

121.475 PAR 5.3

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

FACULTAD DE INGENIERIA MECANICA

"DISEÑO Y CONSTRUCCION DE UN COLECTOR PA-RABOLICO COMPUESTO DE TUBOS EVACUADOS PA-RA APLICACIONES DE TEMPERATURAS INTERMEDIAS"

TESIS DE GRADO Previa a la obtención del Título de: INGENIERO MECANICO

PRESENTADA POR:
RAUL PAREDES MIRANDA

Guayaquil - Ecuador 1.988

AGRADECIMIENTO

Al Ing. MARCO PAZMINO B.

Director de Tesis, por su

ayuda y colaboracion para

la realizacion del presen

te trabajo.

DEDICATORIA

A MIS PADRES

A MI ESPOSA

Mardo Origina. Eduardo Orcés

DECANO

/ Lezacias

Ing. Marco Pazmiño

DIRECTOR DE TESIS

Ing. Redolfo par MIEMBRO DEL TRIBUNAL

Ing. Francisco Andrade

ing. Francisco Andrade
MIEMBRO DEL TRIBUNAL

DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta Tesis, me corresponden exclusivamente; y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL".

(Reglamento de Examenes y Titulos profesionales de la ESPOL).

Raúl Paredes M.

RESUMEN

El presente trabajo es nuevo en lo que respecta al desarrollo de colectores parábolicos compuestos, aunque en países desarrollados se han realizado hace poco tiempo, estudios teóricos—experimentales completos.

Este trabajo se inicia con una descripción breve de las variables que intervienen para la determinación de la radiación solar global (directa y difusa) sobre superficies inclinadas sobre La Tierra. Luego presento un estudio detallado sobre Colectores Parábolicos Compuestos. Colectores que pertenecen a la clasificación de los de "seguimiento intermitente a las trayectorias del Sol"; a partir de este estudio, se muestra el desarrollo del diseño y construcción para un arreglo de Colectores CPC. al igual que un estudio de su comportamiento térmico, tanto para el CPC real como para un CPC ideal. Comparando siempre estos resultados, con los obtenidos para un colector de placa plana, recurriendo para ello al trabajo de M. León, realizado en la ESPOL. Finalmente se presenta un estudio económico que da cuenta de la bondad del sistema solar diseñado.

Como conclusión de este trabajo podemos anotar que los resultados obtenidos estan dentro de lo esperado de acuerdo al diseño hecho para nuestro CPC, naturalmente con las limitaciones propias de nuestro medio que no

posee la tecnología apropiada para desarrollar proyectos de este tipo. La eficiencia promedio diaria para nuestro CPC fue de 55%, que como se puede observar es mayor a las eficiencias obtenidas para los colectores de placa plana.

INDICE GENERAL

RESUMENTAL LA L	
INDICE GENERAL	
INDICE DE TABLAS	
INDICE DE GRAFICOS	
INTRODUCCION	7
CAPITULO 1	
FUNDAMENTOS PARA EL APROVECHAMIENTO DE LA ENERGIA SOLAR	
1.1 Radiación solar	
1.1.1 Definiciones	
1.1.2 Dirección de la radiación directa 22	_
1.2 Radiación solar disponible	j
1.2.1 Atenuación de la radiación solar por la	
atmósfera	2
1.2.2 Estimación de la radiación solar 3	3
1.3 Instrumentos para la medición de la radiación so-	
Iar	8
1.3.1 Descripción brevennamananana 3	8
1.3.2 Instrumental de la ESPOL	Z
1.4 Algunos tópicos sobre transferencia de calor 4	3
1.5 Radiación solar a través de medios parcialmente í	48

CAPITULO 2

CULECTURES CUNCENTRADURES						
2.1	Razones	para el uso de los concentradores	52			
2.2	Limites	termodinâmicos y óptimos para la concentra				
	ción		58			
2.3.	Aceptano	ia de radiación difusa	67			
2.4	Concentr	adores fijos	68			
2.5.	Concentr	radores orientados intermitentemente. Fami				
	lia de	los colectores concentradores parabólico	2000 6000 6000			
	compuest	tos (CPC)	73			
	2.5.1	Analisis Optimo	75			
	2.5.2	Analisis térmico	80			
	2.5.3	Mejoras ópticas para los colectores CPC .	8.			
	2.5.4	Rendimiento de los colectores CPC	93			
CAPITI	JLO 3					
DISEM(O Y CONST	TRUCCION DEL BIBTEMA TERMICO-SOLAR				
3.1	Diseño d	del colector	96			
	3.1.1	Parâmetro de diseño	96			
	3.1.2	Dimensionamiento	102			
	3.1.3	Selección de materiales	103			
	3.1.4	Construcción	106			
3.2.	DiseMo d	del sistema térmico-solar	115			
	3.2.1	Almacenamiento de energía	115			
	3.2.2	Analísis térmico del sistema	118			
	3.2.3	Selección de materiales	122			
	3.2.4	Construcción	123			
I. I	Estudio	global del sistema. Funcionamiento	127			

CAPITULO 4

EXPERIMENTACION	
4.1 Equipo utilizado	130
4.2 Metodología para las pruebas	132
4.3 Datos obtenidos	135
4.4 Comparación teórico-experimental	136
CAPITULO 5	
EVALUACION DE PRUEBAS REALIZADAS	
5.1 Energía solar incidente	150
5.2 Energía útil del colector	158
	161
5.4 Comparación de los CFC con los de placa plana	143.
CAPITULO 6	
ESTUDIO ECONOMICO	
6.1 Costo del sistema	66
6.2 Comparación económica de los CPC con los de placa	
	167
	170
CONCLUSIONES Y RECOMENDACIONES P2	
APENDICES 17-	
BIBLIOGRAFIA 220	

INDICE DE TABLAS

- 1.4.1 .- Propiedades del aire seco a presión atmósferica. 198
- 2.4.1 .- Frecuencia de ajustes de inclinación requeridos 198

 para concentradores de curvatura simple.

 Orientados ESTE-DESTE.
- 2.5.1 .- Propiedades ópticas y geométricas de CPC comple- 199
 tos y truncados.
- 3.1.1 .- Alternativas para diseño de CPC-BASICO 199
- 3.1.2 .- Puntos coordenados para graficar la parábola derecha de un CFC . 200
- 3.2.1 .- Propiedades térmicas de materiales para el almacenamiento de energía en fase líquida. 200
- 3.2.2 .- Propiedades térmicas de materiales para almacenamiento en fase sólida. 201
- 3.3.1 .- Variación de la inclinación del colector CPC a lo largo del año. **20**1
- 3.3.2 .- Ajustes de inclinación del colector A , a lo largo del afo,con referencia al eje Este-Deste. 201
- 4.3.1 .- Funcionamiento de colectores CPC. 202
- .. 10 .- Funcionamiento de colectores CPC 203
- 4.4.1 .- Valores de Ta; Tra; Tro y Tr para un CPC real e ideal. 2/2
- 4.4.2 .- Incrementos reales y esperados de temperatura, a la entrada y salida del fluído del colector. 2/2
- 5.1.1 .- Radiación solar global y sus componentes difusa 2/3

- y directa sobre una superficie horizontal en la Tierra. (Abril/87). **2/3**
- 5.1.2 -- Radiación solar global sobre una superficie horizontal e inclinada. 216
- 5.2.1 .- Energía útil instantánea para un colector CPC. 2/s
- 5.2.2 -- Comparación de energía útil instantánea, entre un CPC ideal y real. 216
- 5.3.1 .- Eficiencia promedio diaria para el colector CPC. 24
- 5.3.2 .- Comparación de eficiencias, entre un CPC ideal y real. 217
- 5.4.1 .- Eficiencia promedio diaria de colectores planos. 2/7
- 5.4.2 .- Eficiencia promedio diaria de colectores CPC. 2/7
- 6.2.1 .- Energia útil del CPC. 218
- 6.2.2 -- Costo comparativo de energía producida por unidad de área, para un colector plano convencional
 y un colector CPC. 218

INDICE DE FIGURAS

- 1.1.- Movimiento de La Tierra alrededor del Sol. 20
- 1.2.- Variación de la relación: radiación extraterres- 2º tre/constante solar, en el transcurso del año.
- 1.3.- Disco Solar. 21
- 1.4.- Distribución espectral de la radiación extraterrestre. 2^{Λ}
- 1.5.- a) Movimiento de La Tierra alrededor del Sol b) Localización de los trópicos. 24
- 1.6. Angulos para la ubicación del Sol. 24
- 1.7.- Angulos fundamentales h. (CND), &. (VOD), L(POC). 26
- 1.8.- Angulo pérfil δ y el correspondiente ángulo alti- 2 tud solar \varpropto para un dispositivo sombreado de ventana. 2δ
- 1.9.- Dirección de la radiación directa. 28
- 1.10.- Variación de la radiación extraterrestre total diaria. 31
- 1.11. Relación $\overline{D}_{h}/\overline{H}_{h}$ como una función de \overline{K}_{T} . 35
- 1.12.- Firhéliometro. 40
- 1.13.- Piránometro.40
- 1.14.- Actinógrafo. 41
- 1.15.- Medidor de brillo solar. 41
- 1.17.- Rayos de luz incidente reflectado y refractado y 49

- ángulos de incidencia y refracción para un medio transparente. 9
- 2.1.- Distribución porcentual de procesos industriales con energía calórica entregada a varias temperaturas. SC
- 2.2.— Diagrama esquemático generalizado para cualquier dispositivo de concentración de energía solar en dos dimensiones. 60
- 2.3.- Geometría usada para calcular el factor de forma
- 2.4.- Concentrador tipo canalón, orientado: 65
 - b) ESTE-OESTE.
- 2.5.— Temperaturas típicas alcanzables por colectores solares concentradores. 69
- 2.6.— Superficie reflectora horizontal usada para mejorar el rendimiento de colectores de placa plana. 72
- 2.7.- Efecto del mejoramiento de radiación incidente,

 para un arreglo de colectores de placa plana con

 reflectores inclinados. 72
- 2.8.- Sección tramsversal de un CFC. 76
- 2.9.- CPC truncado tal que su relación altura/apertura es casi la mitad de la de un CPC completo. 76
- 2.10.— Relación de altura a apertura para CPC, completos y truncados en función de RC y Θ_{max} . 78
- 2.11. Relación de áreas reflectoras a apertura para CPC₅.

 completos y truncados. 79

- 2.12.- Número promedio de reflexiones experimentadas por la radiación dentro del ángulo de aceptancia para alcanzar la superficie absorvedora de CPC completos y truncados. 79
- 2.13.- Eficiencia del CPC al mediodía, versus flujo másico. Para RC = 3, $A_{\rm a}$ = 0.86 m $^{\rm a}$. 87
- 2.14.— Eficiencia del CPC al mediodía, vs. radiación directa. $A_{\infty} = 0.56 \text{ m}^2$. 87
- 2.15.- Diseños alternativos de CPC para reducir pérdidas

 parásitas por debajo: a) Recibidor tipo aleta, b)

 recibidor tipo placa completamente iluminada, c)

 recibidor de tuberia circular. 90
- 2.16.- Ejemplos de CPC-tipo con concentradores acoplados a recibidores dentro de tubos de vidrio evacuados.

 Donde g. es la brecha entre el absorbedor y el espejo. 12
- 2.17.— Curvas de eficiencia instantâneas típicas para tubos evacuados, con o sin refuerzos reflectores. 94
- 2.18.— Datos de rendimiento térmico de:
 - a) Un CPC reforzado de recibidor tubular evacuado
 b) Un recibidor tubular sin aislamiento. 94
 - 3.1.- Geometría básica para un CPC. 96
 - 3.2.- Gráfica de la parábola "derecha". 100
 - 3.3.- Desarrollo del CPC básico. lo!
 - 3.4.- Desarrollo de la envolvente derecha, para la circumferencia con $\varnothing=r/\pi$.101
 - 3.5.- Dimensiones del arreglo de 5 reflectores para el 104

- colector CPC. 104
- 3.6.- Esquema de construcción de parábolas reflectoras.
- 3.7.- Estructura para arreglo de reflectores del colector con conceptor con conceptor con conceptor con conceptor conceptor $^{1/2}$
- 3.8.- Componentes del sistema térmico-solar. 120
- 3.9.- Calentador de agua mediante circulación natural. 120
- 3.10.- Dimensionamiento del tanque de almacenamiento térmico. 125
- 3.11. Dimens<mark>ionami</mark>ento de la Torre soportante. 125
- 3.12.- Vista superior de la disposición del arreglo CPC. 124
- 3.13. Orientaciones del CPC. 129
 - 4.1. Ubicación de las termocuplas. 132
 - 4.2. Variación del flujo de agua por termosifón. 137
 - 4.3.- Variación de temperaturas del recibidor y agua de almacenamiento. 147
 - 4.4.- Diseño del recibidor tubular en el CPC básico. 147
 - 4.5.- Variación de temperaturas de la cubierta de vidrio en la apertura. 149
 - 5.1.— Colector inclinado un ângulo $oldsymbol{eta}$ y orientado hacia el ESTE. IS $^{oldsymbol{2}}$
 - 5.2.- Radiación solar global. 157
 - 5.3.- Curvas de eficiencia instántanea para:
 - a) Para un CPC mejorado con recibidor tubular
 - b) Un colector de placa plana. 165
 - 6.1.- Incremento anual de costo de producción. 17/

INTRODUCCION

Cualquier utilización directa de la radiación solar para sistemas de calentamiento o producción de potencia, requiere de equipos capaces de absorber y almacenar energía a temperaturas suficientemente altas. Los equipos usados pueden dividirse en tres clases generales: colectores de placa plana, concentradores y generadores solares termoeléctricos. Los primeros dos tipos de disposítivos, usan la radiación solar para calentar una "sustancia de trabajo", mientras que el último tipo convierte la energía solar radiante en energía eléctrica por medio de celdas fotoeléctricas del tipo fotovoltaico o por medios termoeléctricos.

Cuando se desea alcanzar altas temperaturas (T > 100°C), se utilizan los colectores concentradores. La concentración es producida por el uso de elementos reflectores o refractores, posicionados según sea necesario, para concentrar el flujo incidente sobre la superficie colectora. Se han propuesto muchas combinaciones de espejos y lentes, y actualmente se usan algunos arreglos para máquinas y hornos. La ventaja de la concentración es que el área donde hay pérdidas de calor es menor que el área que recibe la energía radiante, y las pérdidas de calor son proporcionalmente reducidas con un incremento en la temperatura de la superficie colectora.

CAPITULO 1

FUNDAMENTOS PARA EL APROVECHAMIENTO DE LA ENERGIA SOLAR

1.1.- RADIACION SOLAR

El sol es una esfera gaseosa, cuyos componentes son el hidrógeno, el helio, el carbono y otros elementos de menor importancia.

Su masa representa más del 99% de la masa total del sistema solar y 33000 veces la de La Tierra. Tiene un diámetro 1'400000 Km y mientras su densidad en el núcleo es de 76000 Kg/m³, la promedio no alcanza a los 1400 Kg/m³, es decir, muy inferior a la de La Tierra (5500 Kg/m³). Esto es debido a que la mayoria de su esfera está compuesta de gases, que giran alrededor de su eje a distinta velocidad angular, así por ejemplo, un punto situado en el ecuador del Sol realiza un giro entero en solo 24 días, mientras que si está situado en zonas cercanas a su polo, lo hace en 30 días.

El Sol emite una radiación equivalente a la de un cuerpo negro, siendo su temperatura igual a 5762 °K.

1.1.1.- DEFINICIONES.

<u>La constante solar (I_o)</u> : es la radiación recibida del sol por unidad de tiempo y

superficie, en un plano perpendicular a los rayos solares, ubicado en el límite <mark>d</mark>e la atmósfera terrestre, a la distancia media tierra-sol, su valor es 1353 W/m².

La variación de la radiación extraterrestre se debe a la actividad de las manchas solares y fundamentalmente a la variación de la distancia tierra-sol.

La trayectoria de la tierra alrededor del sol es una elipse poco excéntrica, en la que la distancia media tierra-sol es de 1.495 × 10¹¹ m. Ver figuras 1.1 y 1.2. Siendo:

Dist. menor = $1.495 \times 10^{11} \text{ m} \times 0.983$

 $= 1.470 \times 10^{11} \text{ m} (22/\text{dic.})$

Dis. mayor = $1.495 \times 10^{11} \text{ m} \times 1.017$

 $= 1.520 \times 10^{11} \text{ m } (21/\text{Jun.})$

<u>Disco Solar</u> : los rayos del Sol no son paralelos, sino que convergen en un punto de la superficie de La Tierra formando un ángulo de 32º ó 0.00931 radianes. Ver figura 1.3.

Distribución del espectro de la radiación extraterrestre : la constante solar representa la energía total en el espectro solar. Sin embargo, esta cantidad no es suficiente para los cálculos en Ingeniería

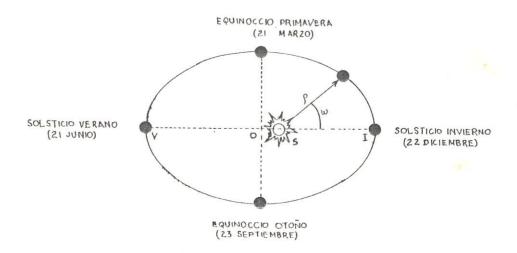


Fig. 1.1. - Movimiento de la Tierra alrededor del Sol.

186

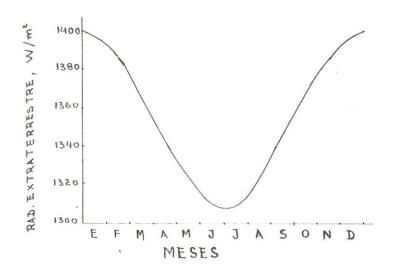


Fig. 1.2.- Variación de la relación : Radiación extraterrestre/Constante Solar, en el transcurso del año.

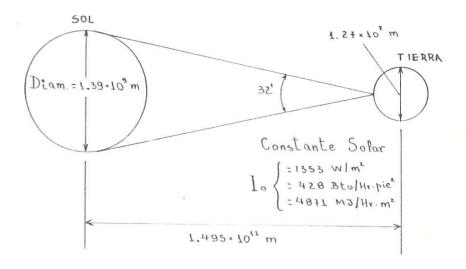


Fig. 1. 3. - Disco Solar.

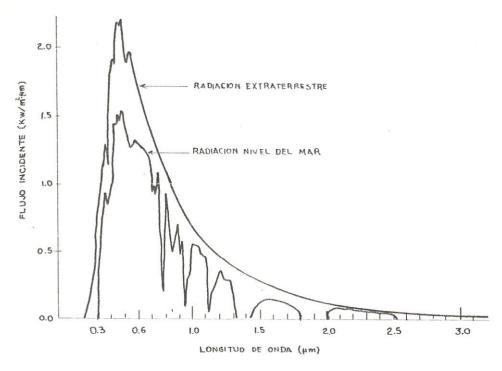


Fig.1.4.- Distribución espectral de la radiación extraterrestre

y es necesario estudiar la distribución de energía dentro del espectro. Ver fig. 1.4.

1.1.2. - DIRECCION DE LA RADIACION DIRECTA

La radiación solar directa es aquella recibida en la superficie de La Tierra sin cambio de dirección, es decir, sin experimentar dispersión por la atmósfera.

La radiación solar total, es la suma de la radiación directa y difusa.

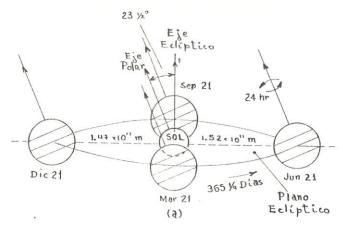
GEOMETRIA DE LA RADIACION SOLAR

Muchos dispositivos de colección solar son fijos o se mueven con limitada libertad. Como resultado de sus aperturas de colección, no "miran" directamente hacia El Sol todo el tiempo.

Para estimar la magnitud de la componente de la radiación normal directa, interceptada por la superficie de un colector solar, es necesario describir el movimiento virtual del Sol relativo a un plano considerado.

Puesto que todo movimiento es relativo, es conveniente considerar La Tierra fija y describir el movimiento virtual del Sol en un sistema coordinado fijo.

Previamente, se debe indicar que el eje de rotación de La Tierra no es perpendicular


al plano de su órbita alrededor del Sol (eclíptica). Visto desde el Sol, el eje de rotación está inclinado 23.5°, y puesto que este eje mantiene siempre la misma dirección en el espacio, el hemisferio norte parece estar inclinado hacia El Sol durante la mitad del año (Marzo/21-Septiembre/21), mientras que el hemisferio sur está inclinado hacia El Sol durante la otra mitad del año. (Ver figura 1.5).

De acuerdo al criterio ptolemaico, la ubicación del sol puede ser específicada por dos ángulos:

Angulo de altitud solar (\approx): es el . considerado desde un plano horizontal local hacia el centro del Sol, y es medido entre la linea colineal con los rayos del sol y el plano horizontal.(Ver figura 1.6).

Angulo de azimut (am): está ubicado en el plano horizontal y formado entre la línea del sur y la proyección de la línea sitio-sol, sobre el plano horizontal. La convención de signos usada para am es: positivo para el cuadrante s-e y negativo para el cuadrante s-o.(Ver figura 1.6).

Angulo de cenit (z) : es el complemento del ángulo de altitud solar.(Fig. 1.6).

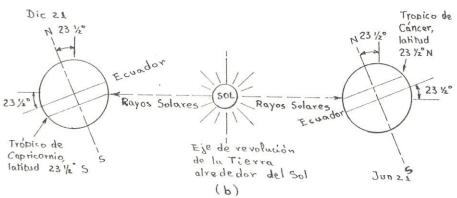


Fig. 1.5.- a) Movimiento de La Tierra alrededor del Sol

b) Localización de los trópicos.

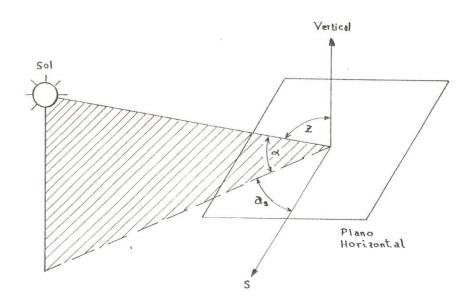


Fig. 1.6. - Angulos para la ubicación del Sol.

Los ángulos descritos, deben ser relacionados con los ángulos fundamentales que a continuación se describen. Ver fig. 1.7.

Angulo horario solar (h.) : es igual a 15º,

por el número de horas desde el medio día

solar-local. Siendo positivos los valores

para ángulos de horas en la mañana, es

decir entre el sur o norte y el este.

Declinación solar (δ_{m}): Es el ángulo formado entre los rayos del sol y el plano ecuatorial. La declinación solar puede hallarse a partir de la siguiente relación: $\delta_{m} = 23.45 \text{ sen } [360*(284+n)/365]$ (1.1) donde n es el día del affo.

Latitud (L) : Es el ángulo formado entre un punto P de referencia y el plano ecuatorial. La latitud es positiva al norte del Ecuador y negativa al sur.

Para calcular la altitud solar , la ley de cosenos para triángulos esféricos, puede aplicarse al triángulo NPV en la fig. 1.7, obteniendo:

sen = senL*sen ** + cosL*cos ***cosh** (1.2)
Mediante un procedimiento similar, tenemos
que:

$$sen a_m = \frac{\cos \delta_m * senh_m}{\cos \alpha}$$

$$(1.3)$$

Plano
Ecliptico

Dirección

del Sol

S

Fig. 1.7. - Angulos fundamentales h. (CND), 6. (VOD), L(POC)

Angulo perfil (\(\) : Es el ángulo de altitud proyectado, y es definido como el ángulo entre la normal a una superficie y la proyección de los rayos del sol sobre un plano normal a la misma superficie. Ver Fig. 1.8. El ángulo pérfil es usado para determinar el tamaño del sombreado en los diversos dispositivos solares; está dado por:

Tg
$$\chi$$
 = sec a*Tg \propto (1.4)

donde≪es el ángulo de altitud solar y a es el ángulo pared normal-azimut solar.

RADIACION INTERCEPTADA POR UNA SUPERFICIE

La cantidad de radiación directa intercep
tada por una superficie depende del ángulo

de incidencia.

Angulo de incidencia (i) : Está definido como el ángulo entre la normal a una superficie y una línea colineal con los rayos del sol. Ver fig. 1.9.

Angulo de inclinación (A) : Es el ángulo formado entre una superficie de referencia vel plano horizontal. Ver fig. 1.9

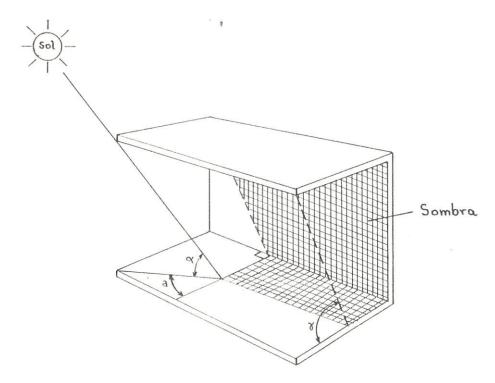


Fig.1.8. - Angulo pérfil 🞖 v el correspondiente ángulo altitud solar 🔾 para un dispositivo sombreado de ventana.

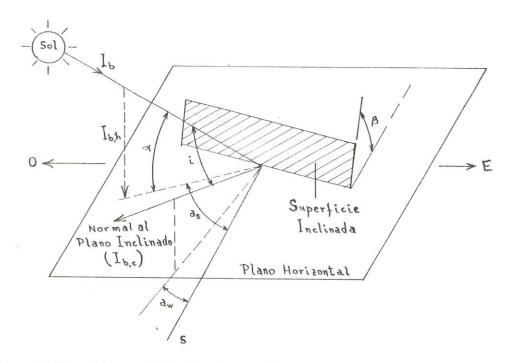


Fig. 1.9. - Dirección de la radiación directa.

Componente de la radiación directa ($I_{\text{b.e.}}$):

De la fig.1.9 se deduce facilmente que la radiación directa $I_{\text{b.e.}}$, interceptada por la superficie de un colector está dada por :

$$I_{b,c} = I_b * cosi \tag{1.5}$$

donde $I_{\mathbf{b}}$ es la radiación directa sobre la superficie de referencia.

Ecuación general para ángulo de incidencia sobre superficies inclinadas :

 $\cos i = \sin \delta_m \quad (\operatorname{senL} * \cos \beta - \operatorname{cosL} * \operatorname{sen} \beta * \operatorname{cos} a_\omega) \\ + \cos \delta_m * \operatorname{cosL} * \operatorname{cos} \beta + \operatorname{senL} * \operatorname{sen} \beta * \operatorname{cos} a_\omega) \\ + \cos \delta_m * \operatorname{sen} \beta * \operatorname{sen} a_\omega * \operatorname{senh}_m \quad (1.7) \\ \operatorname{donde} \quad \operatorname{el} \quad \operatorname{ángulo} \quad \operatorname{azimut-pared} \quad \operatorname{a_\omega} \quad \operatorname{es} \quad \operatorname{definido}$

de la misma manera que el ángulo azimut solar. Ver fig.1.9.

1.2.- RADIACION SOLAR DISPONIBLE

Para predecir la eficiencia de un sistema solar, es necesario conocer la radiación incidente en un período que puede ser hora, día, semana, etc.

<u>Tiempo entre la salida y puesta del Sol</u>: Para determinar cuando el sol se pone bajo el horizonte, recurrimos a la ecuación 1.2, cuando = 0°. Entonces:

Sen \ll = 0 = SenL*Sen δ_m +cos δ_m *cosL*cosh_{mm} (1.8) donde h_{mm} es el ángulo horario para la salida del sol (\ll = 0°). Arreglando la ecuación 1.8:

 $\cos h_{mm} = \cos h_{mr} = 1 - \operatorname{tg} L * \operatorname{tg} \delta_{m}$ (1.9)

La ecuación 1.7, nos indica el número de grados entre el amanecer o puesta del sol y el medio día. Puesto que 15º equivale a una hora de rotación de la Tierra, podemos determinar el número de horas del período diurno: N.

 $N = (2/15) \cos^{-1} I - tg L*tg§...$ (1.10)

Así, para un punto situado en el Ecuador (L=0°), h_{mr} es 90° y el periodo diurno N es de 12 horas.

Radiación extraterrestre sobre una superficie $\frac{\text{horizontal (I_{tot})}}{\text{loy del factor de excentricidad orbital e(t), así:}} : depende de la constante solar <math display="block">I_{\text{tot}} = \int_{\text{to}}^{\text{to+lot}} I_{\text{o}} \text{ e(t) sen } \alpha \text{ (t) dt} \qquad \qquad (1.11)$

donde Δ t corresponde al intervalo de tiempo de un día.

 $e(t) = 1 + 0.034 \cos \left[2*\pi *n(t)/365\right]$ (1.12)

Fig. 1.10 .- Variación de la radiación extraterrestre total diaria.(2)

n(t) es le número del día contado a partir del primero de Enero.

Reemplazando en la ecuación 1.11 y resolviendo, tenemos que la radiación total diaria es:

 $I_{\text{classified}} = (24/\pi) * I_{\text{class}} (1+0.034 \text{cos} (2*\pi*n/365) *$

(cosl*cos8_m*senh_m-+h_m-*senL*sen8_m)] (1.13)

Donde har en el último término de la ecuación 1.13 debe estar en radianes, para consistencia dimensional.

La variación durante el año de la radiación extraterrestre total diaria, está indicada en la fig. 1.10. Los valores estan dados en Langleys/día.

1.2.1.- ATENUACION DE LA RADIACION SOLAR POR LA ATMOSFERA

La radiación solar recibida en la superficie de la Tierra está sujeta a la variación de la radiación extraterrestre y a dos fenómenos más:

- a) Dispersión producida por moléculas de aire, vapor de agua y polvo.
- b) Absorción producida por O_3 , H_2O , CO_2 . El espectro de radiación extraterrestre es modificado a través de las distintas capas atmosféricas hasta llegar a la superficie de la Tierra. La radiación, antes de alcanzar el suelo, ha sido difundida, absorbida y refractada por los gases de la

atmósfera a temperaturas y densidades crecientes. Así, entre los 11 y 30 Km, existe la capa de ozono, la que se comporta como una pantalla filtrante, absorbiendo todas las radiaciones solares inferiores a 0.3 μ m, que ejercen una acción nociva sobre los vegetales y los organismos.

1.2.2.- ESTIMACION DE LA RADIACION SOLAR

Existen diversos métodos para determinar la radiación solar sobre superficies horizon-tales e inclinadas terrestres. Describire-mos brevemente uno de ellos.

Fórmula de Page : Page sugiere la siguiente ecuación para el cálculo de la radiación solar promedio diario mensual (directa y difusa) sobre una superficie horizontal:

 $\overline{H}_{n} = \overline{H}_{o} (A+b*\tilde{s}/\tilde{N})$ (1.14)

 \overline{H}_{0} , es la radiación extraterrestre promedio sobre una superficie horizontal, la misma que puede ser calculada a partir de la ecuación 1.13 y promediada para el número de días de cada mes.

ā, promedio de horas de sol

Ñ, número máximo de horas de sol

A, b constantes.

Estudios realizados en la ESFOL por el Ing.

Marco Fazmiño, dieron los siguientes valores, que corresponden a la región Litoral del Ecuador (3):

	AMO	INVIERNO	VERANO
А	0.23966	0.25951	0.23268
b	0.37866	0.34601	0.38289

Donde: Invierno corresponde a los meses de Enero, Febrero, Marzo y Abril; y Verano corresponde a los meses restantes.

RADIACION SOLAR PROMEDIO DIARIO MENSUAL SOBRE SUPERFICIES INCLINADAS

Liu y Jordan descubrieron que la relación $\frac{1}{2} \frac{1}{2} \frac$

 $\bar{D}_H/\bar{H}_H=1.390-4.027\bar{K}_T+5.531\bar{K}_T^2-3.108\bar{K}_T^3(1.15)$ Donde \bar{K}_T es el índice de claridad mensual, dado por:

$$\overline{K}_{T} = H_{D}/H_{D} \tag{1.16}$$

El cálculo del parámetro de la ecuación $1.15, \quad \text{puede ser obviado recurriendo a un} \\$ gráfico \overline{K}_T vs. $\overline{D}_B/\overline{H}_B$. Ver fig. 1.11.

