ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERIA MECANICA

"ESTUDIO COMPARATIVO DE LA PRODUCCION DE ALAMBRON NACIONAL E IMPORTADO"

TESIS DE GRADO

PREVIA A LA OBTENCION DEL TITULO DE :

INGENIERO MECANICO

PRESENTADA POR :

POLITECNICA DEL LITORAL
BIBLIOTECA GONZALO ZEVALLOS
F.I.M.C.P.

GERMAN VICENTE SARMIENTO VILLAVICENCIO

GUAYAQUIL-ECUADOR 1935

AGRADECIMIENTO

A la Escuela Superior Politécnica del Litoral, y de manera especial a los directivos y personal de ANDEC - FUNASA, los mismos que estuvieron prestos a colaborar en todo momento.

Al Ing. HOMERO ORTIZ A., Director de Tesis, por su ayuda y colaboración para la realización de este trabajo.

DEDICATORIA

A la memoria de mis padres : ALBERTO Y JULIA

A mis hermanos:

LUIS

ELVIA

ALICIA

MARIA

YOLANDA

MARCELO

A mis sobrinos

Ing. Eduardo Orcés Pareja
DECANO
FACULTAD INGENIERIA MECANICA

Ing, Homero Ortíz A.
DIRECTOR DE TESIS

POLITECNICA DEL LITORAL
BIBLIOTECA "GONZALO ZEVALLOS"
F.I.M. C. P.

Ing. Omar Serrano V. MIEMBRO DEL TRIBUNAL Ing. Manuel Helguero G. MIEMBRO DEL TRIBUNAL

DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta tesis, me corresponden exclusivamente; y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL".

(Reglamento de Exámenes y Títulos profesionales de la

ESPOL).

GERMAN VICENTE SARMIENTO VILLAVICENCIO

POLITECNICA DEL LITORAL
BIBLIOTECA "GONZALO ZEVALLOS"
F.I.M.C.P.

RESUMEN

La presente investigación está encaminada a realizar un estudio comparativo de la producción de alambrón nacional e importado.

El tema trata de justificar la sustitución del producto im portado por el nacional, considerando que servirá como materia prima para el proceso de trefilación. Conviene seña lar que se ha analizado desde el punto de vista de proceso de fabricación, en el caso del producto nacional, para lue go investigar las propiedades químicas, físicas, mecánicas y metalúrgicas de los productos en mención.

El tema materia de este estudio se realiza en base al acero SAE 1008 y los diámetros del alambrón usados están entre 5.5 mm y 12 mm; finalmente se presenta la síntesis de esta investigación y se dan las recomendaciones del caso.

INDICE GENERAL

						Pág.
RESUMEN						VI
INDICE GENERAL						VII
INDICE DE FIGURAS						X
INDICE DE SIMBOLOGIA						XIII
INDICE DE TABLAS						XV
INTRODUCCION			•	•		16
I. FUNDAMENTOS TECNICOS DE LAMINACION					•	18
/ 1.1 Generalidades						18
√1.2 Conceptos básicos de laminación						22
1.3 Factores importantes en un proceso d	le la	min	aci	ón		30
1.4 Cálculo del ensanchamiento						46
√ 1.5 Presión de laminación		•				49
1.6 Cálculo de la velocidad de laminació	ốn					52
1.7 Esfuerzos mecánicos en los cilindros	s de	1am	ina	ció	ón	58
II. FABRICACION DEL ALAMBRON						65
2.1 El alambrón y sus aplicaciones	•	•	•	•	•	65
2.2 Evolución de los trenes laminadores	de l	• narr	as	• v	•	65
	uc i	<i>,</i> (111	u.s	,	44	a a a a a a a a a a a a a a a a a a a
alambrones	•	•	•	•	•	68
2.3 Laminador convencional como tren int	erme	edic	1		•	72
2.4 Tren terminador de alta velocidad.		•	•	•		74
2.4.1 Partes componentes del tren	•					75
2.4.2 Sistema de enfriamiento "STELM	MOR''	con	tro	1ad	lo	OF

	Pág
por agua y aire	
2.5 Calibrado de cilindros para trenes continuos de	95
alambrón	
2.6 Control de proceso del alambrón	103
2.7 Cálculo y diseño de pasadas para laminar alambrón	105
III. PRUEBAS EXPERIMENTALES COMPARATIVAS	
	110
/3.1 Ensayos químicos	110
/ 3.1.1 Composición química de palanquillas de colada	
continua y laminada	110
3.1.2 Composición química de alambrón nacional e	
importado	110
3.2 Análisis metalográfico y durométrico	111
X3.2.1 Análisis macro y microscópico de la palanquilla	(8.30.00
de colada continua y laminada	111
X3.2.2 Metalografía del material laminado en las dife-	***
rentes pasadas	119
√ 3.2.3 Cuadro de durezas de la materia prima	119
3.3 Ensayos físicos de control de masa, ovalidad y	
resaltes	127
3.3.1 En el alambrón nacional	
3.3.2 Alambrón de fabricación extranjera	132
	132
3.4 Ensayos mecánicos	132
3.4.1 Ensayo Charpy de palanquilla de colada conti-	
nua y laminada	132

	Pág.
3.4.2 Pruebas de tracción de alambrón nacional	141
3.4.3 Ensayo ténsil de alambrón extranjero	141
3.4.4 Pruebas de doblado en el alambrón nacional	148
3.4.5 Ensayo de doblez en el alambrón importado	148
DISCUSION DE RESULTADOS	151
CONCLUSIONES Y RECOMENDACIONES	156
APENDICES	161
BIBLIOGRAFIA	100

<u>N°</u>			Pág.
1.1	PARTES COMPONENTES DE UN LAMINADOR		
1.2	BARRA ATRAVEZANDO DOS CILINDROS DE LAMINACION	•	20
1.3	ALTURA MEDIA DE UNA SECCION	•	23
1.4	DISTRIBUCION DE PLANTA DEL TREN DE LAMINACION	•	25
1.5	DISEÑO DE PASES ACTIVOS Y PASES MUERTOS	٠	34
1.6	TIPOS DE PASES	•	38
1.7	ANGULO DE CONTACTO		39
1.8	COMPONENTES DE LA VELOCIDAD		42
1.9	PUNTOS DE CONTACTO MATERIAL-CILINDRO		53
1.10	DIAGRAMA DE EQUILIBRIO PRIMERA PASADA DEL DESBASTE		54
1.11	FACTOR RELEVANTE DE ESFUERZO		59
2.1	DISEÑO DE UNO DE LOS PRIMEROS TRENES LAMINADORES	•	64
	A secretary of the secr	*	69
2.2	ARRASTRADOR HORIZONTAL		86
2.3	POSICIONES DE LA CIZALLA DE DISCOS		90
2.4	BOBINADORA DE ESPIRAS		94
2.5	DISPOSITIVO FORMADOR DE ROLLOS		95
2.6	ATADORAS DE ALAMBRON	•	96
2.7	SISTEMA EVACUADOR DE ROLLOS		96
2.8	SISTEMA DE ENFRIAMIENTO CONTROLADO POR AGUA		93
2.9	DISEÑO DE PASADAS PARA LAMINAR ALAMBRON		108
2.10	NOMOGRAMA PARA DETERMINAR LA RELACION hm/hmáx. DE		100
	OVALOS EXAGONALES		174
2.11	NOMOGRAMA PARA DETERMINAR LA RELACION hm/hmáx. DE	•	
	OVALOS DE UN SOLO RADIO		4800

Nº		Pág.
2.12	NOMOGRAMA PARA DETERMINAR LA RELACION hm/hmáx. DE	
	CUADRADOS Y DIAMANTES	472
3.1	ANALIZADOR DE CARBONO Y AZUFRE	176
3.2	EQUIPO DE MICROFOTOGRAFIA	115
3.3	MACROFOTOGRAFIA PALANQUILLA LAMINADA DEL ACERO	115
	SAE 1007	117
3.4	MACROFOTOGRAFIA PALANQUILLA DE COLADA CONTINUA DEL	117
	ACERO SAE 1007	447
3.5	MICROFOTOGRAFIA PALANQUILLA LAMINADA DEL ACERO	117
	SAE 1007	
3.6	MICROFOTOGRAFIA PALANQUILLA DE COLADA CONTINUA DEL	118
	ACERO SAE 1007	
7 7		118
3.7	MACROFOTOGRAFIA TERCERA REDUCCION, PROBETA Nº 2,	
10	ACERO SAE 1007	120
3.8	MACROFOTOGRAFIA CUARTA REDUCCION, PROBETA Nº 2,	
	ACERO SAE 1007	121
3.9	MACROFOTOGRAFIA QUINTA REDUCCION, PROBETA Nº 2,	
1	ACERO SAE 1007	120
3.10	MICROFOTOGRAFIA QUINTA REDUCCION, PROBETA Nº 2,	140
	ACERO SAE 1007	***
7 11	PROBETA Nº 4, ACERO SAE 1008, TAMAÑO DE GRANO Nº 9	122
3.11		123
	PROBETA Nº 5, ACERO SAE 1007, TAMAÑO DE GRANO Nº 9	123
3.13	PROBETA Nº 6, ACERO SAE 1008, TAMAÑO DE GRANO Nº 9	124

Nº		Pág.
3.14	PROBETA Nº 7, ACERO SAE 1009, TAMAÑO DE GRANO Nº 9	124
3.15	PROBETA Nº 3, ACERO SAE 1008, TAMAÑO DE GRANO Nº 9	125
3.16	PROBETA Nº 2, ACERO SAE 1007, TAMAÑO DE GRANO Nº 9	125
3.17	PROBETA Nº 1, ACERO SAE 1007, TAMAÑO DE GRANO Nº 9	126
3.18	PROBETA Nº 1, ACERO SAE 1007, TAMAÑO DE GRANO Nº 9	126
3.19	VARIACION DE LA DUREZA CON LA DISTANCIA EN PALANQUILLA	275
	LAMINADA Y DE COLADA CONTINUA	128
3.20	VARIACION DE LA DUREZA CON LA DISTANCIA EN LAS PRIMERAS	
	PASADAS DE PALANQUILLA LAMINADA	129
3.21	VARIACION DE LA DUREZA CON LA DISTANCIA EN LAS PASADAS	
	INTERMEDIAS DE PALANQUILLA LAMINADA	130
3.22	PROBETAS UNA VEZ REALIZADO EL ENSAYO DE IMPACTO	142
3.23	MAQUINA PARA EL ENSAYO DE DOBLADO	150
3.24	MUESTRAS DE MATERIAL LAMINADO LUEGO DE REALIZAR EL	
	ENSAYO DE DOBLADO	150

SIMBOLOGIA

L1 : Largo inicial

L2 : Largo final

b1 : Ancho inicial

b2 : Ancho final

h1 : Altura inicial

h2 : Altura final

V1: Volumen inicial

V2 : Volumen final

A1 : Area de la sección transversal de entrada

A2 : Area de la sección transversal de salida

hm : Altura media

Ym : Coeficiente de reducción de altura media

ξm%: Porcentaje relativo reducción de altura

λ : Coeficiente de alargamiento

v1 : Velocidad de entrada

v2 : Velocidad de salida

v_p : Velocidad periférica de cilindros

ΔL: Alargamiento absoluto

Δb : Ensanchamiento absoluto

ΔA : Reducción área absoluta

R% : Porcentaje relativo reducción de área

β : Coeficiente de ensanchamiento

Y : Coeficiente de reducción de altura

Dt : Diámetro de trabajo

Dc : Diámetro de cilindro

Rc : Radio de cilindros

e : Luz de cilindros o entrehierro

Dmt : Diámetro medio de trabajo

a : Angulo de contacto

μ : Coeficiente de fricción

P : Presión de laminación

T : Temperatura del material

η : Coeficiente de plasticidad

v_n : Velocidad en el punto neutro

δ : Angulo neutro

n : RPM del reductor

N : RPM del motor

Sf : Deslizamiento hacia adelante

Sb : Deslizamiento hacia atrás

M : Momento de flexión.

T : Momento torsor

I : Momento de inercia

σ_n : Esfuerzo de flexión

τ : Esfuerzo cortante

I_p : Momento polar de inercia

h1m : Altura media inicial

h2m : Altura media final

Δhm: Coeficiente absoluto de altura media

ξm: Coeficiente relativo de altura media

INDICE DE TABLAS

No		Pág.
2.1	CARACTERISTICAS DE LOS ANILLOS DE CARBURO DE TUNGSTENO	79
2.2	TONELAJE APROVECHABLE DE LOS ANILLOS DE LAMINACION	84
2.3	PORCENTAJE DE PERDIDAS POR OXIDACION EN LOS ACEROS	99
2.4	INFLUENCIA DEL MEDIO DE ENFRIAMIENTO SOBRE LAS PROPIE-	
	DADES MECANICAS	100
2.5	CONTROL DE PROCESO DEL ALAMBRON	106
2.6	VALORES DEL ANGULO DE CONTACTO Y REDUCCION RELATIVA	
	DE ALTURA	172
2.7	VALORES DE ENSANCHAMIENTO, TREN DE PERFILES	181
2.8	VARIABLES OBTENIDAS DEL TREN DESBASTADOR	188
2.9	VARIABLES OBTENIDAS DEL TREN INTERMEDIO Y TERMINADOR	189
3.1	COMPOSICION QUIMICA PALANQUILLA DE COLADA CONTINUA	112
3.2	COMPOSICION QUIMICA PALANQUILLA LAMINADA	112
3.3	COMPOSICION QUIMICA DE ALAMBRON NACIONAL	113
3.4	COMPOSICION QUIMICA DE ALAMBRON IMPORTADO	114
3.5	VALORES DE MICRODUREZA DEL ALAMBRON NACIONAL E IMPOR-	
	TADO	131
3.6	RESULTADOS DE ENSAYOS FISICOS PARA ALAMBRON NACIONAL	133
3.7	RESULTADOS DE ENSAYOS FISICOS PARA ALAMBRON IMPORTADO	137
3.8	VALORES OBTENIDOS DEL ENSAYO CHARPY	140
3.9	PRUEBAS DE TRACCION DE ALAMBRON NACIONAL	143
3.10	PRUEBAS DE TRACCION DE ALAMBRON IMPORTADO	145
3.11	DATOS PROMEDIOS DEL ENSAYO DE TRACCION DE ALAMBRON NA	
	CIONAL E IMPORTADO	147

Desde hace un poco más de una década, una de las miniacerías de nuestra región fabricaba exclusivamente varillas para la construcción. Conforme avanza el desarrollo en esta área, se trataba de obtener alambrón en trenes convencionales para cubrir la demanda industrial, pero sus experiencias no justificaban porqué se desabastecía el mercado de la construcción, debido a la capacidad instalada de la planta laminadora como también de la planta proveedora de palanquilla de colada contínua.

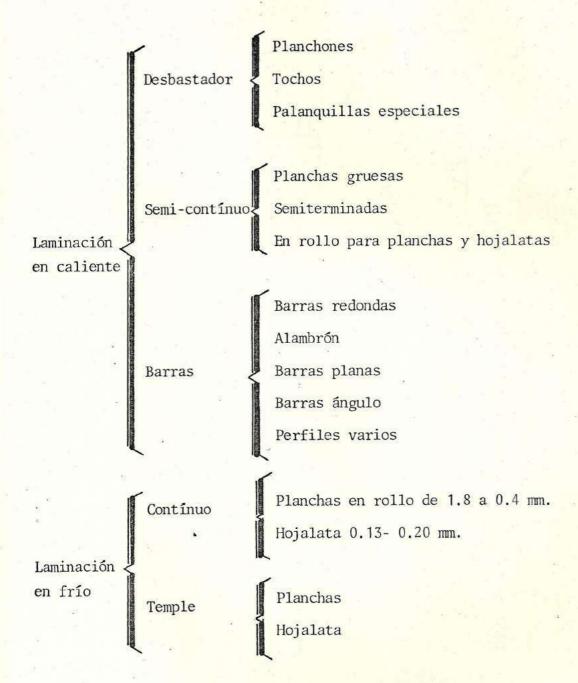
Alrededor de 1981, se llegan a cristalizar los planes de expansión de la miniacería, instalándose un moderno tren de laminación de alambrón, con lo que en 1983 comienza a fabricarse este producto para la industria. Es así como nace la idea de desarrollar el presente tema de investigación, tratando de minimizar la dependencia de materia prima importada. (9)

El tema a tratarse en este trabajo comprende el estudio comparativo del alambrón nacional partiendo de palanquilla de colada contínua, como también de palanquilla laminada y el alambrón importado como materia prima para la industria de la trefilación.

Para este efecto, se hace una recopilación de la biblio grafía referente al tema, se analiza el proceso de fabrica ción y el trabajo experimental está basado en realizar los diferentes ensayos según los requerimientos de la norma INEN (Instituto Ecuatoriano de Normalización) para alambrón.(11)

CAPITULO I

FUNDAMENTOS TECNICOS DE LAMINACION


1.1 GENERALIDADES

El proceso de laminación es el más empleado en el procesamiento del acero, ya que por su naturaleza permite una alta producción y un control muy aproximado del producto final. Este proceso puede definirse como la transformación de la forma inicial de un trozo de acero al producto final a través de deformaciones plásticas sucesivas al pasar entre dos rodillos en rotación, con una separación relativamente constante.

Al producirse la deformación, el material está sujeto a altos esfuerzos de compresión al ser arrastrados por los rodillos, como resultado, principalmente, de la fricción o roce producidos entre la superficie de los rodillos y el material. (7)

El proceso de laminación físicamente se divide en :

- a) Laminación en caliente
- b) Laminación en frío

Básicamente, un laminador está constituído por el motor, caja de reducción, caja de piñones, eje de transmisión con sus acoples, los rodillos montados sobre sus descansos fijos en los bastidores, como se puede apreciar en la Fig. 1.1

POLITECNICA DEL LITORAL BIBLIOTECA "GONZALO ZEVALLOS"

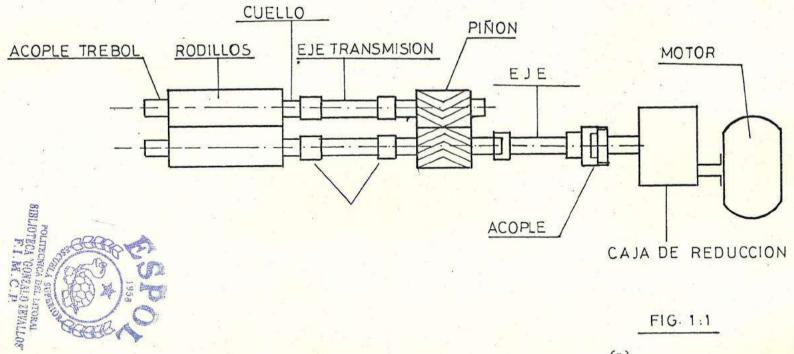


Fig. 1.1 PARTES COMPONENTES DE UN LAMINADOR (7)

Considerando las fuerzas tan grandes que se desarrollan, el sistema debe ser muy rígido y los motores de gran capacidad.

Los laminadores se pueden clasificar de acuerdo al n $\underline{\acute{u}}$ mero y arreglo de los rodillos, como lo describimos a continuación :

- a) Dúo (2 Hi) irreversible tipo laminador antíguo de planchas, operación a mano. Se pasa el material por entre los dos rodillos y vuelve por encima del superior actuando éste como polín arrastrador. (3)
- b) Dúo (2 Hi) reversible tipo desbastador de 32 x 78. El material adquiere el movimiento de vaivén entre los dos rodillos que cambia su sentido de rotación en fracciones de segundo.
- c) Trío (3 Hi) irreversible (semi-contínuo). El material después de pasar entre el rodillo inferior y el medio, vuelve entrando la cola entre el rodillo medio y el superior.
- d) 4 Hi Contínuo. Constituído por tres o más bastidores, se emplean para laminación en caliente y laminación en frío de alta productividad.

El material pasa a través de los rodillos de trabajo, los cuales están sincronizados para tomar el material que sale del bastidor anterior, de tal manera que el volumen que entrega cada bastidor es constante.

e) Multi - Hi - reversible. El material pasa a través de dos rodillos de trabajo de diámetro pequeño soportados por una serie de rodillos.

1.2 CONCEPTOS BASICOS DE LAMINACION

El proceso de laminación en caliente es realizado mediante dos cilindros superpuestos a una altura constante que, girando en sentido contrario, agarran el material produciendo deformaciones plásticas, las mismas que están gobernadas por una serie de factores que inciden en la magnitud de dicha deformación.

En la Fig. 1.2, se muestra dos cilindros de laminación que tienen diámetros iguales y giran a un mismo
número de revoluciones por minuto; por poseer parámetros similares, van a tener una misma velocidad perifé
rica, los puntos de contacto del material en cada cilindro están equidistantes entre sí, el ángulo formado
por la línea que une los dos centros de los cilindros
y el radio del cilindro al punto de contacto del mate

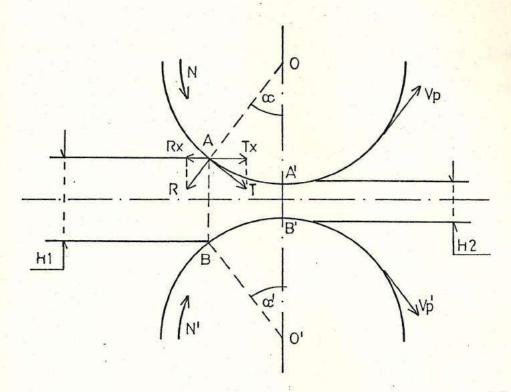


Fig. 1.2 BARRA ATRAVEZANDO DOS CILINDROS DE LAMINACION (7)

rial, se llama ángulo de contacto.

El incremento de este ángulo se hará a medida que aumente la altura inicial del material, h1, hasta un limite tal en que la pieza no pueda ser tomada por los cilindros. A este ángulo límite se lo conoce como "Angulo de mordida o de agarre" y depende fundamental mente del coeficiente de fricción entre los cilindros y el material (7).

La zona comprendida entre los puntos AA' y BB' es la zona donde se produce el proceso de laminación, es de cir que en esta zona los cilindros ejercen fuerzas para producir las deformaciones plásticas debido a la

compresibilidad del material en las tres direcciones: alargamiento, ensanchamiento y reducción de altura.

Las deformaciones producidas en las tres direcciones son las que rigen el principio básico de laminación llamado principio de constancia de volumen, el mismo que enuncia que el volumen de entrada a un proceso de laminación es igual al volumen de salida, considerando las variaciones producidas en el material laminado.

De acuerdo a esto, si h, b, y L llamamos altura, ancho y largo del material laminado respectivamente, por el enunciado de constancia de volumen, tenemos :

V1 = h1.b1.L1

V2 = h2..b2.L2

V1 = V2

h1.b1.L1 = h2.b2.L2

V1 = V2 = V3 = ... = Vn

Por lo tanto el valor del área de la sección transversal del material será:

A1 = h1.b1

A2 = h2.b2

Cuando se trabaja con secciones que no son rectangu-

lares como redondos, óvalos, rieles, etc., se introduce otro elemento de cálculo conocido como altura media y es aquella altura de la sección transversal rectangular equivalente a la sección transversal laminada, como se puede apreciar en la Fig. 1.3.

La altura media de la sección transversal es calculada dividiendo el área para el máximo ancho del material.

