662.66 12553

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

FACULTAD DE INGENIERIA MECANICA

"EVALUACION EXPERIMENTAL DE UN HORNO QUE COMBUSTIONA CASCARILLA DE ARROZ"

TESIS DE GRADO

PREVIA A LA OBTENCION DEL TITULO DE:

INGENIERO MECANICO

PRESENTADA POR:

JUAN CARLOS BLUM BAQUERO

GUAYAQUIL - ECUADOR 1990

DEDICATORIA

A DIOS Y LA VIRGEN

A MIS PADRES

A GUSTAVO Y GUILLERMO

A HILDA Y FRANCISCA

A MIS AMIGOS

ING. JORGE DUQUE R.
SUBDECANO DE LA FACULTAD

DE INGENIERIA MECANICA

ING. JORGE DUQUE R.
DIRECTOR DE TESIS

Fueres Ollitas

ING. FRANCISCO ANDRADE
MIENBRO DEL TRIBUNAL

ING. MARIO PATI≅O A.
MIENBRO DEL TRIBUNAL

DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta Tesis, me corresponden exclusivamente; y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL ".

(Reglamento de Exámenes y Títulos Profesionales de la ESPOL)

JUAN CARLOS BLUM BAQUERO

RESUMEN

Se probó y modificó un horno de parrilla inclinada escalonada, que utiliza como combustible cascarilla de arroz, para ser usado acoplado a una pequeña cámara de secado de arroz en cáscara.

El horno, tipo IRRI, fue construido a partir de dos tanques de suministro de aceite de 55 galones conectados entre sí por un ducto. El primer tanque actúa como cámara de combustión mientras el segundo lo hace como filtro de gases. El sistema consta además de: una chimenea, una tolva de alimentación y un ventilador centrífugo el cual succiona los gases producto de la combustión, provocando que el aire para la combustión pase a través de la parrilla, mezclándolos con aire ambiente (que se precalienta en los alrededores del filtro de gases) para obtener las condiciones adecuadas en el aire que se utilizará en el proceso de secado.

El horno fue probado operando con tiro natural para inclinaciones de parrilla de 45° y 50°, con la cámara de combustión primero desnuda y luego aislada. Los mejores resultados en términos de la intensidad de combustión (282000 W/m³) y de la eficiencia promedio del sistema (40

%) se alcanzaron con la cámara de combustión aislada y con una inclinación de parrilla de 50°. El horno fue probado luego operando con tiro inducido para ambas inclinaciones de parrilla (45° y 50°) simulando una cámara de secado con una altura de camada de arroz en cáscara de 0.3 metros. La intensidad de combustión alcanzó 314000 W/m³ y la eficiencia promedio del sistema alcanzó un 38 %. La temperatura y humedad promedio del aire de secado fueron de 46 °C y 38 % respectivamente; condiciones apropiadas para un adecuado secado del grano.

INDICE GENERAL

	PAG.
RESUMEN	6
INDICE GENERAL	8
INTRODUCCION	11
CAPITULO I	
FUNDAMENTOS	
1.1 OBJETIVOS	13
1.2 ALCANCE	14
CAPITULO II	
DESCRIPCION DEL EQUIPO	
2.1 FUENTE DE CALOR	15
2.2 VENTILADOR	23
2.3 PARAMETROS DE OPERACION DEL EQUIPO	24
2.4 CARGA TERMICA	28
2.5 TIPO DE AISLAMIENTO	32

CAPITULO III

BALANCE ENERGETICO DEL HORNO

3.1	BALANCE ENERGETICO DEL HORNO (ESTADO	
	ESTABLE)	35
3.2	BALANCE ENERGETICO DEL HORNO (ESTADO	
	TRANSIENTE)	36
	CAPITULO IV	
	PRUEBAS EXPERIMENTALES DEL HORNO	
4.1	PRUEBAS DEL HORNO CON TIRO NATURAL (HORNO	
	SIN AISLAMIENTO)	50
4.2	PRUEBAS DEL HORNO CON TIRO NATURAL (HORNO	
	AISLADO)	73
4.3	PRUEBAS DEL HORNO CON TIRO INDUCIDO (HORNO	
	AISLADO)	89
	CAPITULO V	
	RESULTADOS	
5.1	RESULTADOS DEL HORNO CON TIRO NATURAL (HORNO	
	SIN AISLAMIENTO)	113

5.2 RESULTADOS DEL HORNO CON TIRO NATURAL (HORNO	
AISLADO)	116
5.3 RESULTADOS DEL HORNO CON TIRO INDUCIDO (HORNO	
AISLADO)	120
CAPITULO VI	
ANALISIS DE RESULTADOS	
ANALISIS DE RESULTADOS	
4 1 ANALIGIC DE DECLI TARCE CATA	
6.1 ANALISIS DE RESULTADOS PARA EL HORNO OPERANDO	
CON TIRO NATURAL (HORNO SIN AISLAMIENTO)	130
6.2 ANALISIS DE RESULTADOS PARA EL HORNO	
OPERANDO CON TIRO NATURAL (HORNO AISLADO)	139
6.3 ANALISIS DE RESULTADOS PARA EL HORNO	
OPERANDO CON TIRO INDUCIDO (HORNO AISLADO)	155
CAPITULO VII	
ANALISIS ECONOMICO	
7.1 COSTOS DE FABRICACION	170
7.2 ANALISIS DE LA CONVENIENCIA ECONOMICA DEL USO	
DE LA CASCARILLA DE ARROZ COMO COMBUSTIBLE	175
The state of the s	1/3
CONCLUSIONES Y RECOMENDACIONES	185
APENDICES	193
BIBLIOGRAFIA	A

INTRODUCCION

En Ecuador, como en la mayoría de los países productores de arroz se dispone del recurso cascarilla de arroz en cantidades abundantes en la época de cosecha, este desecho agrícola representa un potencial anual de 137000 barriles equivalentes de petróleo (año 1985).

El uso de la cascarilla como combustible representa una alternativa energética renovable y viable, capaz de atenuar en parte el consumo de los derivados del petróleo, en la búsqueda de un adecuado manejo y de una racional utilización de los recursos no renovables para beneficio del país.

El Centro de Investigación Experimental en Tecnología Energética (CETE) de la Facultad de Ingeniería Mecánica, ha desarrollando experiencia en el aprovechamiento de la cascarilla de arroz como energético y en la actualidad continúa un programa de investigación para el aprovechamiento de este recurso mediante el uso de varias tecnologías. Como parte de este trabajo se realiza la evaluación experimental de un horno que usa cascarilla de arroz como combustible para el secado de arroz en cáscara. Esta investigación se basa en dos trabajos

previos sobre la combustión directa de cascarilla de arroz; el primero de los cuales sentó las bases teóricas de la combustión de cascarilla de arroz y estudió la combustión de ésta sobre una parrilla plana, en tanto el segundo estudió la factibilidad del uso de la cascarilla de arroz como combustible para el secado de granos en el país.

En el presente trabajo se evalúa la características de operación de un horno de construcción nacional y pequeña capacidad de secado estableciéndose: los consumos de cascarilla de arroz, la importancia del revestimiento de las paredes del hogar, el efecto de la inclinación de la parrilla sobre la combustión, las eficienicas del sistema y de combustión, los excesos de aire requeridos para una buena combustión, la funcionabilidad del horno para lograr y mantener las condiciones adecuadas en el aire de secado y el costo de fabricación del equipo.

La experiencia adquirida (datos de temperaturas, intensidades de combustión, excesos de aire, consumos de combustible, etc) permitirán el diseño de equipos de similares características y capacidades superiores.

CAPITULO I

FUNDAMENTOS

1.1 OBJETIVOS

Adquirir experiencia en la combustión directa de cascarilla de arroz sobre una parrilla inclinada escalonada y determinar las condiciones bajo las cuales se produce una combustión eficiente de la cascarilla de arroz.

Evaluar los parámetros del horno: operando con tiro natural, con la finalidad de estudiar el proceso de combustión de la cascarilla de arroz, y operando con tiro inducido, para determinar la factibilidad de secar una tonelada de arroz en cáscara por lote o tanda con fines industriales (pilado).

Investigar el efecto que producen en la combustión del tamo la variación de algunas condiciones, bajo las cuales se produce la combustión, tales como:

- el ángulo de inclinación de la parrilla

- el aislamiento o la falta de éste en la cámara de combustión
- la variación en el volúmen de la cámara de combustión

Determinar si el horno operando con tiro inducido es capaz de alcanzar y mantener las condiciones adecuadas en el aire de secado durante el proceso de secado.

1.2 ALCANCE

Establecer una referencia de datos técnicos en base a los cuales se puedan diseñar equipos de características similares a las del horno evaluado de mayores capacidades.

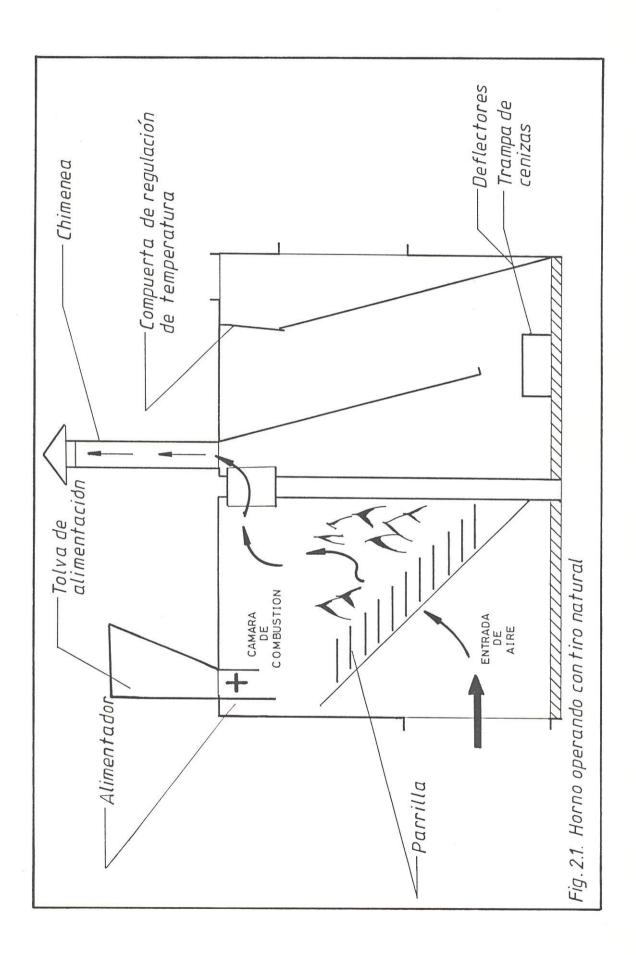
Determinar si el horno evaluado constituye una alternativa, económica y técnicamente, viable para el secado de arroz en cáscara en el Ecuador.

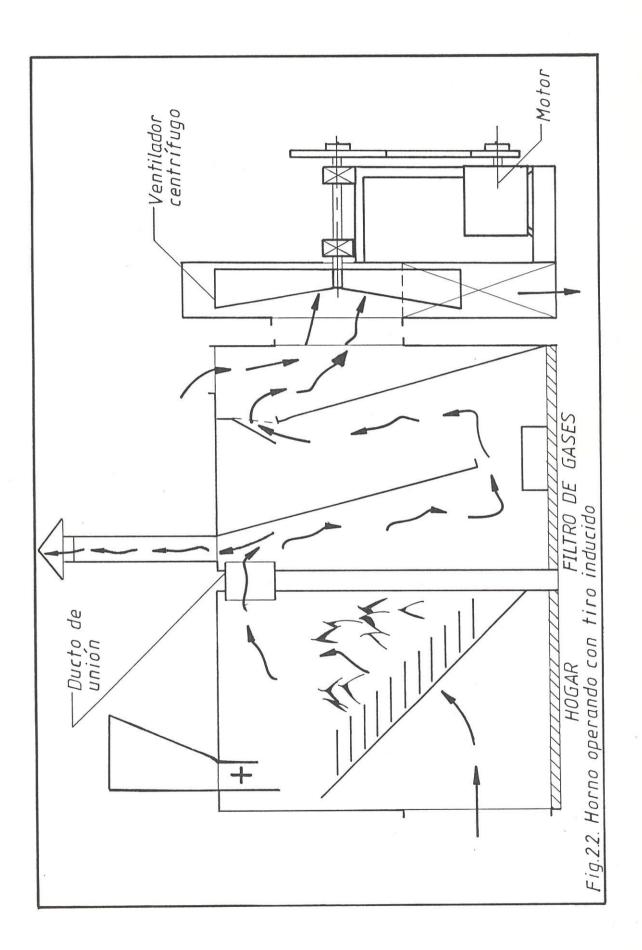
Formular recomendaciones sobre la correcta operación de este tipo de hornos.

El presente trabajo se evalúa las características de operación del horno y no pretende hacerlo con el proceso de secado en sí.

CAPITULO II

DESCRIPCION DEL EQUIPO


El equipo construido por Landires (Ref. 11) es un horno tipo IRRI (Ref. 12) compuesto por la fuente de calor, la chimenea y el ventilador centrífugo.


El horno opera bajo diferentes configuraciones, una con tiro natural exclusivamente con la finalidad de estudiar el proceso de combustión sobre una parrilla inclinada escalonada (Fig. 2.1) y otra, adicionándole un ventilador de tiro inducido para determinar la factibilidad de secar una tonelada de arroz en cáscara por lote o tanda con este equipo (Fig. 2.2).

2.1 FUENTE DE CALOR

La fuente de calor o de energía esta constituida por cuatro partes: el hogar, el filtro de gases, la tolva de alimentación y la chimenea.

El hogar y el filtro de gases se construyeron a partir de 2 tanques de suministro de aceite de 55 galones conectados entre sí mediante un ducto. La

tolva de alimentación está situada en la parte superior del primer tanque (hogar) mientras que la chimenea está situada en la parte superior del segundo tanque (filtro de gases).

2.1.1 HOGAR

El hogar es del tipo de parrilla inclinada escalonada a nivel del piso, diseño tradicional que domima en instalaciones para combustión de cascarilla de arroz desde que fue introducido en Birmania en 1880 (Ref. 2)

El hogar está compuesto por la cámara de combustión, la parrilla inclinada escalonada y la entrada de aire.

Las dimensiones y cálculos de las superficies del hogar, la parrilla y del agujero de entrada de aire se muestran en el Apéndice A.

Parrilla

La parrilla es del tipo escalonada e inclinada, siendo en esta posición con la que se alcanzan mayores eficiencias de combustión de la cascarilla, ya que el aire al pasar a través de

los espacios formados por los escalones de la parrilla se precalienta para alcanzar altas temperaturas, manteniendo la reacción química, logrando así una alta conversión del carbono fijo (Ref. 5).

Se ha llegado a establecer que la separación entre escalones debe ser menor a los 3 cm (Ref. 3).

La parrilla se construyó de forma tal que se puede variar tanto el ángulo de inclinación de la parrilla con respecto a la horizontal (piso) como el ángulo de sus escalones, con la finalidad de permitir encontrar el ángulo óptimo para la combustión de la cascarilla de arroz.

En base a esto los escalones se construyeron de plancha de acero de 3 mm. de espesor, unidos a un marco hecho de ángulo de 31.8 mm (1 ¼ pulg) x 6.4 mm (¼ pulg), mediante pernos que permiten variar su inclinación.

El área de la parrilla es de 0.158 m² (Apéndice A), en la figura 2.3 se muestra la parrilla utilizada.

FIG. 2.3 PARRILLA INCLINADA ESCALONADA

Cámara de Combustión

El volumen de la cámara de combustión debe ser tal que provea espacio suficiente para que se mezclen y reaccionen con el oxígeno los elementos combustibles, tanto sólidos como gaseosos, además se debe tener presente el alto grado de cenizas que genera la combustión de cascarilla, ya que no es recomendable térmicamente el desalojo contínuo de las cenizas, aunque no se puede prescindir de este proceso, pues éste crea espacio físico libre a ser ocupado por cascarilla fresca.

La cámara de combustión se prueba aislada y sin aislar cuando el horno opera con tiro natural.

La parrilla es un elemento determinante del volumen de la cámara de combustión pues al variar su inclinación varía a la par el volumen de la cámara. Así, se tiene que el volumen de la cámara de combustión para el horno sin revestimiento o aislamiento térmico con la parrilla inclinada a 45° es de 0.170487 m³; en tanto que el volumen con una inclinación de parrilla de 50° es de 0.166172 m³.

El revestimiento por ser interior produce un cambio en el volumen de la cámara; cuando el hogar está revestido y la parrilla tiene una inclinación de 45° el volumen de la cámara de combustión es de 0.107578 m³, si se varía la inclinación de la parrilla a 50° el volumen es de 0.104630 m³.

Al volumen del hogar bajo la parrilla se lo ha denominado entrada de aire.

2.1.2 FILTRO DE GASES

El segundo tanque actúa como filtro de los gases. En su interior se han soldado dos deflectores a través de los cuales se forza a circular los gases producto de la combustión. El material particulado que es arrastrado en la corriente de gases se precipita al chocar con los deflectores.

Se ha colocado también una compuerta en el filtro, cuya función es regular la salida de los gases producto de la combustión hacia el ventilador con la finalidad de controlar la temperatura del aire de secado.

2.1.3 TOLVA DE ALIMENTACION

La tolva utilizada es la diseñada, construida y probada por Chao (Ref. 5), la cual es una tolva a 23° con un alimentador de compuerta rotatorio de paletas formado por seis compartimientos o sectores donde las paletas están montadas sobre un eje. Cuando giran las compuertas rotatorias, se llenan los compartimientos superiores llevando consigo la cascarilla, descargándola en la parrilla inclinada. (ver Apéndice A)

2.1.4 CHIMENEA

La chimenea está ubicada sobre el filtro de gases y antes del primer deflector; se construyó con plancha de acero de 2 mm de espesor, su diámetro es de 130 mm y su altura de 2840 mm

2.2 VENTILADOR

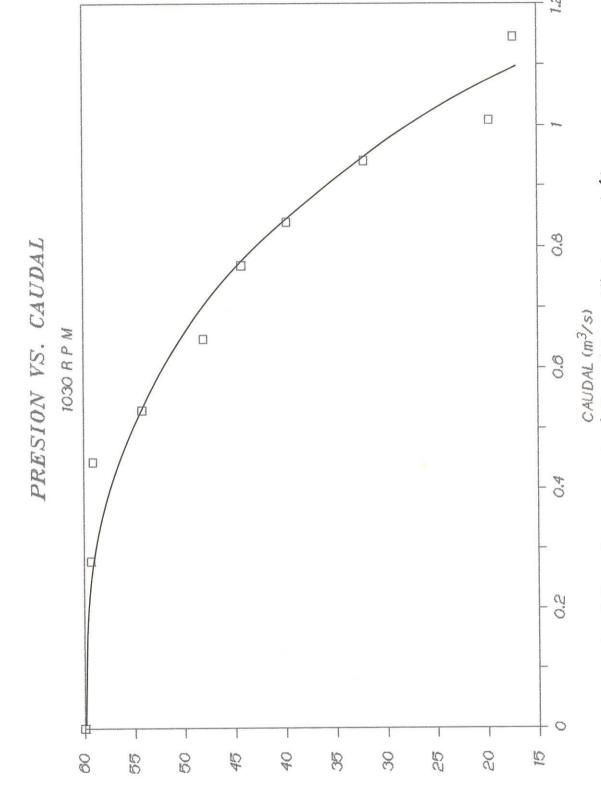
El ventilador que se utiliza es centrífugo con impulsor simple de aletas radiales con rotación contra el sentido de las manecillas del reloj, descarga horizontal baja, boca única, accionado por correa, con el rodete en voladizo apoyado por dos

cojinetes. En la figura 2.4 se presenta el ventilador descrito.

La carcasa se construyó con plancha negra de 2 mm de espesor y el impulsor con plancha de acero de 3 mm; la estructura donde se acopla la carcasa está hecha con ángulo de 57.2 mm (2 ¼ pulg) x 6.4 mm (¼ pulg.)

El motor acoplado al ventilador es de 1.5 KW (2 HP), trifásico, 220-440 V, 1140 RPM; la velocidad de rotación del impulsor debe estar entre 964 y 1075 RPM para este motor, siendo la velocidad con la que trabaja el ventilador 1030 RPM. (ver Apéndice B - 1)

En la figura 2.5 se muestra la curva Presión Estática vs. Caudal obtenida para este ventilador mediante norma AMCA-ASHRAE (Ref. 1).


En el Apéndice B - 2 se muestran los datos, resultados y esquemas del banco de pruebas para la obtención de la curva Presión vs. Caudal.

2.3 PARAMETROS DE OPERACION DEL EQUIPO

El horno fue diseñado por el IRRI (Ref. 12) para secar una tonelada de arroz en cáscara por lote o

FIG. 2.4 VENTILADOR CENTRIFUGO

PRESION ESTATICA (mm de agua)

Curva característica del ventilador centrífugo

26

BIBLIOTECA

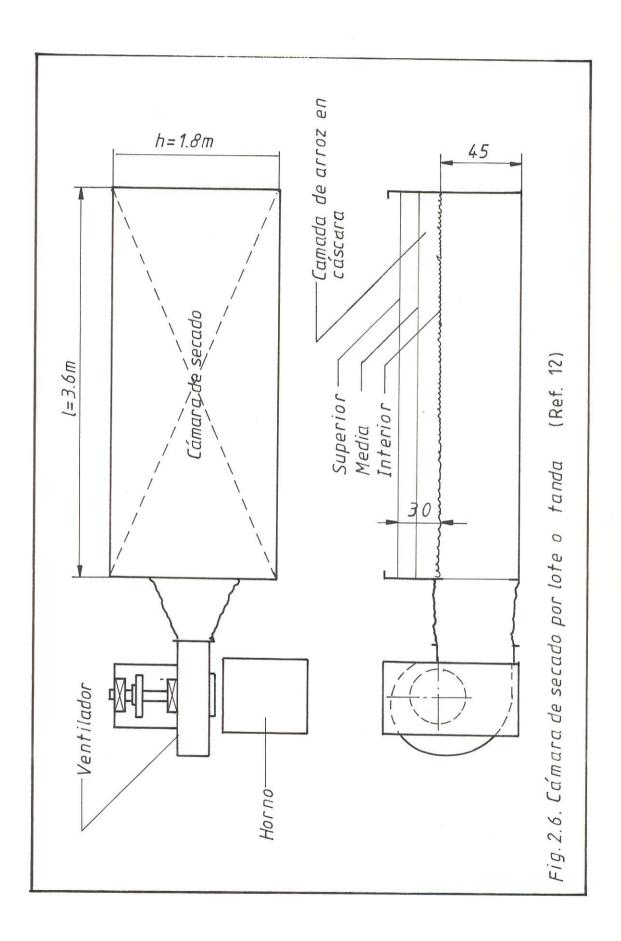
tanda bajo los siguientes parámetros de operación del equipo.

Se necesitan 6 Kg/hr de cascarilla de arroz para calentar 1.13 m³/seg (2400 CFM) de aire desde 29°C (85°F) y 85 % de humedad relativa hasta 44 ± 4°C (111 ± 5°F). El horno genera 21 KW (72000 Btu/hr), siendo el poder calorífico de la cascarilla de 12.66 MJ/Kg (12000 Btu/kg). El poder calorífico que se reporta en la literatura está entre 11.60 y 13.70 MJ/Kg (11000 y 13000 Btu/Kg) (Ref. 12)

El ventilador centrífugo gira a una velocidad de 765 RPM para entregar un flujo de aire de 0.25 m³/seg por m³ de arroz en cáscara (15 CFM/pie³ de arroz) y rota a 1230 RPM para entregar 0.58 m³/seg por m³ de arroz en cáscara (35 CFM/pie³ de arroz); necesitándose un motor de 0.75 KW (1 HP) y otro de 2.2 KW (3 HP) respectivamente.

A 0.58 m³/seg por m³ de arroz el ventilador entrega un flujo total de aire de 1.13 m³/seg (2400 CFM) a una temperatura de 44 \pm 4°C (110 \pm 5°F) contra una presión estática de 20.32 a 22.86 mm de agua (0.8-0.9 pulg. de agua).

Una temperatura uniforme del aire de secado (44 \pm 4 $^{\circ}$ C) se obtiene atizando el horno a intervalos de 20 a 30 minutos.


Para secar 44 Kg de arroz en cáscara desde 22.5 % hasta 14 % de humedad se necesita 1 Kg de cascarilla de arroz. 44 Kg de arroz en cáscara producen a partir del proceso de pilado aproximadamente 9 Kg de cascarilla de arroz.

Otro horno propuesto por la IRRI (Ref. 12) de similares características y capacidad cuyo volumen de la cámara de combustión es 0.056634 m³ reporta una intensidad de la cámara de combustión de 227.72 KW/m³ (22000 Btu/pie³ hr) y una intensidad de parrilla de 220.84 KW/m² (70000 Btu/pie² hr).

2.4 CARGA TERMICA

La carga térmica la constituye el arroz en cáscara, con un contenido de humedad inicial aproximadamente del 23 %, que se encuentra en la cámara de secado (Fig. 2.6).

Carreres Ortells (Ref. 4), en cuanto respecta a la resistencia del grano a la elaboración industrial, sostiene que se pueden alcanzar rendimientos normales

secando a una temperatura entre los 45 y 50 °C, siempre que el producto sea frecuentemente remezclado y se tenga cuidado de que la humedad relativa del aire no descienda por debajo de ciertos límites. De hecho, no es la temperatura en sí misma la que provoca que el grano se agriete cuando se emplean flujos de aire excesivamente calientes, sino el contenido de humedad excesivamente bajo que el aire llega a tener normalmente en tales condiciones. Si el aire tiene un contenido de humedad alrededor del 35 % no se producen daños en el arroz con estas temperaturas.

El IRRI (Ref. 12) reporta un flujo de aire de 1.13 m³/seg (2400 CFM) a una temperatura de 44 ± 4 °C (110 ± 5 °F) generado con un motor de 2.2 KW (3 HP) para entregar 0.58 m³/seg por m³ de arroz (35 cfm/pie³ de arroz) contra una presión estática de 20.32 a 22.86 mm de agua (0.8 a 0.9 pulg. de agua); que es la caída de presión que producen los 1144 Kg de arroz en cáscara distribuidos sobre una superficie de 3.6 m x 1.8 m, con una altura de camada de 0.3 m (12 pulg.) y un flujo de aire de 0.49 m³/seg (1030 CFM) generado con un motor de 0.75 KW (1 HP) para entregar 0.25 m³/seg por m³ de arroz en cáscara (15 cfm/ pie³ de arroz).

Un flujo de aire de 0.25 m³/seg por m³ 50 arroz resultó lento y escaso para una altura de camada de arroz en cáscara de 0.3 metros puesto que la diferencia en la humedad del arroz a distintas profundidades o alturas de la camada fue excesiva. Con un flujo de aire de 0.58 m³/seg por m³ de arroz manteniendo la altura de camada de 0.3 metros el secado fue homogéneo; y la duración del proceso de secado fue menor (4 horas).

Reduciendo la altura de camada de 0.3 metros a 0.15 metros cuando el ventilador entrega 0.49 m³/seg (1030 CFM) se incrementa el flujo de aire desde 0.25 m³/seg por m³ de arroz hasta 0.50 m³/seg por m³ de arroz en cáscara (30 cfm/pie de arroz en cáscara) obteniendo homogeneidad en el secado.

La diferencia en humedad entre la parte superior, media e inferior de las capas de la camada de arroz en cáscara en la cámara de secado fue mayor a menor flujo de aire.

Para las pruebas realizadas en el Centro de Investigación Experimental en Tecnología Energética de la ESPOL se utiliza un motor de 1.5 Kw (2 HP) acoplado al ventilador para entregar un flujo de aire de 1.07 m 3 /seg (2258 CFM) a una temperatura de 44 \pm 4

°C (110 ± 5 °F) contra una presión estática de 15.4 mm de agua que es la caída de presión que producirían 1030 Kg de arroz en cáscara distribuidos sobre una superficie de 6.48 m² con una altura de camada de 0.27 metros, bajo estas condiciones el proceso de secado se estima sería el adecuado aunque para las pruebas realizadas se simula una altura de camada de 0.3 metros siendo esta una situación crítica de funcionamiento. (Apéndice C)

2.5 TIPO DE AISLAMIENTO

El tipo de aislamiento seleccionado es de bajo costo y fácil adquisición. El revestimiento es interior con el objeto de proteger al metal de la corrosión producto de las temperaturas alcanzadas en la cámara de combustión y del vapor de agua que pudiera condensarse.

El aislamiento está compuesto por una mezcla de: arcilla refractaria Alfadomus, arcilla de Posorja y ladrillo refractario molido proveniente de un horno de inducción. Las proporciones de la mezcla son 1, 1 y 0.5 en volumen respectivamente.

El monolítico formado tiene un espesor de 50 mm en

las paredes laterales y 50 mm en la parte superior o tapa del hogar.

El peso del monolítico es de 153.41 Kg y el producto de la masa del monolítico por el calor específico de los materiales constituyentes del mismo es igual a 158507.3 J/°K.

La Figura 2.7 muestra una secuencia del proceso seguido en el revestimiento del horno.

FIG. 2.7 SECUENCIA DEL PROCESO DE REVESTIMIENTO DEL HOGAR

CAPITULO III

BALANCE ENERGETICO DEL HORNO

3.1 BALANCE ENERGETICO DEL HORNO (ESTADO ESTABLE)

La operación de un horno se entiende como una combinación de procesos térmicos que ocurren en éste.

El perfil de temperaturas en un horno es generalmente muy complicado; si las condiciones del horno se mantienen invariables en el tiempo se dice que el horno opera bajo condiciones de estado estable, de otra forma las condiciones son transientes. Así por ejemplo bajo condiciones de estado estable la generación de calor (carga térmica) en el horno es independiente del tiempo. (Ref. 6)

A los hornos cuya temperatura permanece constante en el tiempo se los conoce como hornos de acción constante o continuos y aquellos en los cuales la temperatura es variable se los conoce como periódicos o adentro y afuera. (Ref. 10)

El horno, como se verá más adelante, presenta condiciones fluidodinámicas de la combustión cambiantes en el tiempo con una llama móvil es decir, que avanza a medida que encuentra combustible a su paso, con desalojos de cenizas que provocan movimientos drásticos del combustible en la parrilla y con una alimentación irregular.

Se puede entonces aseverar que las condiciones térmicas bajo las cuales opera el horno son transientes, por consiguiente no es pertinente realizar el balance de energía en estado estable del sistema, ya que éste nunca alcanza la estabilidad térmica.

3.2 BALANCE ENERGETICO DEL HORNO (ESTADO TRANSIENTE)

Un balance energético puede ser compilado para: la zona del proceso, la zona donde se genera el calor, elementos individuales del horno y su equipo térmico o el horno como un todo.

El balance de energía realizado para cortos intervalos de tiempo (5 - 10 minutos) se denomina usualmente balance instántaneo. El propósito de éste es determinar la dinámica del consumo de energía en

el proceso tecnológico cuando este ocurre bajo condiciones térmicas transientes. (Ref. 6)

Las variaciones de la temperatura del horno en el tiempo se conocen como las condiciones de temperatura del horno.

La cantidad de calor generado en un instante se conoce también como la carga térmica del horno. Las condiciones térmicas del horno las constituyen esencialmente las variaciones en el tiempo de la generación de calor o carga térmica.

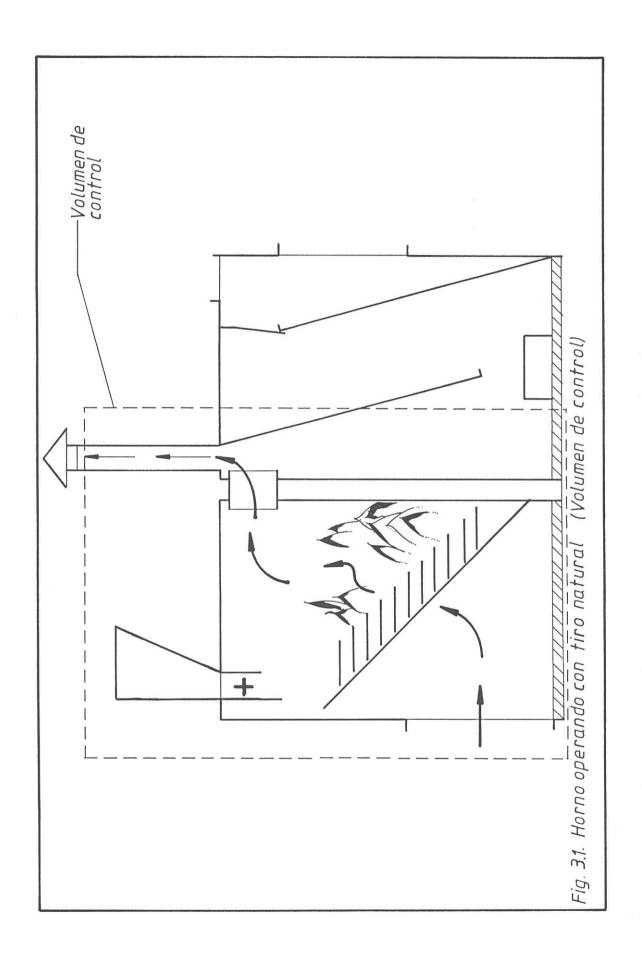
En los hornos periódicos la carga térmica varía en el tiempo, mientras en los continuos ésta permanece constante. (Ref. 10)

En el presente trabajo los balances instántaneos se realizan para intervalos de tiempo de 15 minutos y un total de nueve balances por prueba. Generalmente el primer balance efectuado en determinda prueba se realiza después de 30 minutos de haber sido encendido el horno.

3.2.1 BALANCE ENERGETICO DEL HORNO CON TIRO NATURAL

Realizando el balance energético del horno con tiro natural con respecto al volumen de control que se muestra en la Fig. 3.1 se obtiene:

$$EQC = EFT + EAP + PT + IC$$
 (3.1)


en donde,

EQC, es la energía química del combustible o Potencia nominal del horno (W) y se define como el producto entre el poder calorífico inferior en base humeda (J/Kg) y el flujo másico de combustible (Kg/seg) (cascarilla de arroz).

$$EQC = (PCI)_{base humeda} \times m_{comb}$$
 (3.2)

EFT, es la energía entregada al fluido de trabajo (W) y se define como el producto entre el flujo másico de los gases que salen del hogar (Kg/seg) por el calor específico de los gases (J/Kg.°K) y por la diferencia entre la temperatura de los gases a la salida del hogar (°K) y la temperatura ambiente (°K).

$$EFT = m_{\Theta} \times C_{P} \times (T_{Sh} - T_{a}) \qquad (3.3)$$

EAP, es el cambio en la energía acumulada en las paredes (W) y se define como el producto entre la masa del revestimiento (Kg), por el calor específico de este material (J/Kg•°K), por la diferencia entre la temperatura promedio posterior (en el tiempo) y la temperatura promedio anterior (en el tiempo), para el tiempo (seg) de el período.

Cuando el horno no está revestido y sus paredes son metálicas de un espesor pequeño la energía acumulada en las paredes se considera nula.

$$EAP = m_r \times Cp_r \times \frac{(T_{wp} - T_{wa})}{tiempo}$$
 (3.4)

PT, las pérdidas térmicas (W) son aquellas que sufre el horno debido a la convección y radiación por las paredes del hogar y las pérdidas de calor por aberturas en el hogar.

$$PT = h \times A_n \times (T_m - T_m) + \varepsilon_m \times \sigma \times A_n \times (T_m^{4-} - T_m^{4}) + \varepsilon_m \times \sigma \times A_n \times (T_m^{4-} - T_m^{4})$$

$$(3.5)$$

 $h = coeficiente convectivo promedio exterior $$(W/m^2 \circ {}^{\circ}K).$

 A_h = superficie exterior del hogar (m^2).

- T_{*} = temperatura exterior de las paredes del hogar (°K).
- Ta = temperatura ambiente (°K).
- e_e = emisividad de las paredes exteriores del hogar.
- σ = constante de Stefan Boltzmann (W/m² °K).
- e_a = emisividad a través de la abertura para la entrada de aire.
- A_a = superficie de la abertura para la entrada de aire al hogar.
- T_c = temperatura promedio de la cama de cascarilla de arroz.

IC, es la ineficiencia de combustión (W) que la constituyen: los residuos de carbón — sílice, debido a que la forma del óxido de sílice se mantiene invariable antes y después de la reacción química reteniendo carbono en la estructura de sílice; el carbón fijo que no se libera en el proceso de combustión; el material volátil que abandona el hogar sin combustionarse y al monóxido de carbono producido por una combustión incompleta.

La eficiencia de combustión (N_c) se define como la diferencia de la ineficiencia de combustión

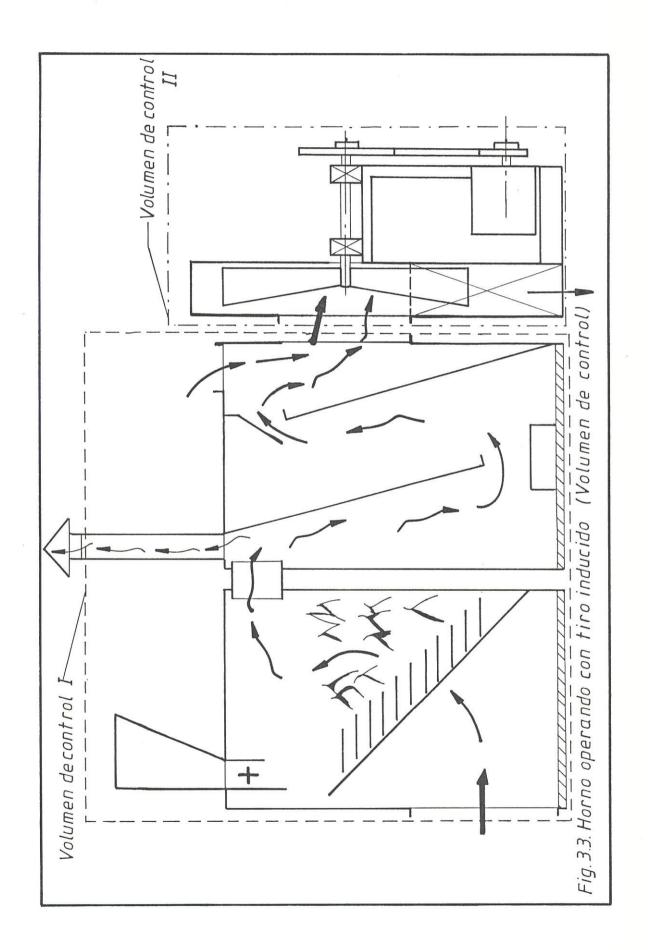
dividida para la energía quimíca del combustible respecto de la unidad.

$$\Omega_C = (1 - IC/EQC) \times 100$$
 (%) (3.6)

La eficiencia térmica del sistema (N.) se define como la energía entregada al fluido de trabajo para la energía química del combustible.

$$n_{=} = \frac{\text{EFT}}{\text{EQC}} \times 100 \quad (\%) \quad (3.7)$$

En la Figura 3.2 se muestra el balance de energía por medio del diagrama de Sankey.


3.2.2 BALANCE ENERGETICO DEL HORNO CON TIRO INDUCIDO

Realizando el balance energético del horno con tiro inducido con respecto al volumen de control I que se muestra en la Figura 3.3 se obtiene:

$$EQC = EFT + EAP + CSG + PT + IC$$
 (3.8)

donde,

Evaporación por humedad de la cascarilla Energía de los Energía de los Energía del Trabajo Estructura sílice -carbono Combustion incompleta Fig 3.2 Diagrama de Sankey para el horno operando con tiro natural len base a los resultados de la prueba ## 11)
--

EFT, es la energía entregada al fluido de trabajo (W) y se define como el producto entre el flujo másico de gases que salen hacia el ventilador (Kg/seg), por el calor específico de los gases (J/Kg°K) y por la diferencia entre la temperatura de los gases que salen hacia el ventilador (°K) y la temperatura ambiente (°K).

$$EFT = m_{\Theta} \times Cp \times (T_{\Theta} - T_{\bullet}) \qquad (3.9)$$

CSG, es el calor sensible de los gases que escapan por la chimenea (W) y se define como el producto entre el flujo másico de gases que escapan por la chimenea (Kg/seg) por el calor específico (J/Kg.*K) de estos gases y por la diferencia entre la temperatura de los gases en la chimenea (*K) y la temperatura ambiente (*K)

$$CSG = M_{Geh} \times Cp \times (T_{eh} - T_{a}) \qquad (3.10)$$

PT, para las pérdidas térmicas (W) se debe considerar además de las sufre el horno en el hogar las pérdidas que se registran en el filtro de gases.

El resto de miembros de la igualdad 3.8

conservan las definiciones dadas en la sección 3.2.1.

En la Figura 3.4 se muestra el balance de energía por medio del diagrama de Sankey.

Balance de Energía y Masa en el ventilador

Realizando un balance de masa y de energía con respecto al volumen de control II que se muestra en la Figura 3.3 se obtienen:

$$m_{\vee} = m_{\text{air}} + m_{\Theta \vee} \tag{3.11}$$

$$m_{\vee} \times h_{\vee} = m_{\text{mir}} \times h_{\text{mir}} + m_{\Theta_{\vee}} \times h_{\Theta_{\vee}}$$
 (3.12)

en donde,

m_v = flujo másico del aire de secado que sale del ventilador (Kg/seg).

mair = flujo másico de aire que entra al ventilador (Kg/seg).

m_{ev} = flujo másico de gases producto de la combustión que salen hacia el ventilador (Kg/seg).

 h_{\vee} = entalpía del aire de secado que sale del ventilador (J/Kg).

hair = entalpía del aire que entra al ventilador (J/Kg).

 $h_{\Theta \vee}$ = entalpía de los gases que salen hacia el ventilador (J/Kg).

Despejando en 3.11 mair se tiene:

reemplazando esta igualdad en 3.12 y despejando m_{ev} se tiene:

$$m_{\ThetaV} = \frac{m_{V} (h_{V} - h_{air})}{(h_{\ThetaV} - h_{air})}$$
 (3.13)

Si se conoce que el flujo másico de gases que sale del hogar (m_o) se divide en un flujo hacia la chimenea y otro hacia el ventilador se tiene que:

$$m_{\Theta} = m_{\Theta \subset h} + m_{\Theta \vee} \tag{3.14}$$

Conociendo el flujo másico de gases que escapan por la chimenea y el flujo másico de gases

producto de la combustión que abandona el filtro de gases hacia el ventilador se puede calcular el flujo másico de gases que salen del hogar producto de la combustión.

CAPITULO IV

PRUEBAS EXPERIMENTALES DEL HORNO

El horno se prueba con diferentes configuraciones: el horno desnudo (sin aislamiento) operando con tiro natural, el horno aislado operando con tiro natural, el horno aislado operando con tiro inducido.

Landires (Ref. 11) determinó que las mejores condiciones de combustión para la cascarilla de arroz se dan con la parrilla inclinada aproximadamente a 45° y los escalones en posición horizontal (con respecto al piso) en base a esto se decide probar al horno variando la inclinación de parrilla para cada configuración de 45° a 50°.

4.1 PRUEBAS DEL HORNO CON TIRO NATURAL (HORNO SIN AISLAMIENTO)

A continuación se procede a explicar la metodología, las normas y las condiciones bajo las cuales los datos son recopilados.

4.1.1 DESCRIPCION DE LAS PRUEBAS

El proceso empieza con la compuerta de regulación de temperatura, ubicada en el filtro de gases (2.1.2), completamente cerrada permaneciendo en esta posición durante el desarrollo de toda la prueba por lo que el flujo de gases proveniente del hogar escapa integramente por la chimenea.

Metodología

Los datos adquiridos se denominan medición; el intervalo entre mediciones es de quince minutos.

La adquisición de los datos de temperatura se realiza automáticamente cada minuto mediante termocuplas conectadas a un indicador-registrador de temperaturas desde el inicio mismo de la prueba. (Exceptuando la medición de las temperaturas de las paredes exteriores del hogar)

La medición de las velocidades del flujo de gases en la chimenea y la medición de las temperaturas de las paredes exteriores del hogar, se realizan de forma manual con un

intervalo de quince minutos a partir de la $medición\ N^2\ 1.$

La toma de muestra de gases se efectúa cada treinta minutos a partir de la medición Nº 1.

Se pesa la cantidad de cascarilla de arroz utilizada en la prueba.

La medición Nº 1 usualmente tiene lugar treinta minutos después de haber encendido el horno, es en este momento cuando se toman los datos en forma manual y a partir de éste en que se deben promediar los quince datos de temperatura que el indicador — registrador de temperaturas ha sensado. Conociendo que este instrumento toma los datos de temperatura en intervalos de un minuto, el promedio obtenido representa la temperatura en este período de tiempo para la medición Nº 1 en el punto donde está instalada la termocupla.

El procedimiento se mantiene para todas las termocuplas conectadas al indicador-registrador y para las mediciones subsiquientes.

Cabe anotar que para la Prueba # 1 no se realiza, ni la medición de las velocidades del flujo de gases que escapan por la chimenea ni la medición del consumo de cascarilla, por lo que no se presentarán resultados en base a esta prueba; a pesar de ésto se considera conveniente incluir los datos de temperaturas registrados, principalmente por ser la única prueba en que el desalojo de cenizas es prácticamente nulo.

Durante la realización de las pruebas 4 y 5 la termocupla instalada a la salida del hogar sensa temperaturas erróneas, por lo que se ha buscado un método que permitiese estimar las temperaturas de los gases a la salida del hogar.

Para el efecto se realiza una curva entre la diferencia de temperatura (\$\Delta\$T) de los gases a la salida del hogar (T_m) y la temperatura de los gases en la chimenea (T_m) vs. la temperatura de los gases en la chimenea(T_m). La curva se elabora en base a los datos obtenidos en las pruebas 2 y 3 siendo válida ésta para un determinado rango de flujo de

gases y para el horno funcionando con tiro natural sin aislamiento.

Conociendo la temperatura de los gases que escapan por la chimenea y entrando a la curva se obtiene la diferencia entre la temperatura de los gases a la salida del hogar y la temperatura de los gases que escapan por la chimenea (Δ T) de donde se estima la temperatura de los gases a la salida del hogar (T_{en}). (Ver Apéndice D - 1)

Normas y Condiciones

Para asegurar que no haya filtraciones de aire o escape de gases a través de la compuerta de regulación de temperatura se sella esta sección del filtro de gases como se muestra en la figura 4.1.

La pared lateral del hogar se divide en doce secciones, cada una de estas secciones a su vez está compuesta por cuatro partes a las que se denominan A, B, C y D; la parte superior del hogar constituye la sección trece en la cual se marcan tres puntos de toma de temperaturas a los que se llama A, B y C. Todo ésto con el

FIG. 4.1 FILTRO DE GASES (HORNO OPERANDO CON TIRO NATURAL)

objeto de realizar un barrido de toma de temperaturas en las paredes exteriores del hogar para el cálculo de las pérdidas de calor en el hogar.

La figura 4.2 muestra la manera en que se ha dividido el hogar.

En la cama de cascarilla de arroz se instalan tres termocuplas: una en la parte superior, una en la parte media y otra en la parte inferior de la parrilla; las temperaturas sensadas en estas ubicaciones se han denominado:

- T_{c1} a la temperatura sensada en la parte superior de la parrilla.
- T_{c2} a la temperatura sensada en la parte media de la parrilla.
- T_{e3} a la temperatura sensada en la parte inferior de la parrilla.

A la salida del hogar, en el ducto de unión entre el hogar y el filtro de gases, se instala una termocupla; la temperatura de los gases a la salida del hogar se denomina Ten.

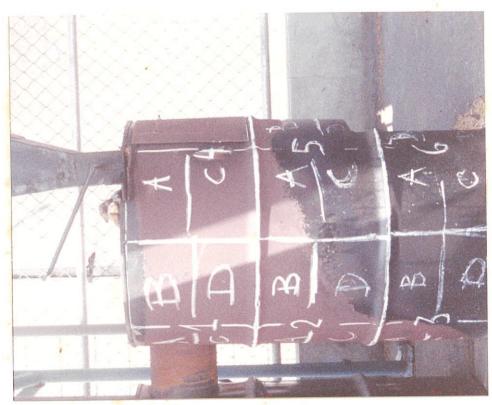


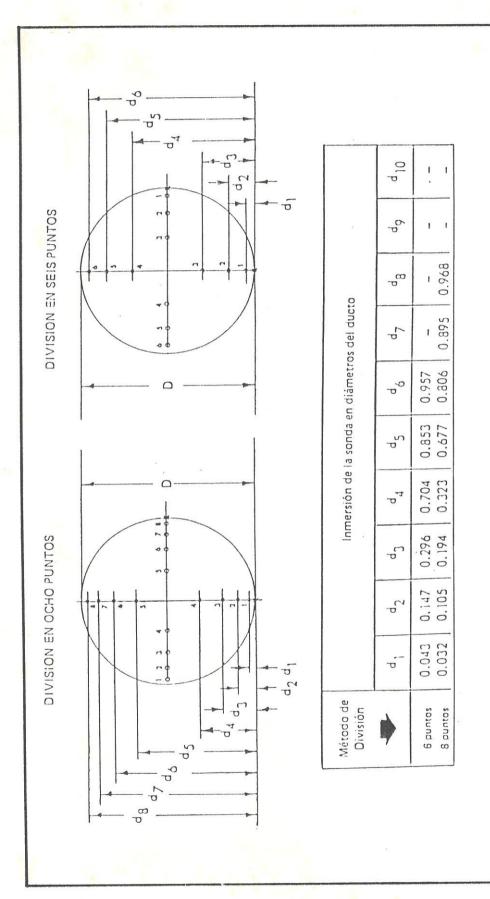
FIG. 4.2 DIVISION DEL HOGAR EN SECCIONES

En la chimenea se instala otra termocupla. La temperatura de los gases que escapan por la chimenea se denomina $T_{\rm ch}$.

La medición de la velocidad de los gases producto de la combustión se realiza en la chimenea a una altura igual a diez veces el diametro de ésta (para permitir el desarrollo del perfil de velocidad del flujo de gases) y mediante el método de división en seis puntos según norma dada para el seccionamiento en áreas iguales para mediciones transversales en ductos circulares presentada en la figura 4.3 . (Ref. 7)

A partir de esta norma deben realizarse dos barridos a 90°, del uno con respecto al otro, siendo el diámetro de la chimenea 130 mm se tiene que la inmersión de la sonda en diámetros de la chimenea (d) es igual a:

 $d_1 = 5.6 \text{ mm}$


 $d_2 = 19.1 \text{ mm}$

 $d_{3} = 38.5 \text{ mm}$

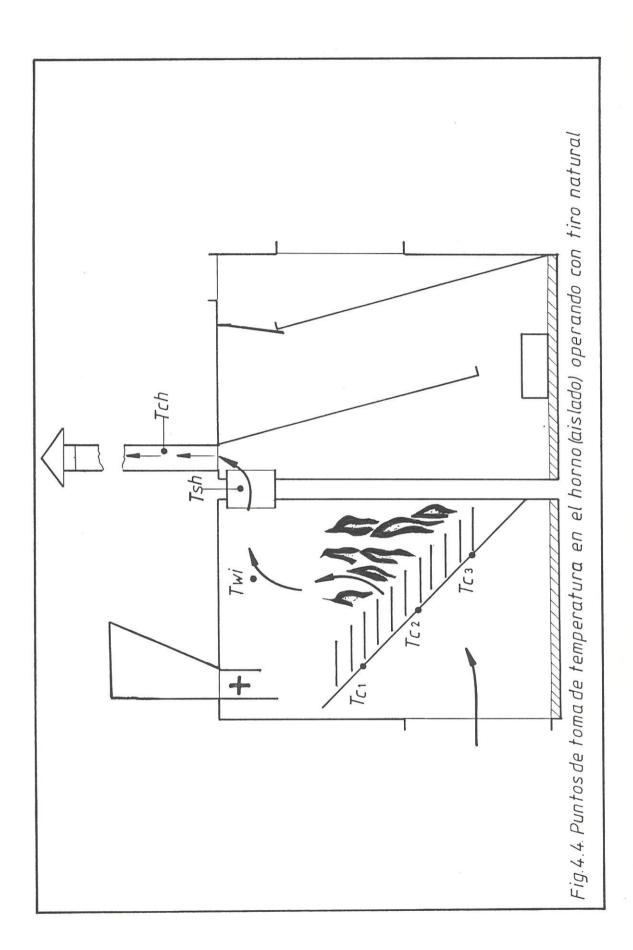
 $d_4 = 91.5 \text{ mm}$

 $d_{5} = 110.9 \text{ mm}$

do = 124.4 mm

SECCIONAMIENTO EN AREAS IGUALES PARA MEDICIONES TRANSVERSALES EN DUCTOS CIRCULARES (Ref. 7) Fig. 4.3

La composición de los gases provenientes de la cámara de combustión se determina mediante el análisis de Orsat.


En la figura 4.4 se muestra un esquema del flujo de gases producto de la combustión y los puntos de medición (toma de datos) para la configuación del horno actual.

Instrumentos Utilizados

- Aparato de Orsat
- Indicador registrador de temperaturas de gráfica de banda para termocuplas tipo K de
 12 canales marca Omega
- Termómetro digital para termocuplas tipo K marca Omega
- Balanza digital
- 5 termocuplas tipo K
- Sensor de temperaturas de pared tipo
- Velómetro marca Alnor

4.1.2 DATOS EXPERIMENTALES

El conjunto de pruebas del horno operando con tiro natural sin aislamiento esta constituido por:

- Prueba # 1
- Prueba # 2
- Prueba # 3
- Prueba # 4
- Prueba # 5

A continuación se presenta como ilustración los datos (mediciones) obtenidos para la Prueba # 4; los datos obtenidos para el conjunto de pruebas del horno operando con tiro natural sin aislamiento se muestran en el Apéndice F - 1 con excepción de los datos presentados en esta sección.

DATOS EXPERIMENTALES

PRUEBA # 4

HORNO SIN AISLAMIENTO OPERANDO CON TIRO NATURAL

Inclinación de la parrilla : 50°

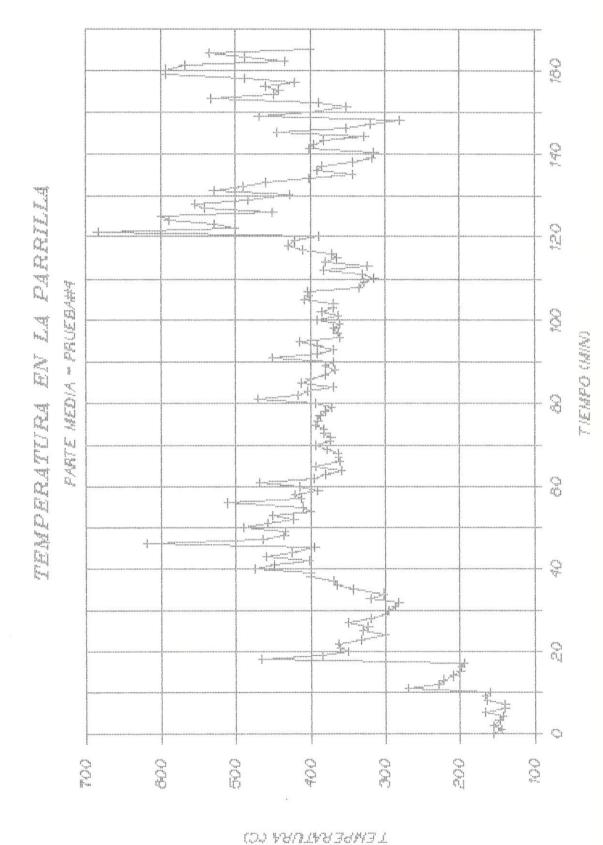
Temperatura ambiente (Ta) : 30°C

Consumo de cascarilla

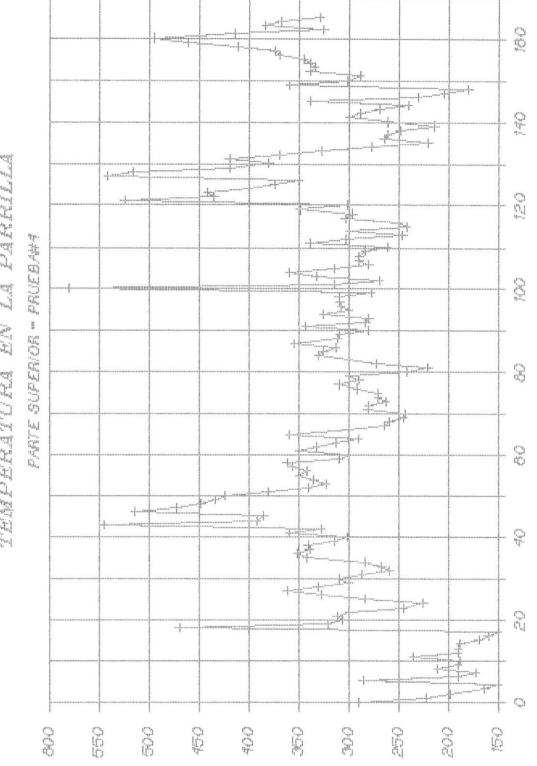
: 11.83 Kg

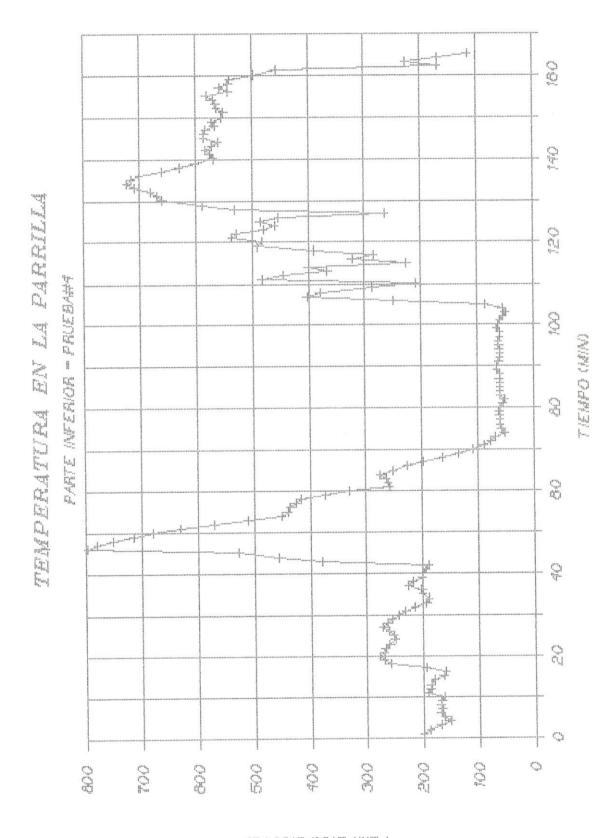
Tiempo de duración de la prueba : 166 min

Flujo másico de cascarilla : 0.001188 Kg/seg


4.28 Kg/hr

Volumen de la cámara de combustión : 0.166172 m³


Tiempo al que empieza Medicion Nº1 : 30 min


ANALISIS DE LOS GASES

MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	1.6	20	0
5	2.6	19.4	0
7	2	19.8	0
9	2	20	0

FILLEY OF NE PELLYBRAIN

SESPO SOT HE PRILIPHENTED $\{\sum_{i=-r}^{r+1}\}$ 17:--17:--1,11,11 1,11,11 +4 17.1 $\{\frac{1}{2},\frac{1^{2}}{2},\frac{1}{2}\}$ 12-10-1 13-1,...,1 1,...,1 1,...,1 1,...,1 1,...,1 1,...,1 131-1 131-1 131-1 131-1

LEMBERGURY (C)

TEMPERATURAS DE LOS GASES A LA SALIDA DEL HOGAR

PRUEBA # 4

MEDICION NO	TEMPERATURA (°C)
1	285
2	309
3	252
4	262
5	262
6	265
7	322
8	227
9	315

^{*} Temperaturas Estimadas

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 4

		SECC	SECCION 1		500 Sec. 10	SE(CCION	N 2		SEC	SECCION 3	<u>ო</u>		SE(SECCION 4	4		SE(SECCION	2		SEC	SECCION	9
MEDICION	A	ABCID	O	9	A	m	5		A	<u>m</u>	Ü	П	BICIDIAIBICIDIAIBICIDIA	щ	ט	a	A	m	Ü	A	man spe	BICID	0	
	145	145 140 170 145 190	170	142	190	93	175	9	60 130	57	69	45	45 186 182 200 170	182	200	170		97 122	52	122	42	41	41	42
n	120	150 160 170 170 195 110	170	170	195	110	190		75 150	75	20	52	52 175 160 170 137 115 115	160	170	137	115	115	80	115	55	28	25	52
2	190	190 187 130 185 180 140	139	185	180	140		185 115	130	8	70	1	60 180 160 150 140 160 120	160	150	140	160	120	70	09	53	52	52	54
7	260	260 290 260 155 130 115	260	155	130	115	215	2	135	65	55	40	40 150 135 130	135	139	120	100	8	65	65	55	20	45	40
0	250	250 230 215 200 240 180	215	200	240	180	236	87	87,175	60	83	47	60 83 47 230 185 213 170 112 107	185	213	170	112	107	80	80	54	80 54 52	50	45

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 4

		SECC	SECCION 7	<u></u>	Ω	SECCI	ON 8		S	SECCION	9 NO		S	ECCI	SECCION 10	0	23	SECCION 11	ON I		SE	SECCION 12	12
MEDICION	A	m	D	10	A B C D A B	m	0	A	A	 B	5	0	A	B	0	A	A	CID A B C D A B C D A B C D A B C D A B C D	5	 A	W	 M	
2	183	214	205	175	183 214 205 175 145 110		110	88	20	44	42	1 4	280	290	250	230	145	110 80 50 44 42 40 280 250 250 230 145 200 80 220 65 215 60 140	80	220	65		30-1
4	163	114	145	105	163 114 145 105 95 120	120	92	92 65	37.	46	40	88	116	113	200	191	145	37 46 40 38 116 113 200 191 145 195 90 186 65 112	06	1981	651	12	56 80
9	192	345	185	212	192 345 185 212 115 125	125	95	8	200	50	48	45	170	175	209	215	145	48 45 170 175 209 215 145 220 110 197 60 140 54	19	197	60	40	54 52
00	145	200	143	195	145 200 143 195 100 110	110	85	70	45!	46	47	44	170	175	170	165	130	70 45 46 47 44 170 175 170 165 130 150 100 105 60 62 120 180		102	60	62 1	20-1

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 4

MEDICIONI	SE	ECCION 13	
MEDICION; Nº	A ¦	B	C
1	135	125	130
2	250	270	255
3	155	150	140
4	110	105	109
5	180	150	175
6	170	170	165
7	290	265	275
8	170	165	180
9	245	250	220

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

PRUEBA # 4

	Medic	Medición 1, Medición 2, Medición	Medic	sión 24	Medic	ión 3	Medición	ión 4	Medición	ión 5¦	Medic	Medición 6	Medic	Medición 7		Medición 8	Medición	ión 9
Distancia		.06 1 .0	0.0	.06 1 .0	0	.06 1 .0	0	.06	0 .0	.06	0 .0	.06	.0	.06	0.	.06	.0	.06
d1	100	100	200	220	200	150	200	300	100	100	200	200	100	100	100	100	200	200
dZ	200	200	420	420	380	220	300	440	200	200	300	350	200	200	200	200	300	350
d3	400	280	540	540	440	480	480	500	440	400	200	440	220	280	360	360	400	440
d4	520	460	560	580	260	540	540	580	260	500	580	520	480	360	480	440	480	520
d5	440	440	200	560	520	480	520	009	400	480	300	580	380	360	200	480	400	540
99	480	400	480	200	480	200	480	480	360	400	420	480	420	300	460	420	380	200

4.2 PRUEBAS DEL HORNO CON TIRO NATURAL (HORNO AISLADO)

Las pruebas del horno operando con tiro natural aislado se realizan manteniendo la misma metodología, normas y condiciones descritas en la Sección 4.1.1.