La componente directa promedio mensual \overline{B}_{r_i} sobre una superficie horizontal, está dada por:

$$\bar{\mathbf{B}}_{\mathbf{h}} = \bar{\mathbf{H}}_{\mathbf{h}} - \bar{\mathbf{D}}_{\mathbf{h}} \tag{1.17}$$

De las ecuaciones 1.5 y 1.6 obtenemos las



Fig.1.11.—Relación $\overline{D}_{h}/\overline{H}_{h}$ como una función de $\overline{\mathbb{R}}_{\tau}$ (4).

radiaciones directa y horizontal instantáneas interceptadas por una superficie.

$$I_{b,e} = I_{b} * \cos i \qquad (1.18)$$

$$I_b = I_{b,p}/\text{sen} \propto (1.19)$$

Resolviendo las dos ecuaciones:

$$I_{b,e} = I_{b,h} (\cos i/\sin \alpha), \qquad (1.20)$$

donde la relación de ángulos, se denomina factor de inclinación para radiación directa.

$$R_b = \cos i/\sec \alpha$$
 (1.21)

R_b es una cantidad geométrica que permite convertir la radiación directa horizontal instantanéa en radiación directa interceptada por una superficie inclinada.

La ecuación 1.20 no puede usarse para

estimar la radiación directa promedio interceptada por una superficie inclinada $\mathbf{\bar{B}_{e}}$, por lo que Liu y Jordan recomiendan usar el factor de inclinación medio mensual $\mathbf{\bar{R}_{b}}$ (4), calculado a partir del promedio mensual del cos i, dividido por el mismo promedio del sen $\boldsymbol{\propto}$. Para superficies orientadas hacia el sur, proponen la siguiente ecuación:

$$\bar{R}_b = \frac{\cos(L-\beta)\cos\delta_{\text{ssenhsr}} + h_{\text{sr}} \cdot \sin(L-\beta)\sin\delta_{\text{s}}}{\cos L\cos\delta_{\text{ssenhsr}} (\alpha=0) + h_{\text{sr}} \cdot (\alpha=0)\sin \delta_{\text{ssen}}}$$

(1.22)

Ē_c es entonces:

$$\overline{B}_{e} = \overline{R}_{b} * \overline{B}_{h} \tag{1.23}$$

La radiación difusa interceptada por una $\text{superficie inclinada, } D_{\text{e}}, \text{ está dada por};$

$$\overline{D}_{c} = \overline{R}_{c} * \overline{D}_{D} \tag{1.24}$$

Donde \overline{R}_d , es el factor de inclinación para radiación difusa, que es igual a R_d (instantáneo), y está dado por:

$$R_{\rm d} = \overline{R}_{\rm d} = \cos^2(\beta/2) \tag{1.25}$$

Cuando los colectores solares están ubicados cerca de La Tierra, algo de la radiación directa y difusa se reflejará desde La Tierra para que una parte de ella sea interceptada por la superficie del colector. El factor de inclinación $\overline{\mathbb{R}}_r$ para

radiación total reflejada esta dada por:

$$\bar{R}_{r} = \bar{R}/(\bar{D}_{r} + \bar{B}_{r}) = P \operatorname{sen}^{2}(\beta/2)$$
 (1.26)

Donde ℓ es la reflectancia difusa de la superficie. Fara hierva, cesped y concreto, ℓ 0.2; para agua, ℓ 0.07; superficies claras de edificios, ℓ 0.60; superficies oscuras de edificios, ℓ 0.27.(4).

Entonces, la radiación total solar diaria, promedio mensual, sobre una superficie inclinada $\bar{I}_{\rm c}$, es igual a la suma de las componentes directa, difusa y reflejada difusamente.

 $\bar{I}_{e} = \bar{R}_{b} * \bar{B}_{h} + \bar{R}_{d} * \bar{D}_{h} + \bar{R}_{c} (\bar{D}_{h} + \bar{B}_{h}) \qquad (1.27)$

Reemplazando en esta ecuación, las ecuaciones 1.25 y 1.26, tenemos:

 $\bar{I}_c = \bar{R}_b * \bar{B}_n + \bar{D}_n \cos^2(\beta/2) + (D_n + B_n)$ sen² ($\beta/2$)1.28)

Donde \bar{D}_n se calcula a partir de la ecuación 1.15, \bar{B}_n a partir de la ecuación 1.17 y \bar{R}_b a partir de la ecuación 1.22.

Para predecir el rendimiento de cualquier sistema de conversión solar, las componentes directa y difusa de la radiación solar deben ser conocidas, en un lapso de tiempo y en el sitio geográfico específico. Los modelos de radiación directa y ecuaciones para ángulos de incidencia descritos anteriormente, proveen insufuciente información considerando la cantidad de energía solar útil para los diseños de ingeniería de sistemas solares. Por tanto, es necesario usar records históricos de datos solares medidos para determinar la magnitud

La selección de datos diarios y mensuales, proveen una información más global y objetiva de la radiación solar, que los datos coleccionados por horas.

de la radiación directa y difusa en un sitio

1.3.1.- DESCRIPCION BREVE

especifico.

Existe una buena variedad de instrumentos para medir la energía solar y que pueden ser obtenidos de compañías especializadas en equipos metereológicos. Los nombres más comunes en la literatura técnica son los siguientes:

<u>Pirheliómetro</u> : es un instrumento que usa un detector colimado para medir la radia-

ción solar de una pequeña sección del cielo incluyendo el sol, es decir un haz de radiación directa incidiendo sobre una superficie normal a esta radiación. Ver figura 1.12.

Piranómetro : este instrumento mide radiación solar hemisférica total (directa + difusa) incidiendo sobre una superficie generalmente horizontal. Si se bloquea la radiación directa por medio de la sombra de la sombra de difusa. Ver figura 1.13.

Solarimetros y actinógrafos : efectuan mediciones similares a la de los piranómetros. Ver figura 1.14.

Medidor de brillo solar : es un aparato que mide "HELIOFANIA", es decir, el tiempo que el sol ha brillado en el firmamento sin presencia de nubes u otros obstáculos entre el sol y el sitio de observación. La HELIOFANIA generalmente esta expresada en horas y décimas de horas, y esta escala debe ser hecha en relación con las horas teóricas de permanencia del sol sobre el horizonte. Ver figura 1.15.

Radiómetro : es un aparato que mide radiación neta, es decir la diferencia

Fig. 1.12.- Firhéliometro

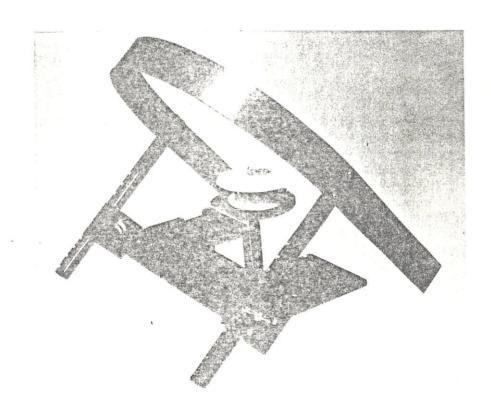


Fig. 1.13. - Piranómetro

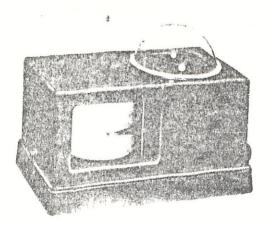


Fig. 1.14.— Actinógrafo

Fig. 1.15.- Medidor de brillo solar

entre la radiación que llega (directa: onda corta, difusa: onda corta y larga) menos la radiación que sale (reflejada y emitida por el suelo).

1.3.2. INSTRUMENTAL DE LA ESPOL

En la actualidad, el Laboratorio de Energía Solar posee un piránometro y un medidor de brillo solar de la marca Weather Measure Corp., siendo el piránometro acoplado a su respectivo graficador de radiación solar. Los datos tomados se registran cuidadosamente día a día, lo que permite disponer de datos confiables. Existe también un radiometro solar portátil de la misma marca, con un rango de medida O-1500 W/m². Este último dispositivo se usó en nuestras pruebas.

Este Laboratorio cuenta también con una estación metereológica completa, Marca Kahl Scientific Instrument Corp., modelo R431. Aquí se registra dirección y velocidad del viento (Km/hr), húmedad relativa, nivel pluviométrico (mm), temperatura ambiente (°C) y presión barométrica (mb). Así pués, nuestro Laboratorio proporciona información bastante completa sobre las condiciones ambientales.

1.4.- ALGUNOS TOPICOS SOBRE TRANSFERENCIA DE CALOR

Transferencia de calor por convección : se evalúa la rapidez de transferencia de calor por convección en la frontera entre un sólido y un fluido, por medio de la ecuación:

$$Q = A * \overline{h}_{c} * (T_{ss} - T_{f})$$
 (1.29)

donde:

A - es la superficie del sólido

 $\bar{h}_{e}-$ coeficiente de transferencia de calor por convección (w/m^2* °K)

 \bar{h}_e , depende del flujo del fluido, de las propiedades térmicas del medio fluido y de la geometría del sistema. Su valor numérico en general no es uniforme sobre toda la superficie y depende también del lugar donde se mide la temperatura T_{\star} .

Convección libre desde una placa plana : es de particular interés el cálculo de pérdidas de calor desde colectores solares, de longitud L, ángulo de inclinación hacia aire a presión atmosférica.

$$h_c=1.42(\Delta T sen \beta/L)^{1/4} para 10^4 < Gr_L < 10^9 (1.30)$$

$$h_{e}=0.95(\Delta T sen \beta)^{1/3} para Gr_{L} > 10^{9}$$
 (1.31)

donde Gr_L =
$$\beta_{\tau}$$
*g*sen β *L** Δ T/ ν ? (1.32)

Para pérdidas de calor desde una placa plana expuesta al viento, h_e en w/m²ºK, está relacionado con la velocidad del viento V en m/seg, por la siguiente relación:

$$h_{e} = 5.7+3.8V$$
 (1.33)

Convección libre desde cilindros : el coeficiente de transferencia de calor promedio para convección libre desde un cilindro horizontal de diámetro D puede ser calculado de la siguiente relación:

 $\overline{N}u_{D} = \overline{h}_{e}*D/k = 0.53 (Gr_{D}*Pr)^{1/4}$ (1.34)

para 10° < Gr_D < 10°

para cilindros verticales, las ecuaciones 1.30 y 1.31 también son aplicables.

En la tabla 1.4.1, se indican algunas propiedades físicas para el aire.

 $\frac{Transferencia\ de\ calor\ por\ radiación}{total\ emitida\ por\ un\ cuerpo\ negro,\ por\ unidad\ de}$ $\text{frea}\ E_b,\ está\ dada\ por\ la\ ley\ de\ Stefan-Boltzmann.}$

 $\mathsf{E}_{\mathsf{b}} = \mathsf{C} \mathsf{T}^{\mathsf{q}} \tag{1.35}$

donde:

abla = constante de Stefan-Boltzmann

= 5.67X10-8 W/m² 9K4

T = temperatura absoluta, °K

Características de materiales transparentes y

opacos: Cuando la radiación alcanza un cuerpo, una

parte de ella es reflejada, una parte es absorbida,

y si el material es transparente, una parte es

transmitida. Ver figura 1.16.

Donde la fracción de la radiación incidente reflejada es definida como la reflectividad β , la fracción absorbida como la absortividad α , y la fracción transmitida como la transmisividad γ .

De acuerdo a la primera ley de la termodinámica, la suma de las tres componentes debe ser igual a la unidad.

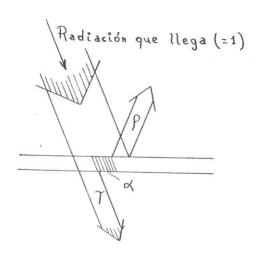


Fig. 1.16. – Representación esquemática de $\mathcal{T}, \, \alpha \, \gamma \, \beta$

$$\alpha + \mathcal{T} + \beta = 1 \tag{1.36}$$

Cuerpos opacos no transmiten radiación, y ${\mathcal T}_{=0}$;

$$\alpha + \beta = 1 \tag{1.37}$$

Para gases, la energia reflejada es cero, ho=0

La emisividad de cualquier cuerpo a una temperatura dada T, es igual a su absortividad.

$$\epsilon(T) = \alpha(T)$$
 (1.39)

relación que no se cumple para el caso de "superficies selectivas".

Transferencia de calor por radiación entre superficies grises : la mayoría de los problemas de
transférencia de calor en aplicaciones de energía

solar involucran radiación entre dos superficies

$$Q_{1} = -Q_{2} = \frac{\nabla (T_{2}^{4} - T_{1}^{4})}{1 - \varepsilon_{1}}$$

$$\frac{1 - \varepsilon_{1}}{\varepsilon_{1} A_{1}} + \frac{1 - \varepsilon_{2}}{\varepsilon_{2} A_{2}}$$

$$(1.40)$$

donde:

T : temperatura uniforme de cada superficie

A : área de cada superficie

F.z: factor de forma entre superficies 1 y 2.

Dos casos especiales de la ecuación 1.40 son de particular interés:

a. Radiación entre dos placas paralelas infinitas $\hbox{$(Ej.:$ colectores de placa plana), donde A_1 y A_2 }$ son iguales y \$F_{1,2}\$ es igual a la unidad. Entonces:

Donde ϵ were es el denominador de la ecuación 1.41.

b.- Pequeña superficie convexa rodeada por una gran superficie, tal que $A_1/A_2 \approx 0$ y $F_{12} = 1$ (1.42) este resultado es independiente de las propiedades de la gran superficie A_2 , puesto que esta, absorbe toda la radiación desde la

pequeña superficie y actúa como un cuerpo negro. Esta ecuación también se aplica para el caso de placas planas reradiando hacia el cielo, como es el caso de la cubierta de un colector radiando hacia el ambiente.

Radiación del cielo : el cielo puede ser considerado como un cuerpo negro a cierta temperatura
equivalente del cielo, de tal manera que la
radiación neta real entre un plano horizontal y el
cielo viene dado por:

$$Q = \mathbf{\epsilon} \cdot \Delta \cdot \nabla \left(T_{\mathbf{c} \pm \mathbf{w} + \mathbf{c}} + T^{\mathbf{d}} \right) \tag{1.43}$$

$$T_{c.i.e.i.o.} = 0.0552 T_{a.i.e.}$$
 (1.44)

donde las temperaturas están en grados Kelvin.

Whillier (7) sugiere:

$$T_{\text{clesto}} = T_{\text{m}} - 600 \tag{1.45}$$

1.5.- RADIACION SOLAR A TRAVES DE MEDIOS PARCIALMENTE TRANSPARENTES

La transmitancia Υ a través de materiales transparentes, tales como el vidrio, es un parámetro que debe considerarse en la transferencia de calor por radiación. El cálculo de dicho parámetro es muy complejo y depende de la longitud de onda de la radiación, el ángulo de incidencia, el índice de refracción y el coeficiente de extinción.

Cubiertas transparentes de varias formas son usadas para reducir las pérdidas de calor desde las superficies absorbedoras de radiación, en la mayoria de colectores solares.

Consecuentemente, los materiales transparentes usados deben ser capaces de transmitir radiación solar a cualquier ángulo de incidencia, tener larga durabilidad bajo la exposición del sol, la intemperie, baja transmitancia infra-roja y por supuesto, bajo peso y costo.

Indice de refracción (n) y coeficiente de extinción (K): n determina tanto la velocidad de la luz en el material así como la cantidad de luz reflejada desde una superficie simple; mientras que k determina la cantidad de luz absorbida por una sustancia en un solo paso de radiación. Ver figura 1.17.

Los ángulos de incidencia i, y de refracción en,

están relacionados por la ley de Snell, asi:

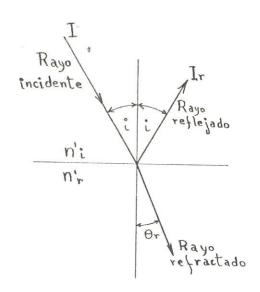


Fig. 1.17. - Rayos de luz incidente, reflectado y refractado y ángulos de incidencia y refracción para un medio transparente.

$$\frac{\text{sen i}}{\text{sen } \Theta_{\mathbf{r}}} = \frac{n_{\mathbf{r}}}{n_{\mathbf{t}}}$$

$$(1.46)$$

donde n'. y n'. son los dos indices de refracción y n. es la relación de indices para las dos sustancias que forman la interfase. Así, n' para el vidrio es 1.526; flexividrio, 1.48; agua, 1.33; aire, 1.00. (7).

La reflectividad β^i desde la superficie de una sustancia transparente está expresada en función de los dos componentes de polarización: paralelo β''_{ii} y perpendicular β'_{i} al plano de incidencia.

$$\beta_{\mathbf{i}}' = \frac{\operatorname{sen}^{2}(\mathbf{i} - \Theta_{r})}{\operatorname{sen}^{2}(\mathbf{i} + \Theta_{r})}$$

$$(1.47)$$

$$\hat{\gamma}_{\parallel} = \frac{\mathsf{tg}^{2}(\mathsf{i} - \theta_{r})}{\mathsf{tg}^{2}(\mathsf{i} + \theta_{r})} \tag{1.48}$$

Cuando una radiación I pasa a través de un medio transparente tal como vidrio o la atmósfera, su intensidad decrece a $I_{\rm L}$. Bouger describió este fenómeno, mediante la siguiente ley:

$$I_{L} = I e^{-i\xi L} \qquad (1.49)$$

=
$$I_{L}/I$$
 = e^{-tcL} , para una cubierta (1.50)

donde:

K : coeficiente de extinción, propio de cada medio. para vidrio ordinario de ventana K=0.3/cm (8)

L : trayectoria óptica del rayo a través del medio de espesor .

De la fig. 1.17 se puede deducir que:

$$L = t/\cos \theta_{P} \tag{1.51}$$

Ecuaciones de Stokes (1) : la reflectividad total P, esto es la relación del flujo que deja la superficie I_P al flujo que incide $I(P=I_P/I)$, y la transmisividad total γ , se calculan a partir de las ecuaciones de Stokes:

$$\beta (\beta', \gamma') = \beta' \left[1 + \frac{1 - \beta'^*_{*} \gamma'^{2}}{1 - \beta'^*_{*} \gamma'^{2}} \right]$$
(1.52)

$$\gamma'(\rho',\gamma') = \gamma'\left[\frac{(1-\rho')^2}{1-\rho'^2\gamma'^2}\right]$$
 (1.53)

y la absortividad total lpha, es simplemente la unidad menos ($ho+\gamma$).

$$\propto (P', \Upsilon') = \lambda - P(P', \Upsilon') - \Upsilon(P', \Upsilon') \tag{1.54}$$

Nótese que $ho' ee \gamma'$ se aplican a superficies simples,

un solo paso y una sola reflexión. En la práctica, una capa de vidrio u otro material transparente tendrá multiples interreflexiones de radiación, las que deben considerarse para el cálculo de la reflectividad total P, transmisividad $\mathcal T$ y absortividad \varnothing .

COLECTORES CONCENTRADORES

2.1. - RAZONES PARA EL USO DE COLECTORES CONCENTRADORES

Algunos términos son usados para describir los colectores concentradores. LA RELACION DE CONCEN-TRACION, denotada por RC, es la relación entre el área de apertura colectora neta y el área del recibidor o absorvedor. EL AREA DE APERTURA A.. es el área neta del colector que intercepta radiación. EL AREA DEL ABSORBEDOR A., es el área total que recibe la radiación concentrada. Es el área desde la cual la energía útil es removida y el área desde donde alguna pérdida de calor se produce al medio ambiente. Puesto que **el absorbedor** en algunos dispositivos de concentración no es iluminado completamente o uniformemente, algunos autores distinguen entre relaciones de concentración brillantes (o flujo) y geométricas (o área). El criterio de la relación de concentración geométrica basada en el área total del absorbedor -iluminado o no- será usado exclusivamente, puesto que es más útil en cálculos de balances térmicos y análisis económicos.

Tres razones son comummente citadas para el uso de concentradores:

- 1.- Un incremento de energía involucra superiores
 temperaturas en orden a alcanzar un encuentro
 entre un nivel de temperatura y su requerimiento. El requerimiento puede ser operar un
 dispositivo termoiónico, magnetohidrodinámico,
 termodinámico, o cualquier otro de alta
 temperatura.
- 2.- Para mejorar la eficiencia térmica hay que reducir las pérdidas de calor reduciendo el área relativa de la superficie receptora. Así, habría también una reducción del efecto transiente, puesto que la masa térmica es usualmente mucho más pequeña que la de los colectores de placa plana.
- 3.- Para reducir costos, se reemplaza o un recibidor caro o un área reflectora o refractora cara.

Puesto que el límite superior de energía para colectores standar de placa plana entrega temperaturas en el orden de los 380 °K (107 °C), la eficiencia de Carnot óptima de una máquina de calor, para tal colector esta limitada a valores de alrededor del 20%. Para conseguir mayores eficientias en el ciclo de Carnot debemos concentrarnos en la máquina de calor y alcanzar las eficiencias más altas en los fluidos.

Por ejemplo, si un colector solar es capaz de

entregar energía a 580 °K (307 °C) en lugar de 380 °K (107 °C) la eficiencia de calor y la energía transformada en trabajo pueden ser dobladas.

La figura 2.1 muestra que menos del 5% de los procesos térmicos industriales en los Estados Unidos requieren temperaturas por abajo de los 100 °C.

Para cualquier impacto significativo de la energía solar en este sector, los concentradores son esenciales.

Los concentradores son de hecho más eficientes que los colectores de placa plana a una temperatura dada, pués el área desde la cual se producen pérdidas de calor es mucho más pequeña que el área de apertura, en cambio, en el colector de placa plana, ambas áreas son de iguales dimensiones. Un simple balance de energía ilustra este principio. La energía útil Que entregada por un colector está dada por:

$$Q_{\omega} = \eta_{\odot} I_{c} A_{m} - U_{c} (T_{c} - T_{m}) A_{r}$$
Donde:

 η_{\circ} es la eficiencia óptica,

 I_{e} es la radiación solar total sobre la superficie del colector,

 $U_{\rm c}$ es el coeficiente global de pérdidas,

T_c y T_a representan las temperaturas del colector y del aire ambiente respectivamente.

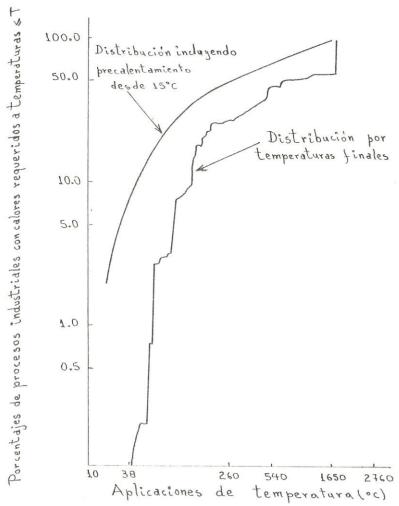


Fig. 2.1.- Distribución porcentual de procesos industriales con energia calórica entregada a varias
temperaturas.(1).

Los otros términos ya han sido definidos previamente.

La eficiencia instantánea del colector está dada por :

de la cual, usando la ecuación 2.1

$$\eta_{\text{c}} = \eta_{\text{c}} - U_{\text{c}}(T_{\text{c}} - T_{\text{m}})/I_{\text{c}}*RC$$
 (2.3)

Donde la relación de concentración RC es definida como:

$$RC = A_m/A_r \tag{2.4}$$

Para los colectores de placa plana RC = 1. Nótese, que el término de pérdidas, segundo término de la ecuación 2.3, es más pequeño para un concentrador y la eficiencia es más alta. Este análisis es necesariamente simplificado y no refleja la reducción en la eficiencia óptica que frecuentemente, pero no siempre ocurre debido al uso de espejos o lentes imperfectos en los concentradores. La evaluación de U_c en la ecuación 2.3 en forma completa es muy difícil para concentradores de alta temperatura, puesto que la pérdida de calor por radiación es usualmente muy importante e introduce sistemas no lineales (tipo \propto T4). Una desventaja de los concentradores es que ellos pueden colectar unicamente una pequeña fracción de la energía difusa incidente en su apertura. Esta propiedad es un criterio importante para la definición de

los límites geométricos para el uso exitoso de los concentradores y a continuación será descrita brevemente.

2.2.- LIMITES TERMODINAMICOS Y OFTICOS PARA LA CONCENTRA-CION.

Un criterio simple será desarrollado aquí para determinar el límite superior de la concentración de un colector solar. (Lim. inf. RC = 1).

La fig. 2.2 es un diagrama esquemático de cualquier dispositivo de concentración en el cual la fuente (source), la apertura (aperture) y el recibidor estan mostrados. La fuente representa una fuente difusa o una parecida que estaría formada por una fuente de punto móvil, que es, el sol. La evaluación de la máxima concentración aceptable RCmax utiliza el concepto de los factores de intercambio de radiación conocidos como factores de forma:

El factor **F**₁₂ está definido como la fracción de radiación emitida desde la superficie 1 que alcanza a la superficie 2 mediante cualquier intercambio de calor, reflexión ó refracción. Existen además relaciones reciprocantes para factores de intercambio de área; para este análisis la segunda ley de termodinámica requiere que:

$$A_{m} * \mathbf{F}_{m a a} = A_{a a} * \mathbf{F}_{a a m}$$
 (2.5)

$$\triangle_{m} * \mathbf{F}_{m} = \triangle_{r} * \mathbf{F}_{rm} \tag{2.6}$$

Por medio de estas expresiones, la relación de concentración puede ser expresado como :

$$RC = \frac{A_m}{-} = \frac{F_{m,m} *F_{m,m}}{F_{m,r} *F_{m,m}}$$

$$(2.8)$$

Para la mejor concentración posible, toda la radiación que entra por la apertura A_{\bullet} alcanza al recibidor A_{r} , esto es,

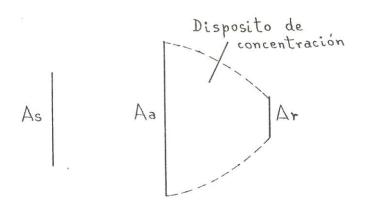
$$\mathbf{F}_{max} = \mathbf{F}_{max} \tag{2.9}$$

Además, si la fuente es asumida como un cuerpo negro :

$$\mathbf{F}_{\text{man}} = \mathbf{F}_{\text{man}} \tag{2.10}$$

donde F_{am} es el factor de forma de radiación entre dos superficies negras. Usando las ecuaciones (2.8) \vee (2.10) tenemos :

$$RC = \frac{F_{\text{res}}}{F_{\text{aven}}}$$
 (2.11)


Puesto que Frm ≤ 1 por la segunda ley:

$$RC \leq RC_{max} = 1/F_{max} \tag{2.12}$$

La ecuación (2.12) expresa que la concentración máxima permitida por la segunda ley, es simplemente el recíproco del factor de forma de radiación F...

El factor de forma F... para un concentrador solar en dos dimensiones puede ser calculado a partir del diagrama de la fig. 2.3. Este esquema representa un canalón o concentrador de curva simple formado de espejos o de un lente lineal (cilindrico). Que es iluminado por una fuente lineal de luz de longitud 2r que representa una porción de la trayectoria virtual del sol.

Fuente(s) Apertura(a) Recibidor(r)

Fig. 2.2.- Diagrama esquemático generalizado para cualquier dispositivo de concentración de energía solar en dos dimensiones.

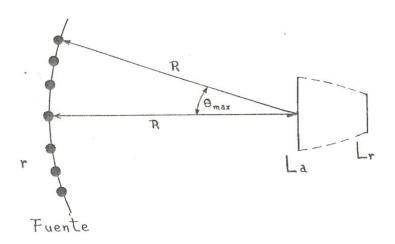


Fig. 2.3.- Geometria usada para calcular el factor de forma $F_{\alpha\alpha}$.

Por reciprocidad, tenemos que :

$$F_{\text{A-B}} = F_{\text{B-A}} - \tag{2.13}$$

$$A_{\text{A-A}}$$

Si un ángulo $2\theta_{max}$ es definido como un ángulo máximo dentro del cual la luz será colectada, entonces tenemos:

$$F_{a,m} = \text{sen } \Theta_{m,n,k} \tag{2.14}$$

que se deduce del método de cuerdas cruzadas de Hottel para L <<r. El ángulo Θ_{max} , es llamado ángulo-mitad de aceptancia. De la ecuación (2.12) la concentración máxima es entonces :

$$RC_{max,2dim} = 1/sen \theta_{max}$$
 (2.15)

El nombre ángulo-mitad de aceptación denota la cobertura de una mitad de la zona angular dentro de la cual la radiación es aceptada (esto es "vista") por el recibidor de un concentrador. Dicha radiación va ha ser aceptada sobre un ángulo de aceptancia 2 emax porque la radiación incidente dentro de este ángulo alcanza al absorbedor despues de pasar a través de la apertura. Practicamente el rango para ángulos de aceptancia, van desde un mínimo comprendido por el disco solar (alrededor 0.5°) hasta 180°; un valor característico del colector de placa plana es la aceptación de radiación de un hemisferio completo.

Los concentradores de doble curvatura ó tipo plato

tienen un limite superior de concentración que puede ser evaluado por una extensión del método usado anteriormente en dos dimensiones. El resultado de tal cálculo para un dispositivo de curvatura compuesta está dado por:

$$RC_{max,sdam} = 1/sen^2 \Theta_{max}$$
 (2.16)

La segunda ley prescribe no unicamente limites geomètricos de concentración como se ha demostrado arriba, sino tambié los límites de temperatura de un concentrador. La radiación emitida por el sol y absorbida por el recibidor de un concentrador es :

donde T_m es la temperatura efectiva del sol y γ es la función global de transmición para el concentrador, incluyendo los efectos de cualquier lente, espejo o vidrio de cubierta. Si el ángulo-mitad de aceptancia θ_{max} es seleccionado justo para aceptar el disco solar de una medida angular $\theta_{max}(\theta_{max} \approx 1/4^{\circ})$ entonces nosotros tenemos, por reciprocidad (Ec.2.13), para un concentrador con curvatura compuesta

$$Q_{abs} = 7 * 2 * 4 * 4 * 5 = 1 = 2 * 4 * 7 * 7 * 7 * 4$$
 (2.18)

Si la convección y la conducción fuesen eliminados, toda la perdida de calor es exclusivamente por radiación y

$$Q_L = \epsilon_{\perp} * A_{\perp} * \nabla * T_{\perp} 4 \tag{2.19}$$

donde $\epsilon_{ ext{ir}}$ es la emitancia infraroja de $\,$ la superfi-

cie receptora. La radiación que entra al recibidor desde una cubierta de vidrio o desde el medio ambiente pueden ser ignoradas para este análisis de límite superior.

Un balance de energía en el recibidor es entonces

$$Q_{mbm} = Q_L + \eta_c *Q_{mbm} \tag{2.20}$$

donde η_{c} es la fracción entre la energía absorbida en el recibidor y la entregada al fluído de trabajo.

Sustituyendo las ecs. (2.18) y (2.19) en la ec.(2.20) tenemos

$$(1-\eta_{e}) \ \, 7*A_{m}*A_{m}*sen^{2}\theta_{m}* \ \, 7*T_{m}^{4} = \varepsilon_{+}*A_{-}* \ \, 7*T_{-}^{4} \ \, (2.21)$$
 Fuesto que RC = A_{m}/A_{-} y RC $_{m}$ = $1/sen^{2}\theta_{m}$

$$T_{r} = T_{m} \left[\left(1 - \eta_{c} \right) 7 \frac{A_{m}}{\epsilon_{A r}} \frac{RC}{RC_{max}} \right]^{1/4} \tag{2.22}$$

En el limite cuando $\eta \to 0$ (no hay energía liberada) y $\mathcal{T} \to 1$ (perfección óptica), tenemos

$$\lim T_r \to T_m \left(\mathbb{RC}/\mathbb{RC}_{max} \right)^{1/4} \tag{2.23}$$

Puesto que $\epsilon_{*} \rightarrow \alpha_{*}$ en tanto que $\tau_{r} \rightarrow \tau_{*}$ la ec. 2.23 muestra que

$$T_{r} \leqslant T_{m} \tag{2.24}$$

Como se esperaba para un concentrador idealizado tanto óptica como termicamente. La ec. 2.24 es equivalente al enunciado de Clausius de la segunda ley, para un concentrador solar.