El concepto de altura media ha sido introducido para mantener el principio de constancia de volumen y poder determinar los volúmenes equivalentes en cada una de las pasadas:

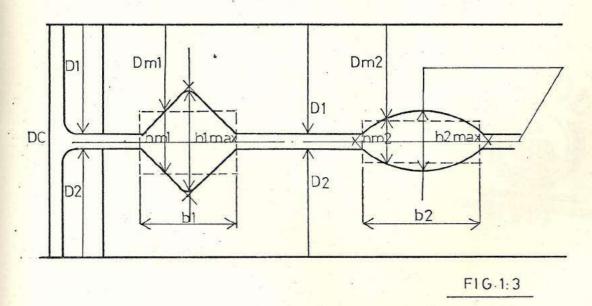


Fig. 1.3 ALTURA MEDIA DE UNA SECCION (7)

$$h1m = \frac{A1}{b1} \qquad \qquad h2m = \frac{A2}{b2}$$

De modo que el volumen de entrada y salida en términos de altura media será:

$$V1 = A1.L1 = h1m.b1.L1$$

$$V2 = A2.L2 = h2m.b2.L2$$

Si relacionamos los valores de dos pasadas consecutivas, podemos obtener valores de reducción de altura media en términos de :

a) Coeficiente de altura media;

$$\frac{h2m}{h1m} = \frac{A2}{b2} \cdot \frac{b1}{A1} = \gamma m$$

b) Coeficiente absoluto de altura media; $h1m - h2m = \frac{A1}{b1} - \frac{A2}{b2} = \Delta hm$

c) Coeficiente relativo de altura media;

$$\frac{h1m - h2m}{h1m} = \xi m$$

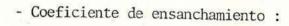
d) Porcentaje relativo de altura media

$$\frac{h1m - h2m}{h1m} \times 100 = \xi m \cdot 100\%$$

Si relacionamos los valores referentes al alargamiento y al ensanchamiento tenemos :

- Coeficiente de alargamiento

$$\lambda = \frac{A1}{A2} = \frac{h1m \cdot b1}{h2m \cdot b2} = \frac{L2}{L1} = \frac{v2}{v1}$$


donde :

v1 : velocidad de entrada

v2 : velocidad de salida

- Alargamiento absoluto :

$$\Delta L = L2 - L1$$

$$\beta = \frac{b2}{b1}.$$

- Ensanchamiento absoluto:

$$\Delta b = b2 - b1$$

Las relaciones de reducción de altura son complemento del alargamiento producido por lo que se define a continuación:

- Reducción área absoluta :

$$\Delta A = A1 - A2$$

- Reducción área relativa :

$$R = \frac{A1 - A2}{A1}$$

- Porcentaje de reducción :

$$R\% = \frac{A1 - A2}{A1} \times 100$$

Luego, las relaciones de coeficiente de alargamiento y reducción relativa de área pueden ser calculadas por una fórmula común :

$$\lambda = \frac{1}{1-R} = \frac{100}{100 - R}$$

$$R = 1 - \frac{1}{\lambda}$$

$$R_0^6 = 100 - \frac{100}{\lambda}$$

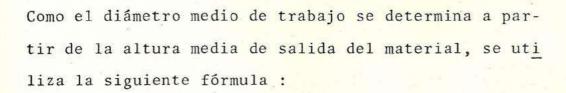
De modo que, para que se produzca un determinado coeficiente de alargamiento, debemos tener una respectiva reducción de área.

Otro concepto que se define es el referente a diámetros, el mismo que se requiere para realizar los cálculos de las velocidades de laminación.

En vista de que se relaciona velocidades angulares con velocidades lineales, los diámetros de los cilindros serán los parámetros que nos permitan realizar las transformaciones necesarias.

El cálculo de las velocidades se realiza con los llamados diámetros de trabajo de los cilindros, los mismos que se los calcula en base a la sección que se la
mine, ya sea óvalo, redondo o cuadrado, etc. (15)

El diámetro de trabajo viene dado por la siguiente fór mula:


$$Dt = Dc - h2$$

donde:

Dt : diámetro de trabajo

Dc : diámetro de cilindro

h2: altura de salida de material

Dmt = Dc - h2m

El diámetro teórico de cilindro, Dc, es la distancia entre los ejes de los dos cilindros laminadores incluyendo el espacio de abertura entre ellos, conocido como entre hierro o luz (e).

Si:

$$D1 = D2 = D$$

entonces:

$$Dc = \frac{D1}{2} + \frac{D2}{2} + e$$

$$Dc = D + e$$

reemplazando:

$$Dmt = D + e - h2m$$

1.3 FACTORES IMPORTANTES EN UN PROCESO DE LAMINACION

Para laminar un producto hay que determinar un calibrado que comprenda la elección completa y correcta de cilindros, diseño de un buen guiado de la barra a lo largo de todo el tren, y finalmente, diseño o trazado del calibrado que comprende el diseño de todo el programa de pasadas, esto es, desbastadoras, intermedias, preparadoras, preterminadoras y terminadoras. Estos factores se analizan a continuación:

1.3.1 CILINDROS DE LAMINACION

La función principal del cilindro es la de llevar a cabo las deformaciones del material en el proceso de laminación. Desde años atrás la fabricación de cilindros ha estado rodeada de secretos en ciertos aspectos como moldeo, colado y tratamiento térmico.

El cilindro laminador está sujeto a soportar una serie de solicitaciones desde el punto de vista mecánico-térmico que se enuncian a continuación:

- a) SOLICITACIONES MECANICAS: Tensiones originadas por flexión, torsión, corte por cizallamiento, impacto y fatiga (4).
- b) SOLICITACIONES TERMICO-MECANICAS: Producidas principalmente por los ciclos alternados de bruscos calentamientos y enfriamientos en el laminado en caliente, asociados con el fisuramiento térmico, abrasión causada por la cascarilla de laminación y presencia del vapor de agua de refrigeración.
- c) SOLICITACIONES TERMICAS: Causadas por inconvenientes en el laminado en caliente, resbalamiento brusco del material, etc. que someten al cilindro a esfuerzos mecánicos súbitos de origen térmico debido a elevados

calentamientos localizados, ablandamiento prematuro, etc.

La evaluación de los factores mencionados anteriormente nos lleva a considerar dos puntos fundamentales en el rendimiento de cilindros: Resistencia al desgaste traducida en un buen rendimiento de toneladas de material laminado, y el peligro de roturas de cilindros debidas a problemas de origen mecánico-térmico.

Estos son los criterios que se deben tener presente para definir tal o cual calidad de cilindor a montarse en cada caja o stand del tren, de acuerdo al trabajo que van a realizar éstos con un calibrado específico.

1.3.2 GUIADO

Otro de los dispositivos o elementos necesarios para que los cilindros trabajen al máximo de su eficiencia es el "Guiado". Podemos definir como aquel elemento encargado de llevar el material desde y hacia los cilindros laminadores manteniéndolo en posición correcta.

De acuerdo a la distribución en planta (véase

Fig. 1.4), en un tren de laminación local, es decir, abierto y contínuo, es sumamente importante asegurarse en que el material sea bien guia do en todo el recorrido, ya que se involucra muchas posibilidades de interrupción en el proceso, lo cual repercute directamente en el costo y calidad del producto terminado.

Por la disposición del tren, esto es, cilindros montados en forma horizontal, se hace necesario girar las secciones laminadas en cada stand de acuerdo al calibrado utilizado.

Existen distintos tipos de trazado que dependen de las formas o configuraciones geométricas que va tomando el material en cada pasada,
los más típicos son: secuencia óvalo-redondoóvalo, secuencia óvalo-cuadrado-óvalo, secuencia diamante-cuadrado-diamante.(4)

En este estudio se usa el segundo trazado, en el que se determina la posición que debe tomar una sección cuadrada cuando va a entrar en un canal de óvalo, como también la posición que debe tomar el óvalo para entrar al siguiente canal cuadrado y así sucesivamente hasta lle

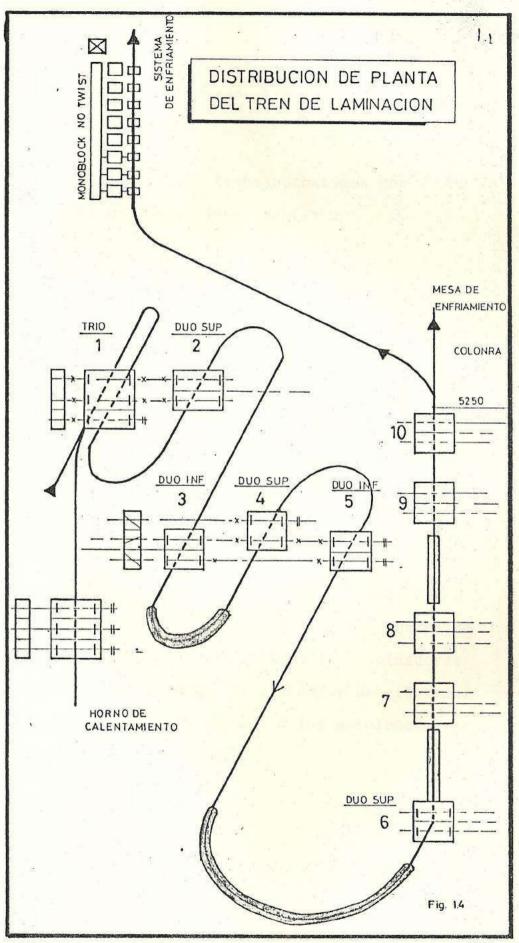


Fig. 1.4 DISTRIBUCION DE PLANTA DEL TREN DE LAMINACION (12)

gar al canal de la caja terminadora, que por tratarse de un redondo, tiene que ser alimentado con un óvalo.

Para cumplir dicho trabajo contamos con la siguiente clasificación de guías :

1.3.3 TRAZADO

Se puede esperar resultados favorables cuando el trazado cumple a cabalidad su función en de pendencia directa a los cilindros laminadores y al guiado; además, un diseñador deberá tomar en cuenta factores ajenos a los mencionados an teriormente, como son :

- Velocidad de laminación
- Temperatura de laminación

- Presión de laminación
- Fricción entre el material y los cilindros
- Composición química del material a laminarse
- Diámetro de cilindros
- Forma del canal
- Longitud del arco de contacto

Todos estos factores se cubrirán en detalle en otro capítulo.

En cuanto al diseño de los pases de laminación se deberá tomar en cuenta los siguientes puntos:

- a) La cantidad de pases necesarios para obtener el perfil deseado como producto final.
- b) La distribución de los pases a lo largo de las diferentes tablas del juego de cilindros.
- c) Decidir sobre formas y tipos apropiados de pases.⁽⁴⁾

Prosiguiendo con otros puntos influyentes para el trazado, sabemos que un pase o canal representa el borde límite de una determinada sección en caliente, tallada en la superficie de los dos cilindros laminadores que trabajan superpuestos. Una sección en caliente se la calcula a partir de la dimensión en frío deseada y del coeficiente de expansión térmica lineal que se toma entre 1.013 y 1.015. Los pases pueden ser activos, los mismos que se encuentran en disposición de laminar y está formado por dos tallados activos (véase Fig.1.5).

Pases muertos son aquellos que no están en dis posición para laminar, es decir poseen un tallado vivo en uno de los cilindros, mientras que en el otro no existe. Estos tipos de cana les tanto vivo como muerto se encuentran generalmente en cajas tríos.

Las formas de los pases utilizados en el traza do son muy diversas y tienen su aplicación de acuerdo a las condiciones de operación de cada tren de laminación (véase Fig.1.6). Las más usadas son :

- Cajón
- Cuadrado
- Diamante
- Cuadrado gótico
- Ovalo
- Ovalo bastardo
- Redondo

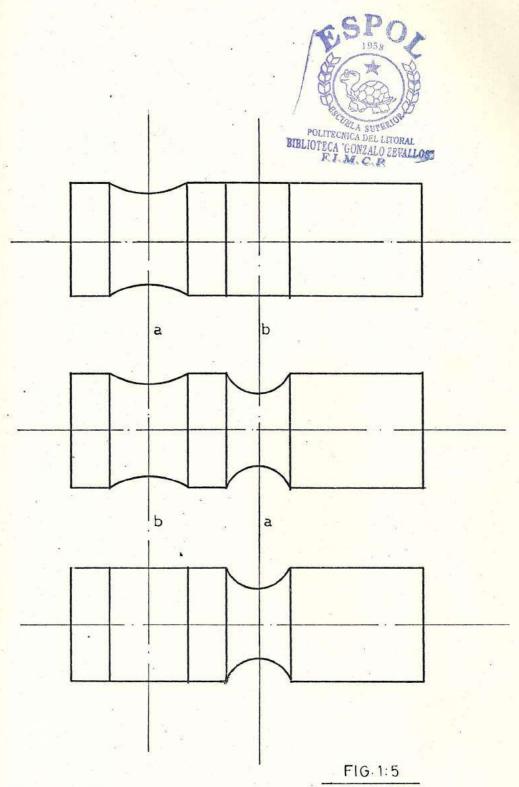


Fig. 1.5 DISEÑO DE PASES ACTIVOS Y PASES MUERTOS (4)

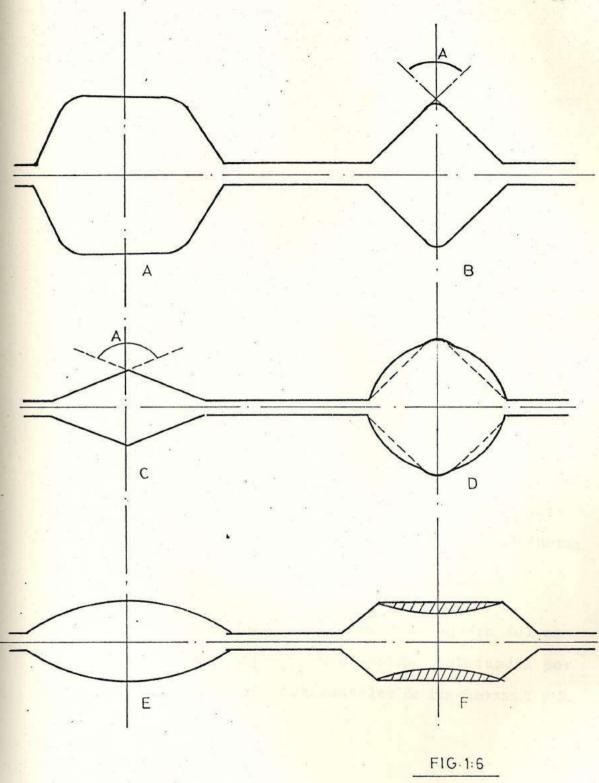
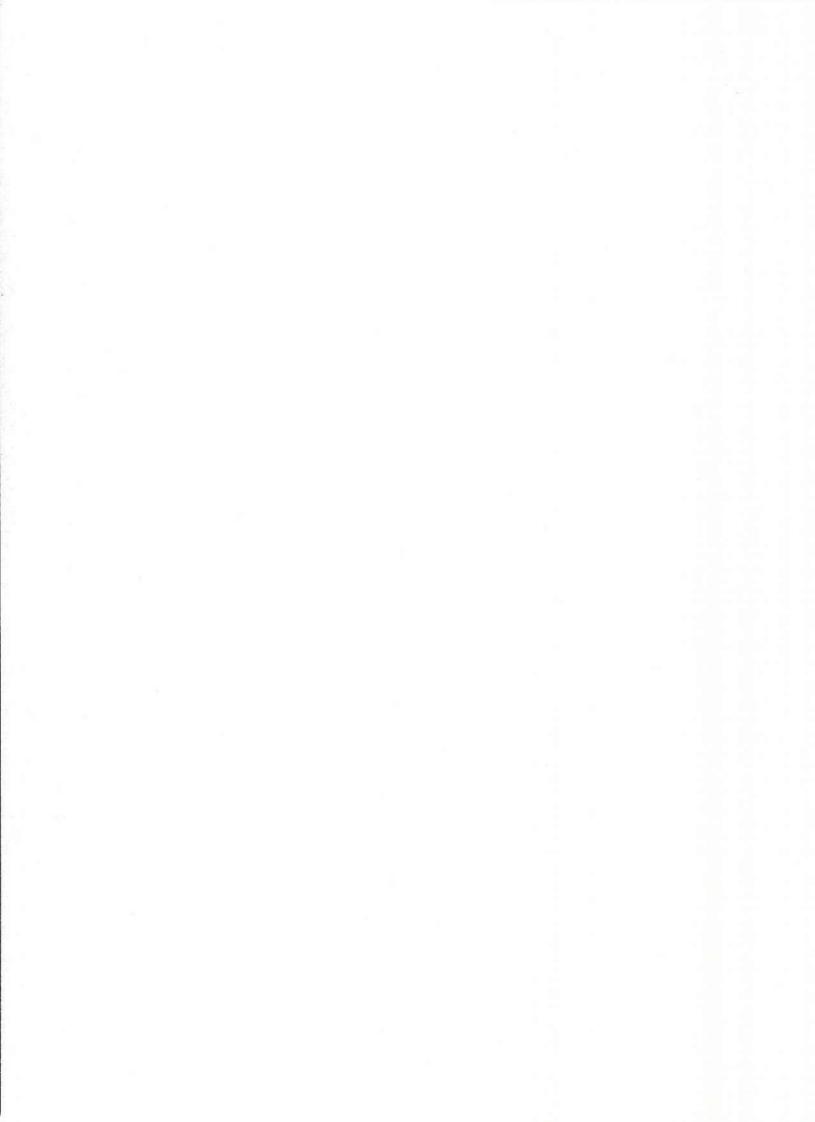


Fig. 1.6 TIPOS DE PASES (4)

1.3.4 ANGULO DE CONTACTO

Con respecto al ángulo de contacto, analizamos las fuerzas que actúan en el punto de contacto y sus magnitudes para que se produzca el agarre del material por parte de los cilindros.


Como podemos apreciar en la Fig. 1.2, el proceso de laminación se inicia cuando el material entra en contacto con los cilindros en los puntos A y B, ejerciéndose una presión determinada P sobre los cilindros, los mismos que ejercen una fuerza de reacción R sobre el material. En los puntos A y B se produce a su vez una fuerza tangencial por efecto del contacto del material con los cilindros, la misma que para nuestro análisis se denomina fuerza T, o fuerza de arrastre.

Por tanto, las posibilidades de agarre del material por los cilindros están gobernadas por las componentes horizontales de las fuerzas T y R. Donde:

$$T_x = T \cos \alpha$$

$$R_{\mathbf{x}} = R \operatorname{sen}\alpha$$

Se determina que existirá agarre del material por parte de los cilindros si se cumple la siguiente condición :

$$T_x > R_x$$

T cosα > R senα

Así mismo, si observamos la Fig. 1.7 el arco de contacto en cada cilindro tiene su proyección horizontal, para fines de cálculo identificamos la altura h del material dentro de la zona de deformación a una distancia x desde la salida de los cilindros y su correspondiente ángulo de laminación δ , pudiendo este ángulo ser menor o igual que el ángulo de contacto.

Con esta hipótesis, la reducción total en altura y la debida a un solo cilindro será:

$$\Delta h = h1 - h2 \qquad y \qquad \frac{\Delta h}{2} = \frac{h1 - h2}{2}$$

Aplicando relaciones trigonométricas en los triángulos formados tenemos:

$$R \cos \alpha = R - \frac{h1 - h2}{2}$$

o factorando:

$$1 - \cos \alpha = \frac{h1 - h2}{2R}$$

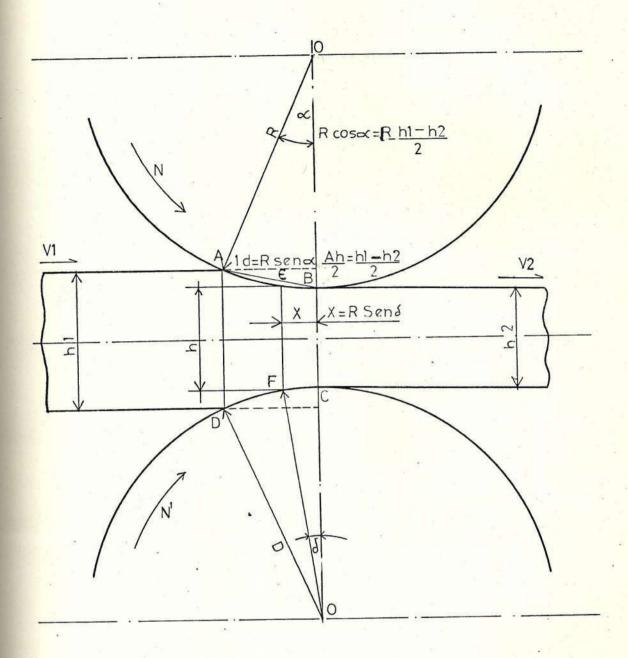


FIG. 1:7

Fig. 1.7 ANGULO DE CONTACTO (7)

De donde se obtiene la forma básica para el cálculo del ángulo del contacto.

$$\cos \alpha = 1 - \frac{h1 - h2}{2R}$$

$$\cos \alpha = 1 - \frac{\Delta h}{D}$$

De estas fórmulas podemos obtener otras deriva das como son :

$$h1 = h2 + D (1 - \cos \alpha)$$

$$h2 = h1 - D (1 - \cos \alpha)$$

$$\Delta h = D (1 - \cos \alpha)$$

La proyección del arco de contacto en el plano horizontal puede calcularse de la siguiente relación geométrica:

$$(1_d)^2 = R^2 - OF$$

$$(1_d)^2 = R^2 - \left(R - \frac{h1 - h2}{2}\right)^2$$

reordenando términos:

$$1_{\rm d}^2 = R^2 - \left[R - \frac{\Delta h}{2}\right]^2$$

$$1_d = \sqrt{R.\Delta h - \frac{\Delta h^2}{4}}$$

El término Δh^2 para fines de cálculo generalmente se lo omite para ángulos de contacto que no excedan los 20°, por tener un error inferior a 1%, con lo cual nos queda la fórmula de la siguiente manera :

$$1_d = \sqrt{R \cdot \Delta h}$$

Mientras que el arco de contacto se calcula de la siguiente forma :

$$\frac{\alpha}{360} = \frac{AB}{2\pi R}$$

de donde nos queda :

$$AB = \frac{\pi R\alpha}{180}$$

Otro parámetro influyente en la capacidad de agarre de una pasada, es la buena elección de las calidades de los cilindros laminadores en cuanto a su ubicación en el tren, el mismo que acompañado de un buen

calibrado de cilindros con un trazado y guiado acertado influyen directamente en la productividad del tren. Teniendo como referencia la temperatura de laminación, podemos calcular el coeficiente de fricción con las fórmulas de Ekelund:

 μ = 1.05 - 0.0005T Cilindros de acero μ = 0.8 (1.05 - 0.0005T) Cilindros de fundición

donde T viene dada en grados centígrados.

De las fórmulas expuestas se aprecia que los cilindros de acero tienen mayor coeficiente de fricción que los de fundición de hierro (4).

Con los antecedentes anteriores, se selecciona cilindros de acero en los trenes donde la
reducción en altura es grande, como el caso
del tren desbastador, por tener un mayor aga
rre; pero en cambio están sujetos a un mayor
desgaste superficial con la consecuente desventaja de que el rectificado sea mayor para
su nueva utilización.

En cambio cuando las reducciones son moderadas significa que el ángulo de agarre es pequeño,

para lo cual los cilindros de hierro fundido son los más aconsejados, los mismos que presentan una considerable ventaja en la vida útil debido a un desgaste superficial muy bajo, encontrando su aplicación en los trenes intermedio y terminadores.

A continuación se muestra valores del ángulo de agarre promedio más aconsejado :

 $\alpha = 25^{\circ}$ Cilindros de fundición (lisos)

 $\alpha = 35^{\circ}$ Cilindros de acero (rugosos)

1.4 CALCULO DEL ENSANCHAMIENTO

En un proceso de laminación la deformación que sufre el material se produce en las tres direcciones :

Tomando como referencia un sistema de coordenadas car tesianas, el eje "x" corresponde a la deformación pro ducida en la dirección paralela al eje de los cilindros. La deformación producida en esa dirección corresponde al "ensanchamiento" del material.

En el eje "y" se produce la "reducción de altura" y corresponde a la deformación producida en dirección perpendicular a la línea de laminación de los dos cilindros.

En el eje de coordenada "z" la deformación que se produce en sentido de la línea de laminación se conoce como "alargamiento".

Estas deformaciones están ligadas íntimamente. Se deberá siempre procurar obtener un mayor alargamiento con un mínimo ensanchamiento a costa de una gran reducción del área de la sección transversal⁽⁴⁾.

El ensanchamiento está influenciado por factores tales como calidad del material, diámetro de cilindros,
calidad de los cilindros, reducción en altura, temperatura, fricción y velocidad. Hasta alrededor de
10 m/seg, no hay variación de ensanchamiento, mientras que por sobre esta velocidad, éste disminuye li
geramente, por lo que el factor de velocidad puede
omitirse al calcular el ensanchamiento.

Todos estos factores de influencia con excepción de la calidad del material son considerados en la fórmula de Sven Ekelund, como sigue:

$$\frac{1}{2} (b_2^2 - b_1^2) = 4m\sqrt{R.\Delta h} \cdot \Delta h - 2m (h1+h2)\sqrt{R.\Delta h} \cdot 1_n \frac{b_2}{b_1}$$

$$m = \frac{1.6\mu\sqrt{R.\Delta h} - 1.2 \Delta h}{h1 + h2}$$

donde :

b1 : es el ancho del material antes de la pasada.

b2 : es el ancho del material después de la pasada (incógnita).

h1 : es la altura del material antes de la pasada.

h2 : es la altura del material después de la pasada.

R : es el radio activo del cilindro (radio de trabajo del cilindro).

Esta fórmula es una de las más precisas conocida hasta la presente para el cálculo del ensanchamiento.

Otra fórmula poco usada⁽⁷⁾ para el cálculo del ensanchamiento es la siguiente :

$$b2 = b1 + E(h1 - h2)$$

siendo:

b2 : ancho final

b1: ancho inicial

(h1-h2) : reducción en altura

E : coeficiente que varía según las dimensiones de las palanquillas.