4.2.1 DESCRIPCION DE LAS PRUEBAS

La inclusión de dos termocuplas, colocadas en la sección 1D y conectadas al graficador, situadas una de ellas del lado exterior de la pared y la otra del lado interior de la pared del hogar, hace la diferencia de estas pruebas con respecto a las del horno sin aislamiento.

La figura 4.5 muestra al horno operando con esta configuración.

Al igual a lo que sucede en la realización de las pruebas 4 y 5 (Sección 4.1.1) la termocupla a la salida del hogar sensa temperaturas erróneas durante la realización de las pruebas 6, 7 y 8.

Para el efecto se realiza una curva entre la diferencia de temperatura (Δ T) de los gases a la salida del hogar (T_{en}) y la temperatura de

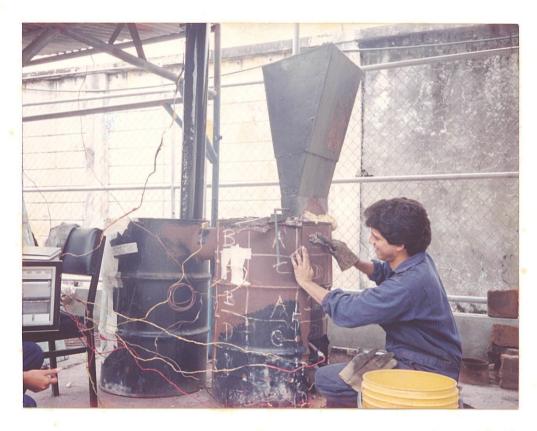


FIG. 4.5 HORNO OPERANDO CON TIRO NATURAL (AISLADO) Y
PARTE DE LA INSTRUMENTACION UTILIZADA

los gases que escapan por la chimenea (T_{ch}) vs. la temperatura de los gases que escapan por la chimenea (T_{ch}), siendo válido este gráfico para un determinado rango de flujo de gases y para el horno operando con tiro natural aislado. El gráfico se ha elaborado en base a los datos obtenidos en las pruebas 9, 10 y 11.

Conociendo la temperatura de los gases que escapan por la chimenea y entrando a esta curva se obtiene la diferencia entre la temperatura de los gases a la salida del hogar y la temperatura de los gases que escapan por la chimenea (Δ T) de donde se estima la temperatura de los gases a la salida del hogar (T_{sh}). (Ver Apéndice D = 2)

Instrumentos Utilizados

- Aparato de Orsat
- Indicador registrador de temperaturas de gráfica de banda para termocuplas tipo K de 12 canales marca Omega
- Termómetro digital para termocuplas tipo K marca Omega
- Balanza digital
- 7 termocuplas tipo K

- Sensor de temperaturas de pared tipo K
- Medidor de tiro
- Velómetro marca Alnor

4.2.2 DATOS EXPERIMENTALES

El conjunto de pruebas del horno operando con tiro natural y aislado esta constituido por:

- Prueba # 6
- Prueba # 7
- Prueba # 8
- Prueba # 9
- Prueba # 10
- Prueba # 11

A continuación se presenta como ilustración los datos (mediciones) obtenidos para la Prueba # 10; los datos obtenidos para el conjunto de pruebas del horno operando con tiro natural y aislado se muestran en el Apéndice F – 2 con excepción de los datos presentados en esta sección.

DATOS EXPERIMENTALES

PRUEBA # 10

HORNO AISLADO OPERANDO CON TIRO NATURAL

Inclinación de la parrilla : 50°

Temperatura ambiente (Ta) : 36°C

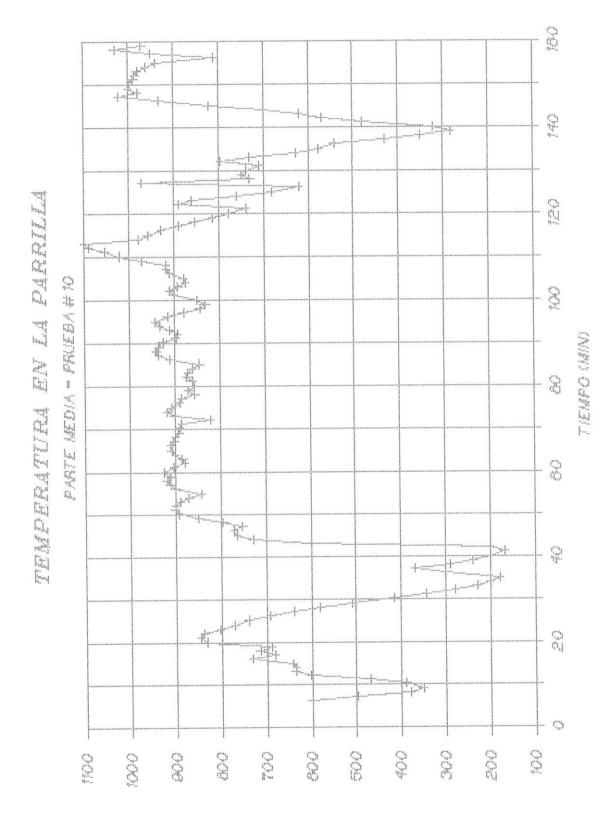
Consumo de cascarilla : 21.7 Kg

Tiempo de duración de la prueba : 160 min

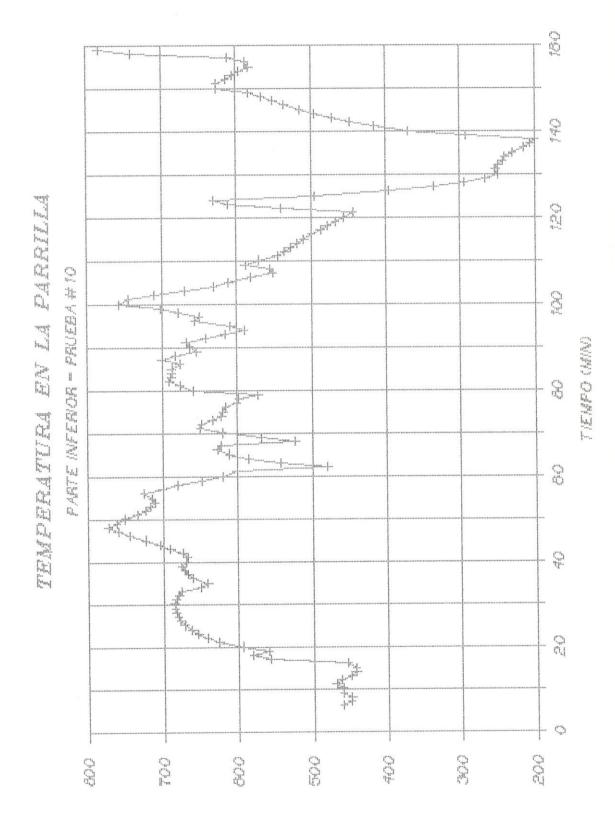
Flujo másico de cascarilla : 0.002260 Kg/seg

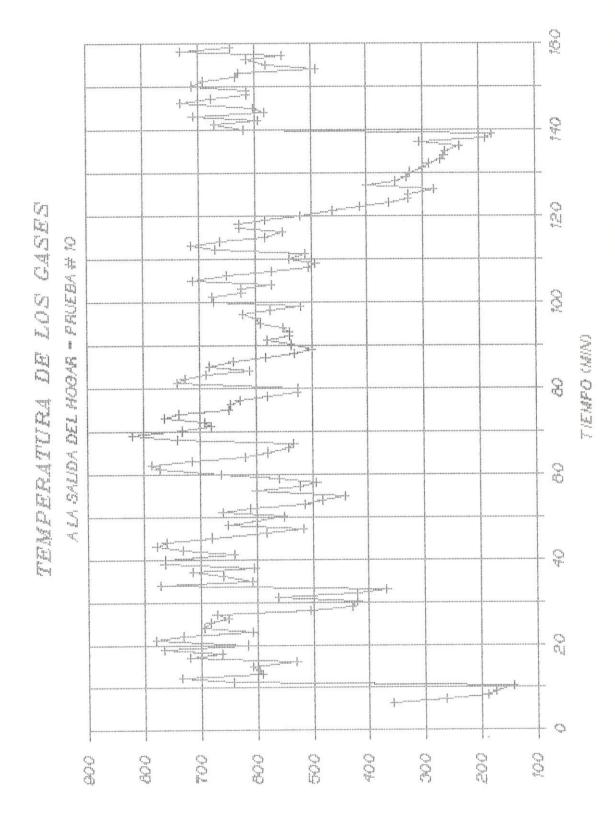
8.14 Kg/hr

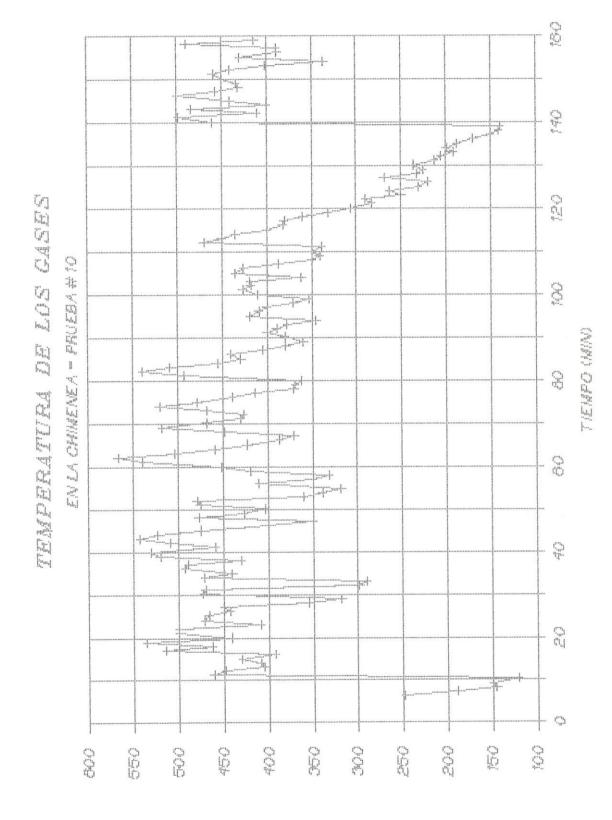
Volumen de la cámara de combustión : 0.104630 m³

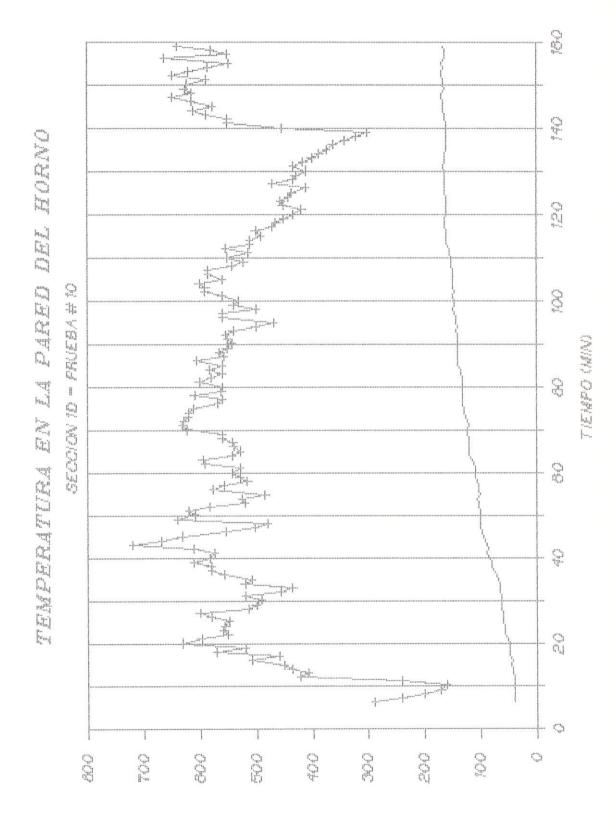

Tiempo al que empieza Medicion Nº1 : 30 min

ANALISIS DE LOS GASES


MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	12.2	7.6	0.6
5	4.2	17.2	0
7	3.4	18.2	0
9	7.6	13.8	0


1-1-1 FILL FILL FILLEGIE 1.11.1 1.11.1 1.11.1 -Fil.---- $[i_{i_1\ldots i_{L^2}}^*]$ -11-1 $i_{i_{n},i_{1}}^{\prime,n}$


COPENERSONS


 $\Big|_{i_{1},i_{2},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}^{i_{1},i_{1},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n},\ldots,i_{n}}\Big|_{i_{1},\ldots,i_{n},$

LEMBERALOGY (.C)

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 10

9 N	9	43	20	47	9	70
SECCION	B : C :	42	20	48	61	09
SE(м	47	56	50	63	80
	A	47	52	54	56	70
5	А	49	25	73	49	85
SECCION	ت ت	53	20	63	71	80
SEC	В	71	80	72	77	906
	A !	75	110	79	99	80 110 115 115 100 108
4	Д	82	55	82	106	100
SECCION	ت ت	6	06	112	128	115
SEC	М	8	80	82	107	115
	A	28	85	116	61 116 107 128 106	110
(C)	А	44	55	53	61	80
SECCION	B : C :	8	125	55	70	80
SE(М	28	09	64	72	100
	A	83	100 115	83	117	150 110 140 100
2	CID	9		94	127 117	110
CCION	O	75	130	135	155	150
SE(ф	5	110	112	130	
	A		142	132	167	155
r	9	20	8	8	141	140
SECCION 1	ABCDA	77 50 84 50 71 55	105 81 130 80 142 110	120 112 96 80 132 112	168 147 143 141 167 130	160
SECC	m	20	8	112	147	145
1	A	77	105	120	168	165 145 160 140 155 120
MEDICION	No	q	m	22	No. 400 800 800 800 800 800	00

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 10

	S	SECCION 7	NO	7	S	SECCION	8 NC	page 1,400	S	SECCION	6 NO		S	SECCION 10	ON 1	0	02	SECCION 11	ON 1		S	SECCION	ON 12	2
MEDICION	A	 m	0	A B C D A B	A	 m	C		A	 B	B C D	1 1	A	m	ט	0	A	B	Ü	A 'B C D A B C D A B C D	A	m	0	
2	108 80 104 85	80 104	104	8	99	78	42	48	52	41	45	42	85 120	120	89	89 100		110	80	92 110 80 110 70 67	70	67	50	22
	- 106	8	8	90 80 100 77 80 70	8	2	85	- 68	62	55	55	20	100	116	95	137	105	145	82	50 100 116 95 137 105 145 85 142 50 115	50	115	45 110	110
9		03	86	90 103 86 109 61	1 61	8	76	61	89	56	65	20	50 123 127 140 155 138 164	127	140	155	138	164	92	92 73	45	66	53	22
 	74:1	10	80	74 110 80 111 70 84	70	84	61	50	53	50	511	47	132	140	144	148	121	147	94	50 53 50 51 47 132 140 144 148 121 147 94 140		70 81	52	27

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 10

MEDICIONI	SE	CCION 13	
MEDICION;	A ;	B	C
1	83	104	101
2	111	142	70
3	125	145	145
4	130	113	154
5	110	180	157
6	122	183	128
7	122	147	140
8	137	169	142
9	155	150	153

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

PRUEBA # 10

	Medic	zión 1	Medición 1, Medición 2, Medición	ión 2	Medic	ión 3	Medic	ión 4	Medic	Medición 4 Medición 5		Medición 6		Medición 7	Medición	ión 8	Medición	ión 9
Distancia		0.06 0.0	0.0	.06 1 .0	0 0	.06	0 0	.06	0.0	.06	0	.06	0	.06	0 0	.06	0 0	.06
l fp	480	480	380	480	360	380	380	2000	400	200	400	400	200	380	320	300	400	200
d2	009	580	089	640	580	580	540	580	580	009	540	260	620	500	400	420	580	009
d3	099	640	720	800	640	640	009	640	099	700	640	099	700	009	200	400	099	700
d4	089	760	680	820	099	099	620	760	640	720	680	680	640	580	520	440	700	720
gp	099	800	099	820	680	620	099	800	099	700	720	680	620	540	540	520	720	700
d6	680	1 Mar 1800 MIN 1800	760 640	780	099	009	640	780	680	680	700	640	099	200	200	560	740	680

TIRO EN LA CHIMENEA

PRUEBA # 10

	MATERIAL SERVICE SAMES SERVICE AND ADDRESS ASSESS ASSESS ASSESS AND ADDRESS ASSESS ASSESSA ASSESS
MEDICION; Nº	TIRO (PULG. AGUA)
1	0.05
2	0.04
3	0.03
4	0.03
5	0.04
6	0.03
7	0.03
8	0.03
9	

4.3 PRUEBAS DEL HORNO CON TIRO INDUCIDO (HORNO AISLADO)

A continuación se procede a explicar la metodología, las normas y las condiciones bajo las cuales los datos son recopilados, que de manera general son similares a las explicadas en la sección 4.2.1.

4.3.1 DESCRIPCION DE LAS PRUEBAS

El proceso comienza con la compuerta de regulación de temperatura cerrada hasta que el horno esté completamente encendido y no haya presencia de humos visibles en la chimenea, entonces se abre la compuerta permitiendo que el ventilador succione los gases producto de la combustión y el aire que se calienta en los alrededores del filtro de gases.

Metodología

Se mantiene la metodología para la realización de las pruebas tal como se describe en la Sección 4.1.1 añadiendo las mediciones del flujo de aire a la descarga del banco de pruebas, de las temperaturas de bulbo seco y de bulbo húmedo del aire de secado y de las temperaturas de las paredes del filtro de

gases; mediciones que se realizan cada 15 minutos a partir de la medición № 1.

Normas y Condiciones

La división realizada a las paredes exteriores del hogar con el objeto de realizar un barrido de toma de temperaturas, se mantiene igual que en el horno operando con tiro natural. Además se realiza la división del filtro de gases en tres secciones laterales (15, 16 y 17) y en una sección superior (14) para realizar un barrido de toma de temperaturas, con el objeto de calcular las pérdidas de calor que se registran en éste.

En la figura 4.6 se muestra la forma en que se ha dividido las paredes del filtro de gases.

El ventilador opera acoplado al banco de pruebas que se utilizó para obtener la curva Presión estática vs. Caudal (Fig. 2.5), con el objeto de simular la caída de presión.

En la figura 4.7 se presenta al horno operando con tiro inducido acoplado al banco de pruebas y la instrumentación utilizada.

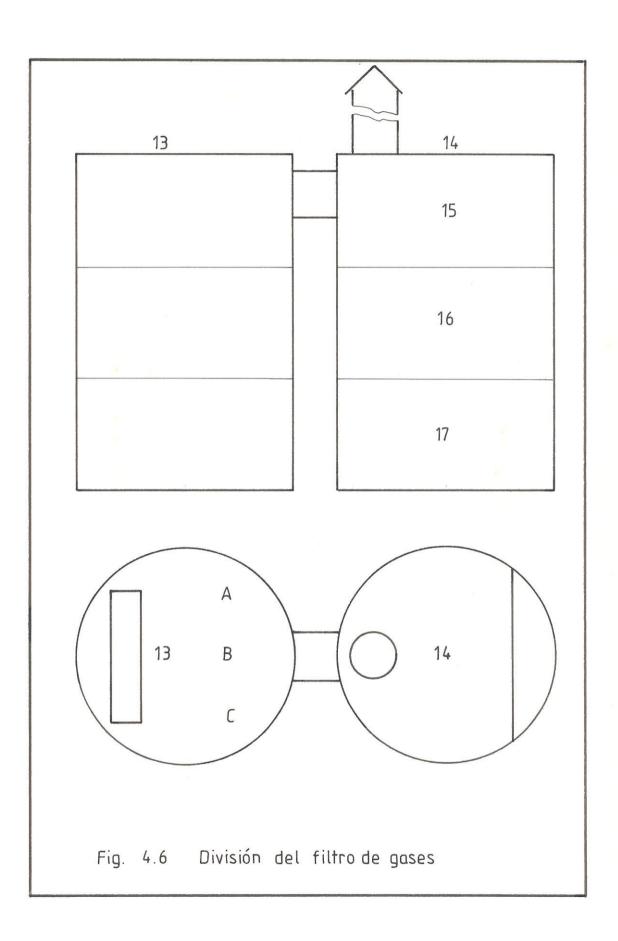
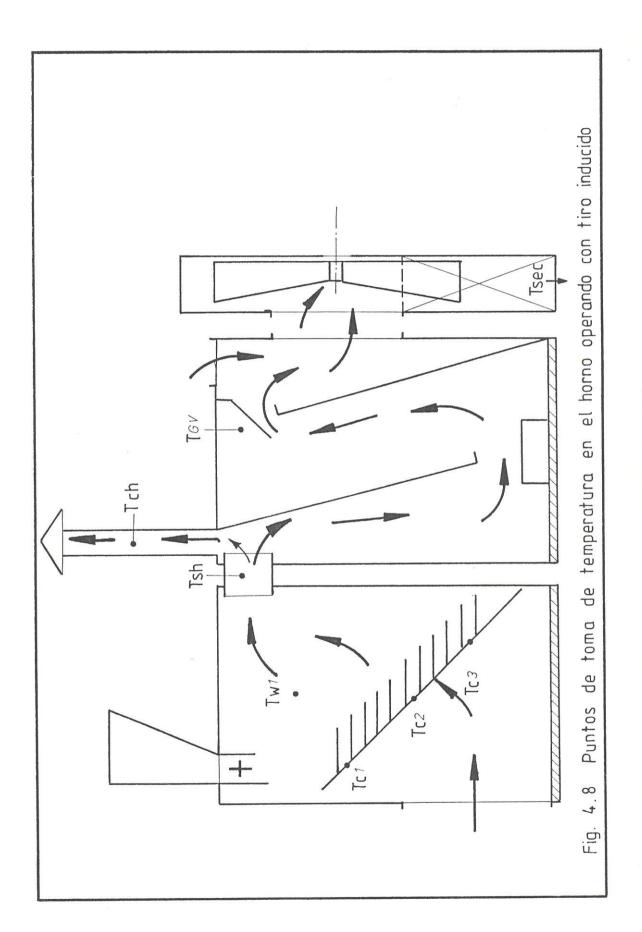


FIG. 4.7 HORNO OPERANDO CON TIRO INDUCIDO Y LA INSTRUMENTACION UTILIZADA


Los puntos de toma de temperaturas descritos en la sección 4.1.1 se matienen añadiendo una termocupla a la altura de la compuerta reguladora de temperatura y conectandola al indicador - registrador de temperaturas (Tov).

La figura 4.8 muestra un esquema del horno operando con tiro inducido y los puntos de localización de las termocuplas.

La medición de la velocidad de los gases que escapan por la chimenea se realiza en el mismo punto en que se toma cuando el horno opera con tiro natural. Se realizan dos mediciones de la velocidad del flujo de gases para ambos barridos (0° y 90°) por limitaciones de tiempo.

La medición de la velocidad del flujo de aire que arroja el ventilador se realiza mediante el método de división en ocho puntos según la norma dada para el seccionamiento en áreas iguales para mediciones transversales en ductos circulares presentada en la figura 4.3.

A partir de esta norma deben realizarse dos barridos a 90° del uno con respecto al otro; siendo el diámetro del ducto de pruebas de 235

mm se tiene que la inmersión de la sonda en diámetros del ducto (d) es igual a:

 $d_1 = 7.5 \text{ mm}$

 $d_2 = 24.7 \text{ mm}$

 $d_{3} = 45.6 \text{ mm}$

 $d_{A} = 75.9 \text{ mm}$

 $d_{5} = 159.1 \text{ mm}$

 $d_6 = 189.4 \text{ mm}$

 $d_{7} = 210.3 \text{ mm}$

 $d_{e} = 227.5 \text{ mm}$

La medición de las temperaturas del aire de secado (mezcla entre los gases de combustión y el aire que se calienta en los alrededores del filtro de gases) se realiza a la descarga del banco de pruebas y se mide tanto la temperatura de bulbo seco como la de bulbo húmedo.

Instrumentos Utilizados

- Aparato de Orsat
- Indicador registrador de temperaturas de gráfica de banda para termocuplas tipo K de
 12 canales marca Omega
- Termómetro digital para termocuplas tipo K marca Omega

- Balanza digital
- 8 termocuplas tipo K
- Sensor de temperaturas de pared tipo K
- Banco de pruebas para ventiladores
- Psicrómetro
- Medidor de Tiro
- Velómetro marca Alnor
- Manómetro de agua tipo "U"

4.3.2 PRUEBAS EXPERIMENTALES

El conjunto de pruebas del horno operando con tiro inducido y aislado esta constituido por:

- Prueba # 12
- Prueba # 13
- Prueba # 14
- Prueba # 15
- Prueba # 16

A continuación se presenta como ilustración los datos o mediciones obtenidos para la Prueba # 14; los datos obtenidos para el conjunto de pruebas del horno operando con tiro inducido y aislado se muestran en el Apéndice F — 3 con excepción de los datos presentados en esta sección.

DATOS EXPERIMENTALES

PRUEBA # 14

HORNO AISLADO OPERANDO CON TIRO INDUCIDO

Inclinación de la parrilla : 45°

Temperatura ambiente (Ta) : 29°C

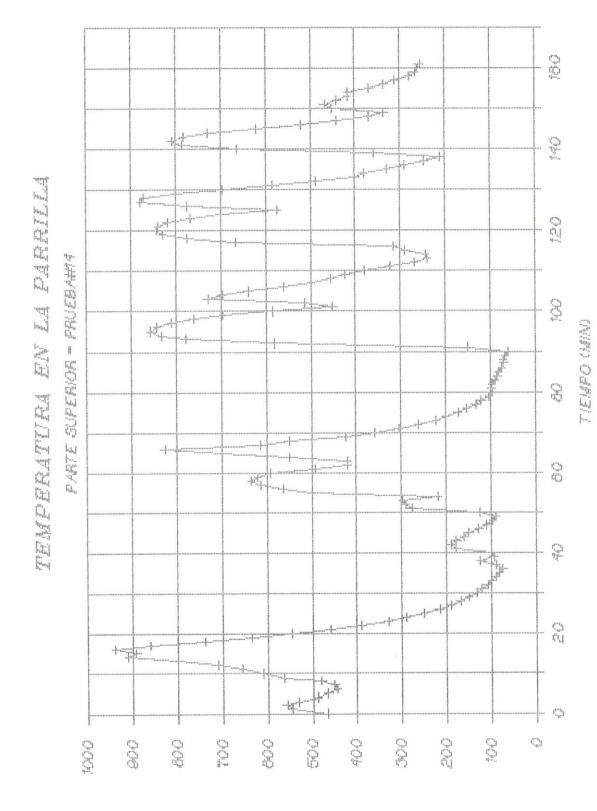
Consumo de cascarilla : 27.12 Kg

Tiempo de duración de la prueba : 162 min

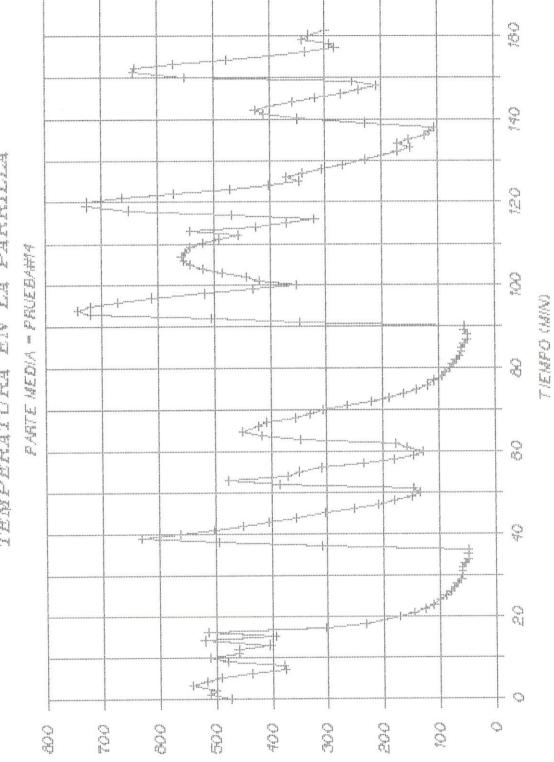
Flujo másico de cascarilla : 0.002790 Kg/seg

10.04 Kg/hr

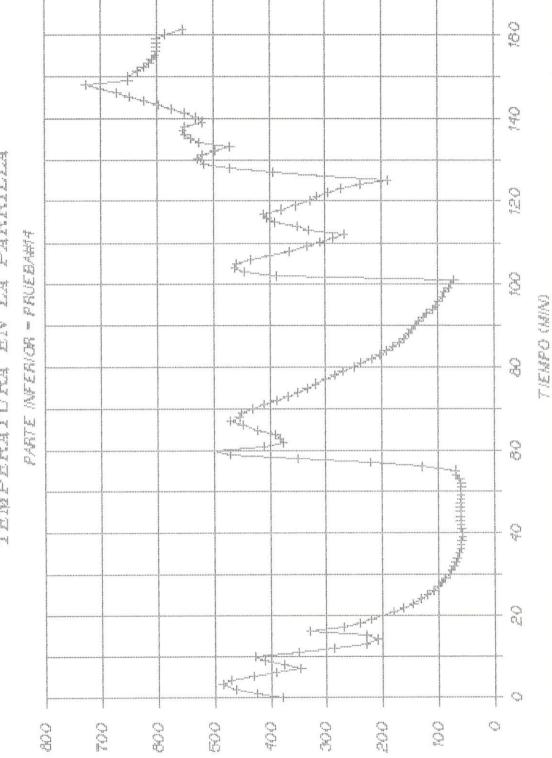
Volumen de la cámara de combustión : 0.107578 m³

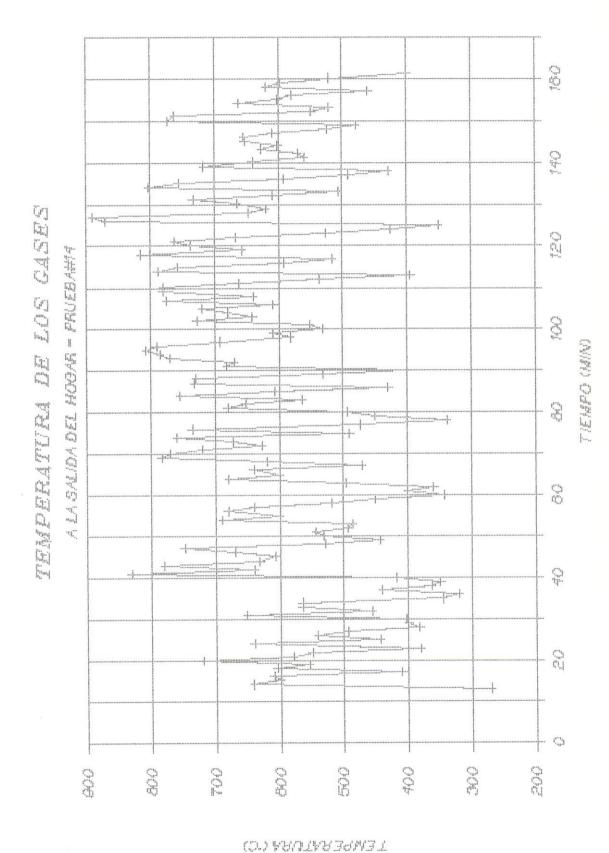

Tiempo al que empieza Medicion Nº1 : 30 min

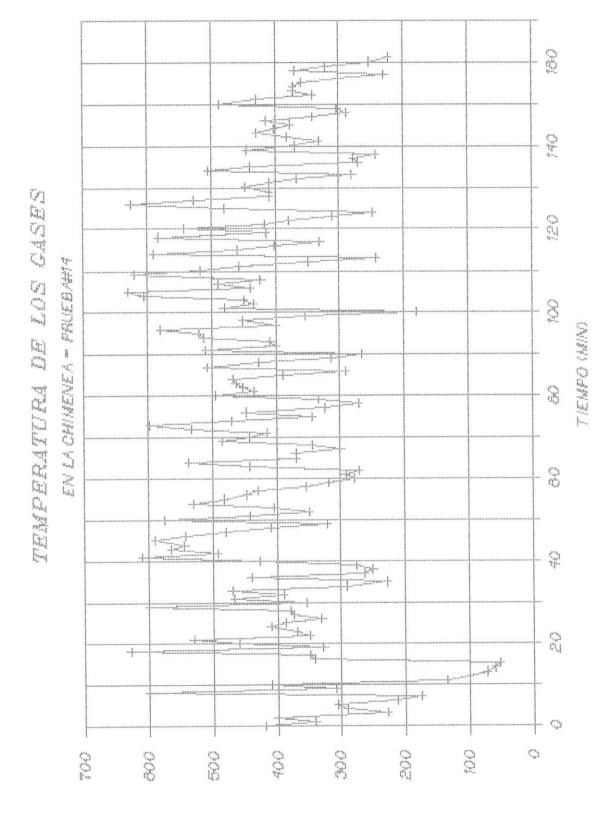
Humedad relativa ambiental : 69 %

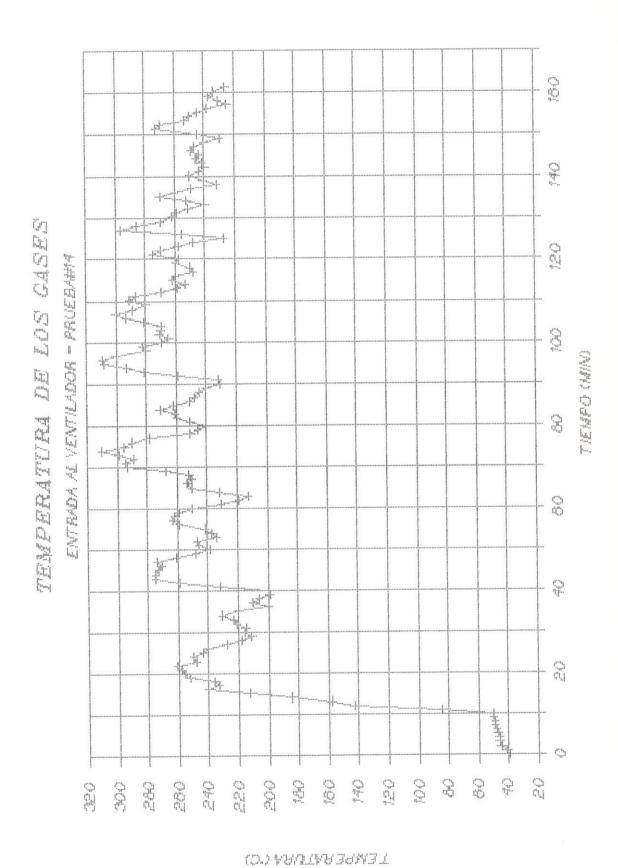

Presión estática simulada : 22.6 mm de agua

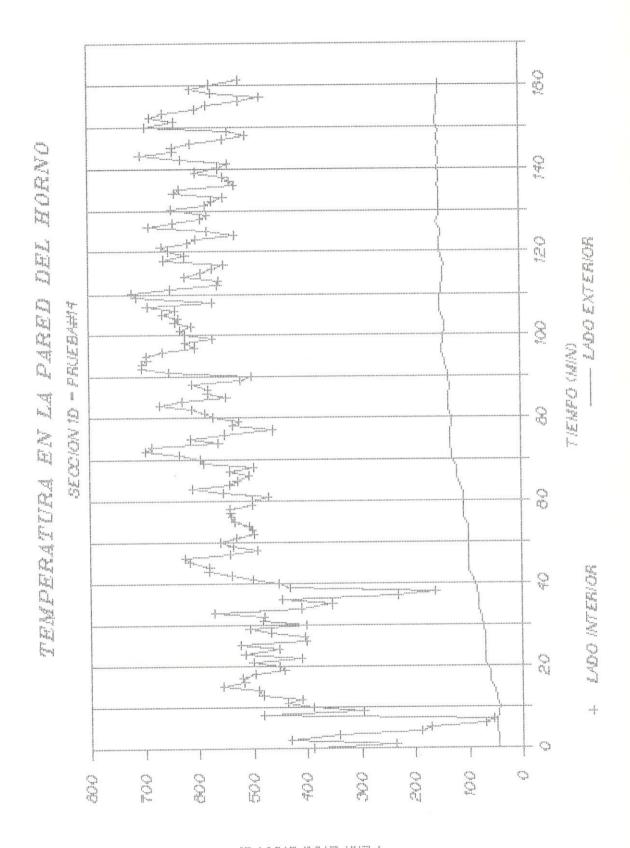
ANALISIS DE LOS GASES


MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	2.8	17.2	0
5	4.6	15.6	0
7	4.6	15.4	0
9	6.8	13.2	0.6






CLIPSTER CONTRACT



make the term

103

LEMBERGALICA

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 14

		eH I	10 1			
9	Ω	44	45	36	88	36
SECCION	BICID	45	52	88	40	36
SEC	m	46	29	41	88	40
1		48	50	45	44	40 40
2	A	22	92	20	46	45
SECCION	ט	57	9	55	94	60 54
SEC	m	701	75	70	48	
	ABCDA	87	92	105	83	155 120 119 65 94 52 100 80 120 110 100
4	the new skin upo p	120	113	90 130 105	100	110
SECCION 4	BICID	82 120	48 100 106 100 113	06	108	120
SEC	<u></u> щ	94	106	82	82 108	80
1	A	79	100	96	111	100
m		22	48	25	52	52
SECCION 3	BICID	99	8	8	06	94
SEC	 Д	54	09	1 83	67	65
	A !	82	88	103	110	119
2		69	105	106 103	170 115 110	120
CCION	C I D	80	125	146	170	155
SEC	B	781		per code types direct rapid before the		127
	A	8	99 132 114	148	185	155
		78	66	124	114	134
SECCION 1	AIBICID	82	96 135	164	175	175
SECC	m	64	96		1119	147
	A	83	131	153 117 164 124 148 122	195 116 175 114 185 143	170 147 175 134 155 151
	MEDICION		က	2	 	0

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 14

The same that th	-	SECC	NOIC	SECCION 7		SECCION	S NO		S	SECCION	6 NC		23	SECCION	I NC	10	S	ECCI	SECCION 11		SE	SECCION	N 12	Δ1
MEDICION A ' B ' C ' D A ' B	A	m	O	10	A	B	0	10	A !	B	5	10	A	 M	0	10	A !	B B	5	CID A B C D A B C D A B C D A B C C D A B C	A	 M	5	A
2	93	93 87 110 84	110	93 87 110 84 67 46	67	46	45	42	39	37	37	37 37 74		95	92	95 92 108 91 116 87 115	91	116	87	L	09	77	48	62
4	88	98 103 130 105	130		63	18	47	47 51	44	40	40	88	100	145	98	39 100 145 98 136 93 143 83 125	93	143	83		- 09	95	98	77
9	70	100	100 120	70 100 120 109 60 74	09	74	48	48 54	42	40	38	36	121	160	120	36 121 160 120 150 135 170 101 158	135	170	101		09	88	52	76
ω	80	105	100	80 105 100 105 50 65	50	65	43	57	40	37	37	36	143	149	142	170	136	150	105	43 57 40 37 37 36 143 149 142 170 136 150 105 140 63	63	86-	50	89

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 14

	SE	ECCION 13	
MEDICION Nº	Α :		C
1	85	110	97
2	105	140	107
3	120	160	138
4	130	161	140
5	132	155	150
6	140	170	150
7	140	170	150
8	140	200	150
9	131	170	158

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES EN EL FILTRO DE GASES

PRUEBA # 14

MEDICION; Nº	SECCION	SECCION 15	SECCION 16	SECCION;
1	130	95	83	77
2	115	110	105	90
3	130	188	158	124
4	96	117	105	80
5	135	170	135	120
6	211	203	153	115
7	175	165	160	114
8	160	150	115	109
9	100	94	53	90

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

PRUEBA # 14

and the same	Medi	ción 1/ Medición 2/ Medición 3	5n 2¦	Medic	ión 3¦	Medición 4	Medición 5	Medici	Medición	Medición 8	Medición 9
Distancia	1	0.6 0.6 0.6 0.6 0.6 0.6 0.0	06	06 1 00	.06	.06 .0	.06 1 .0	06 1 00	06 00		0
- Ip	440 360	340	380	420 200	200	400 480	400 520	320 380	420 480	320 320	320 300
d2	520 400	400	440	380 460	460	480 520	480 440	380 420	500 540	400 380	360 400

VELOCIDADES (pie/min) DE LOS GASES QUE SALEN DEL VENTILADOR

PRUEBA # 14

		ión 1	Medición 1, Medición 2, Medición	ón 2¦	Medici	lón 3¦	Medici	Medición 4	Medición	ión 5	Medición 6	ón 6	Medición 7		Medición	ión 8	Medición	ón 9
Distancia	.06 1 .0	.06	.06 1 .0	.06	.06 1 .0	.06	0 0	.06	06 1 00	.06	0.	.06	0.	.06	.0	.06	0 0	90°
d1	2400	2600	2400 2600 3400 3000 3400 3000	3000	3400	3000	2600;	2800	2700	2800	2500	3000	2800	2800	2600	2800	2400¦	2600
d2	3300	3400	3300; 3400; 3200; 3600	3600	3200 2800	2800	3400	3600	3200	3700	3300	3800	3200	3600	3200	3600	3200	3600
d3	3900	4000	3900; 4000; 3800; 4200; 3600; 3300	4200	3600	3300	4000 ¦	4200	3900	4300	3700	4400	3600	4200	3700	4200	3800	4400
d4	4000	4500	4000 4500 3900 4800 3900 4900	4800	3900 !	4900	4100¦	4800	4100¦	2000	3900	4800	4000	4800	3900	4800	4000¦	4800
d5	4700	4600	4700 4600 4800 4900 5000	4900	4900 ;	2000	5000	4900	5200	5200	4800 ;	5000	4800	5000	5000	5000	5000	4900
99	4800	4700	4800; 4700; 3900; 5000; 5000; 5100	2000	5000	5100	5100¦	2000	5200	5300	5000	5100	5000	5100	5100;	4900	4900	5000
d7	4600	4900	4600; 4900; 4800; 5200; 4900; 5200	5200	4900¦	5200	5000	5200	5100	5400	5100	5200	4900	5200	5000	5000	4800	5200
98	4400	3800	4400; 3800; 4600; 5100; 4800; 5300	5100	4800¦	5300	4800 ¦	5100	5000	5600	4900	5200	4800	5100	4800	5200	4700	2000

TEMPERATURAS DEL AIRE DE SECADO A LA DESCARGA DEL VENTILADOR

PRUEBA # 14

		and where the proper party against contract party along the contract party and the contract
MEDICION Nº	TEMPERATURA BULBO SECO (°F)	TEMPERATURA BULBO HUMEDO (°F)
1	111	90
2	118	94
3	116	85
4	120	90
5	118	90
6	118	90
7	111	87
8	108	88
9	110	89

CAPITULO V

RESULTADOS

En el presente capítulo se presentan los resultados, mediante tablas y gráficos, obtenidos al procesar las mediciones realizadas (Capítulo 4) para cada prueba.

Se decide realizar balances instantáneos en base a pruebas preliminares, las cuales permiten predecir un horno operando bajo condiciones de estado transiente y en base a lo expuesto en la sección 3.2.

Los balances de energía se realizan cada quince minutos y un total de nueve balances por prueba.

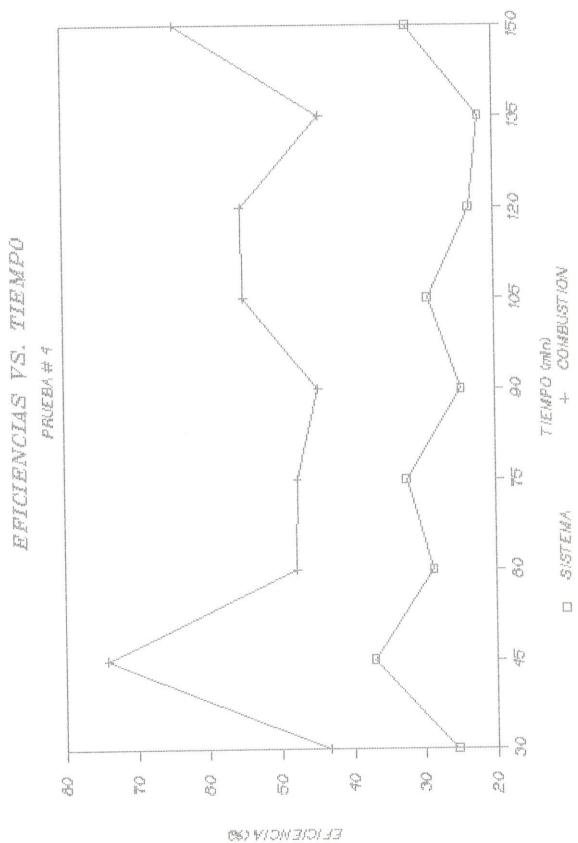
Los datos adquiridos (Capítulo 4) para realizar un balance se denominan mediciones; el intervalo entre mediciones es de quince minutos. Así por ejemplo el primer balance de energía se realiza con los datos obtenidos en la medición Nº 1 y así sucesivamente.

En el Apéndice E - 4 se muestra el programa en "BASIC" elaborado y utilizado para obtener los resultados que se presentan a continuación.

5.1 RESULTADOS DEL HORNO CON TIRO NATURAL (HORNO SIN AISLAMIENTO)

Para el conjunto de pruebas del horno operando con tiro natural y sin aislamiento se corren los datos obtenidos en la sección 4.1.2 en el programa basic. Los resultados se presentan en una tabla, la cual muestra la Energía Química del Combustible y la Intensidad de combustión promedio; la Energía entregada al Fluido de Trabajo, las Pérdidas Térmicas, el flujo másico de gases que sale del hogar, la velocidad de los gases que escapan por la chimenea, la eficiencia del sistema y la eficiencia de combustión para cada balance; el exceso de aire, que se obtiene del Diagrama de Ostwald (Fig. E - 1), para los balances 3, 5, 7 y 9. Se presenta además un gráfico de las eficiencias del sistema y de combustión vs. el tiempo correspondiente para cada balance.

A continuación se presentan a manera de ilustración los resultados obtenidos para la Prueba # 4; los resultados obtenidos para el conjunto de pruebas del horno operando con tiro natural sin aislamiento se muestran en el Apéndice G - 1 con excepción de los resultados que se muestran en esta sección.


RESULTADOS

PRUEBA # 4

BALANCE	EQC (W)	EFT (W)	PT (W)	I (W/m³)	M _G ·10-2 (Kg/seg)	Vch (m/s)	(%)	° €	EA (%)
	14372	3672	2544	86487	1.41324	1.7	25.6	43.3	 * *
	14372	5328	5330	86487	1.87300	2.34	37.1	74.2	* *
	14372	4145	2717	86487	1.83502	2.1	28.8	47.8	1500
	14372	4662	2170	86478	1.97315	2.3	32.4	47.5	* *
	14372	3556	2858	86478	1.50899	1.75	24.7	44.6	900
	14372	4211	3679	86478	1.76616	2.06	29.3	54.9	* *
	14372	3374	4565	86478	1.13105	1.44	23.5	55.2	1500
1	14372	3179	3168	86478	1.58867	1.74	22.1	44.2	*
	14372	4604	4656	86478	1.58392	1.00.1	32	64.4	1500

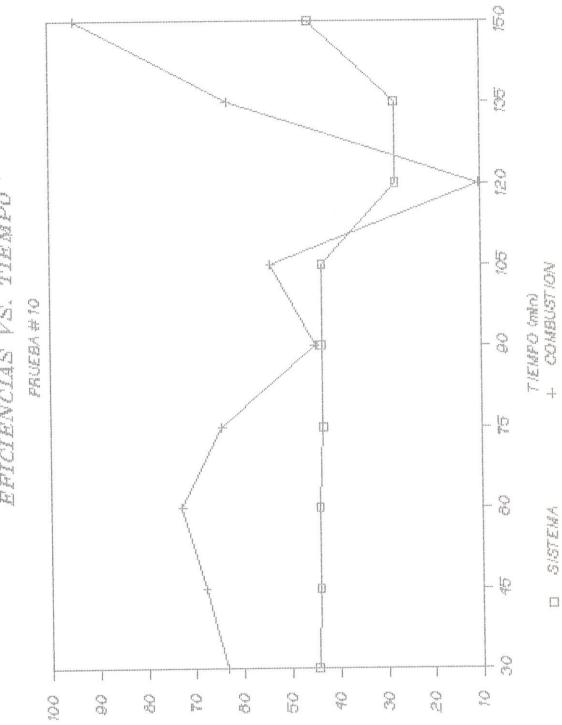
Cenizas generadas en la prueba: 2.22 Kg

5.2 RESULTADOS DEL HORNO CON TIRO NATURAL (HORNO AISLADO)

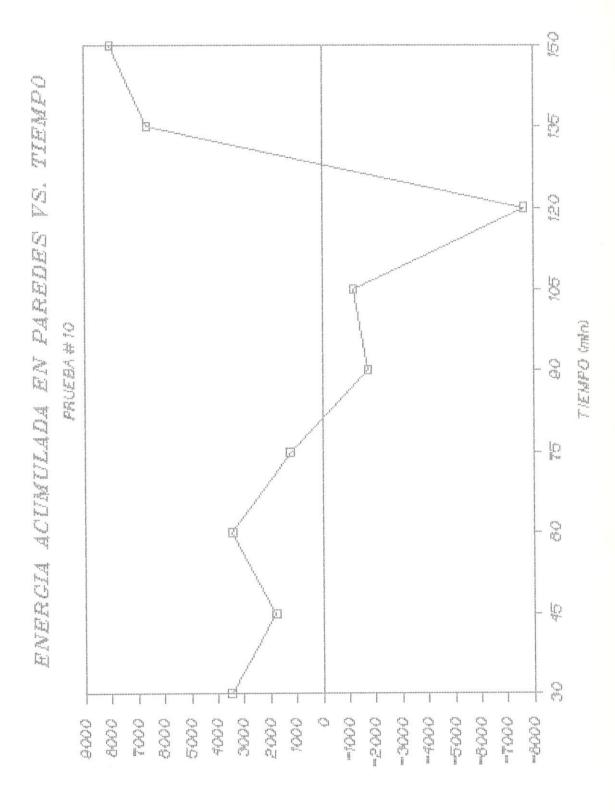
Para el conjunto de pruebas del horno operando con tiro natural y aislado se corren los datos obtenidos en la sección 4.2.2 en el programa basic. Los resultados se presentan en una tabla igual que en la sección 5.1, cuando el horno opera con tiro natural sin aislamiento, con la inclusión de la Energía Acumulada en las Paredes para cada balance. Además se presentan dos gráficos los cuales muestran las eficiencias del sistema y de combustión vs. el tiempo correspondiente para cada balance y la Energía Acumulada en las Paredes vs. el tiempo correspondiente a cada balance.

A continuación se presentan a manera de ilustración los resultados obtenidos para la Prueba #10; los resultados obtenidos para el conjunto de pruebas del horno operando con tiro natural aislado se muestran en el Apéndice G – 2 con excepción de los resultados que se muestran en esta sección.

En el Apéndice E - 2 se muestra un ejemplo del procedimiento de cálculo para el horno operando con tiro natural aislado.


RESULTADOS

PRUEBA # 10


BALANCE	EQC (W)	EFT (W)	PT (W)	EAP (W)	I (W/m3)	M _G · 10-2	Vch (m/s)	(%)	<u>~</u>	EA (%)
	27351	12167	1673	3476	261409	1.92044	3.29	44.5	63.3	*
2	27351	12046	4705	1784	261409	2.18361	3.43	44	67.8	* *
(n)	27351	12056	4386	3447	261409	1.7368	2.99	44.1	72.7	53
4	27351	11825	4535	1227	261409	1.93775	3.18	43.2	64.3	*
2	27351	11874	4944	-1720	261409	2.05373	3.18	43.4	44.8	400
9	27351	11837	4102	-1180	261409	2.00199	3.09	43.3	54	*
	27351	7638	2834	-7626	261409	2.39717	2.87	27.9	10.4	550
0	27351	7660	2904	6634	261409	1.57092	2.29	28	62.9	* *
6	27351	12543	5323	8028	261409	2.01803	3.26	45.9	59.4	187
						water manual enterior street desire where comme comme tempo		state dress cates cates state man		1

Cenizas generadas durante la prueba: 5.46 Kg

(15) #//S/((3/S)/s/3

(W) 8303RA 2RJ N3 AQAJUMUDA AIÐR3M3

5.3 <u>RESULTADOS DEL HORNO CON TIRO INDUCIDO (HORNO</u> AISLADO)

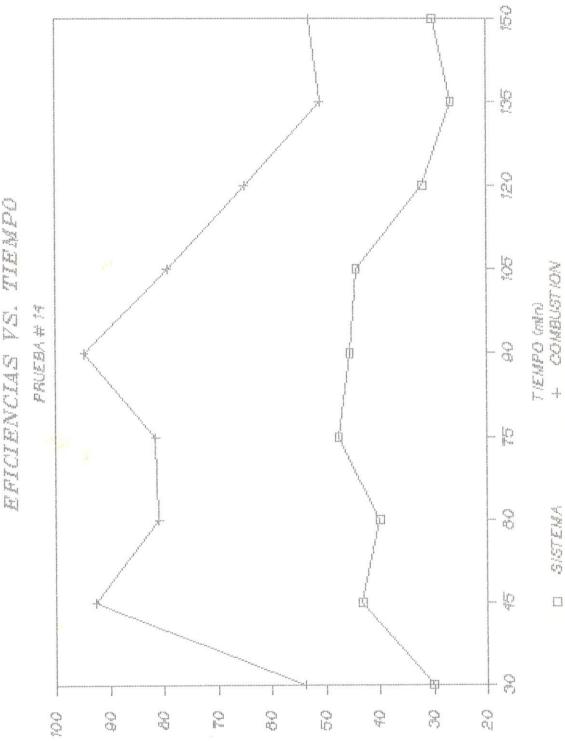
Para el conjunto de pruebas del horno operando con tiro inducido y aislado se corren los datos obtenidos en la sección 4.2.3 en el programa basic. Los resultados se presentan en una tabla igual que en la sección 5.2, cuando el horno opera con tiro natural aislado, con la inclusión de: el Calor Sensible de los Gases que escapan por la chimenea, el flujo másico de gases producto de la combustión que salen hacia el ventilador, el flujo másico de gases que escapan por la chimenea, el flujo másico del aire de secado que sale del ventilador, la velocidad promedio del aire de secado, la velocidad promedio de los gases que escapan por la chimenea, la temperatura del aire de secado y la humedad relativa del aire de secado, todos estos resultados se presentan para cada balance. Los gráficos presentados en esta sección son de iguales características que los de la sección 5.2 .

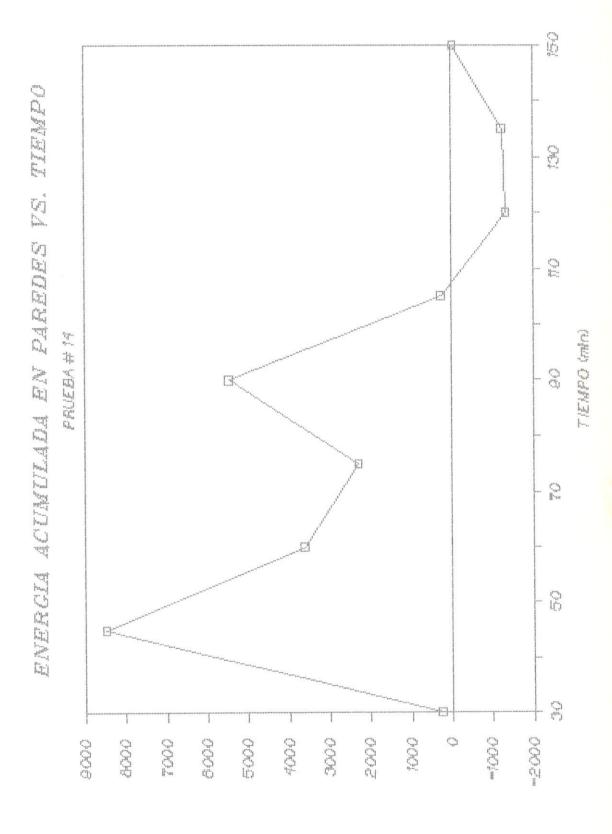
Por pruebas preliminares realizadas se conoce que cuando el horno opera con la compuerta de regulación de temperatura totalmente cerrada y el ventilador succiona aire solamente en los alrededores del filtro de gases, el aire succionado se caliente algo más de

10 °C. En base a ésto para las pruebas realizadas, con la compuerta de regulación en posición tal que permite al ventilador succionar los gases producto de la combustión y aire ambiente, se asume que el aire se calienta en al menos 5 °C sobre la temperatura ambiental.

A continuación se presentan a manera de ilustración los resultados obtenidos para la Prueba # 14; los resultados obtenidos para el conjunto de pruebas del horno operando con tiro inducido aislado se muestran en el Apéndice G - 3 con excepción de los resultados presentados en esta sección.

En el Apéndice E - 3 se muestra un ejemplo del procedimiento de cálculo para el horno operando con tiro inducido aislado.


RESULTADOS


PRUEBA # 14

BALANCE	EQC (W)	EFT (W)	E &	CSG (W)	EAP (W)	I (W/m ³)	I MCv-10 2 W/m ³) (Kg/seg)	MCv·10 2 MCch·10-2 (Kg/seg) (Kg/seg)	(Kg/seg) (m/s)	Vch (m/s)	(%) (%)	⊂ 8	Tsec	服(%)	EA (%)
	33760	10137	2422	5363	253	313823	5.20216	1.37518	0.98287 20.51	2.18	8 30	53.8	44	46	*
	33760	14601	3024	5162	8489	313823	6.34952	1.15895	1.02545 21.66	36, 1.98	8, 43.3	92.6	48	42	×
	33760	13510	5675	4501	3617	313823	5.83854	1.18272	1.0301 21.6	69 1.8	85 40	80.9	47	28	450
	33760	16051	3280	5858	2301	313823	6.71973	1.50431	1.04332 22.11	2.	39 47.5	81.4	49	31	*
	33760	15333	5354	5800	5472	313823	6.18367	1.45126	1.07781 22.7	77 2.3	34 45.4	94.7	48	34	300
	33760	14921	6527	5040	258	313823	6.01271	1.08968	1.04802 22.14	1.91	1 44.2	79.2	48	34	*
	33760	10757	6367	6118	-1332	313823	4.55881	1.52921	1.04863 21.88	8	46, 31.9	64.9	44	33	275
	33760	9012	5221	4188	-1234	313823	4.06942	1.20674	1.05341 21.85	35, 1.80	0, 26.7	50.9	42	46	*
	33760	33760 10125	3899	3867	-35	313823	4.66388	1.23483	1.04263 21.69	39 1.75	5, 30	52.9	43	45	175

Cenizas desalojadas durante el proceso: 3.27 Kg Cenizas generadas durante el proceso : 5.47 Kg

(W) 83039A9 SAJ W3 AQAJUMJOA A\DR3W3

CAPITULO VI

ANALISIS DE RESULTADOS

A continuación se explica el procedimiento de análisis para las diferentes pruebas y las comparaciones que se realizan entre éstas.

Para cada prueba se presenta primeramente las temperaturas promedio globales de los gases a la salida del hogar y en la chimenea.

Luego se establece la distribución de las temperaturas promedio globales en la parrilla a partir de los gráficos "Temperatura en la Parrilla". Se habla de un buen nivel de temperaturas en cierta zona de la parrilla cuando éste se encuentra por encima del promedio global de la zona en cuestión y por encima de la temperatura de los gases a la salida del hogar. A partir de estos gráficos se analiza de una manera global el proceso de la combustión de la cascarilla de arroz que se produce sobre la parrilla. Así se puede establecer una buena o mala alimentación de cascarilla, un adecuado o inadecuado desalojo de cenizas, el desplazamiento de una parte de la camada de cascarilla hacia una zona inferior de la parrilla.