Las ecs. 2.15 y 2.16 definen los límites superiores

de concentración que pueden ser alcanzadas para un ángulo tal de concentración. De interés son los límites mas altos y más bajos de concentración, el límite de RC máximo está dado unicamente por el tamaño del disco del sol $(2\theta_{max} = 1/2^{o})$ y alcanzado por seguimiento continuo; y el RC mínimo, basado en un número específico de horas de colección sin seguimiento $(2\theta_{max} = 180^{o})$, $RC_{min} = 1$.

El límite más alto de concentración para concentradores en dos y tres dimensiones está en el orden de:

$$RC_{max, 2D} = 1/sen(1/4)P = 200$$
 (2.25)

$$RC_{max,3D} = 1/sen^{2}(1/4)^{9} = 40000$$
 (2.26)

En la práctica, estos niveles de concentración no son alcanzables a causa de errrores en el seguimiento y por imperfecciones en las superficies de los elementos refractores o reflectores.

Para un colector de curvatura simple, fijo (canalón, fig. 2.4) la máxima concentración alcanzable puede ser determinada del movimiento del sol en base al ANGULO DE INCIDENCIA i. Si un concentrador tipo canalón es orientado Norte-Sur e inclinado por sobre la horizontal de tal modo que el plano del movimiento virtual del sol sea normal a la apertura, el ángulo de aceptancia y por consiguiente la relación de concentración están relacionados con el rango del ángulo horario sobre la cual la colección

es requerida.

Si 8hr de colección es lo requerido, el ángulo medio de aceptancia es 60° [(1/2)(15 $^{\circ}$ /Hr)8Hr] y la concentración máxima es

$$RC_{\text{max.NB}} = 1/\text{sen } 60^{\circ} = 1.15$$
 (2.27)

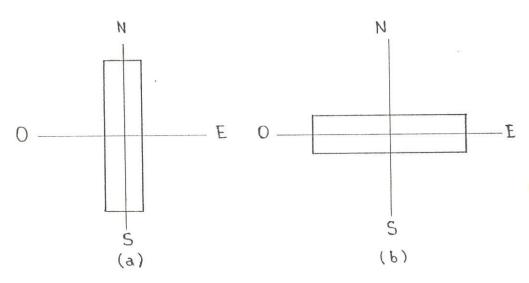


Fig.2.4.—Concentrador tipo canalón, orientado $\text{a) N-S} \quad \text{y} \quad \text{b) E-O}$

Si el concentrador canalón, es orientado E-O, el ángulo de aceptancia está limitado por el contorno del ángulo perfil de solsticio a solsticio († 23.5°). De la ecuación 1.5 el ángulo pérfil y a 2.2 ° S de latitud a las 6 p.m. sobre el solsticio de invierno (21 Dic.) es:

Tg
$$X = \sec a + ag = \sec 64.49*+tg 28.39$$
 (2.28)
(h = 60°; invierno)
 $X = 51°$ (2.29)

A las 6 p.m. o 6 a.m. del solsticio de verano (21

7

Junio), el ángulo pérfil es:

Tg
$$\chi$$
 = sec 62.4°*tg 26.3° (2.30)

(h = 600; verano)

$$\chi = 47^{\circ} \tag{2.31}$$

Por tanto el ángulo pérfil total recorrido es 4° (51° - 47°).

En orden a aceptar la radiación solar sobre este rango, el máximo RC es:

$$RC_{max,EO} = 1/ sen (49/2) = 28.6$$
 (2.32)

El cual es mayor que el valor para el colector de placa plana. Los valores anteriores son para 8 hr de colección, en todo el año a una latitud 2.2 °S.

Para otras combinaciones de latitud, inclinación del colector y períodos de colección los valores límites de RC variarán.

2.3.- ACEPTACION DE RADIACION DIFUSA

La radiacion difusa o dispersa no es asociada con una dirección específica como lo es la radiación directa. Es de esperar, sin embargo, que alguna porción de la componente difusa caerá fuera del ángulo de aceptancia de un concentrador y no será colectable. La cantidad mínima de radiación difusa que es colectable puede ser estimada asumiendo que la componente difusa es isotrópica (igual en todas las direcciones) a la apertura.

La relación de reciprocidad del factor de intercambio muestra que:

$$A_{\mathbf{A}} \mathbf{F}_{\mathbf{A} \mathbf{B}} = A_{\mathbf{F}} \mathbf{F}_{\mathbf{F} \mathbf{B}} \tag{2.33}$$

Para la mayoría de dispositivos prácticos de concentración que pueden aceptar una fracción significativa de radiación difusa, $\mathcal{F}_{rm}=1$, que es, toda la radiación que sale del recibidor, alcanza a la apertura y al medio ambiente eventual—mente. Entonces:

$$\mathbf{F}_{\mathbf{A}\mathbf{m}} = \mathbf{A}_{\mathbf{F}}/\mathbf{A}_{\mathbf{A}} = 1/\mathbf{R}\mathbf{C} \tag{2.34}$$

Para cualquier concentrador. La ecuación 2.34 indica que al menos 1/RC de la radiación difusa incidente alcanza al recibidor. En la práctica, la porción difusa colectable será mayor que 1/RC, puesto que la radiación difusa está usualmente concentrada cerca del disco solar, excepto durante los días nublados.

2.4.- CONCENTRADORES FIJOS

<u>Tipos de concentradores</u> : los concentradores también pueden ser clasificados de acuerdo a:

- 1.- Rango de temperatura de operación
- 2.- Cantidad de seguimiento requerido para mantener al Sol dentro del ángulo de aceptancia.
- 3.- Tipo de seguimiento: ejes simple o doble

 La figura 2.5 es un diagrama cualitativo (no para
 ser usado para diseño) de los rangos de temperatura
 de operación para varios tipos de concentradores.

 Las temperaturas más altas han sido alcanzadas por
 el horno solar French en Odeillo.

Los concentradores de curvatura simple (canalón) usualmente tienen una relación de concentración superior a 50 y los de doble curvatura van desde 30 hasta algunos cientos.

Temperaturas superiores a los 300°C pueden ser alcanzadas por dispositivos de curvatura simple. El horno Odeillo ha alcanzado temperaturas superiores a los 3000°C.

Dos niveles de seguimiento pueden ser identificados:

- 1.- Cambios de inclinación intermitentemente o completamente fijos.
- 2.- Seguimiento continuo de reflectores, refractores o recibidores. Si estan orientados E-O, requieren de un movimiento ángular aproximado

de \pm 30° por día; Si estan orientados N-S, el movimiento sería aproximado de 15° por hora. En todo caso ambos deben adecuarse al recorrido de la declinación de \pm 23° por año.

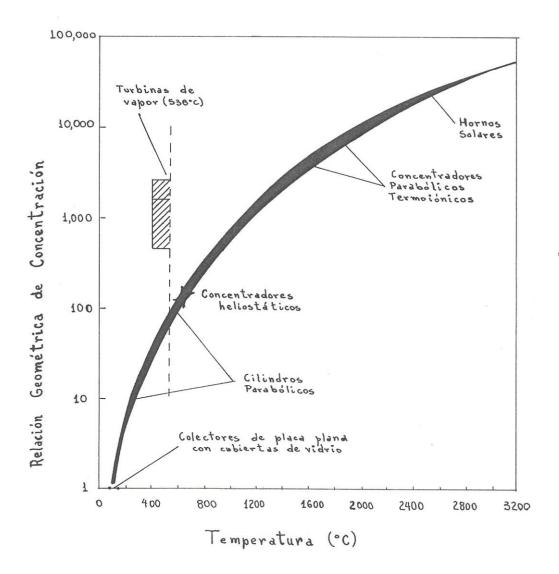


Fig. 2.5.—Temperaturas típicas alcanzables por colectores solares concentradores (1).

Los dispositivos de curvatura simple pueden ser de uno u otro tipo, pero los de doble curvatura son usualmente de seguimiento contínuo y valores de RC altos.

Concentradores fijos : los concentradores nuevos complejos son aquellos que no requieren seguimiento continuo exacto del sol. Estos son necesariamente de ánculos de aceptancia grandes, moderada relación de concentración y usualmente diseños de curvatura simple. Puesto que el día más corto, es el recorrido del sol en un plano N-S, los concentradores fijos o girados intermitentemente deben ser orientados con sus ejes de rotación perpendiculares a este plano, esto es, en dirección E-O, en orden a capitalizar sobre ángulos de aceptancia orandes. La tabla 2.4.1 muestra el movimiento reguerido para asegurar 7hr de colección para un rango de relaciones de concentración hasta un valor de 10. Para valores más allá de RC=10.5, las 7hr de colección no pueden ser alcanzadas sin reajustes durante el día.

Si el período de colección requerido es reducido a 6 o 7hr, entonces con relaciones de concentración hasta 2.0 se puede alcanzar lo requerido con concentradores fijos. Concentraciones de este nivel por lentes o espejos pueden ser justificados en algunos casos por el resultado del mejoramiento de eficiencia sobre los de placa plana.

Sin embargo, este método de aumento de perfomance y

otros propuestos para los colectores de placa plana deben ser evaluados para el sistema completo y hecho el análisis económico.

Un concepto de concentrador fijo que ha tenido algún mérito es el de mejoramiento de la perfomance del colector de placa plana sobre una base estacional mediante el uso de simples espejos, como se muestra en la figura 2.6. McDaniels (10) ha evaluado el mejoramiento de radiación directa que puede ser alcanzado por este método. El aumento óptico P es definido como la relación de radiación interceptado por el colector en la combinación colector-reflector a aquella interceptada por un colector solamente inclinado, para proveer incidencia solar normal en el mediodía.

La fig. 2.7 muestra el incremento de captación de radiación solar para verano que puede ser alcanzada por el uso de reflectores inclinados. Para una inclinación partícular, un pico estacional de energía colectada puede ser logrado por un pico estacional de energía demandada como se muestra. Las curvas en la figura 2.7 están calculadas a partir de analísis ópticos; los datos recogidos para este sistema (Atlanta, Georgie) indican que el rendimiento de dicho sistema ya construido es algo mejor que el calculado.

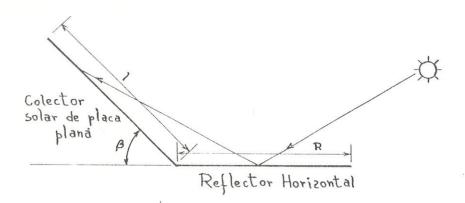


Fig. 2.6.— Superficie reflectora horizontal usada para mejorar el rendimiento de colectores de placa plana.

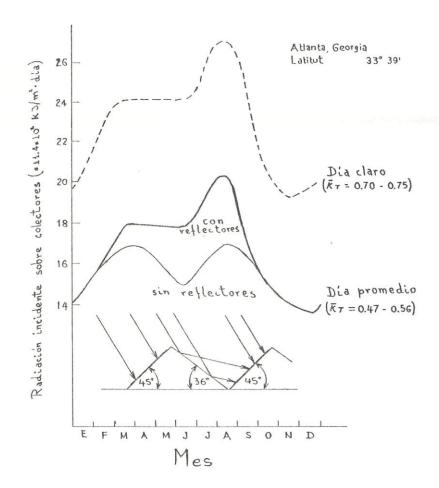


Fig. 2.7.- Efecto del mejoramiento de radiación incidente, para un arreglo de colectores de placa plana con reflectores inclinados (11).

2.5. - CONCENTRADORES ORIENTADOS INTERMITENTEMENTE.

FAMILIA DE LOS COLECTORES CONCENTRADORES PARABOLICOS COMPUESTOS (CPC).

La familia de CPC puede alcanzar en la práctica los términos más altos de relación de concentración como lo permita las leyes de la física. La mayoria de los otros concentradores decrecen un poco del límite ideal por un factor de dos o más. Estos colectores CPC son, o de curvatura simple o compuesta y estan caracterizados por la más alta concentración permitida para un angulo de aceptancia dado. Puesto que la curvatura compuesta en los CPC requieren casi seguimientos continuo en valores utiles de la relación de concentración, los dispositivos de curvatura simple requieren unicamente periodicos movimientos.

La fig. 2.8 muestra un esquema de sección transversal del concepto original de CPC. La figura está formada de dos segmentos parábolicos, donde los focos de cada parábola están localizados en los puntos extremos de la superficie receptora. Los ejes de los segmentos parábolicos y el eje del CPC determinan el ángulo mitad de aceptancia Θ_{max} . La inclinación de las superficies reflectoras en la apertura es paralela al eje óptico del CPC.

Si el reflector es perfecto, toda la radiación que

Puesto que el CPC alcanza la máxima relación de concentración permitida por la segunda ley, tenemos:

$$RC_{\text{cec}} = 1/ \text{ sen } \Theta_{\text{max}} \tag{2.35}$$

La profundidad o altura (h), para un CPC completo está dada por:

$$\frac{h}{r} = \left(\frac{FC + 1}{2}\right)\sqrt{FC^2 - 1} \tag{2.36}$$

$$\frac{h}{a} = \frac{1}{RC} \left(\frac{RC + 1}{2} \right) \sqrt{RC^2 - 1}$$
 (2.37)

Prácticos diseños de CPC pueden ser truncados en 50% o más, para reducir el costo, afectando muy poco en su rendimiento.

2.5.1.- ANALISIS OFTICO

Un análisis óptico de un CPC es requerido. para determinar su eficiencia óptica, la cual es encontrada calculando **el número** promedio de reflexiones n que la radiación experimenta entre la apertura y el recibidor. La fig. 2.8 muestra que la radiación normal incidente en la región central de la apertura no experimenta reflexión entre la apertura y el recibidor, pero la radiación cerca a los bordes de la apertura debe experimentar una o más reflexiones. número promedio de reflexiones es parámetro importante y es definido como el promedio tomado sobre toda la radiación que entra por la apertura. La atenuación ó pérdida de radiación, en el más bajo orden en 1 - P_{m_s} es entonces:

Pérdidas por reflectividad = $1 - \rho_m^{\bar{n}}$ (2.40) donde ρ_m : reflectividad especular del espejo (valor constante).

El número promedio de reflexiones (\bar{n}) , depende del ángulo de incidencia (i), profundidad del colector (h) y relación de concentración (RC).

Puesto que los colectores CPC son muy profundos, los diseños más prácticos son

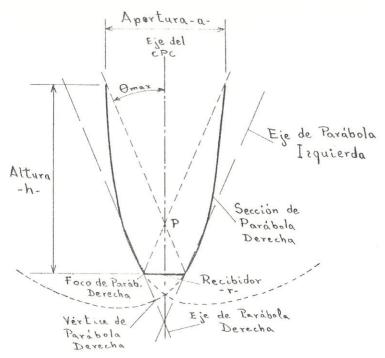


Fig. 2.8. - Sección transversal de un CPC

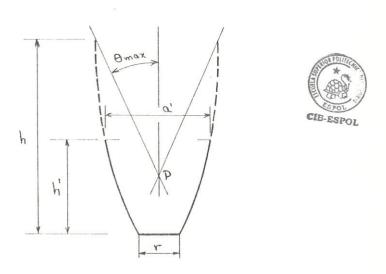


Fig. 2.9.- CPC truncado tal que su relación altura/apertura es casi la mitad de la de un CFC completo.

usualmente truncados en su altura, por una mitad o más, a fin de reducir el costo de la superficie reflectiva y para reducir las dimensiones físicas a niveles aceptables.

En el CPC truncado mostrado en la fig. 2.9, la línea de trazos muestra el desarrollo de la imagen para el concentrador truncado. El truncamiento no afecta al ángulo de aceptancia pero si cambia la relación de altura a apertura, la relación de concentración y el número promedio de reflexiones. Los efectos del truncamiento son mostrados de diferente manera para CPC ideales, en las figuras 2.10 a 2.12. En la figura 2.12, si \bar{n} está bajo la curva de \bar{n}_{min} , entonces \bar{n} es al menos 1-1/RC'. Donde RC' es la nueva relación de concentración.

Estas figuras muestran que se puede conseguir simultáneamente, un apreciable truncamiento y un ahorro en el costo, sin significativa degradación del rendimiento. La tabla 2.5.1 muestra el número promedio de reflexiones sobre varios ángulos de incidencia (en el plano transversal) i $<\Theta_{max}$ y sobre el área de apertura completa para algunos valores de ángulos de

completa para algunos valores de ángulos de aceptancia de CPC, tanto para CPC completos como truncados.

Asi por ejemplo, para $\Theta_{max} = 36$

RC = 1/sen 36° = 1.70; h/a = 1.09, una reducción en la altura h del 44%, representa una reducción del 60% en la relación altura/apertura, y causa apenas una reducción de RC de alrededor de 6%(RC=1.6), mientras que reduce el número promedio de reflecciones en un 30% (ñ=0.42).

Si un colector CPC va a ser usado a lo largo de todo el año, ajustes de su inclinación (β) son requeridos periódicamente para localizar al sol dentro del ángulo de aceptancia. La frecuencia de

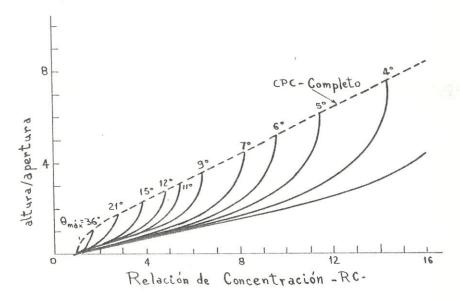


Fig. 2.10.— Relación de altura a apertura para CPC, completos y truncados en función de RC y θ_{max} (12).

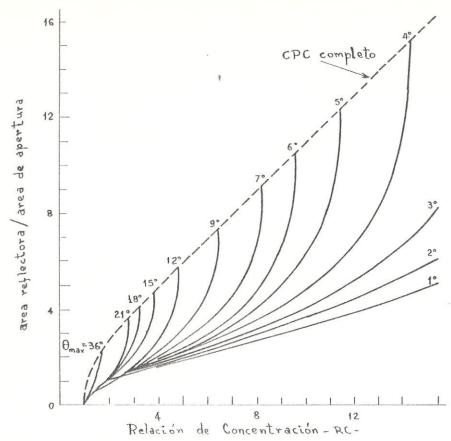


Fig. 2.11. - Relación de áreas reflectora a apertura para CFC. completos y truncados.

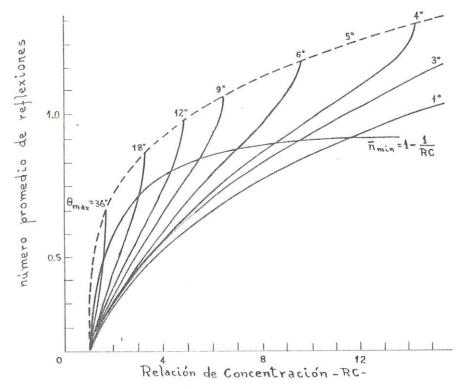


Fig. 2.12.- Número promedio de reflexiones experimentadas por la radiación dentro del Ángulo de aceptancia para alcanzar la superficie absorvedora de CPC completos y truncados. (12)

ajustes de inclinación depende del número de horas de colección por día (nm). Esta importante cantidad puede ser calculada de los resultados de Rabl (1975) (13), quién mostró que:

$$t_g(\theta_{\text{max}}\frac{\delta_s}{|\delta_s|} + L - \beta) = \frac{t_g \delta_s}{\cos w_* t_c}$$
 (2.41)

donde :
$$W = \pi/12 \text{ hr}$$
 (2.42)

$$n_{n}=2*t_{n}$$
 (2.43)

2.5.2. - ANALISIS TERMICO

Para determinar el balance de energía de un colector CPC todos los flujos de calor importantes deben ser calculados de acuerdo a los principios básicos de transferencia de calor. Se requieren entonces algunos balances de calor para el absorvedor, la cubierta de la apertura (asumida de vidrio) y el fluido de transporte.

Nueve consideraciones macroscópicas de flujo de calor, todas basadas sobre una unidad de Área absorbedora A., son consideradas en el análisis térmico de un CPC (1):

1.- Radiación solar directa absorbida por

la cubierta de la apertura, directa e indirectamente después de la reflexión desde la envoltura. q_{b,r} (región de longitud de onda solar).

$$q_{b,r} = I_{b,c} \gamma_a(i) \beta_m^{\bar{n}} \ll_r \left(1 + \beta_m^{\bar{n}} \beta_r \beta_a\right) A_a / A_r \qquad (2.44)$$

2.- Radiación solar directa absorbida por la cubierta de la apertura, directa e indirectamente después de la reflexión desde el absorbedor. que (región de longitud de onda solar).

$$9_{b,a} = I_{b,c} \left[\propto_a(i) + 7_a(i) \beta_m^{2n} \beta_r \propto_a \right] A_a / A_r \qquad (2.45)$$

3.- Radiación solar difusa absorbida por el recibidor. que la longitud de onda solar). Asumiendo que la radiación difusa aceptada, es igual a la radiación ción difusa incidente dividida por RC.

$$q_{d,r} = I_{d,c} \cdot \overline{J_a} \cdot p_m^{\bar{n}} \cdot \ll_r \tag{2.46}$$

4.- Radiación solar difusa absorbida por la cubierta de la apertura. q_{d,a} (banda de longitud de onda solar).

$$q_{d,a} = I_{d,c} \approx_a A_a / A_r \qquad (2.47)$$

5.- Intercambio radiactivo entre el recibidor y la cubierta q.,. (banda de longitud de onda infra-roja).

$$q_{i,r} = \epsilon_{eH} \cdot \nabla \cdot \left(T_r - T_o^{i}\right) \tag{2.48}$$

6.- Intercambio radiactivo entre la cubierta y el medio ambiente. q_{c.1.0} (banda de longitud de onda infra-roja).

7.- Intercambio convectivo entre el recibidor y la cubierta, q_{e,ra}.

$$Q_{e,rm} = h_{e,rm} (\tau_r - T_m)$$
 (2.50)

8.- Pérdidas convectivas desde la cubierta hacia el medio ambiente (e). q_{e.e}.

 $q_{e,e} = h_{e,e} (T_{e} - T_{\infty}) A_{e} A_{r} \qquad (2.51)$

9.- Calor útil extraido. qu

donde:

I_{b,c} = radiación directa incidente sobre un colector plano.

 $I_{a,a} = radiación difusa incidente sobre$ un colector plano.

i = Angulo de incidencia.

Telelo = temperatura efectiva del cielo para radiación.

he, ...; he, em = coeficientes de convección.

 p_{r} , p_{a} = reflectividades del recibidor y cubierta.

La transmisividad de la cubierta dependiente del ángulo i, $\mathcal{T}_{\mathbf{a}}(i)$, y absortividad $\mathbf{a}_{\mathbf{a}}(i)$ para radiación solar directa son calculadas de las ecuaciones de Stokes. Los valores de transmisividad y absortividad para radiación difusa $\mathbf{a}_{\mathbf{a}}$ y $\mathbf{a}_{\mathbf{a}}$ son asumidas independientemente del ángulo. El coeficiente de convección $\mathbf{a}_{\mathbf{a}}$ dentro del

recinto del CPC no ha sido medido. Este puede ser estimado para convección libre, haciendo correlaciones para superficies planas.

La pérdida de calor a través de las paredes laterales e inferior del colector y absorvedor pueden reducirse considerablemente por medio de un apropiado aislamiento, entonces este flujo de calor puede ser ignorado en este primer análisis.

Las ecuaciones de energía para estado estacionario, relacionan la energía de entrada en términos de pérdidas y de la energía útil de salida del colector. Las cantidades desconocidas en las ecuaciones de energía son qu, Try Ta, para las que hay tres ecuaciones a ser resueltas simultáneamente.

La ecuación de conservación de la energía para el absorvedor (RECIBIDOR) es:

 $q_{B,F} + q_{d,F} = q_{G} + q_{E,F,A} + q_{E,F}$ La ecuación de la conservación de energía para la cubierta es:

q_{b,a}+q_{d,a}+q_{d,r}+q_{e,ra}=q_{e,d}=q_{e,o}+q_{e,o} (2.53)

La ecuación de energía para el fluido de

$$h_{\Phi} - h_{\star} = q_{\omega} * A_{F} / \dot{m}$$
 (2.54)

transporte es $(h_o, h_i = entalpia)$:

donde m: flujo másico del fluido.

Un análisis de magnitudes obtenidas (Kreider, 1975), mostró que la resistencia ofrecida a la transferencia de calor por vapor o agua en la superficie interior y en la pared del absorvedor fue de un orden más alto que la resistencia en la superficie exterior. Consecuentemente, las temperaturas del fluido y del absorbedor son iguales en los ordenes más bajos. Las ecuaciones del balance de energía son resueltas de una manera iterativa simultánea para calcular T_m de la ecuación 2.53, qu de la ecuación 2.52 y h_o (ó $T_{f,out}$) de la ecuación 2.54. Esta técnica iterativa debe ser continuada hasta que $T_{\mathbf{a}}$, q_{ω} y $h_{\mathbf{c}}$ (ó T_{f,aut}) sean conocidos a los niveles requeridos de precisión. Donde T_{f.out} es la temperatura de salida del fluido.

La eficiencia instantánea del colector $oldsymbol{\eta}_{=}$ es definida como la salida del sistema dividida para la radiación incidente:

$$\eta = \frac{q_{ik} * A_{r}}{A_{ik} (I_{b,e} + I_{d,e})}$$
 (2.55)

El análisis detallado anteriormente puede ser expresado en forma más simple por analogía con la formulación de Hottel-

Whillier-woertz-Bliss (HWWB) (1), usada para colectores de placa plana. La energía útil ganada por unidad de Area del absorbedor puede ser expresada como:

$$q_{u} = \left[Rc \cdot T_{a}(c) I_{b,c} + \overline{T}_{a} \cdot I_{d,c}\right] \rho_{m}^{\overline{n}} \cdot \alpha_{r} - U_{c} \left(T_{r} - T_{\infty}\right)$$
 (2.56)

Esta expresión simplificada asume que la absortibidad del recibidor para radiación difusa y directa es independiente del ángulo y que todos los términos de pérdida de calor pueden ser expresados como una cantidad $U_{-}(T_{-}-T_{\bullet})$.

La eficiencia instantánea de un CPC puede también ser expresada en forma simplificada, asumiendo a la transmitancia de la cubierta independiente del ángulo.

$$\eta_c = \frac{q_n \cdot A_r}{I_c \cdot A_a} = \int_m^{\tilde{n}} \cdot \mathcal{T} \cdot \alpha \cdot S - \frac{U_c(\mathcal{T}_r \cdot \mathcal{T}_{\infty})}{Rc \cdot I_c}$$
 (2.57)

donde las propiedades de directa a difusa de la radiación solar local, están contenidas en el parámetro de radiación interceptada 6, definido como:

$$\delta' = \frac{I_{b,c}}{I_c} + \frac{1}{Rc} * \frac{I_{d,c}}{I_c}$$
 (2.58)

Aunque la ecuación 2.57 es similar en apariencia a la formulación HWWB, la eficiencia óptica $\int_{\mathbf{m}}^{\mathbf{n}} \mathcal{T} \propto \mathcal{S}'$ en este caso no es simplemente un parámetro del colector independientes de sus condiciones de operaciones. La eficiencia depende de la

relación de radiación de difusa a directa. El orden de magnitud de la eficiencia óptica η_{ullet} de un típico colector CPC es:

$$\eta_0 \approx \beta_m^{\bar{n}} \left(T + \alpha \right) \delta'$$
(2.59)

Este valor de eficiencia es menor que el de los colectores de placa plana, así el dispositivo CPC es menos efectivo a valores bajos de Δ T/Ie, donde la eficiencia óptica es importante. A temperaturas elevadas el CPC usualmente tendrá la ventaja a causa de la reducción de pérdidas térmicas.

La ecuación 2.57 no puede ser usada para calcular el funcionamiento térmico de un CPC, puesto que Ue no es conocido a priori. El coeficiente de pérdidas Ue puede ser determinado por experimentación, o ya sea por mapeo de funcionamiento en un módelo computarizado basado en análisis detallados.

Unos esquemas útiles de los resultados del análisis térmico detallado anteriormente (ecuaciones 2.44 a 2.57) están presentados en las figuras 2.13 y 2.14. Los esquemas muestran el efecto del flujo másico y superficies selectivas sobre el funciona-

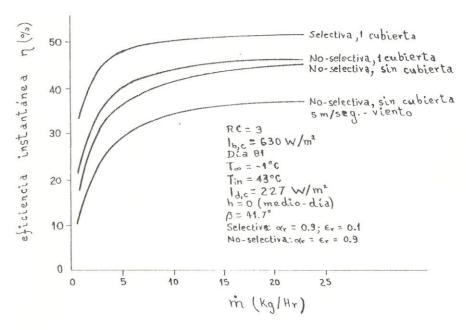


Fig. 2.13. – Eficiencia del CFC al mediodía, versus flujo másico. Fera 10^{-1} . $A_m = 0.86 \text{ m}^2$ (14).

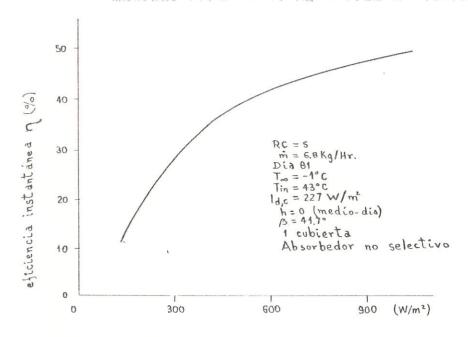


Fig 2.14.- Eficiencia del CPC al mediodía, versus radiacion directe. $A_{\pi}=0.56~\text{m}^{2}$ (14).

miento para un colector con RC = 3. El efecto de quitar la cubierta también es mostrado por ser significativo. La segunda figura muestra el efecto del aislamiento por ser importante, y como lo es con todos los colectores solares.

2.5.3.- MEJORAS OPTICAS PARA LOS COLECTORES CPC

El CPC básico mostrado en la figura 2.8 puede ser mejorado en algunas formas. Puesto que la superficie posterior del recibidor esta expuesto al ambiente, es una fuente de pérdidas de calor desde el colector. En la fig. 2.15 se muestran tres formas de eliminar las pérdidas por las superficies posteriores parásitos. El recibidor de "aleta" de la figura 2.15a es iluminado en ambos lados, con lo cual se reduce el material del recibidor a una mitad así como también se eliminan las pérdidas posteriores.

La figura 2.15c muestra un tubo circular como recibidor. Este dispositivo no tiene pérdidas traseras parásitas y es estructuralmente deseable para usarse como un soporte del colector o para confinar a alta presión el fluido de trabajo. Cualquier forma del absorbedor puede ser usada con un concentrador CPC. Cada forma del absorbedor requiere una superficie reflectora ligeramente diferente.