PALANQUILLAS	- D	Е
63 x 63	E 5 1958	50%
81 x 81		40%
102 x 102	Service Control of the Control of th	35%
127 x 127	POLITECHICA DEL LITORAL BIBLIOTECA "GONEALO SEVALLOS" F. I. M. C. P.	30/35%
palanquillas p	lanas FI.M.C.R	25/30%

1.5 PRESION DE LAMINACION

Actualmente se han desarrollado numerosas fórmulas teóricas-empíricas, de las cuales las más conocidas son : Ekelund, Orowan, Celikow, Sims, Cook, McCurm y Siebel (5).

El cálculo de la presión de laminación es necesario cuando se diseñan las piezas y partes de un tren de laminación para saber a qué tipo y magnitud de cargas va a estar sometido.

Examinemos ahora el sistema EKELUND para el cálculo de la presión en el laminado.

Símbolos empleados:

h1: Espesor de entrada en mm.

h2: Espesor de salida en mm.

b1: Ancho de entrada en mm.

b2: Ancho de salida en mm.

R: Radio de los cilindros hasta el fondo del canal

v : Velocidad periférica de los cilindros

C : Contenido de carbono en %

Mn: Contenido de manganeso en %

Cr: Contenido de cromo en %

T: Temperatura del laminado en °C

Kfo: Resistencia específica de la barra

η: Coeficiente de plasticidad de la barra

μ: Coeficiente de rozamiento barra-cilindros

La fórmula (5) es :

$$P=bm\sqrt{R(h1-h2)}\left[1+\frac{1.6\mu\sqrt{R(h1-h2)-1.2(h1-h2)}}{h1+h2}\right]\left[Kfo+\frac{2\eta\sqrt{\frac{h1-h2}{R}}}{h1+h2}\right]$$

que prácticamente expresa la presión del laminado como producto de la proyección del área de contacto por (1 + los componentes de rozamiento) y por (resistencia específica estática de la barra + el coeficiente de plasticidad multiplicado por la función de h).

En esta fórmula:

- la resistencia específica : $kfo = (1.4-0.015) (1.4 + C + Mn + 0.3Cr) Kg/mm^{2}$

- Coeficiente de plasticidad en $Kg-seg/mm^2$ $\eta = 0.01 (1.4 - 0.01T)$

para velocidad superior a 6 m/s se recomienda para n los siguientes valores de corrección de K.

V_p , (m/s)		<u>K</u>
hasta 6		1.0
6-10		0.8
10-15		0.65
15-20	2	0.6
25-30		0.5

La determinación de la presión de laminación efectiva en un tren en operación tiene su importancia en los siguientes casos :

- -Presión de laminación total o en cada cojinete del cilindro permitiendo determinar sobrecargas perjudiciales sobre los mismos.
- -Presión de laminación producida por un calibrado nue vo y no practicado anteriormente.
- -Medida de las cargas máximas producidas en la entrada de las barras al tren.

En forma práctica, los datos de la presión de laminación se obtienen mediante los dispositivos llamados celdas de carga. Constan básicamente de dos celdas dimensionadas para soportar una carga máxima y montadas una en cada cojinete del cilindro, y un sistema de amplificación de corriente contínua.

1.6 CALCULO DE LA VELOCIDAD DE LAMINACION

Cuando una barra pasa entre los cilindros, su sección recta a la entrada es mayor que la correspondiente a la salida; como el producto del área de la sección recta por la velocidad debe ser constante, la barra sale a mayor velocidad que a la entrada. La velocidad de los rodillos permanece constante, mayor que la de entrada de la barra y menor que la de salida.

Si observamos la Fig. 1.8, notamos que si a la entrada el material pasa con una velocidad menor que la
componente horizontal de la velocidad periférica de
los cilindros debe haber un punto en la garganta de
laminación o zona de deformación en que esta componen
te horizontal de la velocidad periférica debe ser igual a la velocidad del material laminado. (7)

Este punto se lo conoce como "punto neutro", el ángulo se denomina ángulo neutro y es el que determina
la posición de la línea neutra en relación al eje de
los cilindros. La relación que gobierna en este punto es:

$$v_n = v_p \cos \delta$$

donde :

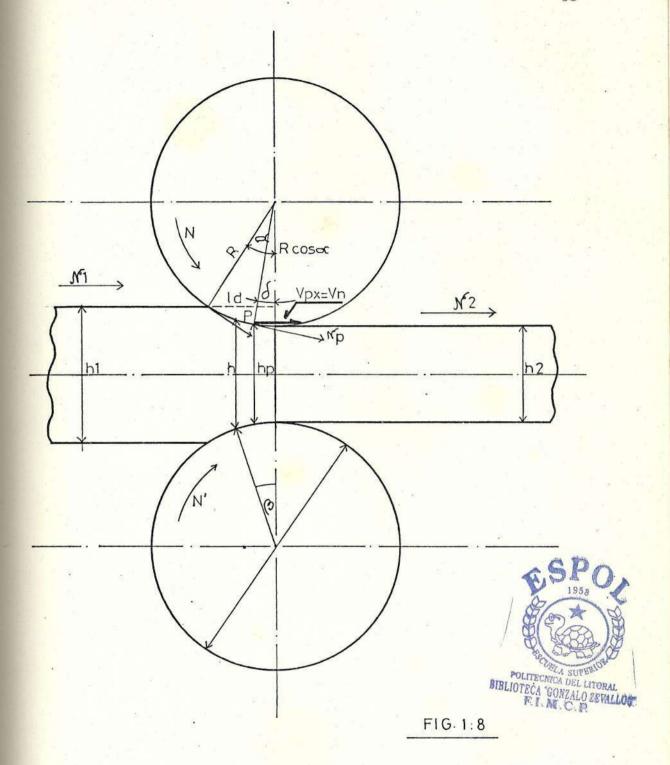


Fig. 1.8 COMPONENTES DE LA VELOCIDAD (7)

 v_n : velocidad del material laminado en el punto neutro v_p : velocidad periférica de los cilindros

$$v_r = \frac{\pi Dt.n}{60}$$
 mts/seg.

Dt : diámetro de trabajo del cilindro

n : número de revoluciones (RPM)

En el punto neutro tenemos otro efecto debido a la fricción. Según la Fig. 1.9, del punto 1 a 2 los rodilos empujan la barra hacia adelante y de 2 a 3 la frenan. El resultado es que el deslizamiento desgasta los rodillos y las fuerzas se distribuirán tal como se indica en la misma figura.

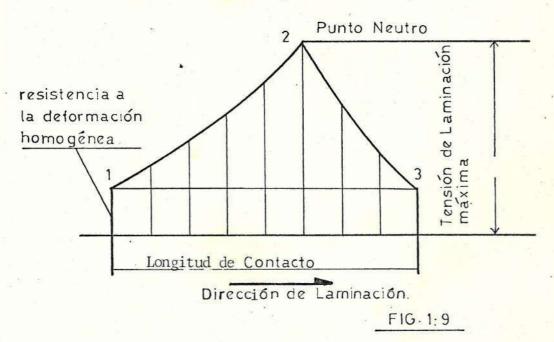


Fig. 1.9 PUNTOS DE CONTACTO MATERIAL-CILINDRO

Según la nomenclatura inicial, v1 es la velocidad de entrada del material, y v2 la velocidad de salida en m/s. Como la velocidad del material y la componente horizontal de la velocidad periférica de los cilindros son iguales sólamente en el punto neutro, en cualquier otro punto tendremos un deslizamiento entre el material laminado y los cilindros. Pasando di cho punto, la velocidad del material es mayor que la componente horizontal periférica de los cilindros. Es ta diferencia de velocidades se conoce como deslizamiento hacia adelante, cuya expresión representativa es:

$$S_{f} = \frac{v2 - v1}{v1}$$

como porcentaje :.

$$S_f = \frac{v2 - v1}{v1} \times 100$$

como coeficiente :

$$S_f = \frac{v^2}{v^1}$$

Al ingresar el material en la zona de deformación se produce una diferencia entre la velocidad de entrada del material relativa a la componente horizontal de la velocidad periférica de los cilindros. Es decir, que la velocidad de entrada del material, v1, es menor que la componente horizontal periférica de los cilindros, vp. Similar al caso anterior, este efecto se lo conoce como deslizamiento hacia atrás, y su expresión es:

$$s_b = \frac{v_p \cos \alpha - v_1}{v_p \cos \alpha}$$

En el caso de laminar secciones simétricas, como óvalos, redondos, etc., en que pueden ser calculadas directamente las alturas medias, la velocidad se determina por un método modificado sustituyendo el término
de velocidad periférica media de cilindros (7).

$$v_{pm} = \frac{\pi Dmt \cdot n}{60}$$

donde :

Dmt : Diámetro medio del cilindro de trabajo

Dmt = Dc - h2m

Dc = Diámetro teórico de cilindros, que es la distancia entre ejes de cilindros más la luz o entrehierro (e).

h2m = altura media de salida

Dc, se lo calcula a partir de los diámetros de cilindros Dr1 y Dr2 :

$$D_{C} = \frac{Dr1}{2} + \frac{Dr2}{2} + e$$

reemplazando:

$$Dmt = Dr1 + e - h2m$$

Conociendo los valores de los coeficientes de reducción de altura y ensanchamiento, podemos calcular vim:

$$v1m = v_n \cdot \gamma_n \cdot \beta_n$$

para luego calcular v2m:

$$v2m = \lambda v1m$$

Por lo tanto, podemos hacer el cálculo del coeficiente de deslizamiento hacia adelante.

$$Sfm = \frac{v2m}{v1m}$$

Se definen términos anteriores :

 $\mathbf{v}_{\mathbf{n}}$: Velocidad del material en el punto neutro

 $\boldsymbol{\gamma}_n$: Coeficiente de reducción de altura en el punto neutro

 β_n ; Coeficiente de ensanchamiento en el punto neutro

λ : Coeficiente de alargamiento

"Sfm : Coeficiente de deslizamiento medio hacia adelante

1.7 ESFUERZOS MECANICOS EN LOS CILINDROS DE LAMINACION

Cuando se presentan las necesidades de realizar cambios en las calidades de los cilindros, se hace necesario conocer la magnitud de los esfuerzos.

Los cilindros laminadores en un tren están expuestos a esfuerzos de tensión, compresión y cortantes, pero generalmente los niveles que alcanzan estos esfuerzos están contemplados dentro de la resistencia del material constituyente de los cilindros (4).

Al comparar los esfuerzos calculados con la resistencia del material de los cilindros, es recomendable multiplicar por un factor de seguridad de 3 para prevenir cargas elevadas, roturas de cilindros por calentamiento, shock térmico por calentamiento y enfria

miento bruscos, laminación de material con baja temperatura, etc.

El método de cálculo de los esfuerzos es como sigue: Se usa la siguiente simbología :

M = Momento de flexión

T = Momento torsor

I = Momento de inercia

P = Fuerza de laminación

La Fig. 1.10, nos muestra las fuerzas aplicadas en nuestro modelo.

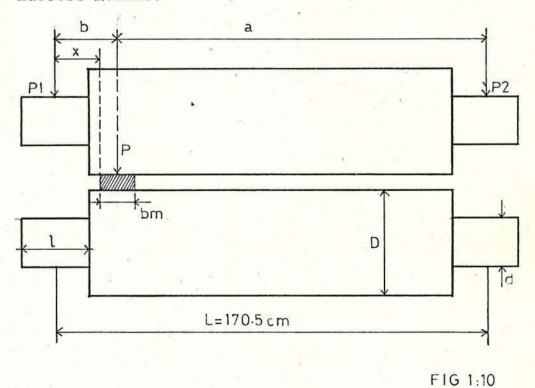


Fig. 1.10 DIAGRAMA DE EQUILIBRIO PRIMERA PASADA DEL DESBASTE (5)

ESFUERZOS PRODUCIDOS A LO LARGO DE LA TABLA DEL CILINDRO.

- ESFUERZO DE FLEXION. - Alcanza su valor máximo en la superficie de la tabla y viene dado por :

$$\sigma_n = \frac{M \cdot D/2}{I}$$

Donde:

$$I = \frac{\pi D^4}{64}$$

Reemplazando tenemos:

$$\sigma_{n} = \frac{M}{0.1 D^{3}}$$

Para calcular el momento de flexión (M), partimos de que la fuerza de laminación puede estar concentrada en un punto, pero se encuentra distribuída a lo largo de un ancho b_m , de tal forma que el momento de flexión en cualquier punto de la tabla del ciliquio a una distancia x del punto de la fuerza de reacción del rodamiento, P1, viene dado por :

$$M = \frac{P.x}{2} - \frac{P}{2b} \left[x - \frac{L-b}{2} \right]^2$$
 (16)

Si x es menor que L-b/2, el segundo término s

desprecia. El momento de flexión quedaría:

$$M = \frac{P \cdot x}{2}$$

- ESFUERZO CORTANTE DE TORSION. - Al igual que el esfuerzo de flexión, el esfuerzo cortante también alcanza su valor máximo en la superficie del cilindro, y su expresión es :

$$\tau = \frac{T \cdot D/2}{I_p}$$

Donde :

$$I_p = \frac{\pi D^4}{32} \qquad \text{(eje macizo)}$$

T = momento torsor= 71.600 x Potencia/RPM (caballos de vapor)

 I_p = momento polar de inercia

Reemplazando:

$$\tau = \frac{16 \cdot T}{\pi D^3} = \frac{2T}{\pi r^3}$$

- ESFUERZO COMBINADO. - Cuando un cilindro está expuesto a esfuerzos de flexión y torsión, el esfuerzo total en cualquier punto no es solamente la suma

de los valores de los dos esfuerzos, sino que para obtener un esfuerzo real de trabajo se debe calcular un torque equivalente según la siguiente expresión:

Te = M +
$$\sqrt{M^2 + T^2}$$

Para lo cual, los valores de M y T son referidos a los mencionados anteriormente y así el esfuerzo de corte debido al torque equivalente será:

$$\sigma_{\tau} = \frac{16 \cdot \text{Te}}{\pi D^3}$$

- ESFUERZOS PRODUCIDOS EN EL CUELLO DEL CILINDRO.Los esfuerzos en el cuello se calculan en forma similar a los producidos en la tabla del cilindro, con
la variación de que en lugar del diámetro de tabla
D, se usa el diámetro de cuello d.

Para calcular los esfuerzos en los cuellos se asume de que la carga está localizada en la mitad de la longitud del rodamiento y por lo tanto, el momento de flexión viene dado por :

$$M = P. \frac{1}{2}$$

1 = longitud del rodamiento

Si las cargas no se producen en la mitad de la tabla del cilindro, pues los cuellos no son cargados igualmente, y las cargas de los rodamientos P1 y P2, pueden ser obtenidas por las siguientes expresiones:

$$P1 = \frac{P.b}{L}$$

$$P2 = \frac{P.a}{L}$$

- CONCENTRACION DE ESFUERZOS. - La concentración de es fuerzos se produce a causa del radio del cuello, cu ya magnitud depende de la relación de diámetros de cuello y tabla, y el valor del mismo radio. En la Fig. 1.11, se presentan curvas para obtener el factor relevante de esfuerzos.

Para cilindros de hierro fundido se debe aplicar una tercera parte del factor, mientras que para cilindros de acero fundido se aplicará toda la magnitud del factor.

De modo que, el verdadero valor en el radio del cue
llo se obtendrá al multiplicar el esfuerzo calculado en el cuello por el factor.

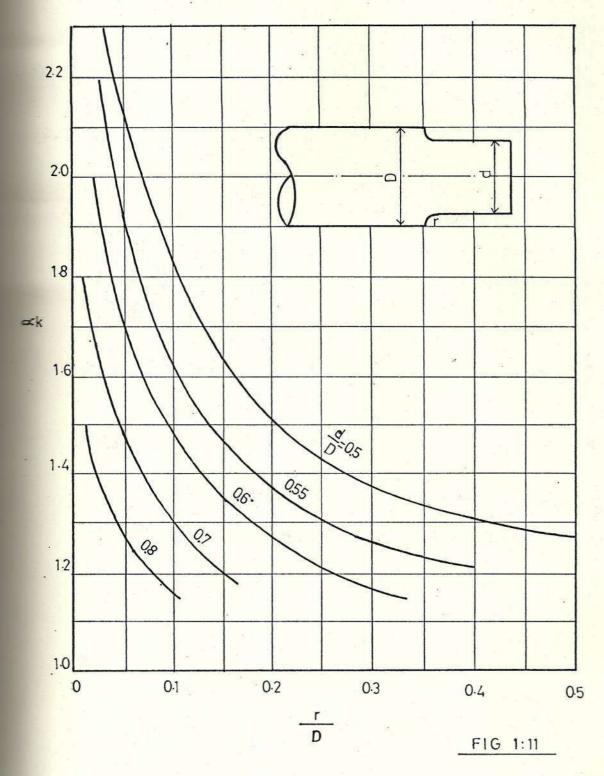


Fig. 1.11 FACTOR RELEVANTE DE ESFUERZO⁽⁵⁾

CAPITULO II

FABRICACION DEL ALAMBRON

2.1 EL ALAMBRON Y SUS APLICACIONES

Alambrón es el producto de sección maciza, laminado en caliente, apto para ser transformado en alambre por trefilado, de diámetro no inferior a 5.5 mm. El alambrón no debe confundirse con los laminados comerciales suministrados en rollos y destinados a usos distintos a los señalados⁽¹¹⁾.

El alambrón más utilizado es aquel cuyo diámetro varía entre 5.5 y 6.35 mm. reducido por trefilado al rango comprendido entre 0.5 y 4.19 mm.

El alambrón se produce generalmente partiendo de dos tipos de palanquilla, una efervescente y otra calmada.

La palanquilla usada en el primer caso se obtiene con un recubrimiento cerámico, el mismo que por encontrar se aislada del aire impide la formación de óxidos, evitando el desgaste por abrasión en las boquillas, permitiendo al mismo tiempo trefilar hasta 0.5 mm sin ningún tratamiento térmico previo.

El alambrón que se produce con palanquilla calmada se obtiene agregando durante el proceso de fabricación un alambre de aluminio en la colada, esto es posible gracias a la lingotera abierta y una velocidad baja de colado. Este material permite trefilar máximo hasta 2.10 mm sin tratamiento previo; por debajo de ese diámetro se debe recocer hasta 720°C durante 3 horas en cámara inerte usando gas noble argón para evitar la oxidación superficial.

A continuación se presenta una lista del producto obtenido y el rango comercial más utilizado.

	PRODUCTO OBTENIDO	RANGO	O COMERCIAL (mm)	
a)	Alambre		4.19 - 1.24	
b)	Alambre galvanizado		5.16 - 0.50	
	Su uso para alambre de púas rango más solicitado de 2.59 a 1.65 mm.			
c)	Alambre recocido principalmente	6.000		
	para amarres en 1.18 mm.		4.19 - 1.24	
d)	Gran variedad de clavos		4.19 - 1.24	
e)	Grapas galvanizadas para el			
	alambre	A	3.76	

f) Resortes

3.40 - 1.40

- g) Mallas para cerramientos, si se usa la variedad plastificado se destina a gaviones (2.30 mm.), púa y cerramiento. De lo contrario se destina a la variedad triplegalvanizado.
- 4.20 1.20
- h) Material de oficina tales como : grapas, clips, espirales.
- 1.24 0.50
- i) Armadores para la ropa, el mismo que se parte de 8 mm.
- 2.3
- j) Grapas planas destinadas a la industria del cartón.
- 1.25
- k) Alambre grafilado para luego producir varillas, el mismo que se parte de 8 u 11 mm.
- 4.19 1.24
- Clavos para cemento y para techos de vivienda.
- m) Para electrodos de soldadura se usa alambrón desde 11 mm. hasta 5.5 mm.
- n) Otros

2.2 EVOLUCION DE LOS TRENES LAMINADORES DE BARRAS Y ALAM-BRONES.

En 1945 con Leonardo Da Vinci se inicia las primeras experiencias en laminación, el cual lo hizo con un tren manual. Posteriormente se incursionó en el accionamiento por medio de engranajes apareciendo por vez primera cilindros acanalados para dar forma al material.

Alrededor de 1790 aparece prácticamente el primer tren laminador (Fig. 2.1), el cual producía barras, planchuelas o platinas, y herraduras, más adelante por el año 1820 apareció la producción de ángulos y rieles en gran escala así como también vigas estructurales por el año 1848.

Nos acercamos al siglo XIX en donde aparecen un grupo de cajas desbastadoras contínuas accionadas por un solo motor y la modalidad del tipo abierto con dos cajas bastidores cada uno. (13)

Poco a poco se fueron incorporando motores independientes a cada caja horizontal, con el objeto de evitar laminar con tensión o estiramiento entre caja y caja. Los cojinetes originalmente de bronce, magnolia y madera fueron cayendo en desuso por el de fi

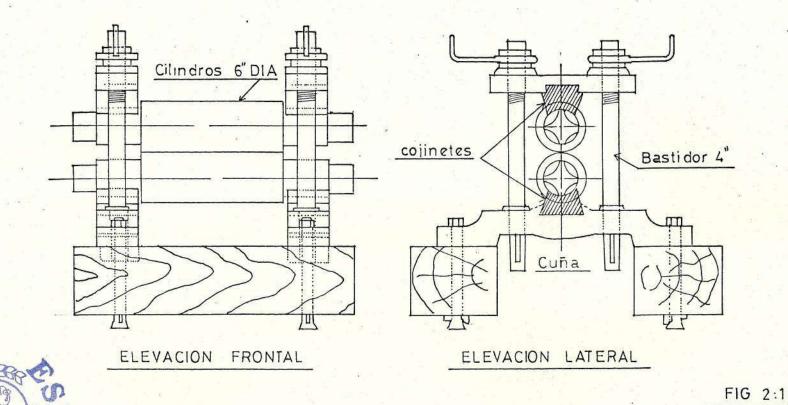


Fig. 2.1 DISEÑO DE UNO DE LOS PRIMEROS TRENES LAMINADORES (13)

POLITECNICA DEL LITORAL BIBLIOTECA GONZALO ZEVALLOS bra fenólica. Los acoplamientos tipos chocolatera fueron reemplazados por acoplamientos cardánicos. De los trenes que fueron puestos en marcha alcanzaron una producción máxima de 50 ton/hora y mínima de 15 ton/hora de alambrón de 5.5 mm.

A partir de 1950-55 se hizo más común la tendencia a independizar el laminado de barras del de alambrón con lo cual se consiguió :

- Mayores volúmenes productivos
- Mejor calidad del producto terminado
- Mayor economía del proceso

Además se implantaron nuevas mejoras con la regulación de bucles tanto horizontal como vertical, median te fotocélulas asegurando una operación más eficiente y por ende eliminación gradual del factor humano en el control de velocidades, lo que alcanzaron a obtener alambrón de 5.5 mm. a unos 30 mts/seg. Posterior mente se trabajó en diferentes refinamientos electromecánicos para producir rollos de alambrón más grandes a mayor velocidad con mejor calidad y eficiencia.

En el año 1956, la firma MORGAN CONSTRUCTION COMPANY, instalada en la "American Steel and Wire" de Cuyahora

EEUU, construyó un tren que marcó un hito en el desarrollo de laminación de alambrones. Entrando con palanquillas de 83 x 83 mm. y 10 mts. de largo, produce bobinas de 550 Kgs. de peso a 45-46 mts/seg. Llega a laminar como rutina 400 toneladas por turno (30000-35000 toneladas por mes).

En 1963, Morgan nuevamente instala en Cockerill-Ougree de Bélgica un tren aún más evolucionado que el anterior.

Entrando con palanquilla de 80 x 80 mm., 12 mts. de longitud, produce bobinas de 630 Kgs. de peso a 36-40 mts/seg. en 25 pasadas a dos hilos, dos terminadores de 8 cajas cada uno. Este tren, en cierto modo, marca el fin de una época ya que Morgan, trataba la combinación "NO TWIST" - STELMOR, que revolucionaría el laminado del alambrón.

La disposición "NO TWIST", que consiste en la ubicación en tandem de 6 a 10 unidades laminadoras dúos de pequeños diámetros, montadas con sus líneas ejes a 90° unas de otras, y todas ellas a 45° con respecto a la horizontal, no es nueva ya que había sido usada en forma intermitente desde muchos años atrás por los laminadores de metales no ferrosos. Con respecto al

proceso Stelmor (desarrollada en forma conjunta por las casas Steel Company of Canada, y Morgan, de allí su nombre) consiste en arrojar el alambrón emergente del tren no a una bobinadora en forma directa, sino a un tapíz o cinta metálica móvil en donde las espiras desarrolladas son enfriadas mediante la acción de grandes ventiladores ubicados por debajo.