Una buena alimentación de cascarilla se establece a partir de los gráficos "Temperatura en la Parrilla", si el gráfico de la parte superior presenta un buen nivel y pocas fluctuaciones en las temperaturas. Es fácil entonces también notar cuando la camada de cascarilla se desplaza hacia niveles inferiores de la parrilla por efectos de la gravedad, del desalojo de cenizas en la parte inferior, por la acumulación excesiva de cascarilla en esta zona o por una combinación de éstos. Esta cascarilla que se desplaza es reemplazada por cascarilla fresca proveniente de la tolva de alimentación (de mediar una buena alimentación) registrándose un descenso momentáneo en la temperatura de la camada de cascarilla en esta zona, la parte inferior debe mostrar pocas fluctuaciones al realizarse un desalojo adecuado de cenizas a la par de una adecuada alimentación.

Diferenciar en los gráficos "Temperatura en la Parrilla" el desplazamiento de una parte de la camada de cascarilla hacia una zona inferior de la parrilla de una mala alimentación de cascarilla usualmente no es demasiado complicado, pues a pesar de que las fluctuaciones en las temperaturas se presentan en forma similar en estos casos una caída en el nivel de las temperaturas o "depresión térmica" causada por la falta de alimentación de cascarilla presenta una "depresión térmica" en la zona contigua inferior (hacia abajo de la parrilla) mientras

que un desplazamiento de la camada de cascarilla crea un incremento en el nivel de las temperaturas "pico térmico" en la zona contigua inferior. Así por ejemplo entre los 130 y los 150 minutos en el gráfico de la parte superior de la parrilla de la Prueba # 13 se registra una "depresión térmica" mientras que para este mismo período de tiempo en el gráfico de la parte media se registra un "pico térmico" lo que indica que se ha producido un desplazamiento de la camada de cascarilla.

Se establece que existe un adecuado desalojo de cenizas a partir del gráfico de la parte inferior de la parrilla si éste, por lo general esta es la zona menos caliente de la parrilla, presenta buen nivel y pocas fluctuaciones en las temperaturas. Se establece un inadecuado desalojo de cenizas aunque el nivel de temperaturas de esta zona sea aceptable si se presentan excesivas fluctuaciones de éstas, entonces se entiende que los desalojos son muy discontinuos lo cual induce una mala alimentación de cascarilla pues al no haber un desalojo de cenizas no se permite una distribución uniforme de la cascarilla fresca que ingresa ni una alimentación regular del combustible.

Se dice que existe una buena combustión, en las tres zonas de la parrilla, si en la parte inferior se registra un desalojo oportuno de las cenizas con un buen nivel de temperaturas en esta zona; este desalojo provoca el

movimiento de la camada de cascarilla en la parte superior con un descenso en el nivel de temperaturas el cual debe incrementarse rápidamente al inflamarse la cascarilla fresca que se alimenta, en la parte media se produce el mismo proceso registrado en la parte superior pero con cambios más tenues en el nivel de las temperaturas.

A continuación se presentan la Potencia nominal, la intensidad de combustión promedio y las eficiencias promedio globales del sistema y de combustión del horno.

Luego, de ser necesario se analiza los balances de una prueba independientemente relacionando al exceso de aire con el proceso de combustión mediante los gráficos "Temperatura en la Parrilla" para el período de tiempo correspondiente al balance en cuestión, las eficiencias del sistema y de combustión que se registran para el balance y la inercia térmica del sistema. Maheshwari (Ref. 2) sostiene que una buena combustión de cascarilla de arroz presenta un análisis de gases de 3 % CO₂, 16 % O₂, 0 % CO, N₂ balanceado; lo cual indica que el exceso de aire adecuado para una buena combustión de la cascarilla de arroz debe estar entre el 350 y 400 %.

Una vez que se ha analizado cada prueba se establecen comparaciones, primero entre las pruebas del horno

operando con tiro natural desnudo para una misma inclinación de parrilla seleccionando la mejor prueba en base a las eficiencias promedio globales del sistema y de combustión relacionadas con la Potencia del horno; segundo se establecen comparaciones entre las mejores pruebas seleccionadas para las diferentes inclinaciones de parrilla. De igual manera se procede para las pruebas del horno operando con tiro natural aislado seleccionando la mejor de estas pruebas y comparándola con la prueba seleccionada para el horno que opera con tiro natural sin aislamiento; se establece en estas comparaciones el efecto de la variación en la inclinación de la parrilla, y el efecto del aislamiento sobre la combustión.

Para el caso del horno operando con tiro inducido aislado se selecciona la mejor prueba en base, además de las eficiencias promedio globales y de la Potencia nomimal, a las temperaturas y condiciones del aire de secado. Se debe tener presente en el análisis de las condiciones del aire de secado la recomendación de Acasio (Ref. 2) " Para condiciones de secado ideales, los gases de escape deben estar completamente quemados antes que éstos puedan ser usados de manera directa para el secado de granos ", además se debe tener presente que Ojha - Maheshwari sostienen que la mezcla aire/gas (aire de secado) puede ser casi tan buena como aire ambiente calentado. Luego

se comparan las mejores pruebas seleccionadas, para cada inclinación de parrilla.

6.1 <u>ANALISIS DE RESULTADOS PARA EL HORNO OPERANDO CON</u> TIRO NATURAL (HORNO SIN AISLAMIENTO)

La PRUEBA # 2 presenta temperaturas promedio de 275
°C a la salida del hogar y de 235 °C en la chimenea.

De los gráficos de "Temperatura en la Parrilla"

(Sección 4.1.2) se desprende que la zona más caliente
de la parrilla es la superior con una temperatura

promedio de 368 °C contra una temperatura promedio de
355 °C en la parte media de la parrilla.

La Energía Química del Combustible (EQC) o Potencia nominal del horno es de 12.6 KW con una intensidad promedio de combustión de 74185 W/m³.

La eficiencia promedio del sistema es de 20 %. Este promedio está fuertemente desviado por las bajas eficiencias obtenidas en los balances 6 y 7. La eficiencia de combustión promedio es del 48 % .

Las mejores eficiencias de combustión y del sistema se alcanzan con un exceso de aire del 250 % registrándose una gran caída en las eficiencias al tener un 500 % de exceso de aire.

La Energía entregada al Fluido de Trabajo (EFT) es bastante baja si se la compara con las pérdidas térmicas, en la mayoría de los balances los valores de EFT son menores o iguales que los valores presentados por las pérdidas térmicas, siendo más crítica la comparación si ésta se realiza contra los valores de las ineficiencias de combustión.

La <u>PRUEBA # 3</u> presenta temperaturas globales promedio de 211 °C a la salida del hogar y de 180 °C en la chimenea.

La zona más caliente de la parrilla es la parte superior con una temperatura promedio de 657 °C, seguida por la parte inferior con una temperatura promedio de 635 °C, para constituirse en la zona menos caliente (no se registraron todos los datos en esta zona) la parte media de la parrilla con una temperatura promedio de 540 °C. Estos valores indican, sobre todo la temperatura en la parte inferior, que se ha realizado una adecuada remoción de cenizas; pues la parte inferior de la parrilla que es usualmente la parte menos caliente presenta buenos niveles de temperaturas y pocas fluctuaciones de éstas.

La Potencia nominal del horno es de 11.8 KW con una intensidad de combustión promedio de 69288 W/m³.

La eficiencia promedio del sistema es de 18 %, promedio fuertemente afectado por las bajas eficiencias del sistema obtenidas en los 3 primeros balances. La eficiencia promedio de combustión es de 51 %.

En el balance 3 donde la eficiencia del sistema es sumamente baja; se presenta un exceso de aire del 1100 % el cual indica ya sea que el horno está prácticamente apagado o que en el horno se encuentra reaccionando únicamente el carbón fijo presente en la cascarilla, manteniéndose ésta al rojo con una corriente de aire u oxígeno de manera que el carbón se queme como dióxido de carbono, siendo está última hipotesis la que se registra en esta prueba pues el horno no se apaga a lo largo de la misma. Se explica entonces este gran exceso de aire al no haber material volátil combustionándose, el cual constituye aproximadamente el 62 % de la cascarilla de arroz, en el carbón fijo que se encuentra tanto que reaccionando sólo constituye el 22 % de la cascarilla aproximadamente.

La PRUEBA # 2 presenta un valor promedio de la EFT de 2577 W con pérdidas térmicas promedio de 3448 W en tanto que la PRUEBA # 3 presenta valores promedios de 2132 W y 4017 W para la EFT y las pérdidas térmicas respectivamente.

La diferencia entre las EFT no es significativa mas si lo es la diferencia entre las Potencias nominales del horno para ambas pruebas. La Potencia nominal es mayor para la PRUEBA # 2 lo cual implica un mayor consumo de cascarilla que no se justifica al tener un ligero incremento en la EFT, los niveles de temperatura en la parrilla caen al haber un exceso de alimentación (cascarilla fresca), las pérdidas térmicas son menores, todo esto se refleja en la eficiencia de combustión que es menor con respecto a la obtenida en la PRUEBA # 3.

Las temperaturas en la parrilla para la PRUEBA # 2 presentan fluctuaciones grandes y continuas lo cual indica una alimentación poco uniforme de la cascarilla; en tanto que las temperaturas en la parrilla para la PRUEBA # 3 presentan fluctuaciones mucho menores a las registradas en la prueba anterior; el gráfico de la Parte inferior correspondiente a esta prueba muestra pocas fluctuaciones y un gran nivel de temperaturas lo cual

indica un desalojo adecuado de cenizas; por todo esto la mejor operación del horno para esta configuración e inclinación de parrilla se alcanza en la PRUEBA # 3.

Para la <u>PRUEBA # 4</u> se presentan temperaturas promedio de 278 °C a la salida del hogar y de 222 °C en la chimenea.

La zona más caliente de la parrilla es la parte media con una temperatura promedio de 381 °C seguida por la parte inferior con una temperatura de 316 °C y de la parte superior con una temperatura promedio de 313 °C. Estos gráficos indican que el desalojo de cenizas no ha sido el adecuado ya que a pesar de tener un buen nivel de temperaturas en la parte inferior de la parrilla, lugar donde se realizan los desalojos, las fluctuaciones de temperaturas en todas las zonas de la parrilla han sido grandes.

La Potencia nominal del horno es de 14.4 KW con una intensidad de combustión promedio de 86487 W/m³.

La eficiencia del sistema promedio es del 28 %, este valor es representativo de lo que sucede a lo largo de esta prueba, la eficiencia promedio de combustión es de 53 %.

Los excesos de aire son demasisado elevados lo cual indicaría un horno prácticamente apagado, mas este no es el caso ya que las eficiencias tanto del sistema como de combustión son relativamente buenas, atribuyéndose estos excesos de aire elevados a una falta de alimentación de cascarilla en el momento de toma de la muestra.

La EFT en esta prueba ha llegado ha ser mayor que las pérdidas térmicas lo cual redunda en una mayor eficiencia del sistema.

La PRUEBA # 5 presenta una temperatura promedio de los gases a la salida del hogar de 290 °C y una temperatura promedio de los gases en la chimenea de 232 °C.

La zona más caliente es la parte superior de la parrilla con una temperatura promedio de 703 °C seguida por la parte media con una temperatura de 700 °C y de la parte inferior, que se constituye en la zona menos caliente de la parrilla, con una temperatura promedio de 533 °C. Las curvas de esta prueba presentan un comportamiento propicio para el análisis y visualización del proceso de combustión que tiene lugar sobre la parrilla; ya que el desalojo de cenizas ha sido el adecuado, afirmándose esto

debido a que las temperaturas en la parte inferior de la parrilla se han mantenido en niveles altos y sin mayores fluctuaciones.

En el gráfico de la parte superior de la parrilla las temperaturas no tienen grandes fluctuaciones y se cuando la camada de cascarilla nota claramente encendida se desplaza hacia niveles inferiores en la Esta cascarilla que se desplaza parrilla. reemplazada por cascarilla fresca proveniente de la tolva de alimentación registrándose un descenso brusco en la temperatura de la cama de cascarilla en esta zona; así por ejemplo la depresión registrada entre el minuto 100 y 110 indica un movimiento brusco de la masa de cascarilla. En el gráfico de la parte media de la parrilla se producen picos y depresiones, los picos son producto de cascarilla procedente de la parte superior y las depresiones son producto de la cascarilla que se desplaza a la zona inferior para llenar el espacio dejado por la ceniza desalojada. La parrilla muestra pocas inferior la de fluctuaciones bruscas lo que indica un desalojo adecuado de las cenizas.

La Potencia nominal del horno es de 18.6 KW con una intensidad promedio de 112221 W/m³.

La eficiencia del sistema promedio es de 24 % y la eficiencia promedio de combustión es igual a 51 %.

Los excesos de aire igual que en la prueba anterior son elevados (no en tales extremos) y no representan (con la posible excepción del valor obtenido en el balance 7) el exceso de aire que se ha utilizado atribuyendose estos valores a una alimentación inapropiada en el momento de toma de la muestra.

La EFT vuelve a ser menor que las pérdidas térmicas lo cual arroja una menor eficiencia del sistema.

La PRUEBA # 4 presenta un valor promedio de EFT de 4081 W con pérdidas térmicas promedio de 3521 W contra valores promedio de 4451 W y 5084 W que se presentan en la PRUEBA # 5.

La diferencia entre las EFT no es significativa a pesar de una marcada diferencia en las potencias nominales de estas pruebas.

La potencia nominal es mayor en la PRUEBA # 5 lo que implica un mayor consumo de cascarilla, el cual no se justifica al tener un leve incremento de la EFT y un gran incremento en las pérdidas térmicas, pues aunque que el calor liberado es mayor al estar la cámara de

combustión desnuda la mayor parte de esta energía se pierde a través de las paredes metálicas.

En las temperaturas en la Parrilla de la PRUEBA # 4 se encuentran fluctuaciones no muy continuas, notándose además en el gráfico de la Parte inferior una pronunciada falta de desalojo de cenizas, la cual frena en parte el consumo de cascarilla lo que finalmente resulta beneficioso en este caso. En los gráficos de la PRUEBA # 5 como se analizó anteriormente se presentan pocas fluctuaciones bruscas y muestran un adecuado desalojo de cenizas, a pesar de esto y de que esta prueba presenta los mejores niveles de temperaturas la mejor prueba en términos de las eficiencias es la PRUEBA # 4 para esta configuración de horno e inclinación de parrilla.

Si se observa los gráficos de temperatura de los gases a la salida del hogar y en la chimenea (Sección 4.1.2) se nota que las curvas en ambos son semejantes pero a diferentes niveles en la temperatura. Esta diferencia se debe a las pérdidas térmicas que sufre el horno a través del segundo tanque (filtro de gases) y a lo largo de la chimenea.

De los gráficos Eficiencias Vs. tiempo se advierte la tendencia que tiene la eficiencia del sistema a seguir a la eficiencia de combustión; esto se debe a una inercia térmica del horno prácticamente nula lo cual produce que cualquier cambio que se registre en la eficiencia de combustión se refleje en la eficiencia del sistema.

6.2 <u>ANALISIS DE RESULTADOS PARA EL HORNO OPERANDO CON</u> TIRO NATURAL (HORNO AISLADO)

Ca la salida del hogar y de 354 °C en la chimenea.

De los gráficos "Temperatura en la Parrilla" (Sección 4.2.2) se desprende que la zona más caliente de la parrilla es la parte media con una temperatura promedio de 736 °C, seguida por la parte superior con una temperatura promedio de 452 °C y por la parte inferior de la parrilla con 324 °C que se constituye en la zona menos caliente de la parrilla. Estos gráficos indican que el desalojo de cenizas no ha sido el adecuado pues a pesar de mostrar un buen nivel de temperaturas promedio en la parte media de la parrilla, un nivel de temperaturas en la parte superior de la parrilla un tanto bajo y un nivel aceptable en la parte inferior de la parrilla, las

fluctuaciones de las temperaturas son grandes y

La Potencia nominal del horno es de 23.7 KW con una intensidad de combustión promedio de 220606 W/m³.

La eficiencia del sistema promedio es de 28.5 % y la eficiencia de combustión es igual a 44 %.

El balance 3 presenta un exceso de aire del 400 % con buenas eficiencias de combustión y del sistema; de las temperaturas de la parrilla para el período que corresponde a este balance (60 - 74 min) es posible apreciar un movimiento de la cascarilla en proceso de combustión desde la parte superior y media hacia la parte inferior de la parrilla en donde se registra un buen nivel de temperaturas; se nota además buenas condiciones térmicas en la cámara de combustión ya que la cascarilla fresca que reemplaza a la desplazada en la parte superior y media de la parrilla se enciende rápidamente.

El balance 5 con un exceso de aire del 350 % presenta una gran caída en la eficiencia de combustión, debido a la falta de una alimentación adecuada de cascarilla principalmente en la parte superior de la parrilla en donde el nivel de temperaturas cae bruscamente, en la

parte inferior se advierte un mal desalojo de las cenizas.

El balance 7 presenta un exceso de aire elevado (670%) a pesar de lo cual se registra un incremento en las eficiencias de combustión y del sistema.

El balance 9 presenta un nivel de exceso de aire de 275 % registrándose una caída en la eficiencia de combustión en tanto que la eficiencia del sistema se mantiene constante gracias a la gran cantidad de calor cedido por las paredes de la cámara de combustión que suplen de esta manera la mala operación del horno.

Para la <u>PRUEBA # 7</u> se presentan temperaturas promedio de 555 °C a la salida del hogar y de 372 °C en la chimenea.

La zona más caliente de la parrilla es la parte media con una temperatura promedio de 614 °C seguida por la parte superior con 578 °C y por la parte inferior que se constituye en la zona menos caliente de la parrilla. Estos gráficos muestran una mala alimentación de combustible, lo cual se nota claramente en el gráfico de la parte superior (60 min), y un desalojo casi nulo de cenizas que es

fácilmente apreciable en el gráfico de la parte inferior de la parrilla (80 - 140 min).

La Potencia nominal del horno es de 23.9 KW con una intensidad de combustión promedio de 222450 W/m³.

La eficiencia promedio del sistema es de 34 % y la eficiencia de combustión promedio es de 53 %.

El balance 3 presenta un elevado exceso de aire (700 %) con una notable baja en las eficiencias de combustión y del sistema con respecto al balance anterior. Si se revisa el gráfico de la parte superior de la parrilla para el período (60 - 74 min) al que corresponde este balance se nota una alimentación de cascarilla prácticamente nula.

El balance 4 presenta la eficiencia de combustión más baja en la operación del horno como consecuencia de una mala alimentación de cascarilla registrada desde el balance anterior la cual obliga a las paredes de la cámara de combustión a liberar energía en forma de calor para tratar de mantener condiciones térmicas adecuadas para la combustión de la cascarilla de arroz.

El balance 5 con un exceso de aire de 240 % presenta un elevado incremento en las eficiencias de combustión y del sistema.

El balance 7 presenta un elevado exceso de aire (800 %) con una gran caída de la eficiencia de combustión. La eficiencia del sistema registra un incremento (al contrario de la eficiencia de combustión) merced a la gran cantidad de calor que ceden las paredes como es fácil advertir en el gráfico "Energía Acumulada en las Paredes".

El balance 9 presenta un exceso de aire un tanto elevado (550 %), registrándose una gran caída en la eficiencia de combustión debido a la falta de ingreso de cascarilla fresca. La eficiencia del sistema al contrario registra un incremento debido a la gran cantidad de calor liberada por las paredes del horno.

La <u>PRUEBA #8</u> presenta temperaturas promedio de 484 °C a la salida del hogar y de 310°C en la chimenea.

La zona más caliente de la parrilla es la parte media con 538 °C en promedio, seguida por el nivel de temperaturas de la parte inferior con 425 °C y finalmente por el nivel de temperaturas alcanzado en la parte superior de la parrilla con 379 °C. Estos

niveles indican un desalojo aceptable de las cenizas desde los 80 minutos en adelante puesto que los niveles de temperaturas registrados son buenos y las fluctuaciones no han sido excesivas en la parte inferior de la parrilla. La parte superior y media muestran una alimentación deficiente e irregular de cascarilla de arroz.

La Potencia nominal del horno es de 20.9 KW con una intensidad de combustión promedio de 194330 W/m³.

La eficiencia del sistema promedio es de 31 % y la eficiencia promedio de combustión es de 51 %.

El balance 3 presenta un exceso de aire de 510 % con buenas eficiencias de combustión y del sistema.

El balance 5 presenta un exceso de aire de 470 % con caídas en las eficiencias de combustión y del sistema.

El balance 7 presenta un exceso de aire sumamente elevado (1500 %) el cual indica que el horno está prácticamente apagado en este período de tiempo. Los niveles de las temperaturas en la parte superior y media de la parrilla registran un descenso; en tanto la parte inferior muestra un desalojo brusco de

cenizas acompañado de una inadecuada alimentación de cascarilla que no permite llenar los espacios dejados por el movimiento que produce en la camada de cascarilla el realizar un desalojo. Durante la operación del horno en este período de tiempo (120-134 min) no se registra una adecuada alimentación, reportándose problemas en la operación de la tolva de alimentación en la cual el alimentador de compuerta rotatoria se trabó debido a un exceso de humedad en la cascarilla por lo que ésta se aglutinó en la compuerta produciendo la falla.

A pesar de tener el horno casi apagado (con cascarilla al rojo) la eficiencia del sistema aumenta con respecto a la registrada en el anterior balance, esto se debe a la inercia térmica de las paredes que conduce a liberar una gran cantidad de calor como se aprecia en el gráfico "Energía Acumulada en las Paredes" correspondiente a esta prueba.

El balance 9 presenta un exceso de aire del 400 % con un gran incremento en las eficiencias de combustión y del sistema. De las temperaturas en la parte superior se deduce una mala alimentación de cascarilla, un gran nivel de temperaturas en la parte media e inferior de la parrilla se registra como resultado de la gran cantidad de cascarilla que se

alimenta y que se distribuye en estas zonas de la parrilla después del problema en la tolva de alimentación registrado en el balance 7.

La PRUEBA # 6 presenta un valor promedio de la EFT de 6769 W con pérdidas térmicas promedio de 2425 W en tanto que la PRUEBA # 7 presenta un valor promedio de 8116 W para la EFT con pérdidas térmicas promedio de 2729 W y la PRUEBA # 8 que presenta un valor promedio de 6369 W para la EFT con pérdidas promedio de 2342 W

La diferencia entre las EFT y las pérdidas térmicas de las pruebas # 6 y # 8 no son significativas a pesar de una marcada diferencia entre las potencias nominales del horno en estas pruebas. La potencia nominal es mayor para la PRUEBA # 6 lo cual implica un mayor consumo de cascarilla que no se justifica al tener un ligero incremento en la EFT con respecto a la PRUEBA # 8. La eficiencia de combustión es mayor en la PRUEBA # 8, a pesar de los problemas presentados en la tolva de alimentación, en tanto que las eficiencias del sistema son similares para ambas pruebas.

Por lo expuesto, la operación del horno durante la PRUEBA # 6 no es la adecuada en tanto la PRUEBA # 8 (a pesar de los problemas suscitados en la tolva de

alimentación) presenta una mejor operación del horno aunque ésta pudo ser mayor.

La mejor prueba en términos de las eficiencias para esta configuración del horno e inclinación de la parrilla es la PRUEBA # 7 que con una potencia ligeramente superior a la registrada en la PRUEBA # 6 alcanza una EFT promedio de 8116 W que es bastante superior a la EFT alcanzada en las otras dos pruebas. Las pérdidas térmicas promedio registradas en la PRUEBA # 7 son de 2729 W que son ligeramente mayores que las que presentan las pruebas # 6 y # 8.

La PRUEBA # 9 presenta temperaturas promedio de 596 °C a la salida del hogar y de 390 °C en la chimenea.

La zona con el nivel de temperaturas más elevado es la parte media de la parrilla con una temperatura promedio de 734 °C seguida por la parte superior de la parrilla con una temperatura promedio de 690 °C y por la parte inferior de la parrilla con 612 °C. La parte media de la parrilla muestra excelentes niveles de temperaturas y fluctuaciones no muy grandes ni continuas, la parte superior de la parrilla muestra un buen nivel de temperaturas pero fluctuaciones continuas y bastante pronunciadas, el gráfico de la parte inferior de la parrilla muestra un desalojo de

cenizas aceptable (excepción del período 60 - 90 min)
con un buen nivel de temperaturas.

La Potencia nominal del horno es de 28.4 KW con una intensidad de combustión promedio de 271235 W/ m³.

La eficiencia del sistema promedio es de 40 % y la eficiencia promedio de combustión es de 62 %.

El balance 3 presenta un exceso de aire de 500 % con muy buenas eficiencias de combustión y del sistema.

El balance 5 presenta un exceso de aire del 280 % con eficiencias del sistema y de combustión aún más bajas que las registradas en el balance anterior (balance 4). En la parte superior de la parrilla se aprecia un incremento en el nivel de temperaturas en esta zona, en la parte media de la parrilla el incremento en las temperaturas es notable y los niveles en sí también lo son, en la parte inferior de la parrilla se registra un adecuado desalojo de cenizas que produce una elevación de los niveles de temperaturas. La mayor parte de la energía generada en este período es cedida a las paredes para compesar la energía entregada por éstas anteriormente.

El balance 7 presenta un exceso de aire de 155 % con excelentes eficiencias. En la parte media de la parrilla es posible apreciar un gran nivel de temperaturas, en la parte inferior se registra un adecuado desalojo de cenizas y un buen nivel de temperaturas, en la parte superior se registra una caída en el nivel de temperaturas; un flujo uniforme de cascarilla se puede predecir porque a pesar del gran flujo de gases y de la alta velocidad de estos el exceso de aire en la cámara de combustión es relativamente pequeño.

El balance 9 presenta un exceso de aire de 111 % con un incremento respecto a la eficiencia de combustión y un decremento en la eficiencia del sistema.

La PRUEBA # 10 presenta temperaturas promedio 570 °C a la salida del hogar y de 393 °C en la chimenea. La zona más caliente de la parrilla es la parte media con 765 °C seguida de la parte superior de la parrilla con 689 °C y de la parte inferior con 579°C. Los gráficos de las temperaturas en la parrilla muestran una alimentación de cascarilla y un desalojo de cenizas bastante buenos con excepción del período comprendido entre los 110 - 133 minutos en que la falta de desalojo de cenizas y una mala alimentación

de cascarilla produjeron un mal funcionamiento del

La Potencia nominal del horno es de 27.4 KW con una intensidad de combustión promedio de 261409 W/m³.

La eficiencia promedio del sistema es de 41 % y la eficiencia de combustión promedio es de 59 %.

El balance 3 presenta un exceso de aire de 53 % con buenas eficiencias de combustión y del sistema y la presencia de monóxido de carbono en los gases producto de la combustión. El nivel de las temperaturas en la parte superior indica una alimentación continua y una rápida inflamación de la cascarilla que ingresa elevandose las temperaturas en esta zona, en la parte media se tiene un nivel de temperaturas bastante elevado y sin fluctuaciones, en la parte inferior de la parrilla se nota un adecuado desalojo de cenizas y un buen nivel de temperaturas. La presencia de CO indica claramente una excesiva alimentación de combustible.

El balance 5 presenta un exceso de aire de 400 % con una gran caída en la eficiencia de combustión. En los gráficos "Temperatura en la parrilla" se puede apreciar un buen nivel de temperaturas en todas las zonas de la parrilla siendo muy difícil explicar el porque de la caída en la eficiencia de combustión.

El balance 7 presenta un exceso de aire del 550 % con una gran caída en las eficiencias del sistema y de combustión. Se aprecia una gran caída en las temperaturas de la parrilla producto de una alimentación de combustible prácticamente nula; además se debe notar que toda la EFT es recibida por el calor que ceden las paredes del horno.

El balance 9 presenta un exceso de aire de 187 % con excelentes eficiencias tanto del sistema como de combustión.

La <u>PRUEBA # 11</u> presenta temperaturas promedio de 580 °C a la salida del hogar y de 400 °C en la chimenea.

La zona con el nivel de temperaturas más elevado es la parte media de la parrilla con una tempertura promedio de 822 °C seguida por la parte inferior de la parrilla con una temperatura promedio de 625 °C y por la parte superior de la parrilla con 610 °C.

Los gráficos "Temperatura en la Parrilla" muestran, en la parte superior un gran nivel de temperaturas con fluctuaciones poco continuas y con una alimentación uniforme con excepción de dos períodos

(alrededor de los 20 minutos y de los 70 minutos), la parte media de la parrilla muestra un nivel de temperaturas ascendente con pocas fluctuaciones siendo el comportamiento de la combustión en esta zona el óptimo, la parte inferior de la parrilla muestra un desalojo adecuado de cenizas con fluctuaciones tenues y con buen nivel de temperaturas.

La Potencia nominal del horno es de 29.5 KW con una intensidad de combustión de 282294 W/m³.

La eficiencia promedio del sistema es de 39 % y la eficiencia promedio de combustión es de 61 %.

El balance 1 presenta excelentes eficiencias del sistema y de combustión.

El balance 3 presenta un exceso de aire de 160 % con caída en las eficiencias. Las paredes del horno ceden calor al interior de la cámara de combustión al registrarse un "parpadeo" en la operación del horno.

El balance 5 presenta un exceso de aire de 370 % y un incremento en las eficiencias de combustión y del sistema con respecto al balance 4.

El balance 7 con un exceso de aire de 320 % presenta un gran incremento en la eficiencia de combustión. Se registra para este balance una buena operación en las tres zonas de la parrilla.

El balance 9 con un exceso de aire de 200 % presenta una gran caída en la eficiencia de combustión. En la parte superior de la parrilla se nota una falta de alimentación de cascarilla con un descenso brusco en los niveles de temperatura, este descenso también se da en la parte media pero no es tan drástico como en la parte superior, la parte inferior de la parrilla acusa de igual forma una falta de cascarilla fresca; todo esto se produce debido a que la operación del horno en esta prueba esta llegando a su fin y se interrumpe la alimentación de cascarilla.

La PRUEBA # 11 presenta un valor promedio de la EFT de 11613 W con pérdidas térmicas promedio de 4256 W contra un valor promedio de la EFT de 11288 W y pérdidas promedio de 4133 W para la PRUEBA # 9.

La diferencia entre las EFT y las pérdidas térmicas de las pruebas # 9 y # 11 no son significativas a pesar de una marcada diferencia entre las potencias nominales del horno en estas pruebas. La potencia nomimal es mayor en la PRUEBA # 11 lo cual implica un

mayor consumo de cascarilla que no se justifica al tener una EFT ligeramente superior con respecto a la registrada en la PRUEBA # 9. Las eficiencias de combustión y del sistema presentados en la PRUEBA # 9 son ligeramente mayores a las eficiencias de la PRUEBA # 11.

La PRUEBA # 10 presenta una EFT de 11072 W que es ligeramente menor a las obtenidas en las pruebas # 9 y # 11 justificandose esto con un menor consumo de cascarilla además de una eficiencia del sistema mayor y una eficiencia promedio de combustión ligeramente menor a la de las pruebas # 9 y # 11. El valor promedio de la eficiencia de combustión está afectado por la falta de alimentación de cascarilla (prácticamente nula) registrada en el balance 7 de esta prueba; si se descarta este valor se estima que la eficiencia de combustión promedio para esta prueba debería ser aproximadamente del 66 %.

De los gráficos Eficiencias vs. tiempo se advierte que la tendencia de la eficiencia del sistema a seguir a la eficiencia de combustión cuando el horno no está aislado no se registra cuando el horno si lo está. La eficiencia del sistema tiende a permanecer constante ante fluctuaciones en la eficiencia de la combustión merced a la inercia térmica de las paredes

del horno, las cuales liberando energía en forma de calor hacia el interior de la cámara de combustión cubren casi cualquier mala operación del horno o por lo menos mantienen las condiciones térmicas adecuadas en el interior de la cámara para la combustión de la cascarilla de arroz.

Se ha logrado un gran incremento en las EFT para estas pruebas e incluso las pérdidas térmicas son menores (a pesar de una mayor generación de calor) que las obtenidas para el horno desnudo.

6.3 ANALISIS DE RESULTADOS PARA EL HORNO OPEANDO CON TIRO INDUCIDO (HORNO AISLADO)

La PRUEBA # 12 presenta temperaturas promedio de 554
°C a la salida del hogar y de 399 °C en la chimenea.

De los gráficos "Temperatura en la Parrilla" (Sección 4.3.2) se desprende que la zona más caliente de la parrilla es la parte inferior con una temperatura promedio de 390 °C, seguida por la parte media de la parrilla con 382 °C y por la parte superior de la parrilla con 343 °C. El nivel de las temperaturas en la parte inferior de la parrilla es aceptable pero presenta fluctuaciones continuas que indican un desalojo de cenizas inadecuado, este desalojo discontinuo induce una mala alimentación de

cascarilla además de no permitir una distribución uniforme de la cascarilla fresca que ingresa ni una alimentación regular del combustible; como consecuecia de esta mala alimentación de combustible se registan bajos niveles en las temperaturas de la parte superior y media de la parrilla.

La Potencia nominal del horno es de 34.5 KW con una intensidad de combustión promedio de 329330 W/m³.

La eficiencia del sistema promedio es de 29 % y la eficiencia promedio de combustión es de 51 %.

El balance 3 presenta un exceso de aire de 150 % con un incremento en la eficiencia de combustión y un ligero decremento en la eficiencia del sistema.

El balance 4 presenta una excelente eficiencia de combustión (la mejor a lo largo de esta prueba) resultado en parte de la buena alimentación y operación del horno en el balance anterior; presenta además una buena eficiencia del sistema. Los niveles de temperaturas alcanzados en la parte media e inferior de la parrilla son buenos; en la parte superior de la parrilla se presenta una caída en el nivel de las temperaturas para el período en el que se realiza este balance (105 – 119 min) debido al

ingreso de cascarilla fresca la cual no se inflama rápidamente. Una vez que esta cascarilla se inflama se alcanza un buen nivel de temperaturas en esta parte de la parrilla.

El balance 5 presenta un exceso de aire de 105 % con una caída en la eficiencia de combustión y un incremento en la eficiencia del sistema.

El balance 7 con un exceso de aire de 250 % muestra un repunte en la eficiencia de combustión y del sistema con respecto al balance 6. A pesar de esto las paredes tienen que ceder calor al interior de la cámara de combustión para mantener las condiciones térmicas.

El balance 9 presenta un exceso de aire de 140 % la caída en la eficiencia de combustión es extrema y la eficiencia del sistema se mantiene sin mayor variación merced a la gran cantidad de calor liberado por las paredes del horno hacía el interior de la cámara.

Las temperaturas del aire de secado oscilan entre los 43 y 46 °C con humedades relativas entre 32 y 47 %; el aire de secado (mezcla aire ambiente/gas producto de la combustión que abandona el filtro de gases

hacia el ventilador) presenta una relación promedio aire/gas de 17.

La PRUEBA # 13 presenta temperaturas promedio de 588 °C a la salida del hogar y de 296 °C en la chimenea.

La zona con el nivel de temperaturas más elevado es la parte inferior con 452 °C, seguida por la parte superior con una temperatua promedio de 416 °C y por la parte media con una temperatura promedio de 380 °C se constituye en la zona menos caliente de la parrilla. Estos gráficos indican un desalojo poco continuo de cenizas provocando una alimentación y una distribución poco uniforme de la cascarilla en la parrilla. La parte superior muestra una alimentación sumamente irregular con dos grandes períodos que acusan una falta de alimentación de cascarilla casi total, el uno comprendido entre los 20 y los 40 minutos y el otro entre los 130 y 150 minutos. La parte media de la parrilla presenta una alimentación poco continua y fluctuaciones constantes en el nivel de las temperaturas.

La Potencia nominal del horno es de 34.1 KW con una intensidad de combustión promedio de 325681 W/m³.

La eficiencia del sistema promedio es de 20 % y la eficiencia de promedio de combustión de 47 %.

El balance 3 presenta un exceso de aire de 250% con una pequeña caída en la eficiencia de combustión y un gran incremento en la eficiencia del sistema.

El balance 5 presenta un exceso de aire del 145 % con una buena eficiencia de combustión mientras que la eficiencia del sistema se incrementa ligeramente ya que gran cantidad del calor generado en la combustión es ganado por las paredes para compensar la energía que estas cedieron anteriormente o es perdido a través de la chimenea (CSG).

El balance 7 presenta un exceso de aire de 250 % con un incremento en las eficiencias del sistema y de combustión con respecto al balance 6.

El balance 9 presenta un exceso de aire sumamente bajo (10 %) con una leve caída en la eficiencia de la combustión y un considerable incremento en la eficiencia del sistema. En la parte inferior de la parrilla se aprecia un desalojo bastante brusco, el cual produce una gran elevación en el nivel de las temperaturas en esta zona provocando además el ingreso de cascarilla a la parte media y superior de la parrilla produciéndose un incremento de los niveles de las temperaturas en estas zonas. Se explica un exceso de aire tan pequeño debido a la

gran cantidad de combustible suministrado en relación al aire existente en la cámara de combustión lo cual provoca incluso que aire ingrese a través de la chimenea para mezclarse con el flujo de gases que se dirige hacia el ventilador.

Las temperaturas del aire de secado oscilan entre 36 y 43 °C con humedades relativas entre 40 y 63 %; el aire de secado presenta una relación aire/gas promedio de 36.

La Prueba # 12 presenta un valor promedio de la EFT de 9828 W con pérdidas térmicas promedio de 4129 W contra un valor promedio de la EFT de 6836 W y pérdidas térmicas promedio de 4513 W para la Prueba # 13.

La diferencia entre las EFT y las pérdidas térmicas son significativas a pesar de que las potencias nominales del horno para estas pruebas son similares. La Potencia nominal del horno para la Prueba # 12 es ligeramente superior lo cual implica un mayor consumo de cascarilla que se justifica plenamente puesto que la EFT es superior e incluso las pérdidas térmicas son menores con respecto a las de la Prueba # 13.

Las eficiencias del sistema y de combustión obtenidas en la Prueba # 12 son muy superiores a las que se obtuvieron en la Prueba # 13.

Las condiciones que presenta el aire de secado para la Prueba # 12 son buenas pues la temperaturas de éste se encuentran dentro del rango adecuado y las humedades relativas (parámetro crítico en el proceso de secado Sección 2.4) están sobre el límite mínimo permisible.

Las condiciones que presenta el aire de secado para la Prueba # 13 son realmente pobres, aunque éstas no afectarían la resistencia del arroz en cáscara a la elaboración industrial, al estar las humedades relativas del aire de secado sobre el 50 % y las temperaturas bajo el rango recomendado, el proceso de secado tomaría más tiempo del realmente necesario.

Todo lo expuesto anteriormente indica que solo la Prueba # 12 presenta una operación del horno aceptable con esta configuración e inclinación de parrilla aunque ésta dista mucho de ser óptima; es más la operación del horno para ambas pruebas ha sido deficiente siendo crítica para la Prueba # 13.

La PRUEBA # 14 presenta temperaturas promedio de 594 °C a la salida del hogar y de 395 °C en la chimenea.

La zona con el mayor nivel de temperaturas es la parte superior de la parrilla con una temperatura promedio de 427 °C, seguida por la parte media de la parrilla con una temperatura promedio de 327 °C y por la parte inferior con una temperatura promedio de 314 °C. El gráfico de la parte inferior de la parrilla presenta grandes períodos en que el desalojo de las cenizas ha sido nulo lo cual impide una alimentación regular y una distribución uniforme de la cascarilla en la parrilla, en la parte superior se registran buenos niveles momentáneos de las temperaturas pero se registran grandes períodos en los que el ingreso de cascarilla ha sido prácticamente nulo, en la parte media de la parrilla el nivel de temperaturas no es tan elevado como en la parte superior acusando también una falta de alimentación y severas fluctuaciones en los niveles de temperaturas.

La Potencia nominal del horno es de 33.8 KW con una intensidad de combustión promedio de 313283 W/m³.

La eficiencia del sistema promedio es de 38 % y la eficiencia promedio de la combustión es de 72 %.

El balance 3 presenta un exceso de aire de 450 % con caída en las eficiencias de combustión y del sistema.

El balance 5 presenta un exceso de aire de 300 % con excelentes eficiencias del sistema y de la combustión.

El balance 7 presenta un exceso de aire de 275 % con gran caída en las eficiencias del sistema y de combustión. Las paredes del horno liberan calor hacia el interior de la cámara de combustión tratando de mantener las condiciones térmicas adecuadas en el interior de ésta.

El balance 9 presenta un exceso de aire de 175 % con una caída en las eficiencias de combustión y del sistema con respecto al balance 7. En la parte inferior de la parrilla se registra un adecuado desalojo de cenizas ligado a un gran nivel de las temperaturas, la parte superior de la parrilla acusa una falta de alimentación de cascarilla produciendo una caída en el nivel de las temperaturas en esta zona, en la parte media se aprecia un ingreso limitado de cascarilla el cual produce un repunte en el nivel de las temperaturas siendo éste momentáneo pues el nivel de temperaturas cae rápidamente.

Las temperaturas del aire de secado oscilan entre 42 y 49 °C y las humedades relativas entre 28 y 46 %; el aire de secado presenta una relación aire/gas promedio de 18.

La <u>PRUEBA # 15</u> presenta temperaturas promedio de 607 °C a la salida del hogar y de 425 °C en la chimenea.

La zona con el mejor nivel en las temperaturas es la parte media de la parrilla con una temperatura promedio de 456 °C, seguida por la parte inferior con una temperatura promedio de 372 °C y por la parte superior con una temperatura promedio de 352 °C. Estos gráficos indican un desalojo de cenizas irregular en la parte inferior con un nivel de las temperaturas aceptable para esta zona, la parte superior de la parrilla presenta una alimentación de cascarilla poco continua pudiéndose apreciar una mala operación del horno a lo largo de toda la prueba, la parte media de la parrilla muestra fluctuaciones severas y continuas producto de una mala alimentación de la cascarilla.

La Potencia nominal del horno es de 35 KW con una intensidad de combustión promedio de 325382 W/m³.

La eficiencia del sistema promedio es de 30 % y la eficiencia promedio de combustión es de 61 %.

El balance 3 presenta un exceso de aire de 240 % con caídas en las eficiencias del sistema y de combustión. Las paredes del hogar ceden calor al interior de la cámara de combustión tratando de mantener las condiciones térmicas reinantes.

El balance 5 presenta un elevado exceso de aire (750

%) con una gran caída en las eficiencias.

El balance 7 con un exceso de aire de 180 % presenta excelentes eficiencias del sistema y de combustión. En la parte inferior de la parrilla se registra un buen nivel en la temperaturas y un regular desalojo de cenizas, la parte media y superior acusan una falta de alimentación de combustible.

El balance 9 presenta un exceso de aire de 360 % con caídas en las eficiencias con respecto al balance 7. La parte superior de la parrilla acusa una total falta de alimentación de cascarilla.

Las temperaturas del aire de secado oscilan entre 42 y 51 °C con humedades relativas entre 26 y 41 %; el

aire de secado presenta una relación aire/gas promedio de 17.

La <u>PRUEBA # 16</u> presenta temperaturas promedio de 582 °C a la salida del hogar y de 390 °C en la chimenea.

La zona más caliente de la parrilla es la parte superior con una temperatura promedio de 532 °C seguida por la parte media con una temperatura promedio de 360 °C y por la parte inferior con una temperatura promedio de 313 °C. Estos niveles indican un desalojo aceptable de cenizas en la parte inferior de la parrilla, un aceptable nivel de las temperaturas con una alimentación poco uniforme en la parte superior en tanto la parte media presenta fluctuaciones severas y continuas sin una adecuada reposición de la cascarilla que se desplaza hacia abajo en la parrilla.

La Potencia nominal del horno es de 36 KW con una intensidad de combustión promedio de 336943 W/m³.

La eficiencia del sistema promedio es de 26 % y la eficiencia promedio de combustión es de 55 %.

El balance 3 presenta una buena eficiencia de

combustión acompañada por una eficiencia del sistema que se incrementa considerablemente.

El balance 5 presenta una caída considerable de las eficiencias. En la parte inferior de la parrilla se registra un adecuado desalojo de cenizas el cual produce un incremento en el nivel de las temperaturas siendo éste momentáneo pues por falta de cascarilla cae rápidamente, en la parte superior se registra una caída en el nivel de las temperaturas como consecuencia de la falta de alimentación, en la parte media la falta de combustible es crítica llegando a estar esta zona prácticamente apagada. La operación del horno en este período es sumamente deficiente y las paredes del horno ceden una gran cantidad de calor al interior de la cámara de combustión.

El balance 7 presenta un incremento en las eficiencias de combustión y del sistema.

El balance 9 presenta una caída en la eficiencia de combustión en tanto que la eficiencia del sistema se mantiene casi constante merced al calor que ceden las paredes hacia el interior de la cámara de combustión.

Las temperaturas del aire de secado oscilan entre 42 y 54°C y las humedades relativas entre 26 y 36 %; el

aire de secado presenta una relación aire/gas promedio de 13.

La PRUEBA # 14 presenta un valor promedio de la EFT de 12716 W con pérdidas térmicas promedio de 4641 W y un valor promedio del CSG de 5100 W, en tanto que la PRUEBA # 15 presenta un valor promedio de la EFT de 10599 W con pérdidas térmicas promedio de 4524 W y un valor promedio del CSG de 6274 W y la PRUEBA # 16 que presenta un valor promedio de la EFT de 9348 W con pérdidas promedio de 4512 W y un valor promedio del CSG de 4455 W.

La PRUEBA # 16, a pesar de tener la mayor potencia nominal de este conjunto de pruebas presenta la más baja EFT con pérdidas térmicas similares a las obtenidas en las otras dos.

La PRUEBA # 15, presenta una potencia nominal mayor que la obtenida en la PRUEBA # 14 y menor que la obtenida en la PRUEBA # 16. La EFT de la PRUEBA # 15 es superior que la obtenida en la PRUEBA # 16 e inferior que la obtenida en la PRUEBA # 14.

Todo esto indica que la mejor operación térmica del horno con esta configuración e inclinación de parrilla se alcanza en la PRUEBA # 14.

En cuanto se refiere a las condiciones del aire de secado, la PRUEBA # 14 presenta excelentes resultados tanto en términos de las temperaturas como de la humedad relativa.

La PRUEBA # 15 presenta también excelentes resultados, con la excepción de las condiciones del aire de secado que se presentan en el balance 7 las cuales podrían causar daño al grano pero por no ser éstas las condiciones dominantes a lo largo de la prueba (todo lo contrario) difícilmente esto se daría.

La PRUEBA # 16 presenta condiciones muy severas en el aire de secado puesto que las temperaturas se encuentran sobre el rango permisible y las humedades relativas están bajo el límite mínimo admisible. Esto se atribuye a una mala operación de la compuerta reguladora de temperatura puesto que con cerrarla un poco el problema se habría solucionado lo cual no se realiza con fines de investigación. Vale notar que la Prueba # 16, a pesar de tener la menor EFT para las pruebas aquí comparadas, presenta las mayores temperaturas en el aire de secado, esto se debe a la baja relación aire/gas que registra esta prueba al haber un incremento en la presión estática simulada con la consiguiente disminución en el caudal que arroja el ventilador.

CAPITULO VII

ANALISIS ECONOMICO

En este capítulo se presentan los costos de fabricación del equipo evaluado en esta tesis, se compara el costo de este equipo con el de otro de igual capacidad de secado de fabricación extranjera, se analiza la conveniencia económica del uso de la cascarilla de arroz como combustible para el secado de arroz en cáscara determinándose los costos totales por tonelada del proceso de secado tanto para el secador que utiliza como combustible diesel como para el que utiliza cascarilla de arroz.

7.1 COSTOS DE FABRICACION DEL EQUIPO

En esta sección se determina los costos de fabricación y se estima un posible precio de venta del equipo evaluado en esta tesis.

La Tabla 7.1 presenta el desglose de los precios de fabricación del horno, en el que se incluye tanto la mano de obra como los costos de los materiales; la Tabla 7.2 presenta el desglose de los precios de

fabricación del ventilador y la Tabla 7.3 presenta los precios a los cuales se pueden adquirir en el mercado local los accesorios necesarios para la construcción y el funcionamiento del ventilador.

La Tabla 7.4 presenta los costos totales de fabricación del horno, de los accesorios del ventilador, de fabricación del ventilador, de producción del equipo, además del precio de venta del equipo.

El posible precio de venta del equipo se estima recargando en un 40 % el costo total de producción. En este porcentaje se incluyen: las ganancias, los gastos de representación y la responsabilidad técnica.

Los accesorios del ventilador, los cuales representan algo más del 50 % del costo de producción del equipo, se seleccionaron conociendo que para este equipo, el ventilador y específicamente el motor de éste determina el tiempo de vida útil del horno. Así de entre la extensa gama de calidades y precios existentes en el mercado local se selecciona accesorios "de primera".

TABLA 7.1
COSTOS DE FABRICACION DEL HORNO

DESCRIPCION	Material	Cantidad	Costo mano obra (S/.)	Costo material (S/.)	Costo Total (S/.)
Tanque 55 gls.	acero de 3 mm	2	8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	24000	48000
Perforaciones en los tanques		7	8000		8000
Ducto de unión y desviadores	plancha de acero de 2 mm	3	6000	10000	16000
Compuerta de regulación gas		1 1 1 1 1	3000	2000	5000
Chimenea	plancha negra 2 mm		10000	15000	25000
Parrilla	plancha 3 mm ángulo 1 ½ x ½	1 1 1	10000	15000	25000
Pernos	acero de 1 x ¾	26	1	80	2080
Tolva de cascarilla	plancha negra 3 mm	1	10000	13000	23000
Eje y manubrio de alimentador		1	5000	5000	10000
Alimentador	plancha 2 mm	1 1	7000	4000	11000
Arcilla Refra. "Alfadomus"	6 6 6 0	50 Kg	5000	7500	12500
Platina sosten de aislamiento	7	3 mt	5000	3000	8000
Electrodos	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 Kg	8 5 5 6	1500	4500
Sierras	5 1 2 3 5	2		1000	2000
Ensamble del equipo	8 6 8	6 8 8 8 9	6000	# # # # # # # # # # # # # # # # # # #	6000
Varios	6 8	1 E	6000	1 1	6000

TABLA 7.2 COSTOS DE FABRICACION DEL VENTILADOR

DESCRIPCION	Material	Cantidad	Costo mano obra (S/_)	Costo material (S/.)	Costo Total (S/.)
Silla	ángulo 2 ¼ x ¾	1		23000	23000
Corte de la Silla			8000		8000
Ensamble de la Silla		8 8 6 5 5	15000		15000
Base del motor (templadores)	ángulo 1 ¼ x ¾	2	5000	NAMES AND ADDRESS	5000
Carcaza	plancha negra 2 mm	1	5 3 6 8 9	18000	18000
Corte Carcaza		2	7000	l	14000
Corte de Ancho de la Carcaza		5 H	5000		5000
Armada de la Carcaza		1 1 1 1	18000		18000
Rodete	plancha 3 mm	1	8000	25000	33000
Maquinada y armada rodete	The state of the s	6 6 8	30000	9 8 6 8 9	30000
Manzana	acero trans.	1	10000	2000	12000
Balanceo dinámico	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	25000	5 3 6 5 5	25000
Kje principal	acero de transmisión	1	12000	14000	26000
Maquinada de las poleas	\$ 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2	2500	8 6 8	5000
Brida descarga ventilador	platina 1 ¼ x ¼	6 6 8 8	3000	3000	6000
Pintura	esmalte	1 1	4000	5000	9000
Soldadura		5 Kg	1	1500	7500
Varios	· · · · · · · · · · · · · · · · · · ·	1 I	1 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10000

TABLA 7.3
COSTOS DE LOS ACCESORIOS DEL VENTILADOR

NAMES AND ASSOCIATION OF THE RESIDENCE AND ASSOCIATION OF THE PROPERTY ASSOCIATION OF THE PROP	adan sagang anulah sagaig sagain banga banga salah sagain salah sagain sagain sagain sagain sagain sagain sagai	page dynamic laceray artists artists artists distance existent distance artists.		
DESCRIPCION	Material	Cantidad	Costo unitario (S/.)	Costo Total (S/.)
Polea 2 ½" tipo A	acero	1	9500	9500
Polea 3 ½" tipo A	acero	1	11500	11500
Banda tipo A		1	9500	9500
Chumacera 1 1/8"	origen alemán	2	24000	48000
Motor trifásico 3 HP - 1740 RPM	Total Peter 1909	1	336900	336900
Botonera y arrancador	8 9 8	1	104500	104500

TABLA 7.4

Costos de fabricación del horno	S/.	212080
Costos de fabricación del ventilador	S/.	269500
Costos de los accesorios del ventilador	S/.	519900
COSTO TOTAL DE PRODUCCION	S/.	1~001400
PRECIO DE VENTA DEL EQUIPO	S/.	1~400000

7.2 ANALISIS DE LA CONVENIENCIA ECONOMICA DEL USO DE LA CASCARILLA DE ARROZ COMO COMBUSTIBLE

Para analizar la conveniencia financiera del uso de la cascarilla de arroz como combustible se compara dos equipos de iguales capacidades de secado, el uno operando con cascarilla de arroz como combustible y el otro utilizando diesel.

Los equipos a comparar son:

- El horno evaluado en el presente trabajo de tesis descrito en los capítulos 3 y 4. El precio de este equipo es de S/. 1'400000.
- Un horno de procedencia colombiana que presenta las siguientes características técnicas:

Quemador importado, con electrodos, motor eléctrico, ventilador y bomba de combustible incorporada con capacidad de 1.5 gal/hr

Intercambiador de calor tipo tubular con cámara de acero inoxidable.

Ventilador de aire de secado con capacidad de 2400

CFM a 55 °C provisto de motor eléctrico de 3 HP y su correspondiente protector.

1 termostato acoplado al quemador, 1 termómetro de carátula, tablero de control y base para el soporte del sistema.

Una capacidad de secado de 0.32 Toneladas por hora.

El precio de este equipo en el Ecuador es de US \$ 5000 que a un cambio de S/. 900 por dólar respresenta S/. 4'500000.

El presente análisis parte de las siguientes premisas:

- El horno operará en una piladora, en donde el recurso de cascarilla de arroz es abundante, durante 100 días al año 20 horas diarias.
- Se desea adquirir un equipo con una capacidad de 0.32 Ton/hr.
- Se considera una vida útil de 10 años tanto para el horno de cascarilla como para el que utiliza diesel.

- Los recursos propios son del 40 % con respecto al valor del equipo debiendo financiarse la diferencia con una entidad privada a un interés comercial del 57 % sobre el préstamo.
- No se incluye en el presente análisis los costos de inversión ni de operación de la cámara de secado.
- No se necesita equipo adicional para el transporte de cascarilla.
- No se incluye ni el sistema de alimentación del diesel al quemador ni el valor del diesel almacenado.
- Se considera una inflación del 45 % que afecta a los costos variables en los años posteriores al primer año.

Se desea conocer:

- El ahorro real, si se generará, al usar cascarilla de arroz como combustible.
- La conveniecia económica de una mayor inversión en un equipo semi-automatizado (equipo diesel) para

prescindir en lo posible de los gastos de mano de obra.

- La tasa interna de retorno sobre los recursos propios para ambos casos.
- El costo por tonelada de arroz secado en los años de vida útil del equipo.

A continuación se presenta el análisis detallado de la conveniencia económica del uso de cascarilla de arroz como combustible y los costos totales en los 10 años de vida útil para luego presentar el análisis detallado de la conveniecnia económica del uso del diesel como combustible y sus costos totales en los 10 años de vida útil.

SECADO DE ARROZ EN CASCARA UTILIZANDO CASCARILLA DE ARROZ COMO COMBUSTIBLE

Octubre 1990

Cantidad total de grano:

Días de trabajo disponibles:

Capacidad mínima necesaria 20 hr/día

Capacidad disponible secado:

Consumo aproximado de cascarilla:

O S/.

640 Ton/año

0.32 Ton/hr

0.32 Ton/hr

0.32 Ton/hr

0.32 Ton/hr

Inversión total en el horno: 1400000 Inversión en equipo adicional: 0 (transporte de cascarilla, etc.)

Período para depreciar: 5 años Valor de salvamento: 0 %

Crédito

Financiación de los equipos

Monto S/.Interes % Plazo 900000 57 3 años

Recursos propios 500000

COSTOS FIJOS (financieros y depreciación)

AsiO	1	2	3	4	5	6	7	8	9	10
Saldo inicial	900000	600000	300000	0	0					
Amortización	300000	300000	300000	0	0					
Saldo final	600000	300000	0	0	0					
Intereses	513000	342000	171000	0	0					
Depreciación	280000	280000	280000	280000	280000					
		2000000000	202000000							
TOTAL C.FIJOS	793000	622000	451000	280000	280000	0	0	0	0	0

COSTOS VARIABLES

Costo unitario

Consumo energía eléctrica: 2.2 KW-hora (KW-hora S/. 30) Mº de operarios: 2 (S/.2500 diarios)

0

Costo del combustible:

Mantenimiento por año: 5 % de la inversión

Costo de la energía eléctrica S/. 132000 anual
Mano de obra S/. 500000 anual
Costo de combustible S/. 0 anual
Mantenimiento S/. 75000 anual
TOTAL S/. 707000

RCONOMIAS EN LA OPERACION

AWO	1	2	3	4	5	6	7	8	9	10
Costos fijos	793000	622000	451000	280000	280000	0	0	0	0	0
Costos variables	707000	1025150	1486467	2155377	3125296	4531680	6570936	9527858	13815394	20032321

ANALISIS DE LA CONVENIENCIA FINANCIERA

Inversión total: 1'400000

Recursos propios: 500000

TASA INTERNA DE RETORNO (TIR)

Sobre recursos propios: 64%

COSTOS TOTALES EN LOS 10 AÑOS DE VIDA UTIL

Intereses S/. 1'026000

Depreciación 1'400000

Energía eléctrica 1'320000

Mano de obra 5'000000

Mantenimineto 750000

TOTAL 5/. 9'496000

SECADO DE ARROZ EN CASCARA UTILIZANDO DIESEL COMO COMBUSTIBLE

Octubre 1990

Cantidad total de grano:

Días de trabajo disponibles:

Capacidad mínima necesaria 20 hr/día

Capacidad disponible secado:

Capacidad disponible secado:

Consumo aproximado de diesel:

1.5 gal/hr

Precio del diesel:

340 S/.

Inversión total en el horno: 4500000 Inversión en equipo adicional: 0 (transporte de cascarilla, etc.)

Período para depreciar: 5 años Valor de salvamento: 0 %

Financiación de los equipos

| Monto S/.Interes % Plazo | Crédito | 2700000 | 57 | 3 años | Recursos propios | 1800000 |

COSTOS FIJOS (financieros y depreciación)

	ANO	1	2	3	4	5	6	7	8	9	10
Sa	ldo inicial	2700000	1800000	900000	0	0					
An	ortización	900000	900000	900000	0	0					
Sa	ldo final	1800000	900000	0	0	0					
In	tereses	1539000	1026000	513000	0	0					
De	preciación	900000	900000	900000	900000	900000					
TO	TAL C.FIJOS	7839000	5526000	3213000	900000	900000	0	0	0	0	0

COSTOS VARIABLES

Consumo energía eléctrica: 2.2 KW-hora (KW-hora S/. 30)

Mº de operarios: 1 4 hr/día (S/.2500 diarios) 20 días efectivos

Consumo de combustible: 1.5 gal/hr (S/. 340/gal) Mantenimiento por año: 5 % de la inversión

 Costo de la energía eléctrica
 S/.
 132000 anual

 Mano de obra
 S/.
 50000 anual

 Costo de combustible
 S/.
 1020000 anual

 Mantenimiento
 S/.
 225000 anual

 TOTAL
 S/.
 1427000

ECONOMIAS EN LA OPERACION

ANO	1	2	3	4	5	6	7	8	9	10
Costos fijos	7839000	5526000	3213000	900000	900000	0	0	0	0	0
Costos variables	1427000	2069150	3000268	4350388	6308062	9146690	13262701	19230917	27884829	40433003

ANALISIS DE LA CONVENIENCIA FINANCIERA

Inversión total: 4'500000

Recursos propios: 1'800000

TASA INTERNA DE RETORNO (TIR)

Sobre recursos propios: 60%

COSTOS TOTALES EN LOS 10 AÑOS DE VIDA UTIL

Intereses S/. 3'078000

Depreciación 4'500000

Energía eléctrica 1'320000

Mano de obra 500000

Costo del diesel 10'020000

Mantenimineto 2'250000

TOTAL S/. 21'668000

1. El ahorro real (S/.) al usar cascarilla de arroz como combustible, independientemente de la inversión, se obtiene al comparar los rubros de mano de obra y costo de combustible para el horno que utiliza cascarilla con los rubros de mano de obra y costo de combustible para el horno que utiliza diesel.

El ahorro al utilizar cascarilla de arroz es de S/. 570000 anuales, cantidad que es superior a la inversión de recursos propios.

- No es conveniente, al menos para esta capacidad del equipo de secado, una mayor inversión para evitar los gastos de mano de obra.
- 3. La tasa interna de retorno sobre los recursos propios tanto para el horno que utiliza cascarilla de arroz (64 %) como para el horno que utiliza diesel (60 %) estan sobre el interés que ofrece el mercado financiero privado.
- 4. Se determina el costo de generar suficiente calor para secar una tonelada de arroz, dividiendo los costos totales durante los 10 años considerados, por el volumen total de grano que se procesaría en en este período de tiempo (6400 toneladas).

Así secar una tonelada de arroz en cáscara utilizando el equipo que combustiona cáscara de arroz en los 10 años de vida útil representa un gasto de S/. 9'460000 que para las 6400 toneladas que se procesan en este tiempo arroja un costo total por tonelada de S/. 1478, bajo el mismo esquema el costo total por tonelada para el equipo que utiliza diesel como combustible es de S/.3385.

El costo por tonelada se reduce en forma muy apreciable en aquellos sitios donde el escalonamiento de la producción permita utilizar los equipos más de 100 días en el año. (Ref. 14)

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

La principal limitación en la evaluación del horno de cascarilla de arroz la constituye la realización de los balances instantáneos de energía en base a flujos globales de cascarilla.

Potencias superiores se registran cuando el horno opera con la parrilla inclinada a 50°. El horno operando con tiro natural ya sea que la cámara de combustión se encuentre aislada o no, registra mayores eficiencias con esta inclinación de parrilla.