La sección del reflector limitada por las líneas de sombra, es la convolución de la superficie del recibidor bajo el punto de

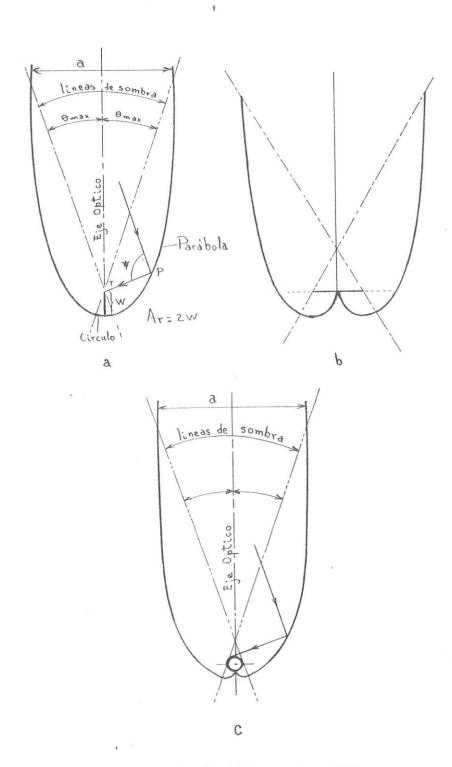


Fig. 2.15.- Diseños alternativos de CPC para reducir pérdidas parásitas por debajo: (a) recibidor tipo aleta; (b) recibidor tipo placa completamente iluminada; (c) recibidor de tubería circular(15)

tangencia de la línea de sombra. La porción superior del reflector está especificada simplemente por el requerimiento de que la normal del reflector bisecte el ángulo . Ver figura 2.15a.

Este ángulo está formado por la línea tangente al absorbedor PT y un rayo directo P incidente a θ_{max} sobre la apertura a. Esta prescripción es suficiente para construir cualquiera de los de la familia de concentradores CPC, para cualquier forma del absorbedor.

Si un reflector es acoplado a un tubo de vidrio como se muestra en la figura 2.16, ocurren dos efectos opuestos.

Primero, las pérdidas térmicas por unidad de área de apertura decrecen aproximadamente como 1/RC.

Segundo, la eficiencia óptica es reducida a causa de imperfecciones ópticas del espejo y porque algo de luz se pierde a travéz de la brecha (g) entre el recibidor y los extremos del espejo. Debe recordarse también que en todos los colectores CPC, la superficie del recibidor debe intersectar al espejo para capturar toda la luz dirigida hacia el recibidor.

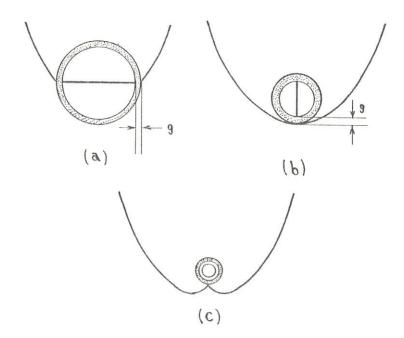


Fig. 2.16.— Ejemplos de CFC-tipo con concentradores acoplados a recibidores dentro de tubos de vidrio evacuados. Donde g, es la brecha entre el absorbedor v el espejo. (1)

2.5.4. - RENDIMIENTO DE LOS COLECTORES CFC

La eficiencia instantánea de un reflector aumentado, para un colector tubular sin aislamiento con absorbedor plano es:

$$\eta_{t,cPc} = \eta_{ot} \cdot \delta' \cdot \rho_m^{\bar{n}} - \frac{2 \cdot U_c (T_r - T_a)}{R C_{cPc} \cdot I_c}$$
 (2.62)

donde & es el factor óptico de captura y la reflectancia del espejo. El factor 2 entra puesto que el calor es pérdido desde ambos lados del absorbedor. Goodman Etal ha demostrado que para colectores como los mostrados en la figura 2.16 (b y c) está dado por:

$$\delta' = \left(1 - \frac{3}{Pr}\right) \frac{I_{b,c} + (11Rc_{crc})I_{d,c}}{I_c}$$
 (2.63)

donde p. es el perímetro del absorbedor y g es el tamaño de la brecha entre las superficies absorbedora y reflectora.

La figura 2.17 muestra la eficiencia instantánea η para colectores tubulares básicos y espejos aumentados. Los datos indican que la eficiencia puede ser doblada para un absorbedor plano evacuado a 200°C sobre el ambiente con el uso de un 3(CPC). A 150°C sobre el ambiente, un colector con recibidor-tubular realizará un 75% de incremento si es equipado con un 3(CPC)

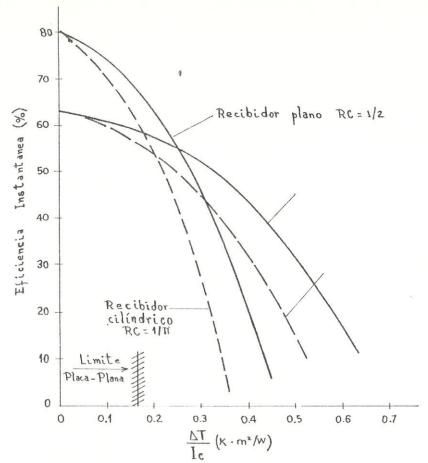


Fig. 2.17.— Curvas de eficiencias instantáneas típicas para tubos evacuados, con o sin refuerzos reflectores. $I_{c}=500~\text{W/m}^2$, RC = 3, $\delta=0.9$, $\eta_{o}=0.8$, $\eta_{e}=0.85$, $\eta_{e}=0.6$ (1).

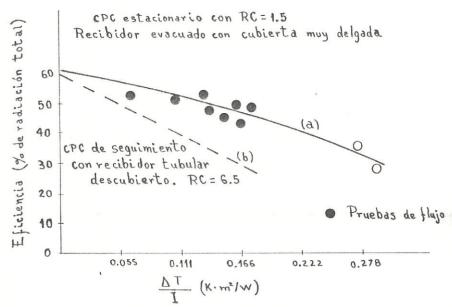


Fig. 2.18.- Datos de rendimiento térmico de

a) un CPC reforzado de recibidor tubular evacuado y,

b) un recibidor tubular sin aislamiento (1).

reforzado.

El uso de recibidores tubulares tambien ofrecen la oprtunidad de usar vidrios de transmitancia selectiva (reflectantes infrarojos tales como SnO_2 ó $\mathrm{In}_2\mathrm{O}_3$) en vez de superficies absorbedoras selectivas. La elección entre las dos opciones debe estar basada en un estudio combinado de funcionamiento térmico y económico.

DISEMO Y CONSTRUCCION DEL SISTEMA TERMICO-SOLAR

3.1. - DISEMO DEL COLECTOR

3.1.1. - PARAMETROS DE DISEMO

La geometria básica y ejes coordenados de un CPC, se muestran en la fig. 3.1. De la misma se puede deducir facilmente la ecuación de la parábola para el lado derecho. (Ver anexo Nº 1).

y = $\times^2/2r$ (leson Θ_{max}) (3.1) donde toda la radiación incidente con i $\langle \Theta_{max} \rangle$, será aceptada.

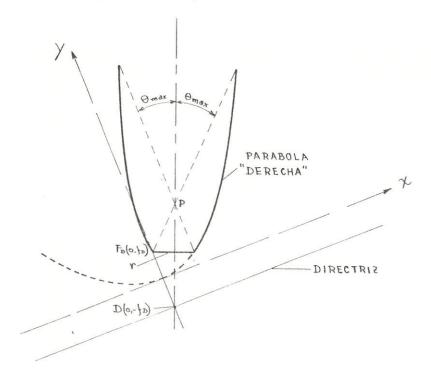


Fig. 3.1. - Geometría básica para un CPC.

Para nuestro caso, el recibidor es cilíndrico de diámetro ϕ_{-} y tiene también una cubierta cilíndrica de vidrio de diámetro ϕ_{-} Esta cubierta cilíndrica será preparada a partir de tubos fluorescentes de desecho (fluorescentes quemados) con ϕ_{int-c} =36mm longitud=1200mm y espesor t=0.75 mm. El recibidor será confeccionado de tubería de rígida de cobre.

Una relación apropiada entre los diámetros de la cubierta y del recibidor es de aproximadamente 2.5 (16), entonces:

$$\phi_c/\phi_r = 2.5 \tag{3.2}$$

Resolviendo la ecuación 3.2 tenemos:

$$\phi_{r} = \phi_{e}/2.5 = 36 \text{mm}/2.5 = 14.4 \text{ mm}$$
 (3.3)

Diámetros de tubería de cobre existentes en el mercado local:

 $\phi: 1/2" = 12.7mm$

 $5/8^{\circ} = 15.9 \text{mm}$

Queremos saber cual de estos dos diámetros se aproxima más al valor de 14.4mm, dado por la ecuación 3.3.

$$(14.4-12.7)/14.4 *100 = 11.81\%$$
 (3.4)

$$(15.9-14.4)/14.4 *100 = 10.42\%$$
 (3.5)

Entonces el diâmetro del recibidor será:

 $\phi_{r}=15.9$ mm, puesto que el porcentaje menor está dado por la ecuación 3.5.

HINTERBERGER y WINSTON (1975) demostraron que un CPC puede ser desarrollado con apertura de ancho a, la cual concentrará radiación incidente con ángulos de incidencia entre * 9 $_{max}$ sobre, cualquier recibidor convexo con circunsferencia a*sen 9 $_{max}$ (17) A objeto de seleccionar el CPC, con la ayuda de la Tabla 2.4.1, presentaremos la Tabla 3.1.1 para varios 9 $_{max}$ con sus respectivos números de ajustes por año, relación de concentración (RC), recibidor (r), apertura (a), profundidad (h) y porcentaje de reducción de Truncamiento.

RC =1/sen Θ_{max} = A_m/A_r =a*1/r*1 =a/r (3.6) y de la referencia (17), el perimetro de un recibidor tubular r es a*sen Θ_{max} , por tanto:

Para ello, recordemos que:

perimetro = $\pi * \phi_r = r = a*sen \Theta_{max}$ (3.7) donde: $r = \pi * 15.9mm = 49.95mm$, y entonces a queda determinado por la siguiente ecuación:

 $a = 49.95 \text{mm/sen } \Theta_{\text{max}} \tag{3.8}$

de la ecuación 2.36, tenemos que:

 $h = r(RC+1) \sqrt{RC^2-1} /2$ (3.9)

Es obvio que mientras más ajustes por tenga el CPC, su rendimiento será mejor, en oposición a esto, tenemos que para mayor cantidad de ajustes, la altura del CFC es demasiado grande.

Una altura moderada es 242mm, para un RC ideal de 5.24, correspondiente a un Θ_{max} de 11°, con un truncamiento del 70%.

Requerimos ahora, construir la parábola mediante la ayuda de la ecuación 3.1, donde reemplazando valores tenemos:

 $y = x^2/2(49.95)(1+sen11^9)=8.4*10^{-3}*x^2$ (3.10) Como dato adicional debemos saber el rango de la variable x (ver anexo N°.1) hasta alcanzar el valor de h = 807mm.

 $X = (r+a) \cos \Theta_{max} \tag{3.11}$

reemplazando valores tenemos:

 $X = (49.95 + 261.7) \cos 11^{\circ}$

X = 306.01mm (para CPC completo)

Puesto que CFC es truncado en un 70%, bastará tener valores hasta de $x^*=200$ mm.

A continuación se presenta el desarrollo de los puntos coordenados dados por la ecua-

La fig. 3.2 muestra el lado derecho de la parábola construída a escala y la fig. 3.3, el desarrollo del CPC-básico. La fig. 3.4 muestra la envolvente derecha de la circunferencia de diámetro r/π .

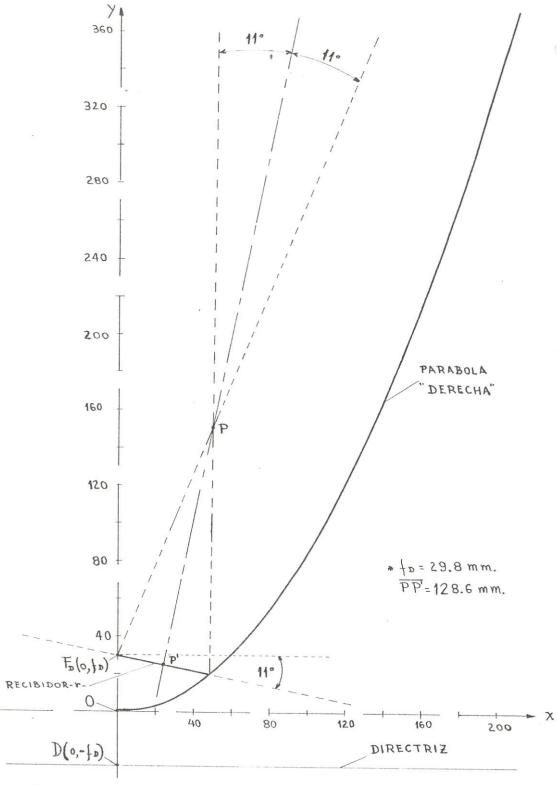


Fig. 3.2.- Gráfica de la parábola "derecha", dada por la ecuación 3.10.

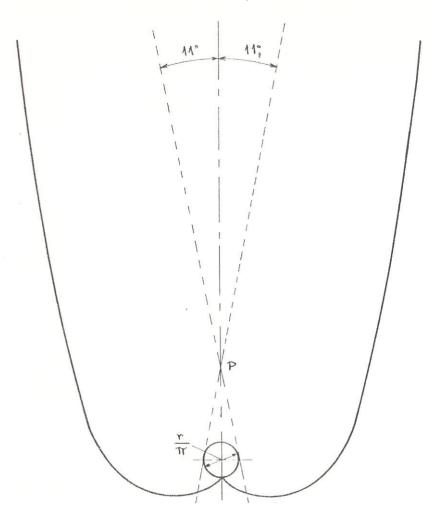


Fig. 3.3.- Desarrollo del CFC básico.

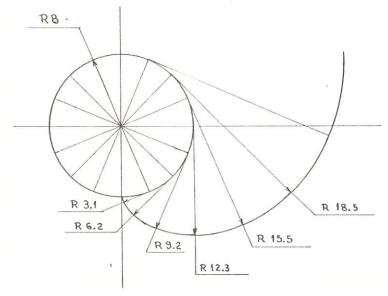


Fig. 3.4.— Desarrollo de la envolvente derecha para la circunferencia con $ot
ot=r/\pi$

Del trabajo anterior tenemos que nuestro

CPC-básico queda de la siguiente forma:

r = 49.95mm

 $\phi_{r} = 15.90 \text{mm}$

h' = 248.00mm

a' = 226.00mm

RC' = 4.52

%TR = 69.27%

Como se puede notar, RC disminuye apenas un 13.7%, y a disminuye un 13.6%. Valores que afectan muy poco el rendimiento del CPC.

3.1.2.- DIMENSIONAMIENTO

Obteniendo ya nuestro CPC básico, podemos encontrar también su perimetro, que es igual a 630mm.

Para confeccionar los reflectores del CPC, se van a usar planchas de acero inoxidable de medida standard inglesa:

4'*8' (1220*2440mm), para aprovechar todo el lado de 2440mm, hacemos un reajuste:

2440mm/4 = 610mm; así, el perímetro definitivo del CPC será de 610mm.

Por tanto el dimensionamiento del CPC-básico queda de la siguiente manera, para un perímetro de 610mm:

r = 49.95mm

 $\phi_{r} = 15.90$ mm

h' = 237.00 mm

a' = 224.00mm

RC' = 4.48

% 278 = 70.63%

El arreglo del CPC y sus dimensiones, es mostrado en la figura 3.5; para efecto de prueba, se construiran dos arreglos de CPC, cada uno de 5 tubos recibidores.

3.1.3.- SELECCION DE MATERIALES

La idea básica para la construcción de este dispositivo solar, fue usar materiales disponibles en el mercado nacional.

En base del trabajo realizado por W.C. León (18), para confeccionar los espejos del arreglo CPC, se utilizan planchas delgadas de acero inoxidable. Las mismas que presentan excelentes condiciones para trabajar a la interperie. Además tienen buena reflectividad (\mathbf{P}_m) , igual a 0.88.

Los receptores tubulares serán preparados a partir de tubería rígida de cobre. Se usará tubería rígida en vez de tubería flexible, para evitar el pandeo de la misma por efectos del calor. Nótese así mismo, que el cobre es el segundo elemento metálico de más alta conductividad térmica (k), iqual a

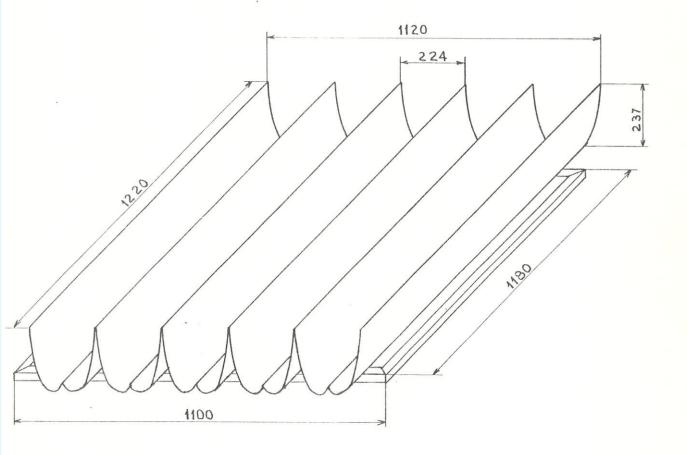


Fig. 3.5.— Dimensiones del arreglo de 5 reflectores para el colector CFC.

 394 W/meK_{*} a 100PC (19).

La superficie exterior del recibidor será cubierta de una muy fina capa de pintura negro mate, a fin de aumentar la absortividad de su superficie. Así tenemos: absortividad ($\propto_r = 0.98$);emisividad ($\in_r = 0.95$); y reflectividad ($P_r = 0.02$), puesto que para sólidos no transparentes: $\times + P = 1$, (20) Con el fin de atenuar las pérdidas, se seleccionará lana de vidrio de espesor 25.4mm, para aislar la parte posterior del arreglo CFC (Conductividad Térmica de la lana de vidrio:0.037 W/mºK). Sobre la apertura del arreglo CPC se usará una cubierta de vidrio ordinario para ventana, de espesor 4mm, para un colector y de 3mm para el otro. Para reducir las pérdidas por convección y radiación desde el tubo recibidor, se colocará alrededor de este, una cubierta tubular de vidrio claro de espesor 0.75mm y en el espacio entre el recibidor y la cubierta se prácticará el vacío.

Finalmente, para confeccionar las cajas de los colectores se seleccionará plancha de hierro galvanizado de espesor 1.3mm, por su excelente resistencia a los efectos del medio ambiente.

3.1.4.- CONSTRUCCION

Se tratará de describir el proceso de construcción de los colectores CPC en forma secuencial:

- Primeramente se procedió a la elaboración de plantillas de las parábolas compuestas del concentrador, de acuerdo al diseño realizado previamente.
- El molde de madera se preparó a partir de las plantillas, en un taller de ebanistería, y se lo armó conforme se indica en las fotos Nº 1 y Nº 2.
- El acoplamiento de las planchas de acero inoxidable de espesor 0.4mm, a la forma del molde de madera se realizó mediante prensas manuales y para conservar esta forma parábolica se colocaron por detrás de las 'planchas tres platinas de hierro de 25.4*3mm (1" * 1/8") a lo largo de cada parábola, las mismas que se unieron a las planchas mediante remaches de aluminio de ♥ 1/8". Para evitar deflexiones en la parte superior de las parábolas, previamente se realizó un doblado en "V" y se colocó un refuerzo usando varilla de acero de ♥ 4mm (5/32"). Cabe señalar que esta fase de construcción fue una de las

más complicadas, debido a que la presión sobre las planchas de acero era puntual, es decir en los sitios donde se aplicaron las prensas manuales para obtener las parábolas y esta situación dificultó obtener perfectas parábolas de acuerdo al molde. La secuencia se muestra en la figura 3.6.

estructura rectangular de hierro, sobre la que se apoyaron las platinas de los espejos. Luego de verificar que la apertura de cada CPC esté a nivel, se procedió a fijarlos en la estructura mediante soldadura por arco elcéctrico, como se muestra en la figura 3.7.Para evitar posibles flujos de aire entre dos lados consecutivos de aperturas, se procedió a rellenar este espacio con masilla epóxica. Ver foto Nº 3.

Finalmente se aisló mediante lana de vidrio de espesor 25.4mm (1"), la parte posterior del arreglo CPC. Ver Foto Nº 4.

- Para las cubiertas de vidrio tubulares,
se usó lámparas fluorescentes quemadas,
procediéndose a remover los contactos
eléctricos laterales, y abrir orificios

A efecto de obtener vacio en el interior de las cubiertas, previamente, se soldó un tramo de tubería flexible de cobre de Ø3mm (1/8") en uno de los extremos del tubo receptor y mediante un juego de manómetros y una bomba de vacío de 1/3 HP se realizó el vacío y luego de verificar estanqueidad, se hizó el respectivo sellamiento de la cañería de Ø3mm.

Como prueba, en una de las cubiertas se mantuvo la conexión de manómetros durante 48 horas, verificándose un sello hermético. Ver foto Nº 7.

Las cajas para los dos arreglos de los CPC, se confeccionaron mediante planchas de hierro galvanizado de espesor 1.3mm (1/20") y se reforzó el aislamiento tanto en las bases como paredes laterales de las cajas.

- Se utilizaron dos espesores de vidrio para las cubiertas que van en la parte superior de las cajas de los colectores, una cubierta de 3mm y otra de 4mm de espesor, ambas cubiertas, de vidrio ordinario de ventana.

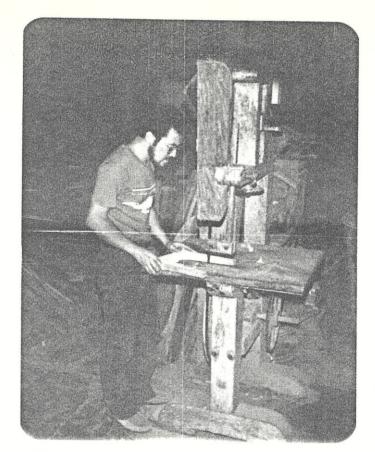


Foto Nº 1.- Elaboración de molde en madera

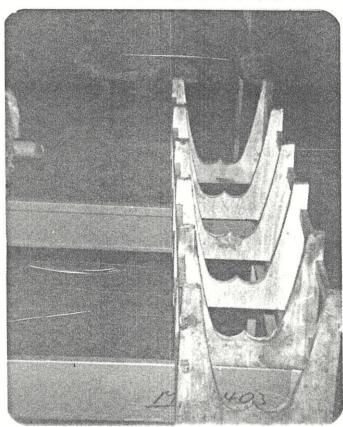


Foto Nº 2.- Armada de molde

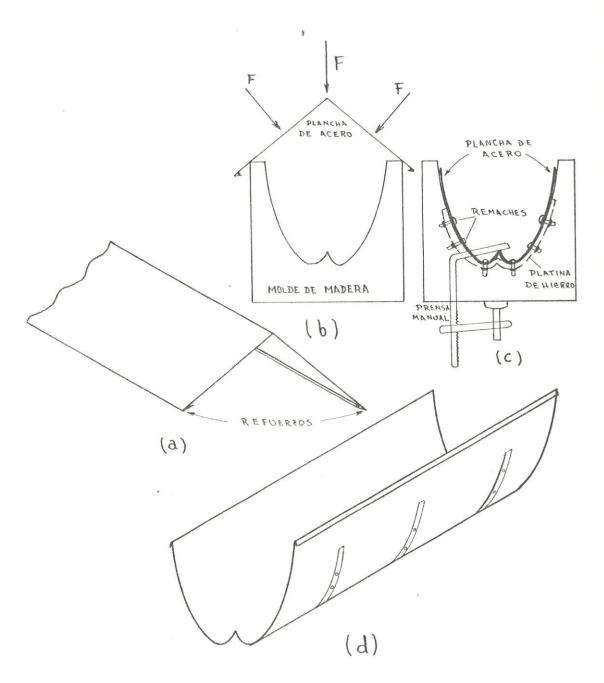


Fig. 3.6.— La figura (a) muestra la plancha de acero inoxidable doblada en "V" y los refuerzos respectivos a cada lado de la misma.(b) indica la disposición de la plancha sobre el molde de madera y las cargas aplicadas. (c) muestra el acoplamiento de la plancha sobre el molde de madera mediante la prensa normal y la fijación de la forma parábolica de la plancha mediante la platinas de hierro y los remaches (d) muestra la forma final del CFC.

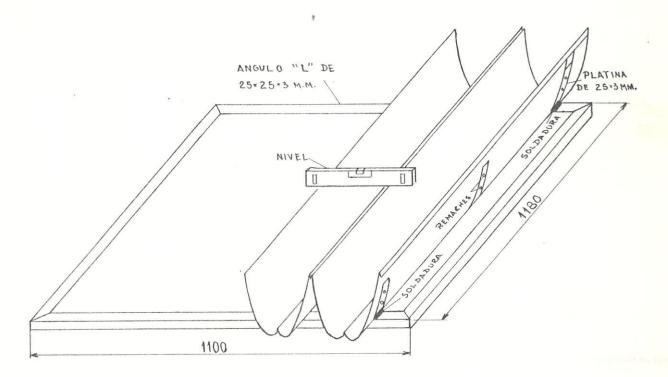


Fig. 3.7.- Estructura para arreglo de reflectores del colector.CPC.

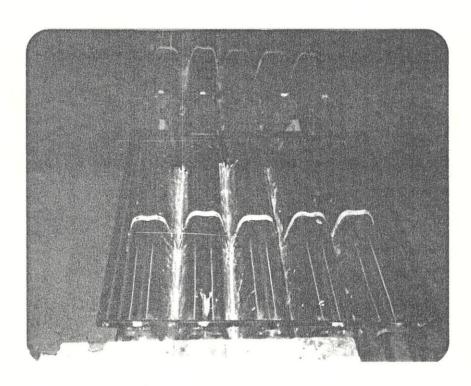


Foto Nº 3.- Sellamiento de espacio entre aperturas consecutivas.

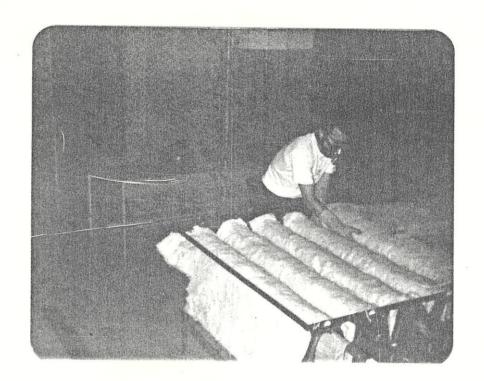


Foto Nº 1. - Mislamiento de parte posterior del CPC.

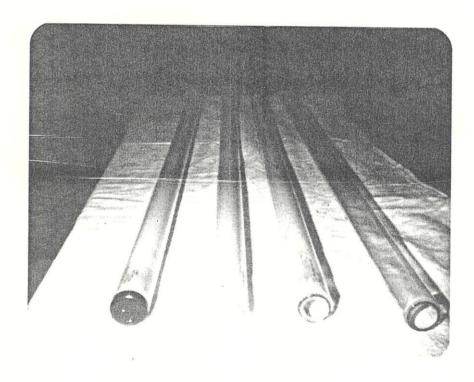


Foto Nº 3. - Preparación de cubiertas tubulares de vidrio para el recibidor

Foto No 6. - Conjunto del arreglo CPC va armado.

Foto M^o 7.- Obtención de vacío al interior **de las** cubiertas tubulares de los recibidoses.

3.2.- DISENO DEL SISTEMA TERMICO SOLAR

3.2.1. - ALMACENAMIENTO DE ENERGIA

El calor útil producido por los colectores puede ser almacenado como calor sensible o latente, ocurriendo el almacenamiento como calor latente mediante un cambio de fase o reacción quimica.

Los materiales para almacenamiento de calor sensible requieren características tales como elevado calor específico (2-4 kJ/kgr PK) y densidad, pero bajo costo, toxicidad inflamabilidad y actividad quimica.

Los materiales para cambio de fase poseen valores medios de calor específico (1-2 KJ/Kgr®K) y por tanto pueden también usarse para almacenamiento de calor sensible.

Para almacenar calor como calor sensib<mark>le,</mark> se usan materiales tanto líquidos como sólidos.

Liquidos para almacenamiento de calor sensible: el líquido más usado para aplicaciones de baja y media temperatura, es el agua. A continuación se lista una serie de ventajas y desventajas de usar agua como medio de almacenamiento:

VENTAJAS

DESVENTAJAS

- recurso abundante elevada presión de vapor
- bajo costo
- dificultad para estratificar
- no tóxica
- baja tensión superficial
- no combustible
- no corrosivo .
- no exelentes pro- se congela y la exporte
 - piedades de trans- pansión puede dañar
- oecifico
- elevado calor es- entrega de energía no isotérmica
- elevada densidad
- control de corrosión fácil de aplicar

Para aplicaciones de temperatura superiores a los 100°C, generalmente se usan substancias orgánicas de menor densidad y calor específico que el aqua, puntos de ebullición superiores a los 100°C y alta inflamabilidad. Obviamente la razón de su uso, es el hecho de que dichos fluídos pueden almacenar importantes cantidades de energía por unidad de volumen, precisamente debido a sus mayores temperaturas. La Tabla 3.2.1 muestra la propiedades térmicas de algunos líquidos usados.

Sólidos para almacenamiento de calor sensible: estos sistemas de almacenamiento están formados por partículas de tamaño uniforme que a la vez actúan como medio de almacenamiento y como intercambiador de calor, hecho que significa economía al ahorrar el costo de un intercambiador separado. Además, este almacenamiento en fase sólida produce estratificación de temperatura la cual es bastante deseable. Dicha estratificación se debe al pobre contacto térmico entre partículas. No es económico usar una sola masa grande de un material sólido para almacenamiento de calor sensible, porque tiene una baja relación de superficie o volumen, y la transferencia rápida de calor desde o hacia el almacenamiento se dificultad para diferencias pequeñas de temperaturas. El almacenamiento en fase sólida tiene la ventaja sobre el en fase líquida, en el tamaño de rango de temperatura de almacenamiento. Dado que materiales sólidos no se funden facilmente, pueden ser usados con altas temperaturas. La Tabla 3.2.2 muestra las propiedades térmicas de algunos materiales sólidos, donde el producto densidad-calor específico es importante para evaluar la densidad de energía almacenada; y de las Tablas 3.2.1 y 3.2.2 se observa que el producto más alto para materiales sólidos es el del hierro (3567 KJ/m³ oK), el cual se aproxima al nivel de densidad de energía del agua (4200 KJ/m³ °K), que a su vez es el producto más alto de los materiales líquidos.

Como fluído de trabajo para las pruebas realizar, con los colectores CPC se escogió el agua por su alto valor de calor específico y por ser el elemento de más fácil y barata obtención.

3.2.2.- ANALISIS TERMICO DEL SISTEMA

La interacción entre cada uno de los componentes del sistema solar, ademas del clima y la demanda de energía, determinan la cantidad de energía útil a ser entregada por el sistema global. Como ejemplos de esta interacción tenemos que la energía entregada por un colector depende de su temperatura de operación, la cual a su vez es función de la temperatura del almacenamiento; igualmente la temperatura del almacenamiento es a su vez determinada por el efecto neto entre la energía extraída, suministrada y energía de entrada al sistema de colección. El sistema térmico solar: todo sistema solar consta de cinco componentes básicos. Ver

figura 3.8.

1.- Colector

2.- Sistema de almacenamiento térmico

3.- Sistema de distribución

4.- Controles

5.- Sistema auxiliar de suministro de energia

El sistema de control debe permitir que el fluído de trabajo circule a través del colector, cuando este se halla a temperaturas mayores que la temperatura del almacenamiento para hacer de valor la energía colectada; y por ello el sistema de control actúa también sobre la fuente auxiliar de energía.

El grado de confiabilidad deseado de un proceso solar, para satisfacer cierta carga puede ser logrado con una combinación del tamaño del colector la unidad de almacenamiento y la fuente auxiliar de energía. El sistema auxiliar es necesario para proveer alta confiabilidad y evitar el sobredimensionamiento del sistema.