El sistema "No Twist", al usar anillo en voladizo de pequeño diámetro y altísima dureza (el material constituyente es carburo de tungsteno) permite laminar con reducciones porcentuales relativamente elevadas y ensanchamiento pequeño, lo cual posibilita la operación a altas velocidades y con un solo comando para todas las cajas, sin que por ello exista exagerada tensión (tiro) entre caja y caja.

2.3 LAMINADOR CONVENCIONAL COMO TREN INTERMEDIO

El tren de laminación utilizado para la presente investigación se inició, produciendo únicamente barras de acero para la construcción de hormigón armado y actualmente produce también alambrón para trefilación.

Por esta razón, el tren antiguo o convencional que era terminador para los productos existentes en esa época, pasa a ser tren intermedio para laminar alambrón.⁽¹⁶⁾

Se lamina tres tipos de acero que corresponde a la desiguación SAE 1008, 1030 y 1040 con una capacidad de producción de 140000 ton/año.

El proceso de laminación se inicia con el calentamien to de la palanquilla en un horno, cuya capacidad es de 27 ton/hora y un ancho utilizable de 4 mts., esto es, se podrá trabajar con palanquilla cuyo largo máximo es 4 mts. Según el producto que se desee obtener se dimensionará la palanquilla desde 1.80 hasta 4 mts. En este período de calentamiento el material alcanza la temperatura deseada de laminación, la misma que os cila entre 1100 y 1250 grados centígrados.

Una vez obtenida la temperatura deseada, la palanquilla es sometida a las primeras cinco reducciones, según Fig. 1.4, las mismas que son fuertes y se las efec
túa en el tren desbastador preparándolas para seguir
laminando en el tren de perfiles propiamente dicho.

Al salir la barra de este proceso de desbaste, su punta y cola son cortadas debido a que se producen aberturas, las mismas que pueden originar problemas en su paso por el tren de perfiles.

El tren intermedio está compuesto de dos partes: una de tipo abierto que consta de seis cajas, en donde la barra es doblada al pasar de una caja a otra por medio de repetidoras o dobladoras; y otra, de tipo contínuo, constituída por cuatro cajas en línea.

Luego de la décima caja se encuentra ubicada una ciza lla tipo volante, la misma que corta la barra a dimensiones comerciales en caso de producir varillas.

2.4 TREN TERMINADOR DE ALTA VELOCIDAD

El tren terminador de alta velocidad es un monobloque contínuo de 8 cajas ubicadas alternativamente a 90° entre sí y en 45° con la horizontal, con lo que el proceso se lleva a cabo sin torsión. (12)

El tren se aplica a la laminación de alambrón de acero al carbono o aleado, de superficie lisa o corrugada.

El tren puede ser constituído por cajas con anillos de laminación de 210 ó 175 mm. de diámetro y el número total de cajas varía en función del tipo de acero por laminar y del producto que se quiere conseguir.

La disposición especial de las cajas del tren ofrece al operador la posibilidad de acceso fácil a los anillos de laminación y al herramental, como también $f\underline{a}$ cilita la salida de agua y cascarilla.

La línea de laminación está fija debido a que la regulación de los anillos tienen lugar de modo simétrico.

La maniobrabilidad de las cajas de laminación es tal que pueden quitarse fácilmente e intercambiarse.

La estructura del accionamiento de la caja está dotada de amplios portillos que permiten una fácil inspección y mantención de los engranajes.

2.4.1 PARTES COMPONENTES DEL TREN

2.4.1.1 ÇAJA DE LAMINACION

La caja de laminación es la parte más expuesta a sobrecargas y necesita ins pecciones y controles periódicos de los rodamientos.

Los mandriles ruedan en cojinetes especiales de roce, y todo eventual empuje axial debido a la laminación está soportado por cojinetes oblícuos
de bolas.

Para proteger a la máquina contra eventuales infiltraciones de agua y de casca rilla, existen retenedores dotados de empaquetaduras especiales. Pistones hidráulicos ubicados entre los soportes de los mandriles eliminan todos los juegos del dispositivo de regulación.

Estos tipos de regulación se han aplicado para poder ajustar la abertura o el cierre de los anillos de laminación.

Estas cajas son accionadas por un engranaje intermedio común (multiplicador) y
dos ejes de accionamiento uno para cajas
horizontales y el otro para las verticales. Pueden proveerse dos tipos de accionamiento de la caja, a saber:

- Accionamiento lento
- Accionamiento veloz

Las cajas verticales montadas con pases redondos poseen accionamiento veloz, y las horizontales montadas con pases ovalados poseen accionamiento lento. Esto se debe a que las reducciones con redon-

dos son siempre menores que con óvalos y para poder descargar el material que que da atrás de los redondos, éstos deben gi rar a más velocidad.

El multiplicador principal de mando tiene la tarea de transmitir el movimiento entre los motores y las dos transmisiones del tren repartiendo la potencia a las dos velocidades. Por otro lado, en los mandriles se utiliza cojinetes de roce que, con el auxilio de un engrase hidráulico, soportan las cargas de laminación.

2.4.1.2 ANILLOS DE LAMINACION

Grandes adelantos se ha logrado en los últimos tiempos, en lo referente a rodillos y anillos de laminación. En cuanto a éstos, el uso de anillos de carburo de tungsteno es hoy el más generalizado.

Estos dispositivos vienen en diferentes tamaños, dependiendo del tipo de tren que se vaya a utilizar y por ende del producto final que se trata de obtener. Así mismo, existen diferentes calidades dadas por la composición química y dureza, y su uso en diferentes aplicaciones. Por ejemplo, una casa fabricante de anillos ofrece 3 calidades diferentes (véase Tabla 2.1).

A continuación se presenta datos estimativos del tonelaje que se aconseja sacar a cada pasada para laminar 5.5 mm en el tren convencional y en el tren de alta velocidad:

Con estos datos se considera ventajoso cambiar los anillos periódicamente para rectificarlos. Así se puede mantener una tolerancia constante del diámetro de los anillos del bloque, lo que ofrece un

CALIDAD	COMPOSICION	DUREZA HV	CARACTERISTICAS Y/O USOS
2	13.5% Cobalto WC 22.5% Cobalto WC	1050 850	- Alta resistencia al desgaste - Tenacidad suficiente - Trabajable por amolado - Mayor tenacidad que calidad - Alta resistencia al desgaste - Mayor precio que calidad - Menor susceptibilidad al agrietamiento que calidad
3	30% Cobalto WC	700	- Trabajable por amolado - Resistencia al desgaste menor - Resistente a los choques térmicos - Trabajable con herramientas de carburo simple - Utilizada para laminar corrugados

TABLA 2.1 CARACTERISTICAS DE LOS ANILLOS DE CARBURO DE TUNGSTENO (8)

na mejor seguridad para que el bloque trabaje sin tensión ni presión. Esto es muy importante para poder laminar sin problemas.

FACTORES QUE AFECTAN A LA VIDA DE LOS A-NILLOS DE CARBURO. - Los cilindros trabajan bajo solicitaciones mecánicas que actúan conjuntamente trayendo como consecuencia la destrucción de la superficie de los canales y causando roturas. (8)

Es de suma importancia que dichos factores sean bien identificados y conocidos
para poderlos contrarrestar y tomar las
medidas pertinentes, lo que conseguimos
mejorando las condiciones de laminación.

Los principales factores son los siguientes:

FACTORES DE SELECCION DE LOS ANILLOS.Los siguientes factores deciden los méritos relativos entre diferentes calidades
de anillos:

a) ACABADO DE LA SUPERFICIE DEL ALAMBRE:

Como bien se sabe, todas las plantas tienen departamentos para controlar los productos, los cuales pueden demandar cambios de los cilindros revelando dimensiones o acabados fuera de las normas fijadas.

Naturalmente, las dos últimas cajas tienen la mayor influencia sobre la calidad del alambre, ya que la superficie del mismo depende directamente de la superficie de los canales en estas cajas. El defecto más típico que tiene el alambre en estas cajas es una cierta rudeza proveniente de canales corroídos o desgastados.

Hay otros defectos originados en las primeras cajas debido a que permanecen laminando más tiempo y bajo condi ciones más adversas que las de las cajas ante-acabadoras y terminadoras, por lo que sus superficies se deteriorán más.

Los defectos se transmiten al alambre. En las siguientes cajas, se lamina sobre los mismos y aparecen como escamas en el alambre acabado. La gravedad de este fallo se detecta des pués de un tratamiento con ácidos.

Para trenes que laminan redondos con alta demanda en la calidad de superficies es posible inspeccionar los anillos continuamente con sondas de fibra óptica, pero una manera más fácil para resolver este problema es disminuir los tonelajes, lo que hace que la calidad del alambre se mantenga con gran margen.

b) RENDIMIENTO EN TONELADAS/MM : El tonelaje que es posible laminar por milímetro eliminado, determina el consu mo de cilindros y por lo tanto el cos
to directo por tonelada. Para obtener las mejores relaciones tonelada/
mm es necesario que el material elimi
nado en el rectificado sea únicamente
el necesario para eliminar las grietas.

c) TONELADAS POR PUESTO EN CAJA: El tonelaje laminado por puesto antes de quitar los cilindros para el rectificado es vital bajo el punto de vista de la productividad del tren.

Así por ejemplo, para obtener una vida útil moderada de los anillos de carburo de tungsteno se aconseja laminar un tonelaje, según se muestra en la Tabla 2.2.

El tonelaje aprovechable es un valor fluctuante, que depende de la correlación entre el estado de superficie y las roturas en los cilindros de las primeras cajas. En cambio, si se de-

CAJA	REDONDO A PRODUCIRSE					
N°	5.5 y 6.35 mm.	8 mm.	10 mm.			
1	1200 ton	800 ton	800 ton			
2	1200 ton	800 ton	800 ton			
3	1200 ton	800 ton	400 ton			
4	1200 ton	800 ton	400 ton			
5	600 ton	400 ton				
6	600 ton	400 ton				
7	300 ton					
8	300 ton					

TABLA 2.2 TONELAJE APROVECHABLE DE LOS ANILLOS DE LAMINACION (8)

sea tener garantía de un buen acabado, se obtiene un tonelaje tan bajo
que no se produce la deterioración de
la superficie del cilindro.

2.4.1.3 ARRASTRADOR HORIZONTAL 310

Como se había manifestado, entre el tren intermedio 280 y el tren laminador 175 se encuentran ubicados el arrastrador 310 y la cizalla volante. Por cualquier tipo de avería que ocurriese en el mono bloque, donde la barra se viera de pronto interrumpida en su desplazamiento, se acciona automáticamente la cizalla de disco para proceder a chatarrear la parte de la barra que ha quedado estancada.

Para realizar este proceso de emergencia se necesita obligadamente un arrastrador, el mismo que se encargará de seguir impulsando el material en la línea de laminación (Fig. 2.2).

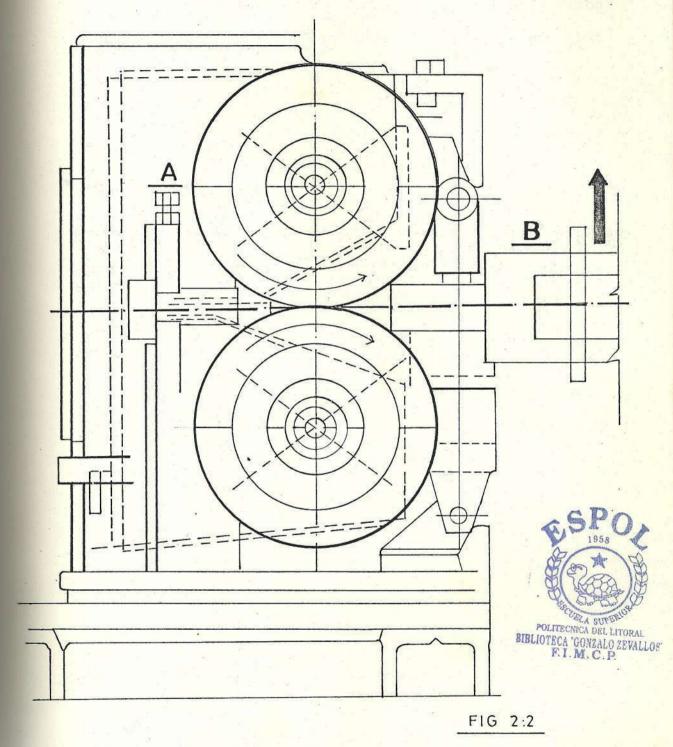


Fig. 2.2 ARRASTRADOR HORIZONTAL (12)

El arrastrador desempeña su función con dos rodillos dispuestos en forma horizon tal siendo el inferior fijo y el superior móvil. (12)

El rodillo móvil es accionado por un brazo mediante un cilindro neumático. La electroválvula que acciona el cilindro neumático lo hace al tiempo del accionamiento de la electro-válvula que mueve el cambiador de posición de la cizalla.

Con el fin de que se produzca un ahorro del material en caso de parada intempestiva se coloca un desviador después de la cizalla volante, el cual puede ser colocado en dos posiciones:

- 1) Hacia la mesa
- 2) Al monobloque

Con esto se logra que el material no sea chatarreado integramente.

2.4.1.4 FORMADORES DE BUCLE

Una de las razones que influyen para que

las reducciones de las secuencias no coincidan con el calibrado, es la tensión o tirantez que ocurre entre las cajas de laminación en los trenes contínuos.

Este seno que produce el material ocurre en los stand #6 y 8 de la planta de laminación, lo que trae como consecuencia que la cola de la barra al salir del stand #6 haga movimientos bruscos, como latigazos, debido a la tirantez del material.

Si observamos la cola de una barra podre mos constatar que sale reventada, esto sucede porque al salir del stand #6 la tensión es diferente que aquella de la barra laminada, lo cual nos revela que la sección y cantidad de masa por unidad de longitud de la cola varía en el resto de la barra. (12)

- FUNCIONAMIENTO DEL MECANISMO : La barra se desplaza hacia el monobloque y al llegar a la fotocélula de entrada al arrastrador la activa (final del stand #10, en caso de laminar 5.5 mm.; o para redondos de 6.35, 8, 10, y 12

mm. final del stand #8), ésta envía la señal a las electroválvulas para que accionen los cilindros neumáticos, se levanta el respaldar y se mueve el brazo de expulsión de la barra, dando lugar al inicio de la formación del bucle.

Posteriormente, la rotosonda controla y ajusta automáticamente el desarrollo del bucle, este ajuste lo regula con un margen de † 10% de la velocidad con que giran los motores del stand anterior.

Cuando la cola de la barra pasa lo foto célula, una señal pone fin a la graduación del bucle y manda el retiro del brazo de expulsión del formador y luego, por efecto de la acción del fin de carrera del brazo parado, un impulso nuevo hace que se recupere el bucle.

Resumiendo podemos manifestar la función que desempeña la formación del seno del material, se traduce en una laminación más precisa, ya que mejora el control del calibrado y por ende, se obtiene un producto termi-

nado de mejores condiciones.

2.4.1.5 CIZALLA DE DISCOS

Una vez que tenemos el selector en automático, la velocidad del arrastrador está en función de la velocidad del motor de la caja #10, después de esta caja se encuentra la cizalla, cuya función es cortar y desviar el material atascado. La misma que consta de dos pares de discos inclinados en la línea de laminación y de un par de cuchillas rectas rotativas que sirven para chatarrear (Fig. 2.3).

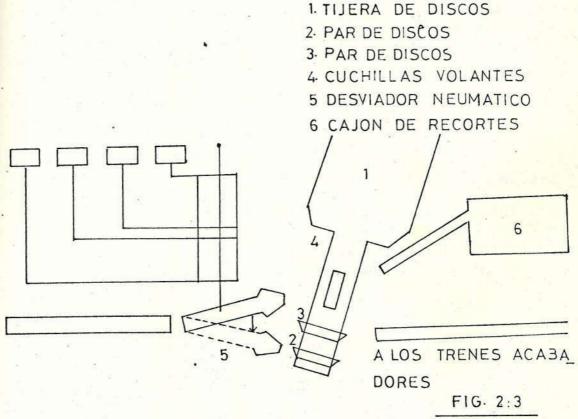


Fig. 2.3 POSICIONES DE LA CIZALLA DE DISCOS (12)

Al llegar la punta de la barra, la fotocélula ubicada antes de la tijera se activa y acciona por medio de un regulador
de tiempo las electroválvulas, las que
por actuar en un desviador mueven la barra a través del primer par de discos, e
jecutando así el corte de la punta (12).

Al final de la barra la fotocélula se desactiva y acciona mediante otra señal las electroválvulas, las que por actuar otra vez sobre el desviador lleva la barra a través del segundo par de discos, efectuándose así el despunte de la cola.

Tras el corte, la tercera señal desactiva todas las electroválvulas y vuelve a colocar el desviador en su posición de partida.

El mando de chatarreo automático deberá recibir además, la señal correspondiente cuando exista problemas de naturaleza hidráulica y eléctrica.

2.4.1.6 ARRASTRADOR HORIZONTAL 260

La velocidad del arrastrador está en fun

ción de la velocidad de la caja acabado ra pre-seleccionada (12).

Al llegar la punta de la barra la fotoce lula colocada en la parte de abajo del monobloque manda el comienzo de un conteo de impulsos emitidos por el generador. Cuando los impulsos contabilizados han alcanzado el número antes fijado, se encarga el planeador de excitar las electroválvulas que cierran los rodillos del arrastrador impulsando el material hacia la bobinadora.

2.4.1.7 BOBINADORA

Una vez que el material sale de la última caja pasa por el sistema de enfriamiento controlado por agua, luego el arrastrador horizontal 260 y a continua ción la bobinadora, la misma que se encarga de reunir el material en forma de espiras, cuya velocidad máxima prevista de trabajo es 65 m/s y una velocidad mínima de 17 m/s. El diámetro de espiras formadas es de 1095 mm (véase Fig. 2.4).

Tanto el arrastrador como la bobinadora están comandados por motores individua-les, los cuales reciben señales de una fotocélula (12).

2.4.1.8 DISPOSITIVO FORMADOR DE ROLLOS

Comprende los siguientes equipos:

- Prensador de espiras
- Ménsulas
- Formador de rollos
- Canasto portarollos
- Empujador de rollos
- Placa corrediza

ga horizontalmente en el canasto portador de rollos, el mismo que tiene en su
parte central un tambor cónico. Alrededor de éste se van acumulando una a una
las espiras al tiempo que se mantienen
cerradas las tres ménsulas laterales accionadas por cilindros neumáticos. Luego se abren las ménsulas y cae el rollo
(véase Fig. 2.5).

Cuando se completa cada rollo se cierran

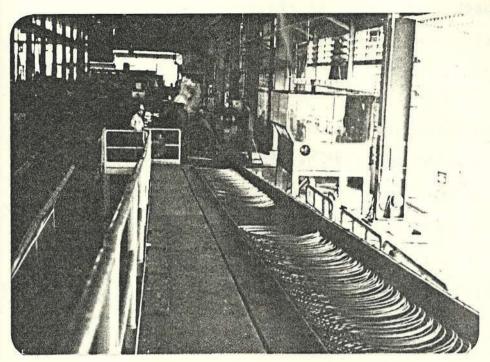


Fig. 2.4 BOBINADORA DE ESPIRAS (Autorizado por ANDEC 1985)

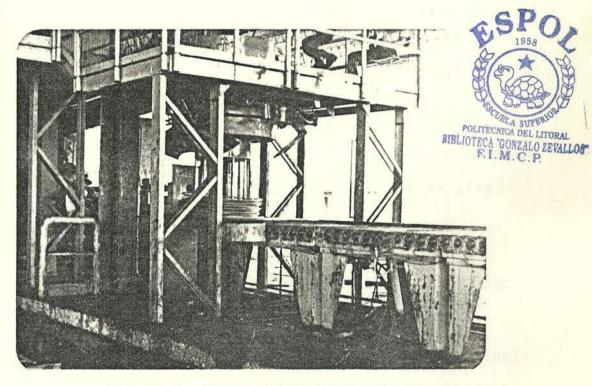


Fig. 2.5 DISPOSITIVO FORMADOR DE ROLLOS

automáticamente las ménsulas y descargan los cilindros neumáticos para bajar el grupo sostenedor (12).

Luego es accionado el empujador de rollos para moverlo hasta una mesa transportadora donde el rollo será atado y pe
sado automáticamente. Mientras se está
empujando el material, otro rollo está
siendo formado en el canasto portador de
rollos.

Cabe destacar que, mientras trabaja el empujador de rollos y se está formando al mismo tiempo otro rollo, las ménsulas mantienen centrado el tambor cónico y al mismo tiempo soportan el peso del rollo y del tambor.

La última etapa del tren comprende el atado y evacuación de los rollos (Fig. 2.6 y 2.7).

2.4.2 SISTEMA DE ENFRIAMIENTO "STELMOR" CONTROLADO POR AGUA Y AIRE.

Las múltiples aplicaciones de los aceros laminados en la industria exigen que se obtengan

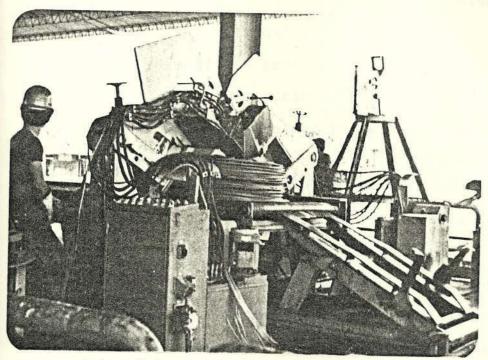


Fig. 2.6 ATADORAS DE ALAMBRON

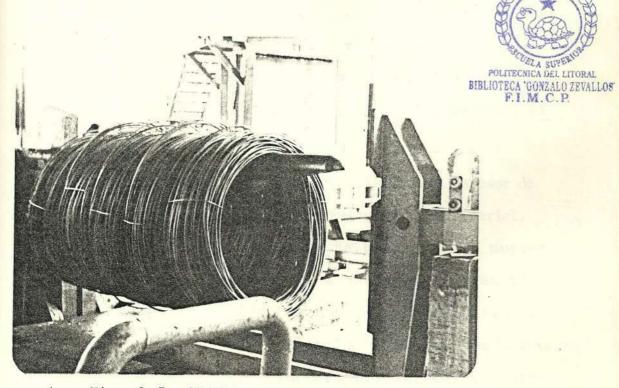


Fig. 2.7 SISTEMA EVACUADOR DE ROLLOS

directamente del laminador (tren de laminación) productos de alta calidad, entendiéndose por ello tolerancias dimensionales mínimas, calidades superficiales aceptables y condiciones favorables para trefilación, con lo cual obtenemos las propiedades mecánicas deseadas (12).

En trenes contínuos de alta velocidad se necesita un mayor calentamiento por unidad de tiempo y una mayor temperatura de bobinado (formación de espiras), lo cual implica una pérdida considerable de material por oxidación que, cuando es profunda, produce superficies bastas del producto si se bobina el alambrón sin enfriamiento previo. El enfriamiento total se realizaría en el rollo ya formado lo cual produce:

- 1) Un elevado porcentaje de oxidación; y
- 2) Un enfriamiento más rápido de las espiras externas que las internas.

Esto da una diferencia apreciable del espesor de la capa de óxido y de la estructura del material.

Ante estos problemas, se ha desarrollado nuevos métodos de enfriamiento a partir de la temperatura de laminación (ver Fig.2.4 y 2.8), consiguiendo favorablemente lograr los siguientes propósitos:

1) Controlar la estructura cristalina del material para aumentar las condiciones de trefilabilidad (tenacidad y ductilidad) (10).

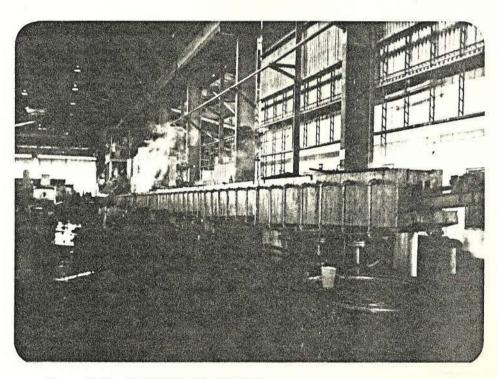


Fig. 2.8 SISTEMA DE ENFRIAMIENTO CONTROLADO POR AGUA

2) Disminuir el porcentaje de oxidación para bajar las pérdidas de material y mejorar la calidad superficial de los productos.

En 1960 se desarrolló por primera vez un sistema industrial de enfriamiento controlado denominado "proceso Stelmor", para posteriormente ponerse en funcionamiento otros análogos que a la fecha han llegado a conocerse.

Los resultados obtenidos (pérdidas por oxidación) medidos antes y después del proceso Stelmor, nos dan un criterio muy claro de las ventajas logradas.