El horno operando con tiro natural con su cámara de combustión sin aislar se presenta operacionalmente inadecuado por las siguientes razones:

Presenta una combustión poco segura e inestable cuando se requiere un mayor suministro de energía y el horno demanda aire y combustible adicional.

Las temperaturas globales registradas en la chimenea estan alrededor de los 200 °C provocando grandes problemas de corrosión en esta zona del horno, ya

que se conoce que la temperatura recomendada para los gases en la chimenea con la finalidad de evitar la condensación debe ser superior a los 200 °C.

Las eficiencias obtenidas para el horno operando con esta configuración son bajas en comparación con las del horno operando con su cámara de combustión aislada.

Las pérdidas térmicas son elevadas en relación a la energía liberada en el proceso de combustión (25-34 %).

Cualquier variación en la eficiencia de combustión se refleja marcadamente en la eficiencia del sistema.

El horno operando con tiro natural con su cámara de combustión aislada presenta las siguientes características:

Una combustión segura y estable; así cuando se requiere un mayor suministro de energía y el horno demanda aire y combustible adicional, los requerimientos del sumidero (aire) no reducen el nivel de las temperaturas debajo del necesario para asegurar la buena gasificación y combustión de la

cascarilla de arroz. Esto se logra gracias a la inercia térmica de las paredes, la cual responde rápidamente ante cualquier incremento en los requerimientos del sumidero o para mantener las condiciones adecuadas en el interior de la cámara de combustión cuando se produce una mala alimentación de cascarilla o algún desperfecto en el funcionamiento del horno.

Las temperaturas globales registradas en la chimenea están sobre los 300 °C con lo que se asegura la no presencia de condensados y se evita problemas serios de corrosión en el horno.

Las eficiencias obtenidas para el horno operando bajo esta configuración se las puede considerar como aceptables si se las compara con las del horno operando con tiro inducido.

Las pérdidas térmicas que se registran para el horno operando con esta configuración son moderadas (10-14 %) en relación a la energía liberada en el proceso de combustión. Presenta además una combustión completa (ausencia de CO) y no se registra la presencia de humos visibles en la chimenea.

El horno operando con tiro inducido con su cámara de combustión aislada presenta las siguientes características de operación:

Las temperaturas en la chimenea se encuentran sobre los 300 °C con lo que se evita problemas graves de corrosión.

Las eficiencias del sistema son bastante buenas, en tanto que las eficiencias de combustión obtenidas se las considera relativamente buenas, pues el desalojo de cenizas y la alimentación de cascarilla durante la realización de estas pruebas no ha sido la adecuada.

Las pérdidas térmicas registradas son moderadas (12 - 14 %) en relación a la energía liberada.

El ventilador centrífugo de aletas radiales utilizado es el apropiado pues los centrífugos manejan eficientemente grandes o pequeñas cantidades de aire en una amplio rango de presiones y cuando el ruido no es un factor a considerar y el aire que se va a manejar contiene polvos el ventilador de aletas radiales es la mejor opción.

La curva obtenida para el ventilador centrífugo es la esperada en lo que respecta a la presión y el caudal. El ventilador trabaja en la zona de operación estable.

La proporción entre el flujo másico de gases que salen hacía el ventilador y los que escapan por la chimenea es de 4 a 1.

No se registra la presencia de humos visibles ni en la chimenea ni en el flujo de gases que sale del filtro de gases hacia el ventilador.

No se registra la presencia de partículas incandecentes arrastradas en el flujo de gases que sale hacia el ventilador.

El horno se muestra capaz de mantener la temperatura del aire de secado en el rango recomendado (45 \pm 5 $^{\circ}$ C) durante el proceso de secado.

El horno presenta una combustión completa y una relación aire ambiente/flujo de gases, del aire de secado, elevada (17 a 1) por lo que se considera que el aire de secado es casi tan bueno como aire ambiente calentado.

Si se mantiene la compuerta de regulación de temperatura totalmente cerrada y el ventilador succiona aire ambiente en los alrededores del filtro de gases, el equipo es capaz de elevar la temperatura del aire succionado en 11 °C.

La eficiencia de combustión para esta configuración del horno con un adecuado desalojo de cenizas y una correcta alimentación de cascarilla debe estar entre el 75 y 80 %, teniendo presente que el diseño y funcionamiento de equipos que utilizan la cascarilla de arroz como combustible son siempre un compromiso entre la eficiencia y los requerimientos de energía.

Una limitación en lo que respecta a la evaluación de la cantidad de energía que se acumula en las paredes es la falta de un mayor número de termocuplas del lado interior de la pared.

La altura de la chimenea debe ser tal que permita al horno operar eficientemente aun con la compuerta de regulación de temperatura totalmente cerrada.

El principal inconveniente en la aceptación de esta tecnología lo constituye el desalojo de cenizas durante y después del proceso, teniendo en consideración la mínima

reducción de tamaño que sufre la cascarilla de arroz al combustionarse.

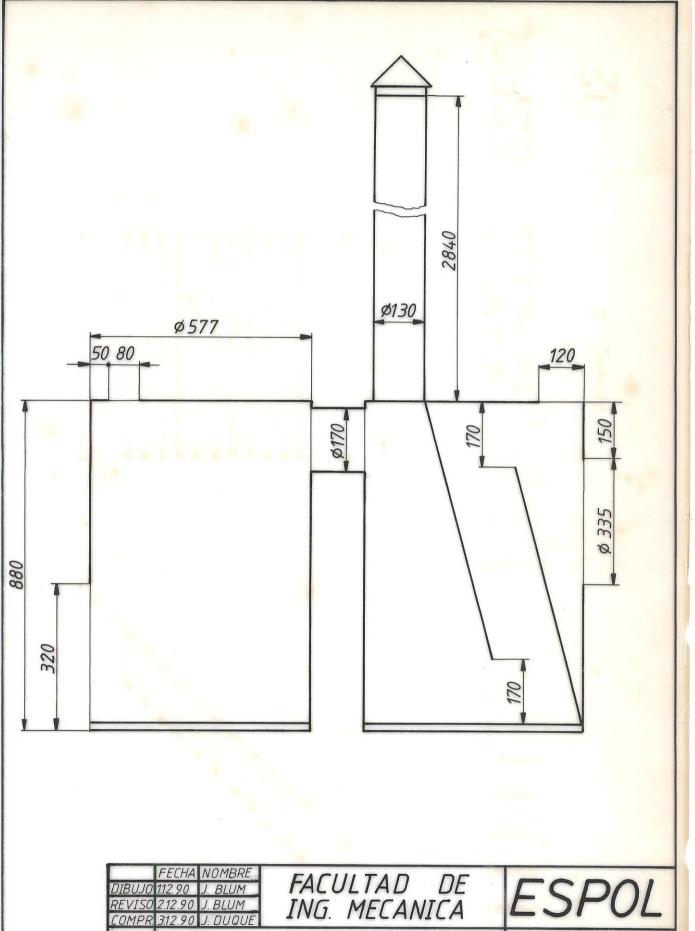
El horno requiere un operador permanente que debe encargarse de la alimentación de cascarilla, el desalojo de cenizas y de controlar la temperatura en el aire de secado.

El equipo evaluado constituye hoy, una alternativa económica y técnicamente viable para el secado de arroz en cáscara.

RECOMENDACIONES

Para realizar una evaluación más precisa se hace necesaria la medición del flujo de combustible instantáneo.

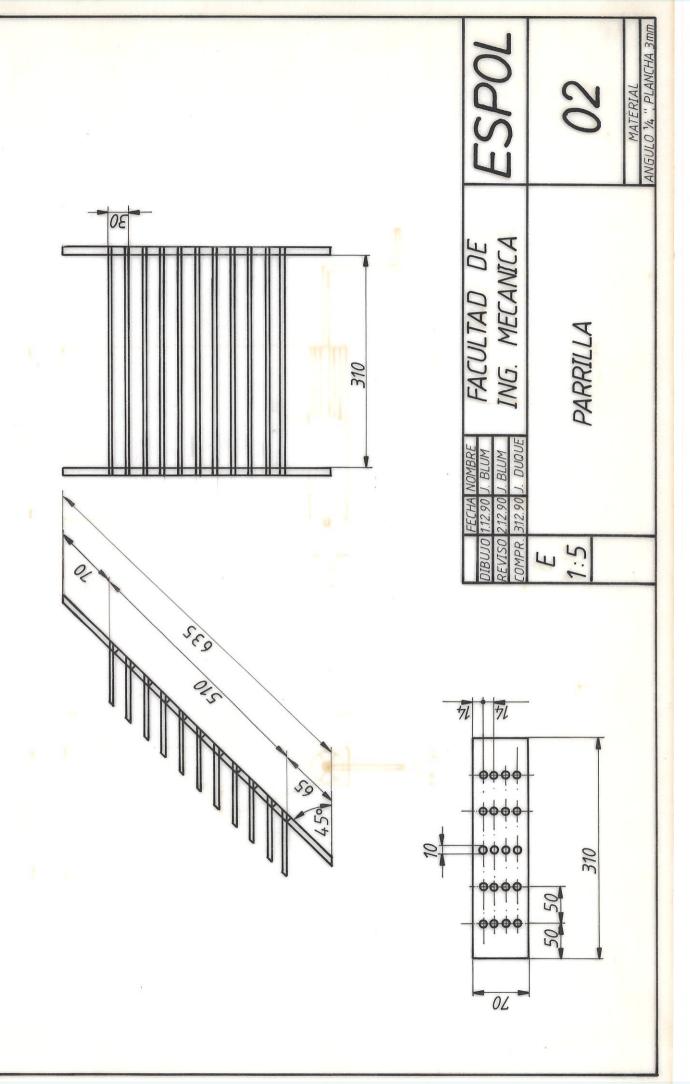
Para operaciones de secado se recomienda utilizar el horno con una inclinación de parrilla de 45°, aunque sí las condiciones de humedad en la cascarilla son un tanto mayores a las usuales se recomienda una inclinación de parrilla de 50°, pues Potencias mayores son alcanzadas con esta inclinación de parrilla compensando la cantidad de energía adicional que se requiere para evaporar la humedad de la cascarilla; por tanto el equipo debe ser

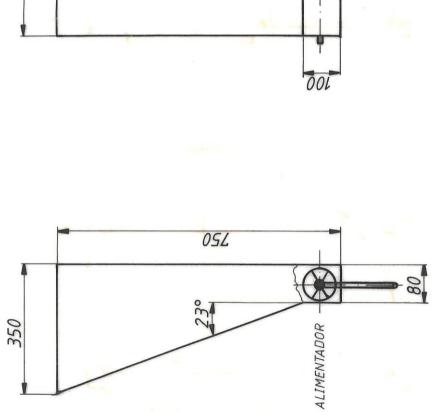

construido de manera tal que permita variar la inclinación de la parrilla y sus escalones.

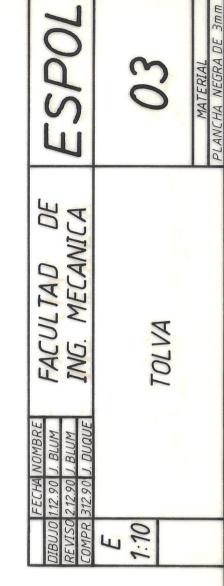
La posición del ventilador con respecto al filtro de gases debe ser tal, que permita succionar la mayor cantidad posible de aire ambiente en los alrededores del filtro (sin perder las condiciones adecuadas de temperatura y humedad) hacia la cámara de secado.

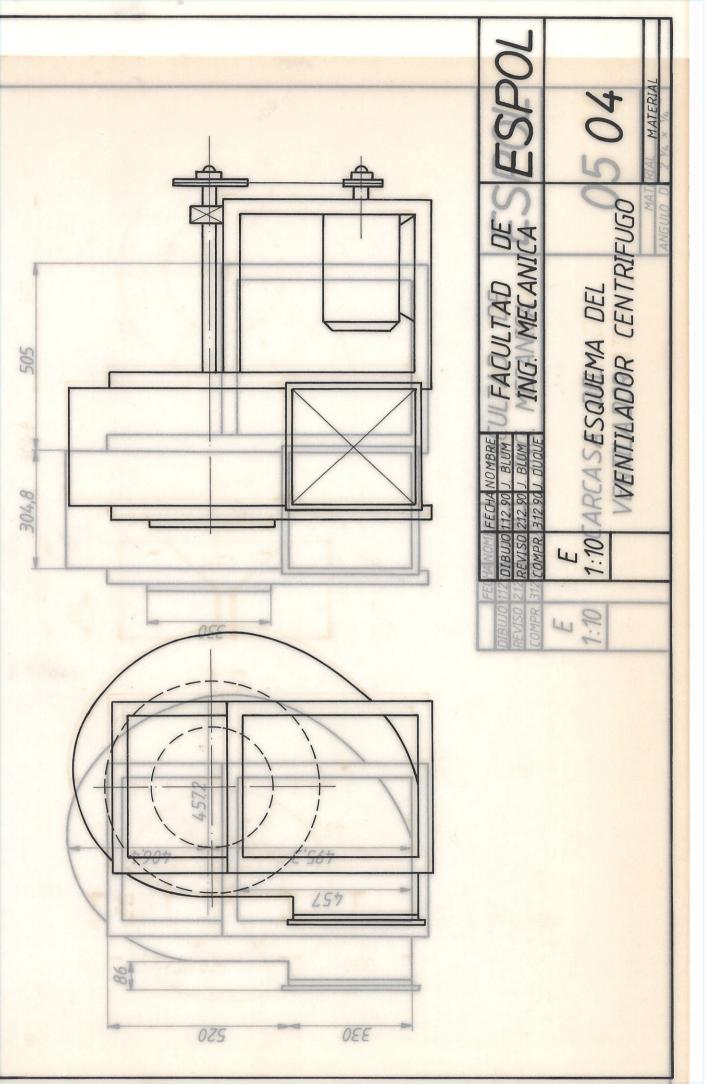
APENDICE A

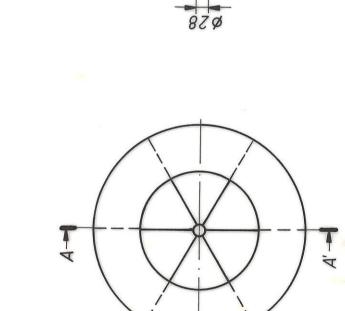
PLANOS DEL HORNO Y CALCULO DE SUS AREAS

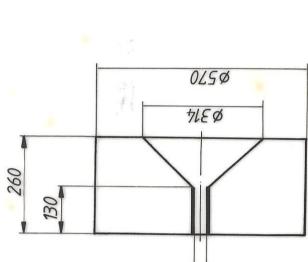

FECHA NOMBRE DIBUJO 112.90 J. BLUM REVISO 2.12.90 J. BLUM ING. MECANICA

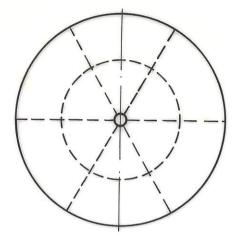

E
1:10


VISTA EN CORTE DEL HORNO DE CASCARILLA


DE ARROZ


MATERIAL
TANQUES DE 55 galones





SECCION A - A'

ESP01	06 MATERIAL PLANCHA NEGRA DE 3mm
FACULTAD DE ING. MECANICA	RODETE
FECHA NOMBRE DIBUJO 1.12.90 J. BLUM REVISO 2.12.90 J. BLUM COMPR. 3.12.90 J. DUQUE	
DIBUJU REVISO COMPR	1:10

APENDICE A - 2

CALCULO DE AREAS

Area de la pared lateral del horno

$$Al_n = \pi d l = 1.5953 m^2$$

Area de las secciones 1,2,3,4,7,10,11,12

$$A1_{bs} = \frac{\pi (0.577) (0.88)}{12} = 0.1329 \text{ m}^2$$

Las áreas de las secciones (5, 6, 8 y 9) aledañas al agujero de entrada de aire están afectadas por éste.

Albs
$$6-9 = 0.8891 \text{ m}^2$$

Este valor representa el área para las secciones 6 y 9.

Alms
$$s-s = 0.1289 \text{ m}^2$$

Valor que representa el área para las secciones 5 y 8.

Area de la parte superior del hogar

$$As_n = \frac{\pi d^2}{4} = 0.262 m^2$$

Area de la parte superior del filtro de gases

$$As_{\pi} = 0.262 - 0.0393 = 0.222 \text{ m}^2$$

Area de la pared lateral del filtro de gases

Al_{$$\tau$$} = 1.5953 - $\frac{\pi (0.335)^2}{4}$ = 1.507 m²

Area de la parrilla

$$A_p = 0.31 \times 0.51 = 0.158 \text{ m}^2$$

Area del agujero de aire

$$A_{a} = 0.096 \text{ m}^2$$

Area de transversal de la chimenea

$$A_{ch} = \frac{\pi \ d_{ch}}{4} = \frac{\pi \ (0.13)}{4} = 0.0123 \ m^2$$

APENDICE B

CALCULO DE LA VELOCIDAD DE ROTACION Y OBTENCION DE LA CURVA CARACTERISTICA PARA EL VENTILADOR

APENDICE B - 1

CALCULO DE LA VELOCIDAD DE ROTACION DEL VENTILADOR

Manalo (Ref. 12) propone los siguientes valores de velocidad de rotación del ventilador:

- 765 RPM cuando el ventilador está acoplado a un motor de 0.75 KW (1 HP)
- 1230 RPM cuando el ventilador está acoplado a un motor de 2.2 KW (3 HP)

El motor acoplado al ventilador en las pruebas realizadas en el CETE es de 1.5 KW (2 HP). Se debe entonces determinar las revoluciones a las que debe girar el ventilador.

A partir de la tercera ley de los ventiladores "La potencia requerida es proporcional a la velocidad del ventilador elevada al cubo " se determina la velocidad de rotación del ventilador (N_2) como se muestra a continuación:

 $W_1 = 1 HP$

 $N_1 = 765 \text{ RPM}$

 $W_2 = 2 HP$

 $N_2 = ?$

 $W_3 = 3 HP$

N₃ = 1230 RPM

de donde,

$$\frac{W_1}{W_2} = \frac{N_1^3}{N_2^3}$$

$$N_2 = 964 \text{ RPM}$$

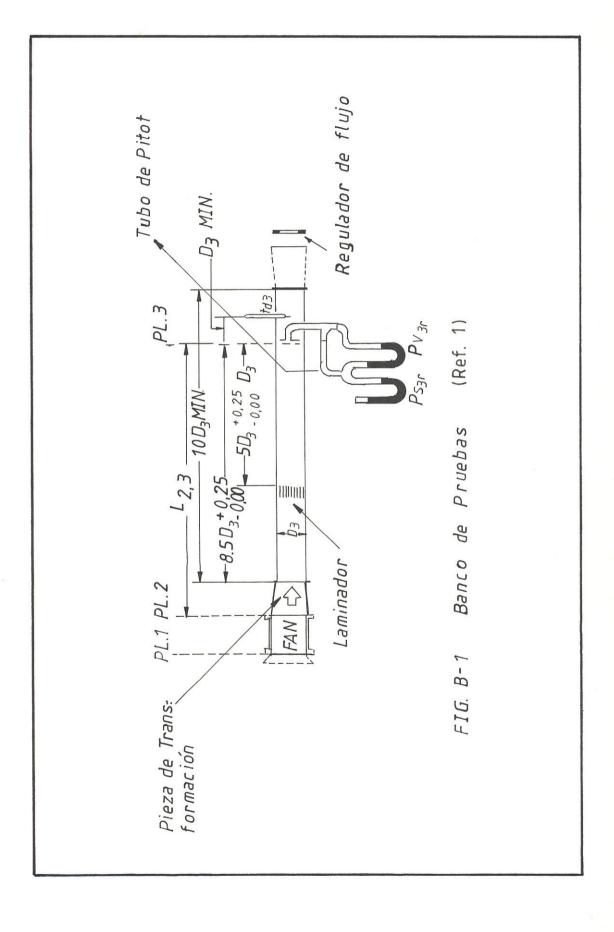
$$\frac{W_2}{W_3} = \frac{N_2^3}{N_3^3}$$

 $N_2 = 1075 RPM$

Se obtiene entonces un rango de velocidades para la rotación del ventilador, considerándose una buena alternativa el promedio entre los valores extremos. Por conveniencia en la instalación del mecanismo bandapoleas del ventilador, la velocidad de rotación teórica escogida es de 1030 RPM.

APENDICE B - 2

OBTENCION DE LA CURVA PRESION VS. CAUDAL


La curva presión vs. caudal, del ventilador utilizado en este trabajo de tesis, se obtuvo mediante norma AMCA 210-74 - ASHRAE 51-75 (Ref. 1).

El equipo utilizado en el banco de pruebas fue:

- amperímetro digital
- velómetro (pie/min)
- manómetro tipo " U " (mm de agua)
- tacómetro (RPM)
- termómetro de bulbo de mercurio (°F)
- psicrómetro
- barómetro (mm Hg)

En la figura B.1 se presenta un esquema del banco de pruebas.

A continuación se presentan las formulas utilizadas, los datos y los resultados obtenidos para la realización de la curva del ventilador.

Fórmulas

$$P_{\vee 3} = \begin{bmatrix} \Sigma & P_{\vee 3r} \\ \hline & n \end{bmatrix}^2$$

$$V_3 = 1096 \frac{P_{\sqrt{3}}}{\int_{3}}$$

$$Q = Q_3 \frac{\int_3}{\int_3}$$

$$P_{e3} = \frac{\sum P_{e3r}}{n}$$

$$P_{V} = P_{V3} \frac{A_3^2 \int_3}{A_2^2 \int_2}$$

$$Re = \frac{\int V D}{60 \text{ H}}$$

$$\frac{L_{\bullet}}{D_{b}} = \frac{15.04}{[1 - 26.65(y/D) + 184.6 (y/D)^{2}]^{1.03}}$$

Le = Longitud equivalente del laminador

y = grueso del laminador = 0.5 mm

 $D = D_{p3} = D_{3} = 235 \text{ mm}$

 $L_{2,3} = 2320 \text{ mm}$

P_e = presión estática en pulgadas de agua

Pt = presión total en pulgadas de agua

P_v = presión de velocidad en pulgadas de agua

V = velociad en pie/min

Q = caudal en CFM

f = factor de fricción

Re = número de Reynolds

En la figura B.2 se muestra el banco de pruebas y sus elementos en tanto que en la figura B.3 se muestra la curva Presión Vs. Caudal obtenida para el ventilador (unidades inglesas).

FIG. B-2 BANCO DE PRUEBAS Y SUS ELEMENTOS

HOJA DE DATOS DEL VENTILADOR TOTALMENTE CERRADO

1 (Amp)	an en las me v	and after land disposit		17				
Motor (RPM)				1182				
Pe Ventilador Motor i (mm H20) (RPM) (RPM) (Amp) (Am				1044				
Pe (mm H20)	take was take data		ture time time drive	09	the first office of the time of time o	the time that the	the first state of	
(%)	Add: 500 No. 500			74		nds 200 500 500		open sites been
To (°F)	_			83				
Po (mm Hg)	100 MM M	aper also spec such	ages office facts divine	763	ngo ang ang	nice you have the	nec des ser des	neer dan neer
dades min) ical	0	0	0	0	0	0	0	0
Inmersión Velocidades Veloci de sonda (pie/min) (pie/ (mm) Horizontal Vert	0	0	0		0	0		0
Inmersión de sonda (mm)	8	25	46	76	159	189	210	228

HOJA DE DATOS DEL VENTILADOR ABERTURA 2

m Q	Po (mm Hg)	To (H.)	HK (%)	Pe Ve We	Ventilador Motor i	Motor (RPM)	i (Amp)
Vertical							
700	 	udo men aju- min				on the same effect	
1000		ang and and				en 100 har 100 i	
1100		ngan atau nake akan					
1300	763	 	70	28	1037	1176	17
1500	v- aa ar sa				an an an an		
1600		uin Ma Sur 1991		no. no um m	an da an Jin		
1750		man day man					
1600		Total State			an 100 an		

HOJA DE DATOS DEL VENTILADOR

ABERTURA 3

1000 1500 1800 2200 2400 2400 2400	de sonda (Pol	elocidades (pie/min) Horizontal	Inmersión Velocidades Velocidades de sonda (pie/min) (pie/min) (mm) Horizontal Vertical	Po (mm Hg)	To (°F)	(%)	Pe (mm H20)	Pe Ventilador Motor i (mm H2O) (RPM) (Amp)	Motor (RPM)	i (Amp)
1500 1800 2200 2400 2400 2400 2400 2400	1000		1000		100 may 100 ma					steer water dates team date
1800 2200 2400 2500 2400 2500 2500 2400	140	0	1500	in the Alle Spec and		n 1000 page 1400 ma	n sant disc state disp			
2200 763 83 74 56 56 56 56 56 56 56 56 56 56 56 56 56	160	00	1800	Table State Super And		a none steel upon drag	ton 16th new 16th	T TORKS AND BUTCH THE	- 100 MM Mm 100	
	18(00	2200	763	83	74	56	1034	1172	16.9
	26(00	2400	THE THE THE THE			the side out the			
	28	1 00	2500	ned that has are		. Server Street Support Admin	Notes and the second	NOT THE SEC IN		
	26	00	2400	new teat too see			Note: Side Side Side			
	223	20	2400	April 1886 Spec			Name Street States			

HOJA DE DATOS DEL VENTILADOR ABERTURA 4

i (Amp)				16.9				
Motor (RPM)	as also delle field file		n data spec 4900 to	1164	in allen solen säller ha	n ha to mi t		
Ventilador Motor i (RPM) (Amp) (1033				
Pe (Ve.	w do 100 t	ar 500 cm 500, 1		20	one also were one a	also ment have place to	per man som som s	
HR (%)	none shop hard side o	gar ong tols me	us pa ur de	74		wat soon soon 1779 h		1
To (°F)				83				man date vote some vote some
Po (mm Hg)	tau atta tare atta	war die Une Mü	ago alla ter Alla	763	NO 40 TO	an un de		
idades /min) tical	1300	1900	2300	2700	2900	2800	2850	2900
Inmersión Velocidades Veloc de sonda (pie/min) (pie (mm) Horizontal Ver	1300	1800	2100	2200	2800	3000	2900	2700
Inmersión de sonda (mm)	0	25	46	76	159	189	210	228

HOJA DE DATOS DEL VENTILADOR ABERTURA 5

1 0 1				<u>م</u>				
(Am)				16.9				
Motor (RPM)	v 1900 taken selesi tak	n 200 hav 100 10		1168	n dan dan dan b			
Ventilador Motor i (RPM) (Amp)				1030				
Pe Ve (mm H20)	an an an an a	pa since suppo final h		42	m 60 sp 59 s	p. 1000 tips into t		
HR (%)			open ander histor block	74	gas and again films.	anne sinne kapiti silipe k	gan sing have sing t	
TO (°F)				83				
Po (mm Hg)	MAN TONY APPER	gar the lafe file		763	an an ma	ugic refer uses area.	nue mue des min	
Velocidades (pie/min) Vertical	2000	2500	2700	3000	3400	3400	3300	3250
Inmersión Velocidades Veloci de sonda (pie/min) (pie/ (mm) Horizontal Vert	1500	2500	2600	2800	3500	3600	3550	3400
Inmersión de sonda (mm)	8	25	46	92	159	1881	210	228

HOJA DE DATOS DEL VENTILADOR ABERTURA 6

ap)				0.0				
i (Amp)				16				
(RPM)	or also have been	o anno more progress		1165			, the tare the law	
Ventilador Motor (RPM) (RPM)				1028				
Pe Ve (mm H20)	W- 40 EN 40 EN	er me ter me		36		w ma vo. 000 s	aa daan kutu daa k	
HR (%)				80				
To (°F)		gue man serve alebre s		82				1
Po (mm Hg)		uno ena turo ena	go. nee we nee	763	man dan dan dan		man dan dan	
Velocidades (pie/min) Vertical	2000	2900	3400	3600	3900	3950	4050	4000
Inmersión Velocidades Velocidades de sonda (pie/min) (pie/min) (mm) Horizontal Vertical	2000	3000	3100	3300	4000	4200	4300	4100
Inmersión de sonda (mm)	00	25	46	76	159	189	210	228

HOJA DE DATOS DEL VENTILADOR ABERTURA 7

~ ·				o				!
i (Amp				16.				1
Motor (RPM)				1158				
Ventilador Motor i (RPM) (RPM) (Amp)				1026				awa man sam dan dan dan man man wan dan dan dan dan dan dan dan dan dan d
Pe Ve (mm H20)	age age age age			30		gar 2000 Valo 2000 V	m min que ma	
HR (%)	ngan yang gana mina s		-	2.2		wa 100 ma 100 .		
TO (°F)				82				
Po (mm Hg)			anc day succ state	763				
Velocidades (pie/min) Vertical	2600	3200	3600	4000	4300	4200	4500	4400
Inmersión Velocidades Velocidades de sonda (pie/min) (pie/min) (mm) Horizontal Vertical	2500	3100	3400	3500	4300	4500	4550	4300
Inmersión de sonda (mm)	0	25	46	76	159	189	210	228

HOJA DE DATOS DEL VENTILADOR ABERTURA 8

other sales, sales sales sales sales sales sales								
i (Amp)				16.9				
Motor (RPM)				1158			ger free Sec. stee.	
Ventilador Motor i (RPM) (RPM) (Amp)	and the spire state.			1024	an sin an sa			See See See
Pe Ve1 (mm H20)				20				
(%)				80				
To (°F)				81			4	
Po (mm Hg)				763				NO. 100 SOT
Velocidades (pie/min) Vertical	2600	3900	4200	4600	4900	4800	4850	4500
Inmersión Velocidades Veloci de sonda (pie/min) (pie/ (mm) Horizontal Vert	3000	3900	4000	4300	4800	4800	4800	4400
Inmersión de sonda (mm)	00	25	46	76	159	189	210	228

HOJA DE DATOS DEL VENTILADOR ABERTURA 9

i (Amp)	er en um en e		and the same of	16.9				
Motor (RPM)		an also who who e		1157				
Ventilador Motor i (RPM) (RPM) (Amp)				1024				
Pe (mm H20)	man time time of	note that their state		O		and the space filter		
HR (%)				80				agan - Naga Naga
To (°F)				80				
Po (mm Hg)		ngia man ten man	400 400 300	763				
Velocidades (pie/min) Vertical	3300	4200	4600	4950	5000	5100	5200	2000
Inmersión Velocidades Velocide sonda (pie/min) (pie/mm) (pie/	3650	3900	4100	4200	2000	5200	2000	4800
Inmersión de sonda (mm)	8	25	46	76	128	189	210	228

HOJA DE DATOS DEL VENTILADOR TOTALMENTE ABIERTO

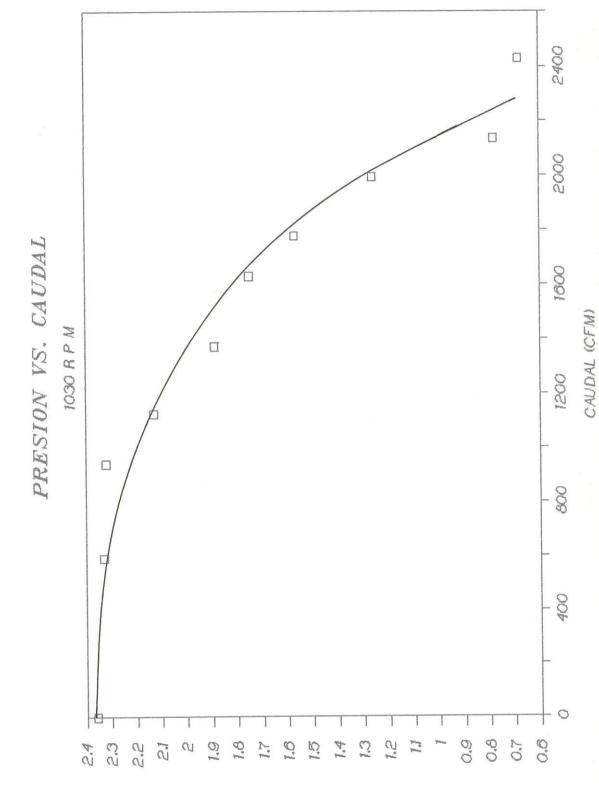

i (Amp)				16.9	AND SECTION SHOW	, man man and before	Dis 40 00 00	
Motor (RPM)				1159				
Ventilador Motor i (RPM) (RPM) (Amp)				1020				
Pe Ve Ve Man H20	and the first time of the firs		no non non vi	0		go 200 Sec 100 V		
HR (%)				80		gas sinn span silla h	as die 400 an	
To (°F)				80				
Po (mm Hg)		unic seri seri	and the other	763	and the the	gar 300 500 T		
that have then have them have after	4000	4800	4800	5200	5400	5700	0009	5800
Inmersión Velocidades Velocidades de sonda (pie/min) (pie/min) (mm) Horizontal Vertical	4000	4400	4700	2000	5800	2800	0009	5700
Inmersión de sonda (mm)	8	25	46	76	159	189	210	228

TABLA DE RESULTADOS DEL VENTILADOR

Abertura	V (pie/min)	Q (CFM)	(lb/pie ³)	u.10 ⁻⁵ (1b/pie-s)	Pe (pulg. H20)	Pt (pulg. H20)
Totalmente cerrado	0	0	0.0722	1.2494	2.36	2.36
2	1266	591	0.0722	1.2494	2.33	2.43
(n)	2016	941	0.0722	1.2494	2.32	2.57
4	2403	1122	0.0722	1.2494	2.13	2.48
Ω	2938	1371	0.0722	1.2494	1.89	2.41
9	3488	1628	0.0724	1.2476	1.75	2.48
	3809	1778	0.0724	1.2476	1.57	2.44
000000000000000000000000000000000000000	4272	1994	0.0726	1.2458	1.26	2.37
6	4575	2136	0.0727	1.244	0.78	2.04
Totalmente abierto	5200	2427	0.0727	1.244	0.68	2.32

Curva característica del ventilador centrífuga

Fig. B-3

PRESION ESTATICA (pulgadas de agua)

APENDICE C

DETERMINACION DEL FLUJO DE AIRE, ALTURA DE LA CAMADA DE ARROZ EN CASCARA Y CAIDA DE PRESION EN LA CAMARA DE SECADO

APENDICE C - 1

FLUJO DE AIRE Y ALTURA DE LA CAMADA DE ARROZ EN LA CAMARA DE SECADO

Se conoce por Manalo (Ref. 12) que un flujo del aire de secado de 1.13 m³/seg (2400 CFM) para los 1144 Kg de arroz en cáscara, distribuidos en un área de secado de 6.48 m² (Fig. 2.6) con una altura de camada de arroz 0.3 metros, se obtienen 35 CFM por pie³ de arroz en cáscara.

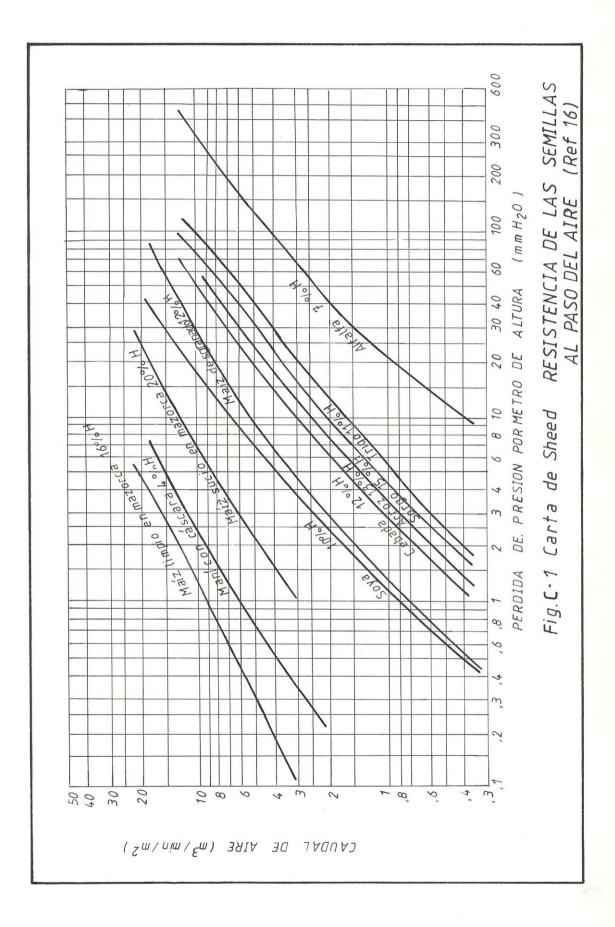
2400 CFM = 35 $68.6 \text{ pie}^3 \text{ arroz en cáscara}$

De igual manera se conoce del informe de la IRRI presentado por Manalao que un flujo de 15 CFM/pie³ de arroz en cáscara obtenido a través de un flujo de aire de secado de 0.49 m³/seg (1030 CFM) que es generado cuando el ventilador esta acoplado a un motor de 0.75 KW (1 HP) para un área de secado de 6.48 m² y una altura de camada de 0.3 metros es insuficiente. Cuando se disminuye la altura de la camada de arroz de 0.3 a 0.15 metros para la misma área de secado se obtiene aproximadamente 30 CFM/pie³ de arroz obteniendose un secado del grano más uniforme.

Por lo expuesto anteriormente se estima que un flujo de aire de 35 CFM por pie³ de arroz en cáscara es apropiado para el proceso de secado del grano.

En las pruebas realizadas en el CETE el ventilador se acopla a un motor de 1.5 KW (2 HP); manteniendo el área de secado de 6.48 m² propuesta por el IRRI el ventilador deberá entregar un flujo de aire de 1.04 m³/seg (2200 CFM) para una altura de la camada de arroz de 0.27 metros con el fin de obtener un flujo aproximado de 35 CFM por pie³ de arroz en cáscara.

Una altura de camada de arroz de 0.27 metros representa un total de 1030 Kg de arroz en cáscara distribuidos en la cámara de secado.


APENDICE C - 2

DETERMINACION DE LA CAIDA DE PRESION ESTATICA EN LA CAMARA DE SECADO

En las pruebas realizadas en el IRRI el ventilador se acopló a un motor de 2.2 KW (3 HP) para entregar 67.96 m³/min (2400 CFM). Si el área de secado es de 6.48 m²; entonces el flujo de aire por unidad de área es de 10.49 m³/min/m² con este flujo se entra a la carta de Shedd (Figura C - 1) de donde la pérdida de presión por metro de altura de la capa de semillas es de 56 mm de agua.

Si se conoce que la altura de la camada de arroz en la cámara de secado es de 0.3 metros se tendrá una caída de presión de 16.8 mm de agua; para considerar las pérdidas de presión debido al rozamiento del flujo a lo largo del sistema se debe considerar un factor de seguridad, que generalmente es de 1.3 (Ref.16), con lo que la caída de presión provocada por los 1144 kg de arroz en cáscara es de 22 mm de agua, valor que es el presentado en el informe del IRRI para el ventilador operando en las condiciones anteriormente expuestas.

Para las pruebas realizadas en el CETE el ventilador se acopla a un motor de 1.5 KW (2 HP) para entregar 62.3 m³/min (2200 CFM). Si el área de secado es la misma que la utilizada en las pruebas realizadas en el IRRI (6.48 m2) se tiene un flujo de aire por unidad de área de 9.61 m³/min/m² con este flujo se entra a la carta de Shedd de donde la pérdida de presión por metro de altura de la capa de semillas es de 44 mm de agua; si se conoce de la sección de anterior de este apéndice que la altura de la camada de arroz en cáscara en la cámara de secado es de 0.27 metros se tendrá entonces una caída de presión de 11.88 mm de agua; para considerar las pérdidas de presión debido al rozamiento del flujo a lo largo del sistema se considera un factor de seguridad de 1.3 con lo que la caída de presión provocada por los 1030 Kg de arroz en cáscara es de 15.44 mm de aqua.

APENDICE D

METODO PARA ESTIMAR LA TEMPERATURA A LA SALIDA DEL HOGAR

APENDICE D - 1

METODO PARA ESTIMAR LA TEMPERATURA A LA SALIDA DEL HOGAR (T_{mh}) . (HORNO SIN AISLAMIENTO)

De los datos, de temperatura a la salida del hogar (T_{en}) y de temperatura en la chimenea (T_{en}) obtenidos para las pruebas # 2 y # 3 se construye la curva ΔT vs. T_{en} , que se presenta a continuación,

ΔT vs. Tch

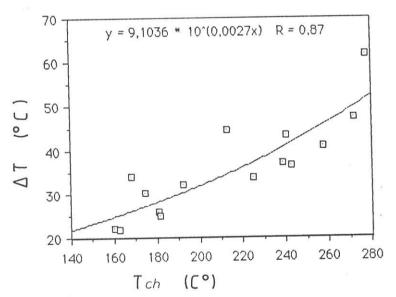


FIG. D - 1 Gráfico ΔT vs. T_{en} válido entre 0.4 - 1.8 Kg/s * 10 $^{-2}$

Para las pruebas # 4 y # 5, en las cuales se conoce únicamente el valor de la temperatura en la chimenea, se ingresa con ésta en la figura D - 1 o se la reemplaza en la ecuación d.1 correspondiente a esta curva para obtener el ΔT .

$$y = \Delta T = 9.1036 * 10 0.0027 \times (d.1)$$

si ∆T está definido (Sección 4.1.1) como:

$$\Delta T = T_{eh} - T_{ch} \tag{d.2}$$

entonces, se puede estimar la temperatura de los gases a la salida del hogar (T_{en}) despejando ésta de la ecuación d.2 una vez que se conoce el ΔT y la T_{en} .

Por ejemplo:

En la Prueba # 4 se conoce que el promedio de las temperaturas en la chimenea de la Medición Nº 1 para el período de tiempo correspondiente a esta medición (30-44 min) es de 244 °C.

Entonces si T_{ch} es igual 244 °C y se reemplaza en la ecuación d.1 se obtiene que,

$$\Delta T = 41.42$$

despejando Ten y reemplazando Ten y Δ T en la ecuación d.2

se estima que la temperatura a la salida del hogar para la Medición $N^{\mathbf{p}}$ 1 es,

T_{sh} = 285 °C

APENDICE D - 2

METODO PARA ESTIMAR LA TEMPERATURA A LA SALIDA DEL HOGAR $(T_{\pi h})$. (HORNO AISLADO)

De los datos, de temperatura a la salida del hogar (T_{en}) y de temperatura en la chimenea (T_{en}) obtenidos para las pruebas # 9, # 10 y # 11 se construye la curva ΔT vs. T_{en} , que se presenta a continuación,

ΔT vs. Tch

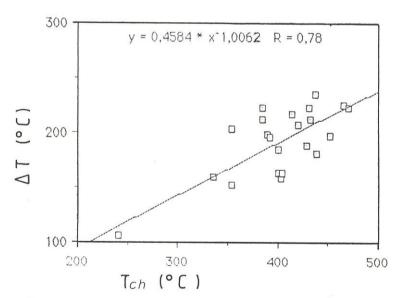


FIG. D - 2 Gráfico ΔT vs. T_{en} válido entre 0.9 - 2.4 Kg/seg * 10^{-2}

Para las pruebas # 6, # 7 y # 8 en las cuales se conoce únicamente el valor de la temperatura en la chimenea, se ingresa con ésta en la figura D - 2 o se la reemplaza en la ecuación d.3 correspondiente a esta curva para obtener el ΔT

$$y = \Delta T = 0.4584 * X 1.0062$$
 (d.3)

si ΔT está definido en la ecuación d.2 entonces, se puede estimar la temperatura de los gases a la salida del hogar (T_{sh}) despejando ésta de la ecuación d.2 una vez que se conoce el ΔT y la T_{ch} .

Por ejemplo:

En la Prueba # 7 se conoce que el promedio de las temperaturas en la chimenea de la Medición Nº 1 para el período de tiempo correspondiente a esta medición (30-44 min) es de 345 °C.

Entonces si T_{ch} es igual 345 °C y se reemplaza en la ecuación d.3 se obtiene que,

despejando T_{en} y reemplazando T_{en} y ΔT en la ecuación d.2 se estima que la temperatura a la salida del hogar para la Medición N^{e} 1 es.

APENDICE E - 1

PODER CALORIFICO DE LA CASCARILLA

En pruebas de laboratorio realizadas por el Instituto de Química de la ESPOL (Ref.5) se reportó un Poder Calorífico Superior promedio en base seca de 3393 Cal/gr (14.2 MJ/Kg) para cascarilla de arroz con una humedad promedio de 7.1 %.

Si se considera que todo el hidrógeno se combina con el oxígeno en el proceso de combustión produciendo agua, se generará un total de 0.423 Kg de agua / Kg de cascarilla cuya evaporación necesita de 0.96 MJ por cada Kg de cascarilla, por lo que el Poder Calorífico Inferior en base seca es 13.24 MJ/Kg.

La humedad en el combustible tiene doble efecto de reducir el poder calorífico, puesto que se requiere evaporar el agua contenida en los poros internos del sólido y también por otra parte reduce la cantidad de biomasa efectiva. Así por ejemplo, de un Kilogramo de biomasa con 10 % de humedad se obtendrá 0.90 Kg de fibras y 0.10 Kg. de agua.

En términos generales, el poder calorífico de la biomasa húmeda será (Ref. 15):

PCI base humeda = PCI base seca \times (% fibra seca) - (calor evaporación del agua)

Expresando todo en función de la humedad se tiene:

PCI base humeda = PCI base seca × (1 - % h / 100) - 2.26 (% h / 100)

si h es la humedad de la biomasa reemplazando los valores para el presente caso se tiene,

PCI base humeda = 12.1 MJ/Kg

APENDICE E - 2

CALCULOS PARA EL HORNO OPERANDO CON TIRO NATURAL (AISLADO) PRUEBA # 9 BALANCE Nº 1

CALCULO DE LAS PERDIDAS TERMICAS EN EL HOGAR

Pérdidas térmicas a través de las paredes laterales

Si las paredes laterales del hogar se dividieron en 12 secciones, y la temperatura promedio de una sección se define como:

$$T_{s} = \frac{T_{sA} + T_{sB} + T_{sC} + T_{sD}}{4}$$
 (e.1)

Para la sección 1 se tiene,

$$T_{s1} = \frac{T_{s1A} + T_{s1B} + T_{s1C} + T_{s1D}}{4} = \frac{105+70+93+70}{4} = 84.5$$

Ta = 34 °C (se asume constante para toda la prueba)

si la temperatura de filme se define como:

$$T_{\tau} = \frac{T_{\infty} + T_{\infty}}{2} \qquad (e.2)$$

entonces para la sección 1 Tr es igual a,

$$T_{r} = \frac{34 + 84.5}{2} + 273 = 332 \text{ °K}$$

De la tabla de las propiedades termofísicas del aire a presión atmosférica se evaluan éstas a T. (Ref. 8).

$$T_{\tau} = 332$$
 °K (k=28.7 * 10⁻³ W/m·°K, v=19.1 * 10⁻⁴ m²/seg, $\alpha = 27.2 * 10^{-4}$ m²/seg, Pr= 0.703, $\beta = 1/T_{\tau} = 1/332$ °K)

Longitud (altura) del hogar = L_{τ} = 0.88 m Longitud de la sección = $L = L_{\tau}/3 = 0.293$ m

Donde el número de Rayleigh en base a la longitud característica se define como:

$$Ra_{L} = \frac{g \beta (T_{m} - T_{m}) L^{3}}{\alpha \beta}$$
 (e.3)

reemplazando las propiedades y las temperaturas correspondientes en la ecuación e.3 se tiene,

$$Ra_L = 7.45 * 10^7$$
 (laminar)

Churchill y Chu recomiendan para una placa vertical,
tanto para régimen laminar como turbulento, la siguiente
correlación:

$$Nu_{L} = \begin{bmatrix} 0.825 + \frac{0.387 \text{ Ra}_{L}^{1/6}}{[1 + (0.429/\text{Pr})^{9/16}]^{9/27}} \end{bmatrix}^{2}$$
 (e.4)

Mejores resultados cuando el flujo es laminar se obtienen

utilizando, la siguiente correlación:

$$Nu_{L} = 0.68 + \frac{0.670 \text{ Ra}_{4}}{[1 + (0.492/\text{Pr})^{9/16}]^{4/9}}$$
 (e.5)

valida para OK RaL K109

reemplazando Ra∟ y Pr en la ecuación e.5 se tiene:

$$Nu_{L} = 48.04$$

si el coeficiente convectivo promedio se define como:

$$h = \frac{Nu_L * k}{L}$$
 (e.6)

reemplazando k y L en la ecuación e.6 se tiene:

$$h_{=1} = 4.7 \text{ W/m}^2 \circ \text{K}$$

Si el calor que se pierde por convección en una sección de las paredes laterales se define como:

$$q_{sc} = h_s A_{lhs} (T_s - T_a) \qquad (e.7)$$

en donde,

h_e = coeficiente convectivo promedio de la sección

Alma = área de la sección lateral del hogar (ver apéndice A-1)

T₌ = temperatura promedio de la sección

Ta = temperatura ambiental

Para la sección 1:

$$A_{1h1} = 0.1329 \text{ m}^2$$

$$T_a = 34 \, ^{\circ}C$$

reemplazando estos valores en la ecuación e.7 se tiene que el calor perdido por convección en la sección 1 de las paredes laterales del hogar es,

Si el calor que se pierde por radiación en una sección de las paredes laterales del hogar se define como:

$$q_{er} = \epsilon A_{lhe} \sigma \left(T_e^4 - T_e^4 \right) \qquad (e.8)$$

en donde,

 e e misividad de las paredes exteriores del hogar

σ = constante de Stefan - Boltzman (W/m2 • °K4)

La emisividad para una superficie de acero con una fuerte capa de óxido es de 0.8 y la constante de Stefan – Boltzman es de $5.67 * 10^{-8} \text{ W/m}^2 \cdot ^{\circ}\text{K}^4$; reemplazando en la ecuación e.8 se tiene que,

Para la sección 2,

$$T_{=2} = 88.5 \, ^{\circ}C$$

reemplazando Ts2 y Ta en la ecuación e.2

$$T_{r} = 334$$
 °K

evaluando las propiedades del aire y reemplazando en la ecuación e.3

$$Ra_{L} = 7.59 * 10^{7}$$

de la ecuación e.5 se tiene,

$$Nu_{L} = 48.6$$

de la ecuación e.6 se tiene,

$$h_{=2} = 4.78 \text{ W/m}^2 \cdot ^{\circ}\text{K}$$

si el área de la sección 2 (A_{1h2}) es 0.1329 m^2 reemplazando en la ecuación e.7

de la ecuación e.8 se tiene,

$$q_{=rz} = 49.4$$

Para la sección 3,

$$T_{=3} = 65.8 \, ^{\circ}\text{C}$$

$$Ra_{\perp} = 5.15 * 10^{7}$$

$$Nu_{L} = 44.2$$

$$A_{1h3} = 0.1329 \text{ m}^2$$

$$q_{=c3} = 17.8 \text{ W}$$

$$q_{sr3} = 25.8 W$$

Para la sección 4,

$$Ra_L = 7.9 * 10^7$$

$$h_{=4} = 4.9 \text{ W/m}^2 * ^ \text{o} \text{K}$$

$$A_{1h4} = 0.1329 \text{ m}^2$$

$$q_{=c4} = 37.7 W$$

Para la sección 5,

$$T_{\tau} = 322 \, {}^{\circ}K$$

$$Ra_{L} = 4.8 * 10^{7}$$

$$Nu_{L} = 43.5$$

$$A_{1h5} = 0.1289 \text{ m}^2$$

$$q_{=rs} = 22.8$$

Para la sección 6,

$$Nu_{L} = 33.7$$

$$A_{106} = 0.0889 \text{ m}^2$$

Si, se conoce que las paredes del hogar se dividieron simétricamente en 12 secciones y se asume simetría térmica en el hogar se tiene que: el calor total perdido por convección en las paredes laterales del hogar (Q_{c1}) y el calor total perdido por radiación en las paredes laterales del hogar (Q_{c1}) se definen como,

$$Q_{c1} = (q_{sc1} + q_{sc2} + q_{sc3} + q_{sc4} + q_{sc5} + q_{sc6}) * 2 (e.9)$$

$$Q_{r1} = (qsr1 + qsr2 + qsr3 + qsr4 + qsr5 + qsr6) * 2 (e.10)$$

reemplazando las pérdidas calculadas para cada sección en las ecuaciones e.9 y e.10 se tiene,

$$Q_{-1} = 279.4 \text{ W}$$

$$Q_{-1} = 402.5 \text{ W}$$

Pérdidas térmicas por la parte superior del hogar

A la parte superior del hogar se la designa como la sección 13, la cual se divide en A, B y C el promedio de las temperaturas tomadas en estos puntos constituye la temperatura de esta sección, así se tiene,

$$T_{=} = \frac{T_{13A} + T_{13B} + T_{13C}}{3}$$
 (e.11)

reemplazando en la ecuación e.11 los valores correspondientes para la prueba y medición que sirve como ilustración se tiene,

reemplazando este valor en la ecuación e.2 se tiene,

$$T_{+} = 345 \, {}^{\circ}\text{K}$$

Las propiedades del aire se evaluan a T.

Las correlaciones presentadas para una placa horizontal con su supeficie superior calentada o su superficie inferior enfriada son:

$$Nu_{L} = 0.54 \text{ Ra}_{L}^{4}$$
 (10° $\leq Ra_{L} \leq 10^{7}$) (e.12)

$$Nu_{\perp} = 0.15 \text{ Ra}_{\perp}^{1/3}$$
 (107 $\leq \text{Ra}_{\perp} \leq 10^{10}$) (e.13)

para las cuales su longitud característica está definida como:

en donde A. es el área y P el perímetro de la sección; si la sección es circular y su diámetro es 0.577 m se tiene.

reemplazando la longitud característica y las propiedades evaluadas a T_{τ} en la ecuación e.3 se tiene,

$$Ra_{L} = 1.073 * 10^{7}$$

reemplazando RaL en la ecuación e.13 se tiene,

$$Nu_{L} = 33.08$$

reemplazando Nu∟ en la ecuación e.6 se tiene,

$$h = 6.8 \text{ W/m}^2 \cdot ^{\circ}\text{K}$$

Si el calor que pierde por convección en la parte superior del hogar se define como:

$$Q_{cs} = h A_{sh} (T_s - T_a) \qquad (e.15)$$

en donde,

h = coeficiente convectivo promedio de la parte superior del hogar

A=n = área de la parte superior del hogar (ver apéndice A - 1)

T_s = temperatura promedio de la parte superior del hogar

reemplazando los valores correspondientes en la ecuación e.15 se tiene,

$$Q_{cm} = 133.8 W$$

Si el calor que se pierde por radiación en la parte superior del hogar se define como:

$$Q_{rs} = \epsilon A_{sh} \sigma \left(T_s^4 - T_a^4 \right) \qquad (e.16)$$

reemplazando los valores correspondientes en la ecuación e.16 se tiene,

$$Q_{r=} = 148.3 \text{ W}$$

Pérdidas térmicas por la abertura para la entrada de aire al hogar

Si la temperatura promedio en la cama de cascarilla se define como:

$$T_{c1} + T_{c2} + T_{c3}$$
 $T_{c} = \frac{T_{c1} + T_{c2} + T_{c3}}{3}$ (e.17)

Así para esta prueba y medición se tiene,

Si el calor que se pierde a través del agujero para la entrada de aire se considera puramente radiativo, éste se define como:

$$Q_{\alpha} = \epsilon_{\alpha} \sigma A_{\alpha} (T_{c}^{4} - T_{\alpha}^{4}) \qquad (e.18)$$

en donde,

e_a = emisividad a través de la abertura para la entrada de aire al hogar

 A_a = área de la abertura o agujero para la entrada de aire al hogar (ver apéndice A-1)

reemplazando los valores correspondientes en la ecuación e.18 se tiene,

$$Qa = 568.1 W$$

PERDIDAS TERMICAS TOTALES

Si las pérdidas térmicas totales cuando el horno opera con tiro natural son las pérdidas registradas en el hogar (PT1), ya que las pérdidas registradas en el filtro (PT2) no deben ser consideradas, éstas se definen como:

$$PT = PT_1 = Q_{c1} + Q_{r1} + Q_{cs} + Q_{rs} + Q_{a}$$
 (e.19)

reemplazando los valores correspondientes para esta prueba y medición en la ecuación e.19 se tiene,

CALCULO DE LA ENERGIA ENTREGADA AL FLUIDO DE TRABAJO

Si la velocidad promedio del flujo de gases en la chimenea se define como:

$$V_{eh} = \frac{V_1 + V_2 + V_3 + \dots + V_{12}}{12}$$
 (e.20)

si reemplazamos los valores correspondientes, para esta prueba y medición, de las velocidades de los gases en la chimenea en pie/min en la ecuación e.20 se tiene,

$$V_{eh} = 575 \text{ pie/min}$$

transformando la velocidad al sistema internacional se tiene,

$$V_{ch} = 2.92 \text{ m/s}$$

si el flujo másico de los gases en la chimenea se define como:

$$M_{\Thetach} = \int A_{ch} V_{ch}$$
 (e.21)

en donde,

evalúa a la temperatura de chimenea)

Ach= área transversal de la chimenea (ver apéndice A - 1)

si se reemplaza los valores correspondientes para esta prueba y medición en la ecuación e.21 se tiene,

$$m_{GCh} = 0.0194 \text{ Kg/s}$$

Si se conoce que la única vía de escape de los gases para esta configuración del horno es la chimenea, por la ley de la continuidad se establece que el flujo másico de gases que escapan por la chimenea es igual al flujo másico de gases que salen del hogar, así se tiene,

$$m_{\text{ech}} = m_{\text{e}}$$
 (e.22)

Si la energía entregada al fluido de trabajo se define en la sección 3.2.1 por la ecuación 3.3 que se presenta a continuación:

$$EFT = m_{\Theta} C_{\Theta} (T_{\Theta D} - T_{\Theta})$$
 (3.3)

en donde, C_P se evalúa a la temperatura promedio entre la temperatura promedio a la salida de los gases del hogar y la temperatura ambiente, en tanto que la temperatura promedio de los gases que salen del hogar se define como el promedio de las temperaturas comprendidas para el período correspondiente a esta medición (30 - 44 min), así se tiene,

Si reemplazamos los valores correspondientes en la ecuación 3.3 se tiene,

EFT = 11498 W

CALCULO DE LA ENERGIA QUIMICA DEL COMBUSTIBLE (EQC)

Si la Energía Química del Combustible o Potencia nominal del horno se define en la sección 3.2.1 por la ecuación 3.2 que se presenta a continuación:

$$EQC = (PCI)_{base humeda} * m_{comb}$$
 (3.2)

si se conoce que el flujo másico de combustible es de 0.1407 Kg/min y que el poder calorífico inferior en base humeda para la cascarilla de arroz es de 12.1 MJ/Kg, se tiene.

EQC = 28378 W

CALCULO DE LA ENERGIA ACUMULADA EN LAS PAREDES

Si la energía acumulada en las paredes se define en la sección 3.2.1 por la ecuación 3.4 que se presenta a continuación:

$$EAP = m_r \times Cp_r \times \frac{(T_{wp} - T_{wa})}{\text{tiempo}}$$
 (3.4)

Si se conoce que el producto de la masa del aislamiento (m_r) por el calor específico del aislamiento (C_{pr}) es 158507.3 J/°K (Sección 2.5) y que el tiempo de duración de cada período es de 15 minutos, en tanto que la

temperatura de pared para el período correspondiente a la medición presente (T_{wp}) , 30 - 44 min y la temperatura de pared para el período correspondiente a la medición anterior (T_{wa}) , se definen como:

$$T_{wp} = \frac{T_{wp1} + T_{wpe}}{2}$$
 (e.23)

$$T_{wa} = \frac{T_{wa1} + T_{was}}{2}$$
 (e.24)

en donde,

para la temperatura interior de la pared para I la medición presente (T_{wp1}) se tiene,

para la temperatura exterior de la pared para la medición presente (търе) se tiene,

para la temperatura interior de la pared para (T_{wal}) se tiene,

para la temperatura exterior de la pared para $(T_{\omega=\omega})$ se tiene,

Si se reemplaza estos valores de temperatura en las ecuaciones e.23 y e.24 se tiene,

reemplazando los valores correspondientes en la ecuación 3.4 se tiene.

$$EAP = 4226.9 W$$

EXCESO DE AIRE

El exceso de aire se determina con los datos obtenidos en las mediciones N^2 3, 5, 7 y 9 mediante el diagrama de Ostwald que se muestra en la Figura E - 1.