Puesto que el interés del presente trabajo es probar al equipo con agua y solamente con la energía solar disponible se trabaja-rá unicamente con un sistema de calenta-

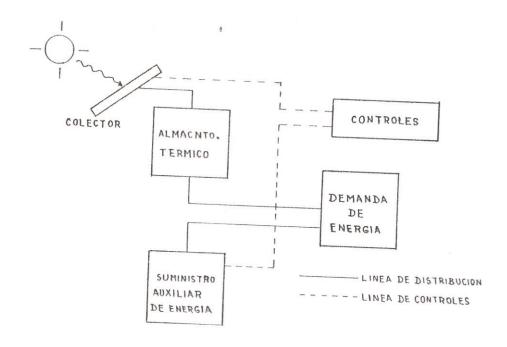


Fig. 3.8. - Componentes del sistema térmico-solar.

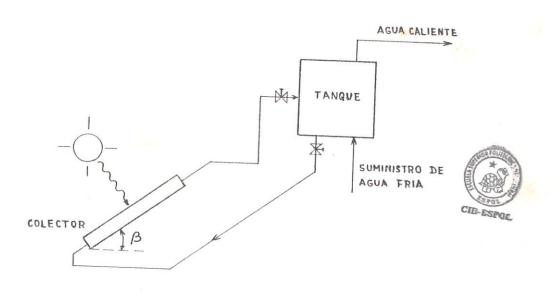


Fig. 3.9.- Calentador de agua mediante circulación natural.

miento de agua mediante circulación natural o termosifón.

Calentamiento de agua mediante circulación natural: la figura 3.9 muestra un sistema de circulación natural, el tanque está ubicado en un nivel superior al colector y el agua circula por convección natural cuando la energía solar en el colector agrega energía al agua en un extremo del colector y así se estabiliza por diferencias de temperaturas.

Es ventajoso mantener la estratificación de temperatura en el tanque de almacenamiento. Tanques sin desviadores se estratifican en algún grado en circulación forzada si las velocidades de entrada y salida no son muy altas. Estos tanques deben estar bien aislados al igual que las tuberías.

La circulación natural ocurre cuando el colector que se encuentra inclinado un ángulo $oldsymbol{eta}$, se calienta lo suficiente para establecer una diferencia de densidades del fluído entre el colector y el tanque incluído su línea de alimentación al colector. La diferencia de densidad es función de la diferencia de temperatura, y el flujo es función de la gancia útil del colector, la ganción de la ganción d

nancia a su vez depende de la diferencia de tempertura. Estos sistemas se estabilizan por si solos, y un incremento en la ganancia produce un mayor flujo a través del colector. La capacidad del tanque de almacenamiento por unidad de área del colector de placa plana es de 50 a 75 lt/m² (7).

En el sistema por termosifón, la parte superior del colector se encuentra entre 300
y 600mm por debajo del tanque de almacenamiento y las líneas de conexión deben estar
aisladas. En la mayoria de estos sistemas
circula agua potable como fluído de trabajo
y ésta presenta el inconveniente de contener solidos que se depositan en los tubos,
reduciendo de esta manera la transferencia
de calor y la eficiencia.

3.2.3. - SELECCION DE MATERIALES

Puesto que el sistema va a trabajar por termosifón con agua como fluído de trabajo, se seleccionó un tanque de asbesto con una capacidad de 150 litros, para el almacenamiento térmico.

Para el aislamiento del tanque se seleccionó plumafón (conductividad térmica:

W/hr m²) el cual va contenido en una caja
de hierro galvanizada de espesor 1.3mm.

Para ubicar el tanque por encima del nivel de los colectores, este será colocado sobre una torre soportante construída de ángulo "L" de hierro de 19*19*3mm (3/4"*3/4"*1/8") convenientemente soldada y protegida con una capa de pintura anticorrosiva.

Para Ias líneas de conexión se usaron neplos de hierro galvanizado de \$\phi\$25mm, válvulas de cobre a fin de aislar el tanque de almacenamiento durante las noches, una llave para suministro hacia la carga de \$\phi\$12mm y una válvula de flotador para mantener el nivel de agua en el tanque. Las mangueras de conexión entre el tanque y el colector son de plástico y de tipo flexible, de \$\phi\$25mm.

3.2.4.- CONSTRUCCION

Para la confección del tanque de almacenamiento térmico, primeramente se procedió a abrir huecos pasantes en el tanque de asbesto para realizar las siguientes conexiones.

La caja del tanque, hecha de plancha galvanizada, fue dimensionada 30mm más grande por cada lado respecto de las medidas externas del tanque de asbesto para en dicho espacio colocar el aislamiento. La

caja fue armada mediante uniones remachadas. En esta caja se plantillaron los
orificios del tanque de asbesto y posteriormente se hicieron dichos orificios.

1

Una vez colocado el tanque en su respectiva caja se procedió a aislarlo convenientemente y a continuación a la colocación de los neplos de conexión y a hacer el sellamiento de los espacios entre los neplos y el tanque de asbesto, mediante empaques de caucho fijados en la pared con cemento plástico.

De acuerdo a lo visto anteriormente en este capítulo, la línea de salida del tanque al colector debe estar a un nivel más bajo que la línea de retorno al tanque, en nuestro caso esa diferencia es de 130mm.

Las figuras 3.10 y 3.11 muestran el dimensionamiento del tanque y la torre soportante respectivamente.

Las mangueras de conexión entre el tanque y el colector se acoplaron mediante abrazaderas metálicas para evitar fugas de agua.

La figura 3.12 y las fotos Nº 8 y 9, indican a su vez la disposición global del sistema.

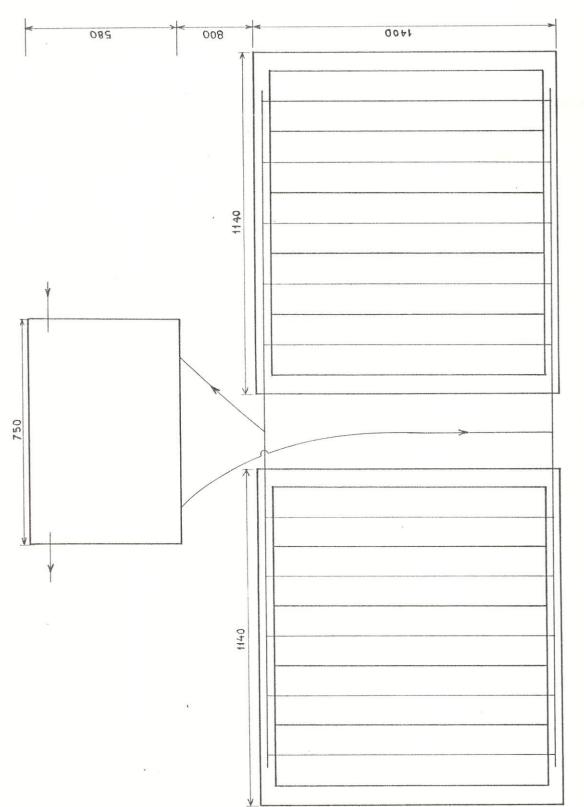


Fig. 3.12 Vista Superior de la disposicion del arreglo CPC

3.3.- ESTUDIO GLOBAL DEL SISTEMA. FUNCIONAMIENTO

En este punto nos interesa optimizar el funcionamiento del colector CPC, esto ocurre cuando el sol está en el centro del ángulo de aceptancia y la mayoría de rayos alcanzan el absorbedor directamente. Así el flujo de energía sobre el absorbedor será la suma de esa radiación más la reflejada desde el espejo.

Si un CPC va a ser usado a lo largo de todo el año, ajustes de su inclinación eta respecto del eje Este-Oeste, son requeridos periodicamente, para localizar al sol dentro del ángulo de aceptancia. Para aplicar la ecuación 2.41 tenemos que:

L = -2.2° (latitud para Guayaquil)

 $\theta_{max} = 110$

De la tabla 2.4.1, para $\theta_{max} = 11^{\circ}$, tenemos que $n_{n} = 8.6 \text{ hr/dia y } 6$ ajustes de inclinación por año. Tomaremos $n_{n} = 8 \text{ hr}$.

De la ecuación 2.41 y reemplazando: $\cos w*t_c = \cos (15^{\circ} *8hr/2hr) = \cos 60^{\circ} = 1/2$ y resolviendo:

$$\beta = 119 \times 5_{\#} / | 5_{\#} | - 2.29 - tg^{-1} (2tg S_{\#})$$
 (3.12)

Entonces, para 8 m > 0° :

$$\beta = 8.89 - tg^{-1} (2tg S_m)$$
 (3.13)

y para 8 m < 00 :

$$\beta = -13.29 + tg^{-1} (2tg S_m)$$
 (3.14)

Para determinar las 6 inclinaciones del colector a

lo largo del affo, primeramente se elaborará la Tabla 3.3.1 en base de las ecuaciones 3.13 y 3.14 con los valores de declinación solar medios para cada mes del affo.

De esta Tabla podemos observar que el rango de variación de a lo largo del año, alrededor del eje Este-Oeste es:

Notése que los valores negativos de β , indican que el colector debe estar orientado hacía el Norte para mejorar la captación de radiacíon solar, y esto ocurre cuando las trayectorias del sol de Este a Oeste, están sobre el hemisferio norte, los meses de Abril, Mayo, Junio, Julio y Agosto.

Podemos asumir que los meses de Marzo y Septiembre, $m{\beta}=0$, lo que a su vez indica que las trayectorias del sol están sobre la línea Ecuatorial.

Valores positivos de β ocurren para los meses de Octubre, Noviembre, Diciembre, Enero y Febrero, e indican que el colector debe estar orientado hacia el Sur, pues en estos meses las trayectorias del sol están sobre el hemisferio sur. Todo esto para observadores ubicados sobre el Ecuador.

A continuación se elaborará la Tabla 3.3.2, para 6 ajustes de inclinación por año, de acuerdo a los resultados obtenidos en la Tabla anterior .

Nótese que además de la inclinación del colector

para mejorar la captación solar, se requiere otra inclinación para obtener el termosifón, esta inclinación es fija respecto del eje Norte-Sur. Ver figura 3.13.

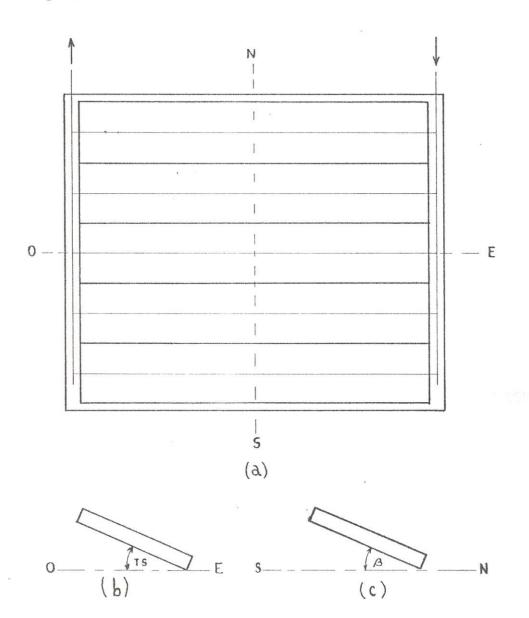


Fig. 3.13.- (a) vista superior del colector CPC

- (b) orientación del CPC para termosi-' fón, cara orientada al Este.
- (c) orientación del CPC para seguimiento al sol, cara orientada hacia el Norte (β <0°). Vista lateral.

CAPITULO 4

EXPERIMENTACION

4.1.- EQUIPO UTILIZADO

A efecto de realizar las pruebas de funcionamiento del colector solar construído, se requirió del siguiente equipo ;

- Medidor portátil de radiación solar global instantáneo, proporcionado por el laboratorio de Energia Solar de la ESPOL. Este dispositivo es analógico y presenta una escala de medición en BTU/hr-ft², para obtener datos en escala de Sistema Internacional, esto es watt/m², debemos multiplicar la cantidad anterior por 3.153; el rango del medidor está entre 0 y 1500 w/m². Además, previo a efectuar las mediciones correspondientes, debe tenerse el cuidado de encerar el dispositivo. Puesto que se trata de un medidor portátil, este puede ser colocado sobre una superficie horizontal o sobre una superficie inclinada, de tal manera de medir la radiación incidente sobre cualquier superficie, incluso vertical.
- Termómetro digital, marca John Fluke MFG. CO.

 INC., modelo 2165A, calibrado para trabajar con
 termocupla tipo "J" (hierro-constatan) y un rango

de medición de temperaturas entre -200 y 778°C.

Este equipo digital posee un solo canal.

Adicionalmente se requirió de unos 5 m de longitud de termocupla "J", para ubicar secciones de la misma, en los diferentes puntos de interés para el estudio del equipo solar.

- Termómetro, termómetro corriente de mercurio, para medir la temperatura ambiente.
- Brújula, para ubicar los dos arreglos CFC con la orientación correcta este-oeste.
- Nivel y graduador, para colocar los dos arreglos
 CPC con la inclinación más óptima y aceptar la mayor cantidad de radiación solar.

4.2. - METODOLOGIA PARA LAS PRUEBAS

Primero: Usando la hibida colocamos a los colectores sobre los puntos cardinales y luego con la ayuda del nivel y el graduador se calibra el mecanismo de las cruzelas para conseguir la inclinación deseada en las dos con denadas, Norte-Sur y Este-Oeste. Fuesto que la inclinación Norte-Sur es rerequerida para producir el flujo por termosifón, la inclinación para esta orientación variará entre los 10 y 15°, y se puede indicar que esta permanecerá constante. La orientación Este-Oeste en cambio variará en el transcurso del año, entre los valores méximos de ±30°, según lo estudiado en la sección 3.3, a fin de seguir el "movimiento relativo del sol" y captar la mavor cantidad de radiación solar a través de la apertura.

Segundo: La figura 4.1 indica los sitios donde se colocaron las termocuplas.

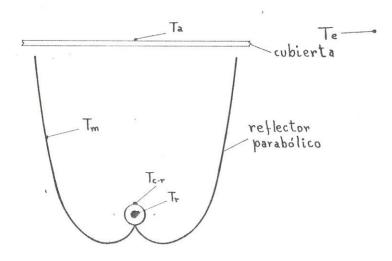


Fig. 4.1. - Ubicación de las termocuplas

Tercero: Usando el medidor de radiación solar se realizan las lecturas requeridas para el estudio del sistema.

A continuación se presenta la símbología para los datos tomados:

 T_{r-1} : Temperatura del recibidor a la entrada del fluido de trabajo al colector.

Tr-o: Temperatura del recibidor a la salida del fluido de trabajo.

Te-r : Temperatura de la cubierta tubular.

Ta : Temperatura de la cubierta en la apertura del colector.

T_m : Temperatura de la placa reflectante parabólica.

T. : Temperatura del agua de almacenamiento.

Te : Temperatura del medio ambiente.

I_{b.} : Componente directa de la radiación solar sobre el colector inclinado.

Ia,c: Componente difusa de la radiación solar incidente.

 $I_{ au, au}$: Radiación solar global sobre la superficie inclinada.

 $I_{ au,-}$: Radiación solar global sobre una superficie horizontal.

TS : Angulo de inclinación del colector para la orientación N-S.

 $oldsymbol{eta}$: Angulo de inclinación del colector para la

Donde la temperaturas están en °C, la radiación en W/m² y los ángulos de inclinación en grados.

Debe remarcarse en este punto, la versatilidad del medidor portátil de radiación solar, pues con él hemos hecho tres mediciones básicas instantáneas, una fue la radiación global sobre una superficie horizontal, otra, la radiación difusa, que se consigue colocando una tira de sombra sobre la fotocelda sensora del medidor, y la radiación global sobre la superficie inclinada del colector a un ángulo TS (para circulación por termosifón), se consiguió colocando el medidor a ese ángulo TS de inclinación.

4.3.- DATOS OBTENIDOS

Usando la metodología descrita anteriormente, los datos obtenidos se expondrán por cada día de pruebas, entre las 8 y 16 horas, es decir para 8 horas de funcionamiento. Las lecturas se tomaron a intervalos de una hora (9 lecturas). La masa de trabajo es agua potable. Al pie de cada Tabla de Datos se indica cada una de las inclinaciones respecto de los ejes N-S y E-O, así como la cantidad de agua usada para cada prueba.

4.4.- COMPARACION TEORICO-EXPERIMENTAL

En base al analísis térmico realizado en el Capítulo 2, se va a comparar los resultados experimentales con los resultados esperados para un CFC ideal.

Para ello se seguirá el siguiente procedimiento:

- -Tomaremos como dato de la Tabla 4.3, la temperatura del recibidor a la entrada del fluido de trabajo $(T_{r,t})$.
- -Asumimos una temperatura para el recibidor a la salida del fluído de trabajo (T_{res}) , Entonces : $T_{rr} = (T_{res} + T_{res})/2 \tag{4.1}$
- -Con este valor de T, y mediante la ecuación 2.53, calculamos la temperatura de la cubierta en la apertura $(T_{\bf a})$.
- -Con T_{r} , T_{a} y mediante la ecuación 2.52, calculamos el calor útil extraído del colector CPC (g_{a}).
- -Finalmente de (1) asumimos que para agua, las temperaturas del fluído y del absorbedor son iguales, esto es, $T_{fo} = T_{ro}$, y mediante la ecuación 2.54 calculamos T_{ro} , para compararlo con el valor asumido de T_{ro} y siguiendo este proceso iterativo, hasta alcanzar un nivel de precisión aceptable.

Para poder usar la ecuación 2.54 debemos asumir un valor para el flujo másico (m) por termosifón, puesto que este parámetro depende de muchos-

factores y es dififil de obtener. Morrison y Ranatunga (1979) midieron la velocidad del flujo en un colector operado por termosifón, usando un sistema de "Anemometro Doppler Láser" (19); la figura 4.2, muestra la variación de flujo de agua por termosifón durante un día claro.

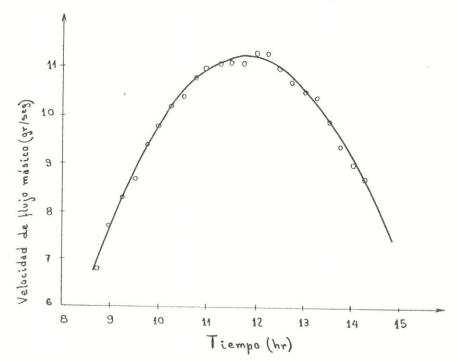


Fig. 4.Z.- Variación del flujo de agua por termosifón.

Para usar las equaciones anteriormente descritas, debemos calcular previamente algunos valores tales como: $T_a(i)$; $\prec_a(i)$; \overrightarrow{T}_a ; $\overrightarrow{\prec}_a$; $\gamma_{m^{25}}$; T_{ciclo} ; $h_{c,ca}$ y $h_{c,ca}$.

Adicionalmente sabemos que:

- absortividad de superficie receptora : $\alpha_r = 0.78 (20)$

emisividad de superficie receptora :

$$\epsilon_r = 0.95 (20)$$

- reflectividad de superficie :

$$P_{r} = 0.02 (\alpha_{r} + P_{r} = 1)$$

- emisividad de cubierta en la apertura :

$$\epsilon_m = \epsilon_{m,tr} = 0.88 (30)$$

- reflectividad del espejo del CPC :

$$P_{m} = 0.88 (18)$$

- de la sección 3.1.2, sabemos que RC'= 4.48 y con la ayuda de la figura 2.12 vemos que el número promedio de reflexiones será al menos 1- (1/4.48).

Esto es n = 0.77

- puesto que los valores de transmisividad y absortividad para radiación difusa $\tilde{\mathcal{T}}_*$ y $\tilde{\mathcal{A}}_*$ están asumidos independientemente de los ángulos de incidencia y refracción i y θ_- ; los valores $\tilde{\mathcal{T}}_*$, $\tilde{\mathcal{A}}_*$ y \tilde{P}_* se tomarán como la media de los valores \mathcal{T}_* (i), \mathcal{A}_* (i) y P_* (i) para cada día de pruebas.
- Para hacer la comparación teórico-experimental, tomaremos el día de Abril 15/87, que corresponde al día-número del año-n= 90+15, y 8, = 9.41°. Latitud para Guayaquil, L= -2.2°. Nótese que la ecuación 1.18 es similar para nuestros dos casos de estudio:

- a) a, = 0° y $oldsymbol{eta}$ > 0°, o sea, colectores orientados hacia el Sur.
- b) a = 180° y β < 0°, colectores orientados hacia el Norte.

Entonces de la ecuación 1.18, vemos facilmente que:

i = cos'[sembs(semb:cosp-cosp-cosp)+cosbs:coshs(cosb-cosp+semb:semb)] (4.2)

Donde requerimos determinar la variación de i en el transcurso del día. Esto es que para un día dado, todas las cantidades de la ecuación 4.2 son constantes, excepto ha que varia para cada hora del día, por lo que esta ecuación puede expresarse de la siguiente forma, para un día determinado i(ha) = cos [sembs(semb:cosp-cosb:semb)+cosbs:coshs(cosb:cosp+semb)] (4.3) donde 8 a, L y 8 son constantes.

Para esta primera parte, presentaremos un cuadro con los siguientes valores: hora, ángulo horario ha, ángulo de incidencia i, reflectividad, transmisividad y absortividad de la cubierta dependientes del ángulo i, $P_{\alpha}(i)$, $T_{\alpha}(i)$ y α α (i) respectivamente; y finalmente los valores promedio para el día considerado, esto es \widetilde{P}_{α} , \widetilde{T}_{α} y $\overline{\alpha}$.

Para ilustrar la secuencia de cálculos, se realizará la primera iteración para las O8hOO del 15 de Abril del 87.

A.- Cálculo de i(h.,), $\gamma_{\infty}(i)$, $\rho_{\infty}(i)$ \vee $\alpha_{\infty}(i)$:

De la ecuación 1.1, calculamos la declinación solar $\delta_{m,\tau}$ para n=105:

Sm = 9,410,

Debemos determinar también el ângulo horario solar $h_{m,\nu}$ para las O8hOO:

 $h_m = (3609/24)*(8/2) = 609$

Tomaremos el colector N°1 con un angulo de inclinación $oldsymbol{eta_1=0}^{\circ}$. La ecuación 4.2 queda entonces así:

 $i(h_m) = \cos^{-1}(\sec \delta_m * \operatorname{senL} + \cos \delta_m * \operatorname{cosh}_m * \operatorname{cosL})$ (4.4)

Y reemplazando valores tenemos:

 $i(h_m=60^\circ) = 62.97^\circ$

Reemplazando i=62.97°, en la ecuación 1.12, tenemos:

0,=35.719

donde n_{-} = 1.526 (indice de refracción para interface vidrio-aire).

Puesto que la cubierta tubular del recibidor tiene apenas un espesor de 0.75mm, no consideraremos aquí sus efectos.

Con la ayuda de las ecuaciones 1.53 y 1.54, calculamos la reflectividad para una sola cubierta de vidrio, una sola reflexión $m{p}$.

$$\beta' = \frac{1}{2} \left(\beta_L' + \beta_H' \right) \tag{4.5}$$

reemplazando los valores de i = 62.97° y $\theta_{\text{r}} = 35.71^{\circ}, \text{ tenemos:}$

De las ecuaciones 1.56 y 1.58, la transmisividad para la cubierta de vidrio ${m au'}$, de espesor promedio, t = 3.5 mm y K = 0.03/mm, será:

De la ecuación 1.60, la transmisividad, $\mathcal{T}_{\infty}(i)$ para las 08h00 del 15 de Abril/87, donde $\mathcal{T}'=$ 0.8787 y $\mathbf{P}'=$ 0.1104 será:

$$\gamma_{m}(i) = 0.702$$

De las ecuaciones 1.59 y 1.60, podemos deducir que:

$$P_{a}(v) = P'\left[1 + T' T_{a}(v)\right] \tag{4.6}$$

Reemplazando valores:

$$\rho_{m}(i) = 0.178$$

Para calcular la absortividad $lpha_{_{\mathcal{A}}}(i)$, aplicamos la ecuación 1.61.

$$\ll$$
 m(i) = 0.120

En el Apéndice II, se presentan unas Tablas completas de estos valores para cada uno de los días de prueba.

B.- Cálculo de Tcielo:

De la ecuación 1.50 y la tabla 4.3.5, para el 15 de Abril/87 a las OShOO, tenemos la temperatura del ambiente, $T_{\odot} = 26^{\circ}\text{C} = 299^{\circ}\text{K}$, y Tcielo será:

Tcielo = $0.0552 \text{ T}_{4}^{1.5} = 285.49 \text{K} = 12.49 \text{C}.$

CALCULO DE TARA COLECTOR CPC, CON $\beta = 89 \text{ Y}$ TS = 159.

Asumo un valor de temperatura del recibidor a la salida del fluido de trabajo $Tr-o=92^{\circ}C$, entonces de la ecuación 4.1 tenemos:

 $T_{r} = (T_{r,1} + T_{r,0})/2 = (28 + 92)/2 = 60 \cdot 0 = 333 \cdot 0$

Para aplicar la ecuación 2.53 y encontrar Ta, previamente debemos calcular lo siguiente:

$$Q_{b,a} = I_{b,c} \left[\alpha_a(i) + \gamma_a(i) \beta_m^{zm} \beta_r \cdot \overline{\alpha}_a \right] A_a / A_r$$
 (4.7)

 $q_{b_{\pi}m} = 115.94 \text{ W/m}^2$

dandes

Aa/Ar = a*L/r*L = a/r

$$Q_{d,a} = I_{d,c} \cdot \overline{Q}_a \cdot A_a / A_r \tag{4.8}$$

9d.m = 43.95 W/m2

$$q_{i,r} = \sqrt{\left(T_r'' - T_a''\right) / \epsilon_{eff}} \tag{4.9}$$

 $q_{4,r} = (586.54 - 4.77*10^{-8} T_m^4) W/m^2$

$$Q_{C_{A}P_{A}N} = h_{C_{A}P_{A}N}(T_{P} - T_{AN}) \tag{4.10}$$

 $h_{e,ra}$: θ_{rb} evaluado a T_{r-a} = 45°C es 5.79×10°<10°, entonces de la ecuación 1.38, $h_{e,ra}$ = 8.63 w/m²°K.

Reemplazando valores, nos queda:

$$q_{e,rax} = (2873.79 - 8.63 T_{ax}) w/m^2$$

$$qcielo = \epsilon_{a,ir} \cdot \nabla \left(T_{a}^{o} - T_{cielo} \right) A_{a} / A_{r}$$
 (4.11)

 $= (2.24 \times 10^{-7} \times T_m^4 - 1483.06) \text{ W/m}^2$

$$q_{c,\infty} = h_{c,\infty}(T_{\infty} - T_{\infty}) Aa/Ar$$
 (4.12)

he, ...: Gro evaluado a \overline{T}_{a-} \sim = 30°C es 1.31×10°, y de la ecuación 1.30, he, ... = 2 w/m²

Reemplazando valores, T 👝 = 26°C

 $q_{c,\infty} = (8.96T_{\infty} - 2679.04) \text{ W/m}^2$

Recordando la ecuación 2.53 y reemplazando valores tenemos:

115.94+43.95+586.54-4.77×10-**T_**+2873.79-8.63T_* = 2.24×10-7T_**-1483.06+8.96T_*-2679.04

La ecuación ordenada queda:

$$2.71 \times 10^{-7} \text{T}_{a}^{4} + 17.59 \text{T}_{a} - 4908.53 = 0 \tag{4.13}$$

Resolviendo la ec. 4.13, mediante el método Horner: $\text{Ta} = 306.44 \text{ pk} \cong 33 \text{ pc}$

Para determinar q_{ω} , debemos aplicar la ec. 2.52. Primeramente debemos determinar los siguientes valores:

$$I_{b,c} = I_{b,c} \cdot \mathcal{T}_{a}(i) \cdot \mathcal{P}_{m}^{\bar{n}} \cdot \mathcal{A}_{r}(1 + \mathcal{P}_{m}^{\bar{n}} \cdot \mathcal{P}_{r} \cdot \mathcal{P}_{a}) \, a/r$$

$$= 632.13 \, \text{W/m}^{2}$$
(4.14)

$$q_{a,r} = I_{a,c} \cdot \overline{7}_{a} \cdot \rho_{m}^{\overline{n}} \cdot \alpha_{r}$$

$$= 65.43 \text{ W/m}^{a}$$

$$(4.15)$$

$$q_{e,rm} = h_{e,rm}(Tr - Ta)$$
 (4.16)
= 229.21 w/m²

$$Q_{\pm e^{-}} = \epsilon_{e_{H}} \cdot \nabla \left(\top_{F^{-\Phi}} - \top_{\Xi^{-\Phi}} \right) \tag{4.17}$$

$$= 165.66 \text{ W/m}^{32}$$

Reemplazando en la ecuación 2.52 tenemos:

 $q_{\rm to} = 268.90 \, \text{W/m}^2$

De la ecuación 2.54 tenemos que:

 $T_{F,co} = 28 \circ C + 6.23 \circ C = 34.23 \circ C$

Como se puede observar $T_{r,o}$ calculado está muy lejos del valor asumido de 92°C; por lo que es nece-

sario hacer una nueva iteración, asumiendo ahora un valor de $T_{r,o}=34^{o}C$. Entonces:

 $T_r = (28+34)/2 = 319C = 3049K$

Aplicando nuevamente la ecuación 2.53 obtengo:

 $T_m = 297.66$ °K = 24.66°C

y de la ecuación 2.52 obtengo:

 $q_{\rm M} = 598.30 \, \text{W/m}^2$

Y finalmente de 2.54 obtengo:

 $T_{-,o} = 42.31 \text{ °C}$

Este valor de Te,o nos obliga a hacer una nueva iteración, siendo ahora Te,o = 42.31° C, dando los siguientes valores:

 $T_{\rm ex} = 25 \text{eC}$

 $q_{\rm u} = 596.52 \text{ W/m}^2$

 $T_{m,o} = 42.2890$

Llegando así a un buen grado de exactitud, pues $T_{r,\bullet}$ asumido fue 42.31°C y el calculado es 42.28°C ; lo que representa un error del 0.07%. Entonces: $T_{r}=(28+42)/2=35^{\circ}\text{C}$

Donde Ta y Tr son las temperaturas esperadas en el colector CPC ideal para la radiación recibida el día 15 de Abril de 1987 a las 08h00. Estos calculos iterativos se realizaran para las 8 horas de funcionamiento del colector para dicho día, y en la Tabla 4.4.1 se presentan los resultados obtenidos.

La figura 4.3 muestra graficamente la variación de la temperatura del recibidor y agua de almacenamiento. Representando la linea a trazos, las temperaturas del recibidor a la salida del fluido de trabajo para el CFC ideal, y la línea contínua, las temperaturas reales; la línea punteada representa las temperaturas reales de almacenamiento. Nótese que la máxima temperatura esperada para el CFC ideal es 94°C, contra 79°C que es la real, y 65°C que es la temperatura a la entrada del fluido. Esto ocurre al medio día.

Asi mismo, incrementos ideales de temperaturas mayores a 30°C, entre la entrada y salida del fluido en el colector, ocurren entre las 10 y 13 horas, ver Tabla 4.4.2; esto se debe a dos razones:

a.- Entre estas horas, tenemos "significativas tem-

peraturas" en el almacenamiento (entre 37 y 58°C).

b.- En este lapso, una importante cantidad de radiación incide sobre el colector (1000 w/m²).

La figura 4.3 entonces nos indica que para alta radiación solar, existe una diferencia notable entre las temperaturas reales y las esperadas para el CFC ideal.

Esta diferencia puede ser acortada, aumentando la temperatura en el almacenamiento, lo que puede conseguirse, reduciendo ostensiblemente la masa de trabajo del sistema (130 Kg). Una alternativa es

colocar un intercambiador de calor dentro del tanque de almacenamiento, y conectar dicho intercambiador con la entrada y salida del fluido del colector respectivamente, sistema que tendría aproximadamente una masa de trabajo de 25 kg, de esta manera, el nuevo sistema alcanzará mayores temperaturas. Por tanto, la gran masa existente en el sistema original, es un limitante para obtener temperaturas mayores en el recibidor.