STE	_ M O R			
MATERIAL	% PERDIDAS Y OXIDACION			
	ANTES DE	SPUES		
Aceros de bajo carbono	1.1% 0	.4%		
Aceros de alto carbono	0.8%	.45%		

TABLA 2.3 PORCENTAJE DE PERDIDAS POR OXIDACION EN LOS ACEROS. (12)

Los otros procesos conocidos actualmente, pero que básicamente cumplen las mismas condiciones o propósitos de enfriamiento controlado, se pue den comparar en la siguiente Tabla 2.4.

Producto (Acero AISI 1074) después de someterlo a distintas pruebas de enfriamiento.

SISTEMA DE ENFRIAMIENTO	RESISTENCIA A LA ROTURA (Kg/mm²)	REDUCCION DE AREA %
	5 los	
1) Patentado al plomo	120	50
2) Patentado al aire	106	40
3) Laminado en caliente y enfria-		
do en agua y aire forzado		
sobre espiras separadas.	114 .	45
4) Laminado en caliente y en-		
friado en agua y aire forzado		
sobre todo el rollo.	104	38
5) Laminado en caliente y enfria-		
do en agua y aire quieto		
sobre espiras separadas.	100	35
6) Laminado en caliente y enfria-		the supposed
6) Laminado en caliente y enfria- do en agua y aire quieto		
sobre todo el rollo.	95	32
	. trojatie	k a Nei M
7) Laminado en caliente y enfria-		
do en aire quieto sobre todo	85	22
el rollo.	03	22

TABLA 2.4 INFLUENCIA DEL MEDIO DE ENFRIAMIENTO SOBRE LAS PROPIEDA-DES MECANICAS.(12)

Cabe destacar, que con la anterior bobinadora vertical utilizaba el proceso #7, mientras que con el tren de alta velocidad se utiliza el proceso #3.

ANALISIS DEL PROCESO #3.- El alambrón obtenido después del monobloque se enfría primeramente con agua forzada tipo "B" haciéndolo pasar
por el interior de tubos estrechos a lo largo
de un tramo de 35 ms lográndose:

- a) Una velocidad de enfriamiento bastante elevada, así por ejemplo tomando una temperatura de salida = 1050°C para alambrón de 5.5 mm se puede enfriar a 800°C en 0.25 seg.
- b) La diferencia de temperatura entre la superficie y el centro del alambrón aumenta con el diámetro. Del ejemplo anterior, se puede tener una diferencia de temperatura de la superficie al centro de 200°C por lo que en la posterior etapa de bobinado la temperatura superficial aumenta aproximadamente 100°C.
- c) La longitud (35 ms) del tramo refrigerado por agua está determinada por la vaporiza-

ción del agua y del límite inferior de enfriamiento por agua, en el cual la estructu
ra cristalina se acomoda desordenadamente y
el alambrón pierde sus propiedades físicomecánicas.

- da, se impide en buen grado la formación de óxidos de hierro (cascarilla) y se reduce el tiempo de decapado (pérdidas de capa de óxido), aunque no se eliminan totalmente.
- e) El enfriamiento continúa con circulación de aire forzado posterior a la formación de es piras de la bobinadora, manteniéndolas abiertas sobre un lecho de rodillos transportadores.

Durante el trayecto (54 ms) los electroven tiladores van enfriando paulatinamente las espiras hasta terminar aproximadamente a 180 grados centígrados en el dispositivo presionador de espiras.

Cabe mencionar que esta línea de enfriamien to trabaja en forma totalmente automática,

controlada por las velocidades del Monoblo que y la bobinadora.

2.5 CALIBRADO DE CILINDROS PARA TRENES CONTINUOS DE ALAM-BRON.

Para los laminadores contínuos de alambre se adoptan tres tipos diferentes:

- a) Proceso de laminación dúo con viraje o torsión.
- b) Proceso de laminación horizontal-vertical.
- c) PROCESO DE BLOQUE EN "X" : Este tipo de trenes tiene básicamente las siguientes características :
 - Poseen el mando o accionamiento agrupado para tandas normalmente de seis, ocho o diez pasadas.
 - La laminación se efectúa a un solo hilo por mono bloque.
 - Usan habitualmente rodillos de laminación en voladizo con diámetros de 8, 10, ó 12 pulg.
 - Por disposición, con los ejes de los rodillos dispuestos a 90 grados en cada caja con respecto a la inmediata, no resulta necesario virar o tor

cer el material en ninguna pasada (13).

- Las velocidades obtenidas en la actualidad con es te tipo de trenes está en el orden de los 80 m/s.

El desarrollo de estos trenes surgió de la búsqueda de máquinas capaces de lograr muy altas producciones en los diámetros más pequeños de alambrón.

Una primera limitación fue la velocidad máxima a que era posible controlar el viraje de las barras en las pasadas ovales con cierta seguridad o garantía.

Como solución a este problema, se vio la necesidad de disponer las cajas de laminación de forma que recibiesen el material tal cual salía de la pasada anterior, lo que llevó a adoptar la disposición en X.

Al mismo tiempo, el empleo de rodillos de menor diámetro permitió obtener mayores alargamientos por pasada. Simultáneamente, la posibilidad de emplear anillos de metales duros, como por ejemplo carburo de tungsteno, prolongó la vida de los canales minimizando los tiempos requeridos para cambio

de los mismos.

Por otra parte, la forma constructiva y de montaje de los rodillos permite un fácil y rápido cambio, lo cual nuevamente acorta los tiempos muertos por este concepto.

2.6 CONTROL DE PROCESO DEL ALAMBRON

El control que se realiza durante el proceso de laminación se refiere principalmente a las lecturas de temperatura tomadas en diferentes etapas del tren, las mismas que serán ajustadas si el caso requiere, con la regulación de los quemadores del horno. Un resumen de datos se presenta en la Tabla 2.5.

2.7 CALCULO Y DISEÑO DE PASADAS PARA LAMINAR ALAMBRON

En este tópico se trata de enfocar desde el punto de vista práctico la selección de variables para laminar un producto determinado.

En este proyecto se toma como ejemplo la laminación de una varilla de 25 mm liso, partiendo de una palanquilla de 100 x 100 mm en 10 pasadas en el tren convencional.

MATERIAL LAMINADO	E .	TEMPERATURA DEL HORNO (°C)				TEMPERATURA MB 210/175 (°C)	
	HORA	Z-1	Z-2	Z-3	SALIDA	ENTRADA	SALIDA
	8:40.	820	1000	1270	1120	1010	980
3A	10:15	. 880	1040	1310	1120	1020	980
	11:45	890	1020	1300	1150	1030	990
	15:45	760	1240	1150	1120		940
3B	16:50	700	1270	1160	1130		960
*	18:30	680	1220	1140	1110		920
ne.	8:50	700		1260	1080	990	960
2B	10:00	750		1300	1140	1010	970
	15:45	770	-	1290	1120	980	950
	8:30	820	-	1330	1180	1080	1040
1B	12:45	700	· ·	1310	1160	1070	1040 -
	16:10	760	2	1280	1150	1020	980

POLITECNICA DEL LITORAL BILIOTECA 'CONZALO ZEVALLOS F. I. M. C. D.

TABLA 2.5 CONTROL DE PROCESO DEL ALAMBRON (Autorizado por ANDEC)

Una vez que se ha seleccionado los cilindros y el guiado para cada tren, se analiza el trazado, el mismo que es de suma importancia ya que, si fallan los dos anteriores, es fácil y rápido lograr el recambio o modificación en su diseño, pero si falla el trazado, se debe parar la producción y revisar los cilindros tallados (16).

El procedimiento seguido para el trazado es el siguiente:

- 1) Asumir valores de áreas para cada pasada partiendo del área final al área inicial y reforzar con la fórmula de la reducción promedio total y así tener una idea de las reducciones individuales.
- 2) Se procede a definir el diseño de cada pasada con su área definitiva, partiendo desde la primera pasada del tren desbastador hasta la última pasada del tren terminador (véase Fig. 2.9). Los cálculos se presentan en el Apéndice B.

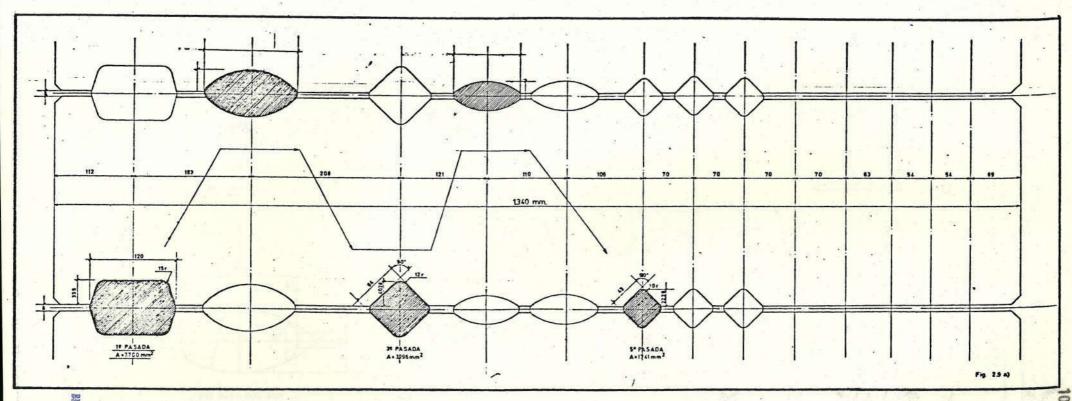
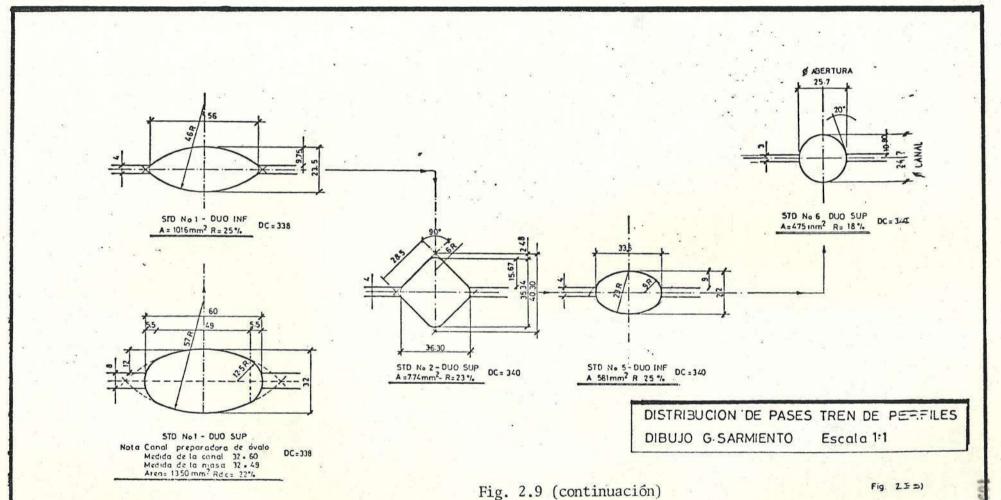
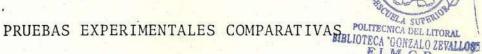




Fig. 2.9 DISEÑO DE PASADAS PARA LAMINAR ALAMBRON (Autorizado por ANDEC 1983)

CAPITULO III

3.1 ENSAYOS QUIMICOS

Los ensayos químicos se refieren a la determinación de los componentes del acero esto es, carbono, azufre, manganeso, fósforo y silicio; los dos primeros se realizaron por el procedimiento de vía seca (Fig. 3.1), mientras que los tres últimos se efectuaron por el procedimiento de vía húmeda.

3.1.1 COMPOSICION QUIMICA DE PALANQUILLAS DE COLADA CONTINUA Y LAMINADA.

El material analizado cuyo destino es alambre para trefilación, corresponde a un acero de bajo contenido de carbono, el mismo que por su composición, la microestructura observada y la especificación SAE (Society of Automotive Engineers, EUA), corresponde a un acero 1008 obtenido en el mercado en las condiciones mostradas en las Tablas 3.1 y 3.2 respectivamente.

3.1.2 COMPOSICION QUIMICA DE ALAMBRON NACIONAL E IM-PORTADO.

En lo referente al alambrón de fabricación na-

cional, la composición química viene dado según Apéndice A por los productos asignados como 1, 2 y 3 presentados en las Tablas 3.1 al 3.3, mientras que la composición química del alambrón importado corresponde según el Apéndice A a los dígitos 4, 5, 6 y 7 en su orden resumidos en la Tabla 3.4.

3.2 ANALISIS METALOGRAFICO Y DUROMETRICO

El análisis metalográfico comprende dos partes, una observación visual y otra microscópica con equipo incorporado de microfotografía (veáse Fig. 3.2).

En la parte complementaria se efectuó ensayos de duro metría en escalas Rockwell B y Knoop. El primero se usó para la materia prima y el segundo para el producto terminado (1).

3.2.1 ANALISIS MACRO Y MICROSCOPICO DE LA PALANQUI-LLA DE COLADA CONTINUA Y LAMINADA.

El análisis macroscópico se realizó de acuerdo a la siguiente secuencia:

- Corte y preparación de probetas
- Pulido en papel lija de carburo de silicio

ELEMENTO	COMPOSICION QUIMICA (%)					
ANALIZADO	1*	ESPECIFICACION SAE 1008				
Carbono C	0.07	0.10 máx				
Manganeso Mn	0.31	0.30-0.50				
Fósforo P	0.029	0.040 máx				
Azufre S	0.021	0.050 máx				
Silicio Si	0.12	0.17 máx				

TABLA 3.1 COMPOSICION QUIMICA PALANQUILLA COLADA CONTINUA

ELEMENTO	CC	COMPOSICION QUIMICA (%)						
ANALIZADO	2	ESPECIFICACION SAE 1008						
C	0.07	0.10 máx						
Mn	0.29	0.30-0.50						
P	0.018	0.040 máx						
S	0.012	0.050 máx						
Si	- 0.04	0.17 máx						

TABLA 3.2 COMPOSICION QUIMICA PALANQUILLA LAMINADA

^{*} Según Apéndice A

ELEMENTO	COMPOSICION QUIMICA (%)						
ANALIZADO	3	ESPECIFICACION SAE 1008					
C	0.08	0.10 máx					
Mn	0,33	0.30-0.50					
P	0.022	0.040 máx					
S	0,026	0.050 máx					
Si	0.05	0.17 máx					

TABLA 3.3 COMPOSICION QUIMICA DE ALAMBRON NACIONAL

EI EMENTO		COMPOSICION QUIMICA (%)									
ELEMENTO ANALIZADO	4	5	6	7	ESPECIFICACION SAE 1008						
y it											
С	0.08	0.07	0.08	0.09	0.10 máx						
Mn	0.28	0.32	0.26	0.34	0.30-0.50						
P	0.019	0.018	0.017	0.016	0.040 máx						
S	0.015	0.013	0.014	0.015	0.050 máx						
Si	0.06	0.06	0.05	0.05	0.17 máx						

TABLA 3.4 COMPOSICION QUIMICA DE ALAMBRON IMPORTADO

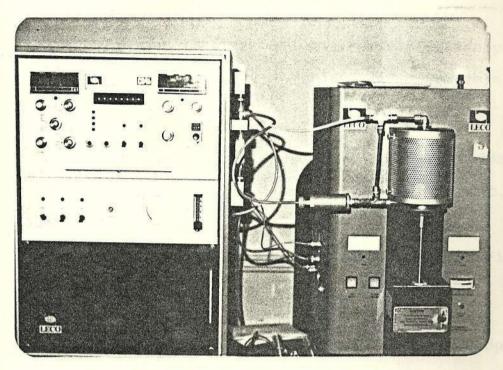


Fig. 3.1 ANALIZADOR DE CARBONO Y AZUFRE

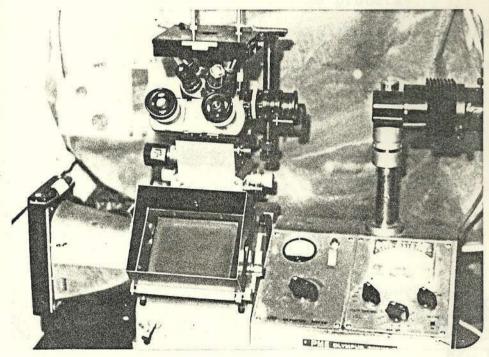


Fig. 3.2 EQUIPO DE MICROFOTOGRAFIA

220, 320, 400 y 600.

- Pulido final en paños abrasivos usando pasta de alúmina al 2% (Al₂O₃) para materiales ferrosos.
- Ataque de la probeta usando Nital 10% (ácido nítrico 10% y alcohol metílico 90%) como reactivo.

El material estudiado se muestra en las Figuras 3.3 y 3.4.

En la segunda parte, el análisis microscópico fue realizado mediante el siguiente procedimiento:

- Corte y preparación de probetas
- Montaje de probetas usando resina polyester
- Pulido en lija y paño abrasivo descrito anteriormente.
- Ataque químico usando Nital 3% (ácido nítrio co 3% y alcohol metílico 97%) como reactivo.
- Observación microscópica

Las Figuras 3.5 y 3.6 corresponden a las micro estructuras analizadas.

POLITECNICA DEL LITORAL BIBLIOTECA "GONZALO ZEVALLOS"

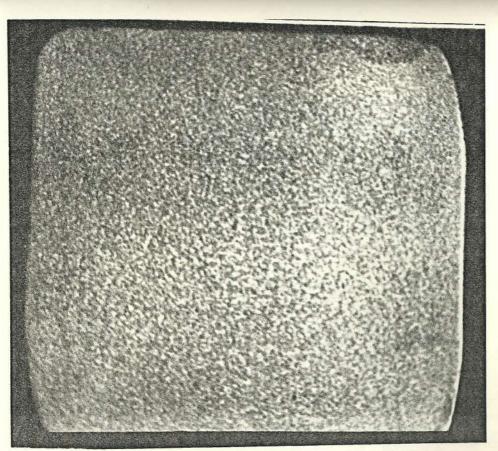


Fig. 3.3 MACROFOTOGRAFIA PALANQUILLA LAMINADA DEL ACERO SAE 1007

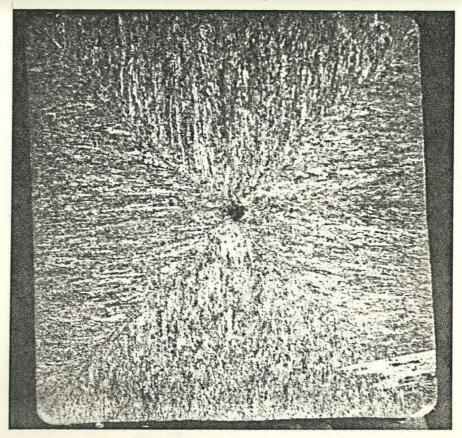


Fig. 3.4 MACROFOTOGRAFIA PALANQUILLA DE COLADA CONTINUA DEL ACERO SAE 1007

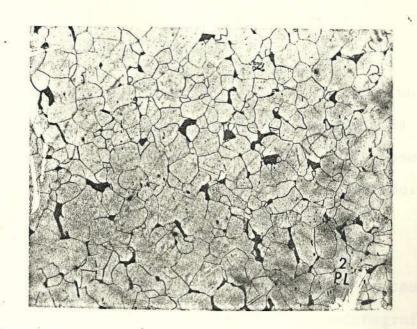


Fig. 3.5 MICROFOTOGRAFIA PALANQUILLA LAMINADA DEL ACERO SAE 1007

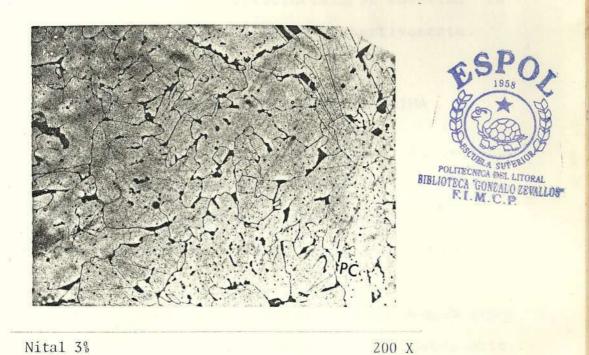
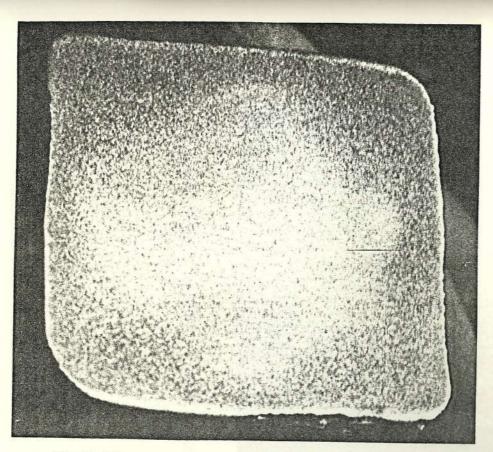


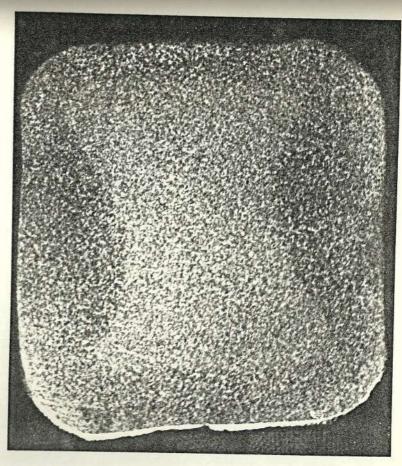
Fig. 3.6 MICROFOTOGRAFIA PALANQUILLA DE COLADA CONTINUA DEL ACERO SAE 1007

3.2.2 METALOGRAFIA DEL MATERIAL LAMINADO EN LAS DIFE RENTES PASADAS.


En la presente sección se realizó ensayos macroscópicos de palanquilla laminada (producto 2) correspondientes a las reducciones tercera, cuarta y quinta del tren desbastador (Figuras 3.7, 3.8 y 3.9 respectivamente).

Con la finalidad de observar los cambios estructurales se tomaron microfotografías de la quinta reducción del tren de laminación (Figura 3.10). En lo referente al producto termina do, esto es, el alambrón tanto nacional como importado, sus microestructuras se muestran en las Figuras 3.11 al 3.18, respectivamente.

3.2.3 CUADRO DE DUREZAS DE LA MATERIA PRIMA


Las durezas tomadas en la palanquilla se obtuvieron usando la escala Rockwell B. Previamente, las probetas deben ser pulidas con el fin de obtener una buena superficie de ensayo.