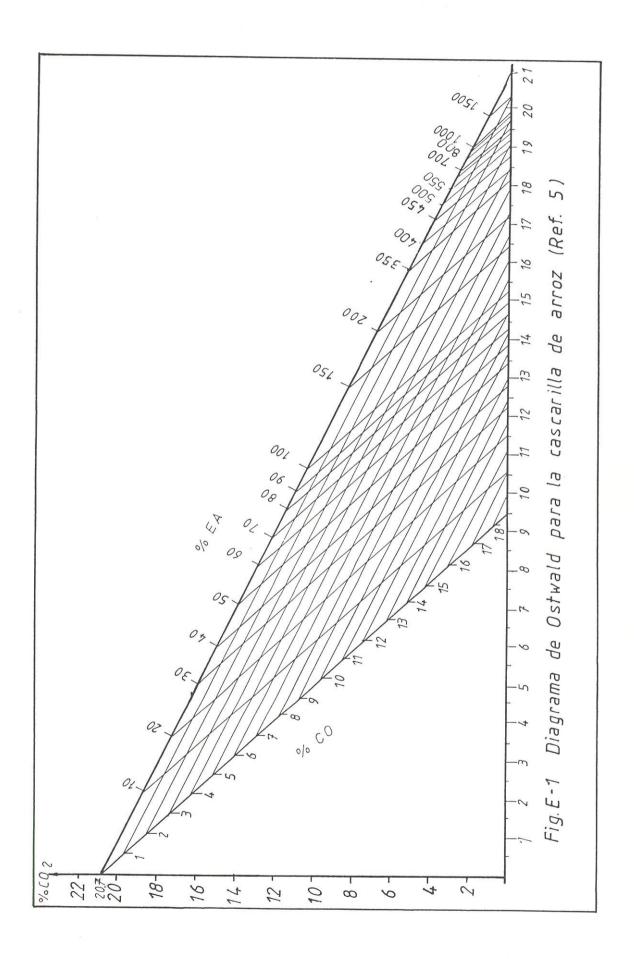
BALANCE DE ENERGIA

Si el balance de energía para esta configuración del horno está definido en la sección 3.2.1 por la ecuación 3.1, la cual constituye el balance N º 1 para esta prueba, se presenta a continuación;

$$EQC = EFT + EAP + PT + IC$$
 (3.1)

si se despeja IC de la ecuación 3.1 y se reemplaza los valores correspondientes se tiene,

este valor de IC constituye el 0.392 o 39.2 % de la energía quimíca del combustible; reemplazando éste en la ecuación 3.6 para obtener la eficiencia de combustión se tiene,


$$n_e = (1 - IC/EQC) \times 100$$
 (3.6)

$$n_{c} = 60.8 \%$$

La eficiencia del sistema está definida en la sección 3.2.1 por la ecuación 3.7 que se presenta a continuación,

reemplazando los valores correspondientes para esta prueba y medición se obtiene la eficiencia del sistema en este balance de energía,

$$n_{\rm m} = 40.5 \%$$

APENDICE E - 3

CALCULOS PARA EL HORNO OPERANDO CON TIRO INDUCIDO PRUEBA # 15 BALANCE Nº 1

PERDIDAS TERMICAS TOTALES EN EL HORNO

Las pérdidas térmicas totales en el horno, cuando éste opera con tiro inducido, estan constituidas por las pérdidas térmicas que se registran en el hogar (PT1) y las pérdidas térmicas que se registran en el filtro de gases (PT₂), así se tiene,

$$PT = PT_1 + PT_2$$
 (e.25)

CALCULO DE LAS PERDIDAS TERMICAS EN EL HOGAR

Si las pérdidas térmicas en el hogar se las cálcula de igual manera que en el Apéndice E - 2 entonces se tiene que,

 $PT_1 = 1650 W$

CALCULO DE LAS PERDIDAS TERMICAS EN EL FILTRO DE GASES

Pérdidas térmicas a través de las paredes laterales

Si en las paredes laterales del filtro de gases se ubicaron tres puntos para la medición de las temperaturas (15, 16 y 17), la temperatura promedio de las paredes laterales se define como:

$$T_{s} = \frac{T_{15} + T_{16} + T_{17}}{3}$$
 (e.26)

reemplazando los valores correspondientes a la medición 1 en la ecuación e.26 se tiene.

si se conoce que la temperatura ambiente (T_a) es de 29 °C, de la ecuación e.2 se tiene,

$$T_{\tau} = 80 \, ^{\circ}C = 353 \, ^{\circ}K$$

evaluando las propiedades termofísicas del aire a T_{\star} y conociendo que la longitud equivalente (L) es de 0.88 m, de la ecuación e.3 se tiene,

reemplazando este valor de Ra∟ en la ecuación e.4 se tiene,

$$Nu_{L} = 171.7$$

reemplazando este valor de Nu_L en la ecuación e.6 se tiene,

$$h = 5.9 \text{ W/m}^2 * ^{\circ}\text{K}$$

Si el calor que se pierde por convección en las paredes laterales del filtro de gases se define como:

$$Q_{clf} = h A_{lf} (T_s - T_a)$$
 (e.27)

en donde,

h = coeficiente convectivo promedio de las paredes laterales del filtro de gases

 A_{17} = área de las paredes laterales del hogar (ver apéndice A - 1)

T_s = temperatura promedio de las paredes laterales del filtro de gases

reemplazando los valores correspondientes para esta medición y prueba en la ecuación e.27 se tiene,

$$Q_{clt} = 898 W$$

Si el calor que se pierde por radiación en las paredes laterales del filtro se define como:

$$Q_{r1f} = \epsilon A_{1f} \sigma (T_{s}^{4} - T_{s}^{4})$$
 (e.28)

en donde,

e = emisividad de las paredes exteriores del filtro de gases La emisividad para una superficie metálica pintada con esmalte color negro es aproximadamente de 0.9, reemplazando los valores correspondientes en la ecuación e.28 se tiene.

$$Q_{rat} = 1389 \text{ W}$$

<u>Pérdidas Térmicas por la parte superior (tapa) del filtro</u>
de gases

Si en la parte superior del filtro de gases se ubica un solo punto para la medición de temperatura (14), la temperatura en la parte superior se define como:

$$T_{e} = T_{14}$$
 (e.29)

reemplazando T. y T. en la ecuación e.2 se tiene,

$$T_{\tau} = 358 \, {}^{\circ}\text{K}$$

evaluando las propiedades termofísicas del aire a T, y conociendo que la longitud característica para la parte superior es de 0.144 m de la ecuación e.3 se tiene,

$$Ra_{L} = 1.332 * 10^{7}$$

reemplazando este valor de Ra∟ en la ecuación e.13 se tiene,

$$Nu_{L} = 35.6$$

reemplazando este valor de Nul en la ecuación e.6 se tiene,

$$h = 7.6 \text{ W/m}^2 \cdot ^{\circ} \text{K}$$

Si el calor que se pierde por convección en la parte superior del filtro de gases se define como:

$$Q_{cst} = h A_{st} (T_s - T_a) \qquad (e.30)$$

en donde,

h = coeficiente convectivo promedio de la parte superior del filtro de gases

 A_{sr} = área de la parte superior del filtro de gases (ver apéndica A - 1)

T_s = temperatura de la parte superior del filtro de gases

reemplazando los valores correspondientes en la ecuación e.30 se tiene.

Si el calor que se pierde por radiación en la parte superior del filtro de gases se define como:

$$Q_{r=1} = \epsilon A_{r} \sigma (T_{r}^{4} - T_{r}^{4})$$
 (e.31)

reemplazando los valores correspondientes en la ecuación e.31 se tiene,

$$Q_{ref} = 235 \text{ W}$$

Si las Pérdidas Térmicas en el filtro de gases (PT₂) se definen como:

$$PT_2 = Q_{c1f} + Q_{r1f} + Q_{csf} + Q_{rsf}$$
 (e.32)

reemplazando los valores correspondientes en la ecuación e.32 se tiene,

$$PT_2 = 2708 W$$

reemplazando este valor en la ecuación e.25 se tiene que las pérdidas térmicas totales (PT) son:

Cálculo del flujo másico de gases que abandonan el filtro de gases hacia el ventilador

Si la velocidad promedio, del flujo del aire de secado a la salida del ventilador (m_v), se define como:

$$V_{\nu} = \frac{V_1 + V_2 + ... + V_{16}}{16}$$
 (e.33)

reemplazando los valores correspondientes para la medición Nº 1 en la ecuación e.33 se tiene.

$$V_{v} = 3594 \text{ pie/min} = 18.3 \text{ m/s}$$

Si el área transversal al flujo del aire de secado a la salida del ventilador (ver apéndice B-2) se define como:

$$A_3 = \frac{\pi D_3^2}{4} = 0.0434 m^2$$

Si el flujo másico del aire de secado a la salida del ventilador se ha definido como:

$$m_{\vee} = \int A_3 V_{\vee} \qquad (e.34)$$

en donde,

f = densidad del flujo másico del aire de secado a la salida del ventilador, evaluada a la tempatura del aire de secado (T==e)

reemplazando en la ecuación e.34 se tiene.

$$m_{\nu} = 0.8639 \text{ Kg/s}$$

Si la velocidad promedio del flujo de gases que escapan por la chimenea se define como:

$$V_{ch} = \frac{V_1 + V_2 + V_3 + V_4}{4}$$
 (e.35)

reemplazando los valores correspondientes para la medición Nº 1 se tiene.

$$V_{ch} = 420 \text{ pie/min} = 2.13 \text{ m/s}$$

reemplazando en la ecuación esta velocidad en e.21 se tiene.

$$m_{GCh} = 0.0133 \text{ Kg/s}$$

Si el flujo másico de gases producto de la combustión que sale del filtro de gases hacia el ventilador está definido en la sección 3.2.2 por la ecuación 3.13 que se presenta a continuación:

$$m_{\ThetaV} = \frac{m_{V} (h_{V} - h_{air})}{(h_{\ThetaV} - h_{air})}$$
 (3.13)

en donde.

h = entalpía del aire de secado que sale del ventilador, se evalúa a T

hair = entalpía del aire que entra al ventilador, se evalúa a una temperatura superior a la ambiente en 5 °C pues se presume que el aire se precalienta en los alrededores del filtro de gases

hov = entalpía de los gases que salen del filtro hacia el ventilador, se evalúa a Tov

evaluando las entalpías en la tabla de gases de Keenan (Ref. 9) se tiene,

h~ 568°R = 132.18 Btu/lb

hair sax-R = 135.78 Btu/lb

hev 961.R = 231.31 Btu/lb

CALCULO DE LA ENERGIA ENTREGADA AL FLUIDO DE TRABAJO

Si la Energía entregada al Fluido de Trabajo está definida en la sección 3.2.2 por la ecuación 3.9 que se presenta a continuación:

$$EFT = m_{GV} C_{P} (T_{GV} - T_{a})$$
 (3.9)

en donde, C_p se evalúa a la temperatura promedio entre la temperatura de los gases que salen hacia el ventilador y la temperatura ambiente, en tanto que la temperatura promedio de los gases que salen hacia el ventilador se define como el promedio de las temperaturas comprendidas para el período correspondiente a esta medición (50 – 64 min), así se tiene.

Si reemplazamos los valores correspondientes en la ecuación 3.9 se tiene,

$$EFT = 7400 W$$

CALCULO DEL CALOR SENSIBLE DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

Si el Calor Sensible de los Gases que escapan por la chimenea (CSG) está definido en la sección 3.2.2 por la ecuación 3.10 que se presenta a continuación:

$$CSG = m_{ech} C_{p} (T_{ch} - T_{a})$$
 (3.10)

en donde, C_P se evalúa a la temperatura promedio entre la temperatura de los gases que escapan por la chimenea y la temperatura ambiente, en tanto que la temperatura promedio de los gases que escapan por la chimenea se define como el promedio de las temperaturas comprendidas para el período correspondiente a esta medición (50 – 64 min), así se tiene,

Si reemplazamos los valores correspondientes en la ecuación 3.10 se tiene,

$$CSG = 5253 W$$

CALCULO DE LA ENERGIA QUIMICA DEL COMBUSTIBLE

La Energía Química del Combustible (EQC) se cálcula de igual manera que en el apéndice E - 2, si se conoce que el flujo másico de combustible es de 0.1736 Kg/min se tiene,

EQC = 35003 W

CALCULO DE LA ENERGIA ACUMULADA EN LAS PAREDES

La Energía acumulada en las paredes (EAP) se cálcula de igual manera que en el apéndice E - 2, para el período de tiempo correspondiente para esta prueba y medición (50-64 min), así se tiene,

EAP = -2941 W

BALANCE DE ENERGIA

Si el balance de energía para esta configuración del horno está definido en la sección 3.2.2 por la ecuación 3.8, que se constituye en el balance Nº1 para esta prueba, se presenta a continuación:

$$EQC = EFT + EAP + CSG + PT + IC$$
 (3.8)

si se despeja IC de la ecuación y se reemplaza los valores correspondientes se tiene,

IC = 20933 W

este valor de IC constituye el 0.578 o 57.8 % de la Energía Química del Combustible reemplazando éste en la ecuación 3.6 para obtener la eficiencia de combustión se tiene,

$$n_e = (1 - IC) \times 100$$
 (3.6)

$$n_{c} = 40.2 \%$$

La eficiencia del sistema está definida en la sección por la ecuación 3.7; reemplazando los valores correspondientes para esta prueba y medición se obtiene la eficiencia del sistema en este balance de energía,

$$\Pi_{=} = 21.1 \%$$

APENDICE E - 4

PROGRAMA "BASIC" PARA LA EVALUACION DEL HORNO

- 10 CLS
- 20 DIM RHD(20), CP(20), MIU(20), NUU(20), K(20), ALFA(20), PR(20), Q(6), T(20), QR(6), TW(10), V(16)
- 30 INPUT "INGRESE #PRUEBA ==>",PRUEBA
- 40 INPUT "INGRESE TEMPERATURA AMBIENTAL [°C]==>",TA
- 50 TA=TA+273
- 60 FOR Z=1 TO 9
- 70 MEDICI=Z
- 80 PRINT "PRUEBA#";PRUEBA, " MEDICION#"; MEDICI
- 90 FOR N=1 TO 6
- 100 INPUT "INGRESE # SECCION ==>", SECC
- 110 PRINT "INGRESE TEMPERATURAS DE SUPERFICIE EN (°C) DE LA SECCION#";SECC:INPUT "==>",TA1,TB,TC,TD
- 120 TSECC=((TA1+TB+TC+TD)/4)+273: 'TEMPERATURA PROMEDIO DE LA SECCION EN °KELVIN
- 130 TFILM=(TSECC+TA)/2
- 135 REM SUBRUTINA
- 136 REM TABLA DE LAS PROPIEDADES TERMOFISICAS DEL AIRE EN EL SISTEMA INTERNACIONAL
- 140 IF SENSOR\$="ON" THEN 230
- 150 FOR FILA=2 TO 20
- 160 T(FILA)=FILA*50
- 170 READ RHO(FILA):READ CP(FILA):READ MIU(FILA):READ NUU(FILA):READ K(FILA):READ ALFA(FILA):READ PR(FILA)
- 180 NEXT FILA
- 190 DATA 3.562, 1.032, 71.1, 2.00, 9.34, 2.54, 0.786, 2.3364, 1.012, 103.4, 4.426 ,13.8,5.84, 0.758, 1.7458, 1.007, 132.5, 7.59, 18.1, 10.3, 0.737, 1.3947, 1.006, 159.6, 11.44,22.3, 15.9, 0.720, 1.1614, 1.007, 184.6, 15.89, 26.3, 22.5, 0.707, 0.9950, 1.009, 208.2, 20.92
- 200 DATA 30.0, 29.9, 0.7, 0.8711, 1.014, 230.1, 26.41, 33.8, 38.3, 0.69, 0.7740,1.021, 250.7, 32.39, 37.3, 47.2, 0.686, 0.6964, 1.03, 270.1, 38.79, 40.7, 56.7, 0.684,0.6329, 1.040, 288.4, 45.57, 43.9, 66.7
- 210 DATA 0.683, 0.5804, 1.051, 305.8, 52.69, 46.9, 76.9, 0.685, 0.5356, 1.063, 322.5,60.21, 49.7, 87.3, 0.690, 0.4975, 1.075, 338.8, 68.10, 52.4, 98, 0.695, 0.4643, 1.087,354.6, 76.37, 54.9, 109, 0.702, 0.4354, 1.099, 369.8, 84.93, 57.3, 120, 0.709
- 220 DATA 0.4097, 1.11, 384.3, 93.80, 59.6, 131, 0.716, 0.3868, 1.121, 398.1, 102.9, 62, 143, 0.720, 0.366, 1.131, 411.3, 112.2, 64.3, 155, 0.723, 0.3482, 1.141, 424.4, 121.9, 66.7, 168, 0.726

```
230
     GOTO 410
235
     REM PROPIEDADES EN CASO DE INTERPOLACION
240
     FOR I=2 TO 20
250
     IF ABS(TFILM-T(I)) <50 THEN 280
260
     IF ABS(TFILM-T(I))=50 THEN 380
270
     NEXT I
280
     DELRHO=-RHO(I)+RHO(I+1):DELTEMP=TFILM-T(I)
290
     X=DELRHO*DELTEMP/50:RHO1=RHO(I)+X
300
    DELCP=-CP(I)+CP(I+1)
     X1=DELCP*DELTEMP/50:CP1=CP(I)+X1
310
320
     DELMIU=-MIU(I)+MIU(I+1):X2=DELMIU*DELTEMP/50:
     MIU1 = (MIU(I) + X2) *10^(-7)
330
     DELNUU=-NUU(I)+NUU(I+1):X3=DELNUU*DELTEMP/50:
     NUU1 = (NUU(I) + X3) *10^(-6)
340
     DELK
           -
                    -K(I)+K(I+1):
                                       X4=DELK*DELTEMP/50:
     K1 = (K(I) + X4) * 10^{(-3)}
350
     DELALFA=-ALFA(I)+ALFA(I+1):X5=DELALFA*DELTEMP/50:
     ALFA1 = (ALFA(I) + X5) * 10^{(-6)}
360
     DELPR
                     PR(I)+PR(I+1): X6=DELPR*DELTEMP/50:
            densear
the past
     PR1=PR(I)+X6
370
     RETURN
380
     REM PROPIEDADES EN CASO DE NO INTERPOLACION
390
     RHO1=RHO(I+1):CP1=CP(I+1):MIU1=MIU(I+1)*10^(-7):
     NUU1=NUU(I+1)*10^{(-6)}:K1=K(I+1)*10^{(-3)}:
     ALFA1=ALFA(I+1)*10^(-6): PR1=PR(I+1)
400
     RETURN
410
    GOSUB 240
411
     REM FIN DE LA SUBRUTINA
412
     CALCULO DE LAS PERDIDAS EN LAS PAREDES DEL HOGAR
420
     RAL=9.8*(TSECC-TA)*.0252311/(ALFA1*NUU1*TFILM)
430
     IF
               RAL<=1E+09
                                  THEN
                                              NUL
     .68+(.67*RAL^.25/(1+(.492/PR1)^.5625)^(4/9)) : PRINT
     "REGIMEN LAMINAR": GOTO 450
440
                                                       NUL=
((.825+(.387*RAL^(1/6)))/(1+(.492/PR1)^(9/16))^(8/27))^2
     : PRINT "REGIMEN TURBULENTO"
450
     H=NUL*K1/.2933
    IF SECC=5 OR SECC=8 THEN Q(N)=H*.128895*(TSECC-TA):
460
     GR(N) = 128895*.8*5.67E-08*(TSECC^4-TA^4):GOTO 500
     IF SECC=6 OR SECC=9 THEN Q(N)=H*.088905*(TSECC-TA):
470
     QR(N)=.088905*.8*5.67E-08*(TSECC^4-TA^4):GOTO 500
480
    QR(N) = .1329 * .8 * 5 .67 E - 08 * (TSECC^4 - TA^4)
490
    Q(N) = .1329*H*(TSECC-TA)
    SENSOR$="ON"
500
    PRINT "Q=";Q(N)
510
    PRINT "QR=";QR(N)
520
530
    NEXT N
540 QT=(Q(1)+Q(2)+Q(3)+Q(4)+Q(5)+Q(6))*2
550
    QTR=(QR(1)+QR(2)+QR(3)+QR(4)+QR(5)+QR(6))*2
560
    PRINT "PRUEBA#"; PRUEBA, " MEDICION#"; MEDICI
    PRINT "Q PERDIDO POR CONVECCION EN LAS PAREDES
570
    LATERALES DEL HOGAR ="; QT ;"W"
    PRINT "G PERDIDO POR RADIACION EN LAS
580
                                                   PAREDES
     LATERALES DEL HORNO ="; QTR ;"W
```


BIBLIOTECA

- 590 REM PERDIDAS EN LA TAPA DEL HOGAR
- INPUT "INGRESE TEMPERATURAS DE LA TAPA DEL HORNO 600 (°C)==>",T13A,T13B,T13C
- TTAPA=((T13A+T13ABT13C)/3)+273 610
- 620 TFILM=(TTAPA+TA)/2
- 630 GOSUB 240
- RAL2= 9.8*(TTAPA-TA)*(.14425)^3/(ALFA1*NUU1*TFILM) 640
- 650 RAL2<=10^7 AND RAL2>=10^5 THEN NUL2 .54*RAL2^(1/4):GOTO 680
- RAL2<=10^10 660 AND RAL2>=10^7 THEN NUL2=.15*RAL2^(1/3):GOTO 680
- BEEP:PRINT "RALEIGH FUERA DE RANGO PARA CALCULO DE 670 NUSSELT"
- 680 H2=NUL2*K1/.14425
- 690 QCT=H2*.2614824*(TTAPA-TA)
- 700 QRT=.8*.2614824*5.67E-08*(TTAPA^4-TA^4)
- 710 QTT=QRT+QCT
- PRINT "PRUEBA#": PRUEBA, " MEDICION#"; MEDICI 720
- PRINT " EL CALOR PERDIDO POR CONVECCION EN LA TAPA 730 ES =":QCT:"W"
- PRINT " EL CALOR PERDIDO POR RADIACION EN LA TAPA 740 ES =";QRT;"W"
- 750 PRINT "FL CALOR TOTAL PERDIDO EN LA TAPA ES =":QTT:"W"
- 760 REM *PERDIDAS DE CALOR POR LA ENTRADA DE AIRE***
- 770 INPUT "INGRESE LAS TEMPERATURAS DE LA CAMA DE CASCARILLA EN (°C)==>" ,TC1,TC2,TC3
- 780 TC = ((TC1 + TC2 + TC3)/3) + 273
- QA=.5*.096*5.67*10^(-8)*(TC^4-TA^4) 790
- 800 PRINT"EL CALOR PERDIDO POR LA ENTRADA DE AIRE ES =" ; QA ; "W"
- 810 SUMQ=QT+QTR+QTT+QA
- 820 PRINT"EL CALOR TOTAL PERDIDO EN EL HORNO EN LA MEDICION "; MEDICI: "ES ="; SUMQ: "W"
- 830 IF PRUEBA>11 THEN 1050
- 840 REM CALCULO DE LA ENERGIA ENTREGADA AL FLUIDO DE TRABAJO PARA EL HORNO FUNCIONANDO CON TIRO NATURAL
- 845 PRINT " HORNO CON TIRO NATURAL "
- 850 FOR P=1 TO 12
- PRINT "INGRESE LA VELOCIDAD #";P;"DE LOS GASES EN 860 PIE/MIN": INPUT"==>" ,V(P)
- 870 VPROM=VPROM+V(P)
- 880 NEXT P
- 890 VPROM=VPROM*.00508/12
- PRINT "LA VELOCIDAD PROMEDIO(EN M/S) DE LOS GASES DE 900 ESCAPE ES = "; VPROM
- 910 INPUT"LA TEMPERATURA DE CHIMENEA EN (°C)==>".TCH
- 920 TFILM=TCH+273
- 930 GOSUB 240
- 940 DENS=RH01
- 950 MG=DENS*.0123*VPROM
- PRINT "EL FLUJO MASICO DE GASES(EN KG/SEG) EN LA 960 CHIMENEA" ; MG

- 970 INPUT "INGRESE LA TEMPERATURA DE LA SALIDA DEL HOGAR (°C)==>",TH
- 980 TH=TH+273
- 990 TFILM=(TH+TA)/2
- 1000 GOSUB 240
- 1010 CESPE=CP1
- 1020 EFT=MG*CESPE*(TH-TA)*1000
- 1030 PRINT "LA ENERGIA ENTREGADA AL FLUIDO DE TRABAJO ES"; EFT; "W"
- 1040 GOTO 1710
- 1050 REM <u>CALCULO DE LA ENERGIA ENTREGADA AL FLUIDO DE</u>

 TRABAJO Y CALOR SENSIBLE QUE ESCAPA POR LA CHIMENEA

 CON TIRO INDUCIDO
- 1060 PRINT " HORNO CON TIRO INDUCIDO "
- 1061 CALCULO DE LAS PERDIDAS TERMICAS EN EL FILTRO DE GASES
- 1070 INPUT "INGRESE LAS TEMPERATURAS LATERALES DEL SEGUNDO TANQUE (°C) ==>",TS15,TS16,TS17
- 1080 TST=((TS15+TS16+TS17)/3)+273
- 1090 TFILM=(TST+TA)/2
- 1100 GOSUB 240
- 1110 RALN=9.8*(TST-TA)*.681472/(ALFA1*NUU1*TFILM)
- 1120 IF RALN<=1E+09 THEN NUL=.68+(.67*RALN^.25/(1+(.492/PR1)^.5625)^(4/9)): PRINT "REGIMEN LAMINAR":GOTO 1140
- 1130 NUL=((.825+(.387*RALN^(1/6)))/(1+(.492/PR1)^(9/16)) ^(8/27))^2: PRINT"REGIMEN TURBULENTO"
- 1140 H=NUL*K1/.88
- 1150 QQ1=H*1.5070373#*(TST-TA)
- 1160 QQR1=1.5070373#*.9*5.67E-08*(TST^4-TA^4)
- 1170 PRINT QQ1,QQR1
- 1180 INPUT "INGRESE LA TEMPERATURA DE LA TAPA DEL SEGUNDO TANQUE (°C) ==>",T14
- 1190 TZ=T14+273
- 1200 TFILM=(TZ+TA)/2
- 1210 GOSUB 240
- 1220 RALN2=9.8*(TZ-TA)*.14425^3/(ALFA1*NUU1*TFILM)
- 1230 IF RALN2<=10^7 AND RALN2>=10^5 THEN NUL2=.54*RALN2^(1/4):GOTO 1250
- 1240 IF RALN2<=10^10 AND RALN2>=10^7 THEN
 NUL2=.15*RALN2^(1/3) ELSE BEEP: PRINT" RALEIGH FUERA
 DE RANGO PARA CALCULO DE NUSSELT"
- 1250 H2=NUL2*K1/.14425
- 1260 QCT2=H2*.222169*(TZ-TA)
- 1270 QRT2=.9*.222169*5.67E-08*(TZ^4-TA^4)
- 1280 QTT2=QRT2+QCT2
- 1290 PRINT QRT2,QCT2
- 1300 QHELP=QTT2+QQ1+QQR1
- 1310 PRINT "EL CALOR PERDIDO EN EL SEGUNDO TANQUE ES = ":QHELP:"W"
- 1320 SUMQ=SUMQ+QHELP
- 1330 PRINT "LAS PERDIDAS TERMICAS TOTALES SON =":SUMQ:"W"
- 1340 FOR K=1 TO 16

- 1350 PRINT "INGRESE LA VELOCIDAD #";K;"EL AIRE A LA SALIDA DEL VENTILADOR EN PIE/MIN":INPUT "===>".V(K)
- 1360 VVENT=VVENT+V(K)
- 1370 NEXT K
- 1380 VVENT=VVENT*.00508/16
- 1390 PRINT "LA VELOCIDAD DEL AIRE A LA SALIDA DEL VENTILADOR (EN M/S) ES"; VVENT
- 1400 INPUT "INGRESE LA TEMPERATURA DE LOS GASES QUE SALEN DEL VENTILADOR (°C)==>".BB
- 1410 TFILM=BB+273
- 1420 GOSUB 240
- 1430 MVENT= .0433737*RH01*VVENT
- 1440 INPUT "INGRESE LA TEMPERATURA EN LA CHIMENEA (°C)==>",TCH
- 1450 TFILM=TCH+273
- 1460 TCH=TCH+273
- 1470 GOSUB 240
- 1480 INPUT "INGRESE LAS VELOCIDADES (4) DE LOS GASES EN LA CHIMENEA (PIE/MIN) ===>",V1,V2,V3,V4"
- 1490 VCHI=((V1+V2+V3+V4)*.00508)/4
- 1500 PRINT "LA VELOCIDAD DE LOS GASES EN LA CHIMENEA (m/s) ES"; VCHI
- 1510 MCHI= RH01*.0123*VCHI
- 1520 INPUT "INGRESE LA ENTALPIA DEL AIRE EN (BTU/Lbm)==>", HAIR
- 1530 INPUT "INGRESE LA ENTALPIA DE LOS GASES QUE VAN AL VENTILADOR BTU/Lbm ==>", HGV
- 1540 INPUT "INGRESE LA ENTALPIA DE LOS GASES QUE SALEN DEL VENTILADOR BTU/LBM==>".HV
- 1550 MGV=MVENT*(HV-HAIR)/(HGV-HAIR)
- 1560 MG=MCHI+MGV
- 1570 INPUT "INGRESE LA TEMPERATURA DE LOS GASES A LA ENTRADA DEL VENTILADR (°C) ==>".TEV
- 1580 TEV=TEV+273
- 1590 TFILM=(TEV+TA)/2
- 1600 GOSUB 240
- 1610 EFT=MGV*CP1*(TEV-TA)*1000
- 1620 TFILM=(TCH+TA)/2
- 1630 GOSUB 240
- 1640 CGS= MCHI*CP1*(TCH-TA)*1000
- 1650 PRINT "EL FLUJO MASICO DE GASES AL VENTILADOR (KG/S) ES =":MGV
- 1660 PRINT "EL FLUJO MASICO DE GASES QUE ESCAPAN POR LA CHIMENEA (KG/S) ES=";MCHI
- 1670 PRINT "EL FLUJO MASICO DE GASES QUE SALEN DEL VENTILADOR (KG/S) ES=";MVENT
- 1680 PRINT "EL FLUJO MASICO DE GASES QUE SALE DEL HOGAR (KG/S) ES=";MG
- 1690 PRINT "LA ENERGIA DEL FLUIDO DE TRABAJO ES"; EFT; "W"
- 1700 PRINT "EL CALOR SENSIBLE PERDIDO EN LA CHIMENEA ES"; CGS; "W"
- 1710 REM CALCULO DEL FLUJO MASICO DE COMBUSTIBLE
- 1720 IF MEDICI=3 OR MEDICI=5 OR MEDICI=7 OR MEDICI=9 THEN 1810

- 1730 PRINT "CALCULO APROXIMADO DEL FLUJO MASICO DE COMBUSTIBLE"
- 1740 INPUT "INGRESE EL FLUJO MASICO PROMEDIO DE COMBUSTIBLE EN KG/S==>".MC
- 1750 INPUT "INGRESE EL VOLUMEN DE LA CAMARA DE COMBUSTION (EN M3)==>", VCC
- 1760 INTEN=MC*12.1*10^6/(VCC*1)
- 1770 EQC=MC*12.1*10^6
- 1780 PRINT "LA INTENSIDAD DE LA CAMARA DE COMBUSTION ES=":INTEN:"W/M^3"
- 1790 PRINT "LA ENERGIA QUIMICA DEL COMBUSTIBLE ES=";EQC;"W"
- 1800 GDTO 1900
- 1810 PRINT "CALCULO EXACTO DEL FLUJO MASICO DE COMBUSTIBLE"
- 1820 INPUT "INGRESE EL PORCENTAJE DE EXCESO DE AIRE (%EA)==>".EA
- 1830 INPUT "INGRESE EL VOLUMEN DE LA CAMARA DE COMBUSTION (EN M3)==>".VCC
- 1840 MC=MG/(4.83*(1+EA/100)+1)
- 1850 INTEN=MC*12.1*10^6/(VCC*1)
- 1860 EQC=MC*12.1*10^6
- 1870 PRINT"EL FLUJO MASICO DE COMBUSTIBLE CALCULADO ES=":MC:"KG/S"
- 1880 PRINT "LA INTENSIDAD DE LA CAMARA DE COMBUSTION ES=";INTEN
- 1890 PRINT "LA ENERGIA QUIMICA DEL COMBUSTIBLE ES=":EQC:"W"
- 1900 REM CALCULO DE LA EFICIENCIA DEL SISTEMA
- 1910 NS=(EFT/EQC) *100
- 1920 PRINT "LA EFICIENCIA DEL SISTEMA ES=";NS;"%"
- 1921 REM CALCULO DE LA ENERGIA ACUMULADA EN LAS PAREDES
- 1930 INPUT "EL HORNO TIENE AISLAMIENTO SI O NO";OF\$
- 1940 IF OF\$="NO" THEN 2040
- 1950 IF Z<>1 THEN 1990
- 1960 INPUT "INGRESE LA TEMPERATURA INICIAL EXTERIOR DE LA PARED(°C)==>";TE
- 1970 INPUT "INGRESE LA TEMPERATURA INICIAL INTERIOR DE LA PARED(°C)==>";TI
- 1980 TW(0)=((TE+TI)/2)+273
- 1990 INPUT "INGRESE LA TEMPERATURA EXTERIOR DE LA PARED (°C)==>";TWO
- 2000 INPUT "INGRESE LA TEMPERATURA INTERIOR DE LA PARED (°C)==>";TWI
- 2010 TW(Z)=((TWO+TWI)/2)+273
- 2020 EAP=(158507.29#/900)*(TW(Z)-TW(Z-1))
- 2030 PRINT "LA ENERGIA ACUMULADA EN LAS PAREDES ES=";EAP;"W"
- 2040 REM CALCULO DE LA EFICIENCIA DE COMBUSTION
- 2050 IC= EQC-SUMQ-EFT-CGS-EAP
- 2060 Y=(IC/EQC)*100
- 2070 NC=100-Y
- 2080 PRINT "LA EFICIENCIA DE COMBUSTION"; NC; "%": NEXT Z
- 2090 END

APENDICE F

DATOS (MEDICIONES) EXPERIMENTALES

APENDICE F - 1

DATOS EXPERIMENTALES OBTENIDOS DEL HORNO OPERANDO CON
TIRO NATURAL Y SIN AISLAMIENTO

DATOS EXPERIMENTALES

PRUEBA # 1

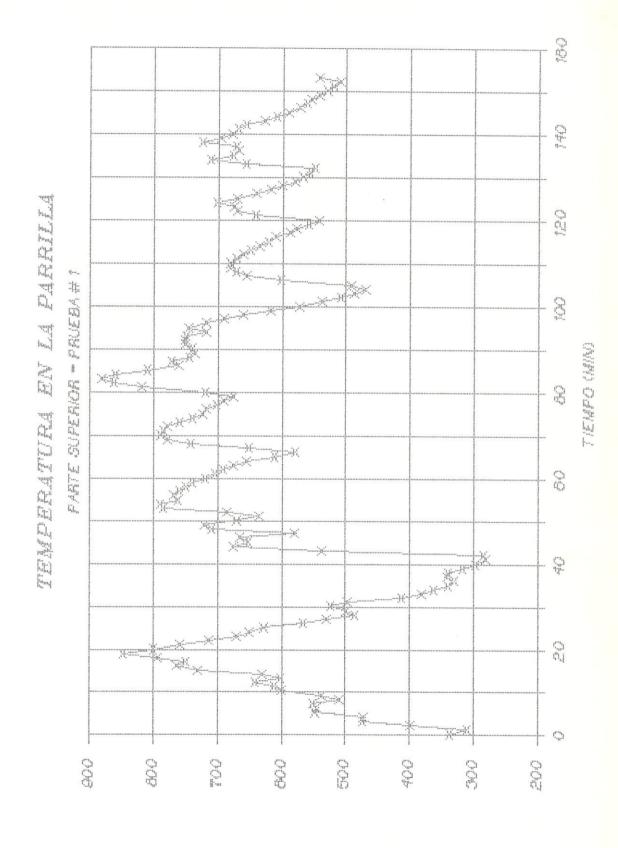
HORNO SIN AISLAMIENTO OPERANDO CON TIRO NATURAL

Inclinación de la parrilla : 45°

Temperatura ambiente (Ta) : 30°C

Consumo de cascarilla : ***

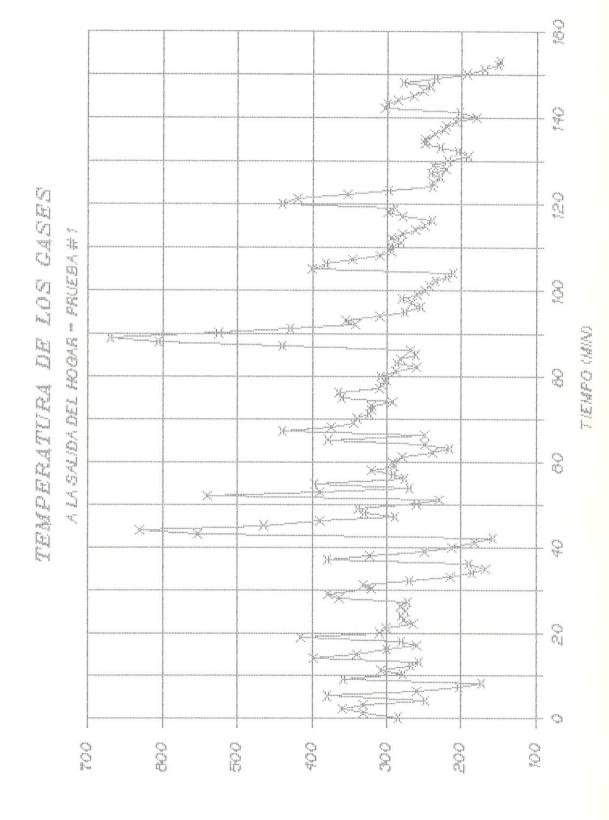
Tiempo de duración de la prueba : 153 min

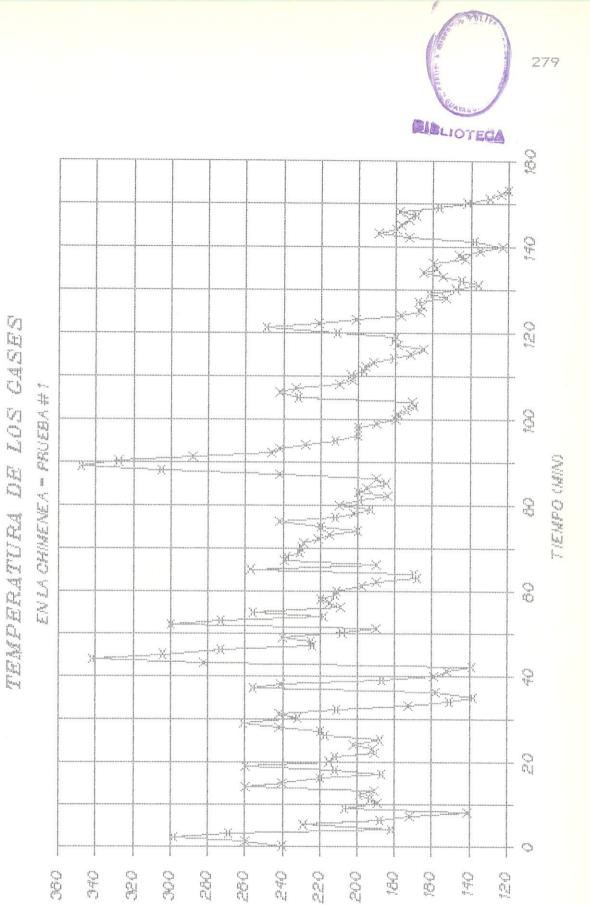

Flujo másico de cascarilla : ***

Volumen de la cámara de combustión : 0.170487 m3

Tiempo al que empieza Medicion Nº1 : 30 min

ANALISIS DE LOS GASES


MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	**	**	**
5	**	**	**
7	**	**	**
9	**	**	**



FILLE FI NE PELLEGIE 14: -H-H $\begin{matrix} i_{*_{*_{11}}}^{1^{**_{1}}} \\ i_{*_{*_{11}}}^{1} \end{matrix}$ Marie 1,-1,1 1,-1,1 1,-1,1 1,-1,1 1,-1,1 1,...1

FILLE FI AM FALLFEIGE # YEITE - BORIN ING 17. $\begin{bmatrix} 1_{i-1}^{k+1} \\ \vdots \\ 1_{k} \end{bmatrix}$ 1,-1,1 1,-1,1 1,-1,1 1,-1,1 1, 1,1 i, ..., i

(C.) PENINGBONEL

DATOS EXPERIMENTALES

PRUEBA # 2

HORNO SIN AISLAMIENTO OPERANDO CON TIRO NATURAL

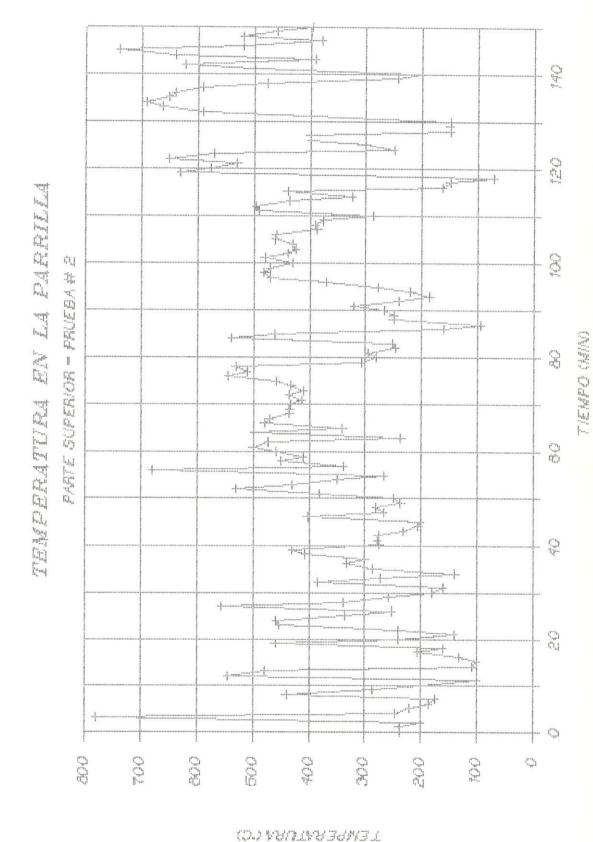
Inclinación de la parrilla : 45°

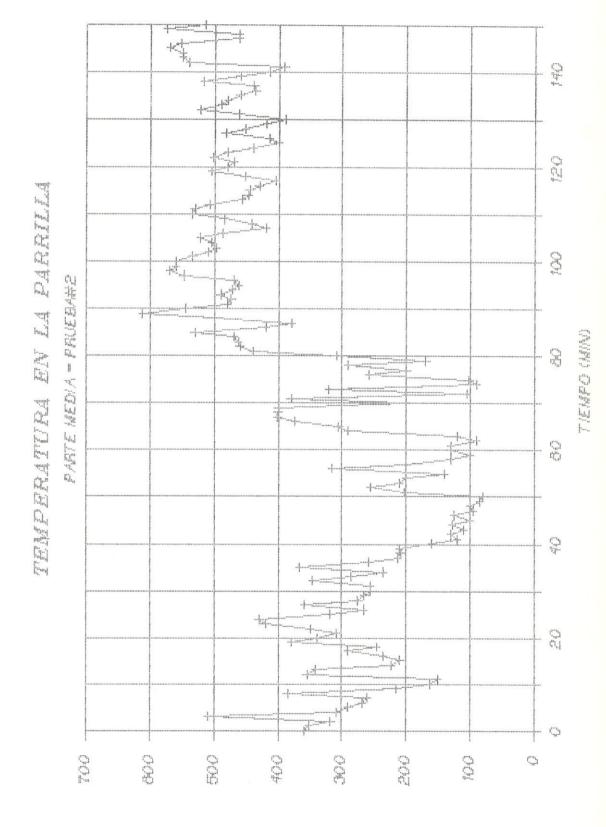
Temperatura ambiente (Ta) : 31°C

Consumo de cascarilla : 9.47 Kg

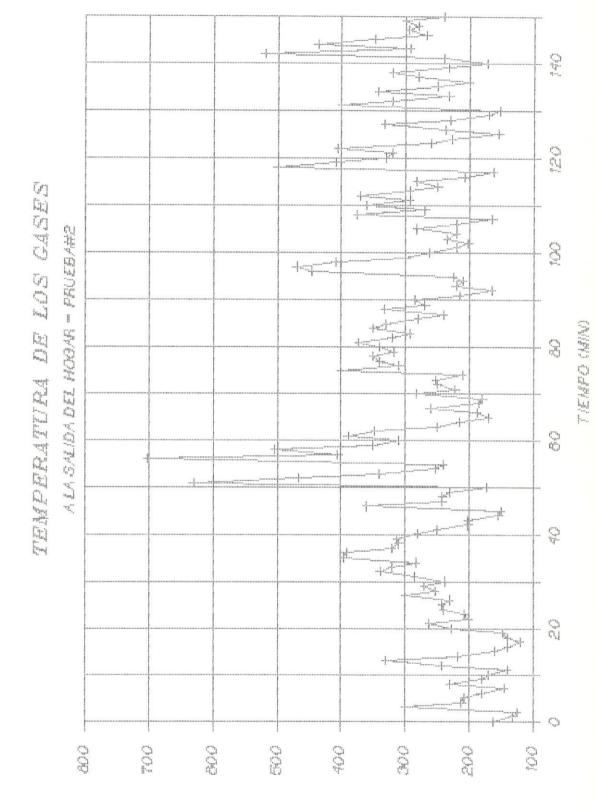
Tiempo de duración de la prueba : 151 min

Flujo másico de cascarilla : 0.001045 Kg/seg

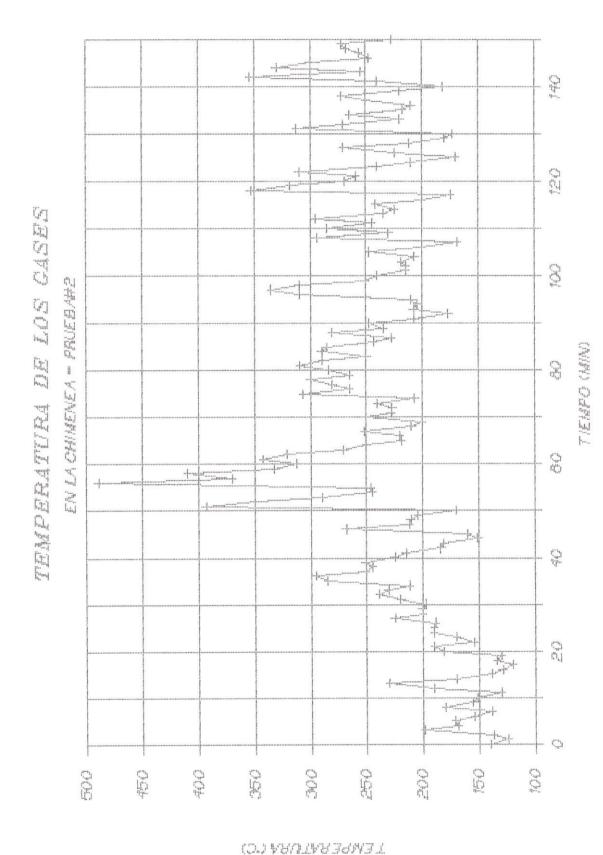

3.76 Kg/hr


Volumen de la cámara de combustión : 0.170487 m3

Tiempo al que empieza Medicion Nº1 : 30 min


ANALISIS DE LOS GASES

MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	4	16	0
5	3.2	17.6	0.2
7	2.4	19.4	0
9	3.8	18.2	0



BLIOTECA!

CORBURYSOMSI

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 2

9	А	35	35	33	43	45
SECCION	 ن	40	40	33	46	47
SEC	Ω	37	1 20	4	20	51
	A !	37	20	8	45	70 65 50 51 47
3	Д	70	33	8	65	65
SECCION	ນ	55	36	201	9	70
SEC	 B	8	33	93	06	90
	A B C D A B C	75	40	106	140	105
4	Д	135	120	130	42 170 140 160 120 140	40 240 145 185 100 105 90
SECCION 4	A 'B 'C 'D A 'B 'C 'D	165 141 170 135	120	180	160	185
SEC	В	141	140	140	140	145
	A !	165	160	220	170	240
භ 	Q	42	8	1 22	42	40
SECCION	0	99	210	6	44	20
SEC	Д	45	160	100	9	90
	A !	150	225	130	120	80
2	C D	100	120	100	100	.00 170
SECCION	Ü	165	290	190	245	100
SEC	m	186	165	150 160 220 200 170 130	270 240 240 205 225 150 245	215 200 190 195 135 200 1
	A	125	200	170	225	135
	A	117 130 147 122 125 186	230 240 210 190 200 165	200	205	195
SECCION 1	Ü	147	210	220	240	190
SECC	m	130	240	160	240	200
	A	17	230	150	270	215
I WOTO TOTAL	No A B C D A B		w	Ω	7	б

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 2

~	Α	80	110	40	62
SECCION 12	A B C D A B C D	46	49 110	44	70
ECCI	മ	103	105	25	63, 61, 70
S	A	90	45	55	63
	A	37 190 190 180 195 100 120 70 110 90 103	40 190 190 180 250 120 100 90 140 45 105	165	39 270 264 210 207 150 210 200 200
ON 1	ט	70	08	85	200
SECCION 11	m	120	100	170	210
ß	A	100	120	43 263 180 210 180 150 170 85 165	150
0.	A	195	250	180	207
ON 1	Ü	180	180	210	210
SECCION 10	CIDIAIBICIDIAIBICID	190	190	180	264
01	A	190	190	263	270
0.	П	37	40	1	38
	U	98	40	45	41
SECCION	М	33	45	44	43
02	V	41	20	20	70 72 50 43 41
00	9	8	2	78	72
	0	67	8	73	70
SECCION		88	110	100	100
	A	7.9	110	8	95
7	9	110 155 120 130 79 93	120 260 150 180 110 110	160 180 107 180 80 100	130 160 120 130 95 100
SECCION 7	0	1120	120	107	1120
SEC	<u>m</u>	122	1260	180	1160
	- B	1 1	120	160	130
NOTOTOTIAL NAME OF THE PARTY OF	No A B C D A B	2	4	9	8

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 2

MEDICION	S	ECCION 13	3
No !	A	¦ B ;	С
1	130	150	135
2	190	195	185
3	235	230	200
4	191	190	180
5	158	150	140
6	181	200	185
7	208	220	230
8	210	245	270
9	206	198	210

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

PRUEBA # 2

		Medición 1¦ Medición 2¦	Medic	Sión 2	Medic	Medición 3	Medición	ión 4¦	Medición	ión 5	Medición	ión 6¦	Medic	Medición 7	Medición	ción 8	Medición	ción 9
DIBUARCIA		00 1 00	0	00 1 00	0	.06	0	.06	0 0	.06	0 0	.06	0	.06	0 0	.06	0	.06
7	150	20	100	160	100	100	150	150	100	100	100	150	20	20	100	100	100	20
92	280	150	150	280	200	200	300	300	200	200	150	200	20	100	200	200	200	150
d3	400	200	300	400	300	300	400	400	300	300	100	100	100	100	250	300	300	200
d4	100	1000	200	450	400	400	200	450	400	450	300	200	200	150	300	450	400	250
d5	200	200	420	200	450	450	100	420	100	420	200	200	100	200	100	400	200	350
99	220	150	400	100	400	400	20	400	200	400	150	150	200	100	100	200	400	200

DATOS EXPERIMENTALES

PRUEBA # 3

HORNO SIN AISLAMIENTO OPERANDO CON TIRO NATURAL

Inclinación de la parrilla : 45°

Temperatura ambiente (Ta) : 32°C

Consumo de cascarilla

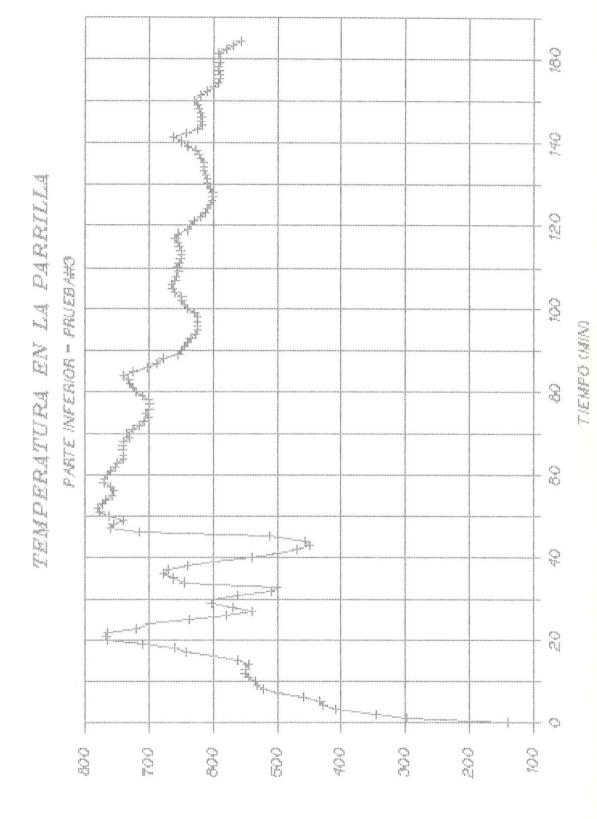
: 9.67 Kg

Tiempo de duración de la prueba : 165 min

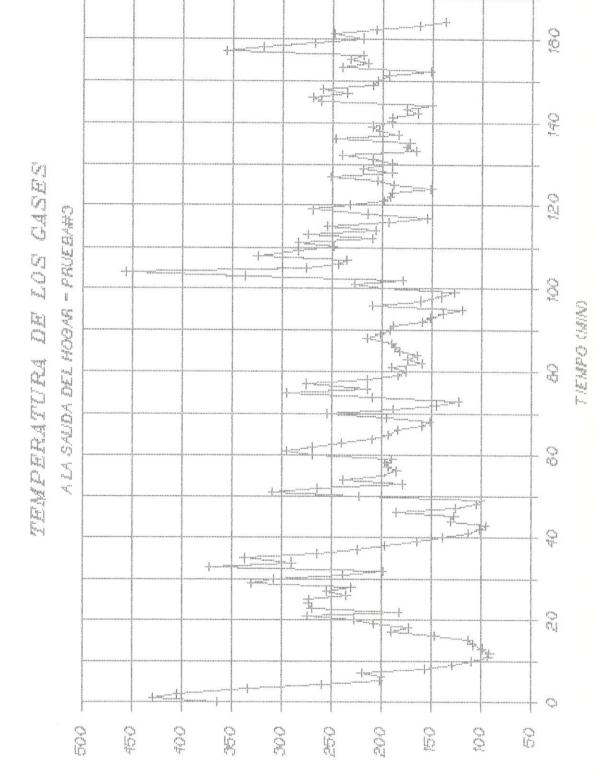
Flujo másico de cascarilla : 0.000976 Kg/seg

3.52 Kg/hr

Volumen de la cámara de combustión : 0.170487 m³

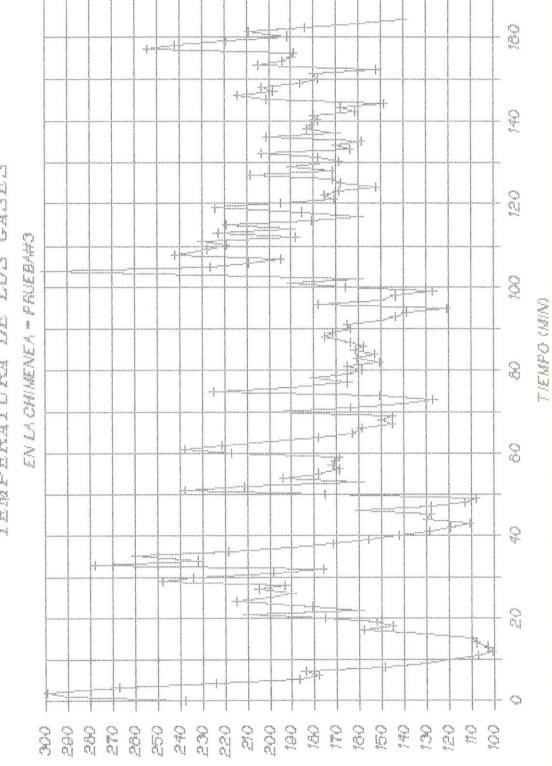

Tiempo al que empieza Medicion Nº1 : 30 min

ANALISIS DE LOS GASES


MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	2	19.6	0
5	2	16.6	0 - 4
7	2.2	19.4	0
9	2.8	19	0

FILLEY FI AL PELLYCHE -11-1,..., i, '''t 1 -111 12-12-1 -423-5 12-12-1 -7-12-1 11-1-1 15.15.1 15.15.1 15.15.1

TEMPERATURA EN LA PARELLA 1, 12, 1 1, 12, 1 1, 1, 1 10, ..., 1 12-12-1 12-12-1 12-12-1 12-12-1 12-12-1 12-12-1 12-12-1 12-12-1 12-12-1 12-12-1 11 - 141 11 - 141 11 - 141 11 - 141 11 - 141



COPPOSES PROPER

CONTRACTOR

SESSON SOT ET FOLDWARDE

COPECIVE SOMEL

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

Ţ)
‡	Ļ
<	C
	j
Ġ	ď
-	5
Ď	4
	L

SECCION 2 SECCION 3 SECCION
A B C D A B C D A B C D A B C D A B C D
210 175 200 175 220 100 230 100 180 65 73 45 181 137 171 162
140 127 130 120 135 92 132 75 115 65 58 43 130 115
115 105 105 106 160 90 165 78 100 72 65 55 105 100
150 150 150 148 163 105 160 90 100 85 70 55 128 113 130 105
180 180 190 185 190 111 170 75 101 50 90 60 147 141 145 131 105 97

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 3

		SECC	ION	SECCION 7		SECCIO	ON 8		S	SECCION	6 NO		S	SECCION	ON 1	10	ſΩ	SECCION 11	ON 1		isi.	SECCION	N 12	2
MEDICION A B C D A B	A !	m	5	A	A	B	2	A	AIBICID	B	5	10	A	B	D	10	A	A B C D A B C D	ט	А	- A	<u>ш</u>	0	A
2	82	120	8	85 120 80 100 63 65	63	65		61	53	45	444	44	97	105	97 105 103 134 91 122	134	91	122	70 97	97	27	88	54	75
4	101	122 92 114	82		8	8	80	65	65	20		88	145	153	135	140	82	39 145 153 135 140 82 150 79 115	79	115	63 100	100	9	82
9	135	175	134 156		83	p-1 p-1 p-4	101	121	45	49 44	44	45	180	205	165	170	120	45 180 205 165 170 120 145 83 110	83	110	9	86	20	9
00	117 140 114 100 59 54	140	114	100	29	54	40	45	80	79	79!	7117	153	153	135	140	100	145	90	49 45 80 79 79 71 153 153 135 140 100 145 90 115 45 100 47 156	45	100	47	156

TEMPERATURAS EXTERIORES DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 3

	SE	CCION 13	} }
MEDICION; Nº	Α ;	В ¦	C
1	175	185	170
2	98	100	110
3	125	130	110
4	145	150	130
5	100	105	90
6	175	190	180
7	150	155	143
8	150	165	143
9	185	190	170

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

PRUEBA # 3

and and	Medic	ión 1	Medic	Medición 1 Medición 2 Medición 3	Medic	ión 3¦	Medición	ión 4	Medición	ión 5	Medición	ión 6	Medición	ión 7	Medición	ión 8	Medición	ción 9
Distancia	0	.06 .0	0	.06 1 .0	0 . 1	.06	0 0	.06	0 0	.06	0 0	.06	0 0	.06	°	.06	°	.06
9	100	20	100	06	20	88	20	100	20	100	180	200	200	240	200	180	200	180
9	150	100	140	140	50	20	100	200	100	200	260	280	400	340	280	280	280	280
d3	200	150	160	160	06	20	200	300	200	460	380	400	400	380	400	400	400	400
94	220	200	180	100	100	20	300	340	340	360	200	400	420	400	460	380	460	300
92	20	150	50	200	120	50	200	360	300	350	420	440	440	360	380	400	380	400
99	160	100	200	20	200	200	380	200	280	300	360	360	300	300	380	260	380	260

DATOS EXPERIMENTALES

PRUEBA # 5

HORNO SIN AISLAMIENTO OPERANDO CON TIRO NATURAL

Inclinación de la parrilla : 50°

Temperatura ambiente (Ta) : 30°C

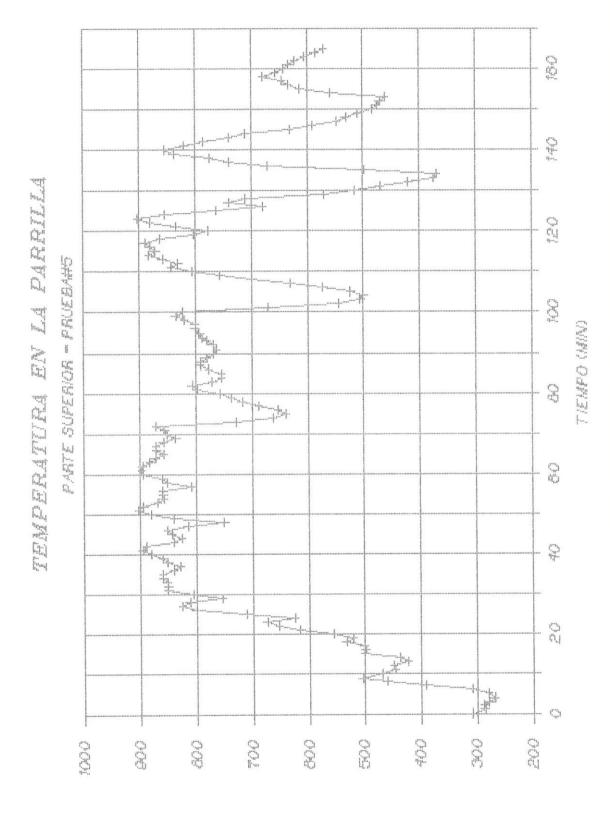
Consumo de cascarilla

: 15.35 Kg

Tiempo de duración de la prueba : 166 min

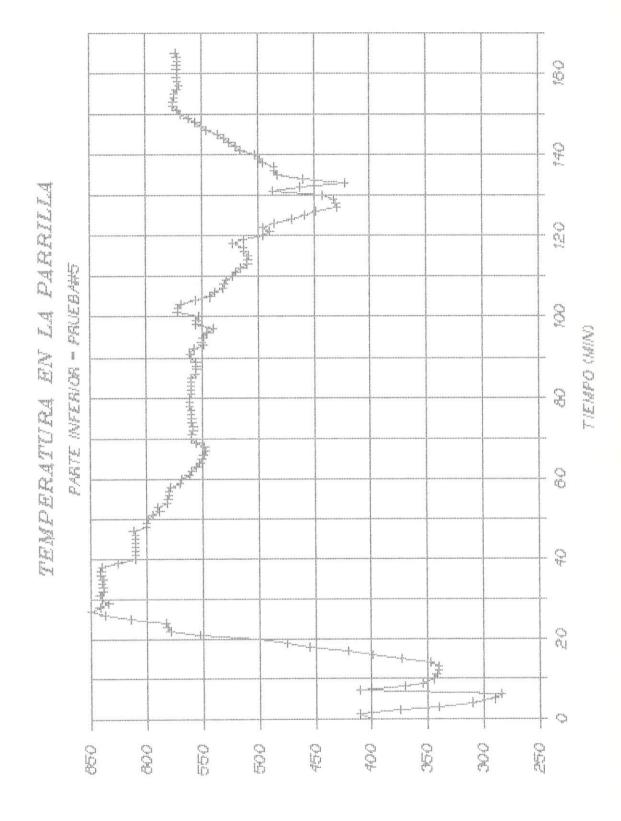
Flujo másico de cascarilla : 0.001541 Kg/seg