Se hizo también un cálculo estimado de temperaturas que alcanzaría el CFC ideal a la salida del colector, aumentando para ello las temperaturas de entrada al mismo. Así tenemos que para las 12h00, asumiendo $T_{r,1} = 75^{\circ}C$, tenemos $T_{r,0} = 102^{\circ}C$, y asumiendo $T_{r,1} = 85^{\circ}C$, tenemos $T_{r,0} = 110^{\circ}C$. Todo ello al mismo nivel de radiación original.

En cuanto al funcionamiento del colector, vemos que los valores de $T_{r,o}$ esperados para el CPC ideal, son superiores entre $10^{\rm o}$ C y $20^{\rm o}$ C, a los valores del CPC real. Entre otras, las razones para esta diferencia son:

a.- La forma parábolica de los espejos del arreglo

CPC, no es perfecta, puesto que su elaboración

presentó multiples dificultades y al no

ajustarse dicha forma al modelo original, las

reflexiones de la radiación incidente no

apuntaran directamente hacia el foco, sino

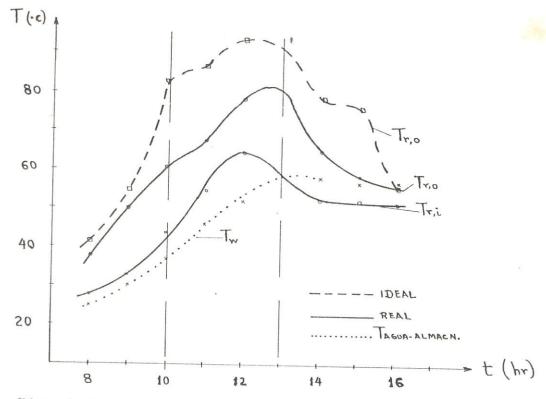


Fig. 4.3.- Variación de temperaturas del recibidor y agua de almacenamiento. (15 ABRIL/87).

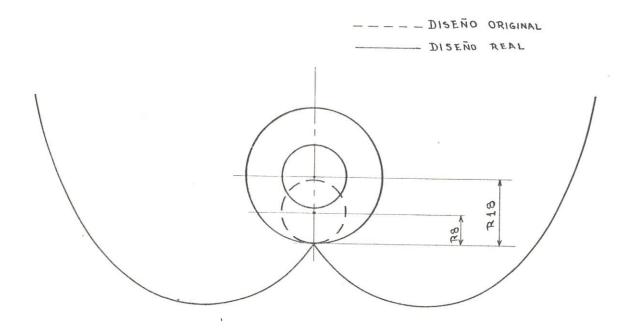


Fig. 4.4.- Diseño del recibidor tubular en el CPC básico.

hacía lugares adyacentes del mismo.

- c.- La plancha de acero inoxidable no posee las características de un espejo perfecto, sino que a nivel del mercado nacional, es el elemento que mas se le asemeja. Por ejemplo, la plancha de acero inoxidable posee absortividad, cualidad que no es propia de un espejo.

La figura 4.5 muestra la variación de temperatura de la cubierta de vidrio en la apertura del arreglo CPC, representando la línea continua las temperaturas reales, y la línea a trazos, las temperaturas ideales. Como se observa, en la apertura sucede todo lo contrario de lo observado en el recibidor, pués en este caso las temperaturas

reales son mayor or que los ideales, con una diferencia máxima de 10°C a las 12h00 (Tarreal = 58°C; Tarideal = 48°C). Esto se debe a que las planchas de acerm inoxidable que actúan como espejos poseen abenitividad, es decir se calientan, llegando inclueo a alrenzar temperaturas mayores a los 100°C en horas de alta radiación solar. A su vez, dichas planchas calientes, re-radian calor (banda de longitud) de onda infra-roja), tanto hacia el recibidor como haría la rubierta de vidrio en la apertura, aumentando de este modo la temperatura de dicha rubierta.



Fig. 4.5.- Variación de temperaturas de la cubierta de vidrio en la apertura. (15/ABRIL/87).

CAPITULO 5

EVALUACION DE PRUEBAS REALIZADAS

5.1. - ENERGIA SOLAR INCIDENTE

Es de interés para nosotros antes de realizar una evaluación de las pruebas realizadas, hacer una comparación de los datos de radiación solar incidente, obtenidos del medidor de radiación solar y los obtenidos a partir del "Método de Page" descrito en el capítulo 1.

La radiación global solar sobre una superficie horizontal, H_{h} , según la fórmula de Fage, es una función de la heliofanía, s. (s dado en horas).

$$H_{b} = H_{c} (a + b \times s/N)$$
 (5.1)

Para puntos de latitud ubicados en el Ecuador, el promedio máximo posible de horas de heliofanía se puede considerar constante; esto es: $h_{\rm Br}=90^{\rm o}$ y por tanto N=12 horas.

La radiación total sobre una superficie horizontal fuera de la atmósfera terrestre, H_{\bullet} , se cálcula a partir de la Ecuación 1.14. La misma que con el valor de $h_{\bullet r}$ = 90° y la constante solar I_{\bullet} =1353 W/m^2 , queda de la siguiente forma:

 $H_o = 10336.16 \left(1 + 0.034 \cos \frac{2 \cdot \pi \cdot n}{365}\right) \left(\cos L \cdot \cos \delta_5 + \frac{\pi}{2} \cdot \text{sen}L \cdot \text{sen}\delta_5\right) W |_{\text{m}^2} \quad (5:2)$ donde: L= -2.20 (latitud para Guayaquil)

 $\S_m = 23.45 \text{ sen}[360(284+n)/365]$

n= día del año (Abril: 90+día del mes)

Estimaremos la radiación solar global para el mes de Abril, mes que corresponde a la estación invernal. Los valores de las constantes a y b correspondientes son:

a = 0.25951

b = 0.34601

quedando la ecuación 5.1 de la siguiente manera:

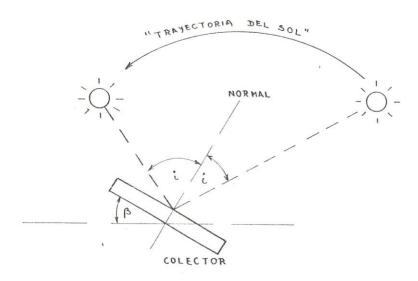
$$H_{\rm h} = (0.25751 + 288*10^{-4}*s)*H_{\rm e},$$
 (5.3)

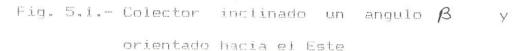
Y Ha se cálcula a partir de la ecuación 5.2.

El índice de claridad diaria $K_{\rm T}$, nos ayudará para calcular las componentes difusa $D_{\rm h}$ y directa $B_{\rm h}$, de la radiación global sobre una superficie horizontal en La Tierra.

La correlación de Liu y Jordan, para predecir la cantidad de radiación difusa $D_{\mathbf{n}}$ es:

$$D_{h}/H_{h} = 1.390-4.027K_{T}+5.531K_{T}^{2}-3.108K_{T}^{3}$$
 (5.4)


Puesto que esta correlación fue basada con un valor para la constante solar de 1394 w/m^2 , debe ser corregida para el valor de 1353 w/m^2 que es el dato más reciente, obtenido de satélites.


La componente de radiación directa $B_{\text{H}_{2}}$ se obtiene simplemente por diferencia.

$$B_{\mathbf{p}} = H_{\mathbf{p}} - D_{\mathbf{p}} \tag{5.5}$$

Finalmente con la ayuda del factor de inclinación $R_{\text{b}}, \quad \text{calculamos} \quad \text{la} \quad \text{radiación directa interceptada}$ por una superficie inclinada B_{c} .

Puesto que la cara de nuestro colector está inclinada hacia el Este, $a_{\omega} = 90^{\circ}$, el ángulo de incidencia i variará desde valores aproximados de 45⇔ a las 8h00, pasando por valores mínimos de 0°a 10°, entre las 10h00 y 11h00; y alcanzará valores máximos de 75º a las 16h00. Esto significa que durante la mañana, la radiación solar incidente sobre la superficie inclinada del colector, será mayor que la radiación sobre una superficie horizontal; y que durante la tarde, sucederá lo contrario, o sea la radiación sobre una superficie inclinada será menor. Ver figura 5.1. Esto se puede observar de las Tablas del capítulo 4. Sin embargo, considerando valores globales diarios de radiación, se observa también que la radiación global sobre la superficie inclinada es ligeramente mayor.

Es por esta razón que $R_{\rm b}$, debe ser calculado a partir de valores promedios diarios, esto es, de la ecuación 1.22:

$$R_{b} = \overline{\cos} i/\overline{\sin} \alpha \tag{5.6}$$

Entonces, la radiación total solar diaria $I_{ au}$, sobre una superficie inclinada se calculará a partir de la ecuación 1.29:

$$I_{T} = B_{c} + D_{c} + R = R_{b} * B_{h} + D_{h} * \cos^{2} \beta / 2 + H_{h} * \beta * \sec^{2} \beta / 2$$

$$(5.7)$$

donde $m{\ell}$ es el ángulo de inclinación del colector número uno e igual a 15° y es la reflectividad desde La Tierra y paredes aledañas, $m{\rho}=0.6$ (1). A continuación se presentan dos Tablas de valores, la Tabla 5.1.1 contiene los valores de heliofanía s, de radiación extraterrestre H_0 , de radiación sobre una superficie horizontal en la tierra H_n , el indice de claridad diaria K_T , y las componentes difusa D_n y directa B_n sobre una superficie horizontal, naturalmente estos datos van enfrentados, con los obtenidos del medidor portátil de radiación solar para el mes de 1987. Los valores de heliofania fueron proporcionados por el Laboratorio de Energía Solar de la ESPOL.

Una segunda Tabla presentará los datos de R_b y de radiación solar total diaria sobre una superficie inclinada $I_{\tau,\tau}$ y los obtenidos del medidor de radiación solar, para el mes de Abril (Tabla 5.1.2)

Igualmente a continuación se indica la variación del ángulo de incidencia i, en el transcurso del día 1/Abril/87.

<u>Variación de ángulo de incidencia en el transcurso</u> del dia

HORA	08100	09h00	10h00	11500	12500
Angulo de incidencia	45.38 °	30.599	16.190	6.149	16.219

HORA 13h00 14h00 15h00 16h00 17h00 Angulo de incidencia 30.61° 45.40° 60.27° 75.21° 90.17°

A continuación se hará un breve comentario de los resultados obtenidos en las Tablas 5.1.1 y 5.1.2:

- En lo que refiere a la aplicación del método de Page, para determinar la radiación global directa y difusa sobre una superficie horizontal, Hn, vemos que estos valores son menores a los medidos para cada día en alrededor de un 20%. La razón principal para que dé esta diferencia es que los valores medidos corresponden a valores instantáneos, cada hora de radiación, mientras que los valores estimados corresponden a los valores de radiación solar global diaria. De hecho el valor de helíofania, s, no es un valor instantáneo, sino más bien una cantidad que indica el tiempo en horas que brilló el sol durante un día dado.

- De acuerdo al método Page, y asumiendo que el sol brilla en la atmósfera 12 horas, tenemos que para invierno, un 60 % de la radiación extraterrestre alcanzará la superficie de la tierra; mientras que un 62%, alcanzará la Tierra en verano (para la región del Litoral Ecuatoriano). Para el mes de Abril/87, el valor más alto de radiación extraterrestre es 10261 W/m² (Tabla 5.1.1) y de acuerdo a Page, el máximo valor posible de radiación terrestre será 60% de la extraterrestre, esto es, 6214 W/m²; el valor más bajo de Hoes 9680 W/m², lo que da un Hn de 5862 W/m².

La conclusión lógica, es que el método de tomar lecturas instantáneas de radiación no es exacto, incluso vemos que este método nos lleva a un error del 20% en la medición de radiación global diaria. Lamentablemente para estas pruebas, el único instrumento disponible fue el medidor de radiación solar instantánea; a lo que hay que agregar que en cada lectura, siempre se trató de tomar los valores más altos de radiación.

- En lo que respecta a las componentes de radiación sobre la tierra difusa, D_h , y directa, B_h ; solo los valores de B_h siguen la tendencia anterior, es decir, las lecturas medidas son mayores a las estimadas, pero para D_h , sucede lo contrario. Esto se debe a que D_h calculada es aproximadamen-

te 45% de la radiación total calculada, mientras que la medida es 30% de la radiación total medida.

- La Tabla 5.1.2 compara los valores calculados y medidas, de radiación solar total diaria I_{T.T}, sobre la superficie inclinada del colector Nº 1. Como se puede notar, la tendencia de que los valores medidos son mayores a los estimados, continúa (aprox. 20%).
- En esta Tabla también se puede observar que los valores medidos de radiación sobre la superficie inclinada son ligeramente superiores a los de una superficie horizontal. Esto se debe a que la inclinación TS del colector esté orientada hacia el Este, y la radiación aumentará en la superficie inclinada hasta las 11 horas y luego decrecerá. Se puede concluir entonces, que para esta inclinación del colector, los valores de radiación serán mayores a los de una superficie horizontal cuando tengamos días claros especialmente por las mañanas; y sucederá lo contrario, cuando tengamos días claros especialmente por las tardes.

La figura 5.2 ilustra lo expresado anteriormente.

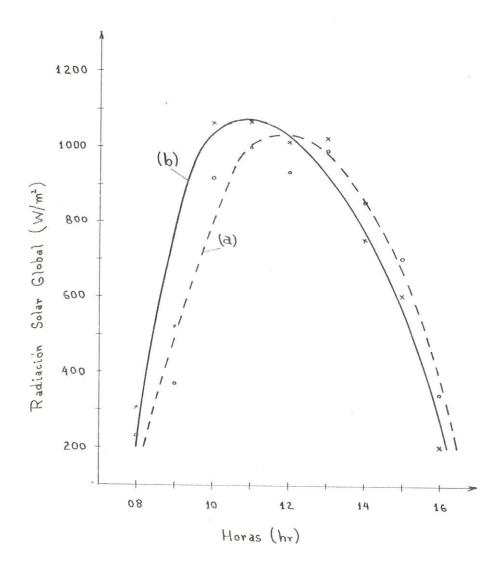


Fig. 5.2.— Radiación solar global; (a) sobre una superficie horizontal, y (b) sobre una superficie inclinada (15/Abril/87).

5.2. - ENERGIA UTIL DEL COLECTOR

La energía útil del colector, qu, se deduce haciendo un balance de energía para el absorbedor (recibidor). De la ecuación 2.52, tenemos:

$$Q_{i,i} = Q_{D_{i}}r + Q_{G_{i}}r - Q_{G_{i}}r - Q_{dr}$$
 (5.8)

Colocando el equivalente de cada término de calor y reemplazando en ellos los valores constantes, la ecuación 5.8 queda así :

$$q_{A} = 4.5(1+0.02 \times \overline{p}_{A}) \gamma_{A}(i) I_{B,C} + 0.92 \times \gamma_{A} \times I_{A,C}$$
$$- h_{C,CA}(T_{C}-T_{A}) - 4.77 \times 10^{-9}(T_{C}-T_{A}) \qquad (5.9)$$
 donde :

$$h_{\text{e,rm}} = 149.02 \text{k Pr}(T_{\text{r}} - T_{\text{m}}) (g*\beta_{\text{T}}/109*~2)$$
 24 (5.10)

y las restantes variables se encuentran ya tabuladas.

Mediante un programa sencillo para calculadora HP-34-C, se calculará la energía útil instantánea del colector para cada hora en cada día de prueba. Dichos resultados se presentan en la Tabla 5.2.1. Cabe anotar que para realizar estos cálculos, se ha hecho una consideración. Nuestro colector posee dos inclinaciones, una para lograr el termosifón y otra para mejorar la captación de radiación solar. En cambio, las ecuaciones que hemos estudiado anteriormente consideran solamente una inclinación.

Como la inclinación para termosifón es practicamente constante para todo el año, se ha asumido que esta superficie inclinada corresponde a una superficie horizontal y así se ha aplicado la ecuación 5.9. Es decir, el ángulo considerado es En la sección 4.4, al calcular las temperaturas esperadas para el recibidor, indirectamente también se calculó la energía esperada para un CPC ideal. Estos valores de energía útil tanto para el CPC ideal como para el real se muestran en la Tabla 5.2.2, todos calculados para la misma cantidad de radiación incidente, y es interesante ver en cambio, que ahora los valores del CPC real son mayores a los CPC ideal.

Esto se debe a que el factor de pérdidas (q_{e,ra} + q_{1r}) de la ecuación 5.8, está relacionado con la diferencia T_r-T_a (q_{b,r} y q_{a,r} son iguales tanto para el CPC real como ideal) y la tendencia para el CPC real es que T_r es menor y T_a mayor, con relación al CPC ideal, con lo que dicha diferencia T_r-T_a se acorta y por tanto también las pérdidas; aumentando así el valor de la energía útil real. En los cálculos del Apendice III, para las 12h00, se muestra que a medida que aumenta T_r, aumenta también la diferencia T_r-T_a, lo que significa aumento de pérdidas térmicas y disminución de energía útil. Puesto que los T_r para CPC ideal son

mayores a los del CPC real, la tendencia mencionada anteriormente debe conservarse, es decir, Tr-Ta para el CPC real debe ser menor. Nótese que esta tendencia aumenta aún más por cuanto Ta real es mayor que la calculada para el ideal, debido a la absortividad y emisividad del "espejo" del CPC real; aumentando Ta disminuye más aún Tr-Ta y de hecho las pérdidas, aumentando más todavía la energía útil.

Así pues, mientras más altas temperaturas desarrolle el CPC, mayores serán las pérdidas y menor la
energía útil. Por ello es que la energía útil del
CPC ideal es menor.

5.3.- EFICIENCIA DEL COLECTOR

La eficiencia instantánea del colector η_e , se define como la salida del sistema qu*A_r, dividida para la radiación incidente A_m(I_b,_e + I_a,_e) puesto que A_r = L*r y A_m = L*a, tenemos que:

donde r/a = 50/224 = 0.223

Puesto que se trata de valores instantáneos, estos deben ser calculados durante cada hora en cada día de prueba. Para ello recurrimos a los valores de energía útil calculados en la sección anterior y a los de radiación tomados de las Tablas 4.3.

Estas eficiencias instantáneas calculadas, se muestran en el Apendice III, y la eficiencia promedio diaria de los colectores se indica en la Tabla 5.3.1.

De acuerdo a los resultados obtenidos en esta Tabla, la eficiencia de nuestro CPC real es 0.55. En la sección 2.5.2 se indicó que la eficiencia máxima de estos colectores está limitada por la eficiencia óptica y que su rango de magnitud es 0.6-0.7.

Por tanto, el valor de 0.55 es aceptable y está dentro de los limites previstos teóricamente para este tipo de colectores.

Con la ayuda de la Tabla 5.2.2, elaboramos la Tabla 5.3.2.

De aquí vemos que la eficiencia promedio diaria del CPC ideal es 0.45, este resultado también es aceptable, puesto que a mayores temperaturas, disminuyen tanto la energía útil como la eficiencia.

5.4. - COMPARACION DE LOS CPC CON LOS DE PLACA PLANA

A efecto de realizar una comparación entre los colectores CFC y los de placa plana, nos referiremos nuevamente al trabajo de M. A. León T. (18) y reproduciremos una Tabla que presenta un resumen de eficiencias promedio diarias para un colector plano convencional y un colector plano de doble exposición y estas eficiencias se comparan con las obtenidas para nuestro CFC.

De aquí podemos observar que la eficiencia para un colector de placa plana convencional, varia entre valores máximos y minimos de 33% y 46%; mientras que el CPC, varia entre 49% y 59%. De hecho, la ventaja en funcionamiento de los CPC sobre los de placa plana es significativa.

A continuación indicamos algunas razones para que esa ventaja se produzca:

- El aumento de flujo solar incidente sobre el recibidor, producido por el uso de las parábolas reflectoras que concentran la radiación solar sobre la superficie colectora.
- El área recibidora del CPC, desde la cual se producen pérdidas de calor es mucho más pequeña que el área de apertura, en cambio en el colector de placa plana, las areas recibidora y de apertura son iguales. Por tanto, al reducirse las pérdidas, la eficiencia aumenta. Siendo

incluso que las temperaturas alcanzadas por el CPC son mayores que las del colector de placa plana.

Puesto que la performance de los sistemas solares para calentamiento y enfriamiento depende de la performance de sus colectores; procederemos a continuación a dibujar las curvas de eficiencia para el CPC y el colector plano. Para ello nos referiremos al método para prueba de colectores, de la eficiencia instantánea.

Si el método determinado por la National Bereau of Standards (Agencia Nacional de Normas-EEUU) no se ha seguido completamente, los datos que se han tomado, nos permite al menos realizar los gráficos $\eta_{\text{c}} \vee \text{s} \Delta \text{T/I}_{\text{c}} (\text{K.m}^{2}/\text{W}), donde \Delta \text{T} es la diferencia de temperaturas entre la temperatura media del fluído de trabajo en el colector <math>(T_{\text{f},\text{out}} + T_{\text{f},\text{in}})/2$ y la temperatura ambiente (T_{c}) ; I_{c} es la radiación solar total (directa + difusa) incidente sobre el plano colector.

En el Apendice IV, se han elaborado unas Tablas que contienen los valores de Tr, Te, Ie y η_e , para el CPC; y Tw, Te, Ie y η_e , para un colector de placa plana convencional, donde Tw es la temperatura media del fluido en el colector. La fig. 5.3 muestra los resultados obtenidos, en ella se aprecia claramente la mejor performance obtenida por el CPC.

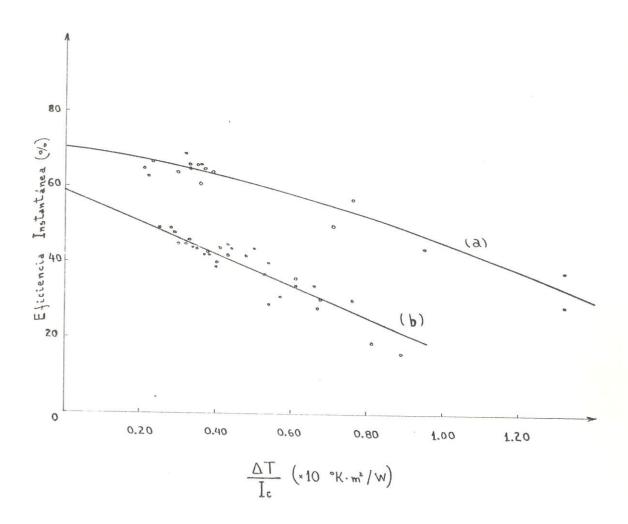


Fig. 5.3.— Curvas de eficiencia instantánea para (a) un CFC mejorado con recibidor tubular.RC = 4.5, γ (b) un colector de placa plana convencional, RC = 1.

CAPITULO 6

6.1.- COSTO DEL SISTEMA

Para este caso, consideraremos como nuestro sistema térmico solar, solamente el colector y el tanque de almacenamiento térmico, con sus respectivos accesorios para conexión. El costo de cada elemento es global, es decir, considera materiales, mano de obra e imprevistos. Este presupuesto se ha elaborado en base de cotizaciones de materiales, consultadas a proveedores Nacionales, a la fecha de Diciembre/87.

- Colector CPC (Aa = 1.4 m^2) y estructura soportante para orientaciónS/. 107.000,00

De hecho debe anotarse que este es el costo del equipo de prueba. Para lograr una aplicación concreta, deberían hacerse gastos adicionales de acuerdo a las necesidades requeridas, e incluso en muchos casos habrá de considerarse obras civiles. Así pués, el costo indicado anteriormente para el sistema, es referencial y nos servirá para realizar un sencillo estudio económico.

6.2. - COMPARACION ECONOMICA DE LOS CPC CON LOS DE PLACA PLANA

A fin de poder hacer esta comparación, conviene primeramente tener los dos colectores bajo los mismos parámetros de comparación. Esto es, una misma unidad de trabajo, Kw-hr, y una misma área de referencia.

De acuerdo al trabajo realizado por M. León (18) sabemos que un colector plano convencional(Aa=2m²), desarrolla una energía útil promedio anual de 6183 Kw-hr. Para saber lo que desarrolla nuestro CPC, realizaremos un procedimiento similar:

- La energía útil total diaria obtenida por el CPC, para cada día de prueba, se muestra en la tabla 6.2.1; al igual que la energía promedio diaria. Su valor es 4.7 Kw.
- Para obtener la energía útil promedio anual (Qu-anual) en Kw-hr, el valor anterior deberá multiplicarse por 8 horas de funcionamiento diario y por 365 días. Así tenemos que un colector plano convencional tendrá una producción anual por m² de apertura de 3092 Kw-hr/m², mientras que la del CPC será 9802 Kw-hr/m². De (18) podemos determinar también que la energía útil, para un colector de doble exposición es 5634 Kw-hr/m².

Una vez que tenemos al colector plano y al CPC bajo el mismo parâmetro de funcionamiento, procederemos

a hacer el estudio económico. El costo del Kw-hr para la ciudad de Guayaquil, ha venido experimentando una constante elevación, así tenemos que en el año 1984, el Kw-hr costaba S/. 3,00 y a Diciembre/87, el precio fue S/. 7,38, lo que equivale a una taza de elevación constante anual del 30%. Se ha realizado también un seguimiento de las tarifas durante el año 1987 y se encontró un incremento anual del 38%. A efecto de llevar a cabo la comparación económica, asumiremos una taza constante anual de crecimiento del Kw-hr del 30%, esto es, un valor conservador.

Se comparará el costo de la energía útil (por unidad de área), en Kw-hr, producido por los colectores solares tanto plano como CPC, contra el costo del Kw-hr producido por la Empresa Eléctrica. Se considerará también, en 10 años, la vida útil de los colectores. Así mismo, se asumirá que el costo del sistema solar, deducido en la sección anterior, es igual al costo por unidad de área, puesto que para proyectos prácticos inversiones adicionales serán necesarias, tales como: sistema de ditribucción, controles, sistema auxiliar de suministro de energía, etc.

Con lo expresado anteriormente, se elabora la tabla 6.2.2, que muestra los affos de vida útil de los colectores, el incremento de la tarifa eléctrica

del Kw-hr para cada uno de estos afos y finalmente el costo anual de los Kw-hr producidos por los colectores solares, si es que dichos Kw-hr fuesen producidos por la Empresa Eléctrica.

6.3. - CONCLUSIONES

De la tabla 6.2.2, podemos observar que el CFC es mucho más económico que el colector plano convencional; en una relación de 3 a 1.

Así mismo vemos que los Kw-hr producidos por el CPC por m², cubren el costo global del sistema en los primeros dos años (6/. 170.898,00). Los restantes ocho affos representan el ahorro conseguido mediante el CPC, ya que estos colectores requieren tan solo de una inversión inicial, el costo de producción en el lapso de su vida útil es realmente mínimo. Nótese además, que para indicar que la inversión del colector se recupera en dos años, nos hemos referido al costo global del sistema y no al costo por metro cuadrado, como debíamos haberlo hecho, de acuerdo a la comparación que estamos haciendo por unidad de área. No lo hemos hecho así, porque sería una comparación bastante inexacta, pués cada sistema térmico-solar es diferente de otro al igual que su costo.

Si podemos hacer en cambio, una comparación exclusivamente para el colector indepedientemente del sistema. Así, el costo del colector por unidad de área es: S/. 76.429,00/m²; con lo que de acuerdo a la tabla 6.2.2, esta inversión será recuperada en el primer año de operación. Finalmente, nótese que uno es el costo simplemente del colector, y otro

muv diferente, es el costo global del sistema.

La figura 6.1 muestra el incremento anual en barras

del costo de producción del colector CPC si es que

dicha energía fuese tarifada como energía eléctri
ca.



Fig. 6.1.— Incremento anual de costo de producción.

CONCLUSIONES Y RECOMENDACIONES

Una vez concluida la etapa de pruebas del colector CPC, es necesario puntualizar algunos aspectos derivados del estudio térmico realizado:

1.- Cuando se use el medidor de radiación solar instantanea, resulta conveniente tomar lecturas a intervalos cortos de tiempo, ya sea cada 10 ó 15 minuto, pero no cada hora. Como se pudo observar en el capítulo 5, al medir la radiación cada hora y al comparar esta radiación global diaria, con la obtenida mediante el Método de Page, las lecturas fueron aproximadamente un 20% mayores a las obtenidas por el Método de Page. Así, este resultado conlleva a arrastrar un error ya en el cálculo mismo del comportamiento térmico del colector, pués en estos cálculos se estará considerando una radiación mayor de la que realmente estuvo disponible para el día de pruebas considerado. Nótese además, que una momentánea disminución brusca de radiación, por efecto de una nube, no tiene en el colector una respuesta del mismo tipo, es decir, no ocasiona cambios bruscos de temperaturas, la respuesta del colector a un cambio brusco y momentáneo de radiación es mucho más lenta y a veces imperceptible. Este fenómeno sucede a menudo cuando se usa un medidor de radiación solar instantáneo.

- 2.- En lo que se refiere al diseño del CFC, se pudo observar que el recibidor tubular tuvo cierto desplazamiento respecto de su posición original, por efecto de la cubierta tubular de vidrio. Esta situación afecta al correcto funcionamiento del CFC pués los rayos reflejados ya no apuntaran al recibidor sino hacia lugares adyacentes del mismo, y deberá ser considerada en futuros diseños.
- 3.- Se puede indicar también que el método para obtener las parábolas reflectoras no fue el más apropiado, pués no se pudo obtener la forma exacta del molde parábolico al aplicar cargas puntuales sobre la plancha de acero inoxidable.
- 4.- Que el presente arreglo CPC trabaje por termosifón presenta algunos inconvenientes. Así por ejemplo, en el capítulo 5 se demostró que dicho arreglo impide aprovechar de una manera óptima la radiación incidente sobre el colector, pués por las tardes, la radiación en vez de aumentar, disminuye, perjudicando así la performance del colector. Además para los meses de prueba en que se requiere la máxima inclinación del colector (24º para Noviembre, Diciembre y Enero), el fluido dentro del colector tendrá dificultades para desplazarse a través de todo el banco de tubos, pués con respecto al otro eje ya está inclina-

do un Angulo TS = 15°.

5.- Los colectores CPC presentan mejores bondades frente a los colectores de placa plana, pués a pesar de ser un poco más caros que los de placa plana (aproximadamente 20%), en cambio trabajan a mayores eficiencias que ellos, entre 10 y 15 %. Sin embargo, las espectativas en cuanto al uso de estos colectores CPC para aplicaciones de temperaturas intermedias no han sido satisfechas plenamente; futuros estudios y análisis determinaran con exactitud el verdadero alcance de estos colectores. La tarea ha sido iniciada.

Se RECOMIENDA lo siguiente:

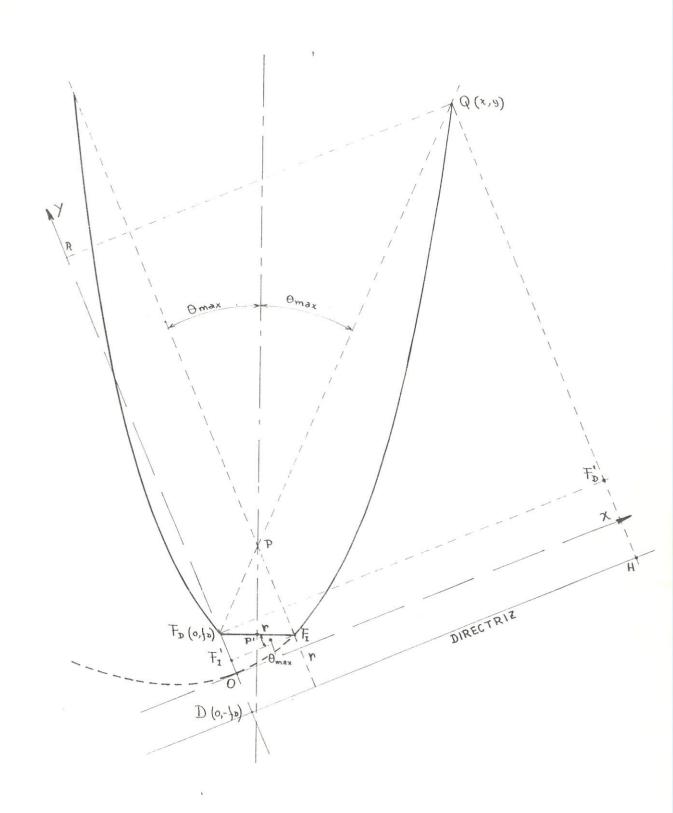
- 1.- Para el caso de usar medidores de radiación solar instantánea, tomar las lecturas a cortos intervalos y enfrentar estos datos con los obtenidos con el Método de Page, a fin de llegar a un equilibrio entre estas dos formas de medir radiación y obtener resultados más reales en cuanto se refiere al comportamiento térmico.
- 2.- Para el diseño del CPC se recomienda usar para el recibidor, o bien el diámetro de la cubierta tubular o bien el diámetro medio entre la cubierta tubular y el del recibidor, pero no el diámetro del recibidor.