Estas pruebas se realizaron en la sección transversal del producto laminado. Los datos obtenidos se presentan en las curvas de las Figu-

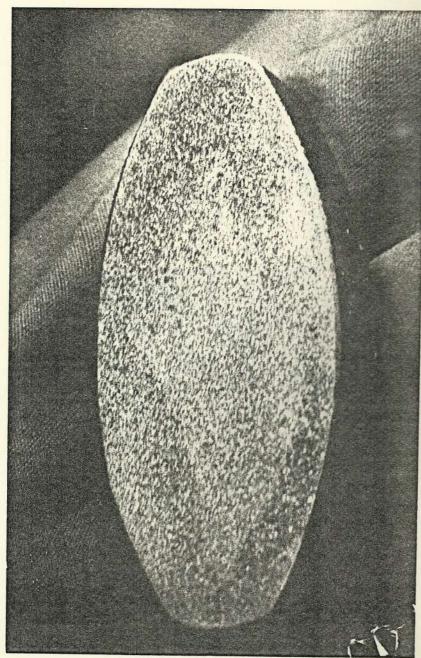

Nital 10% 1X

Fig. 3.7 MACROFOTOGRAFIA TERCERA REDUCCION, PROBETA Nº 2, ACERO SAE 1007

Nital 10%

Fig. 3.9 MACROFOTOGRAFIA QUINTA REDUCCION, PROBETA Nº 2, ACERO SAE 1007

Nital 10% 1 X
Fig. 3.8 MACROFOTOGRAFIA CUARTA REDUCCION, PROBETA Nº 2
ACERO SAE 1007

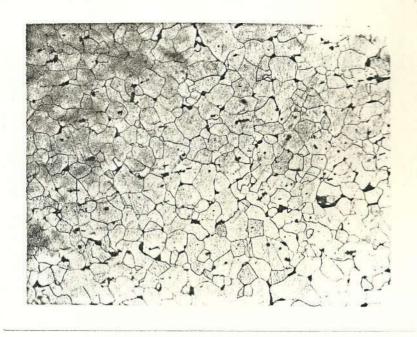
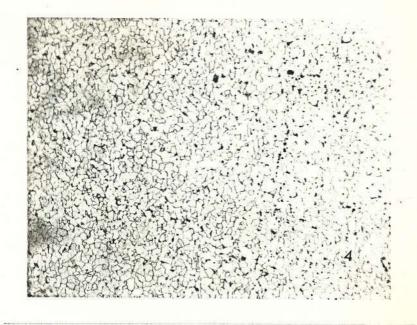
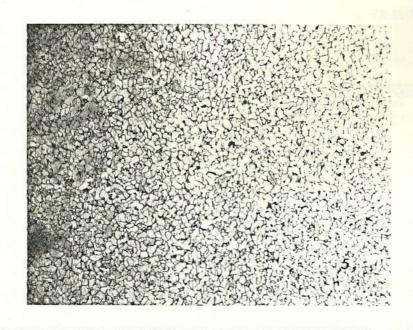




Fig. 3.10 MICROFOTOGRAFIA QUINTA REDUCCION, PROBETA Nº 2, ACERO SAE 1007

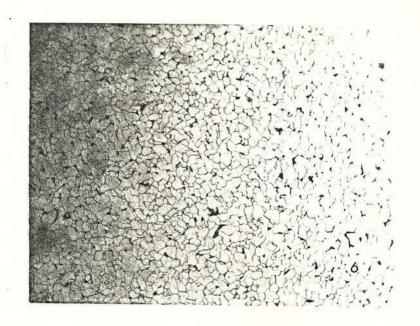

100 X

Fig. 3.11 PROBETA Nº 4, ACERO SAE 1008, TAMAÑO DE GRANO Nº 9

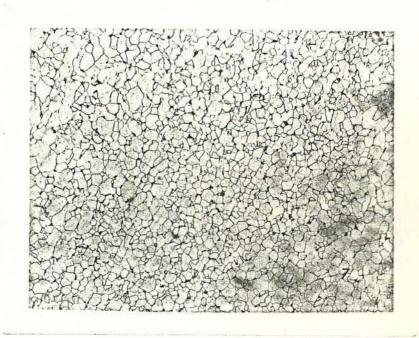
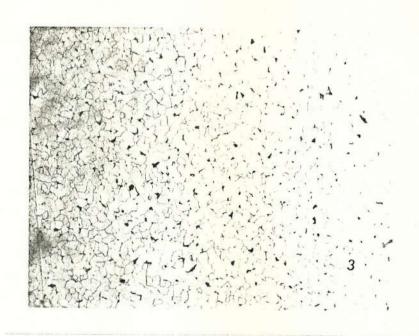

Nital 3%

Fig. 3.12 PROBETA Nº 5, ACERO SAE 1007, TAMAÑO DE GRANO Nº 9

100 X


Fig. 3.13 PROBETA Nº 6, ACERO SAE 1008, TAMAÑO DE GRANO Nº 9

POLITECNICA DEL LITORAL
BIBLIOTECA 'GONZALO ZEVALLOS'
F.I. M. C.P.

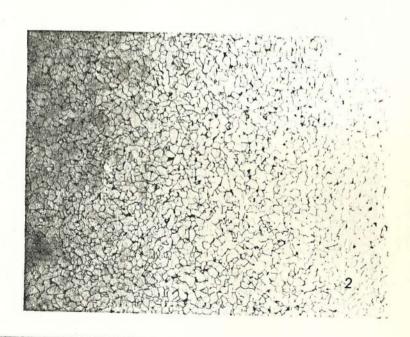

Nital 3%

Fig. 3.14 PROBETA Nº 7, ACERO SAE 1009, TAMAÑO DE GRANO Nº 9

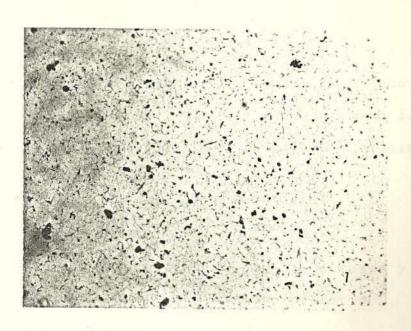

100 X

Fig. 3.15 PROBETA Nº 3, ACERO SAE 1008, TAMAÑO DE GRANO Nº 9

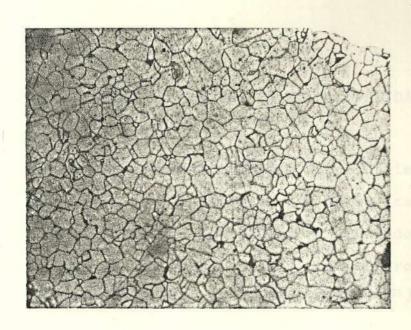

Nital 3%

Fig. 3.16 PROBETA Nº 2, ACERO SAE 1007, TAMAÑO DE GRANO Nº 9

100 X

Fig. 3.17 PROBETA Nº 1, ACERO SAE 1007, TAMAÑO DE GRANO Nº 9

Nital 3%

Fig. 3.18 PROBETA Nº 1, ACERO SAE 1007, TAMAÑO DE GRANO Nº 9

ras 3.19 al 3.21.

La parte complementaria se refiere a la toma de microdureza del producto terminado; para e llo se empleó un microdurómetro con identador de diamante tipo Knoop, cuyo procedimiento se efectúa de la siguiente manera:

- Pulido metalográfico
- Se seleccionó 500 gramos de carga y un aumento de 100 en el microdurómetro.
- Obtención de datos y conversión a otra escala de dureza para su comparación final.

Un resumen de los valores obtenidos se presentan en la Tabla 3.5.

3.3 ENSAYOS FISICOS DE CONTROL DE MASA, OVALIDAD Y RESAL-TES.

Siguiendo con los requerimientos que establece la norma INEN (Instituto Ecuatoriano de Normalización) se efectuó el ensayo de control de masa usando para el efecto una balanza de precisión. El control de ovalidad se realizó utilizando un calibrador. (11)

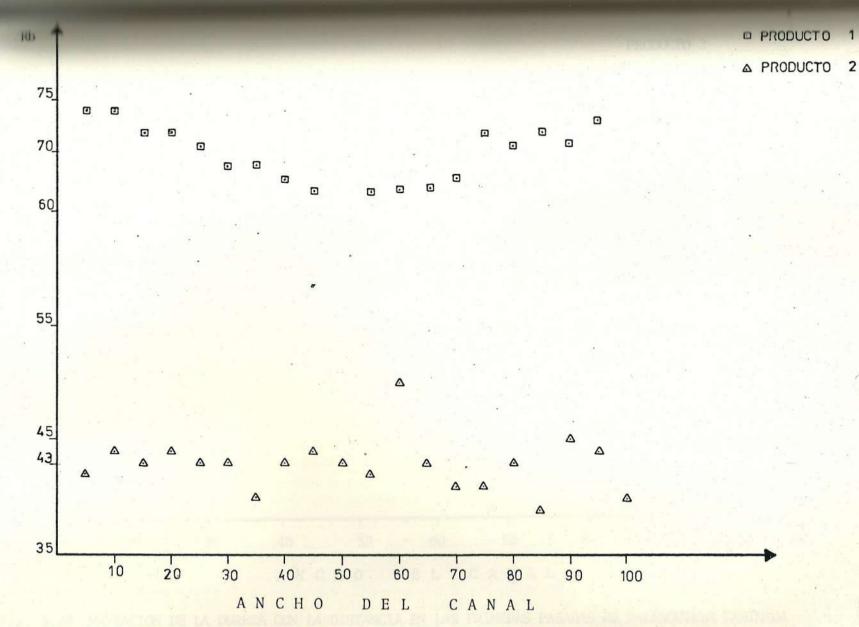


Fig. 3.19 VARIACION DE LA DUREZA CON LA DISTANCIA EN PALANQUILLA LAMINADA Y DE COLADA CONTINUA

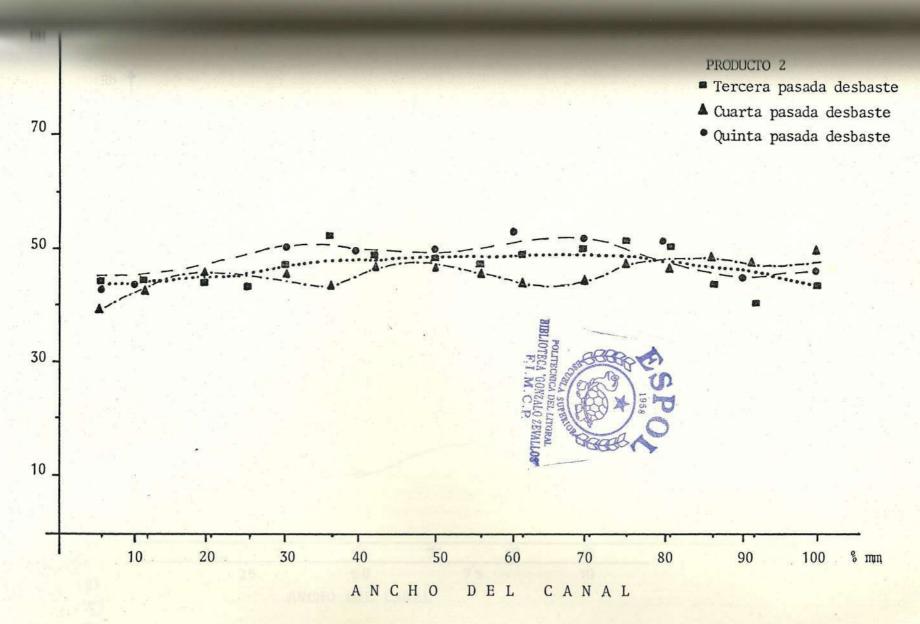


Fig. 3.20 VARIACION DE LA DUREZA CON LA DISTANCIA EN LAS PRIMERAS PASADAS DE PALANQUILLA LAMINADA

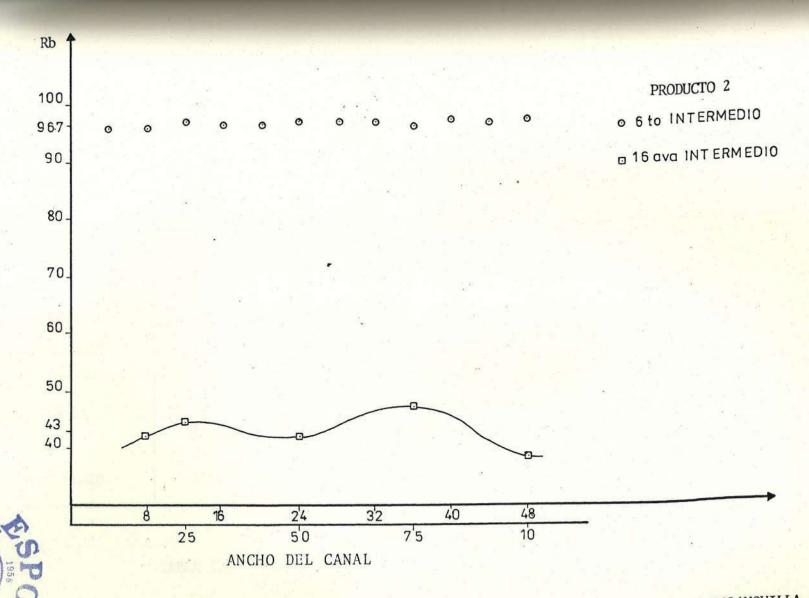


Fig. 3.21 VARIACION DE LA DUREZA CON LA DISTANCIA EN LAS PASADAS INTERMEDIAS DE PALANQUILLA LAMINADA.

BIBLIOTECA GONS AT STVALLOR

	PRODUCTO TERMINADO										
DUREZA	1	2	3	4	5	6	7				
DUREZA KNOOP PROMEDIO	126.75	123.57	139.3	149.73	134.68	145.73	167.89				
DUREZA Rb PROMEDIO	63.6	62	70	75.1	67.83	73.17	81.12				

TABLA 3.5 VALORES DE MICRODUREZA DEL ALAMBRON NACIONAL E IMPORTADO

3.3.1 EN EL ALAMBRON NACIONAL

Los ensayos físicos de control de masa y ovalidad correspondientes al producto liso de fabricación nacional se resume en la Tabla 3.6.

3.3.2 ALAMBRON DE FABRICACION EXTRANJERA

Este producto, igual que el caso anterior fue sometido a los ensayos físicos como establece la norma para el efecto, cuyos valores se agrupan en la Tabla 3.7.

3.4 ENSAYOS MECANICOS

3.4.1 ENSAYO CHARPY DE PALANQUILLAS DE COLADA CONTI-NUA Y LAMINADA.

Para realizar las pruebas de impacto se prepararon probetas de acero SAE 1008 de la materia prima. Las dimensiones y características de la probeta son establecidas según norma ASTM A 510 (American Society for Testing and Materials). Los ensayos se realizaron en una máquina universal destinada para el efecto. (1)

Los datos obtenidos en la presente sección se resumen en la Tabla 3.8, como también se podrán

	LONGITUD	MASA	MASA/ METRO	DIAMETRO NOMINAL	OVALIDAD (mm)					
PRODUCTO	mm	g	Kg/m	mm	a	b	с	PROMEDIO		
		**								
3A	338	70.8	0,182	5.43	5.41	5.41	5.41	5.41		
3A	446	82.4	, 0.185	5.48	5.38	5.37	5.36	5.37		
3A	384	70	0.182	5.43	5.42	5.42	5.43	5.42		
3A .	445	83.5	0.188	5.52	5.38	5.38	5.38	5.38		
3A	285	52.1	0.183	5.45	5.39	5.39	5.39	5.39		
3A	452	83	0.184	5.46	5.49	5.49	5.49	5.49		
3A	480	89.5	0.186	5.49	5.47	5.47	5.47	5.47		
3A	481	89	0.185	5.48	5.37	5.37	5.37	5.37		
3A	453	82.5	0.182	5.43	5.48	5.48	5.48	5,48		
3A	329	60.7	0.184	5.46	5.36	5.36	5.36	5.36		
2A	445	79.9	0.179	5.40	5.35	5.40	5.45	5.40		
2A	450	80.4	0.179	5.39	5.30	5.50	5.35	5.38		
2A	451	81	0.180	5.40	5.50	5.30	5.40	5.40		
2A	449	80.4	0.179	5.39	5.45	5.30	5.50	5.42		
2A	450	80.3	0.178	5.37	5.50	5.40	5.35	5.42		

TABLA 3.6 RESULTADOS DE ENSAYOS FISICOS PARA ALAMBRON NACIONAL

PRODUCTO	L (mm)	M (g)	Kg/m	D (mm)	a	b	C	OVALIDAD PROMEDIO (mm)
2A	452	81.3	0.180	5.40	5.3	5.5	5.4	5.4
2A	451	80.8	0.180	5.40	5.3	5.4	5.4	5.37
2A .	454	81	0.178	5.37	5.4	5.4	5.45	5.42
2A	458	82.9	0.181	5.42	5.3	5.4	5.4	5.37
2A	459	82.8	- 0.180	5.40	5.4	5.5	5.35	5.42
2A	450	79.5	0.177	5.35	5.25	5.4	5.4	5.35
2A	450	80.5	0.179	5.39	5.4	5.4	5.35	5.38
2A	454	81.5	0.179	5.39	5.5	5.35	5.35	5.38
2A	451	81.3	0.180	5.40	5.4	5.4	5.35	5.38
2A	451	80.4	0.178	5.37	5.3	5.45	5.4	5.38
2A	445	79.4	0.178	5.37	5.4	5.3	5.3	5.37
2A	449	83.1	0.185	5.48	5.5	5.6	5.55	5.55
2A	450	83	0.184	5.46	5.4	5.45	5.5	5.45
2A	450	82.1	0.182	5.43	5.5	5.35	5.6	5.48
2A	350	63.65	0.187	5.51	5.5	5.55	5.5	5.52
2A	349	63.3	0.181	5.42	5.45	5.35	5.45	5.42
24	448	81.4	0.182	5.43	5.35	5.55	5.4	5.43
2A 2A	351	63.8	0.182	5.43	5.4	5.45	5.35	5.4

TABLA 3.6 (continuación)

PRODUCTO	L (mm)	M (g)	Kg/m	D (mm)	a	ь	c.	OVALIDAD PROMEDIO (mm)
TRODUCTO	L (nun)	11 (8)	Ng/ III	1 Chan's				111012220 ()
2A	359	64	0.178	5.37	5.45	5.45	5.4	5.43
2A	452	84	0.186	5.39	5.45	5.5	5.5	5.48
2F	462	402.1	0.870	11.88	11.85	12	11.95	11.93
2F	398	348.7	0.876	11.92	11.85	12.2	11.9	11.98
2F	417	370.4	- 0.888	12.0	11.9	12.15	12	12.02
2F	432	377.2	0.873	11.9	12.05	11.85	11.9	11.93
2F	487	430.4	0.884	11.98	12.0	12	12.35	12.12
1A	434	77.5	0.179	5.39	5.35	5.4	5.35	5.37
1A	437	76.8	0.176	5.34	5.4	5.25	5.45	5.37
1A	437	77.9	0.178	5.37	5,45	5.35	5.35	5.38
1A	433	77.5	0.179	5.39	5.45	5.35	5.4	5.4
1A	434	77.75	0.179	5.39	5.3	5.4	5.4	5.37
1A	463	83.8	0.181	5.42	5.35	5.6	5.25	5.4
1A	459	82.9	0.181	5.42	5.25	5.45	5.4	5.37
1A	459	83	0.181	5.42	5.3	5.5	5.3	5.37
1A	460	84	0.183	5.45	5.25	5.45	5.55	5.42
1A	430	77.6	0.180	5.40	5.5	5.4	5.25	5.38
1A	432	77.9	0.180	5.40	5.4	5.35	5.35	5.37

TABLA 3.6 (continuación)

PRODUCTO	L (mm)	M (g)	Kg/m	D (mm)	a	ъ.	С	OVALIDAD PROMEDIO (mm)
1A	432	78.35	0.181	5.42	5.55	5.4	5.45	5.47
1A	445	80.6	0.181	5.42	5.35	5.4	5.3	5.35
52			, in , in ,					
1B	347	83.8	0.241	6.25	6.14	6.13	6.12	6.13
1B	422	102.5	0.243	6.28	6.11	6.11	6.10	6.11
1B	412	100.3	0.243	6.28	6.24	6.24	6.24	6.24
1B	381	93.3	0.245	6.30	6.17	6.17	6.17	6.17
1B	430	106.3	0.247	6.33	6.24	6.24	6.24	6.24
1B	347	89.8	0.259	6.48	6.3	6.4	6.35	6.35
1B	352	86.9	0.247	6.33	6,35	6.25	6.25	6.28
1B	370	91.4	0.247	6.33	6.3	6.35	6.25	6.3
1B	334	81.5	0.244	6.29	6.3	6.25	6.35	6.3
1B	350	85.15	0.243	6.28	6.4	6.25	6.3	6.32
1B	351	85.6	0.244	6,29	6.3	6.3	6.2	6.27
1B	367	89.25	0.243	6.28	6.2	6.25	6.25	6.23

TABLA 3.6 (continuación)

PRODUCTO	LONGITUD	MASA	MASA/ METRO	DIAMETRO NOMINAL		O V A	LIDA	D (mm)
11020010	mm	g	Kg/m	mm	a	b	с	PROMEDIO
	2	-, -						
4A	442	86.6	0.196	5.64	5.6	5.75	5.65	5:67
4A	441	86.4	0.196	5.64	5.6	5.7	5.65	5.65
4A	448	87.7	0.196	5.64	5.6	5.65	5.55	5.6
4A	452	88.4	.0.196	5.64	5.6	5.65	5.75	5.67
4A	444	86.7	0.195	5.62	5.6	5.75	5.65	5.67
4A	440	86.3	0.196	5.64	5.65	5.6	5.6	5.62
4A	445	86.6	0.195	5.62	5.7	5.55	5.55	5.6
4A	443	86.9	0.196	5.64	5.65	5.7	5.6	5.65
4A	442	87.2	0.197	5.65	5.6	5.75	5.7	5.68
4A	442	86.6	0.196	5.64	5.6	5.7	5.65	5.65
								1 1 1
5A	450	82.5	0.183	5.45	5.45	5.25	5.5	5.4
5A	473	86.5	0.183	5.45	5.5	5.55	5.45	5.5
5A	451	81.1	0.180	5.40	5.45	5.5	5.45	5.47
(D) 5A	474	85.1	0.179	5.39	5.5	5.35	5.5	5.45
5A	497	90.5	0.182	5.43	5.5	5.55	5.45	5.5

TABLA 3.7 RESULTADOS DE ENSAYOS FISICOS PARA ALAMBRON IMPORTADO

PRODUCTO	L (mm)	M (g)	Kg/m	D (mm)	a	b	С	OVALIDAD PROMEDIO (mm)
6A	445	.86.8	0.195	5.62	5.45	5.75	5.55	5.58
6A	472	92	0.195	5.62	5.65	5.7	5.5	5.62
6A	445	96.6	0.195	5.62	5.75	5.45	5.65	5.62
6A	472	91.8	0.194	5.61	5.65	5.7	5.4	5.58
6A	499	97	0.194	5.61	5.5	5.8	5.6	5.63
			200		- 4			
6E	439	303.3	0.752	11.05	11.05	11.1	11.1	11.08
6E	457	344.4	0.754	11.06	11.1	11.35	11.15	11.2
6E	428	321.9	0.752	11.05	11.25	11.1	11.05	11.13
6E	446	335.8	0.753	11.05	11.3	11.25	11.2	11.25
6E	464	349.4	0.753	11.05	11.2	11.1	11.35	11.22
	310-14		4.788	121-31				
7B	496	122.5	0.247	6.33	6.14	6.14	6.14	6.14
7B	294	70.8	0.241	6.25	6.27	6.27	6.27	6.27
7B	297	59	0.239	6.23	6.25	6.25	6.25	6.25
7B	473	114.5	0.242	6.27	6.23	6.23	6.23	6.23
7B	360	89.3	0.248	6.34	6.24	6.24	6.24	6.24
2 7C	430	174.2	0.405	8.11	8.2	7.9	8.0	8.03

TABLA 3.7 (continuación)

PRODUCTO	L (mm)	M (g)	Kg/m	D (mm)	a	b	с	OVALIDAD PROMEDIO (mm
				- 4	987			
7C	492	199.9	0.406	8.12	8.25	8.1	8.15	8.17
7C	348	137.9	0.396	8.02	8:15	7.95	8.05	8.05
7C	412	163.7	0.397	8.03	8.2	8.1	8.15	8.15
7C	475	189.3	0.399	8.05	8.1	8.2	8.15	8.15
7C	445	176.8	0.397	8.03	8.15	8.1	8.05	8.1
7C	425	169	0.398	8.04	8.1	8.1	8.0	8.07
7C	429	169.3	0.395	8.01	8.1	8.1	8.15	8.12
7C	436	170.3	0.391	7.96	8.1	8.15	8.1	8.12
7C	442	167.9	0.398	8.04	8.1	8.05	8.1	8.08
7C	417	164.2	0.394	7.99	8.15	8.15	8.1	8.13
7C	440	172.9	0.393	7.98	8.1	8.1	7.9	8.03
7E	360	283.6	0.788	11.31	11.6	11.3	11.3	11.4
7E	412	316.3	0.768	11.16	11.4	11.3	11.65	11.45
7E	350	272.5	0.779	11.24	11.35	11.3	11.55	11.4
7E	353	277.9	0.787	11.30	11.6	11.35	11.3	11.42
7E	356	280.4	0.788	11.31	11.3	11.6	11.25	11.38
7E	348	273.8	0.787	11.30	11.35	11.5	11.25	11.37

TABLA 3.7 (continuación)

PRODUCTO	DIRECCION DE ALARGAMIENTO				DIRECCION DE REDUCCION DE ALTURA				DIRECCION DE ENSANCHAMIENTO			
	x ₁	X ₂	x ₃	x _m	У ₁	y ₂	У ₃	y _m	z ₁	z ₂	Z ₃	z _m
2В	2.0	2.0	2.6	2.2	1.7	3.2	1.45	2.12	1.45	0.8	0.8	1.02
1В	0.8	0.75	0.90	0.82	0.7	0.5	0.75	0.65	1.1	0.8	0.8	0.9

TABLA 3.8 VALORES OBTENIDOS DEL ENSAYO CHARPY (Kg-m) (TEMPERATURA AMBIENTE)

apreciar las superficies de fractura en la Figura 3.22.

3.4.2 PRUEBAS DE TRACCION DE ALAMBRON NACIONAL

Estas pruebas fueron efectuadas tomando como patrón la probeta de la norma ASTM. Los ensavos se realizaron utilizando una máquina universal con una velocidad de ensayo de 10 mm/min cambiándose luego a 5 mm/min para obtener valo res de fluencia más exáctos, una velocidad del graficador de 20 mm/min, y a temperatura am biente (14). Los resultados obtenidos están representados en la Tabla 3.9.