5.55 Kg/hr

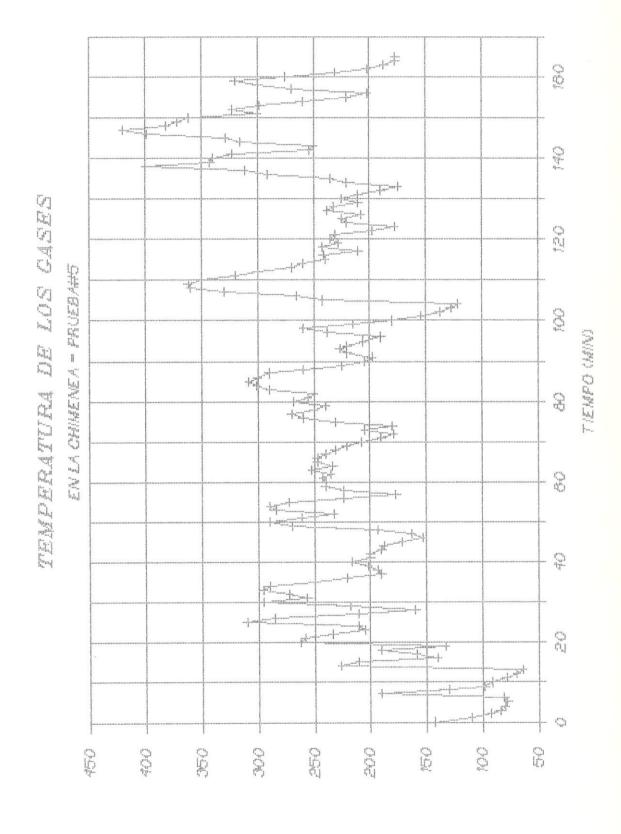

Volumen de la cámara de combustión : 0.166172 m³

Tiempo al que empieza Medicion Nº1 : 30 min

ANALISIS DE LOS GASES


MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	3	18.6	0
5	3	18.4	0
7	4	16.6	0.2
9	2.4	18.6	0.4

CONTRACTOR



BIBLIOTECA 14-10-1 14-10-1 1-11-1 23--8-1 11, 111 11, 111 12, 12, 13 12, 12, 13 13, 13, 13 1,1,1,1 1,-1,1 1,-1,1

 $\binom{n-1}{n-1}\binom{n-1}{n-1} = \binom{n-1}{n-1}\binom{n-1}$

COPHOINERS

TEMPERATURAS DE LOS GASES A LA SALIDA DEL HOGAR

PRUEBA # 5

MEDICION: Nº	TEMPERATURA (°C)
1 1	271
2	263
3	265
4.	310
5	232
6	324
7	248
8	387
9	

^{*} Temperaturas Estimadas

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

9	А	40	45	50	28	60
SECCION	0	45	20	52	54	65
SEC	<u>—</u>	54	25	70	- 8	73
	A	20	9	82	9	192
2	CID A B CID A B CID A B CID A B C	68 133	122	75	8	90 92 76 73
SECCION	0	88	78	70	761	90
SEC	Μ	113	103	80	120	95
mine diverse species order	A	44 180 128 178 114 110 113	65 160 110 167 120 110 103	102	275 160 243 135 130 120	260 260 230 208 200 110 185 120 130 130 100 80 181 135 180 125 112 95
4	А	114	120	255 100 120 105 102	135	125
SECCION 4	0	178	167	120	243	180
SEC	М	128	110	100	160	135
	A	180	160	255	275	181
8	А	44	1	55	9	80
SECCION	0	80	110	62	8	100
SE(М	48	95	189	78	130
	A	200	136	135	150	130
7 7	О	8	102	06	120	120
SECCION	0	153 81 200	170 102	160 90 135	300	185
SE	М	127	207 184 180 182 185 125	140	145	110
 	A	179	185	175	185	200
-	A B C D A B	222 255 212 217 179	182	265 250 220 200 175 140	180 170 180 177 185 145	208
SECCION 1	0	212	8	220	180	230
SEC	B	255	184	1250	170	1260
	- B	222	207	265	180	260
MOTOTORIA	No		m	2		6,

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 5

7		55 207	75	50	70
NO	ט	1	20	42	90
SECCION 12	m	225	115	110	110
N	A	89	09	63	140
	CIDIAIBICIDIAIBICIDIAIBICID	108 90 58 48 46 43 152 131 122 126 145 166 98 119 68 225	100 62 70 50 50 52 155 145 125 120 111 110 100 130 60 115	82 152 103 150 104 172 122 153 90 117 70 71 300 300 251 230 140 185 90 165 63 110	80 160 130 145 135 170 140 135 100 120 95 90 225 200 170 180 155 190 170 160 140 110 90
SECCION 11	ט	98	100	90	170
ECCI	B	166	110	185	190
W	A	145	111	140	155
0.		126	120	230	180
SECCION 10	ט	122	125	251	170
ECCI	m	131	145	300	200
01	A	152	155	300	225
con que en		43	52	71	90
6 NO	ט	46	50	70	95
SECCION	m	48	50	117	120
01	A	58	70	06	100
~~	А	8	62	153	135
ON 8	ט	108	100	122	140
SECCION	1 1	110	126	172	170
	A	100 200 140 130 125 110	93 205 86 176 110 126	104	135
7	9	130	176	152 103 150 104	145
SECCION 7	U	140	86	103	130
SEC	m	200	205	152	160
MA NO. 80	A B C D A B	100	93	82	80
NOTOTICEM	No	2	7	9	CO)

TEMPERATURAS EXTERIORES DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 5

MEDICION	SI	ECCION 13	3
NO NO	A	В	С
1	250	225	240
2	130	155	140
3	180	189	165
4	140	158	150
5	248	225	240
6	250	240	255
7	170	185	180
8	210	224	214
9	255	230	245

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

		Medición 1; Medición 2; Medición 3	Medic	ión 2	Medic	ión 3,	Medición	ión 4¦	Medición	ción 5	Medición	sión 6	Medición	ión 7	Medición	ión 8	Medición	ción 9
Distancia	0	.06	00	.06	0 0	.06	0 0	.06	0	.06	0	.06	0	.06	0	.06	0 0	.06
d1	100	100	100	20	50	20	20	200	100	50	150	280	50	100	380	400	100	200
d2	200	400	400	300	400	180	100	300	280	100	300	400	200	300	460	500	200	300
d3	460	520	440	420	440	480	200	200	480	440	480	480	300	500	540	200	300	400
d4	540	009	260	560	560	520	200	540	200	420	520	560	420	520	260	560	400	200
d5	200	620	540	520	520	500	260	560	400	480	420	540	400	520	580	580	440	540
90	520	540	200	200	200	480	520	520	460	400	460	480	380	480	009	009	400	500

APENDICE F - 2

DATOS EXPERIMENTALES OBTENIDOS DEL HORNO OPERANDO CON
TIRO NATURAL Y AISLADO

DATOS EXPERIMENTALES

PRUEBA # 6

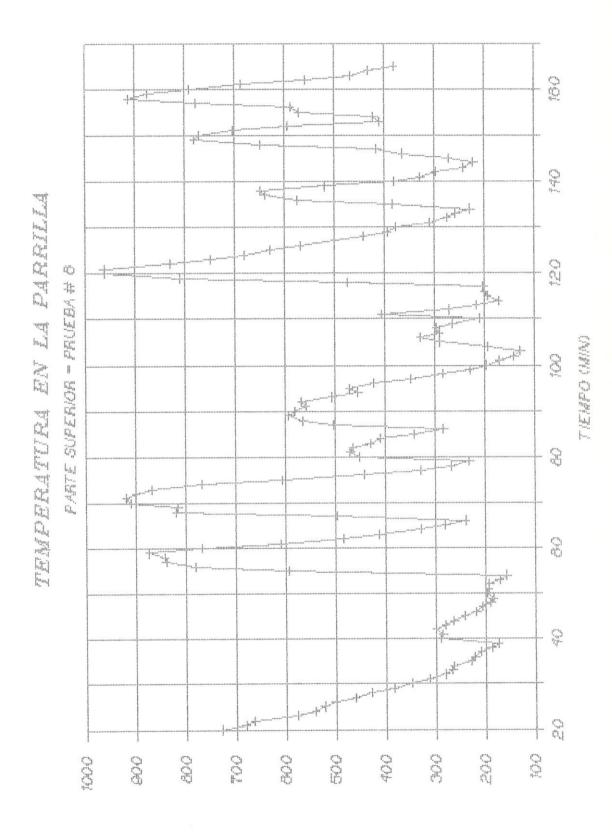
HORNO AISLADO OPERANDO CON TIRO NATURAL

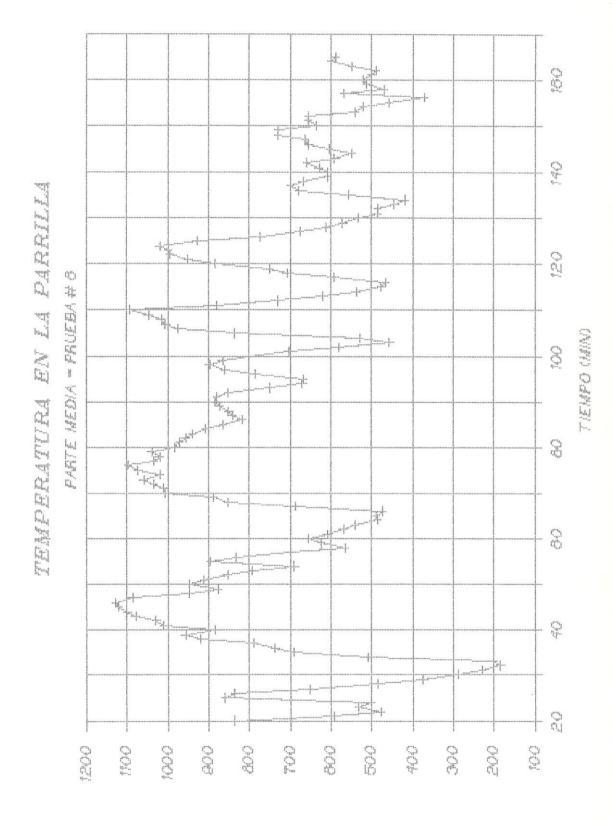
Inclinación de la parrilla : 45°

Temperatura ambiente (Ta) : 32°C

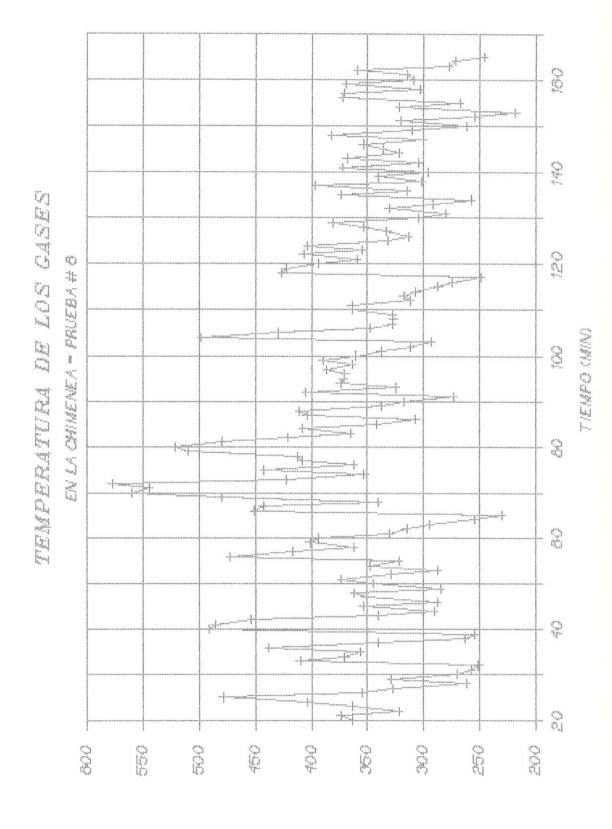
Consumo de cascarilla : 19.54 Kg

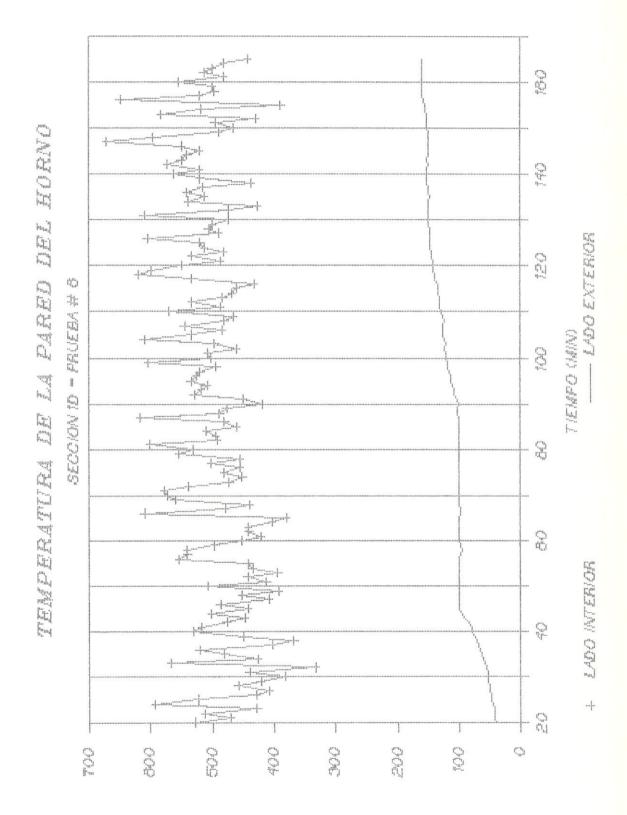
Tiempo de duración de la prueba : 166 min


Flujo másico de cascarilla : 0.001961 Kg/seg 7.06 Kg/hr


Volumen de la cámara de combustión : 0.107578 m³

Tiempo al que empieza Medicion Nº1 : 30 min


ANALISIS DE LOS GASES


MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	3.6	17.4	1
5	4.6	16.6	0.4
7	2.2	18.2	0
9	5.8	15.6	0.2

8 # YEINEL - BUCIAN IIFG ------ $\left\{ _{i_{1,..i}}^{t}\right\} ^{t^{*}}$ 1,...1 12-11 12-11 12-11 13-11 12.21

TEMPERATURAS DE LOS GASES A LA SALIDA DEL HOGAR

PRUEBA # 6

MEDICION;	TEMPERATURA (°C)
1	522
2	510
3	594
4	605
5	513
6	507
7	517
8	494
9	

^{*} Temperaturas Estimadas

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 6

		SECC	SECCION 1			SEC	CCION	2		SEC	SECCION 3	<u>ო</u>		SEC	SECCION 4	14		SEC	SECCION	2	1	SEC	SECCION	9
MEDICION	A :	ABCD	5		A	B	5	I A I	A	 M	0		A	B : C : D	0	tens from tens from t	A	pg	BICIDA	Α	A	B	0	9
	833	09	65	25	20	55	55	8	671	49	88	88	21	136	84	130	09	75	47	76	42	45	38	44
m	85	87	97	83	82	86	85	861	84	67	73	49	1	77 163	82	170	83	74	84	99	46	52	43	45
22	154	83	134	92	145	9	130	85	1 22	9	40	52	105 121 107	121	107	86	8	40	70	40	48	45	46	46
<u> </u>	161	131	128 130 160	130	160	148	163	125	55	7	8	51	125	150	125	51 125 150 125 150 122	122	63	76	64	48	99	47	9
0	145	145 125 135 135 165 120	135	135	165		158	110	140	90	125	70	120	130	123	158 110 140 90 125 70 120 130 123 120 90 80 75 55	90	80	75	55	70	70 50	9	45

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 6

12	Α	09	52	56	72
	0	47	20	09	63
SECCION	Д	91	84	83	93
S	A	54	64	89	99
T	9	84	92 106	97 132	46 42 130 163 150 160 122 150 105 141
NO	ບ 	84	92		105
SECCION	М	86	108	135	150
0.3	A	18	91	134 117 135	122
0	А	85	95	134	160
SECCION 10	U	81	64	55 111	150
ECCI	М	80	90 108		163
Ω	A	75		8	130
	1 1	37	- 88	40	42
SECCION 9	BICID	37	33	43	46
ECCI	щ	88	41	48	47
Ω	A	42	44	56	50
	Ω	46	52	65	60 82 50
ON 8	O	20	53	65	09
SECCION	M	58	79	9	96
	A	59	29	64	73
SECCION 7	A	127 78 98 88 61 58	117 99 127 70 59	85 111 111 100 64 60	109 110 130 140 73 96
CION	O	88	127	티	130
SEC	m	78	66	립	110
	A	127	117	85	109
NO FOR	No A B C D A B	2	4	9	Φ

TEMPERATURAS EXTERIORES DE LAS PAREDES DE LA CAMARA DE COMBUSTION

MEDICION	S	ECCION 13	3
No	Α	В ;	С
1	76	88	87
2	84	102	78
3	93	128	115
4	107	80	90
5	130	170	155
6	103	90	70
7	150	180	170
8	165	173	155
9	150	145	150

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

		sión 1	Medición 1, Medición 2, Medición 3	ión 2¦	Medic	ión 3	Medición	ión 4¦	Medición	ión 5	Medición	ión 6		Medición 7	Medición	ión 8	Medición	ción 9
Distancia	0	.06	0 0	.060	00	06	0 0	.06	0	.06	0 0	.06	0	.06	0	.06	0	.06
d1	120	100	160 120		100	200	100	170	100	180	120	180	150	180	150	200	150	180
d2	220	220 180	200 240		400	400	220	380	240	320	280	300	300	360	300	400	300	400
පියි	460	640	420 440		420	520	440	500	200	400	400	420	460	200	400	440	540	440
d4	520	620	380	560	440	280	500	009	420	460	400	540	200	520	580	400	640	200
d5	540	009	400	540	460	540	540	540	480	500	420	580	520	460	560	480	580	009
90	400	400	400 180 180	Mr. take plant, take after	200	200	380	380	460	460	380	380	400	400	520	520	420	420

DATOS EXPERIMENTALES

PRUEBA # 7

HORNO AISLADO OPERANDO CON TIRO NATURAL

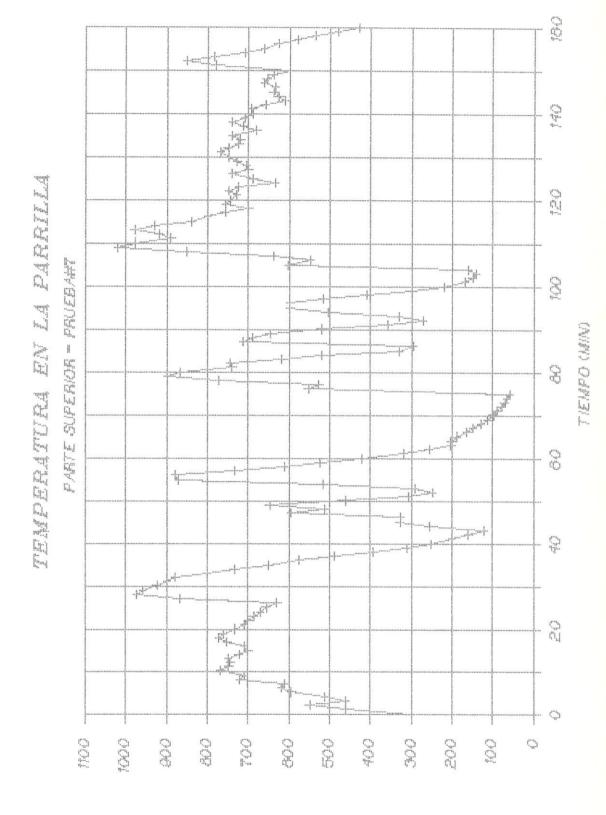
Inclinación de la parrilla : 45°

Temperatura ambiente (Ta) : 33°C

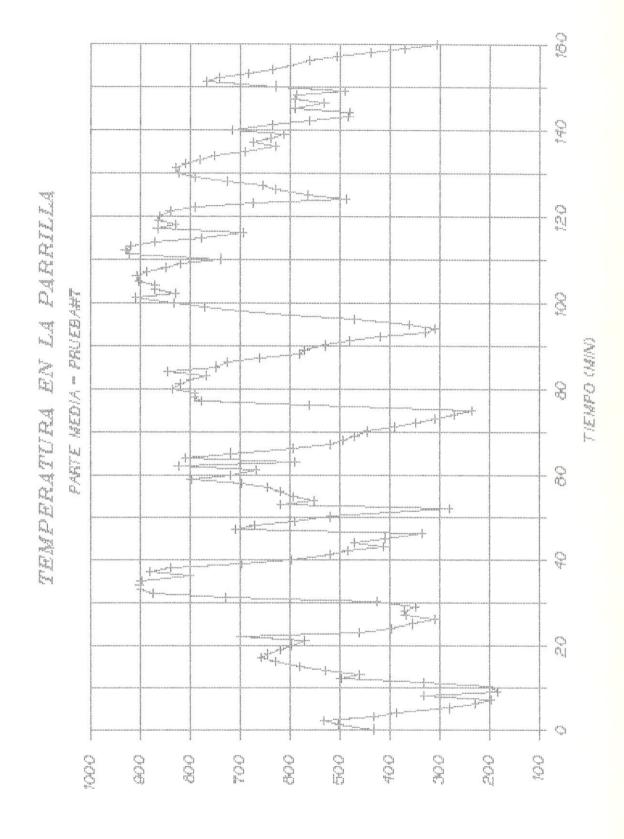
Consumo de cascarilla : 19.11 Kg

Tiempo de duración de la prueba : 161 min

Flujo másico de cascarilla : 0.001978 Kg/seg

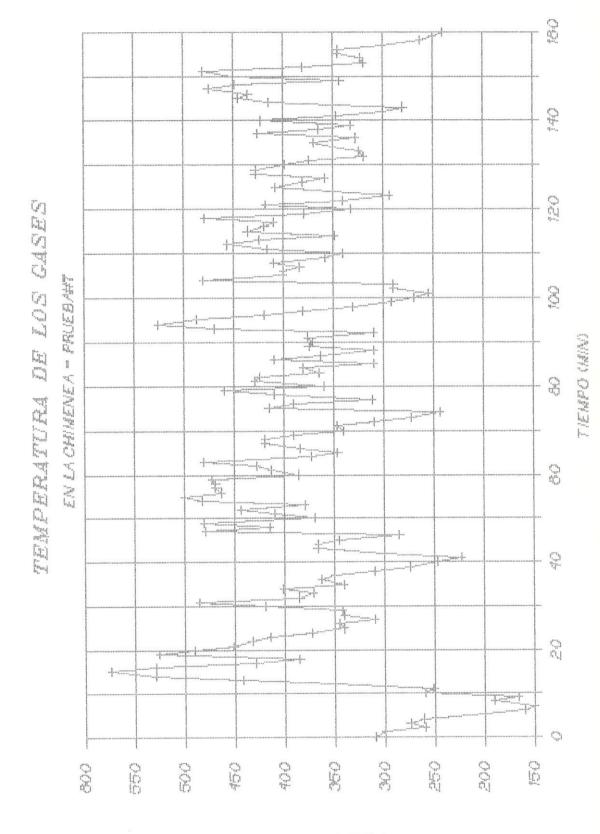

7.11 Kg/hr

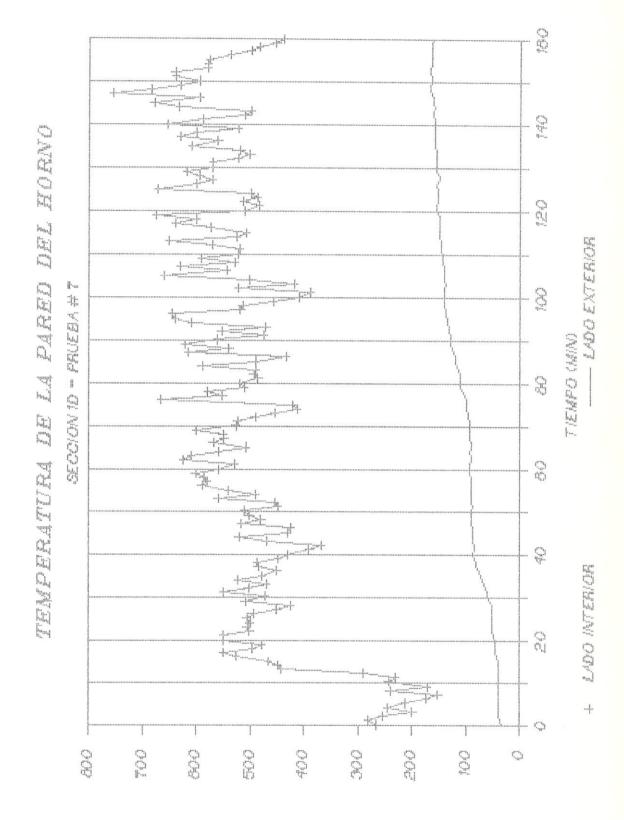
Volumen de la cámara de combustión : 0.107578 m3


Tiempo al que empieza Medicion Nº1 : 30 min

ANALISIS DE LOS GASES

MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	2.4	18.6	0.2
5	6	15	0.4
7	2.6	19	0
9	3.6	18.2	0




COPERLYSERS

12***525 ******** 2******* 2******* 2*******

17. $\begin{bmatrix} t_{11} \\ t_{12} \end{bmatrix}^{q_{1}} \begin{bmatrix} t_{11} \\ t_{12} \end{bmatrix}^{q_{1}}$ i,,,,, 1, 11, 1 1,...,1 1,...,1 1,...,1 1,...,1 1,111

TEMPERATURAS DE LOS GASES A LA SALIDA DEL HOGAR

PRUEBA # 7

MEDICION Nº	TEMPERATURA (°C)
1	509
2	625
3	568
4	549
5	535
6	606
7	544
8	564
9	497

^{*} Temperaturas Estimadas

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 7

No A B C D A	d dotte stres spen man	TOTOORG			SEC	SECCION	N		SEC	SECCION	m m		SEC	SECCION	4		SEC	SECCION	Ω		SEC	SECCION	0
	 m	0	0	A		0	1 0	V V	m	B - C	10	A :	m	C		A	B - C -	0	Ω	A -	 B	5	А
100 1	88 60 95 64 90	95	29	08	09	89	83	8	82	88	20	87 121	121	86 121	121	71	53	80	52	20	42	411	40
3 151 91 70 96 120 101	91	70	96	120	mile ages they have the have	115	95	75	22	28	20	96	148	102	169	45	45	21	44	43	43	45	44
5 188 132 120 85 130 133	32 1	20	85	130	other tape only have deep better	123	1161	71	99	199	49	100	140	119	150	85	65	75	25	48	46	44	47
7 161 130 170 160 160 160	30 1	7011	1601	160		171	107	100	8	92	20	130	140	140	170	92	09	20-	53	53	40	41	48
9 167 149 166 160 177 157	49 1	66,1	16011	177		147	147 129 100	1000	80	09		51 140 147 148 185	147	148	185	109	60 106	75	65 59 55	59	55	48	47

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

12	А	72	49	9	80
	ت 	70	47	47	70
SECCION	<u>я</u>	75	48	82 121	125
0.1	A	12	52	82	72
	А	76	55	125	172
ON	υ	88	20	112	156
SECCION 11	20	80	49	140	170
Ω.	ABCDA	85	46	132	131
10		85 102	52	45 133 150 144 155 132 140 112 125 1	46 61 47 49 41 41 143 190 160 180 131 170 156 172 72 125
NO.	AIBICID	85	47	144	160
SECCION	М	87 110	52	150	180
01	A		95	133	143
		43	48	45	4
6 NO	BICID	45	51	51	41
SECCION	B	44	53	55	49
W	A !	46	44	53	47
	10	8	70	65	61
ON 8	5	63	67	9	46
SECCION	m	86	85	105	105
	A	78	70	62	75
SECCION 7	10	88	111 104 115 124 70 85	121 126 182 125 62 105	150
NOIC	U	170	115	182	154
SECC	М	88	104	126	152
	A	137 86 170 88 78 86	티	121	140 152 154 150 75 105
NOTOTOGEN	No A B C D A B	2	4	9	∞

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 7

	SI	ECCION 1:	3
MEDICION; Nº	A	В	C
1	92	100	100
2	92	100	105
3	105	90	140
4	125	100	95
5	140	150	156
6	120	160	120
7	140	190	170
8	134	175	160
9	100	147	139

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

	Medic	ion 1	Medición 1 Medición 2 Medición	ión 2¦	Medic	₩.	Medición	ión 4¦	Medición	ión 5	Medición	ión 6	Medición	ión 7	Medición	ión 8	Medición	ión 9¦
Distancia	0.0	.06 1 .0	.06 1 .0		06 1 00	.06	0 0	.06	0 -	06	0 0	.06	0 0	.06	0 0	900	0	.06
dı	300	300 380	200	200	400	200	100	200	280	280	100	220	220	400	300	220	300	340
dZ	380	460	380	200	400	240	400	340	400	400	340	440	480	440	420	440	480	200
ශ්ය	400	540	440	460	420	340	440	380	500	480	320	460	540	500	200	620	520	009
d4	400	540	260	009	480	380	480	300	540	480	360	200	009	480	520	520	620	700
d5	420	540	260	009	480	380	009	300	540	520	420	580	620	200	099	009	640	720
d6	420	200	520	280	440	380	620	100	400	500	440	580	009	480	640	580	680	099

DATOS EXPERIMENTALES

PRUEBA # 8

HORNO AISLADO OPERANDO CON TIRO NATURAL

Inclinación de la parrilla

: 45°

Temperatura ambiente (T_a) : 33

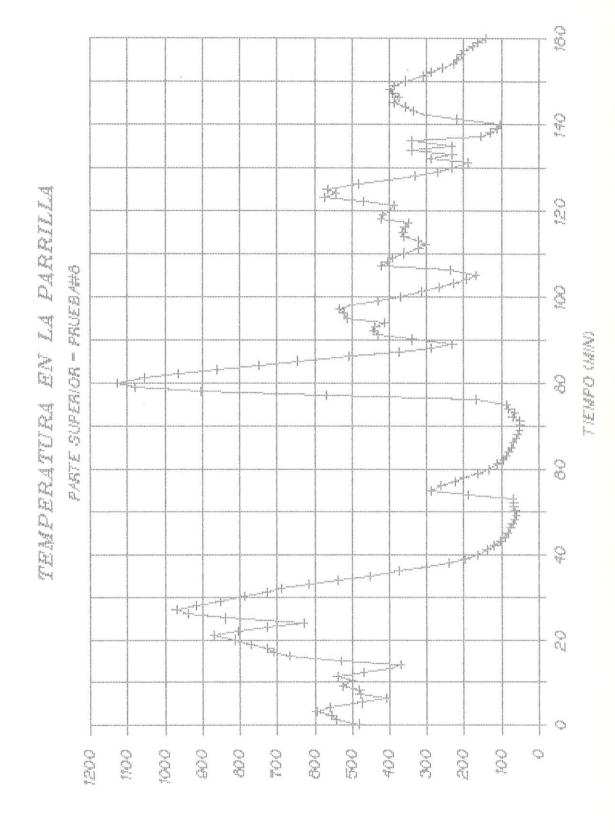
Consumo de cascarilla

: 16.69 Kg

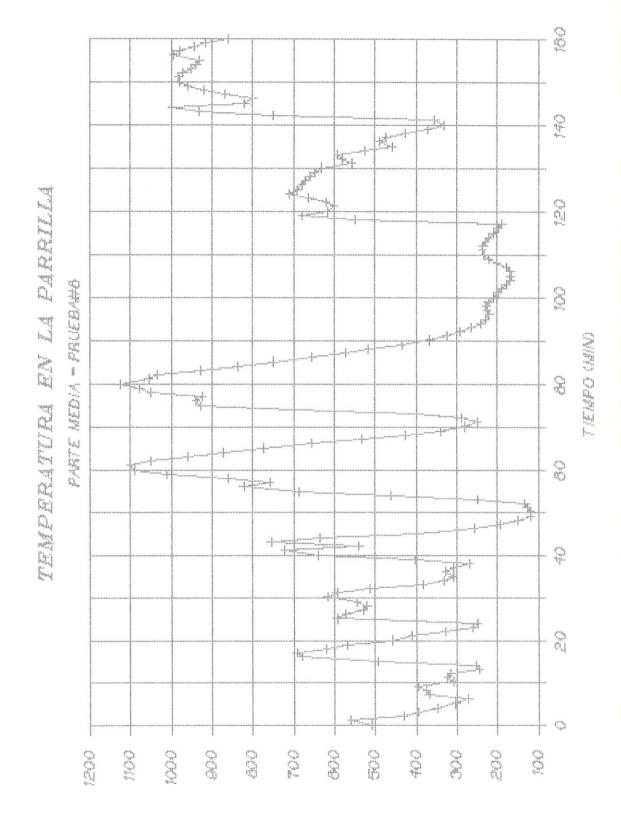
Tiempo de duración de la prueba : 161 min

Flujo másico de cascarilla : 0.001728 Kg/seg

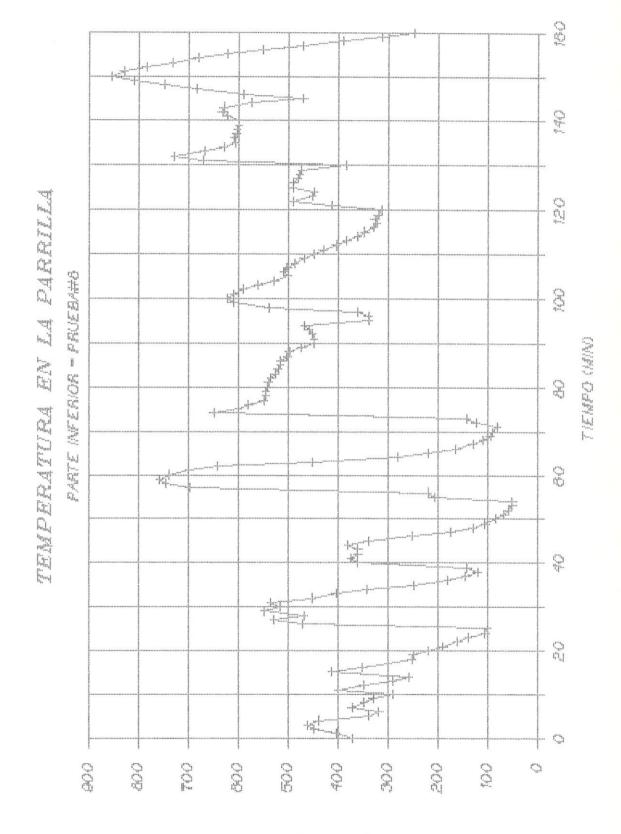
6.21 Kg/hr

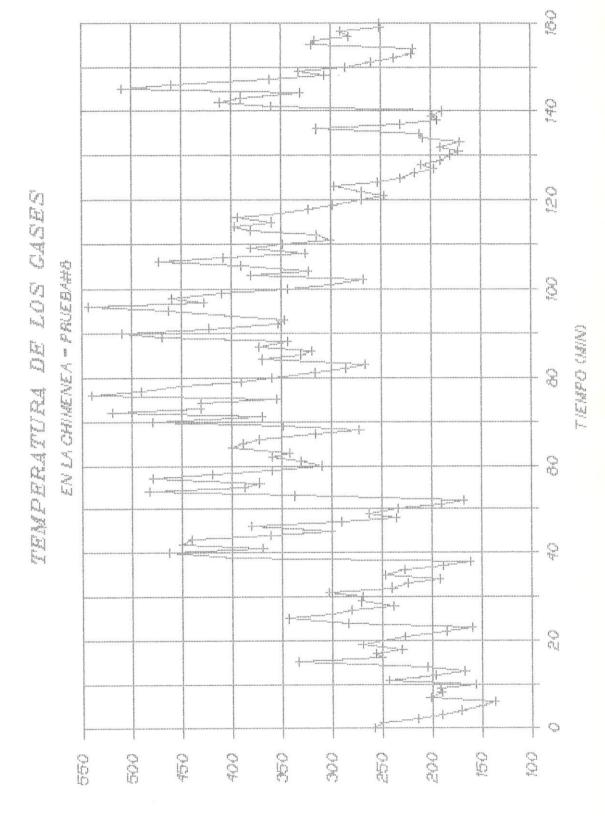

Volumen de la cámara de combustión : 0.107578 m3

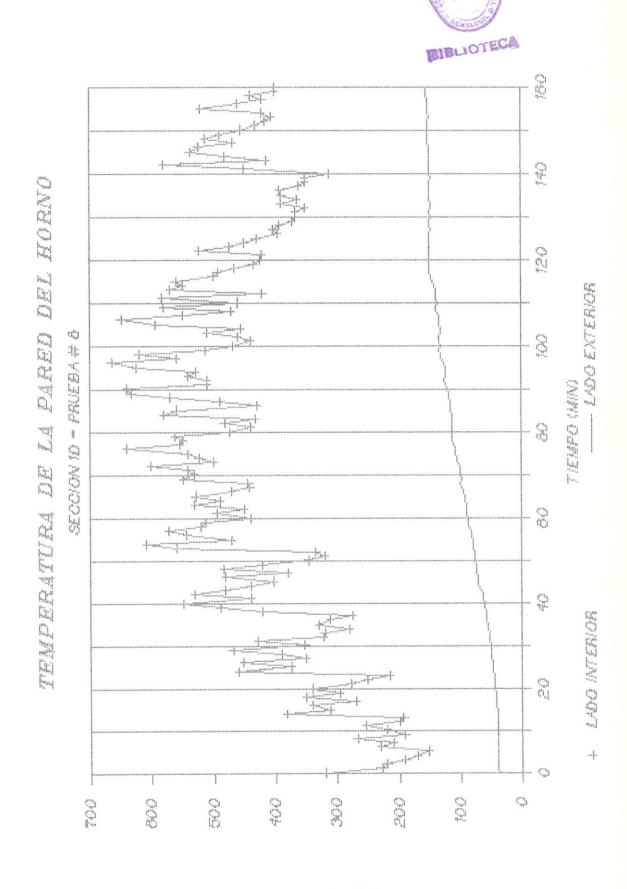
Tiempo al que empieza Medicion Nº1 : 30 min


ANALISIS DE LOS GASES

MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
	3.2	17.6	0
13.	3.8	17.4	0
7	1.8	20	0
9	4.2	17	0







CONFRONTERSOMBL

TEMPERATURAS DE LOS GASES A LA SALIDA DEL HOGAR

PRUEBA # 8

MEDICION; Nº	TEMPERATURA (°C)
1	437
2	482
3	551
4.	553
5	600
6	538
7	
8	460
9	101

^{*} Temperaturas Estimadas

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 8

9	D	40	42	47	09	50
SECCION	ت ت	40	43	45	55	51
SEC	00	51	49	51	75	57
	A	56	52	53	53	49
10	А	63	57	55	89	64
SECCION	0	20	56	65	63	99
SEC	A B C	99	62	8	65	68
	A	54	77	114	116	102
4	A B C D A B C D	139	129	104 140 114	120 110 110 115 116	68 54 127 113 131 103 102
SECCION	ت ت	65	87	104	110	131
SEC	<u>—</u>	139	84 110	122	11011	113
	A !	73 139	84	88	120	127
<u>ო</u>	А	40	45	9	9	54
SECCION	0	88	29	73	89	
SEC	B	48	69	06	75	12/
	A	2	74	108	95	34 111 100 75
2	10	48	106	115	35 115	111
SECCION	0	54	02	43		134
SEC	B	53	103	127	140	145
	A	46	106	134	150	150
	0	41	92	116	140	152
SECCION 1	0	60 46 65 41 46 53	118 86 110 92 106 103 1	125 111 145 116 134 127 1	155 133 150 140 150 140 1	154
SECC	B	46	86	=	133	143
	A B C D A B	09	00	125	155	142 143 154 152 150 145 1
- MOTO FORM	MEDICION		8	5	7	0

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 8

12	Q	46	28	21	49
	0	46	53	49	51
SECCION	m	62	86	85	75
S	A	64	61	64	
	A	75	124	148	96 110 61
ON 1	0	70	100	85 148	96
SECCION 11	BICIDAIB	69	121	153	154
(C)	A .	71	103	131	124
10	Д	73	84 115 105 128 103 121 100 124	43 128 164 138 150 131 153	45 127 145 127 144 124 154
ON 1	ນ 	99	105	138	127
SECCION	В	75	115	164	145
S	come speci	09	1	128	127
	BICIDA	43	40		45
6 NO	0	44	42	44	46
SECCION	B	41 47	47	49	47
SO.	A	41	41	53	51
ens sale etc		52	42 43	65	57 57 51 47 46
ON 8	C	57	42	28	57
SECCION	8	75	75	95	98
	A	46	44	63	57
SECCION 7	10	43	95	146	90 130 102 138 57 98
NOI	0	47	H	134	102
SECC	pq	44	85	140	130
	A !	100 44 47 43 46 75	128 85 111 95 44 75	147 140 134 146 63 95	90
	MEDICION A B C D A B	2	4	9	∞

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 8

MEDICION;	SE	CCION 13	1
NO	A ;	B	C
1	49	60	68
2	82	89	84
3	106	165	140
4	125	155	145
5	156	178	182
6	150	180	158
7	160	200	183
8	140	150	137
9	141	175	170

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

PRUEBA # 8

	Medic	Medición 1, Medición 2, Medición	Medic	ión 2	Medic	ión 3¦	Medición	ión 4¦	Medición	ión 5¦	Medición	ión 6	Medición	ión 7	Medición	ión 8	Medición	ión 9
Distancia	0.0	.06 1 .0	06 1 00	.06	06 00	.06	0	.06	0 0	.06	0 0	.06	0 0	.06	0 0	.06	0	06
g1	100	200	200	200	100	100	100	100	100	100	100	100	100	440	260	340	400	009
d2	300	320	300	280	220	400	200	200	200	200	200	280	500	009	380	460	200	640
d3	320	440	380	420	320	480	300	340	300	300	260	340	580	099	200	520	009	700
d4	520	520	200	440	380	500	320	300	300	400	340	220	640	099	620	540	089	680
d5	540	480	320	400	380	520	380	380	320	440	340	200	099	640	099	560	700	700
99	480	400	300	360	400	400	300	280	380	360	300	100	640	009	009	540	700	640

DATOS EXPERIMENTALES

PRUEBA # 9

HORNO AISLADO OPERANDO CON TIRO NATURAL

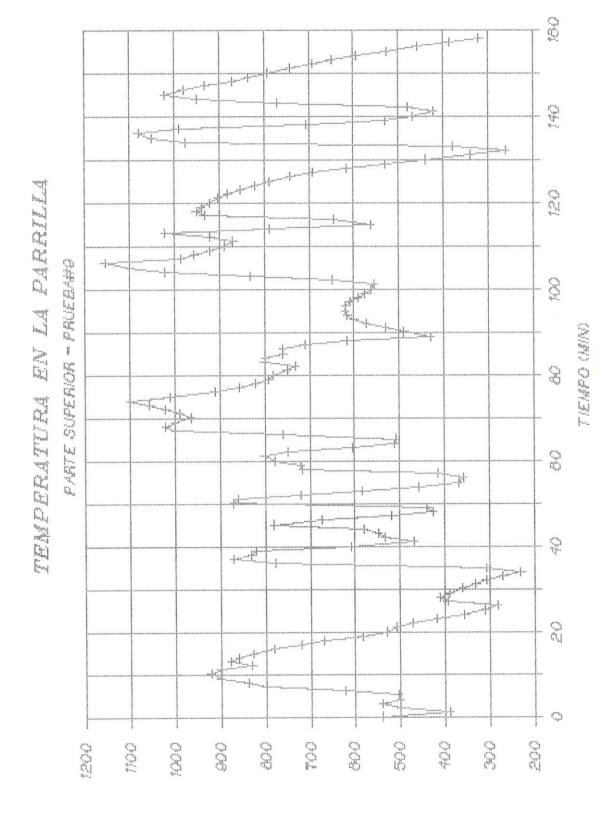
Inclinación de la parrilla : 50°

Temperatura ambiente (Ta) : 34°C

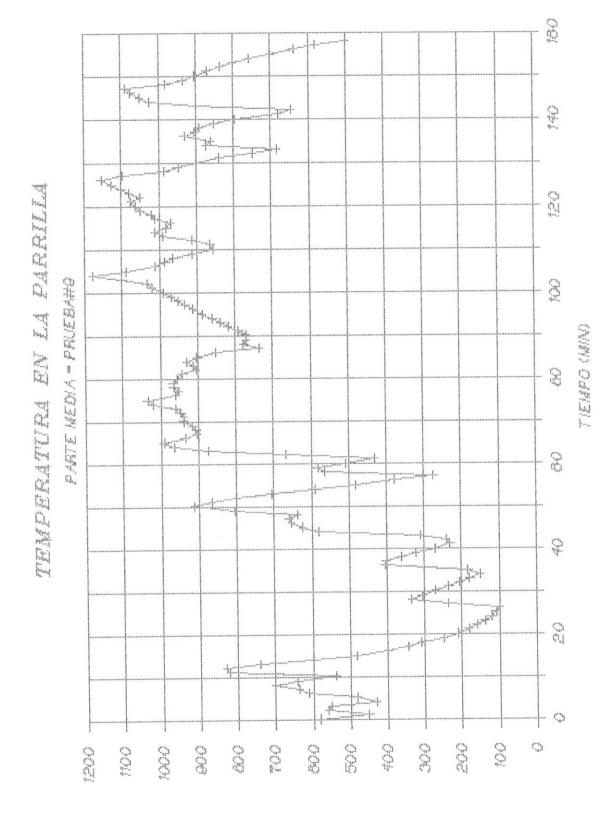
Consumo de cascarilla : 22.38 Kg

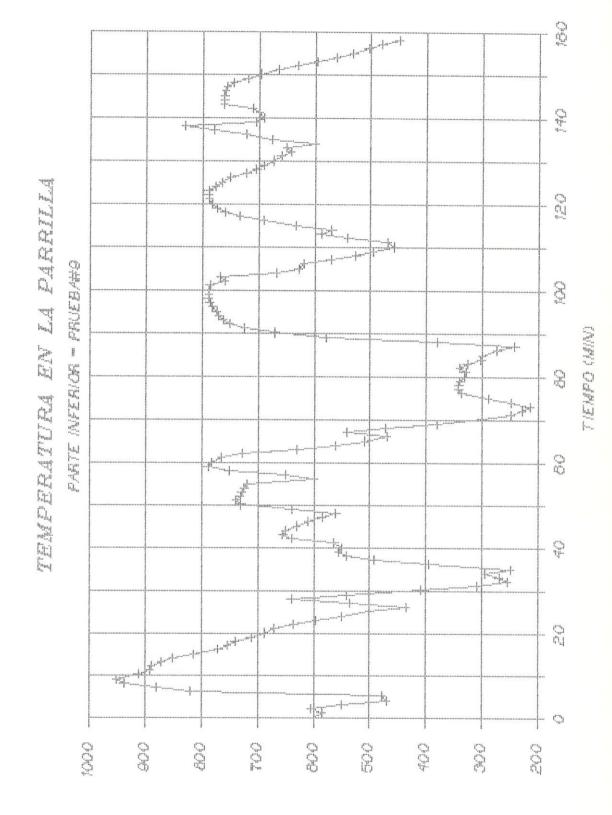
Tiempo de duración de la prueba : 159 min

Flujo másico de cascarilla : 0.002345 Kg/seg


8.44 Kg/hr

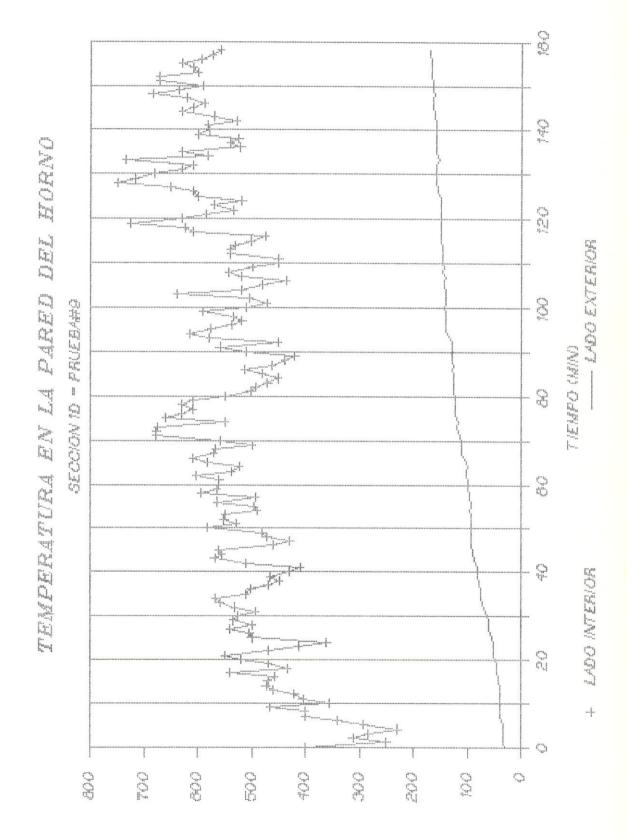
Volumen de la cámara de combustión : 0.104630 m³


Tiempo al que empieza Medicion №1 : 30 min


ANALISIS DE LOS GASES

MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	3.8	17.8	1
5	5.8	15.8	0
7	8.4	12.8	0
9	9.6	11-1	0.5

CORBNILL BONGL



DIDLIOTECA A LA SALOA DEL HORAR - PRUEDARO [,] [,] [, -17] ## - 14# ## - 14# ## - 14# \$ -52-2 \$ -52-2 \$ -52-2 \$ -52-2 \$ -52-2 \$ -52-2 [1 2] [1 1] [1 1] [1 1] [1 1]

 $\left[\left(\frac{1}{2}\right)^{2}\right]_{12}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right$

S#/GIBS - YINIYURI YINI 1,-11

Cobbonesees.

COPPOSTERS

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 9

9		39	46	47	45	44!
SECCION	0	40	45	47	49	44
SEC	m	44	49	52	51	45
	A B	48	48	54	53	45
2		20	58	55	57	45
SECCION	ט	25	99	99	61	61
SEC	A B C	70	75	70	69	99
	A	78	8	80	86	90
4	A	8	19	118	121	139
SECCION	0	90	66	115	133	50 137 150 146 139
SEC	B - C	120	97	120	138	150
	A	80	90	108	128	137
m —		45	49	56	47	20
SECCION	B C	09	61	61	54	70
SEC	m	78	75	70	58	75
	A	8	77	82	118	135 121
2	A	91	95	121	113	135
CION	υ l	82	82	110	157	192
SECC	m	84	96	135	140	134
		94	94	130	157	178
-	А	20	83	122	137	145
SECCION 1	U	105 70 93 70 94	108 91 104 83 94	130 125 120 122 130 135	152 130 150 137 157 140	170 121 183 145 178 134 1
SEC	B	70	91	125	130	121
	A	105	108	130	152	170
I MOTOTORY	No A B C D A	F-1	8	22	7	o.

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 9

	10	52	63	75	192
12		53	47 6	50 -	0
SECCION 12				5	0.15
SEC	B	64	63 103	06	1100
	A	70 65	- 1	09	202
	Ω		142	120	160
NO	U	70 67	100	100	100
SECCION 11	m	70	106	150	170
02	A	88	122	105	136
0		77	115	120	160
ON 1	ט	99	17	115	145
SECCION 10	m	40 60 75 66 71 68	45 116 150 115 115 122 106 100 142	98 115 120 105 150 100 120	140
Ŋ	¥	09	116	110	130
		40	45	50 110	20
SECCION 9	CID AIBICID AIBICID AIBICID AIB	41	46	54	53 50 130 140 145 160 136 170 100 160 70 100 50 75
ECCI		47 45 42 41	47	58	55
Ω	A	45	59	65	60 55
		47	48	12	75 71
ON 8	ט	22	58	76	
SECCION	Д	56	99	88	105
w	A	22	9	130	70
7	A B C D A B		121 105 105 107 60 66	85 105 108 115 70	110 140 115 125 70 105
SECCION 7	0	87 67 78 71	105	108	112
SECC	m	67	105	105	140
	W	87	121	85	110
MEDICION	No	8	4	9	89

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 9

MEDICION;	SI	ECCION 13	3
No	A	B	С
1	97	115	116
2	80	90	75
3	105	145	140
4	140	165	145
5	147	153	125
6	150	160	255
7	139	140	103
8	160	170	160
9	165	178	168

353

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

-		ción 1	Medic	Medición 1, Medición 2, Medición	Medic	ión 3¦	Medición	ión 4	Medición	ción 5	Medición	ión 6		Medición 7	Medición	sión 8	Medición	ión 9¦
Distancia	1 1	.06 1 .0	0	06 1 00	0 0	00 1 00	0	.06	0	.06	0 0	.06	0	.06	0	.06	0	.06
d1	120	440	320	480	320	480	340	500	200	400	360	300	380	400	300	420	240	340
d2	140	260	620	280	640	260	580	640	240	380	540	540	640	640	580	099	520	520
d3	700	099	700	620	680	620	099	760	280	300	640	620	720	700	620	720	620	620
d4	720	700	089	720	680	099	620	780	300	200	099	099	740	720	680	760	640	720
d5	740	720	640	740	700	700	009	760	320	220	680	680	760	780	700	780	099	800
90	720	680	099	700	700	780	580	720	300	200	099	099	720	740	680	740	640	780

TIRO EN LA CHIMENEA

NAMES AND ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY.	IN THE PARTY COURS WITH WHITE COURSE ARROW STORE STATES ARROW MADES ARROW STORES
MEDICION;	TIRO (PULG. AGUA)
1 1	0.03
2	0.04
3	0.05
4	0.03
5	0.04
6	0.03
7	0.03
8	0.03
9	0.04

DATOS EXPERIMENTALES

PRUEBA # 11

HORNO AISLADO OPERANDO CON TIRO NATURAL

Inclinación de la parrilla : 50°

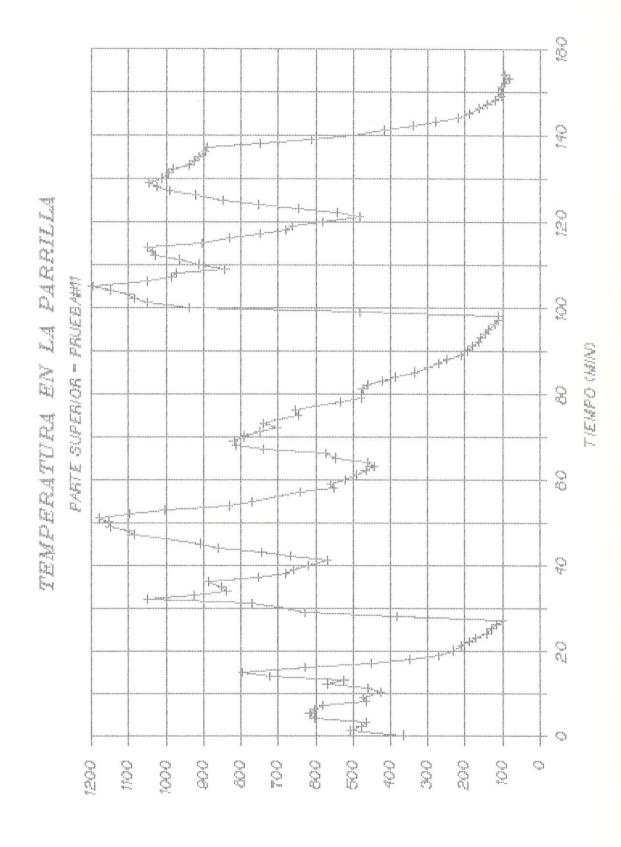
Temperatura ambiente (Ta) : 33°C

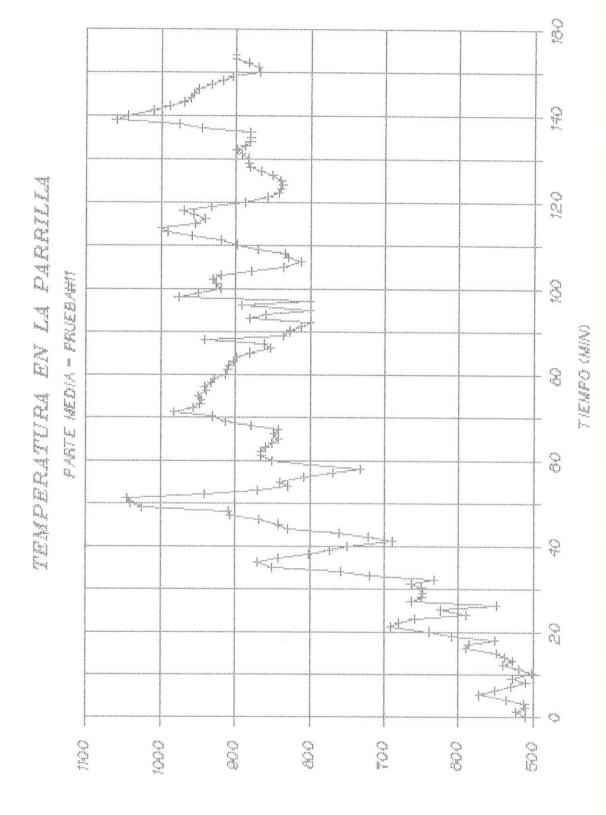
Consumo de cascarilla : 22.56 Kg

Tiempo de duración de la prueba : 154 min

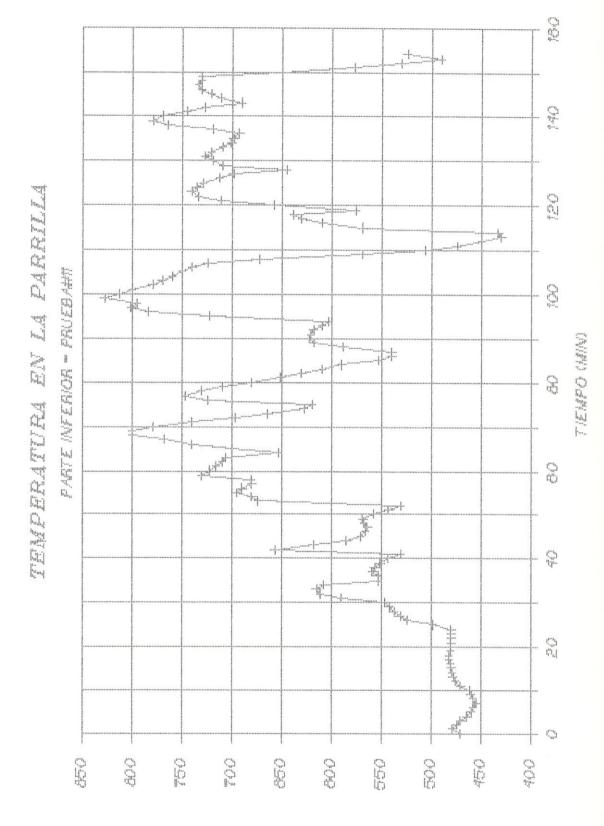
Flujo másico de cascarilla : 0.002441 Kg/seg

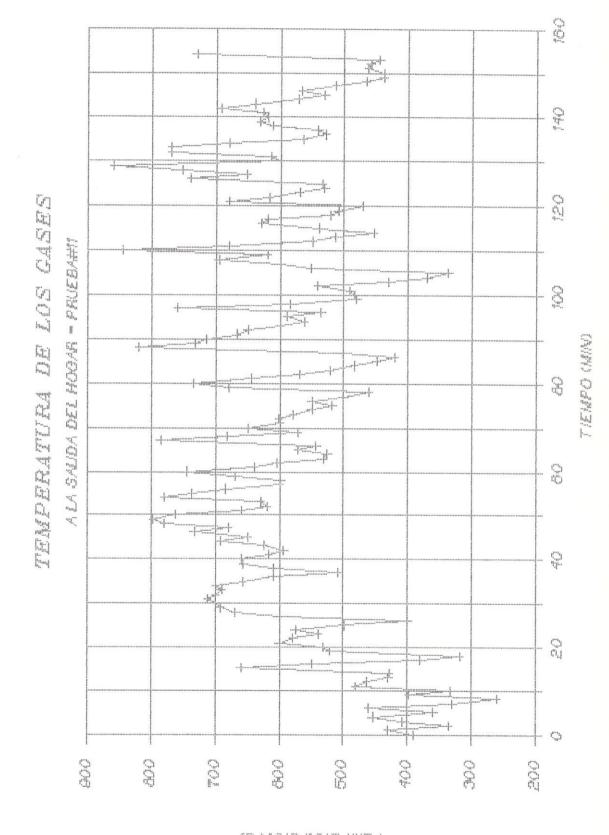
8.79 Kg/hr

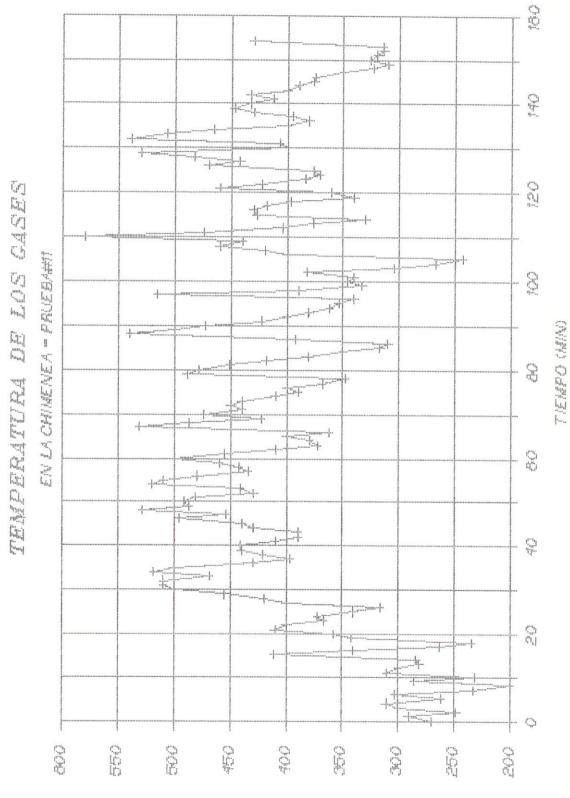

Volumen de la cámara de combustión : 0.104630 m³


Tiempo al que empieza Medicion Nº1 : 30 min

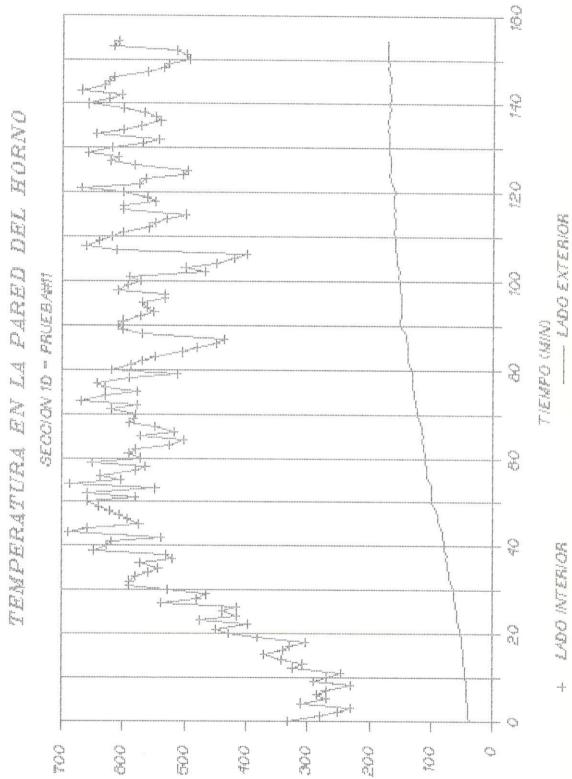
ANALISIS DE LOS GASES


MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	7.8	13	0
5	4.6	16.6	0
7	5.2	16	0.2
9	7.2	14.2	0.2