De esta manera será óptimo el aumento del flujo de radiación solar sobre el recibidor.

3.- Para la elaboración de las parábolas reflectoras, se recomienda usar una prensa con carga uniformemente distribuida para conseguir que la plancha de acero inoxidable se acople perfectamente al molde de diseño.

Por ejemplo, se puede conseguir una carga distribuida mediante una máquina plegadora, o en el mejor de los casos, usar un "molde macho" y un "molde hembra".

4.- A efecto de que el CPC alcance mayores temperaturas, se recomienda reducir la masa de trabajo del sistema, para ello se puede adaptar en el tanque de almacenamiento térmico un pequeño intercambiador de calor, y conectarlo al colector, además se deberá usar aceite térmico para evitar la presencia de ebullición que ocurriría con el agua.


Otra alternativa para elevar las temperaturas del CPC, es usar un arreglo de colectores en serie en vez de en paralelo, pués al aumentar las temperaturas del fluido a la entrada del segundo colector, se elevaran también las temperaturas a la salida de este colector; así mismo, para este caso deberá usarse aceite térmico.

- 5.- En cuanto a lo que tiene que ver con las dos inclinaciones ($m{\beta}$ y TS) del colector CPC, se recomienda anular TS y usar una pequeña bomba para obtener circulación forzada a través del colector, con ello se mejora tanto la radiación incidente como el flujo en el colector CPC.
- 6.- Se recomienda usar las cubiertas tubulares de vidrio, pués presentan ventajas cuando el recibidor trabaja a temperaturas superiores a los 50 °C. Para estudiar este fenómeno, un tubo recibidor se acopló sin su respectiva cubierta de vidrio fluorescente, llegando a establecerse diferencias de temperaturas hasta de 15°C, sobre la del recibidor sin cubierta tubular. Además su costo es mínimo, existiendo solo el inconveniente de preparar los tubos fluorescentes para esta aplicación concreta. El espesor de esta cubierta de vidrio es de aproximadamente 0.75mm.

APENDICE I

DEDUCCION DE LA ECUACION DE LA PARABOLA PARA UN CPC BASICO

SISIEMOS DE EJES COURDENODOS FARA PARABOLA DE LADO

Partiendo de la definición de parábola: "La parábola es el lugar geométrico de un punto que se mueve de tal manera que su distancia a una recta fija (llamada directriz) es siempre igual a su distancia a un punto fijo F (llamado foco)".

Considerado el lado derecho del CPC y los ejes coordenados indicados en la figura, tenemos:

$$\overline{Q} H = \overline{Q} F_{D} \tag{1}$$

De esta ecuación, considerando el triángulo $Q-F_D-F_D$, fácilmente se deduce que:

$$y - (-f_D) = \sqrt{x^2 + (Q F_D')^2}$$
 (2)

donde:

$$\overline{Q} F_{\mathbf{p}}' = \mathbf{v} - \mathbf{f}_{\mathbf{p}} \tag{3}$$

reemplazando en 2:

$$y + f_D = \sqrt{x^2 + (y - f_D)^2} \tag{4}$$

elevando al cuadrado las dos expresiones:

$$y^{2} + 2f_{D}y + f_{D}^{2} = x^{2} + y^{2} - 2f_{D}y + f_{D}^{2}$$
 (5)

reduciendo términos:

$$4 f_{\text{DV}} = \chi^2 \tag{6}$$

la ecuación queda:

$$y = x^2/4 \cdot f_D \tag{7}$$

Debemos ahora determinar el valor de f $_{
m D}$. De la figura vemos que:

$$2 f_{\mathbf{D}} = \overline{F_{\mathbf{D}}} \overline{D} = \overline{F_{\mathbf{D}}} \overline{F_{\mathbf{x}}}' + F \tag{8}$$

donde, del triángulo Fp-Fr-Fr', vemos que:

$$F_{x} F_{x}' = r \operatorname{sen}\theta_{max} \tag{9}$$

reemplazando en 8:

$$2 f_{D} = r \operatorname{sen} \theta_{\max} + r \tag{10}$$

$$2 f_{\mathbf{D}} = r(1 + \operatorname{sen}\theta_{\mathbf{max}}) \tag{11}$$

reemplazando 11 en la ecuación 7, tenemos la ecuación de la parábola para el lado derecho y ejes coordenados respectivos.

Ecuación expresada en función del recibidor ry ángulo mitad de aceptancia Θ_{max} .

$$y = x^2/2r(1+\sin\theta_{max}) \tag{12}$$

adicionalmente, del triángulo P-P'-Fp, tenemos que:

$$\overline{PP'} = r/2tg\theta_{max}. \tag{13}$$

Es de interés también, saber el rango que debe tomar la variable \times , para construir el CPC completo. Para ello consideramos el triángulo $Q-F_{\rm D}-R$.

$$X = \overline{QR} = \overline{QF_{D}} \text{ sen } 2\theta_{max} \tag{14}$$

$$\overline{QF_{D}} = \overline{F_{D}} \overline{F} + \overline{P} \overline{Q} \tag{15}$$

igualmente considerando los triángulos:

$$\overline{Q} F_{D} = (r/2 \text{sen} \theta_{\text{max}}) + (a/2 \text{sen} \theta_{\text{max}})$$
 (16)

$$\overline{Q} F_{p} = (r+a)/2 \operatorname{sen} \Theta_{mm, m} \tag{17}$$

reemplazando este resultado en 14:

$$X = (r+a) \sin 2\theta_{max}/2 \sin \theta_{max}$$
 (18)

como sen $2\theta_{max} = 2 \operatorname{sen}\theta_{max} \cdot \operatorname{xcos}\theta_{max}$, tenemos:

$$X = (r+a) \cos \theta_{max} \tag{19}$$

APENDICE II

VALORES DE ANGULOS DE INCIDENCIA i; TRANSMISIVIDAD $\mathcal{T}_{\mathbf{a}}(\mathbf{c})$, REFLECTIVIDAD $\mathcal{P}_{\mathbf{a}}(\mathbf{c})$, ABSORTIVIDAD $\boldsymbol{\prec}_{\mathbf{a}}(\mathbf{c})$ Y SUS CORRESPONDIENTES VALORES PROMEDIO PARA LA CUBIERTA DE VIDRIO.

	ern dan ann enn dan bas die met eine ber den dan ben dan den ann den den den den den		en min man man man man man man man man man ma	en une seu des une une une une une une une une plu une une une une une une une	100 100 100 100 100 100 100 100 100 100	as desir time from their state and time time time and time and time time.	1
	ABRIL 1/87	η =	71	$\delta_s = 4.02$	B 1 = 0°	1	
1						1	
						1	
				~	0	1	1
	317	hs(°)	i (°)	γ_{a} (i)	Y a (i)		
i			ness ness ness ness	been man and and and	are not too and not		
	08	60	60.28	0.726	0.156	0.118	
į	09	45	45.41	0.796	0.093	0.111	i
i	10	30	30.62	0.817	0.078	0.105	į
i	1 1	15	16.23	0.824	0.076	0,101	i
l	12	Ú	6.22	0.825	0.076	0.099	
i.	13	-15	16.23	0.824	0.076	0.101	i
Į.	14	-30	30.62	0.817	0.078	0.105	į
i	15	-45	45.41	0.796	0.093	0.111	i
I I	16	-60	60.28	0.726	0.156	0.118	
-							1
i							i
1	VA	LORES PROM	EDIO	0.795	0.098	0.107	i
		========			a page only note your good some town ones one one you are not you good one		=

TABLA 1

1	ABRIL 7/87	η =	97	Ss = 6.38	B 1 = 0°		1
	=========						
!							-
i				~	^		i
1	1111	hs(°)	i (°)	\mathcal{T}_{a} (i)	$\rho_{\rm a}$ (i)	∠a (i)	
				ting new Year self-size		per de se ser se	1
	08	60	60.51	0.725	0,157	0.118	1
	09	45	45.74	0.796	0.093	0.111	i
i	10	30	31.16	0.817	0.078	0.105	î
1	1 1	15	17.26	0.823	0.076	0.101	1
111	12	0	8.58	0.825	0.076	0.100	11.00
i	13	-15	17.26	0.823	0.076	0.101	î
i	14	-30	31.16	0.817	0.078	0.105	Į.
i	15	-45	45.74	0.796	0.093	0.111	Ī
Ī	16	-60	60.51	0.725	0.157	0.118	i
i							i
1							î
1	VAI	LORES PROM	EDIO	0.794	0.098	0.108	ī
				in the cold late and the late has not and one and the late and the second of the late and the la	g dags kenn upon gart juny sette vinn lank von denli sette ofte staat den lank litte kenn den staat den st		1117

TABLA 2

ABRIL 9/87	n = 99		S s = 7.	Ss = 7.15°		of date water and last date come play come in	β 2 = 8°		
1-1-1-1	hs(°)	i	(°)	\mathcal{T}_{a}	(<u>i</u>)	ρ_{a}	(<u>i</u>)	≪ ā	(j)
		CLT W'	CLT N°2	CLT N°1	CLT N°2	CLT N°1	CLT N°2	CLT N°1	CLT N°2
08	60	60.60	61.54	0.724	0.715	0.158	0.166	0.119	0.119
09	45	45.87	47.12	0.795	0.791	0.094	0.096	0.111	0.112
10	30	31.36	33.18	0.816	0.815	0.078	0.079	0.105	0.108
11	15	17.65	20.73	0.823	0.822	0.076	0.076	0.101	0.102
12	()	9.35	14.35	0.825	0.824	0.076	0.076	0.100	0.100
13	-15	17.65	20.73	0.823	0.822	0.076	0.076	0.101	0.102
14	-30	31.36	33.18	0.816	0.815	0.078	0.079	0.105	0.106
15	-45	45.87	47.12	0.795	0.791	0.094	0.096	0.111	0.112
16	-60	60.60	61.54	0.724	0.715	0.158	0.166	0.119	0.119
VAI	LORES PI	ROMEDIO		0.793	0.790	0.099	0.101	0.108	0.109
					=======	=======			=======

TABLA 3

ABRIL 12/87	İ	n = 102		8 = 8.	29	ß 1 = ()°		B2 = 8°	
Hr	hs(°)	i	(2)	γ_{a}	(<u>i</u>	Pa	(<u>†</u>	∠ a	(
		CLT Nº1	CLT N°2	CLT Nº1	CLT N°2	CLT N°1	CLT N°2	CLT N°1	CLT N°2
08	60	62.87	61.78	0.703	0.713	0.178	0.168	0.119	0.119
09	45	48.64	47.46	0.787	0.791	0.100	0.097	0.113	0.112
10	30	35.12	33.68	0.813	0.814	0.080	0.079	0.107	0.106
The state of the s	15	23.55	21.53	0.821	0.822	0.076	0.076	0.103	0.102
12	0	18.12	15.49	0.823	0.824	0.076	0.076	0.101	0.101
13	-15	23.55	21.53	0.821	0.822	0.076	0.076	0.103	0.102
14	-30	35.12	33.68	0.813	0.814	0.080	0.079	0.107	0.106
15	-45	48.64	47.46	0.787	0.791	0.100	0.097	0.113	0.112
16	-60	62.87	61.78	0.703	0.713	0.178	0.168	0.119	0.119
VAL	ORES PI	ROMEDIO		0.786	0.788	0.105	0.102	0.109	0.110

	======			========		- NOTE STATE			
ABRIL 15/87		n = 105		$\delta s = 9$.	<u>#</u> 1 °	β1 = 0°		$\beta_2 = 8^{\circ}$	
Hr	hs(°)	i	()	γ_{a}	(i)	Pa	(i)	✓ a	(<u>i</u>)
		CLT N°1	CLT N°2	CLT N°1	CLT N°2	CLT N°i	CLT N°2	CLT N°i	CLT N°2
08	60	62.97	62.04	0.702	0.711	0.178	0.170	0.120	0.119
09	45	48.80	47.81	0.786	0.770	0.101	0.098	0.113	0.112
10	30	35.38	34.20	0.813	0.814	0.081	0.080	0.107	0.106
11	15	23.96	22.35	0.821	0.822	0.076	0.076	0.103	0.102
12	0	18.66	16.61	0.823	0.823	0.076	0.076	0.101	0.101
13	-15	23.96	22.35	0.821	0.822	0.076	0.076	0.103	0.102
14	-30	35.38	34.20	0.813	0.814	0.081	0.080	0.107	0.106
15	-45	48.80	47.81	0.786	0.790	0.101	0.098	0.113	0.112
16	-90	62.97	62.04	0.702	0.711	0.178	0.170	0.120	0.119
VAL	ORES P	ROMEDIO		0.785	0.789	0.105	0.103	0.110	0.109
THE COST NAME OF COST OFF COST COST COST COST COST COST COST COST	======						=======		

TABLA 5

======== ABRIL 16/87 ========	n = 106		8 s = 9.78°		β1 = 0°		B 2 = 8°	SEC	
177	hs(*)	1	1 () () () () () () () () () (γ_{a}	(<u>i</u>)	Pa	(<u>i</u>)	≪ã	(i)
THE REAL PROPERTY.		CLT N°1	CLT N°2	CLT N°1	CLT N°2	CLT N°1	CLT N°2	CLT Nº 1	CLT N°2
			10 10		. 7/.				
08	60	60.93	62.12	0.721	0.710	0.161	0.171	0.119	0.119
09	45	46:39	47.93	0.793	0.789	0.095	0.098	0.112	0.112
10	30	32.19	34.37	0.816	0.814	0.079	0.080	0.105	0.106
Jenst Lands	15	19.15	22.62	0.823	0.822	0.076	0.076	0.101	0.102
12	0	11.98	16.98	0.824	0.823	0.076	0.076	0.100	0.101
13	-15	19.15	22.62	0.823	0.822	0.076	0.076	0.101	0.102
14	-30	32.19	34.37	0.816	0.814	0.079	0.080	0.105	0.106
15	- <u>A</u> -	46.39	47.93	0.793	0.789	0.095	0.098	0.112	0.117
16	-60	60.93	62.12	0.721	0.710	0.161	0.171	0.119	0,119
10	0.0	90170	22142	V 1 7 As A	V - 7 - 4 V	7.144	V 1 4 1 4	V.1.1.	V1447
1101	nnen ni	ONERTO		A 700	A 700	Λ (ΛΛ	A 1A7	A +A0	Λ ΙΛΠ
VAL	ORES PI	ROMEDIO		0.792	0.788	0.100	0.103	0.108	0.109

TABLA 6

ABR	====== IL 26/87 ======	n = 116		&s = 13	Ss = 13.29			β _{2 = 8°}			
		hs(°)	í	(5)	γ_{a}	(i)	Pa	(i)	≪a	(<u>1</u>)	1 1 1
			CLT Nº1	CLT N°2	CLT Nº1	CLT N°2	CLT Nº1	CLT N°2	CLT N°1	CLT N°2	10 10 11 11 11
	08	60	61.48	63.00	0.716	0.702	0.165	0.179	0.119	0.120	i
	09	45	47.25	49.16	0.791	0.785	0.097	0.102	0.112	0.113	I
	10	30	33.55	36.16	0.815	0.812	0.079	0.081	0.106	0.107	I
	1 1	15	21.48	25.33	0.822	0.820	0.076	0.077	0.102	0.103	1
	12	Ō	15.49	20.49	0.824	0.822	0.076	0.076	0.101	0.102	1
	13	-15	21.48	25.33	0.822	0.820	0.076	0.077	0.102	0.103	î
	ĺĀ	-30	33.55	36.16	0.815	0.812	0.079	0.081	0.106	0.107	I
	15	-45	47.25	49.16	0.791	0.785	0.097	0.102	0.112	0.113	1
	ió	-60	61.48	63.00	0.716	0.702	0.165	0.179	0.119	0.120	i
											1
											i
	VALORES PROMEDIO			0.790	0.784	0.101	0.106	0.109	0.110	1	
===	DEC. (1975) AND ADDRESS AND AD										į

TABLA 7

MAYO 17/87	n = 137		8 s = 19.26		B ₁ = 0°		B ₂ = 8°		
A	hs(°)	****	()	γ_{a}	(<u>i</u>)	ρ_{a}	(i)	≪ ā	(1)
AND THE STREET	100 tot and 100 000	CLT N°1	CLT N°2	CLT N°1	CLT N°2	CLT N° 1	CLT N°Z	CLT N°1	CLT N°2
08	60	62.68	64.73	0.705	0.683	0.176	0.197	0.119	0.120
09	45	49.13	51.62	0.785	0.776	0.102	0.109	0.113	0.114
10	30	36.46	39.67	0.811	0.807	0.081	0.084	0.107	0.109
	15	26:04	30.31	0.820	0.817	0.077	0.078	0.103	0.105
12	0	21.46	26.46	0.822	0.820	0.076	0.077	0.102	0.103
13	-15	26:04	30.31	0.820	0.817	0.077	0.078	0.103	0.105
17	-30	36.46	39.67	0.811	0.807	0.081	0.084	0.107	0.109
15	-45	49.13	51.62	0.785	0.776	0.102	0.109	0.113	0.114
16	-60	62.68	64.73	0.705	0.683	0.176	0.197	0.119	0.120
VAL	ORES PI	RES PROMEDIO			0.777	0.105	0.112	0.109	0.111

TABLA 8

		======		========							
	MAY0 30/87		n = 150		$\delta s = 21$.75	B1 = 00		B 2 = 8°	TO THE SEA SEA SEA SHE WAS THE THE SEA SEA	
14 718	the fire the sea too per the set of and the too										
i					\sim		\cap				
110 511	1117	hs(°)	i	(*)	γ_{a}	(i)	Pa	(i)	X a	(i)	
:											-
-			CLT Nº1	CLT N°2	CLT Nº1	CLT N°2	CLT N°1	CLT N°2	CLT Nº1	CLT N°2	
	08	60	63.27	65.53	0.699	0.673	0.181	0.206	0.120	0.12	
	09	45	50.05	52.76	0.782	0.772	0.104	0.114	0.114	0.115	
	10	30	37.86	41.27	0.810	0.805	0.083	0.086	0.108	0.109	-
	Seesals Seesals	15	28.08	32.47	0.819	0.816	0.077	0.079	0.104	0.106	
	12	()	23.95	28.95	0.821	0.818	0.076	0.077	0.103	0.104	
	13	-15	28.08	32.47	0.819	0.816	0.077	0.079	0.104	0.106	
	1 11	-30	37.86	41.27	0.810	0.805	0.083	0.086	0.108	0.109	
	15	-45	50.05	52.76	0.782	0.772	0.104	0.114	0.114	0.115	1
	16	-60	63.27	65.53	0.699	0.674	0.181	0.206	0.120	0.12	
										V 1 4 4	i
											1
	VAL	ORES PA	ROMEDIO		0.782	0.773	0.107	0.116	0.111	0.111	1
		======		000 Mar and and are dep and only and						V:111	1

TABLA 9

	JUNIO 21/87	n = 172		8 s = 23.45	B ₁ = 10°		1
1							1
				~	0		1
i	1 2 2 2 2 T	hs(°)	<u>i</u> (°)	$\gamma_{\rm a}$ (i)	P_{a} (i)	\propto a (i)	i
1		475 MW 456 Mai 456		Mad and good door good	NA COL DEC 200 200		i
1							i
i	08	60	68.64	0.631	0.248	0.121	i i
1	09	45	56.64	0.752	0.132	0.117	1
1	10	30	46:17	0.794	0.094	0.112	į
1	1 1	15	38.55	0.809	0.083	0.108	i i
1	12	0	35.65	0.812	0.081	0.107	i
I I	13	-15	38,55	0.809	0.083	0.108	1
:	1 4	-30	46.17	0.794	0.094	0.112	i
1	15	-45	56.64	0.752	0.132	0.117	1
1	16	-60	68.64	0.631	0.248	0.121	Į į
i							1
100 001							1
i	VAL	ORES PROMI	EDIO	0.754	0.132	0.114	ž Į
-	THE SET SET SET SET SET SET SET SET SET SE			men arts was not and			:

	and have some after some some conduction of the other some some some some some some some some	NOW AND		=
ABRIL 1/87				i
				£
	Rad. Inst.	Energia util inst.	Eficiencia instantanea	1
	incidente	del colector	del colector	i
Hora	(W/m2)	(W/m2)		1
		CLT Nº1	CLT Nº1	1
		NOR NOT NOT THE PER THE	one are one one one one	1
08h00	370	692	0.42	i
09h00	525	1127	0.48	1
10h00	962	2793	0.65	1
11h00	1034	3149	0.69	į
12h00	1081	3049	0.63	1 1
13h00	940	2833	0.67	i
14h00	709	2066	0.65	1
15h00	189	141	0.17	1
16h00	158	32	0.05	i
				1
EFICIENC:	IA INSTANTANEA	SOLAR DIARIA	4.40	1 1
EFICIENC:	IA PROMEDIO DI	ARIA DEL COLECTOR	0.49	1
EFICIENC	IA PROMEDIO DI	ARIA	0.49	1
	the time year give mint have been take your later stop first your way for the stop of the time time time time time time time tim	to the total total time that sing total cone had now how more only total time that time that time total cone total time total cone t		===

TABLA 1

i		tion had you you read that had been seen had been to you the part of you can the part of your time to you the part of the part	med field had tall grill from their hour ages you not not not not not had tall tall tall to the field tall tall tall you come not have how how you give you got tall tall tall tall tall tall tall ta		
1	ABRIL 7/87				1
-	207 No. 202 No. 202 No. 202 No. 202 No. 203 No				1
i		Rad. Inst.	Energia util inst	. Eficiencia instantanea	i
-		incidente	del colector	del colector	i
1	Hora	(W/m2)	(W/m2)		1
1			CLT N°1	CLT N° 1	i
1			per and the the the sail	and and any one and any	į
i	08h00	717	1939	0.60	1
ī	09h00	883	2606	0.66	î
i	10h00	1009	2996	0.66	***
1	11h00	725	2201	0.48	i
i	12h00	552	1570	0.63	1
i	13h00	505	1327	0.59	1
1	14h00	347	880	0.57	1
1	15h00	142	271	0.43	i
1	16h00	363	825	0.51	1
i					1
i	EFICIENCI	A INSTANTANEA	SOLAR DIARIA	5.32	
-	EFICIENC)	A PROMEDIO DI	ARIA DEL COLECTOR	0.59	1
i	EFICIENC	A PROMEDIO DI	ARIA	0.59	1
į	was not but that hell that are then and are the as	as Assert yang denin serin selah denin basar denin danin denin den	neer and may come have below that their their part wat their size and their real real real size and their size of		i

			1 100 000 100 000 000 100 100 100 100 1			COLD DOM: AND SHARE SHAR		i
	ABRIL 9/87							;
								1
			tantanea		util inst.	Eficiencia instantanea		
	Hora	incidente (W/m2)		del cole (W/m2		del colec	tor	1
		CLT Nº1	CLT N°2	CLT Nº1	CLT N°2	CLT Nº1	CLT N°2	
			and the low see may					-
	08h00	594	635	1510	1648	0.56	0.58	1
	09h00	726	761	1988	2128	0.61	0.62	1
	i0h00	946	1135	2736	3454	0.65	0.68	į
	11h00	1028	1060	2942	3093	0.64	0.65	1
	12h00	694	675	1771	1759	0.57	0.58	1
	13h00	1104	1056	3277	3089	0.66	0.65	
	14h00	241	237	478	499	0.44	0.47	1
	15h00	536	504	808	729	0.34	0.32	
	16h00	219	211	251	251	0.29	0.27	Ī
								1
	EFICIENCI	A INSTANT	ANEA SOLAR	DIARIA		4.76	4.83	1
	EFICIENCI	A PROMEDI	O DIARIA DE	L COLECTOR		0.53	0.54	1
	EFICIENCI	A PROMEDI	O DIARIA			0.5	3	
=			===========					

TABLA 3

Į												
i	ABRIL 12/87							1				
1								1				
ŧ		Rad. Ins	tantanea	Energia	util inst.	Eficienci	a instantanea	i				
1		incidente			del colector		tor	ĺ				
i	Hora	(W/m2)		(W/m2	100			1				
I		CLT N°1	CLT N°2	CLT N°1	CLT N°2	CLT N°1	CLT N°2	1				
1	NOTE AND ADDRESS.				977 MT 400 MG 100	ALC ALC DES ARE THE	PRO 100 100 100	1				
1	08h00	548	575	1349	1465	0.55	0.57	1				
1	09h00	820	851	2361	2509	0.64	0.66	i				
i	10h00	883	899	2584	2659	0.65	0.66	I				
I	11h00	1009	1025	2999	3047	0.66	0.66	1				
1	12h00	1009	1009	2964	2981	0.66	0.66	Ī				
i	13h00	984	968	2899	2878	0.66	0.66	1				
1 1	14h00	284	268	545	530	0.44	0.44	1				
1	15h00	378	347	849	729	0.50	0.47	i				
1	16h00	205	183	349	263	0.38	0.32	î I				
i								į.				
į	EFICIENCIA	INSTANTA	ANEA SOLAR D	IARIA		5.15	5.10	i				
i	EFICIENCI/	PROMEDIO) DIARIA DEL	COLECTOR		0.57	0.57	Į.				
1	EFICIENCIA	PROMEDIO	DIARIA			0.5	7	į				
i	and the real life and had also been been been too see					THE THE THE THE BOT WITH SHE SHE SHE SHE SHE SHE SHE SHE SHE SH	and the law does not not not take the per land have more more not one and and	:				

==========		the pull half aged after part and, may have some and any part time after date part arts aged attra date along	the late and the late and the size and and too		One has been and and and and and and and and and an	or first time date used part time date time time, date time time time time time time time ti	1
ABRIL 15/87							11
THE PER SHE HER HER HER HER HER HER HER HER HER H							-
	Rad. Ins	tantanea	Energia	util inst.	Fficienci	a instantanea	1
	incident	3	del cole		del colec		1
Hora	(W/m2)		(W/m2	-	des EDILL		1
	CLT Nº1	CLT N°2	CLT N°1	CLT N°2	CLT N°1	CLT N°2	1
					WE / 11 1	WL1 11 Z	1
08h00	305	310	691	704	0.50	0.51	i
09h00	520	531	1326	1359	0.56	0.57	1
10h00	1064	1091	3101	3203	0.65	0.66	
11h00	1069	1098	2968	3093	0.62	0.63	
12h00	1015	1045	2742	2884	0.61	0.62	
13h00	1025	1005	2787	2762	0.62	0.61	
14h00	756	740	2064	2036	0.62	0.61	1
15h00	606	592	1560	1532	0.58	0.58	
16h00	204	185	335	279	0.37	0.34	1
					0.07	V107	1
EFICIENCI/	A INSTANTA	NFA SNLAR I	TARTA		5.14	5.12	
EFICIENCIA	PROMEDIO	DIARIA DEL	COLFCTOR		0.57	0.57	1
EFICIENCIA					0.5	5070.00.75.00	1
T. IDILIDIT	1 I NUMEDIL	. niuniu			V.J	I	1
							i

TABLA 5

i	THE RES COST COST COST COST COST COST COST COS	=======	========			============		:= :
	ABRIL 16/87							I I
!	***************************************							i
		Rad. Ins	tantanea	Energia	util inst:	Eficienci	a instantanea	i
		incident	e	del cole	ctor	del colec	tor	i
!	Hora	(W/m2)		(W/m2)			1
100 101		CLT N°1	CLT N°2	CLT Nº1	CLT N°2	CLT N°1	CLT N°2	i
		-01 502 504 505 405	AND THE RES DEC SEE		After sold made dated		Will bell after than their	***
:	08h00	493	507	1246	1284	0.56	0.57	i
	09h00	734	753	2134	2209	0.65	0.65	į.
	10h00	869	889	2556	2712	0.66	0.68	i
-	11h00	1166	1199	3250	3418	0.62	0.64	1
1	12h00	1071	1079	2993	2993	0.62	0.62	i
	13h00	694	668	1780	1734	0.57	0.58	i
i	14500	1060	1036	2890	2777	0.61	0.60	į
1	15h00	625	599	1522	1444	0.54	0.54	i
1	16h00	217	195	249	225	0.26	0.26	1
1								1
1	EFICIENCI	A INSTANTA	ANEA SOLAR I	MARIA		5.10	5.13	i
	EFICIENCI	A PROMEDI	D DIARIA DEL	COLECTOR		0.57	0.57	I I
	EFICIENCI	A PROMEDIO	DIARIA			0.5	7	1
1		one area area may been task upon and area area of the control of t	On SUR COS SUR		and that was the file that that the cles have been and when we will be the cles and	==========	and the real state for the section of the section o	=

==========	\$10 MIN MAN SAN SAN MAN SAN SAN SAN SAN S				and and here and and other him has not any our may	are the first total that the same and the late that the same and the s	i
ABRIL 26/87							i
=========							i
	Rad. Inst	tantanea	Energia (util inst.	Eficienci	a instantanea	i
	incidente	2	del cole	tor	del colec	tor	1
Hora	(W/m2)		(W/m2	100			1
	CLT N°1	CLT N°2	CLT N°1	CLT N°2	CLT N°1	CLT N°2	1
			*** *** *** ***				1
08h00	203	207	465	462	0.51	0.50	1
09h00	288	295	749	768	0.58	0.58	:
10h00	947	969	2772	2855	0.65	0.66	
11h00	1002	1025	2918	3009	0.65	0.66	į
12h00	1009	1041	2771	2897	0.61	0.62	1
13h00	914	914	2511	2468	0.61	0.60	1
14h00	826	804	2319	2210	0.63	0.61	1
15h00	189	176	437	388	0.52	0.49	i
16h00	152	146	323	284	0.47	0.43	1
							1
EFICIENCI	A INSTANTA	ANEA SOLAR I	DIARIA		5.24	5.16	1
EFICIENCI	A PROMEDIO	DIARIA DEL	COLECTOR		0.58	0.57	i
EFICIENCI	A PROMEDIO	DIARIA			0.5	8	1
========					=========		i

TABLA 7

i							100 per set	1
	MAYO 17/87							1
	NAME AND ADDRESS OF THE STATE AND ADDRESS OF THE							1
100.000		Rad. Ins	tantanea	Energia u	itil inst.	Eficiencia	instantanea	1
1		incident	2	del colec		del colect		1
Į.	Hora	(W/m2)		(W/m2)				į
-		CLT Nº1	CLT N°2	CLT N°1	CLT N°2	CLT N°1	CLT N°2	1
***	plant game game arrive		and said one the new	other street street street.		was one and and and	and any has been aster	i
***	08h00	485	544	1196	1347	0.55	0.55	i
101 100	09h00	857	882	2365	2450	0.62	0.62	i
1	10h00	1072	1104	3124	3230	0.65	0.65	I
1	11h00	599	599	1578	1576	0.59	0.60	i
***	12h00	432	441	955	1029	0.49	0.52	į
1	13h00	394	300	945	608	0.54	0.45	1
11 02	14h00	306	277	677	609	0.49	0.49	1
190 000	15h00	252	237	552	505	0.40	0.48	i
1	16h00	32	32	-112		and day one tree	and the line for	i
1								1
1	EFICIENCI	A INSTANT	ANEA SOLAR	DIARIA		4.42	4.36	i
1	EFICIENCI	A PROMEDI	O DIARIA D	EL COLECTOR		0.49	0.48	1
1	EFICIENCI	A PROMEDI	O DIARIA			0.49		1
1		========	and some side from their side side olds from 1885 of their side side side side side side side side					î

WAVA 7A/A7	men and were more than you wan that then t	the later than the first than the table that the table to	and pale man cold place man from the gard part and cold of				1
MAYO 30/87							i
				2012			i
	Rad. Inst	tantanea	Energia (util inst.	Eficienci	a instantanea	1
	incident	2	del cole	ctor	del colec	tor	1
Hora	(W/m2)		(W/m2	1			i
	CLT N°1	CLT N°2	CLT Nº1	CLT N°2	CLT N°1	CLT N°2	1 3
and the test and							1
08h00	458	469	1079	1086	0.53	0.52	1
09h00	709	725	1992	2074	0.63	0.64	1
10h00	914	930	2601	2701	0.64	0.65	1
11h00	883	883	2550	2584	0.65	0.45	1
12h00	836	851	2250	2341	0.40	0.61	ī
13h00	867	883	2296	2424	0.59	0.61	I
14h00	599	583	1377	1371	0.51	0.52	:
15h00	473	441	949	886	0.45	0.45	i
16h00	397	437	672	764	0.38	0.39	1
							1
FFICIENCI	A INSTANT	ANEA SOLAR I	DIARIA		4.96	5.05	1
EFICIENCI	A PROMEDIO	DIARIA DEL	COLECTOR		0.55	0.56	
EFICIENCI					0.5		5
		w watth 417			V:5		. 1

TABLA 9

***		IS NOT THE THE THE THE THE THE THE THE THE TH	one may now use two may may have been may the look one may now the new had well the look one that look one t		1
i	JUNIO 21/87				1
1	No. 100 100 100 100 101 101 100 101 101 10				1
-		Rad. Instantanea	Energia util inst.	. Eficiencia instantanea	1
10 00		incidente	del colecter	del colector	1
1	Hora	(W/m2)	(W/m2)		1
1		CLT N°1	CLT Nº1	CLT N°1	1
1		the Ace and the Stee		and here here here	i
-	08h00	566	1189	Ö.47	í
1	09h00	757	2006	0.59	î T
i	10h00	899	2572	0.64	1
i	11h00	921	2597	0.63	i
1 2	12h00	899	2443	0.61	I
1	13h00	820	2164	0.59	1
1	14h00	662	1672	0.56	1
1	15h00	380	458	0.39	1
***	16h00	316	392	0.29	I I
1					1
1	EFICIENCI/	A INSTANTANEA SOLAR	DIARIA	4.75	I
1	EFICIENCI/	A PROMEDIO DIARIA DE	L COLECTOR	0.53	! !
i	EFICIENCI/	A PROMEDIO DIARIA		0.53	1
1		on the long time game time that the part time time after time time time and time time time time time.			1

APENDICE IV

PRUEBAS DE EFICIENCIA INSTANTANEA PARA COLECTORES CPC Y
PLANO

Hora	08h00	09h00	10h00	11h00	12h00	13h00	14h00	15h00	16h00
Tr	34	42	60	63	55	53	47	46	45
Te	25	26	28	30	31	31	32	31	29
Ιc	370	525	962	1034	1081	940	709	189	158
& T/Ic)x10	0.24	0.30	0.33	0.32	0.22	0.23	0.21	0.79	1.01
(1/2)	42	48	65	69	63	67	65	17	0.5

TABLA 1.- Prueba de eficiencia para un CPC. (01/ABRIL/87).

