado del 2011 al 3.8% acumulado 2012 y de los paros no programados del
 5.6% acumulado del 2011 al 4.6% acumulado del 2012.
- El proyecto de mejora continua logra identificar e implementar proyectos generados en la mayoría por el personal operativo de la empresa.

- Existe colaboración por parte del personal operacional y administrativo. Esto se vio reflejado en las ideas generadas para su posterior análisis y selección de las mismas.
- Así mismo, se evidencia la misma cooperación por parte de las áreas de apoyo jefaturas y gerencias tanto operacional como financiera en la gestión de los recursos para que los proyectos se gestionen de una forma ágil.
- El análisis por medio del método de Ishikawa, permite encontrar varias causas que originan un problema.
- El seguimiento por medio de indicadores de gestión, permite la corrección oportuna en caso de alguna desviación existente.
- Los trabajadores se sienten potenciados ya que sus ideas se plasman en un proyecto confiable y que beneficia tanto al personal como a la empresa.

5.2. RECOMENDACIONES

- Implementar y ejecutar los proyectos adicionales considerados relevantes para la mejora de la empresa.
- Evaluar el cumplimiento de los objetivos trazados en los proyectos iniciales.

- Proporcionar los recursos requeridos para el mantenimiento de cada uno de los proyectos implementados.
- Motivar al personal operativo para que se sigan generando ideas de mejoras.
- Se sugiere aplicar procesamiento estadísticos en las demás áreas para tener un eficiente control y así determinar posibles oportunidades de mejora

BIBLIOGRAFÍA

- [1] ISO copyright office. (2005). Norma internacional ISO 9000 Sistema de gestión de la calidad: Fundamentos y vocabulario. Asociación Española de Normalización y Certificación (AENOR), España: ISO copyright office.
- [2] Aguilar Morales J.E. (2010). La mejora continua, de Network de Psicología Organizacional.

 Sitio web:

http://www.conductitlan.net/psicologia organizacional/la mejora continua.pdf

- [3] Dr. Guillermo López Dumrauf. (2003). Cálculo Financiero Aplicado, un enfoque profesional. 2003, de Universidad CEMA Sitio web: http://www.ucema.edu.ar/u/gl24/Slides/Evaluacion de proyectos de inversi on.pdf
- [4] www.quees.info. (2013).¿Qué es el diagrama de causa y efecto, para qué sirve?.2013, de Quees.info Sitio web: http://www.quees.info/diagrama-de-ishikawa.html
- [5] ISO copyright office. (2008). Norma internacional ISO 9001, Sistemas de gestión de la calidad — Requisitos. Ginebra, Suiza: Translation Management Group.