C. Henry Jens



CONTRACTOR



Carbyathy serigi

 $\left[\left[\frac{1}{2},\frac{1}{2}\right]_{11},\frac{1}{2}\right] = \left[\left[\frac{1}{2},\frac{1}{2}\right]_{11},\left[\frac{1}{2}\right]_{11},\left[\frac{1}{2}\right]_{12},\left[\frac{1}$

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

INCTOTAG		SECCION 1	NOI			SEC	CCION	2		SEC	SECCION	n		SEC	SECCION	4		SEC	SECCION	5		SEC	SECCION	9
No	4	BCD	0		A	М	O	А	A !	B	0	A	A	B	B - C -	A	A !	A B C	5	Ω	A	ABIC	5	P
quad	73	9	74	52	82	26	8	64	82	64	62	22	02	100	06	88	65	77	54	75	20	88	48	57
8	120	95	892		95 110 105	105	06	105	85	82	09	28	92	110	08	86	75	70	65	20	55	57	9	62
5	144	144 120 137 124 135 115	137	124	135	115	130	115	96	85	75	20	99	82	118	112	100	70	88	61	2	63	65	67
7	125	125 138 165 132	165	132	84 103	103	141	134	96	83	56	46	124	115	H	H	88	8	74	74	64	2	61	09
6	185 159 160 147 146 152 174	159	160	147	146	152	174	131 123	123	79	67!	521	52 140 110 140 107	110	140	107	98	192	64	48	64	62	65	64

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 11

SECCION 7	ION			S	SECCI	ON 8		S	SECCION	6 NC		M.	SECCION	ON 1	10	02	SECCION	ON 11		S	SECCION	N 12	01
AIBICIDIAIB	CIDAIB	D A B	A B	B		0	А	A	B	0	10	A	pg	0		A	CID A B C D A B C D A B C B A B C B A B	5	 A	A	 M	0	0
108 77 128 79 99 86	128 79 99 86	79 99 86	99 86	86		79 65	65	23	46	88	40	92	70 110 81	18	95	84	95 84 104	82 100		8	93	65	99
80 115 102 95 80 85	80 85	80 85	85		i i	77	63	61	59	25	20	88	88 114	66	112	122	99 112 122 134	98 112		82	96	65	69
101 97 95 115 75 96	98	98	98					63	59	52	51	121	138	136	51 121 138 136 145 154 154	154	154	93 111	크	6	93	57	63
105 127 122 127 77 78						80	73	72	65	61	09		160	136	170	143	73 72 65 61 60 111 160 136 170 143 170 117 151 67 91	177	151	67!	911-	63	65

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 11

MEDICION		ECCION 13	T TORRE SHOW MANY AND COURT SHOW GALLY
No		B	С
1	97	113	101
2	90	108	84
3	130	165	145
4	131	144	130
5	117	150	134
6	135	178	138
7	165	192	163
8	143	153	136
9	78	170	174

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

ón 9¦	06	400	200	640	680	700	720
Medición	0						
8 Me		400	009	099	680	700	720
	.06	480	009	700	740	700	680
Medición	°	400	540	620	640	680	099
ión 7	.06	400	540	009	640	099	009
Medición	0 0	400	580	640	620	640	009
ión 6	.06	400	200	009	620	099	640
Medición	0 0	480	540	620	089	680	099
ión 5	.06	440	520	620	099	680	640
Medición	0	400	009	640	680	640	620
on 4	000	400	009	099	640	580	200
Medición	.0	420	620	680	640	620	009
Lón 3;	.06	480	580	099	700	740	780
Medic	.06 1 .0	560	640	099	099	680	640
lón 2,	.06	480	009	700	780	800	800
Medic	.06 1 .0	420	099	700	740	760	720
Medición 1 Medición 2 Medición	.06	480	009	640	099	720	700
Medici	.06 : .0	460	009	660	089	700	720
+	-	d1	d2	ශ්ය	d4	d5	90

TIRO EN LA CHIMENEA

MEDICION:	TIRO (PULG. AGUA)
1	0.03
2	0.03
3	0.03
4	0.03
5	0.03
6	0.03
7	0.04
8	0.04
9	0.02

APENDICE F - 3

DATOS EXPERIMENTALES OBTENIDOS DEL HORNO OPERANDO CON
TIRO INDUCIDO Y AISLADO

DATOS EXPERIMENTALES

PRUEBA # 12

HORNO AISLADO OPERANDO CON TIRO INDUCIDO

Inclinación de la parrilla : 50°

Temperatura ambiente (Ta) : 28°C

Consumo de cascarilla : 31.61 Kg

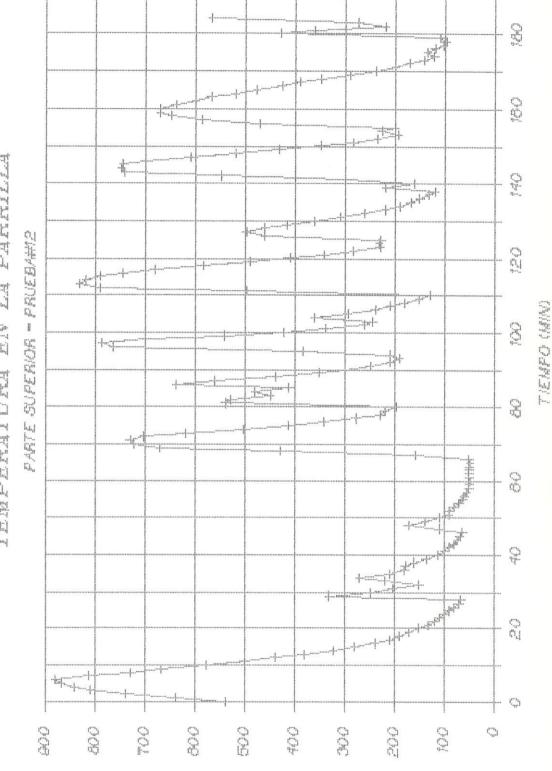
Tiempo de duración de la prueba : 185 min

Flujo másico de cascarilla : 0.002848 Kg/seg

10.25 Kg/hr

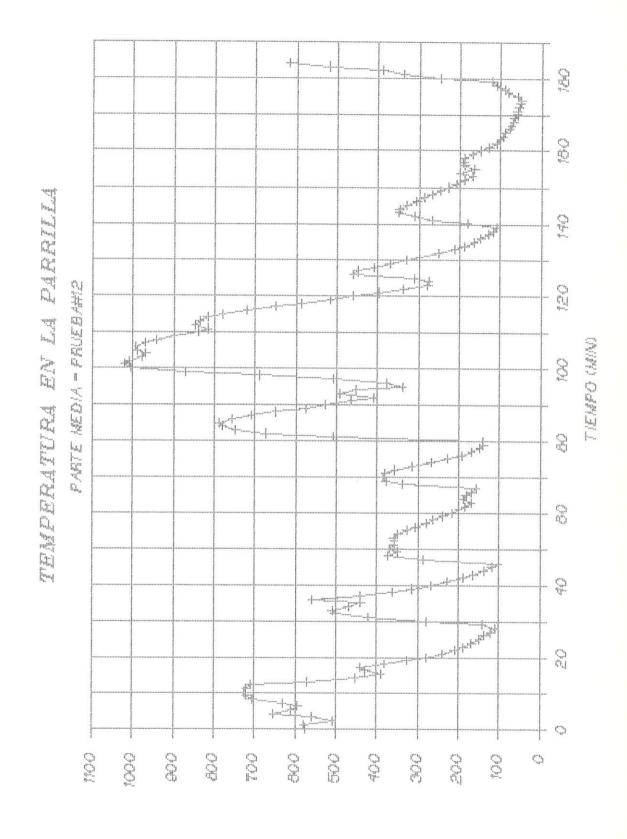
Volumen de la cámara de combustión : 0.104630 m³

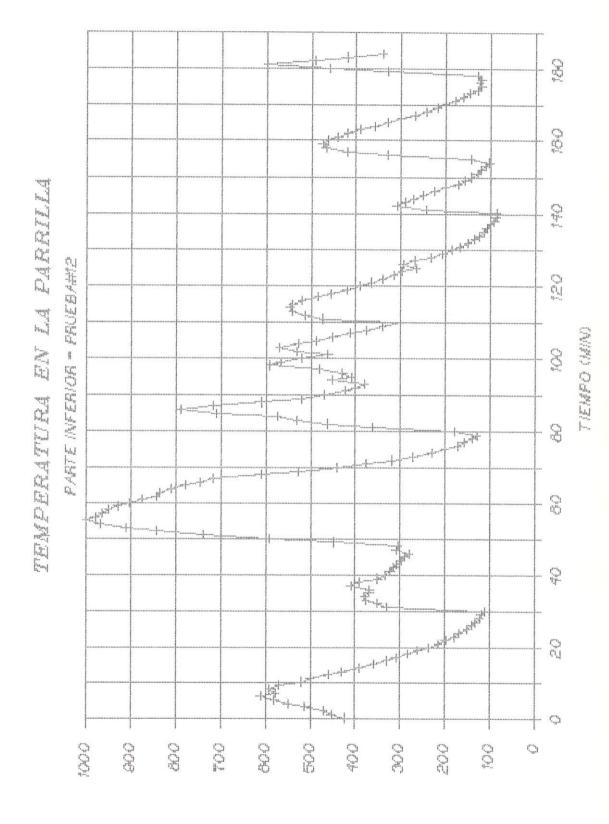
Tiempo al que empieza Medicion Nº1 : 60 min

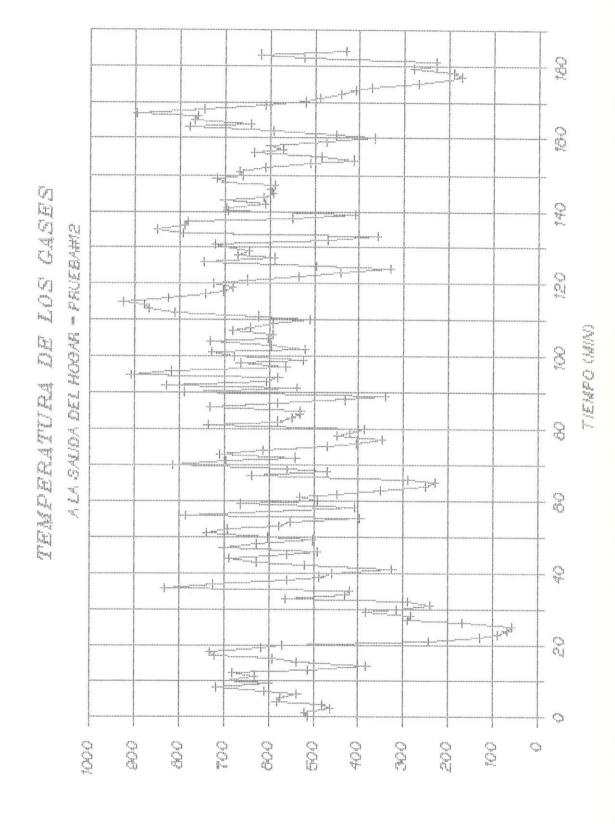

Humedad relativa ambiental : 80 %

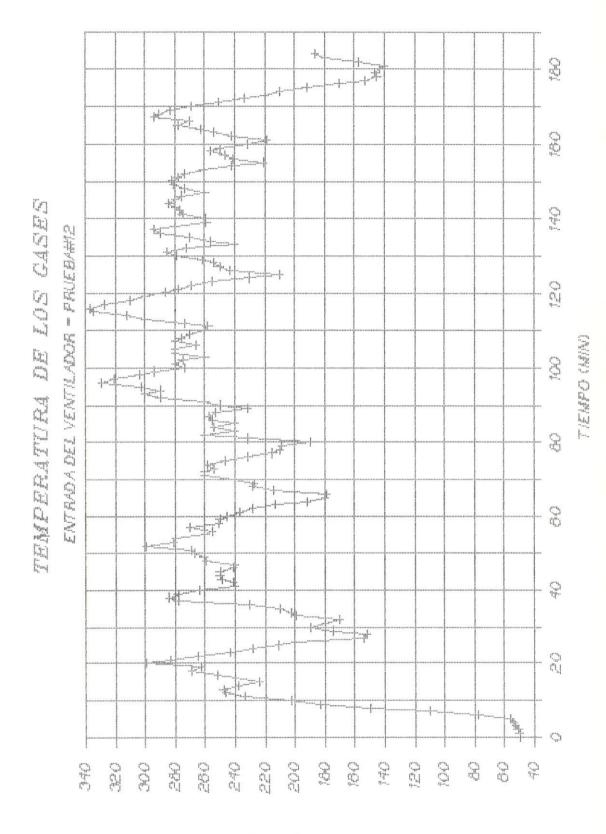
Presión estática simulada : 22.66 mm de agua

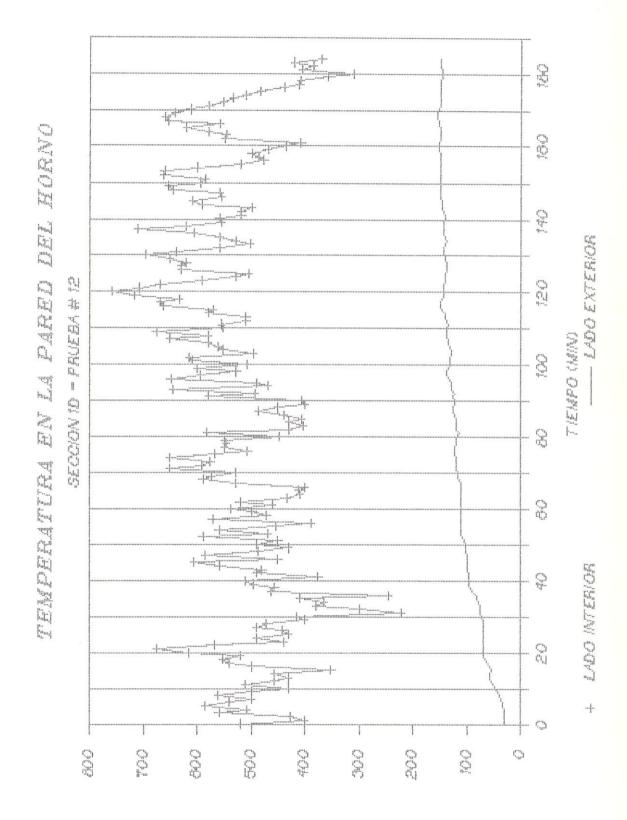
ANALISIS DE LOS GASES


MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	7	12.8	0.6
5	9.8	10.6	0
7	5.6	15	0
9	8.4	12	0


FIZZETS FI NG FEGIVERS


COPPOSEDER





Carbanterent

TEMPERATURAS DE LOS GASES EN LA CHIMENEA

PRUEBA # 12

MEDICION; Nº	TEMPERATURA (°C)
1	316
2	322
3	342
4	520
5	460
6	380
7	465
8	440
9	350

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 12

ON 6	C - D	34 33	38 37	36 38	39 37	32 32
SECCION	B - 0	38-	42	44	421 3	35.
	A - H	371	42	40 4	43	37, 3
2	- A	47	63	58	53 4	40; 3
	C	48	49 6	48 -	58 5	50 4
SECCION		78 4	1	73 4	80 5	59 5
Ω.	 B	i	4 107			
	A	5 104	0 104	88	2 84	91 85
N 4	Q 	82	80	82	82	31 90
SECCION	Ü 	92	88	93	88	81,103
SE	<u>m</u>	85	99	76	82	
No. 147	A	83	99	96	87	87!
(C)	9	47	55	45	53	46
SECCION	υ	73	20	78	74	64
SE(m	62	70	09	72	611
1	W	89	91	124	96	155 111 100
8	A	100	107	93	110	
CCION	0	120	108	136	128	155
SEC	B	107	116	130	135	MIN 1000 MIN 1600
1	A	140	103	152	160	178
	A	92	104	125	8	142
NOI	0	150	105	159	143	164
SECCION 1	m	97	98	120	116	121
	A B C D A B	143 97 150 92 140 107	112 96 105 104 103 116	164 120 159 125 152 130	128 116 143 100 160 135	144 121 164 142 178 141
MEDICION	No	-	8	5	7	6

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

SECCION 12	A B C D A B C D A B C D	22 71 88 35	91 59 68 51	40 68 87 52	
SECCION 11	C	82.1	5 77	9 80 140	
SEC	A	103 13	110 12	126 16	
SECCION 10	C I D	92 118 104 146 103 132 82 122 71	97 119 96 122 110 125 77	36 116 135 120 162 126 169	00 0000
SECCI	A B	92 118	97 119	116 135	1001100
0	A	35	88	,	
SECCION	BICID	37 36	40 39	39 37	281 271
 w	A	3 37	45 42	48 41	5
ON 8	C D	40 43	46 4	50 4	171 171
SECCI	B	7 78	3 82	8 44	2
7	D A	96 57	68 83 85 89 73 95	70 95 111 115 78	76 86 93 100 73 89
SECCION 7	0	88	3 82	5 1111	e
and the same of th	ABCDA	71 80	88	70 95	76.8
MEDICION	No	2	4	9	α

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 12

MEDICION;	S	ECCION 1	3
Nº .	A	l B	l C
1	117	171	137
2	116	166	130
3	110	116	128
4	113	133	125
5	133	178	143
6	135	175	149
7	127	190	151
8	144	175	144
9	143	177	150

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES EN EL FILTRO DE GASES

PRUEBA # 12

MEDICION Nº	SECCION	SECCION 15	SECCION 16	SECCION
1	89	98	94	79
2	102	72	68	63
3	196	166	121	102
4	185	161	140	108
5	133	104	82	76
6	148	104	99	93
7	119	151	133	106
8	170	142	113	96
9	106	74	66	66

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

PRUEBA # 12

+	Medición 1	Medición 1 Medición 2 Medición 3	Medición 3	Medición 4	Medición 4 Medición 5 Medición 6 Medición 7 Medición 8	Medición 6	Medición 7	Medición 8	Medición
DISCOURTS	1		06 00	06 1 00	-	06 1 00	0	.0	
t _o	220 400	400 200 300	350 300	400 340	380 300	280 220	500 440	200 500	350 440
dZ	320 160	200		480 420 440	440 380 380	380 300			400 500

VELOCIDADES (pie/min) DE LOS GASES QUE SALEN DEL VENTILADOR

PRUEBA # 12

	Medici	ón 1;	Medición 1 Medición 2 Medición	on 2	Medici	on 3	Medición 4	ión 4¦	Medición	ión 5¦	Medición 6	ión 6	Medic	ión 7	Medición 7 Medición 8	ión 8	Medición	ión 9¦
Vistancia	.06 1 .0		.06 1 .0	.06	06 1 00	.06	0	.06	0 0	.06	0 0	06	0.0	.06	.0	.06	0 0	900
	2100	2100	2100; 2100; 2050; 1950	1950	2050;	1900	2100	2000	2150	2100	2100;	2200	2100	2000	2300	2100	2300	2150
	2900	2700	2900 2700	2700	2900	2700	2850	2700	2950	2900	2900 ;	2700	2900	2700	2850 ¦	2750	2900	2800
	3200 2900	2900	3200 3000	3000	3200 3000	3000	3150	3050	3200	3200	3200	3000	3200	3000	3200	3050	3250	3000
	3550	3200	3550	3200	3650	3200	3650	3150	3550	3450	3550	3200	3600	3200	3650	3250	3600	3300
1	3700	3750	3700 3850	3850	3700; 3900	3900	3700	3850	3700	3950	3650	3850	3800	3850	3700	3950	3700	3900
	3800 3900	3900	3750 4000	4000	3750	4050	3750	4000	3800	4100	3700	4000	3750	4050	3750	4000	3800	4000
	3850	3950	3800	3950	3900	4000	3850	3950	3850	4500	3650	3950	3900	4000	3850	3900	3850	3850
	3800	3400	3800 3400 3850 3800		3900 3850	3850	3900	3700	1	3800 4000	3700	3850	3850	3800	3950	3700	3800	3700

TEMPERATURAS DEL AIRE DE SECADO A LA DESCARGA DEL VENTILADOR

PRUEBA # 12

MEDICION; Nº	TEMPERATURA BULBO SECO (°F)	TEMPERATURA BULBO HUMEDO (°F)
1	115	88
2	111	89
3	110	88
4	114	86
5	116	88
6	111	89
7	111	88
8	110	90
9	111	90

DATOS EXPERIMENTALES

PRUEBA # 13

HORNO SIN AISLAMIENTO OPERANDO CON TIRO INDUCIDO

Inclinación de la parrilla : 50°

Temperatura ambiente (Ta) : 27°C

Consumo de cascarilla

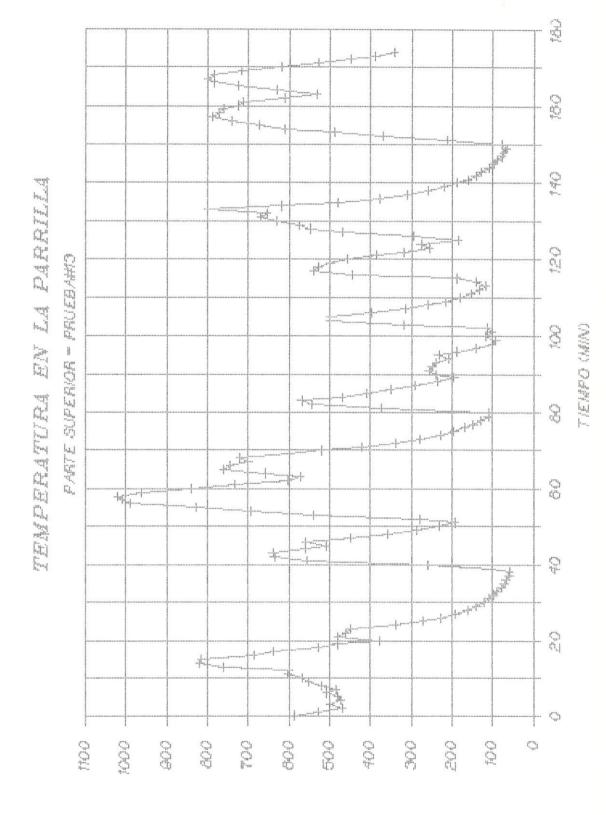
: 29.57 Kg

Tiempo de duración de la prueba : 175 min

Flujo másico de cascarilla : 0.002816 Kg/seg

10.13 Kg/hr

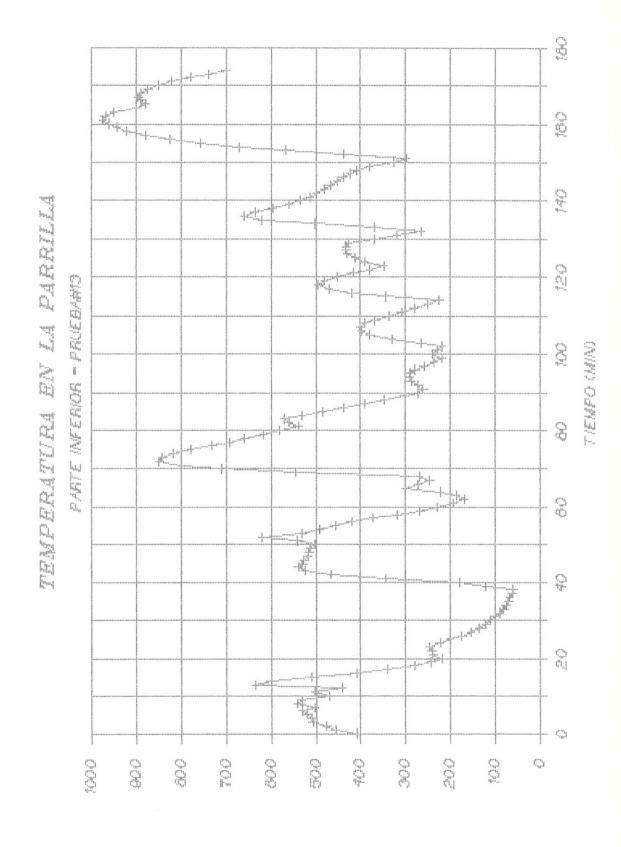
Volumen de la cámara de combustión : 0.104630 m3

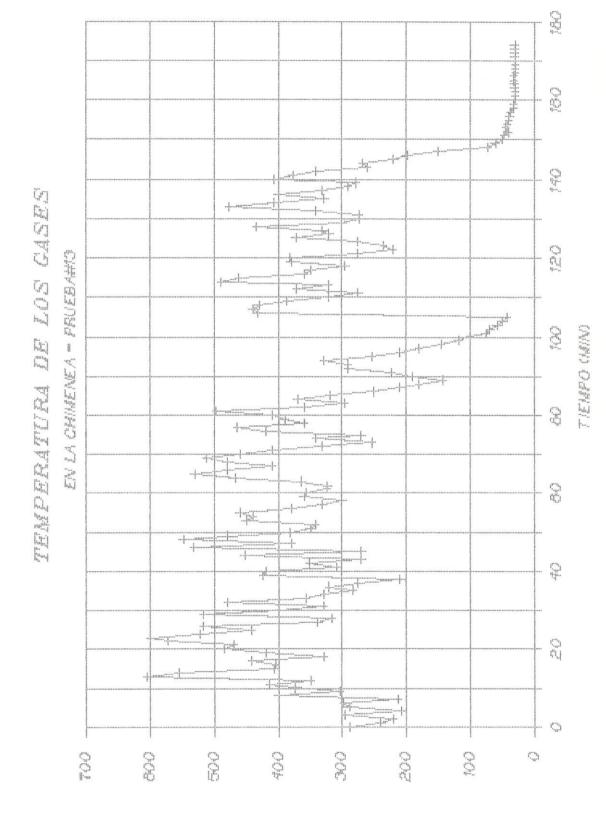

Tiempo al que empieza Medicion Nº1 : 45 min

Humedad relativa ambiental : 80 %

Presión estática simulada : 22.66 mm de agua

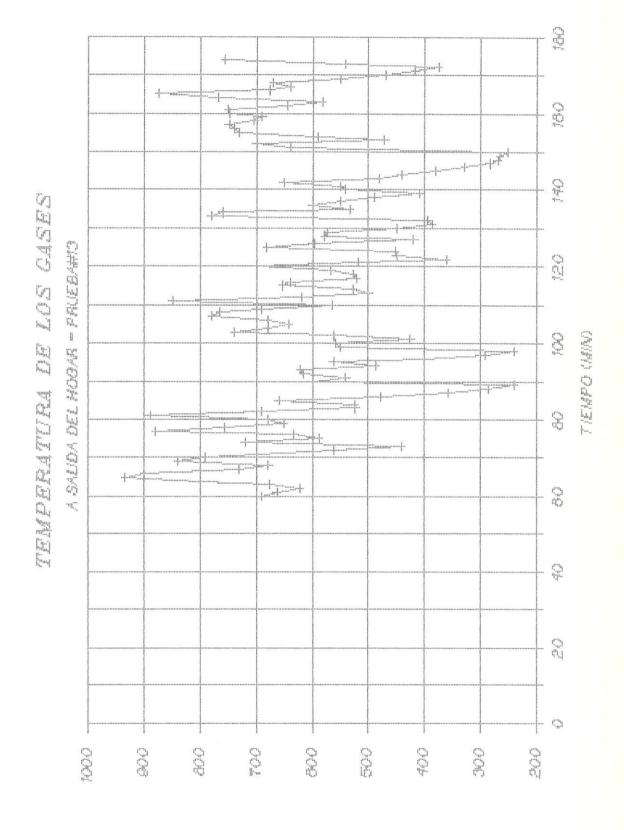
ANALISIS DE LOS GASES

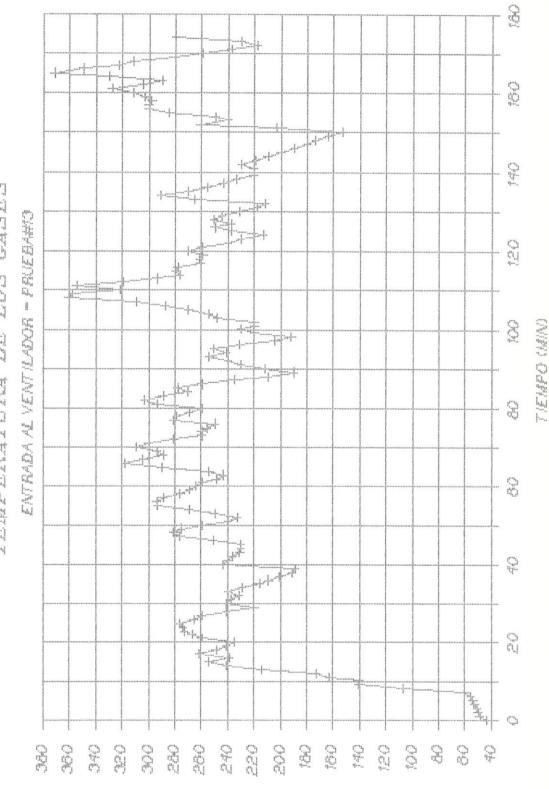

MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	4.8	15.4	0.2
5	7.6	12.6	0.8
7	Sharp Cam [®]	15.6	1.2
9	17	1.8	8.2



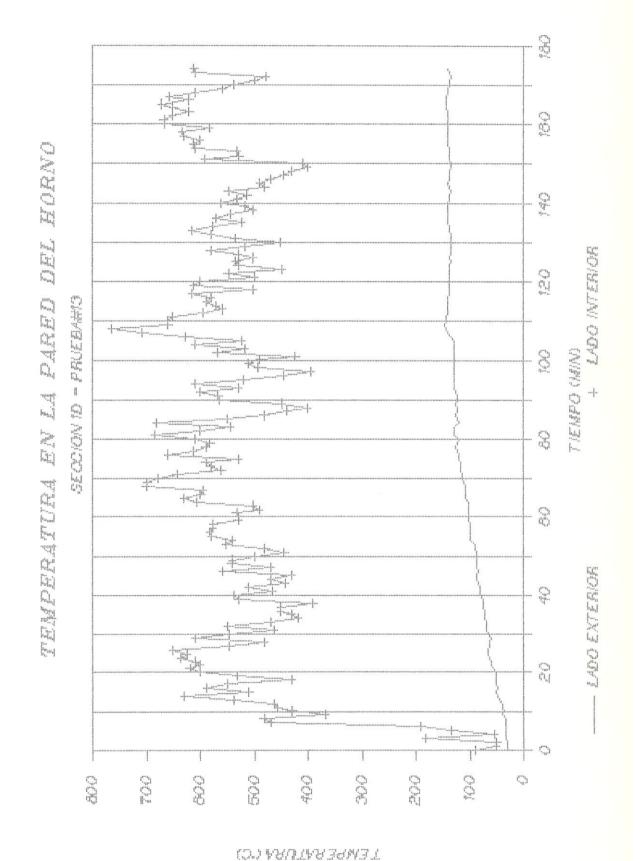
CAPERATURA (AC)

17.21 17.21 17.21 17.21 1, 12, 14 1, 12, 14 1, 12, 14 1, 12, 14 1, 12, 14 TENDERGER EN EL PARKEL $[\frac{1}{i}]_{i+1}^{i+1}$ 1,21 -12 1, 200 j 1, 1, 1,


(D) PHOIPH FOME 1



COPERTY SERVEL



SEST SOT BE TELEVISION IN

COPROLPERONEL

TEMPERATURAS EXTERIORES DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 13

9	П		40	34	38	35
SECCION	 ಲ	35	411	35-	39	33
SECC	B C	40	42	36	40	38
	A !	36	44	37	411-	37
5	Ω	41	47	47	42	41
SECCION	 ව	44	53		43	42
SEC	 M	48	9	44	47	46
	A !	72	82	74	9	
4	а	75	91	95-	83	93,103
SECCION	ט	8	83	97	62	93
SEC	<u>м</u>	74	8	92	63	101
] 	A	68	99	100	95	98
(n)	A	47	61	54	52	44
SECCION	 ບ	79	73	82	- 61	63
SEC	<u>m</u>	65	63	63	70	53
	A !	97	100	110	88	92
2	А	87	111	94	116	93
CCION	ט	109	115	170	128	128
SEC	М	91	116	165	124	119
	A	117	110	195	138	162
-	П	75	112	135	=	131
SECCION 1	0	103 75 150 75 117 91	116 102 114 112 110 116	136 123 172 135 195 165	98 95 107 111 138 124	176
SEC	m 	75	102	123	95	130
	A B C D A B	103	116	136	88	91 130 176 131 162 119
NOTOTOEM	NO		8	22	7	6

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 13

ON 12	CID	49 75	51 43	45 51	33 38
SECCION	В	8	77	75	63
01	A	72	19	57	59
H		88 122	96 108 61	82 125 57	33 33 100 106 104 109 80 122 90 92 59
LON	Ü	88	96	82	90
SECCION 11	B	129	112	167	122
	A B C D A B C D A B C D	83 127 98 130 97 129	98 106 110 96 112	35 114 165 143 138 118 167	80
10	D	130	110	138	109
SECCION 10	C	88	106	143	104
SECC	B	127	88	165	106
	A	88	37 100	114	100
О	Q -	37	37	-	33
TON	0	38	88	38	
SECCION	B	40	39	39	34
	A	43	40	39	40 42 34
∞	C i D	48	43 44	42 47	1 42
SECCION	0	54	1		
SEC	B	76	2 97	98 10	31 28
	A	2	2 52		1
SECCION 7	A	8	8 92	8 110	0
CCIO		2	11 78		- 19
S F	AIBICIDIAIB	65 82 81 86 57 76	78 81 78 92	86 97 118 110 50	67 76 80 81 46 58
MOTOTOR	No	2	4	9	8

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

MEDICION	SI	ECCION 13	**************************************
NO !	A	B	С
1	106	134	116
2	108	167	116
3	126	153	132
4	139	142	134
5	139	166	144
6	124	166	138
7	126	162	150
8	92	135	132
9	123	161	146

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES EN EL FILTRO DE GASES

PRUEBA # 13

MEDICION Nº	SECCION 14	SECCION 15	SECCION 16	SECCION
1	154	115	113	72
2	181	117	117	120
3	112	195	131	116
4	155	140	127	111
5	133	105	97	94
6	107	88	74	111
7	108	122	109	122
8	124	106	95	91
9	116	107	99	88

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

PRUEBA # 13

	.06		240
Medi	0 0	220	300
Medición 6 Medición 7 Medición 8	.06	200	240
Medi	°	240	200
ción 7	.06	480	400
Medi	0	360	300
ión 6	.06 1 .0	420	360
Medic	0 .0	460	200
4 Medición 5	.06	400	440
Medic	0	240	400
ión 4	.06	200	340
Medición	0	300	380
ión 3¦	.06 .0	280	380
Medic	0 0	220	360
ión 2	.06	200	300
Medic	.06 1 .0	200	400
Medición 1, Medición 2, Medición	.06	240 200 220 280	300 400 300
Medic	1	360	300
	Distancia	d1	d2 300 300 400 360 380

VELOCIDADES (pie/min) DE LOS GASES QUE SALEN DEL VENTILADOR

	Medic	ión 1	Medición 1 Medición 2 Medición	ión 2¦	Medici	ión 3¦	Medic	Medición 4;	Medición 5	ión 5¦	Medición 6	ión 6	Medición 7, Medición 8,	(ón 7	Medici	lón 8¦	Medición	ón 9
Vistancia	0.1	.06	0. 1 .00 . 1 .00 . 1 .00 . 00 . 1 .00	.06	0 0	.06	0 0	900	- 0	.06	06 1 00	.06	0.	.06	0.	.06	1.00	900
dl	2800	2800	2800; 2800; 2800; 3000; 2800; 3000	3000	28001	3000	3000	2200	2600	3000	2600	2600	2600	2900	1600	2800	2800	1600
d2	3700	3750	3700; 3750; 3800; 4000; 3800; 4000	4000	3800	4000	3600	3600	3400	3800	3400	3600	3500	3800	3300	3700	3400	3800
d3	4000	4200	4000, 4200, 4100, 4500, 4000, 4400	4500	4000¦	4400	4000	4100	4000 ;	4200	4000	4200	3900	4200	3900	4200	3800	4200
d4	4000¦	4500	4000; 4500; 4000; 5000; 4200;	2000	4200	2000	4000	4500	4100;	4800	4100	4600	4000	4600	4100¦	4700	4000	4600
d5	5000	4600	5000 4600 5000 5100 5000 5100	5100	5000	5100	4900	4500	5100	2000	2000	4800	5000	4700	5000	4800	4900	4700
90	5100;	4800	5100 4800 5200 5200 5400 5000	5200	5400¦	5000	5100	4400	5300	4900	5200	4800	5200	4800	5200	4700	5000	4600
d7	2000	4950	4950 4900 5300 5300	5300	5300	5300	5000	4600	2000	4900	5000	4900	4800	5000	5200	4800	4600	4800
98	4600	4900	4600 4900 4600 5200 4800 5100	5200	4800	5100	4600¦	4900	4800	5000	4800	4800	4400¦	4900	4400	3800	4200	4700

TEMPERATURAS DEL AIRE DE SECADO A LA DESCARGA DEL VENTILADOR

MEDICION;	TEMPERATURA BULBO SECO (°F)	TEMPERATURA BULBO HUMEDO (°F)
1	104	86
2	100	84
3	109	91
4	99	86
5	99	87
6	97	81
7	99	83
8	99	82
9	105	83

398

DATOS EXPERIMENTALES

PRUEBA # 15

HORNO AISLADO OPERANDO CON TIRO INDUCIDO

Inclinación de la parrilla : 45°

Temperatura ambiente (Ta) : 29°C

Consumo de cascarilla : 32.11 Kg

Tiempo de duración de la prueba : 185 min

Flujo másico de cascarilla : 0.002893 Kg/seg

10.41 Kg/hr

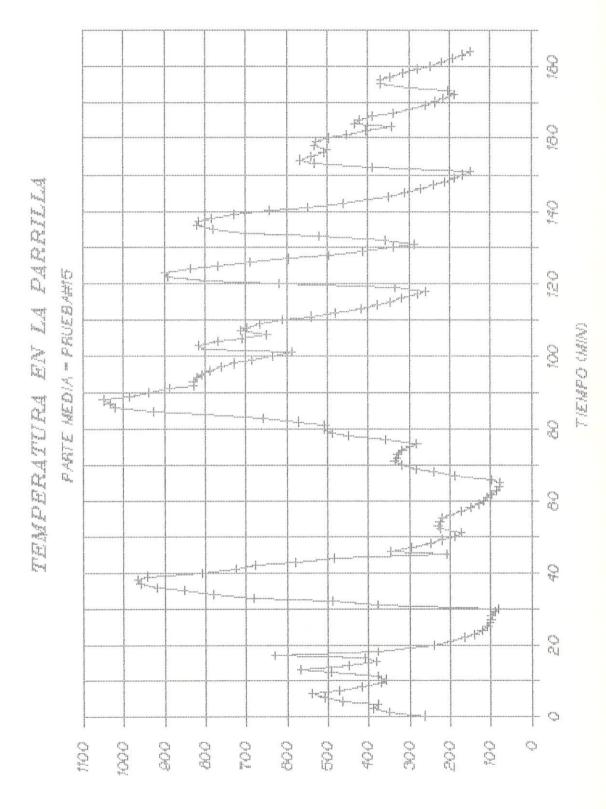
Volumen de la cámara de combustión : 0.107578 m3

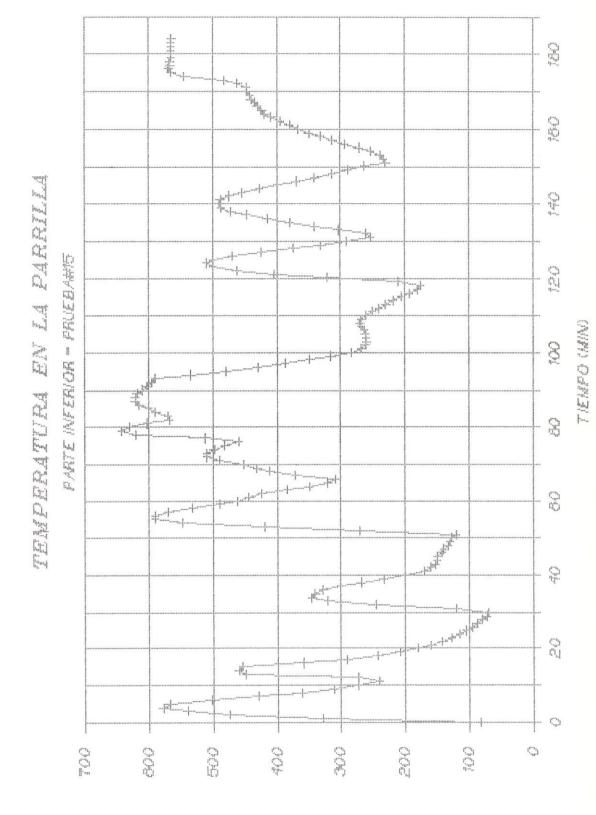
Tiempo al que empieza Medicion Nº1 : 50 min

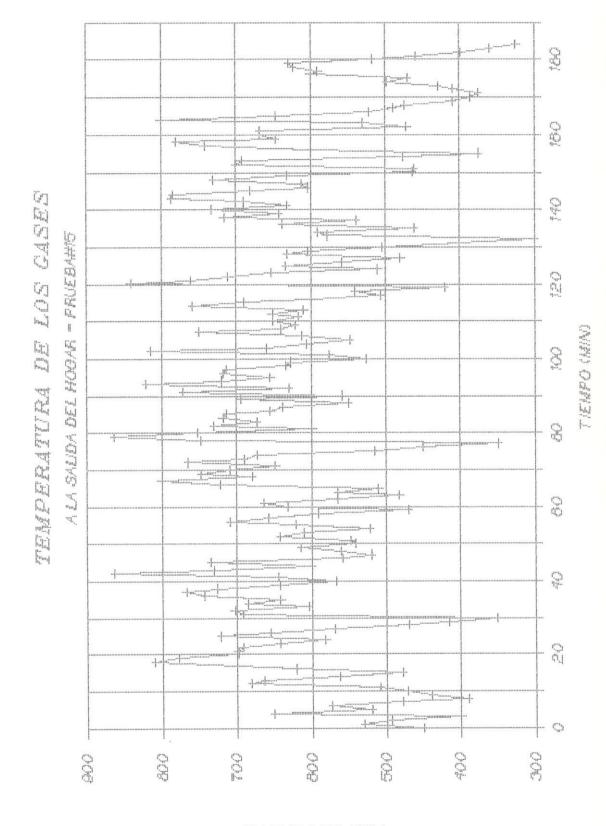
Humedad relativa ambiental : 70 %

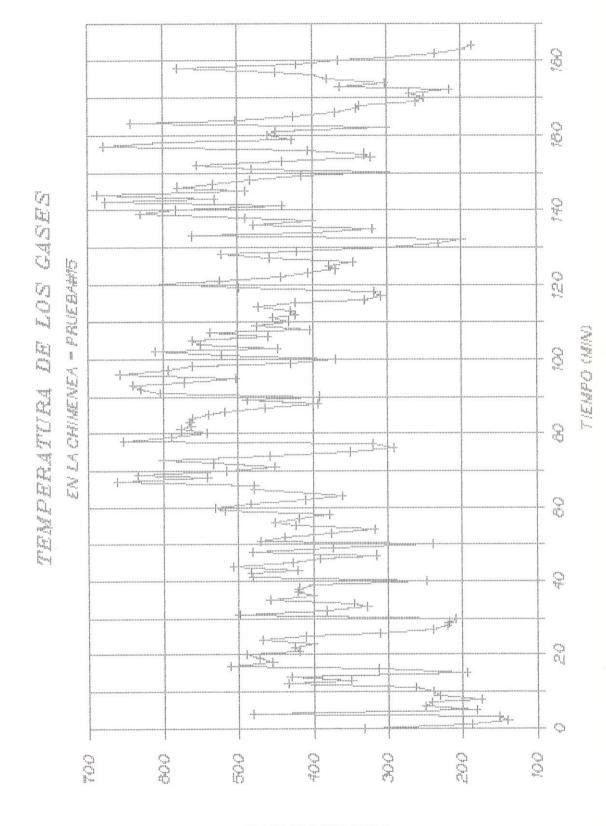
Presión estática simulada : 22.6 mm de agua

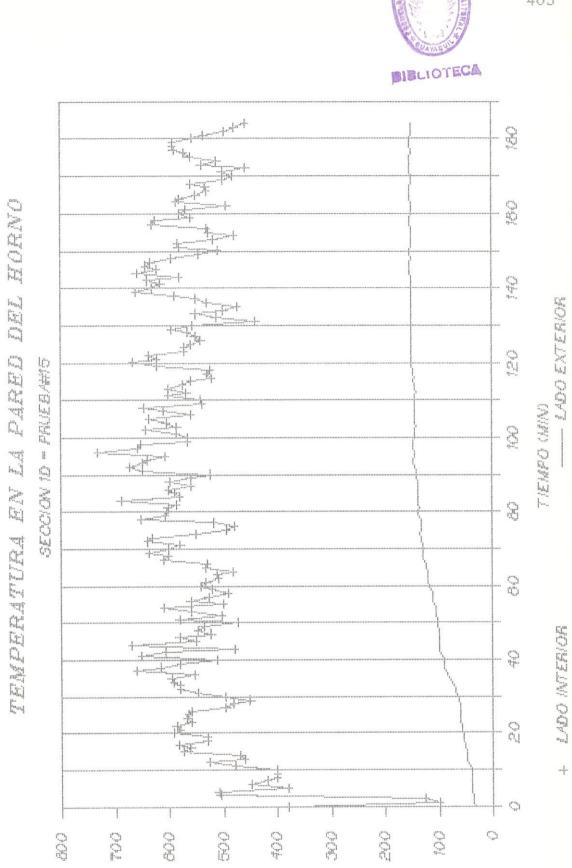
ANALISIS DE LOS GASES


MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	5.4	14.8	0
5	2	18.6	0
7	6.6	13.6	0.4
9	3.8	16.6	0


ANALISIS DEL AIRE DE SECADO


1...... 1..... 1..... 1..... 11-11-1 1-11-1 $i_{1}^{i_{1}\cdots i_{L}}$ $i_{1}^{i_{1}}$ i_{2} I,...,1


C. Phylerenia



COPROCHESOMBL

12322 12322 12322 TEMPERATURA DE 209 64SES 12-21 - 12-1 11-22--21---ENTRADA AL VENTLADOR - PRUEDAHO $\begin{bmatrix} 1 \\ 1 \end{bmatrix}^T \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 170. $\begin{bmatrix} \vdots \\ \vdots \\ t_i \end{bmatrix}_{t_i}$ 1, -1, 1 1, -1, 1 1, -1, 1 1, -1, 1 1, -1, 1 1, -1, 1 1, -1, 1 i $[\frac{1}{i}]_{i=1}^{n}$

LEMBERGYLNUW (.C)

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 15

9	А	42	48	40	35	37
SECCION	0	42	46	41	34	38
SEC	B	43	53	42	35	37
	A	45	49	44	36	38
5	A	48	52	45	36	41
SECCION	 D	54	23	48	4	50 44
SEC	<u></u>	28	- 69	52	47	50
	A	84		781	- 88	78
4		120	91	113-	83	105
SECCION	 ن	88	83	92	86	58 100 81 106 105
SEC	 M	18	88	82	74	81
	W	85		88	88	100
ო	Ω	22	27	- 28	9	58
SECCION	 U	75	81	- 88	69	65
SEC	<u></u>	64	22	102	70	68
	A	104	103	83	티	101
2	А	8	87	119	122	133 116 101
CCION	0	112	121	140	158	133
SEC	В			min was one see one see		map term aren barin
	A	128	112	148	160 148 144 140 176 165	145
	А	113 128	105	146	140	145
SECCION 1	0	120	137	147	144	148
SECC	B	104	121	143	148	136
	A B C D A B	125 104 120 113 128 114	131 121 137 105 112 57	135 143 147 146 148 145	160	144 136 148 145 145 138
	MEDICION		8	2	2	o,

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 15

	-	~			
12	А	53	22	63	65
- 1	O	52	55	47	51
SECCION	В	76	88	82	80
(C)	A !	28	48	50	57
	A	66	93 125	121	150
ON 1	0	96	93	85 121	80
SECCION 11	Ε	118	166	144	162
23	A	103	117	116	140
0	B C D A B C D A B C D	99 117 103 118	45 116 115 139 145 117 166	37 126 150 131 151 116 144	36 135 171 140 190 140 162 80 150 57 80 51
SECCION 10	ט	1	139	131	140
ECCI	m	96	12	150	171
ß	A !	93	116	126	135
		40		37	36
6 NO	0	41	41-	88	38
SECCION	m	42	44	38	39
Ŋ	A !	44	46	40	40
		48	70	55	26!
ON 8	C	48	22	42	40
SECCION	B	84	103	1 20	70
ಬ	A !	54	73	44	54
7	A	95	95 112 136 131 73 103	67 114 73 109 44	83 120 123 110 54 70
SECCION 7	0	97	136	73	123
SECC	B	84	112	114	120
	A B C D A	89	85	67	83
	NO	2	4	9	80

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 15

MEDICION	SI	ECCION 13	
No !	A	B	С
1	125	160	143
2	138	164	148
3	130	162	133
4	140	190	155
5	150	179	158
6	150	170	140
7	121	162	145
8	150	180	145
9	124	169	146

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES EN EL FILTRO DE GASES

MEDICION Nº	SECCION 14	SECCION 15	SECCION 16	SECCION
1	140	155	128	107
2	124	146	113	90
3	100	165	121	96
4	140	133	118	100
5	96	95	106	85
6	110	225	141	93
7	100	121	109	99
8	90	100	88	75
9	80	88	90	77

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

PRUEBA # 15

the state state state state state state state	Medición 1	Medición 1 Medición 2 Medición	Medición 3	Medición 4	Medición 4 Medición 5 Medición 6 Medición 7 Medición 8	Medición 6	Medición 7	Medición 8	Medición
Distancia	Distancia	.06 .0 .06 .0 .06 .0	.06 1 .0	.06 .0	.06 .0	.06 .0	.06 1 .0	.06 .0	00 1 00
d1	400 380 4	80 1 58	460 420	600 580	500 480	480 440	460 520	400 400	
d2	480 420	420 520 520	520 500	440 540	540 540	540 500	580 480	460 500	400 420

VELOCIDADES (pie/min) DE LOS GASES QUE SALEN DEL VENTILADOR

PRUEBA # 15

	Medic	ión 1	Medic	ión 2¦	Medición 1 Medición 2 Medición	ión 3¦	Medición 4	ón 4	Medición 5	1	Medición 6	on 6	Medición 7	lón 7	Medición 8	lón 8¦	Medición	[ón 9]
Vistancia	0 0	.06 .0	.06 1 .0		.06 .0	.06	0	.06	.0	.06	06 1 00	.06	0. 1 00.	.06	0. 1	.06	0 0	.06
d1	1800	2100	2000!	2100	1800; 2100; 2000; 2100; 2400	2400	2000	2400	1800	2200	2400	2300	1800	2100	2000	2300	1600;	2200
d2	2600	3000	2600 3000 2600 2900	2900	2800 3200	3200	2200	2400	2600	3000	2400	2600	2500	2800	2400	3000	2400	2800
d3	3000	3600	2900	3500	3000 3600 2900 3500 3000 3700	3700	2800	3200	2900	3600	3000	2600	2900	3300	2800	3400	2800	3400
d4	3200	4100	3100!	4100	3200 4100 3100 4100 3200 4100	4100	3000	3600	3200	4100	3600	3000	3100	3900	3000	4000	3000	4000
d5	4100	4300	4100	4300	4100, 4300 4100, 4300 4100, 4200	4200	3800	3800	4000	4200	4000	3800	3900	4000	3800	4200	3800	4200
96	4300	4400	4200	4400	4300 4400 4200 4400 4300 4250	4250	3800	3600	4300	4200	42001	4000	4000	4100	4100¦	4300	4000	4200
d7	4100	4500	4100¦	4300	4100, 4500 4100, 4300 4200, 4400	4400	4000	3800	4100	4300	4100¦	4000	4900	4200	4000	4200	4200	4100
d8	4000	4400	4000 }	4500	4000; 4400; 4000; 4500; 4000; 4300	4300	3800	4000	3900	4200	4300¦	3800	3800 4700	4000	3800	4100	4000	4000

TEMPERATURAS DEL AIRE DE SECADO A LA DESCARGA DEL VENTILADOR

MEDICION Nº	TEMPERATURA BULBO SECO (°F)	TEMPERATURA BULBO HUMEDO (°F)
1	108	85
2	120	89
3	115	88
4	120	89
5	114	89
6	110	86
7	123	88
8	107	85
9	115	85

DATOS EXPERIMENTALES

PRUEBA # 16

HORNO AISLADO OPERANDO CON TIRO INDUCIDO

Inclinación de la parrilla : 45°

Temperatura ambiente (Ta) : 32°C

Consumo de cascarilla : 27.68 Kg

Tiempo de duración de la prueba : 154 min

Flujo másico de cascarilla : 0.002996 Kg/seg

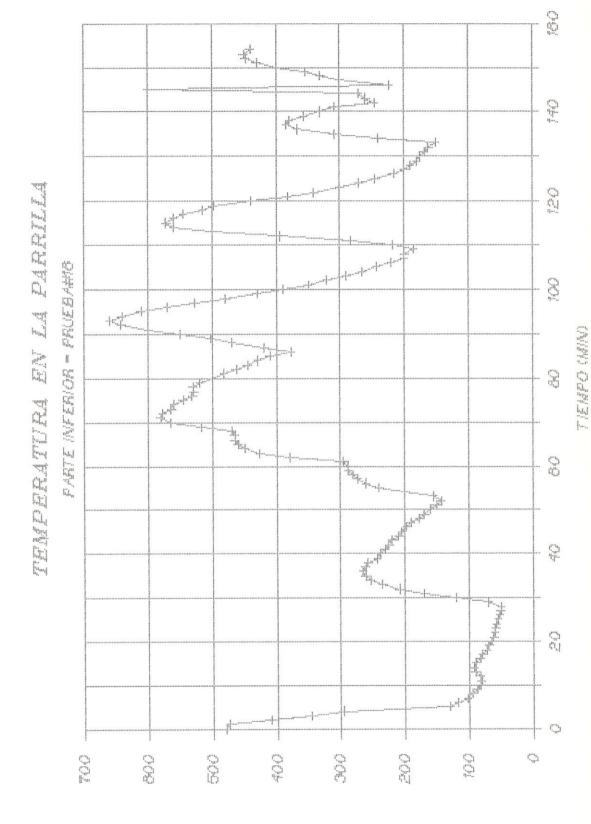
10.78 Kg/hr

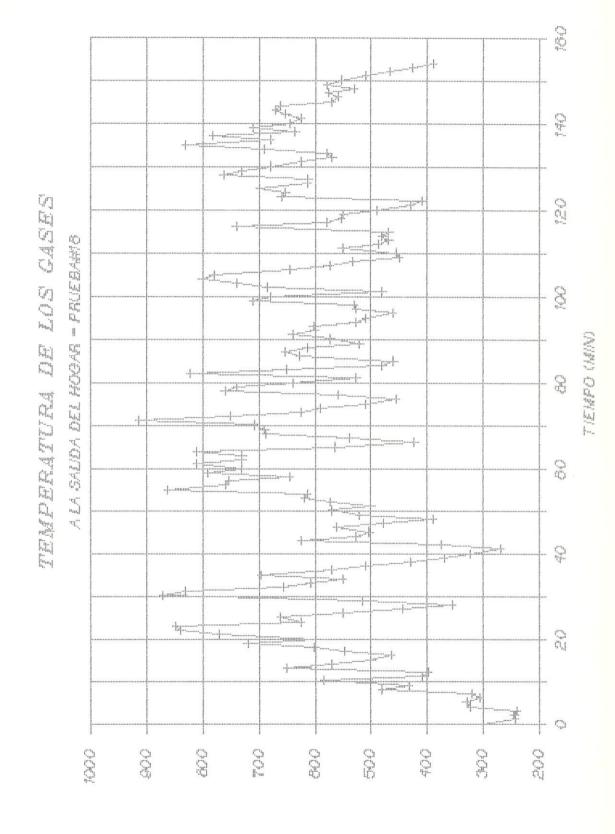
Volumen de la cámara de combustión : 0.107578 m³

Tiempo al que empieza Medicion Nº1 : 30 min

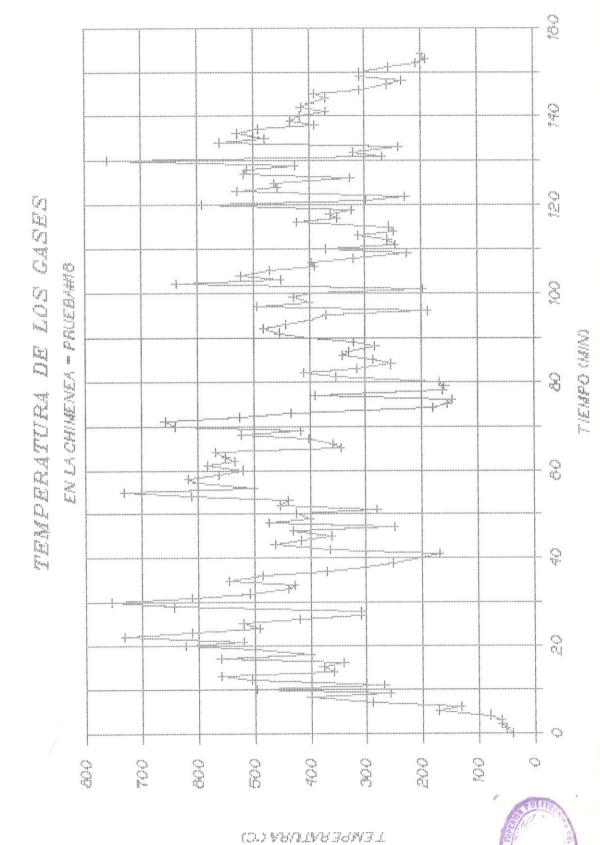
Humedad relativa ambiental : 65 %

Presión estática simulada : 30 mm de agua

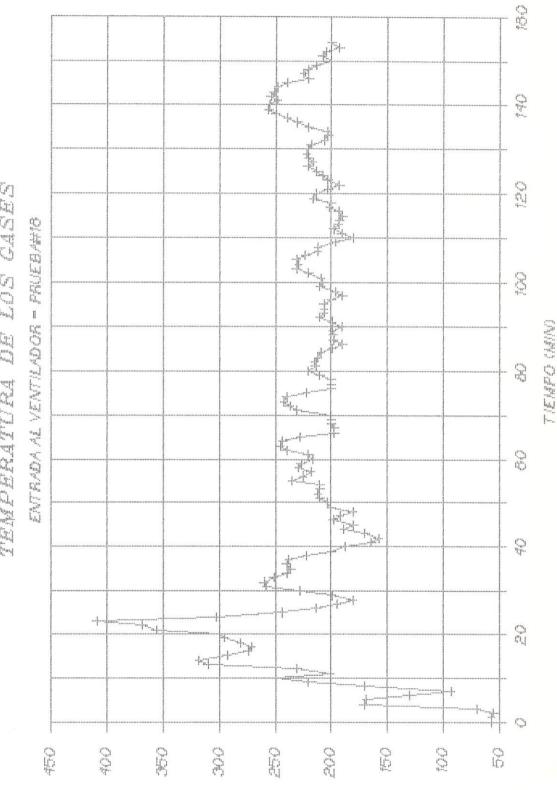

ANALISIS DE LOS GASES


MEDICION Nº	CO ₂ (%)	02 (%)	CO (%)
3	**	**	**
5	**	**	**
7	**	冰冰	水水
9	京京	**	**

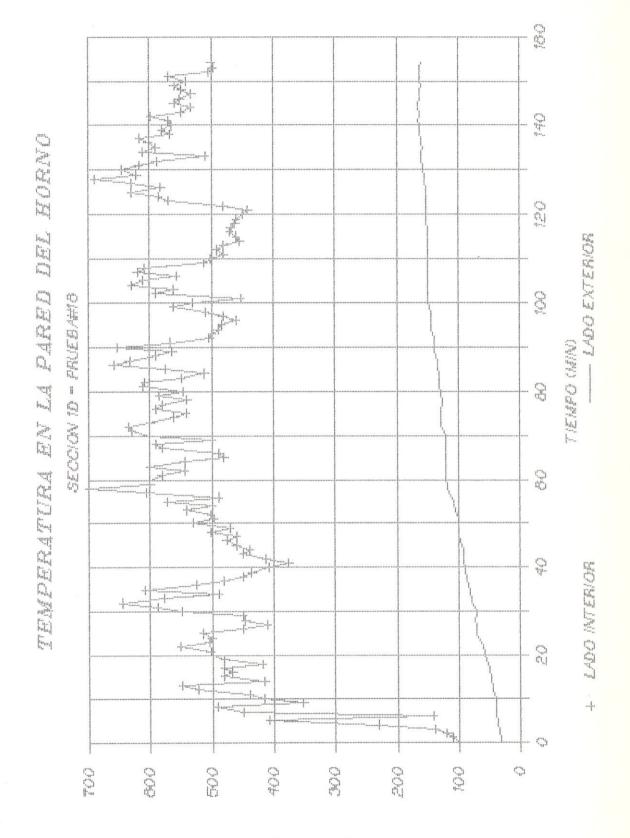
[,-1,1] [,1,1] [,1,1] [,1,1] VIZZAVE VI NE VELLEVEL 014/9762 - 204366 3164 -13 1.1811 1.1811 -14- $\begin{bmatrix} i_{i_1,j_1} \\ i_{i_2,j_3} \end{bmatrix}$ i, 11.3 i,,,,,, 11.144 1.144 1.144 1.144 1,...,1 i...i.l i...i.l i...i.l


1,..., 11-11-1 11-11-1 11-11-1 FILL FILL FILL FILL FILL FILL 12-12-1 12-12-1 12-12-1 1 1 1 1 $\begin{bmatrix} t_1 \\ t_2 \end{bmatrix}^{t-1}$ # - === # - === # - === [# - === [# - === [# - === [# - === [# - === [# - === [# - === [# - === [# - === [# - === [# - === [# - = [# - == [# - == [# - == [# - == [# - == [# - == [# - = [# - = [# - == [# - == [# - == [# - == [# - == [# - == [# - == [# - == [# - == [# - == [# - == [# - == [# - == [# - = [# - == [# - == [# - == [# - == [# - = [# - = [# - == [# - == [# - == [# - = [12--L1 12--L1 12--L1 12--L1 12--L1 12--L1 12--L1 12--L1 1,-1,1 1,-1,1 1,-1,1 1,-1,1 i, "i

COPRINCE SONS



Copentragent



BIBLIOTECA

SASTO SOT HE HELLTHAGE

LEWSERVICHTON

Capanakaska.