3.4.3 ENSAYO TENSIL DE ALAMBRON EXTRANJERO

Esta etapa es similar al caso anterior, ya que los parâmetros que entran en juego son exactamente los mismos. Para efectos de identificación de las probetas, se utilizaron impresiones leves inscritas con marquillas de metal. Los datos de este ensayo se presentan en la Tabla 3.10.

Además en la Tabla 3.11, se presentan valores promedios del ensayo de tracción de los produc

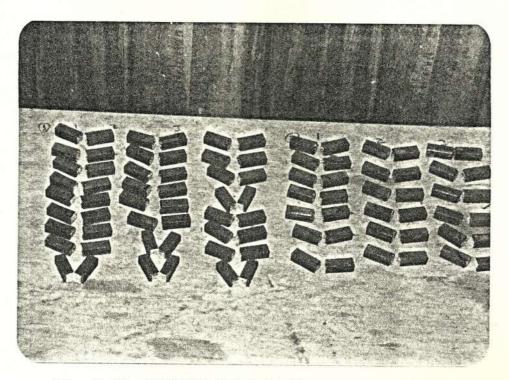


Fig. 3.22 PROBETAS UNA VEZ REALIZADO EL ENSAYO DE IMPACTO.

POLITECNICA DEL LITORAL
BIBLIOTECA 'GONZALO ZEVALLOS'
F.I.M.C.P.

PRODUCTO	DIAMETRO	AREA	LONGITUD INICIAL	LONGITUD FINAL	DIAMETRO FINAL	RESIS	STENCIA	(Kg/mm²)	ALARGAMIENTO	
PRODUCTO	INICIAL mm	mm ²	mm	mm	MIM	FLUENCIA	TRACCION	ROTURA	9	
									(•)	
3A	5.45	23.33	27.25	37.20		25.72	38.58	26.15	36.51	
3A	5.43	23.16	27.15	37.30		25.91	41.02	27.80	37.38	
3A	5.43	23.16	27.15	38.20		25.91	41.02	27.69	40.70	
3A	5.42	23.07	27.10	37.50		26.00	36.84	24.45	38.38	
3A	5.45	23.33	27.25	37.00		25.72	38.58	26.12	35.78	
3B	6.33	31.47	31.65	43.90		28.60	44.44	25.52	38.70	
3B	6.25	30.68	31.25	43.50		29.34	45.62	26.20	39.20	
3B	6.23	30.48	31.15	44.20		29.53	45.93	26.35	42.22	
3B	6.29	31.07	31.45	43.85		28.97	45.06	25.96	39.43	
3B	6.32	31.37	31.60	45.20		28.69	44.63	25.57	43.04	
2A	5.48	23.59	50	65.76	2.71	26.71	36.03	25.01	31.52	
2A	5.46	23.41	50	66.26	2.76	25.63	35.88	24.35	32.52	
2A	5.43	23.16	50	66.92	2.72	26.34	35.84	23.75	33.84	
2A	5.51	23.84	50	68.12	2.56	25.17	35.23	22.02	36.24	
2A	5.42	23.07	50	68.00	2.58	25.14	35.98	22.97	36.00	
2A	5.43	23.16	50	66.58	2.64	25.91	38.00	23.75	33.16	
2A	5.43	23.16	50	65.44	2.57	25.91	36.27	24.61	30.88	
2A	5.37	22.65	50	67.96	2.50	26.93	36.20	24.72	35.92	

TABLA 3.9 PRUEBAS DE TRACCION ALAMBRON NACIONAL

PRODUCTO	Do	A	L _O	Lf	$D_{\mathbf{f}}$	FLUENCIA	TRACCION	ROTURA	ALARGAMIENTO (%)
2A	5,49	23.67	50	66.00	2.63	23.24	33.80	21.97	32.00
2B	6.27	30.88	50	66.66	2.88	25.91	34.81	21.86	33.32
2B	6.27	30.88	50	69.28	2.90	24.29	34.00	21.37	38.56
2B	6.27	30.88	50	69.81	2.92	24.93	34.00	20.24	39.62
2B	6.28	30.97	50	67.91	3.05	27.45	33.90	20.34	35.82
2B	6.33	31.47	50	67.65	2.8	27.01	35.59	21.61	35.3
2B	6.25	30.68	50	68.13	3.10	26.08	35.20	22.49	36.26
2B	6.27	30.88	50	70.59	2.85	27.53	36.43	22.67	41.48
2B	6.34	31.57	50	70.87	2.92	24.39	34.05	21.86	41.74
2B	6.25	30.68	50	67.23	2.76	29.33	39.11	22.82	34.46
2B	6.28	30.97	50	68.55	2.72	27.12	36.49	23.25	37.10
2B	6.28	30.97	50	65.83	3.12	27.77	37.13	22.28	31.66
2B	6.30	31.17	50	66.8	2.88	27.91	36.09	21.49	33.6
2B	6.33	31.47	50	67.91	3.03	29.87	38.77	22.24	35.82
1B	6.48	32.98	50	64.66	3.36	31.08	42.45	27.29	28.92
1B	6.33	31.47	50	64.42	3.47	30.19	41.31	27.80	28.84
1B	6.33	31.47	50	65.30	3.46	32.41	42.90	28.60	30.6
1B	6.29	31.07	50	68.82	3.30	33.47	43.45	29.29	36.44
1B	6.28	30.97	50	67.20	3.49	33.90	42.94	29.38	34.44
1B	6.29	31.07	50	65.43	3.31	30.58	41.84	28.97	30.86
1B	6.28	30.97	50	67.70	3.38	31.48	42.62	28.74	35.4

TABLA 3.9 (continuación)

PRODUCTO	DIAMETRO INICIAL		LONGITUD INICIAL	LONGITUD FINAL	DIAMETRO FINAL	RESIST	ENCIA (Kg	/mm ²)	ALARGAMIENTO
mm	mm²	mm	nm	mm	FLUENCIA	TRACCION	ROTURA	9	
p 1 %	7.						The course		
4A	5.64	24.98	50	67.52	2.74	28.02	35.83	25.62	.35.04
4A	5.64	24.98	50	69.76	2.63	27.22	37.63	24.02	39.52
4A	5.62	24.81	50	67.10	2.65	26.60	37.48	24.99	34.20
4A	5.64	24.98	50	63.90	2.72	26.42	38.03	28.02	27.8
4A	5.62	24.81	50	65.30	2.68	28.21	37.89	24.99	30.6
5A	5.64	24.98	50	63.46	2.90	26.42	37.83	27.22	26.92
5A	5.65	25.07	50	62.68	2.56	26.13	37.30	25.53	25.36
5A	5.64	24.98	50	69.02	2.52	26.82	37.23	26.02	38.04
5A	5.45	23.33	50	63.84	2.81	26.79	36.43	23.57	27.68
5A	5.45	23.33	50	66.56	2.68	27.86	36.43	23.57	33.12
5A	5.40	22.90	50	69.38	2.52	28.38	37.12	26.20	38.76
6A	5.62	24.81	50	64.64	2.91	31.24	39.50	25.19	29.28
6A	5.62	24.81	50	66.16	2.88	31.24	39.90	26.20	32.32
6A	5.62	24.81	50	65.30	2.84	30.23	38.29	24.18	30.60
6A	5.61	24.72	50	65.56	2.68	30.34	38.43	26.29	31.12
6A	5.61	24.72	50	66.58	2.79	28.32	38.43	24.27	33.16

145

PRODUCTO	D_{0}	A .	L _O ·	$L_{\mathbf{f}}$	$D_{\mathbf{f}}$	FLUENCIA	TRACCION	ROTURA	ALARGAMIENTO (%)
		W -		57			= 1,0		10 10 10 10 10 10 10 10 10 10 10 10 10 1
6E	11.05	95.89	50	72.89	5.30	23.25	33.27	20.86	45.7
6E	11.06	96.07	50	71.46	5.02	22.38	33.10	20.51	42.92
6E	11.05	95.89	50	70.85	5.20	21.90	33.37	20.65	41.7
6E	11.05	95.89	50	73.80	4.90	21.38	32.75	20.02	47.6
6E	11.05	95.89	50	70.88	5.13	22.73	32.64	20.34	41.76
7C	8.11	51.62	50	66.00	4.0	28.57	39.23	24.21	33.0
7C	8.12	51.78	50	70.12	3.98	27.04	37.66	23.75	40.24
7C	8.02	50.52	50	67.89	3.94	29.99	40.38	24.74	35.76
7C	8.03	50.64	50	71.20	3.89	27.65	38.7	23.70	42.4
7C	8.05	50.89	50	68.91	4.0	27.02	38.32	23.97	37.82
7C	8.03	50.64	50	68.08	3.9	26.17	38.51	24.68	36.16
7C	8.04	50.77	50	68.22	3.95	26.59	38.41	24.62	36.44
7C	8.01	50.39	50	68.50	3.86	27.78	39.39	25.30	37.00
7C	7.96	49.76	50	68.65	4.08	27.13	38.38	26.12	37.3
7C	8.04	50.77	50	67.43	4.44	24.13	37.42	26.59	34.86

TABLA 3.10 (continuación)

	RES				
PRODUCTO	FLUENCIA	TRACCION	ROTURA	ALARGAMIENTO %	
1B	31.87	42.50	28.58	32.21	
2A	25.66	35.92	23.68	33.56	
2B	26.90	35.81	21.89	36.5	
3A	25.85	39.21	26.44	37.75	
3B	29.03	45.15	25.92	40.52	
4A	27.29	37.37	25.53	33.43	
5A	27.07	37.06	25.35	31.65	
6A	30.27	38.91	25.23	31.3	
6E	22.33	33.03	20.48	43.94	
7C	27.21	38.64	24.77	36.99	

TABLA 3.11 DATOS PROMEDIO DEL ENSAYO DE TRACCION DE ALAMBRON NACIONAL E IMPORTADO

tos estudiados.

3.4.4 PRUEBAS DE DOBLADO EN EL ALAMBRON NACIONAL

La secuencia en la preparación de probetas para este ensayo se efectuó de la siguiente mane
ra:

- Cortar una muestra de 600 mm de longitud⁽¹¹⁾
- Seleccionar la distancia entre apoyos según el diámetro.
- Seleccionar el mandril de doblado de acuerdo al diámetro ensayado.
- Efectuar el ensayo sobre el resalte longitudinal.
- Observar la presencia de fisuras en la barra

La máquina utilizada para este ensayo se muestra en la Figura 3.23.

3.4.5 ENSAYO DE DOBLEZ EN EL ALAMBRON IMPORTADO

Por tratarse del mismo ensayo de la sección anterior la secuencia de operaciones es similar, sólo varía la procedencia del producto.

Las inspecciones de estas pruebas se rigen en base a la norma dada por el INEN para alambrones. Algunas de las probetas ensayadas se aprecian en la Fig. 3.24.

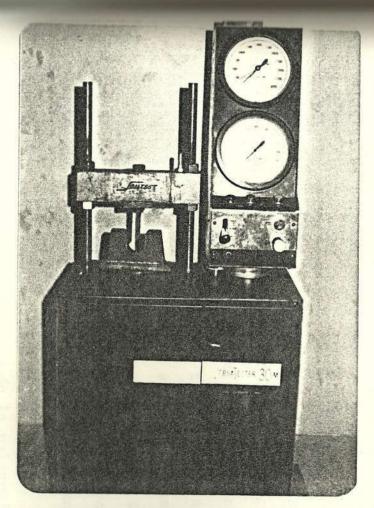


Fig. 3.23 MAQUINA PARA EL ENSAYO DE DOBLADO.

Fig. 3.24 MUESTRAS DE MATERIAL LAMINADO, LUEGO DE REALIZAR EL ENSAYO DE DOBLADO.

DISCUSION DE RESULTADOS

Una vez detallado los procedimientos con los que se realizaron las diferentes pruebas experimentales, se analiza ca da uno de ellos :

- En las Tablas 3.1 al 3.4 se muestra que la composición química del alambrón nacional e importado se encuentran dentro del rango permisible, según los requisitos establecidos por la norma INEN MC 06.04-401, para alambrón de acero al carbono usado en trefilación o laminación en frío.
- La macrofotografía de la Fig. 3.3, nos revela una distribución uniforme de los granos en toda su extensión, es decir homogeneidad total debido al proceso de fabricación. Las Figuras 3.7 al 3.9 muestran las reducciones sucesivas en las primeras pasadas de laminación, observándose que la superficie que se encuentra a menor temperatura forma una especie de coraza forzando al núcleo que está a mayor temperatura a adoptar la forma del canal; también se aprecia un cambio de coloración debido al grado de distorsión mayor de una zona a otra causada por la alineación en la dirección principal de la deformación mecánica (fibrado mecánico). (13)
- En Fig. 3.4, el macroataque de la palanquilla de colada

contínua muestra que los granos están orientados en la dirección de solidificación, siendo estos más pequeños conforme se alejan del centro de la palanquilla debido a la diferente velocidad de enfriamiento.

- La Fig. 3.5, muestra la microestructura correspondiente a un acero de bajo carbono (SAE 1007) con la fase cont<u>i</u> nua de ferrita y escasa perlita en los límites de grano; su estructura es equiaxiada resultado de una laminación en caliente. (6)
- En la Fig. 3.6, la microestructura contiene la fase ferrita en una proporción mayor y escasa perlita; a diferencia de la anterior, ésta posee incrustaciones de impurezas en la fase ferrítica causada por una mala desoxidación.
- Al analizar las microestructuras del alambrón de fabricación nacional e importado (Fig. 3.11 al 3.18), se observan, las dos fases ferrita y perlita en mayor o menor
 porcentajes y un tamaño de grano promedio número 9, según la norma ASTM E112.
- El gráfico de la Fig. 3.19, nos muestra la variación de la dureza en una diagonal de la sección transversal de la palanquilla de colada contínua y laminada. El

primer caso, muestra una dureza variable entre 74 y 67 Rb debido a diferentes velocidades de enfriamiento durante la solidificación. Además, en la pasada 16ava dio un valor de 49.8 Rb. La palanquilla laminada, en cambio, presenta una dureza uniforme propia de una estructura homogeneizada por tratamiento termomecánico.

También se desarrollaron diferentes curvas de dureza en las reducciones intermedias de la palanquilla laminada. Así por ejemplo, las Figuras 3.20 y 3.21 nos muestran va lores de dureza que oscilan entre 37 y 53 Rb para las pasadas tercera, cuarta, quinta y décimosexta, no así para la sexta cuya dureza es alrededor de 96 Rb, debido a que se detiene el material para cortar punta y cola, lo que motiva dicho endurecimiento. (6)

Estos valores se justifican debido a las diferentes tem peraturas a que se encuentran y la forma de responder al tratamiento termomecánico.

Los valores de microdureza del alambrón se encuentran en el rango de 124 Knoop (62 Rb) para el producto 2 y de 168 Knoop (81 Rb) para el producto 7, debido a la diferencia de microestructura que se muestra según Figuras 3.14 y 3.16.

- De acuerdo a los datos obtenidos de masa y ovalidad, el producto tipo liso tanto de alambrón nacional como importado cumple la norma establecida por el INEN, como se constata al comparar las Tablas 3.6 y 3.7 con el Apéndice A.
- La tenacidad medida en la materia prima, esto es en la palanquilla, presenta una diferencia muy marcada con respecto a las direcciones debido a la estructura presente. En el caso de la palanquilla de colada contínua, los granos grandes están en la parte central y los pequeños en la periferia, siendo los primeros más propensos a fracturarse. En la palanquilla laminada los granos se encuentran alargados en la dirección de laminación y su valor bajo de energía se presenta cuando la probeta se obtuvo perpendicular a esta dirección. En la Tabla 3.8 se resumen todos los valores. (1)
- Al analizar los valores promedios de los ensayos de tracción (Tabla 3.11), se deduce que tanto el alambrón de fabricación nacional como el extranjero satisface el rango permisible de la norma ASTM, pero un producto de mejor calidad se obtiene cuando la resistencia máxima es de 35 Kg/mm² y el alargamiento 30% según datos prácticos.*

^{*} Informes de rutinas de trefilación en plantas locales (Fca. Clavos Guayas, AGA del Ecuador, etc).

De acuerdo a esto, se puede constatar que el producto extranjero cumple estos límites, mientras que el nacional se excede.

- En resumen, la composición química del material y su tratamiento termomecánico gobiernan las propiedades finales del alambrón durante el proceso de deformación.
- Al realizar las inspecciones del ensayo de doblado tanto del alambrón nacional como de fabricación extranjera no se presentaron fallas objetables según la norma
 INEN.

CONCLUSIONES Y RECOMENDACIONES

Las conclusiones a las que se ha llegado se exponen a continuación:

- 1) El análisis químico efectuado demuestra que existen pequeñas variaciones tanto en el producto nacional como en el importado, lo cual permite cubrir los requerimientos de la gama de productos que utilizan el alambrón como materia prima.
- 2) Por tratarse de un acero de bajo contenido de carbono, la influencia del resto de los elementos presentes causa, en el caso del fósforo, una elevación de la resistencia a la tracción para aceros menores a 0.5% de carbono, y una disminución de la elongación que origina fragilidad en frío en el acero (10).

El azufre es un activo formador de inclusiones internas y externas, lo que trae consigo fragilidad en caliente del material.

El manganeso, principal elemento después del carbono, provoca una disminución del porcentaje de elongación cuando se incrementa su contenido en el acero.

POLITECNICA DEL LITORAL

Finalmente, el silicio ayuda a la acción del carbono dándole mayor resistencia y su incremento repercute en una disminución del porcentaje de elongación.

- 3) En el alambrón nacional, la materia prima corresponde a dos fuentes, una de colada contínua (productos 1 y 3) y otra de palanquilla laminada (producto 2). En el primer caso se observa una estructura heterogénea causada por el proceso de fabricación y una mala desoxidación que trae consigo un producto con impurezas que repercute en las propiedades mecánicas finales. En el segundo caso, el producto es homogéneo como resultado de una la minación en caliente, por lo que presenta una estructura equiaxial bien definida.
- 4) Los criterios mencionados anteriormente justifican la variación de la tenacidad del material en el ensayo de impacto.
- 5) El producto 2 correspondiente al alambrón nacional, presenta en las subsecuentes reducciones una disminución progresiva del tamaño de grano como se aprecia en las Fig. 3.5, 3.10 y 3.16. Este efecto se debe al tratamiento termomecánico sufrido, lo cual se puede corroborar al revisar el cuadro de durezas del producto en mención (6).

- 6) Tanto el alambrón nacional como el importado presenta en su estructura las fases de ferrita y perlita en cantidades proporcionales a su contenido de carbono, según se aprecia en las Fig. 3.11 al 3.18.
- 7) Los productos materia de nuestro estudio presentan un tamaño de grano número 9. Su influencia en las propiedades mecánicas dependerá de como se encuentren distribuídos los carburos en su microestructura (10).
- 8) Las durezas obtenidas del producto terminado (Tabla 3.5) se encuentran entre 124 Knoop (62 Rb) y 168 Knoop (81 Rb), las cuales deberán ser tan bajas como sea posible para tener una ductilidad moderada.
- 9) Los valores obtenidos en los ensayos de masa y ovalidad de los materiales estudiados satisfacen la norma establecida por el INEN.
- 10) Los parámetros de mayor consideración relativos al ensa yo de tracción son la resistencia máxima y el alarga miento. Estos valores se encuentran un poco elevados en el caso del alambrón nacional, específicamente, los productos 1 y 3 debido a la variación en la composición química. El alambrón importado posee un rango uniforme y conveniente para usos posteriores.

POLITECNICA DEL LITORAL BIBLIOTECA "GONZALO ZEVALLOS

- 11) El ensayo de doblado realizado para el alambrón nacional e importado dio resultados favorables según establece la norma INEN.
- ble para el proceso de trefilación se obtendría controlando en la composición química un porcentaje de Mn entre 0.30 a 0.35 y un porcentaje de silicio menor de 0.10. El producto terminado debe presentar una resistencia a la tracción alrededor de 35 Kg/mm² y un porcentaje de alargamiento mínimo de 30% para poder ser trefilado sin ningún inconveniente.

Las recomendaciones son expuestas a continuación :

1) En el caso del alambrón de fabricación nacional, se debería dar mayor atención a la materia prima utilizada en los productos 1 y 3. Se establece desde un principio que su estructura heterogénea repercute en los parámetros ensayados en el producto final, no así el producto 2 cuyo proceso de fabricación resulta en una estructura homogénea que se traduce en buenas propiedades recomendadas para trefilar.

- 2) El alambrón importado analizado en bloque presenta variaciones pequeñas unas con otras lo que hace de él un producto apto para las exigencias de los consumidores.
- 3) En caso de definirse por uno de los dos bloques estudia dos, se debería seleccionar el producto 2 que correspon de al alambrón nacional, el mismo que cumple las exigen cias establecidas en la norma y además nos proporciona una economía considerable al evitar la fuga de divisas aunque se emplee materia prima importada. Al mismo tiem po se mantienen las fuentes de trabajo establecidas y se sigue experimentando en materia de laminación consiguiéndose un adelanto técnico y tecnológico para nuestro país.

APENDICE A

PROCEDENCIA DEL PRODUCTO	SIMBOLOGIA UTILIZADA		
FUNASA	1		
CHILE	2		
EE.UU.	3		
SUIZA	4.		
BELGICA	5		
CANADA	6		
AUSTRALIA	7		

Procedencia de los productos estudiados

DIAMETRO LAMINADO (mm)	SIMBOLOGIA UTILIZADA		
5.5	A		
6.35	В		
8	C		
10	D		
11	E		
12	F		

Diámetros ensayados

Types by pressures	TOLE	RANCIAS		
TIPOS DE DEFECTOS	PROFUNDIDAD	LONGITUD		
Fisura longitudinal	máx 0.20	máx 1.5		
Rayadura	máx 0.10			
Picadura	máx 0.10	máx 0.10		
Reventón	máx 0.10	-		

ALAMBRON. DEFECTOS SUPERFICIALES (mm)

DIAMETRO NOMINAL (mm)	DISTANCIA MINIMA AL EXTREMO DEL ROLLO (m)		
5.5 a 6.5	5.0		
7 a 12.5	4.0		

ALAMBRON. DESCARTE DE EXTREMOS

ELEMENTO	LIMITE O MAXIMO DEL RANGO ESPECIFICADO (%)	SOBRE EL LIMITE MAXIMO (%)	BAJO EL LIMITE MINIMO (%)
Carbon	hasta 0.25	0.02	0.02
	sobre 0.25 hasta 0.55	0.03	0.03
	sobre 0.55	0.04	0.04
Manganeso	hasta 0.90	0.03	0.03
	sobre 0.90 hasta 1.65	0.06	0.06
Fósforo	hasta 0.040 incl.	0.008	-
Azufre	hasta 0.060 incl.	0.008	-
Silicio	hasta 0.35 incl.	0.02	0.02
	sobre 0.35 hasta 0.60	0.05	0.05
Cobre	sólamente bajo el mínimo		0.02
P1omo	0.15 a 0.35 inclusive	0.03	0.03

ANALISIS DE PRODUCTO DE ACEROS AL CARBONO
VARIACIONES PERMISIBLES

DIAMETRO NOMINAL	VALORES DE MASA (Kg/m)			OVALIDAD MAXIMA	DIAMETRO (mm)		AREA TRANSVERSAL NOMINAL
(mm)	MAXIMO	· INEN	MINIMO	(mm)	MAXIMO	MINIMO	(mm) ² ·
5.5	0.198	0.187	0.176	0.50	5.8	5.2	23
6.35	0.264	0.249	0.234	0.50	6.65	6.05	31
8	0.413	0.390	0.367	0.50	8.30	7.70	50
9	0.629	0.499	0.469	0.65	9.40	8.60	63
10	0.645	0.620	0.595	0.65	10.40	9,60	79
11	0.788	0.755	0.722	0.65	11.40	. 10.60	95.03
12	0.926	0.890	0.854	0.65	12.40	11.60	113

APENDICE B

El trazado general se divide en dos partes, la primera que comprende el trazado del tren desbastador y la segunda el tren de perfiles que incluye los trenes intermedio y terminador. (16)

TRAZADO:

TREN DESBASTADOR .-

Sección inicial = 9950 mm²

Sección final = 1741 mm^2

Número de pasadas = 5

Reducción promedio = $\frac{\lambda-1}{\lambda}$ x 100

$$\lambda = \sqrt[n]{\frac{s \cdot \text{inicial}}{s \cdot \text{final}}}$$

$$\lambda = \sqrt{\frac{59950}{1741}}$$

$$\lambda = 1.41$$

Reducción promedio = $\frac{1.41-1}{1.41}$ x 100

TREN INTERMEDIO ...