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

MEDICION 1	SECCION 1	10N 1		1		SEC	CCION	8		SEC	SECCION	0		SEC	SECCION	4		SEC	SECCION	2		SEC	SECCION	9
A B C D A B C	-	-	-	-	-	0		ρ	A	B	0	9	A	m	CID	a	A	B	0	A	A	B	0	P
120 85 96 88 90 88 80						8		12	71	64	55	52	89	75	77	82	75	62	22	62	20	20	47	45
153 103 159 112 147 127 143	143	143	143	143	143	1	1	95	117	68	96	57	102	121	108	123	107	56	28	47	49	48	50	47
128 117 126 127 150 142 136 1	136	136	136	136	136	13611	4	130	122	79	74	76	78	88	102	81	02	62	28	56	52	20	49	47
127 140 146 145 153 152 147 123						147 1	quant		107	92	79	71	75	75	90	102	84	56	21	20	45	44	42	41
165 120 160 150 145 138 144 133 120	ART 1011 1011					144 1	quant	33	120	89	86	59	95	83	92		98 110 84	84	70!	09	54	521	46	44

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 16

	a l	46	32	47!	64!
N 12	0	44	50	48	50
SECCION	 B	57	48	- 02	90
S	A	20	9		
	A	76	89 133	777	80 115 57
ON 1	0	72	- 1	78	
SECCION 11	BICID	97	162	123	165
w	A	88	39 108 162 125 153 130 162	95 123	39 116 148 131 141 125 165
07	А	83 100	153	98 102 110 112	141
SECCION 10	BICID		125	110	131
ECCI	щ	79	162	102	148
02	A	65	108		116
0	А	35		4	
SECCION 9	0	8	41	41	38
SECC	m	34	40	46	40
02	A	38	43	20	45 49 41
	А	43	48	28	49
ION 8	C	45	46	57	
51-	М	76	82	77	87
	A	89	29	64	72
7	А	8	8	94	109
SECCION 7	0	70 74 94 85 68 76	91 96 114 100 59 82	81 84 104 94 64 77	73 100 103 109 72 87
SEC	m 	74	96	84	1100
	A	2	6	8	73
- Children	No A B C D A B	2	4	9	00

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES DE LA CAMARA DE COMBUSTION

PRUEBA # 16

MEDICION	SE	CCION 13	}
NO !	Α :	B ¦	С
1	111	145	126
2	90	122	112
3	120	150	130
4	125	140	130
5	131	144	133
6	165	172	150
7	126	159	116
8	142	174	138
9	154	183	145

TEMPERATURAS EXTERIORES (°C) DE LAS PAREDES EN EL FILTRO DE GASES

PRUEBA # 16

MEDICION Nº	SECCION 14	SECCION 15	SECCION 16	SECCION:
1	115	125	120	80
2	125	166	149	137
3	110	89	97	82
4	93	95	84	84
5	129	126	127	105
6	108	127	108	96
7	134	170	136	112
8	150	113	119	104
9	110	100	98	93

VELOCIDADES (pie/min) DE LOS GASES QUE ESCAPAN POR LA CHIMENEA

PRUEBA # 16

		Medición	Medición 3	Medición 4	Medición 4 Medición 5 Medición 6	Medición 6	Medición 7	Medición 7 Medición 8	Medición 9
Distancia	.06 1 .0	0. 1 80. 1 .00 1 .00 1 .00	0. 1 80.	.06 .0	06 00	.06 .0	0. 1 80.	.06 .0	00 1 00
d.	0 1 32	360	360 300	320 380	380 380	360 380	380 340	380 360	380 360
220	360 380	400 36		380 440	420 400	400 440	400 400	440 400	440 400

TIRO EN LA CHIMENEA

MEDICION Nº	TIRO ;
1	0.03
2	0.03
3	0.03
4	0.04
5	0.04
6	0.03
7	0.03
8	0.03
9	0.03

VELOCIDADES (pie/min) DE LOS GASES QUE SALEN DEL VENTILADOR

PRUEBA # 16

		ón 1¦	Medición 1, Medición 2, Medición	n 2.	Medici	ón 3¦	Medic	Medición 4	Medición 5	lón 5	Medición 6	ón 6	Medición 7		Medición	ión 8	Medición	ón 9¦
Ulstancla	06 1 00		.06 1 .0	. 0	06 1 00	.06	.0	.06	.0	06	0 0	.06	0.	.06	.0	.06	.0	.06
d1	2200;	1600	2200, 1600, 1600, 2000, 1600, 1600	000	1600	1600	2000;	2400	1600	2300	1600	2200	1600	1800	1600	2000	1600	2000
d2	2400 2400	2400	2000; 2600; 2100; 2800	009	2100¦	2800	2400	2800	2000	2900	2000	2600	1800	2200	2000	2600	2200	2600
d3	2600	2800	2600; 2800; 2200; 3100; 2400; 3300	1001	2400;	3300	2500	3300	2400	3400	2200	3000	2200	2800	2200	3100	2200	3000
d4	3400	3200	3400 3200 2500 3500	2000	2700 3600	3600	2800	3600	2600	3800	2400	3200	2400	3200	2500	3400	2600	3400
d5	3800, 3400		3300; 3400; 3400; 3700	400	3400¦	3700	3400	3700	3400	4000	3400	3400	3200	3400	3200	3600	3400	3800
96	3400	3400	3400; 3400; 3500; 3300; 3700; 3600	3000	3700;	3600	3600	3800	3600 }	3800	3600	3400	3400	3500	3400	3800	3400 }	3800
d7	3400	3000	3400 3600	1009	3500 3900	3900	3400	3800	3300 }	3900	3500	3300	3200	3300	3300	3600	3200	3600
d8	3200	3600	3200 3600 3200 3500 3300 3800	12009	3300	3800	3200	3700	3200	3700	3200	3100	3100	3200	3100;	3500	3000	3600
the state of the same and the same same same			and the own care care and the same			e spile men simp man spile on		man over twee twee does told	And delical space and delical									

TEMPERATURAS DEL AIRE DE SECADO A LA DESCARGA DEL VENTILADOR

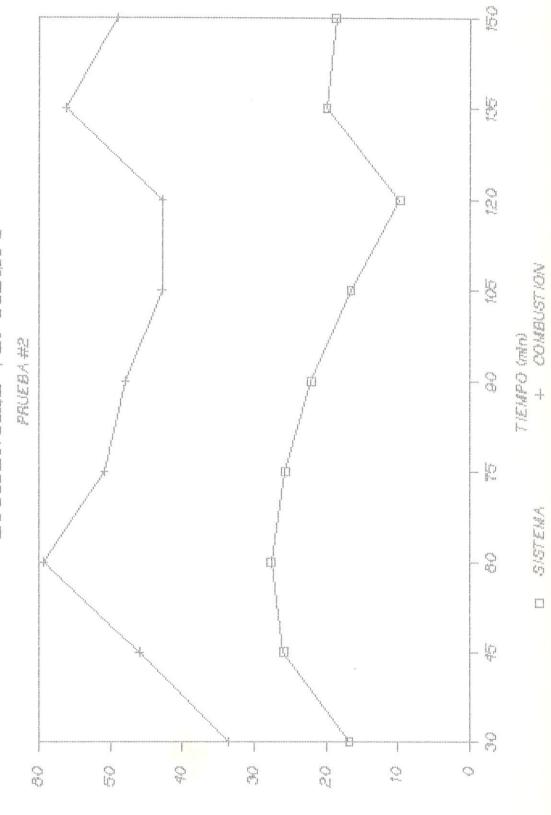
PRUEBA # 16

MEDICION;	TEMPERATURA BULBO SECO (°F)	TEMPERATURA BULBO HUMEDO (°F)
1	108	83
2	108	83
3	124	86
4	130	88
5	124	88
6	126	87
7	128	89
8	125	89
9	124	87

APENDICE G

RESULTADOS

APENDICE G - 1

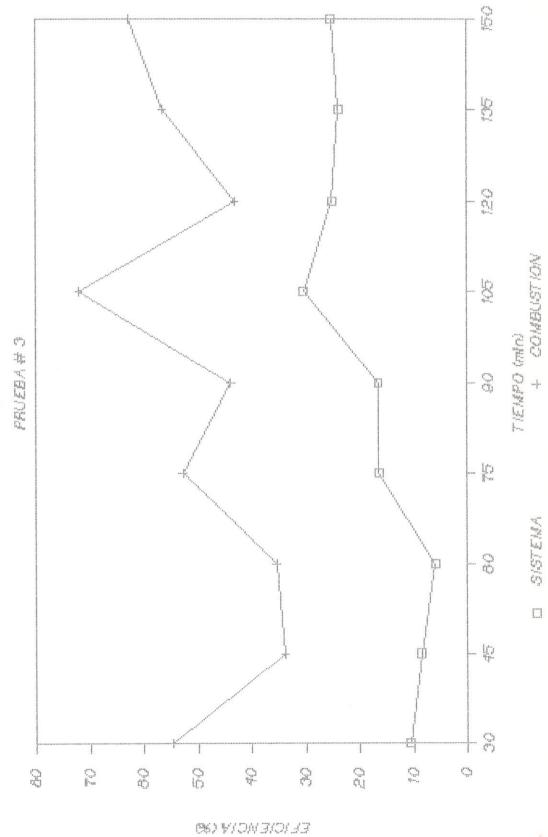

RESULTADOS PARA EL HORNO OPERANDO CON TIRO NATURAL Y SIN
AISLAMIENTO

RESULTADOS

PRUEBA # 2

BALANCE	EQC (W)	EFT (W)	PT (W)	I (W/m3)	M _G ·10-2 (Kg/seg)	Vch (m/s)	(%)	(%) (%)	(%)
	12648	2127	2136	74185	0.79505	0.93	16.8	33.7	* *
2	12648	3281	2537	74185	1.04008	1.33	25.9	46	*
0	12648	3500	4005	74185	1.26519	1.57	27.7	59.3	250
4	12648	3255	3176	74185	1.10532	1.40	25.7	50.8	* *
Ω	12648	2804	3260	74185	1.12498	1.34	22.2	48	500
9	12648	2095	3328	74185	0.81441	0.97	16.6	42.9	*
	12648	1246	4161	74185	0.49363	0.59	0.0	42.8	900
0	12648	2521	4583	74185	0.92417	1.14	19.9	56.2	* *
0	12648	2368	3850	74185	0.97406	1.19	18.7	49.2	550

Cenizas generadas en la prueba: 2.80 Kg

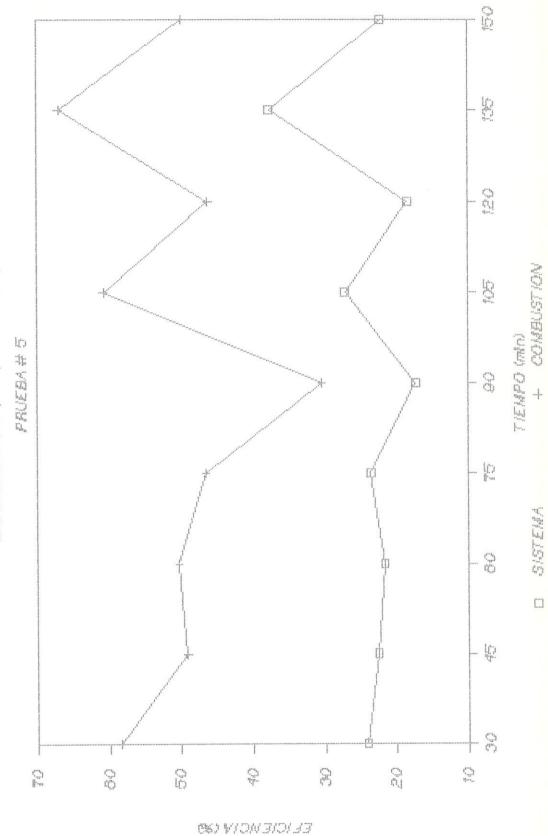

RESULTADOS

3

1 11813 2 11813 3 11813 4 11813 5 11813 6 11813 7 11813	1250	(W)	(W/m)	(Kg/seg)	(m/s)	(%)	(%)	(%)
11813 11813 11813 11813 11813 11813		5210	69288	0.63866	0.69	10.6	54.7	*
11813 11813 11813 11813 11813	1010	2982	69288	0.65632	0.67	8.6	33.8	*
11813 11813 11813 11813 11813	969	3489	69288	0.39781	0.42	5.9	35.4	1100
11813	1939	4290	69288	1.12452	1.16	16.4	52.7	*
	1943	3233	69288	1.27793	1.29	16.4	43.8	425
7 11813	3583	4917	69288	1.56351	1.77	30.3	72	* *
	2961	3765	69288	1.67294	1.77	25.1	43.1	900
8 11813	2820	3850	69288	1.59944	1.69	23.9	56.5	*
9 11813	2987	4418	69288	1.53258	1.66	25.3	62.7	800

Cenizas generadas en la prueba: 3.08 Kg

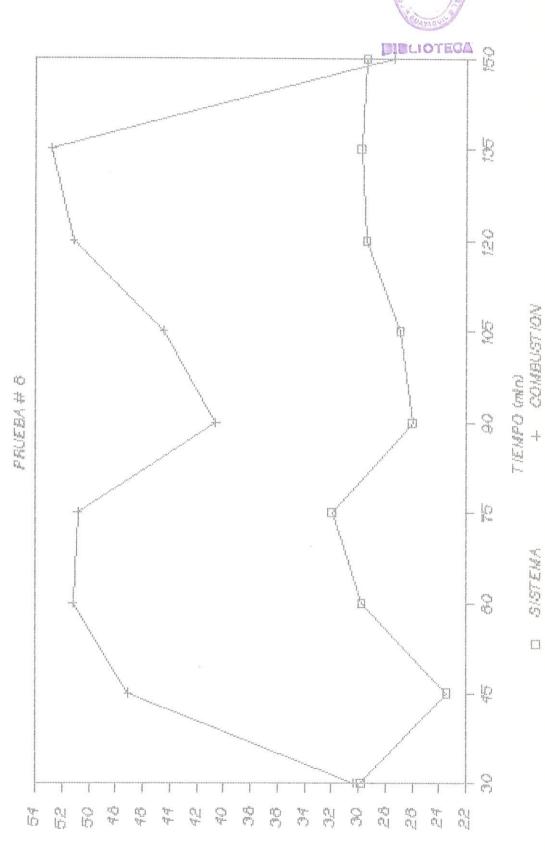
DEFEET SA STENEDIE

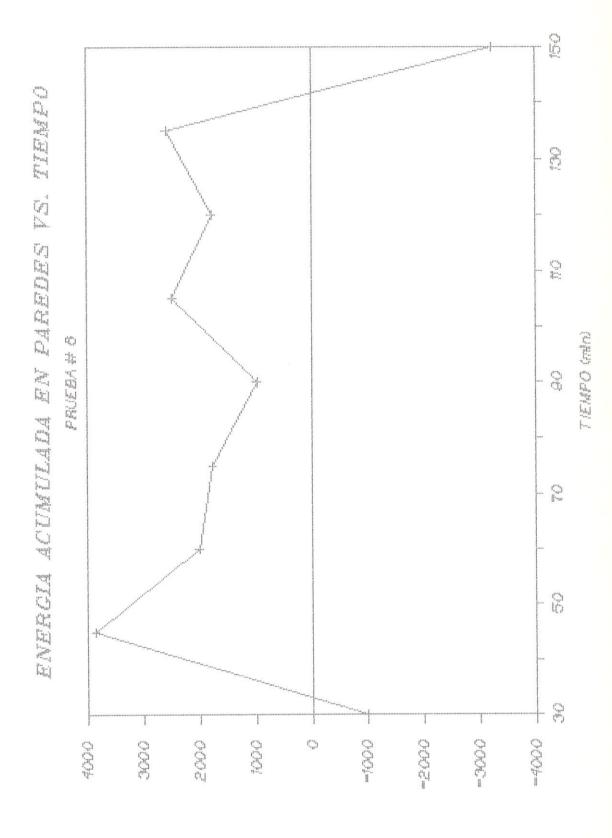


BIBLIOTECA

BALANCE	EQC (W)	EFT (W)	PT (W)	(W/m3)	M_{G-10-2}	Vch (m/s)	(%)	(%)	(%)
	18648	4494	6391	112221	1.83001	2.16	24.1	58.4	* *
2	18648	4213	4950	112221	1.77820	2.07	22.6	49.1	*
m	18648	4050	5333	112221	1.69677	1.98	21.7	50.3	700
4	18648	4405	4267	112221	1.54105	1.93	23.6	46.5	*
2	18648	3235	2430	112221	1.58020	1.74	17.4	30.4	600
9	18648	5053	6270	112221	1.68055	2.15	27.1	60.7	*
	18648	3447	5173	112221	1.55850	1.77	18.5	46.2	370
8	18648	7025	5466	112221	1.91431	2.65	37.7	67	* ! * !
0	18648	4141	5154	112221	1.45043	1.81	22.2	49.9	700

Cenizas generadas en la prueba: 2.46 Kg



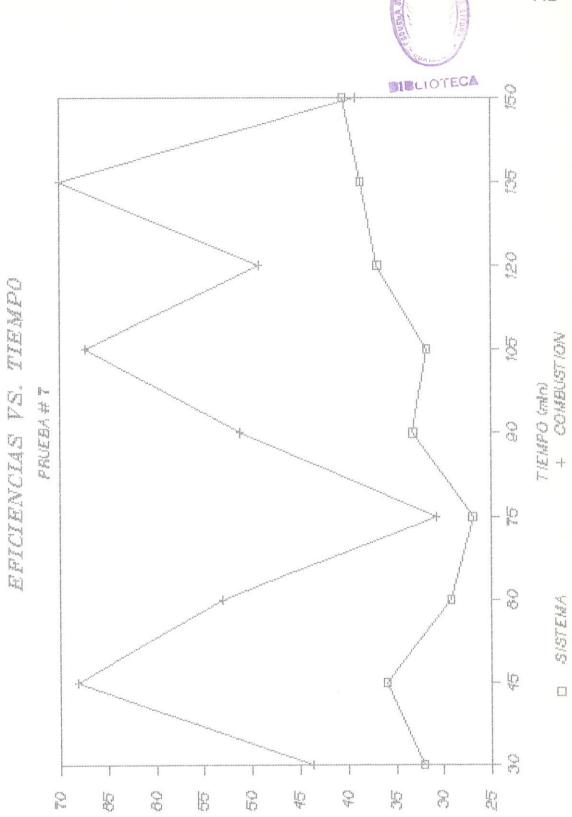

APENDICE G - 2

RESULTADOS PARA EL HORNO OPERANDO CON TIRO NATURAL Y
AISLADO

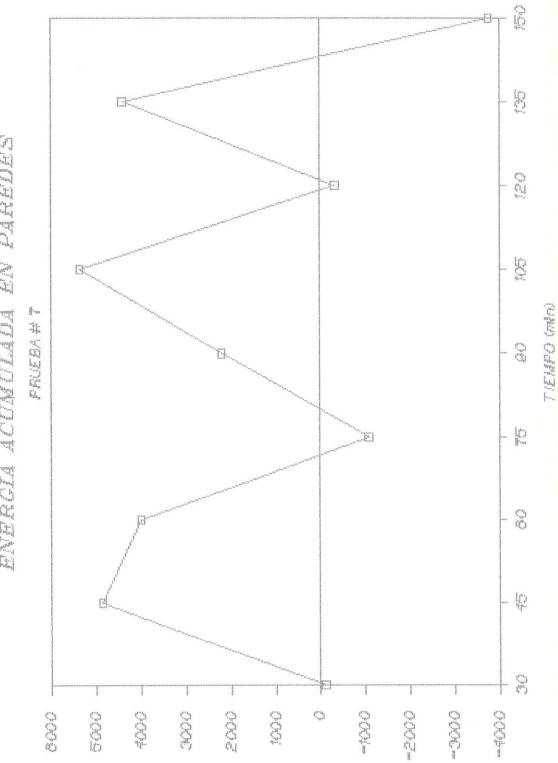
RESULTADOS

-978 220606 1.39032 2.03 29.9 30.4 3857 220606 1.12191 1.62 23.5 47.1 2008 220606 1.19897 1.89 29.8 51.2 1761 220606 1.26364 2.01 32 50.8 975 220606 1.23498 1.79 26.0 40.6 2471 220606 1.29552 1.86 27 44.5 1779 220606 1.38376 2.01 29.4 51.1 2578 220606 1.47917 2.10 29.8 52.8 -3229 220606 1.63063 2.19 29.4 27.4	EQC EFT PT (W) (W)	Mar have Mile have Mile	P. D	()	EAP (W)	I (W/m3)	M ₆ ·10-2 (Kg/seg)	Vch (m/s)	(%)	<u> </u>	EA (%)
32 5569 1751 3857 220606 1.12191 1.62 23.5 47.1 32 7062 3076 2008 220606 1.189897 1.89 29.8 51.2 32 7590 2714 1761 220606 1.26364 2.01 32 50.8 32 6174 2491 975 220606 1.23498 1.79 26.0 40.6 32 6396 1683 2471 220606 1.29552 1.86 27 44.5 32 6980 3377 1779 220606 1.38376 2.01 29.4 51.1 32 7080 2869 2578 220606 1.47917 2.10 29.4 51.8 32 6982 2760 -3229 220606 1.63063 2.19 29.4 27.4	23732	32	7088	11011	-978	220606	1.39032				*
32 7062 3076 2008 220606 1.19897 1.89 29.8 51.2 32 7590 2714 1761 220606 1.26364 2.01 32 50.8 32 6174 2491 975 220606 1.23498 1.79 26.0 40.6 32 6396 1683 2471 220606 1.29552 1.86 27 44.5 32 6980 3377 1779 220606 1.38376 2.01 29.4 51.1 32 6982 2578 220606 1.47917 2.10 29.8 52.8 32 6982 2760 -3229 220606 1.63063 2.19 29.4 27.4		32	5569	1751	3857	220606	0	1.62		47.1	 * *
32 7590 2714 1761 220606 1.26364 2.01 32 50.8 32 6174 2491 975 220606 1.23498 1.79 26.0 40.6 32 6396 1683 2471 220606 1.29552 1.86 27 44.5 32 6980 3377 1779 220606 1.38376 2.01 29.4 51.1 32 7080 2869 2578 220606 1.47917 2.10 29.8 52.8 32 6982 2760 -3229 220606 1.63063 2.19 29.4 27.4		23732	7062	3076	2008	220606	4				400
32 6174 2491 975 220606 1.23498 1.79 26.0 40.6 32 6396 1683 2471 220606 1.29552 1.86 27 44.5 44.5 32 6980 3377 1779 220606 1.38376 2.01 29.4 51.1 32 7080 2869 2578 220606 1.47917 2.10 29.8 52.8 32 7080 2869 2578 220606 1.63063 2.19 29.4 27.4	1 1	23732	7590	2714	1761	220606	1.26364	0	32	2	 * *
32 6396 1683 2471 220606 1.29552 1.86 27 44.5 44.5 32 6980 3377 1779 220606 1.38376 2.01 29.4 51.1 32 7080 2869 2578 220606 1.47917 2.10 29.8 52.8 32 6982 2760 -3229 220606 1.63063 2.19 29.4 27.4	237	32	6174	2491	975	220606	.234	7 -			350
32 6980 3377 1779 220606 1.38376 2.01 29.4 51.1	237	321	6396	1683	47	220606	. 295		27		*
7080 2869 2578 220606 1.47917 2.10 29.8 52.8 52.8 6982 2760 -3229 220606 1.63063 2.19 29.4 27.4	237	32	6980	3377	1779	220606	1.38376	0		51.1	670
32 6982 2760 -3229 220606 1.63063 2.19 29.4 27.4	1 1	23732	7080	2869	2578	220606	.4791			9	* *
	37	32	6982	2760	-3229	220606	1.63063	1			275

(W) 2303RAS 2A1 W3 A0A1UMMOA AWR3W3

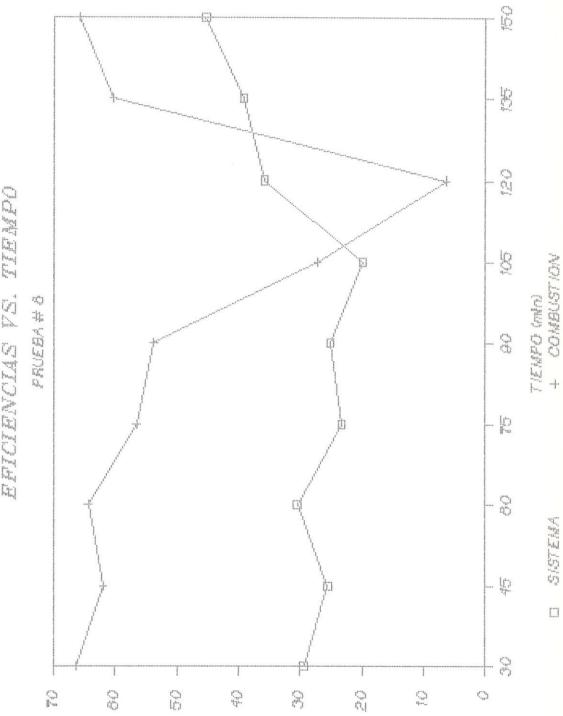

RESULTADOS

PRUEBA # 7


BALANCE	EQC (W)	EFT (W)	PT (W)	EAP (W)	I (W/m3)	M _G ·10-2	Vch (m/s)	(%)	ر %	EA (%)
	23931	7674	2909	-117	222450	1.55069	2.24	32.1	43.7	*
2	23931	8598	2871	4855	222450	1.38056	2.25	36	68.2	* *
(m	23931	7006	1701	3992	222450	1.25212	1.92	29.3	53.1	700
4	23931	6450	1984	-1081	222450	1.19854	1.80	27	30.7	*
2	23931	7948	2106	2202	222450	1.51979	2.25	33.2	51.2	235
9	23931	7605	3154	5355	222450	1.2644	2.02	31.8	67.3	* *
	23931	8831	3273	-323	222450	1.65746	2.48	36.9	49.2	800
80	23931	9251	3103	4397	222450	1.66669	2.55	38.7	70	* * *
6	23931	9684	3456	-3762	222450	2.01351	2.86	40.5	39.2	550

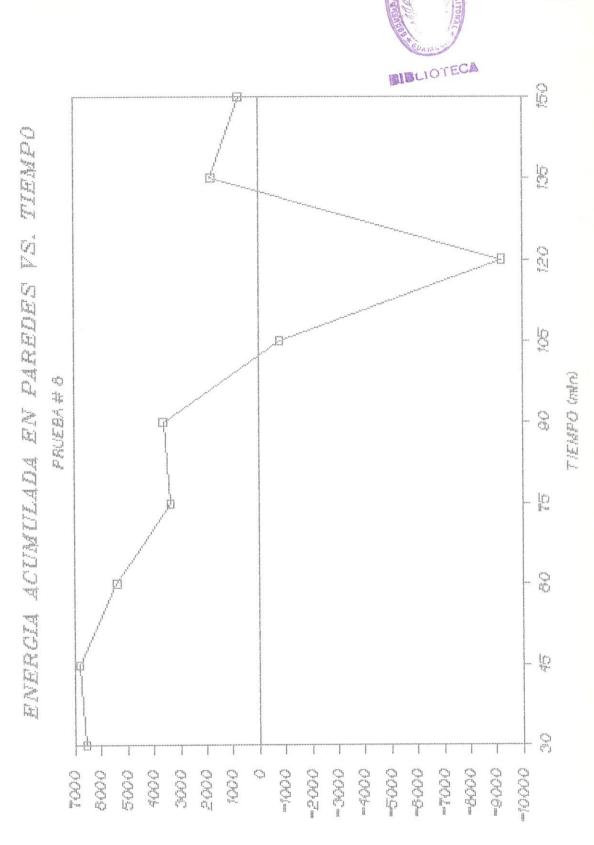
Cenizas desalojadas durante la prueba: 3.38 Kg Cenizas generadas durante la prueba : 5.11 Kg

SHERCE ACCRETADA EN PARDES



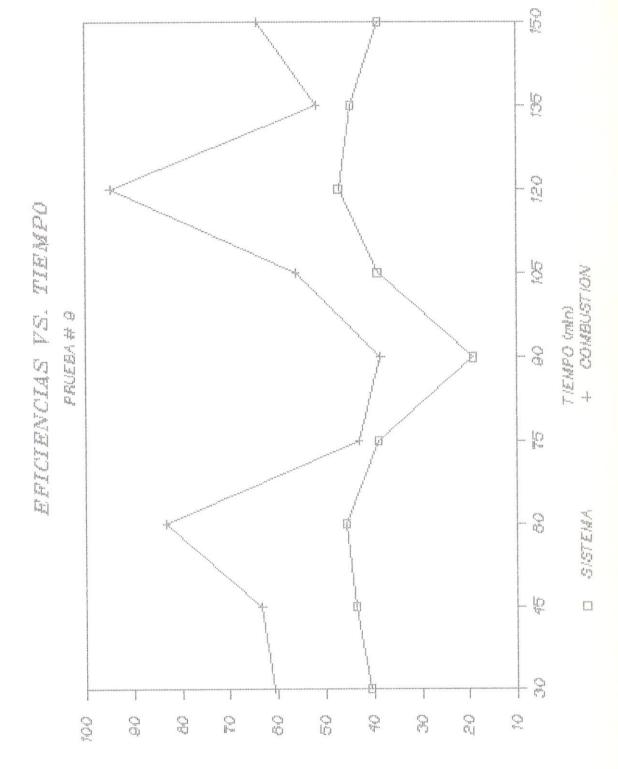
(W) 83036A9 2A1 W3 A0A1UMUOA A\BR3W3

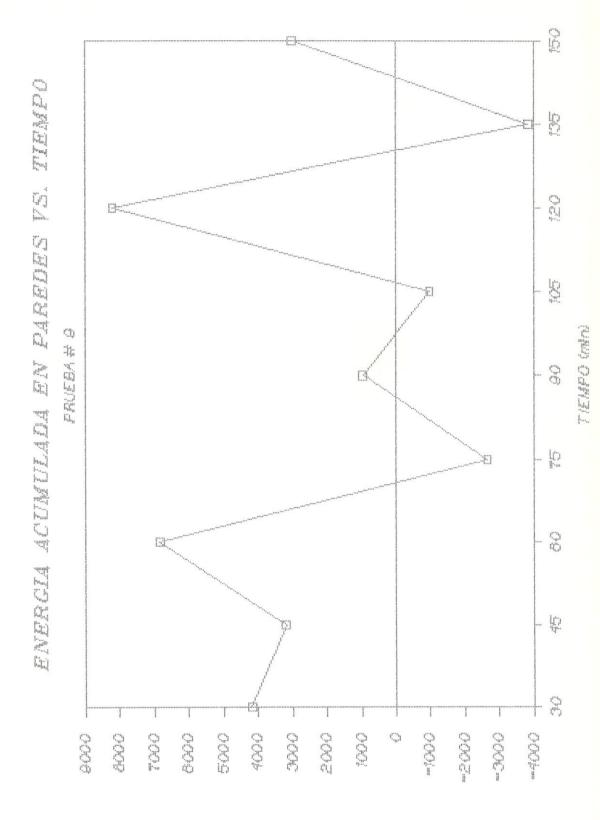
RESULTADOS


EA %)	* *	 *	510	 * *	470	 *	500	 * *	400
田 %									
©⊗	66.3	61.9	64.4	56.5	53.8	27.2	6.3	60.4	65.9
€ 8	29.4	25.6	30.5	23.3	25.1	19.9	35.8	39.2	45.4
Vch (m/s)	1.96	1.61	1.79	1.36	1.40	1.18	2.85	2.53	3.19
M _G • 10-2 (Kg/seg)	1.47352	1.14942	1.17903	0.89652	0.88193	0.79218	2.44302	1.85848	2.51059
I (W/m3)	194330	194330	194330	194330	194330	194330	194330	194330	194330
EAP (W)	6592	6834	5395	3345	3622	-793	-9223	1808	746
PT (W)	1132	762	1694	3606	2378	2309	3054	2612	3534
EFT (W)	6144	5348	6370	4862	5244	4164	7491	8199	9500
EQC (W)	20906	20906	20906	20906	20906	20906	20906	209061	20906
BALANCE		2	(n)	4	Ω 	9		0	0

OCTUE OF STREET

DEN PROMERONES

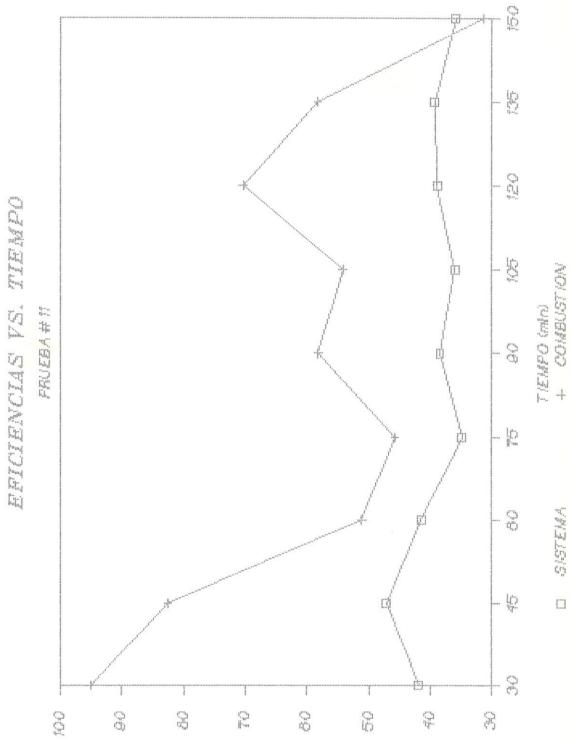


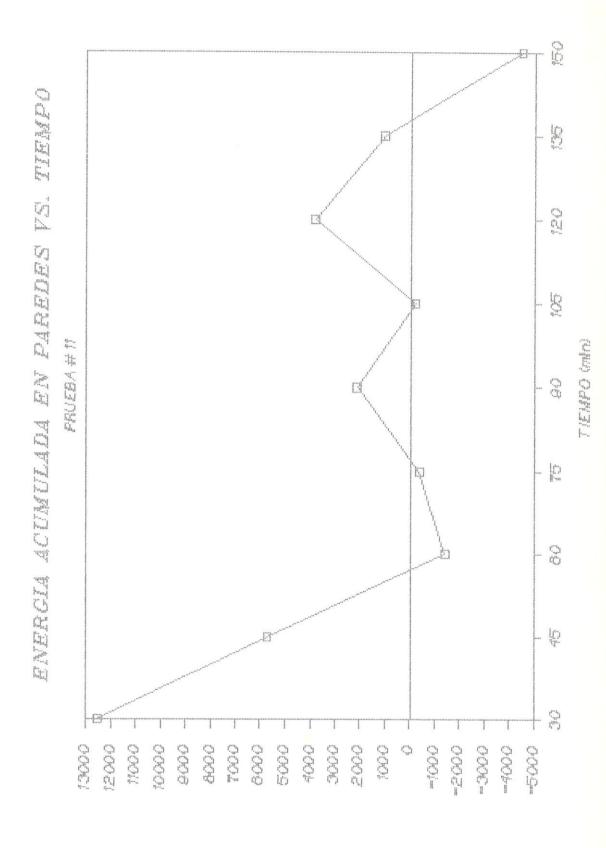

RESULTADOS

PRUEBA # 9

BALANCE	EQC (W)	EFT (W)	PT (W)	EAP (W)	I (W/m3)	M _G · 10 -2 (Kg/seg)	Vch (m/s)	S(8)		EA (%)
	28379	11523	1532	4186	271235	1.9453	2.92	40.6	60.8	* *
2	28379	12402	2375	3199	271235	2.0568	3.16	43.7	63.3	* * *
(n)	28379	12972	3819	6846	271235	1.9210	3.18	45.7	83.3	500
4	28379	11065	3795	-2648	271235	2.11988	3.19	39	43	* *
Ω	28379	5438	4540	951	271235	0.92326	1.42	19.2	38.5	280
9	28379	11088	5817	-983	271235	2.02816	2.96	39.1	56.1	* * *
	28379	13381	5332	8206	271235	2.04534	3.36	47.2	94.9	155
8	28379	12689	5813	-3833	271235	2.02124	3.24	44.7	51.7	* *
6	28379	11037	4174	3003	271235	1.77942	3.00	38.9	64.2	1 1

Cenizas desalojadas durante la prueba: 3.3 Kg Cenizas generadas durante la prueba : 5.31 Kg



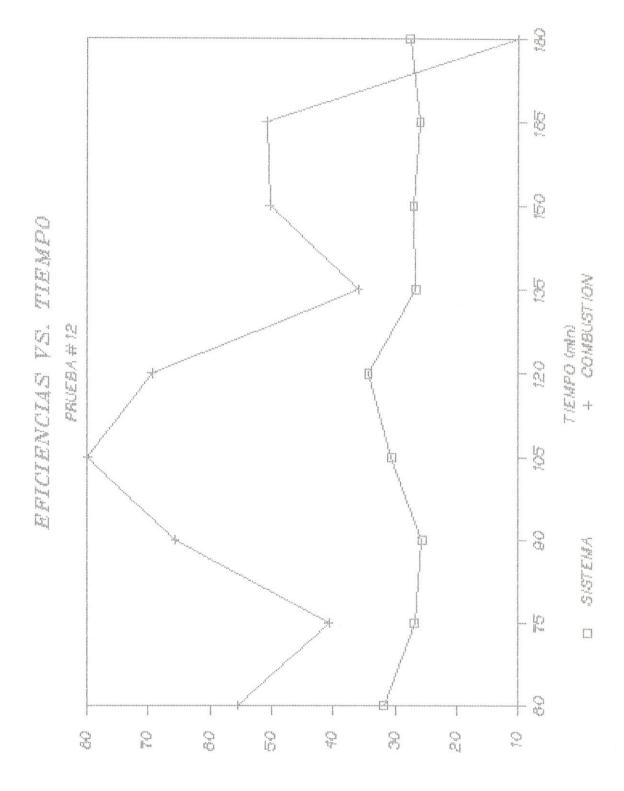

CIAND REGISTANCE AND REAL LAST PAREDES (1911)

BALANCE	EQC (W)	EFT (W)	PT (W)	EAP (W)	I (W/m ³)	M6.10-2	Vch (m/s)	<u>S</u> (%)	°%	EA (%)
	29536	12386	3158	12530	282294	1.9079	3,23	41.9	95.1	* *
	29536	13930	4725	5724	282294	1.99077	3.46	47.2	82.5	 * *
(n)	29536	12242	4273	-1414	282294	1.98454	3.29	41.4	51.1	160
4	29536	10306	3583	-376	282294	1.87088	2.95	34.9	45.8	 * *
Ω	29536	11366	3698	2108	282294	1.95673	3.02	38.5	58.1	370
9	29536	10618	5619	-235	282294	1.89836	3.00	36	54.2	* *
	29536	11463	5510	3803	282294	1.77982	2.93	38.8	70.3	320
80	29536	11601	4598	1016	282294	2.00625	3.15	39.3	58.3	 * *
0	29536	10801	3136	-4496	282294	2.20684	3.13	35.9	31.3	200

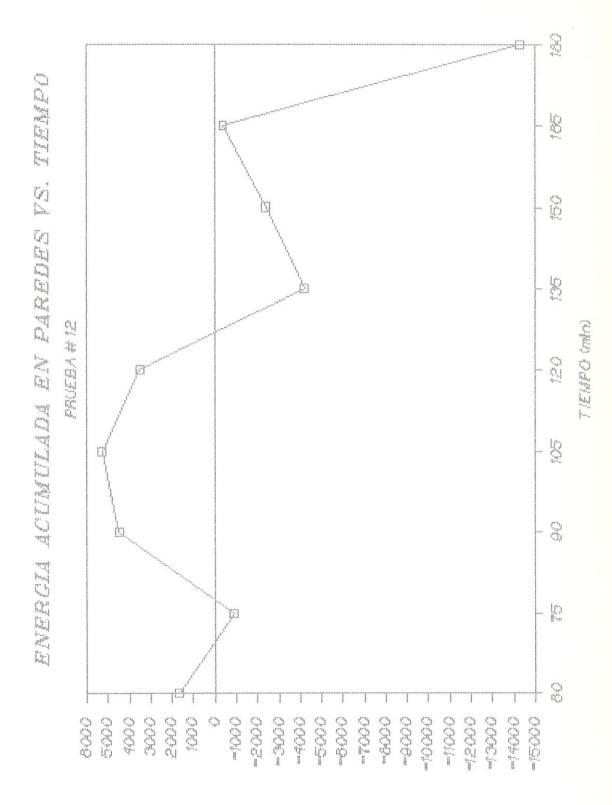
RESULTADOS

CMS REACH ACCUMULANT MIS PAREDES (YY)

APENDICE G - 3


RESULTADOS PARA EL HORNO OPERANDO CON TIRO INDUCIDO Y
AISLADO

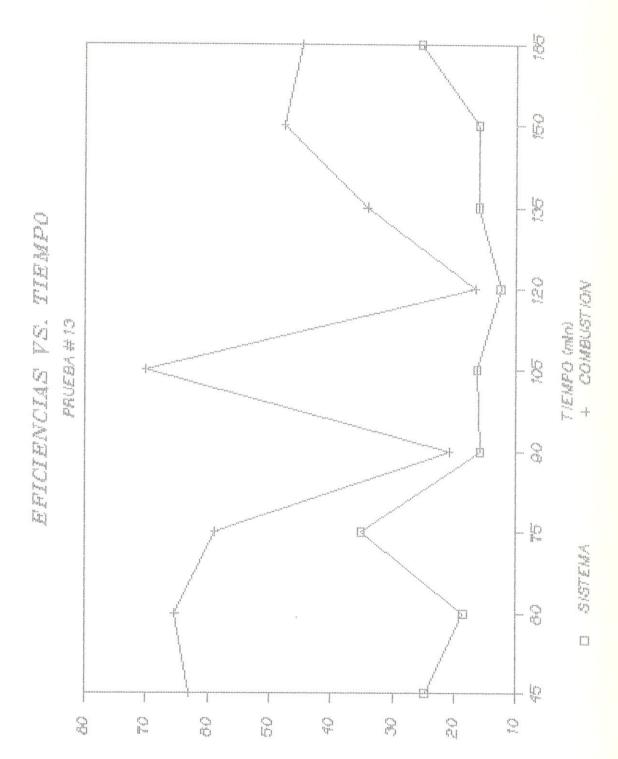
RESULTADOS

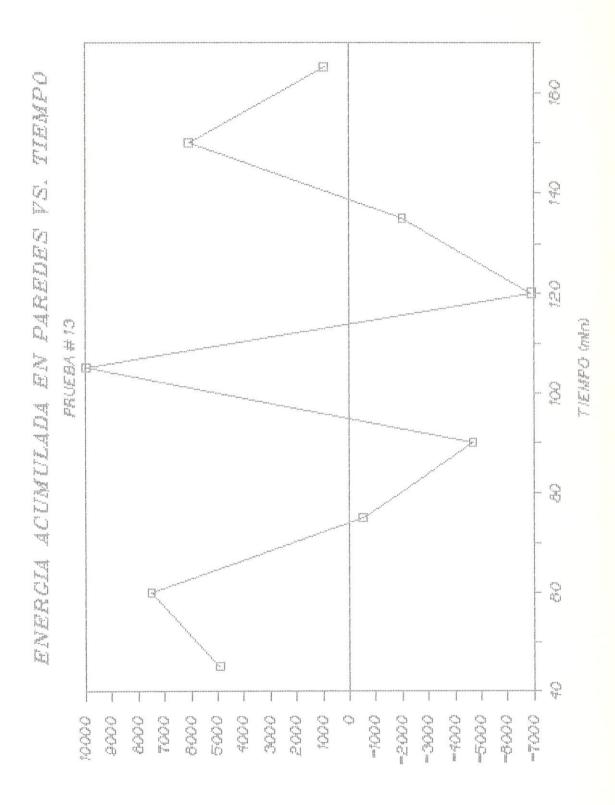

PRUEBA # 12

BALANCE	EQC (W)	EFT (W)	E E	CSG (W)	EAP (W)	[W/m ³]	I MGv-10 2 (W/m ³) (Kg/seg)	M _{Gv} ·10 2 M _{Gch} ·10-2 (Kg/seg) (Kg/seg)	Mv (Kg/seg)	VV (m/s)	Vch (m/s)	S 8	_0%	Tsec (°C)	(%)	EA (%)
	34458	10971	3457	2989	1668	329330	5,43317	1.01715	0.7985	16.76	1.40	31.8	55.4	46	34	×
2	34458	9259	2911	2745	-893	329330	4.37139	0.91484	0.81044	16.91	1.27	26.9	40.7	44	43	*
m	34458	8848	5335	3981	4481	329330	3.39414	1.23991	0.81899	17.04	1.78	25.7	65.7	43	42	150
4	34458	10552	5967	5757	5283	329330	3.94023	1.12579	0.80707	16.94	2.08	30.6	80	46	32	*
<u>ا</u> س	34458	11841	3608	4975	3502	329330	5.00261	1.11437	0.83252	17.53	1.91	34.4	69.4	47	33	105
9	34458	9203	3826	3550	-4213	329330	3.6731	0.98305	0.80969	16.90	1.5	26.7	35.9	44	43	*
	34458	9327	4604	5800	-2394	329330	4.10139	1.28365	0.81729 17.10	17.10	2.21	27.1	50.3	44	41	250
8	34458	8838	4053	4933	-385	329330	4.3775	1.16077	0.82357	17.13	1.93	26	50.9	43	47	*
6	34458	9513	3403	1 1	4869 -14292	329330	7.0655	1.47782	0.82033 17.12 2.15 27.6 10.1	17.12	2.15	27.6	10.1	44	46	140

Cenizas desalojadas durante el proceso: 4.77 Kg Cenizas generadas durante el proceso : 6.4 Kg

(16) F/C/M3/CM3/5

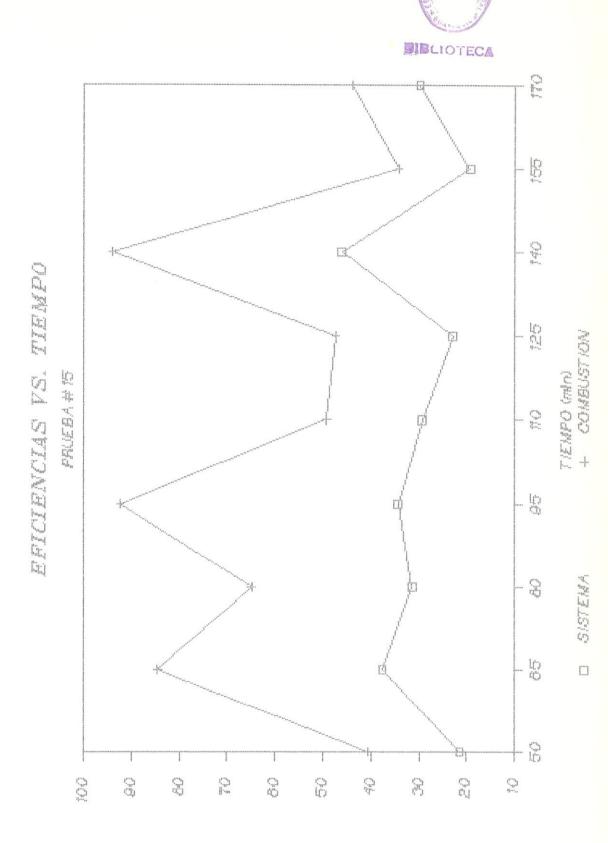

EMERGIA ACUMULADA EM LAS PAREGES (YV)


RESULTADOS

PRUEBA # 13

BALANCE	EQC (W)	EFT (W)	E (S)	CSG (W)	EAP (W)	I (W/m3)	I MGv 10-2 MGch 10 W/m ³) (Kg/seg) (Kg/seg)	N	Mv (Kg/seg)	Vv (m/s)	Vch (m/s)	(%)	<u>~</u> %	Tsec	(%)	EA (%)
	34076	8441	4381	3752	4921	325681	3.51638	0.96218	1.05784 21.81	21.81	1.52	24.8	63.1	40	49	×
0	34076		6328 4972	3429	7519	325681	2.46808	0.88507	1.11095 22.77	22.77	1.40	18.6	65.3	88	52	×
(m)	34076	11953	5075	3537	-516	325681	4.91188	1.09798	1.10216 22.93	22.93	1.58	35.1	58.8	43	52	250
4	34076		5370 4172	2252	-4697	325681	2.6676	1.47113	1.47113 1.04124 21.28	21.28	1.55	15.8	20.8	37	9	*
[C2	34076	5554	4004	4171	9968	325681	2.00129	1.32512	1.08626 22.2	22.2	1.88	16.3	70.1	37	63	145
9	34076	4263	3504	4825	-6898	325681	1.95872	1.58021	1.06611 21.72	21.72	2.21	12.5	16.7	36	52	×
	34076	5480	4170	3978	-1996	325681	2.7425	1.49305	1.06108 21.69	21.69	1.96	16.1	34.1	37	52	250
80	34076	5471	4712	-192	6909	325681	2.17107	-1.53979	1.02845 21.02	21.02	1.12	16.1	47.7	37	20	×
6	34076		8668 5630		939	325681	3.20701	3.20701 -1.72214 1.00896 20.87 1.22	1.00896¦2	20.87	1.22		25.4 44.7	41	40	10

Cenizas desalojadas durante el proceso: 3.54 Kg Cenizas generadas durante el proceso : 5.76 Kg

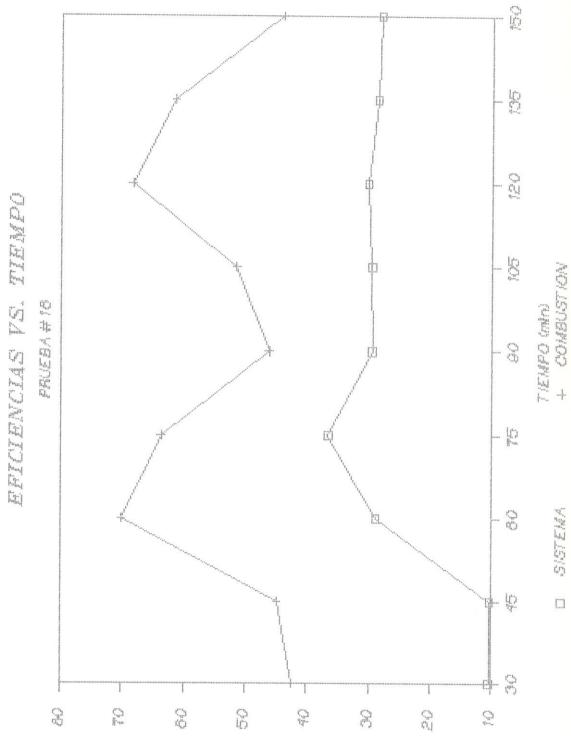

(W) 83039A9 2A1 W3 A0A1UMUOA A\0A3W3

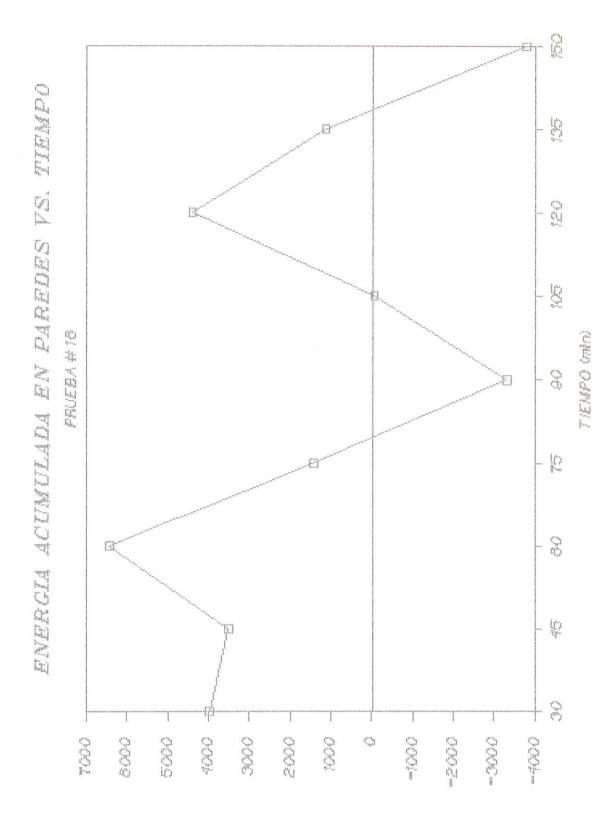
RESULTADOS

PRUEBA # 15

BALANCE	EQC (W)	EFT (W)	(X)	CSG (W)	EAP (W)	I (W/m ³)	I M _{GV*} 10 2 M _{GCh*} 10 W/m ³) (Kg/seg) (Kg/seg)	N	M v (Kg/seg)	Vv (m/s)	Vch (m/s)	\(\int_{S}\)	(%)	Tsec (°C)	用(%)	EA (%)
	35004	7525	4358	5264	-2941	325382	3.19623	1.3352	0.8801211	18.26	2.13	21.5	40.6	42	99	×
2	35004	13143	4237	7097	5091	325382	5.39338	1.4828	0.85595 18.14	8.14	2.64	37.6	84.5	49	8	×
m	35004	11016	6883	6753	-1921	325382	4.27712	1.27751	0.8796811	18.47	2.41	31.5	65	46	34	240
4	35004	12018	5080	7557	7680	325382	4.73592	1.48626	0.78252 16.58	6.58	2.74	34.3	92.4	49	30	×
LC LC	35004	10271	3785	6632	3464	325382	4.45119	1.58318	0.85621 17.98	7.98	2.62	29.3	49.2	46	88	750
9	35004	8032	8032 5726	5979	-3153	325382	3.87171	1.60596	0.82587 17.18	7.18	2.49	23	47.4	43	38	*
7	35004	16146	3977	7154	5612	325382	7.60696	1.39841	0.83729 17.85	7.85	2.59	46.1	94	51	26	180
8	35004	6772	3518	5691	-4009	325382	2.97845	1.34611	0.84797,17.59	7.59	2.24	19.4	34.2	42	41	 *
6	35004	10464 3152	3152	4335	-2539	325382	5.81723	l	1.44123 0.8275 17.37 2.01	7.37	2.01	29.9 44	44	46	29	360

Cenizas desalojadas durante el proceso: 3.74 Kg Cenizas generadas durante el proceso : 6.06 Kg





CHERGRA ACLARACEA EAL AS EACH SAGE S (MY) 8-30-36449 AND AS EACH S (MY) 8-30-36440 AND AS EACH S (MY) 8-30-36440 AND AS EACH S (MY) 8-30-3644

RESULTADOS

BALANCE	EQC (W)	EFT (W)	F (W)	CSG (W)	EAP (W)	I (W/m ³)	I MGv-10 2 MGch-10-2 W/m ³) (Kg/seg) (Kg/seg)	1	(Kg/seg)	Vv (m/s)	Vch (m/s)	S 88	<u>0</u> €€	Tsec (°C)	用(%)	EA (%)
	36248	3785	3252	4348	3975	336943	2.0204	1.04497	0.73164	15.18	1.73	10.4	42.4	42	36	*
2	36248	3722	4307	4694	3522	336943	2.10862	1.04688	0.7181	14.90	8.7	10.3	44.8	42	36	×
က	36248	10466	3625	4892	6435	336943	5.44589	0.99102	0.73002	15.56	1.8	28.9	70.1	51	24	×
4	36248	13279	4776	3624	1420	336943	7.42555	1.54657	0.74395 16.01	16.01	1.93	36.6	63.7	54	25	×
Ω	36248	10688	4518	4863	-3311	336943	6.08382	1.27101	0.74344	15.85	2.01	29.5	46.2	51	26	*
9	36248	10707	3567	4450	-53	336943	6.18073	1.39565	0.6877	14.71	2.01	29.5	51.5	52	26	*
	36248	10937	4714	4754	4397	336943	6.004	1.19948	0.65574	14.07	1.93	30.2	68.4	53	788	*
ω	36248	10379	5924	4855	1127	336943	4.97787	1.2734	0.69658	14.90	2.01	28.6	61.5	52	28	*
o	36248	10165	5928	3614	-3793	336943	5.85646	1.65705	0.70619 15.05	15.05	2.01	28	43.9	51	26	*

(M) \$303649 \$47 N3 FOFTAWADF FIREBN3

BIBLIOGRAFIA

- AMCA / ASHRAE Laboratory Methods of Testing Fans for Rating, ASHRAE Standard 51-75 & AMCA Standard 210-74; Copyright por AMCA & ASHRAE; U.S.A. 1975
- BEAGLE, E. C. Rice Husk Conversion to Energy; FAD
 Agricultural services bulletin; Rome 1978
- 3. CASTILLO, A. Almacenamiento de Granos Aspectos Técnicos y Económicos; Editorial Ediagro, Colombia 1984
- 4. CARRERES ORTELLS, R. Secado del Arroz en Cáscara;

 Departamento del arroz, C.R.I.D.A.; Valencia 1983
- CHAO, J. F. Pautas para el Diseño y Construcción de Fogones Eficientes para la Combustión de Cáscara de Arroz; Tesis de Grado, Facultad de Ingeniería Mecánica - ESPOL; Guayaquil 1987
- GLINKOV, M. / GLINKOV, G. A General Theory of Furnaces, First published; Mir Publishers; USSR 1980

- 7. HAGLER, BAILY & COMPANY and REALIANCE ENERGY SERVICES Industrial Energy Auditing Manual; Prepared for The United States Agency for International Development; USA August 1984
- 8. INCROPERA, F. / DE WITT, F. Fundamentals of Heat

 Transfer; John Wiley & Sons, Inc.; U.S.A. 1981
- KEENAN, J. / KAYE, J. Gas Tables, Thermodynaimic properties of air, products of combustion and component gases; John Wiley & Sons, Inc.; U.S.A 1948
- KRIVANDIN, V. / MARKOV, B. Metallurgical Furnaces,
 first published; Mir Publishers; USSR 1980
- 11. LANDIRES, C. Estudio de la Factibilidad del Uso de la Cascarilla de Arroz como Combustible para Secado de Arroz en Ecuador; Tesis de Grado, Facultad de Ingeniería Mecánica - ESPOL; Guayaquil 1988
- 12. MANALO, A. S. Rice Hulls as Fuel for Drying Paddy; International Rice Research Institute, IRRI; Saturday Seminar, Philippines 1971
- 13. McQUISTON, F. / PARKER, J. Heating, Ventilating, and Air Conditioning Analysis and Design, Second Edition; John Wiley & Sons, Inc.; U.S.A. 1982

- 14. MOLIARROZ Análisis de la Conveniencia Financiera del Uso de Cascarilla de Arroz como Combustible;
 Revista Moliarroz pag. 9,10 y 11; Colombia
- 15. OLADE/GATE/GTZ Manual del Curso de Gasificación de la Madera en Centroamérica y el Caribe; Costa Rica Noviembre 1983
- 16. PESKE SILMAR / AGUIRRE R. Condiciones para el Secado y Almacenamiento del Arroz; C.I.A.T.; Cali, Colombia 1986