Sección inicial = 1741 mm^2

Sección final = 774 mm^2

Número de pasadas = 3

Reducción promedio = $\frac{\lambda - 1}{\lambda}$ x 100

$$\lambda = \sqrt[n]{\frac{s \cdot \text{inicial}}{s \cdot \text{final}}}$$

$$\lambda = \sqrt[3]{\frac{1741}{774}}$$

$$\lambda = 1.31$$

Reducción promedio =
$$\frac{1.31 - 1}{1.31} \times 100$$

TREN TERMINADOR . -

Sección inicial = 774 mm^2

Sección final = 475 mm^2

Reducción promedio = $\frac{\lambda - 1}{\lambda}$ x 100

$$\lambda = \sqrt{\frac{\text{s. inicial}}{\text{s. final}}}$$

$$\lambda = \sqrt{\frac{774}{475}}$$

 $\lambda = 1.28$

Reducción promedio =
$$\frac{1.28 - 1}{1.28}$$
 x 100

= 22%

Luego de realizado los cálculos, se aprecia que se ha disminuído la reducción promedio de área a 24% en el tren intermedio gracias a una gran reducción de 29% en el desbaste.

El cálculo del ángulo de contacto y del porcentaje de reducción relativa de altura, se realizan en base al ángulo máximo. En vista de que en todas las pasadas los cálculos son repetitivos, se detalla para el tren de perfiles y lue go se tabula.

TREN DE PERFILES. -

CAJA Nº 1

PASADA SUPERIOR

SEC. ENTRADA

SEC. SALIDA

h1=b1=43 mm

h2=32 mm

A1=1741 mm²

b2=60 mm

Dc=338 mm

A2=1350 mm²

 $\cos \alpha \max = 1 - \frac{h1 \max - h2 \min}{D \min}$

$$\cos \alpha m \dot{a} x = 1 - \frac{43 - 32}{306}$$

$$E_{8}^{*} = \frac{h1 - h2}{h1} \times 100$$

$$= \frac{43 - 32}{43} \times 100$$

$$E% = 25.58%$$

CAJA Nº1

PASADA INFERIOR

CEC	TAITT	ADA
SEC.	ENTR	ADA

SEC. SALIDA

h1= 60 mm

h2 = 23.5 mm

b1= 32 mm

b2 = 56 mm

A1= 1350 mm²

 $A2 = 1016 \text{ mm}^2$

Dc= 338 mm

Dmin = Dc - h2min

= 338 - 23.5

Dmin = 314.5 mm

Cosa máx = 1 -
$$\frac{h1 \text{ máx - h2 min}}{D\text{min}}$$

= 1 - $\frac{60 - 23.5}{314.5}$

$$\alpha$$
 máx = 27.88°

$$E\% = \frac{h1 - h2}{h1} \times 100$$

$$= \frac{60 - 23.5}{60} \times 100$$

$$E% = 60.83%$$

CAJA Nº 2

SEC. ENTRADA

h1 = 56 mm

b1 = 23.5 mm

 $A1 = 1016 \text{ mm}^2$

Dc = 340 mm

Dmin = Dc - Diag

= 340 - 35.34

Dmin = 304.66 mm

SEC. SALIDA

h2=b2=28.5 mm

 $A2 = 774 \text{ mm}^2$

Diagonal cuadrado = 35.34 mm

$$\cos \alpha \max = 1 - \frac{h1 \max - h2 \min}{D \min}$$

$$= 1 - \frac{56 - 35.34}{304.66}$$

 $\alpha \text{ máx} = 21.22^{\circ}$

$$E\% = \frac{h1 - h2}{h1} \times 100 = \frac{56 - 35.34}{56} \times 100$$

CAJA Nº 5

SEC. ENTRADA

SEC. SALIDA

h1=b1=28.5 mm

h2 = 22 mm

 $A1 = 774 \text{ mm}^2$

b2 = 33.5 mm

Dc= 340

 $A2 = 581 \text{ mm}^2$

Dmin = Dc - h2 min

= 340 - 22

Dmin = 318 mm

Cosα máx = 1 - h1máx - h2min

Dmin

 $1 - \frac{28.5 - 22}{318}$

POLITECANCA DEL LITORAL
MBLIOTECA GONENO SEVALLOS

$$E_0^9 = \frac{h1 - h2}{h1} \times 100 = \frac{28.5 - 22}{28.5} \times 100$$

$$E% = 22.81%$$

Cabe señalar que cada cálculo individual se realiza con da tos de acuerdo a la posición que toma el material en cada pasada tanto a la entrada como a la salida.

Se hace un resumen de los valores obtenidos tanto del ángulo de contacto máximo como de las reducciones de altura re

lativa de los trenes en mención :

TREN DESBASTADOR

PASE	de Exeis 1	2	3	4	5
α máx	19.99°	29.5°	26.26°	18.8°	25.15°
€%	25%	45.83%	31.88%	37.5%	44.13%

TREN INTERMEDIO Y TERMINADOR

PASE	1.Sup.	1.Inf.	2	5	6
α máx	15.41°	14.37°	21.22°	11.6°	13.57°
ε%	25.58%	34.38%	36.9%	22.81%	26.26%

TABLA 2.6 VALORES DEL ANGULO DE CONTACTO Y REDUCCION RELATIVA DE ALTURA.

De la inspección de estos cuadros es evidente que las pasadas con mayores ángulos son aquellas de óvalo a cuadrado, debido principalmente a la posición que toma el óvalo al entrar en la siguiente canal cuadrada.

Otro detalle importante es que no necesariamente se debe mantener una proporción de una caja a otra, entre el ángulo de contacto y la reducción relativa de altura,

ya que depende de la altura inicial y final del material y mas aún del tipo de canal tallado en los cilindros.

A continuación, para el desarrollo de la fórmula de ensanchamiento de Ekelund se utiliza el método numérico de Newton y Raphson.

En esta fórmula intervienen elementos que requieren ser calculados previamente como son: Las alturas medias y los radios de trabajo de cada pasada. Para los primeros usamos nomogramas, los mismos que se presentan en las Figuras 2.10, 2.11, y 2.12 de acuerdo al tipo de canal.

En los nomogramas se trata de determinar la relación hm/
hmáx, en la que hm es la incógnita y corresponde a la altura media, mientras que hmáx es la altura que alcanza en los
puntos más sobresalientes.

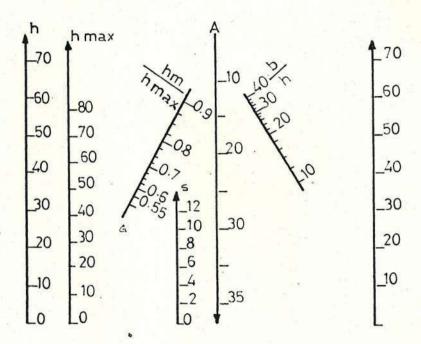
ENSANCHAMIENTO EN CAJA 1

PASADA SUPERIOR

PRIMER PASO

Valores del óvalo según plano:

h = 32 mm


b/h = 1.875

e = 8 mm

e/h = 0.25

según nomograma

Nomograma para determinar relación hm/hmax de ovalos exagonales

FIG. 2:10

Fig. 2.10 NOMOGRAMA PARA DETERMINAR LA RELACION hm/hmáx.

DE OVALOS EXAGONALES. (16)

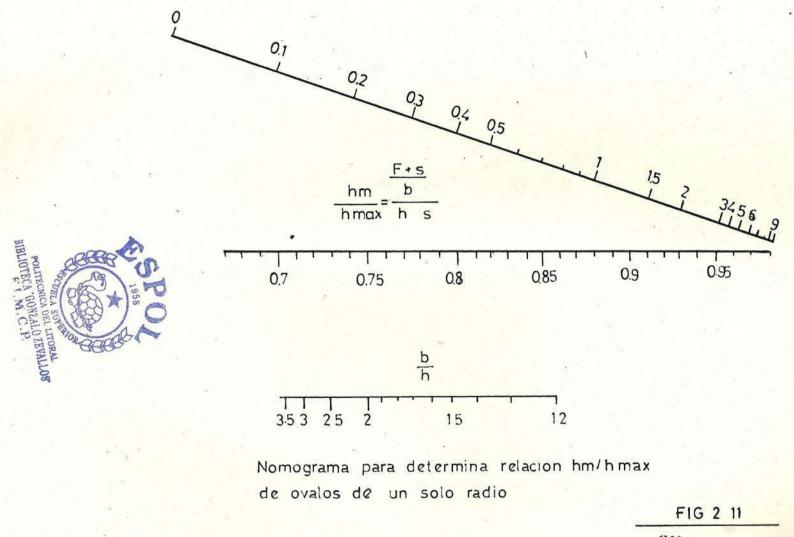
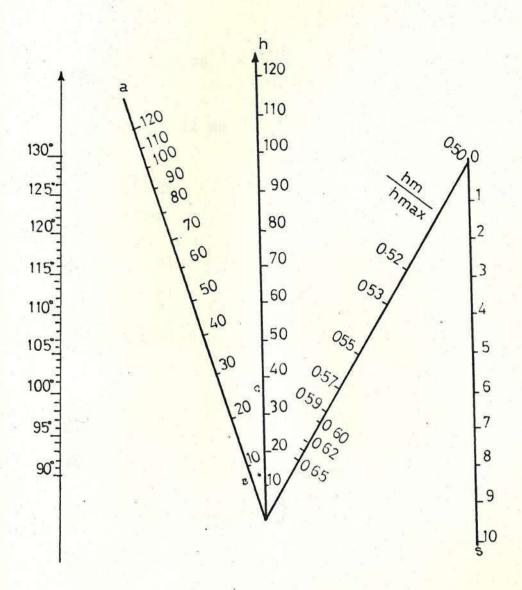



Fig. 2.11 NOMOGRAMA PARA DETERMINAR LA RELACION hm/hmáx. DE OVALOS DE UN SOLO RADIO. (16)

Nomograma para determinar relacion hm/h max de cuadrados y diamantes

FIG 2 12

Fig. 2.12 NOMOGRAMA PARA DETERMINAR LA RELACION hm/hmáx. DE CUADRADOS Y DIAMANTES. (16)

 $h2m = m \times hmáx$

h2m = 24.32 mm

b2 = ?

 $t = 1000^{\circ}C$

e = 8 mm

 $= 0.76 \times 32$

$$\frac{hm}{hm\acute{a}x} = m$$

ENTRADA

$$\frac{hm}{hmax} = 0.76$$

$$h máx = 32 mm$$

SALIDA

$$h1m = \frac{A1}{b1} = \frac{1741}{43}$$

$$h1m = 40.49 \text{ mm}$$

$$h1m + h2m = 64.81 \text{ nm}$$

$$\Delta hm = h1m - h2m = 16.17 mm$$

SEGUNDO PASO

Cálculo Radio de Trabajo:

$$Rt = \frac{Dt}{2} = \frac{Dc - h2m + e}{2}$$

$$Rt = \frac{338 - 24.32 + 8}{2}$$

$$Rt = 160.84 \text{ mm}$$

TFRCER PASO

Cálculo Cocficiente de Fricción:

$$\mu = 0.8 (1.05 - 0.0005 t^{\circ}C)$$

$$= 0.8 (1.05 - 0.0005 x 1000)$$

$$\mu = 0.44$$

CUARTO PASO

Cálculo Factor "m"

$$m = \frac{1.6\mu \sqrt{R \cdot \Delta h} - 1.2 \Delta h}{h1 + h2}$$

$$m = \frac{1.6 (0.44) \sqrt{160.84 \times 16.17} - 1.2 \times 16.17}{64.81}$$

$$m = 0.255$$

QUINTO PASO

Aplicación Fórmula de Ekelund :

$$b_2^2 - b_1^2 = 8m \sqrt{R.\Delta h} \cdot \Delta h - 4m (h1+h2) \sqrt{R.\Delta h} \cdot \ln \frac{b_2}{b_1}$$

 $b_2^2 - (43)^2 = 8x0.255 \sqrt{160.84 \times 16.17} - 4x0.255 (64.81) \sqrt{160.84 \times 16.17} \ln \frac{b_2}{43}$
 $b_2^2 - 1849 = 1682.26 - 3371.28 \ln \frac{b_2}{43}$

$$b_2^2 + 3371.28 \ln \frac{b_2}{43} - 3531.26 = 0$$

Aplicando método Newton y Raphson:

$$f(b_2) = b_2^2 + 3371.28 \ln \frac{b_2}{43} - 3531.26$$

$$f'(b_2) = 2b_2 + \frac{3371.28}{b_2}$$
 (2)

Asumimos un valor para b2

 $b_2 a = 34 \text{ mm}$

Reemplazamos en (1) y (2):

$$f(b_2) = (34)^2 + 3371.28 \ln \frac{34}{43} - 3531.26$$

$$f(b_2) = -3166.97$$

$$f'(b_2) = 167.155$$

Segunda aproximación

$$b_2B = b_2A - \frac{f(b_2A)}{f'(b_2A)}$$

$$= 34 - \frac{-3166.97}{167.155}$$

$$b_2B = 52.95$$

Reemplazo en (1) y (2):

$$f(b_2B) = (52.95)^2 + 3371.28 \ln \frac{52.95}{43} - 3531.26$$

$$f(b_2B) = -25.83$$

$$f'(b_2B) = 169.57$$

Tercera aproximación

$$b_2C = b_2B - \frac{f(b_2B)}{f'(b_2B)}$$

$$= 52.95 - \frac{-25.83}{169.57}$$

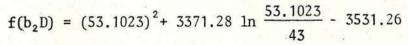
$$b_2C = 53.10$$

Reemplazo en (1) y (2):

$$f(b_2C) = (53.10)^2 + 3371.28 \ln \frac{53.10}{43} - 3531.26$$

$$f(b_2C) = -0.388$$

$$f'(b_2C) = 169.69$$


Cuarta aproximación

$$b_2D = b_2C - \frac{f(b_2C)}{f'(b_2C)}$$

$$= 53.10 - \frac{-0.388}{169.69}$$

$$b_2D = 53.1023$$

Reemplazo en (1) y (2):

$$f(b_2D) = -0.00207$$

Por lo tanto
$$b_2 = 53.10$$

Una vez realizado los cálculos para el desarrollo de la fórmula de ensanchamiento de Sven Ekelund en las primeras pasadas del tren de perfiles se presenta un resumen en la Tabla 2.7.

CAJA	1 Sup.	1 Inf.	2	5	•6
T°C	1000	995	285	950	940
Ø Cilindro	338	338	340	340	340
b	53.10	44	30.5	37.4	

TABLA 2.7 VALORES DE ENSANCHAMIENTO TREN DE PERFILES

No se realizan los cálculos de ensanchamiento para la caja terminadora nº 6 porque las dimensiones de la canal no admiten cambios para conservar la medida final, tomando en cuenta el rango de tolerancias que la norma exige.

Una vez realizado los cálculos de ensanchamiento, los mismos que son puntos de partida para el calibrado, se analizarán y se harán los reajustes de acuerdo a las muestras que se obtengan de cada caja.

CALCULO DE ESFUERZOS MECANICOS. - Para calcular los esfuerzos mecánicos que se producen en la tabla de los cilindros laminadores, se necesita previamente el cálculo de la pre sión de laminación (fórmula de Ekelund)

Similarmente al caso anterior, se ha usado valores máximos de velocidades periféricas y diámetros máximos de cilindros tratando de dejar un margen confiable de seguridad.

Las velocidades usadas para cada caja de laminación de acuerdo a los motores que las accionan son :

Desbaste = 2.8 m/s

Cajas #1 - 2 = 3.56 m/s

Cajas # 3-4-5-6 = 4.27 m/s

Además, para el cálculo de los momentos y esfuerzos mecánicos del tren de perfiles se ha asumido que la carga "P", es decir, la presión de laminación, se aplica en la mitad de la longitud de la tabla del cilindro para así obtener valores máximos en cada uno de los stands. Con estas observaciones se detalla a continuación los cálculos:

TREN DESBASTADOR

1. PRIMERA PASADA

SEC. ENTRADA

b1 = h1 = 100 mm

 $A1 = 9950 \text{ mm}^2$

SEC. SALIDA

b2 = 120 mm

h2 = 75 mm

$$t = 1250^{\circ}C$$

- 13

$$A2 = 7700 \text{ mm}^2$$

Dc = 490 mm

$$Rt = \frac{490}{2} - 33.5$$

Profundidad canal= 33.5

$$Rt = 211.5 \text{ mm}$$

$$bm = \frac{b_1 + b_2}{2} = \frac{100 + 120}{2}$$

$$bm = 110 mm$$

$$\Delta hm = \frac{A1}{b1} - \frac{A2}{b2} = \frac{9950}{100} - \frac{7700}{120} = 99.5 - 64.17$$

$$\Delta hm = 35.33 \text{ mm}$$

$$h1m + h2m = 99.5 + 64.17 = 163.67 mm$$

$$v = 2.8 \text{ m/seg} = 2800 \text{ mm/seg}$$

- Coeficiente de Rozamiento

$$\mu = 1.05 - 0.0005t^{\circ}C$$

Para cilindros de acero

$$\mu = 1.05 - 0.0005 \times 1250$$

$$\mu = 0.425$$

- Coeficiente de Plasticidad

$$\eta = 0.01 (14 - 0.01 t^{\circ}C)$$

$$= 0.01 (14 - 0.01 \times 1250)$$

$$\eta = 0.015 \frac{\text{Kg - seg}}{\text{mm}^2}$$

-Resistencia Específica

$$T = Kfo = 100n (1.4 + C + Mn + 0.3 Cr)$$

$$T = 100 \times 0.015 (1.4 + 0.31 + 0.95 + 0.3 \times 0.12)$$

$$T = 4.044 \text{ Kg/mm}^2$$

FORMULA DE EKELUND PARA LA PRESION DE LAMINACION

P= bm
$$\sqrt{R.\Delta h}$$
 $\left(1 + \frac{1.6\mu\sqrt{R.\Delta h} - 1.2\Delta h}{h1 + h2}\right) \left(T + \frac{2\eta v \frac{\Delta h}{R}}{h1 + h2}\right)$

P= 110 $\sqrt{211.5 \times 35.33}$ $\left(1 + \frac{1.6(0.425)\sqrt{211.5 \times 35.33} - 1.2 \times 35.33}{163.67}\right)$
 $\left(4.044 + \frac{2(0.015)(2800)\sqrt{\frac{35.33}{211.5}}}{163.67}\right)$

P= 9508.67 (1.100) (4.254)

P= 44492.38 Kgs

b = 29.45 cm.

La carga P está aplicada en la mitad del ancho bm, según Fig. 1.10. Por lo tanto :

$$x = b - \frac{bm}{2} = 29.45 - \frac{11}{2}$$

x = 23.95 cm.

MOMENTO DE FLEXION

$$M = \frac{Px}{2} - \frac{P}{2b} \left[x - \frac{L - b}{2} \right]^2$$

Se anula el segundo término por ser

$$x \ll \frac{L - b}{2}$$

$$M = \frac{Px}{2}$$

$$M = \frac{(44492.38 \text{ Kgs}) (23.95 \text{ cm})}{2}$$

M = 532796.25 Kg-cm

ESFUERZO DE FLEXION

$$\sigma = \frac{M}{0.1 \text{ (Dc)}^3}$$

$$\sigma = \frac{532796.25}{0.1 (49)^3} \frac{\text{Kgf-cm}}{\text{cm}^3}$$

 $\sigma = 45.29 \text{ Kgf/cm}^2$

MOMENTO TORSOR

$$T = 71600 \times \frac{CV}{N}$$

900 Kw x
$$\frac{1.358}{\text{Kw}}$$
 CV

Potencia = 1222.2 CV

N = 110 RPM

$$T = 71600 \times \frac{1222.2}{110}$$

T = 795541.09 Kgf - cm

En vista de que todas las pasadas son accionadas por dos motores de 450 Kw cada uno, se mantiene constante dicho va lor en la caja trío del desbaste.

ESFUERZO CORTANTE

$$\tau = \frac{16 \text{ T}}{\pi (Dc)^3}$$

$$\tau = \frac{16 (795541.09 \text{ Kgf - cm})}{\pi (49)^3 \text{ cm}^3}$$

$$\tau = 34.44 \text{ Kgf/cm}^2$$

También se mantiene constante

MOMENTO TORSOR EQUIVALENTE

$$Te = M + \sqrt{M^2 + T^2}$$

Te =
$$532796.25 + \sqrt{(532796.25)^2 + (795541.09)^2}$$

$$Te = 1490267.8 \text{ Kgf} - cm$$

ESFUERZO CORTANTE COMBINADO

$$\sigma_{\rm T} = \frac{16 \text{ Te}}{\pi (Dc)^2}$$

$$\sigma_{\tau} = \frac{16 (1490267.8)}{\pi (49)^3 \text{ cm}^3} \text{ Kgf - cm}$$

$$\sigma_{\tau} = 64.51 \text{ Kgf/cm}^2$$

Un resumen de los datos obtenidos en los trenes desbastador, intermedio y terminador se presenta en las Tablas 2.8 y 2.9 respectivamente.

PARAMETROS	1 era	2 da	<u>3era</u>	4 ta	5ta
TANAME INOS		. 2 ==	3===	4-	3
bm (mm)	110	125	76.78	79	46.26
Rt (mm)	211.5	216.5	204.72	229	222.74
t (°C)	1250	1235	1210	1180	1140
P (Kgs)	44492.38	43335.02	45713.58	56250.16	38986.99
M (Kgf-cm)	532796.25	855866.65	1014986.2	1407864	868240.27
σ (Kgf/cm²)	45.29	72.75	86.27	119.67	73.80
T (Kgf-cm)	795541.09	795541.09	795541.09	795541.09	795541.09
τ (Kgf/cm²)	34.44	34.44	34.44	34.44	34.44
Te (Kgf-cm)	1490267.8	2024373.3	2304558.6	3024985.2	2045901.4
$\sigma_{T} (Kgf/cm^2)$	64.51	87.63	99.76	130.95	88.57

TABLA 2.8 VARIABLES OBTENIDAS DEL TREN DESBASTADOR

		TREN TERMINADOR				
PARAMETROS		1 SUP.	1 INF.	2 <u>da</u>	5 <u>ta</u>	6 <u>ta</u>
-						
bm	(mm)	51.55	44	29.42	31	23.6
Rt	(mm)	157	159.25	154.33	161	159.15
t	(°C)	1000	995	985	950	940
P	(Kgs)	13467.38	43387.06	26951.67	24493.25	16004.71
M	(Kgf-cm)	269322.35	860336.75	536462.59	624323.7	317883.38
σ	(Kgf/cm ²)	69.75	222.80	136.49	158.84	80.88
T	(Kgf-cm)	364623	364623	364623	406661.65	406661.65
τ	(Kgf/cm ²)	48.09	48.09	. 48	56.29	56.29
Те	(Kgf-cm)	722626.36	1794805	1185147.5	1369159.3	833683.58
σ_{τ}	(Kgf/cm ²)	95.31	236.72	153.57	177.41	108.03

TABLA 2.9 VARIABLES OBTENIDAS DEL TREN INTERMEDIO Y TERMINADOR

BIBLIOGRAFIA

- 1. Sidney H. Avner, <u>Introducción a la metalurgia física</u> (México: McGraw-Hill, 1979).
- 2. ASTM A510, Standard specification for general requirements for wire rods and coarse round wire, carbon steel

 Vol. 3 (Philadelphia,: American Society for Testing and Materials, 1973).
- George Dieter, <u>Metalurgia mecánica</u> (Madrid : Aguilar, 1967).
- 4. Kosak Dietmav, <u>Calibrado de cilindros</u> (Buenos Aires : Instituto Argentino de Siderurgia, 1969).
- 5. FOMSA, <u>Cilindros de laminación para la industria side-</u>rúrgica, Italia.
- 6. Marcus Grossmann, <u>Principios de tratamiento térmico</u>, 1964.
- 7. Huachipato, Práctica de laminación (Chile: Julio 1973).
- 8. HZR/T. Johnson, Metal duro como material para rodillos,

1980.

- 9. ILAFA, "Colada Contínua y Metalurgia en Cuchara", <u>Side</u>-rurgia Latinoamericana, (Noviembre 1981).
- 10. ILAFA, "Control Metalúrgico en Laminación", Revista La tinoamericana de Siderurgia, (Junio 1971).
- 11. INEN, Norma MC 06.04-401 de Alambrón de acero al carbo no para trefilar o laminar en frío, 1982.
- 12. Pomini-Farrel, Manual de operaciones, 1982.
- 13. Beynon Ross E., <u>Diseño de laminación y distribución de</u> <u>trenes</u> (Asociación de Ingenieros del Hierro y el Acero, 1956).
- 14. Lawrence Van Vlack, <u>Materiales para ingeniería</u> (México: CECSA, 1977).
- 15. Roberto Villanueva, <u>Curso de laminación</u> (Guayaquil : ESPOL, 1980).
- 16. Pedro Zavala, "Nuevo calibrado de cilindros para proceso de laminación en caliente" (Tesis, Universidad de Guayaquil, 1982).