Hora	08h00	09h00	10h00	11h00	12h00	13h00	14h00	15h00	16h00
Tr	36	54	64	69	83	67	58	60	58
Te	26	28	29	29	30	31	30	30	29
Ic	594	726	946	1028	694	1104	241	536	219
(AT/Ic)x10	0.17	0.36	0.37	0.39	0.76	0.33	0.25	0.56	1.32
(%)	56	61	65	64	57	66	44	34	29

TABLA 2.- Prueba de eficiencia para un CPC. (09/ABRIL/87).

Hora	08h00	09h00	10h00	11h00	i2h00	13h00	14h00	15h00	16h00
Tr	45	53	58	62	45	64	58	50	56
Te	27	28	29	29	30	31	31	30	29
Ic	548	820	883	1009	1009	984	284	378	205
VI/IC)X10	55	64	65	66	66	66	44	50	38
(%)	0.33	0.30	0.33	0.33	0.35	0.36	0.95	0.71	1.32

TABLA 3.- Prueba de eficiencia para un CPC. (12/ABRIL/87).

Hora	9-10	10-11	11-12	12-13	13-14	14-15	15-16
T₩	35	39	47	54	56	57	56
Te	27	30	31	34	34	34	34
Ic	284	536	646	694	404	536	363
(AT/Ic)x10	0.28	0.17	0.25	0.29	0.54	0.43	0.61
(7,)	49	52	49	48	29	45	34

TABLA 4.- Prueba de eficiencia para un colector plano. β = 20°(03/ABRIL/84)

Hora	9-10	10-11	11-12	12-13	13-14	14-15	15-16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	46	52	62	62	64	65	63
Te	32	33	35	35	35	34	36
ĪC	460	599	666	709	505	473	353
(ΔT/Ic)x10	0.3	0.32	0.41	0.38	0.57	0.61	0.76
(%)	45	45	44	42	31	33	30

TABLA 5.- Prueba de eficiencia para un colector plano. /3 = 20 (05/ABRIL/84)

Hora	9-10	10-11	11-12	12-13	13-14	14-15	15-16
To say	48	53	59	63	68	68	59
Ta	31	33	35	35	36	36	34
Īc	489	593	646	693	669	523	174
(AT/Ic)x10	0.35	0.34	0.37	0.40	0.48	0.61	1.44
(%)	$\frac{J_1^2}{T} \cdot \frac{J_1^2}{2}$	44	42	40	42	36	

TABLA 6.- Prueba de eficiencia para un colector plano. β = 20 $^{\circ}$ (06/ABRL/84)

Hora	9-10	10-11	11-12	12-13	13-14	14-15	15-16
**************************************	48	51	52	53	58	60	55
Te	29	32	32	32	34	35	35
Īc	378	505	505	315	555	467	158
(\ \T/Ic)x10	0.5	0.38	0.40	0.67	0.43	0.54	1.27
(%)	44	43	39	28	4 1	40	

TABLA 7.- Prueba de eficiencia para un colector plano. β = 20 $^{\circ}$ (10/ABRIL/84)

Hora	9-10	10-11	11-12	12-13	13-14	14-15	15-16
T 14	37	41	44	45	51	54	53
Te	25	28	27	27	30	32	32
Ī-C	183	303	347	221	631	505	237
AT/Ic)x10	0.66	0.43	0.49	0.81	0.33	0.44	0.89
(%)	34	42	42	19	46	44	16

TABLA 8.- Prueba de eficiencia para un colector plano. β = 20 $^{\bullet}$ (14/ABRIL/84)

NOTA: Tablas 4-8 tomadas de (18).

APENDICE V

1	P	Cp	M	V	K	< < <	Pr
K	(kg/m³)	(KJ/Kg K)(kg/miseg	(m²/seq	(w/m K)	(m²/seg	1.1
			x 10°)	x 10°)		x 10 ⁴)	
250	1.4128	1.0053	1.488	9.49	0.02227	0.13161	0.722
300	1.1774	1.0057	1.983	15.68	0.02624	0.22160	0.708
350	0.9980	1.0090	2.075	20.76	0.03003	0.2983	0.697
400	0.8826	1.0140	2.266	25.90	0.03365	0.3760	0.689
450	0.7833	1.0207	2.484	28.86	0.03707	0.4222	0.683
500	0.7048	1.0295	2.671	37.90	0.04038	0.5564	0.680
550	0.6423	1.0392	2.848	44.34	0.04360	0.6532	0.680
600	0.5879	1.0551	3.018	51.34	0.04659	0.7512	0.680
650	0.5430	1.0635	3.177	58.51	0.04953	0.8578	0.682
700	0.5030	1.0752	3.332	66.25	0.05230	0.9672	0.684
750	0.4709	1.0856	3,481	73.91	0.05509	1.0774	0.686
800	0.4405	1.0978	3.625	82.29	0.05779	1.1951	0.689
850	0.4149	1.1095	3.765	90.75	0.06028	1,3097	0.692
900	0.3925	1.1212	3.899	99.3	0.06279	1.4271	0.696
950	0.3716	1.1321	4.023	108.2	0.06525	1.5510	0.699
1000	0.3524	1.1417	4.152	117.8	0.06752	1.6779	0.702
			a to the half day	AAIEW	V: VU/ UZ	1 = 13 / / 7	V:/VZ

TABLA 1.4.1.- Propiedades del aire seco a presion atmosferica (5)

Angulo Omax (RC ideal)	Coleccion promedio de tiempo en el ano (hr/dia)	N- de ajustes por ano		Tiempo promedio de colec- cion para ajuste diario de inclinacion (hr/dia)
17.5° (3)	9.22	2	180	10.72
14° (4.13)	8.76	/	35	10.04
11° (5.24)	8.60	Ĺ	35	9.52
9 ° (6.39)	8.38	10	24	9.08
8 ° (7.19)	8.22	$\lim_{t\to\infty}\frac{dt}{dt}$	16	8.82
7 ° (8.21)	8.04	20	13	8.54
6.5 ° (8.83)	7.96	26	9	8.36
6° (9.57)	7.78	80	1	8.18
5.5° (10.43)	7,60	24	1	8.00

Para Omax = 5.5° , el tiempo minimo de coleccion es 6.78 hr/dia

TABLA 2.4.1.- Frecuencia de ajustes de inclinación requeridos para concentradores de curvatura simple. Orientados Este-Oeste (9)

Omax (grados)	RC	relacion altura/apertura	relacion reflector/apertura	Numero prome de reflexion ñ
36	1,40	0.38	0.80	0.25
	1,50	0.50	1.06	0.34
	1,60	0.65	1.36	0.42
	1,70	1.09	2.24	0.61
15.5	3.65	1.04	2.22	0.60
	4.51	1.62	3.38	0.79
	4.90	2.25	4.62	0.91
	5.00	2.94	6.00	0.99
5.7	7.28	1.86	3.86	0.87
	9.08	3.03	6.17	1.06
	9.80	4.17	8.44	1.17
	10.00	5.47	11.05	1.25

TABLA 2.5.1.- Propiedades opticas y geometricas de CPC completos y truncados

0 max	# de ajustes por ano	RC	ā (mm)	(mm)	Redu 50% (mm)	uccion truncan 60% (mm)	iento 70% (mm)
12*	L.71	4.81	240.3	682.7	341.3	273.1	204.8
1 1	6	5.24	261.7	806.9	403.5	322.8	242.0
10•	8	5.76	289.5	963.4	481.7	385.3	289.0
90	10	6.39	318.7	1154.9	577.5	462.0	346.5
8 •	14	7.19	361.4	1465.6	732.8	586.2	439.7
7	20	8.21	412.7	1886.2	943.1	754.5	565.9

TABLA 3.1.1.- Alternativas para diseno del CPC-BASICO ϕ r = 15.9 mm r = 49.95 mm

X	¥	X	Y	¥	γ	X	Υ
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
	Mr. max and and		man man appropria	after their dear dept	more pain, many paper		
()	()	50	21.0	100	84.1	150	189.1
2	0.0	52	22.7	102	87.5	152	194.2
$\frac{R}{2}$	0.1	54	24.5	104	90.9	154	199.4
Ó	0.3	56	26.2	106	74.4	156	204.6
8	0.5	58	28.3	108	98.7	158	209.8
10	0.8	60	30.3	110	101.7	160	215.2
12	1.2	62	32.3	112	105.4	162	220.6
14	1-6	64	34.4	114	109.2	164	226.1
16	2.2	66	36.6	116	113.1	166	231.6
18	2.7	68	38.9	118	117.0	168	237.2
20	3 : 4	70	41.2	120	121.0	170	242.9
22	77 g 1	72	43.6	122	125.1	172	248.7
24	4.8	74	46.0	124	129.2	174	254.5
26	5.7	76	48.6	126	133.5	176	260.4
28	6.6	78	51.1	128	137.7	178	266.3
30	7 : 6	80	53.8	130	142.1	180	272.3
32	8.6	82	56.5	132	146.5	182	278.4
34	9.7	84	59.3	134	150.9	184	284.6
36	10.9	86	62.2	136	155.5	186	290.8
38	12.1	88	65.1	138	160.1	188	297.1
40	13.4	90	68.1	140	164.8	190	303.5
42	14.8	92	71.1	142	169.5	192	309.9
直直	16.3	94	74.3	144	174.3	194	316.4
46	17.8	96	77.5	146	179.2	196	322.9
48	19.4	98	80.7	148	184.1	198	329.5
						200	336.2

TABLA 3.1.2.- Puntos coordenados para graficar la parabola derecha de un CPC de acuerdo con la ecuacion y = 8.4 $\rm \$~i0^3 \chi^2$

MATERIAL	CALOR ESPECIFICO (KJ/Kg K)	DENSIDAD (Kg/m3)	PUNTO DE EBULLICION
Ethanol	2.4	790	78
Propanol	2.5	800	97
Butanol	2.4	809	118
Isobutanol	3.0	808	100
Isopentanol	2.2	831	148
Octano	2.4	704	126
Agua	4.2	1000	100

TABLA 3.2.1.- Propiedades termicas de materiales para el almacenamiento de energia en fase liquida.

MATERIAL	DENSIDAD (Kg/m3)	CALOR ESPECIFICO (KJ/Kg K)
Aluminio	2700	0.88
Sulfato de Aluminio	2710	0.75
Oxido de Aluminio	3900	0.84
Ladrillo	1698	0.84
Tierra seca	1698	0.84
Hierro fundido	7754	0.46
Rocas de rio	2245-2566	0.71-0.72

TABLA 3.2.2.- Propiedades termicas de materiales para almacenamiento en fase solida

C.S	Dia del año n	Declinacion sol	ar constante	tag (2tg &s) (°)	inclinacion $oldsymbol{eta}$ (°)
Enero	17=17	-20.9	-20.9	37.37	24.17
Febrero	31+16=47	-13.0	-13.0	34.78	11.58
Marzo	59+16=75	-2.4	-13.2	4.79	-8.41
Abril	90+15=105	7 <u>4</u>	8.8	-18.32	-9.52
Mayo	120+15=135	18.8	8.8	-34.25	-25.45
Junio	151+11=162	23.1	8.8	-40.47	-31.67
Julio	181+17=198	21.2	8.8	-37.80	-29.00
Agosto	212+16=228	13.5	8.8	-25.65	-16.85
Septiembre	243+15=258	2.2	8.8	- 4.39	4.41
Octubre	273+15=288	-9.6	-13.2	18.69	5.39
Noviembre	304+14=318	-18.9	-13.2	34.40	21.20
Diciembre	334+10=344	-23.0	-13:2	40.33	27.13

Tabla 3.3.1.- Variación de la inclinación 戌 del colector CPC a lo largo del año

MESES DEL AÑO	ANGULO DE INCLINACION: \$\mathcal{B}\$ (\cdot\cdot)\pi\$
Febrero	11.0
Marzo-Abril	- 8.5
May-Jun-Jul	- 2.5
Agosto	- 16.0
Sep-Oct	5.0
Nov-Dic-Ene	24.0

 $^{*\}beta>0$ °,colector orientado hacia el Sur $\beta<0$ °,colector orientado hacia el Norte

TABLA 3.3.2.- Ajustes de inclinacion del colector A,a lo largo del ano,con referencia al eje Este-Oeste

FUNCIONAMIENTO DE COLECTORES CPC

FECHA : 01 de Abril de 1987

HORA	00480	00460		3 4 =		2	0014	2	
	72	M	4 W	4	d N	K		<	**
(3.) 0-4		M	Law San		1 1	ı M			
			V)		47	9) M		r P
- -	27		46	1000	O M	0^ M)		· [/]	
0 527 E		9		79	\$	9	TH -()		M
o V						M	7.77	7.17	- V
		VI N			iri)	 [Y]			
 	/ 0=	0 0 0 0		0			N NO		
	M			7			((()		1 4
IT : (M/MZ)	2/0	Constitution of the state of th	NOS	4		\tag{5}	000		
I++- (W/MZ)	IO IO IO	264	7 7 7	28	100		9) M) () ;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Had.r Gdd.r	Ev te		4.4.5	Aumento de incidente : debido a 12	radiacion sobre el c a inclinac	olector ion 18	5968—5882	21 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -

TABLA 4.3.1

FUNCIONAMIENTO DE COLECTORES CPC

FECHA : 07 de Abril de 1987

HORA	9	8	? ?				544	0045	20161
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N 4 4 N N N V 0 8 H N N O 8 4 0 V 4 9 P 0 V 4 9 P 0 V 4 P 0 V	8 1 8 4 8 8 8 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4 0 0 0 0 4 W 4 W 4 W 4 W 4 W 4 W 4 W	4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 0 U 4 0 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W	4444040W=	4 4 4 W IV 4 W Q 4 4 8 4 V X 4 H V R	4 4 4 W W 4 W 4 W W 5 W 5 W 5 W 5 W 5 W
$T_{s} \wedge (W/m2)$ $T_{s} - (W/m2)$ $T_{s} \wedge = ID_{s}C_{s}$ $T_{s} \wedge = ID_{s}C_{s}$ $S = IS^{\circ} \wedge CPT_{s}$ $R_{\infty} = 90 \text{ Kg}$	T (1)	883 725 725 Este)	946	100		505 505 566 sobre el c		40 142 5243-4911 4911	0 10 10 10 10 10 10 10 10 10 10 10 10 10

TABLA 4.3.2

FINCTONANTENTO DE COLECTORES CPC

FECHA : 09 de Abril de 1907

	1754 00 0000	lini Lini	100- 1,001	1	147	I	(301 1,171	1,54	1,"%	C.	seed seed CSI		
											0.0		1,000 mg 1,0
speed	total	l."i	SI-	120	45)*	100	00	ON ON	1,000 1,000	l'artes L'artes	05	CA CA	17-41 17-4 11
FLO	\$\begin{align*} \begin{align*} \begi	15	- 101 - 101	ŧ	Latti refr	-		(CD)	00	100 100	1273 6005 6017		5990
*******	73***** 103* 104****	10 10	[****] ***[**]	n	44	-40 -40	ioor Lim	~") ")	1,"! 1,"!	100 100 100	140 140 140	100	, 1984, 1984, 1984, 1984, 1984, 1984, 1984, 1984, 1984, 1984, 1984, 1984, 1984, 1984, 1984, 1984, 1984, 1984,
	CSI S	Limit Limit	l'i.l.:	i	15°	4	un.		(an)	100	100	900	27-42 27-42 24-42 24-42 24-42 11
-g	**************************************	iri Cul		1,1"3	-10 -10	<u>~0</u>	100 100	9	ede Carl Feed	130	1,54 1,54	290	0668-2990
Constitution of the Consti	1754 69 1881	CF Cul	***** ******	1 2		4	1;"[" 12;"]"-	************************************	C-4 C	ST 50	700	~453 #2 - ****** ******	
speed.	named named named named named	-451 1,1751	100	100	Unit		est LTL		900	C2 20 20	- 1		
121100		11 m	175	1	90	į į	1	8	150 150 150 150 150 150 150 150 150 150	1,1,2,4 11,1,2,4 11,1,2,4	70 LO	50	debido a sobra
*10-00	*4*****E *2# *2# *3*****************************	177	*,******* *** P***		100	100		(2) (2)	651 1451 1451		101- 101- 101-	70	- TEN 1150
	1775-1 45 1878-1	[13]	Inter-	1	 	1	13"7	CN CN	60 60 60	000 03 03	999	D- D-	
epose#	40004 624 202342	(75) (170)	LCI CO	27	um um		Li'a	77	3	100 1051 1054	820	120 02 02	
9	1," -c.] -cs -cs-ps-	127	End End	1	00 60	1	1000 1000	C	05 150 150	70 66-	un En	100 100	
speed	tood to toogs office	#6]- ~_0	una	10	um CSI	137°	land Table	CF CS	000		O 	T3	
09400	0.00 00 00 00 00 00 00	D^	100	I I	(SI	I I	140 140	00 (%)		101% 10101 Secret	-0 -0 -1		
	Constitution of the Consti	05 PO	-15 (00)	1	**************************************	150 CC	M3 M3	50	ing Ing	CIN- CIDI Seet		12 12	
08460	E 100 100 100 100 100 100 100 100 100 10			3	140 140	1	E-2 FLO	70	00 00 91	[um 1950 1950	174	
	named Or orange office.	9		Paralle Paralle Paralle	igned [est]s	**************************************	1,24 11,24	10 10	Positive Pos	special special	edi- tor- tara	424	
- 620 - 626 - 630 - 630 - 630				1 LI	(C)		191	<u>C</u>		1.1	(ZW/M) \11	Z /	#ID; = ID; =

Main 4. A. Main

FECHA : 12 de Abril de 1987

C-4 88141882782 100 101 6968-5719 0 N 00 00 00 00 35 #9187878000 (54) (54) (35) 9 9695-0719 *;----1 *(* *(*)* 00 00 00 00 Aumento de radiación inci-(54 (32) (32) dente sobre los colectores debido a la inclinación de obidab 1754 00 2005 () () () () 48 80 70 72 71 74 74 75 75 75 76 76 054 04 080 rational 121 margar reliano 87181982555 1757 100 1000 1000 tipered tips compa 17×1 2000 124 124 14550 β₂= 8°(orientado al Norte) CAL GA $R_1 = 15^{\circ}$ (orientado al Este) $R_2 = 0^{\circ}$ (orientado) 1911-18 101 1022-1 20122222222 11 (四/周) (中) Id,c (W/NZ) - 130 Kg (四/前) 1 20/65 - 12 0.) 0-1 0 · ,....| |-----| |-----S

FINE CALEGRAD RE CALEGRADO SE

FECHA : 15 de Abril de 1987

Parameter and the second	1,154 en Septe	CN LCI	UTU UTU	i	**************************************	1	1,17,1	1,54	1,01 m	540 000	00	100 100 100	
													Tarana Tarana
	1955 1955 1955	10	I.D	Test Table	177	9	L'O	124		50	S	147) 147)	66 65
	1"~1	lu"i	1"" 5"	r	1"1".	7	1-44-	p ^{ormin} g.	, one a	1"*.1	134	I trans	
		100	ira	1	nel"	i	iro	1500	C'sl	j	ion um	1,000	6597-6357
11.71	rgoons) 124 	1570	-E	10 10	inter Inter		1	Party.	ught Peta	" · · · ·	'-d''	}******* ********	-450 i
	*Mangar *Minesa	0.77470		11					mal-	*4****	1"1	100000	gareng ngaren "Pagar"
	USA CO	ten ten	70 91	1	indi und	1	1001	[~]	umi Imb Imb	LO Solution	(m)	100 100 100	1945 1975 1970
Similar Similar Similar Similar Similar Similar Similar													1
	1977 1970	100 100	-10 Indi	ico Iso	1,1",1	55	LCI LCI	[54]) [54]	100 100 100	S	150 150 150 150 150 150 150 150 150 150	100 100	6564-6357
	26.79	1771	1170 21	400,000					2000	4 .****	1		
2012	1,554 00 388.	un)	CCI	-40	10	1	in	1950	ZÖ P	1.73 1.73	Party s	edr CP-	
(per)	*1	igr-	00	100	<u> </u>	[_] []	100	t	127774	Limi ref-	LCD ISSI	95)** 170%	radiacion inclination inclination 13
	shooge effects		50		100 27				P	154		Cr-	
	1754 50 50 50 50 50	1.171	 	1	13131 1,1731	Entering Entering Entering Entering	in Cal	(**)	500	10 10 10	10	15% 160 135	Aumento de dente sobre debido a la
	**65000										-terred		
	**************************************	1.00		[~]	Li''ll		no es	(5°)	Lin	03 50 63	1,(**)	**** **** ****	
1000 1000 1000	Co Co Co	LITA LITA	40	1	13"()	!	421	EN.		52		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	-porel	ti")	n::]-	00	·proof	101~	·4"I	ije.	1'*****	12.21	1,500	Salara Salara	
	named 121 122 122 122 123 134 135	LC3	· *	LC	Li";i	101~	ucil.	CN	1			Landy Landy Landy	
	(54 (6 (22)	sacility sacility	·	1	~101 ***********************************	***	1-	Cr.	Cr-		5	[_][**. **********************************	
Sanata Sanata Sanata Sanata Sanata Sanata	office								1,,19,1	1. 74		11	
	1/2 1/2 1/2 1/2 1/2 1/2 1/2	400	00		est-	100	[~]	17% 17%	00 00	1254 1254 1254	654	CI- 101-	
**************************************	1754 00 1220	[80] [80]	5	1	red tech	1	1	[]	10	100	190	100	
\$	*general	140	100	10	190	EN 120		17%	~d*!	end.		Server.	
	NOS TORESTON	MS	ud-	150	Per Te	13"3	15.3	17%	-40 -40 1-5	Linu Linu	N	P-73	2513 -4-1-1 h. 1023
		00	00	!	[***.]	!	U**)	-421 (54)	1,754		remod	155 155 154	0 ************************************
(22) (22) (22)	, then								1,54		1557	1, 14	
17,44	Special Str Stranger (Stranger	100 (25)	(c)	1251	~401 10151	1123°	um inst	-401 101-4	1,1",1	(C)\	LC)	10000 10000 10000	1 Li - 1 mi
									+[140]-				- DI 11
		12_3 10		[] [] 101	,,****,	100000	*******	401000	[ZE/H]	1751			
erental	90191	·		len- l l- l-ul	C3		E.3	(L)			- #- [1	T F 10 85 3
*******	11	1		Journ	ļ	Inera	1	1	Innet	[-rate]	(start)	[11110]	- [34] - [-mar-

FECHA : 16 de Abril de 1987

949:	CS 0 022	ade ede Leit salt	L/3 %f*	1 10	0, 0,		92	
	*promit #24 ***-pp- ******************************	RJ 40	ma sas ma sas	001 O5	D S		597	
945	1754 92 3620	10 K	1 0	1 5	(20) (20) (20) (20)	00 05 90 05 90 05	um 50 50	1109-5269
(L [*])	-9	S0 L0	-40 selv	00 to	9 5	00 LO 40 CA 	40 40 n.a	
	USA co conservation	nd 60	1 60	1 1-	F 50	00 40 40 15 64 65	30	
Night seed	uned to	os tra	rd ra	C4 15	- S	00 0 04 0 04 0	90 00 00	6929-6701
2001	1774-1 198 1987-1	8 5		1 123	05 PS	75 - 100 00 - 40 90 - 40		
<u>~</u>	ngered nge ngga	60 PO 1	eel jegi	um um Or um	05 M	200 G~ 200 G~	8	
12400	1754 55 385	~d 00	1 79	1,000 1,001	2 2		92/00	Aumento de radiación inci-
C-4	140000 8 120 100 250 100 250	-1 -0 F	7 10 7 10		8 8	P3	90/00	
COR Participal Partici	1,754,4 124 200,000	98	1 50	1 124. 1	ar ry ry er ar	N 05 05 05 05 05 05 05 05 05 05 05 05 05	1039	
record record	12	205	2 5 1	5 h	500	75 50 70 70 70 br>70 7	5	
1010	CSI GES	PS (S)	- 50 - 53		30 kg	St 05 5 00 5 00	.	
Parties Table	120-141 120 	(~ 00 h	s Mo s	7 9 6	30 UD 1	S 40 1		
345	1,504 19	N 9 1	um set-	185	7 0 5	or horse		
5	Agency 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	Police in	Di ngeresi nge Di nagger eng	0 M3 C	5 UD 6	3	103 103 103	
2	CSI SE	55 (55) 185 (55)	45 1-5	26	> 60 6	\$ 15 F	ero.	
3	tonerij tij terija tijene	50 sp sp		2 2 2	5 105 8 5 50 0 150 6	4 M M	7	1,l - (r - 17,l 11
	# # # # # # # # # # # # # # # # # # #	0000	NON NON	" " " " " " " " " " " " " " " " " " "	" - and the .	J - 1		

Mib, A = 1b, c, I = 1b, c, I = 1b, c + Id, c I = 15 (orientado al Este) A = 0 A = 8 (orientado al Norte) A = 130 Kg

1814 4.5.4

(2) %24 (3)

2

debido a la inclinación TS 6701

FINCTONAMIENTO DE COLECTORES CPC

FECHA : 17 de Mayo de 1987

	CONTRACTOR OF THE CONTRACTOR O	Li'll	100 Hel-	1	\0 \0 **\0	!	100	2	1	LC3 CSJ	1,50	**:I** **:II	
													1,7% d
	rgreen] egs (morga- (Mines	lard est	100	453.	Lim Iso	1,17	100 100	8	1	LC)	[5]	-45 -45	17-47 17-37 17-37 11
2	Constitution of the Consti	1700.	S	1	112;]**	1	100	P.	50 LC3	co	100	124 40 100	# # # # # # # # # # # # # # # # # # #
-pers)	egenneg ege serge edit, ma	1	i	1,177		5-0 1/0	00 MF	(****) (****)	191111 [****** 19411]	co	(5) (5)	CC1 CC1 CC3	settina. epined
	17%4 10 1000	1000 1000	un un	1	ect. (1)	i		J.v., it	9/-		 	uma uma pera	27 17
agend	Agency] (2) (consignation)	(a)	um um	1,173	1,201	est- Lift	Or-	~^)	05	************************************	50	LCD LCD LCD	4526
9	1754 50 500	2	~01 1~0	I	er.	1	ing.	**************************************	"***** "! 		00		
**************************************	rad F2s gas -6Cas	Lin	ico ico	70.0 AL	4.1	internal	8		9-40 940 (7-4	[M] [M]	edi- Cir- Ivo	154 164 164	TOTAL TOTAL CONTROL OF THE PARTY OF THE PART
12400	1754 04 0825	El-	ICIO- ICI	1	150 150 150	1	00 02	25	hel) hel)	100		(3) (3)	debido a cobide
speed	100 mms	100 100		44	50 50	Perja Larra	00 el-	2	*** *** ***	(00) (00) (00)	10% 19% 10% 10%	45 64 64	**************************************
	17%) 64 55%	LITE SEPT	-10 -10	ą ą	5	l i	1,54 4,51 4,51 4,51 4,51 4,51 4,51 4,51		selle. Zer	(113) (113)	05 05 00	CP- CP- UC)	
sgreed	aperoll aperoll actions	Li"J	·,1 ·4;;t	lvo tro	Limit redir	CP-		2	()~ 	CD CD 	1015- 1015- 10151	Dr. Dr.	
2	1,"~d de 30,000	ich.	j-m.	i i	1,17,1	1	00	ON CN	-40 -40 -40	est est	Accel- Version Agency Agency Agency	Control transfer transfer transfer	
re-red	**************************************	mil.	um sp	LT.		1354 1361	55	101~ 104	051 051	100 100 100 100 100 100 100 100 100 100	2	1009	
	1,754 th temp	H0	2	i	-00 -dh	Į.	[-4"))	CF CSI	20 20 20	<0 	00 00 03	- CO	
ō	FIRE CONTRACTOR OF THE CONTRAC	92	1001	Cal	first regio	15-01 -500	-,s *)1	05			15. UTI 00	- CI	ELI
	F"' 	100%	1~	1	 	I	ing Ligh	20		55	rej- land	iro iro	entado al N
la, dadi Personal Personal	*20008 *20 *100 *100 *100 *100 *100 *100 *100		\$12.30m	100	(N		um CSI	50 50 50 50 50 50 50 50 50 50 50 50 50 5	ura ura ura ura	2	UT) CO PSI-	13".1	CD (cm) h L CD (CD) TCD (CD) TCD (CD) TCD (CD) TCD (CD) TCD (CD)
OSE OSE USA USA USA		1 1	1	11	rgi	1000	334:	ELI			Agenda Sales	(AU/W)	TT.

FUNCTION BY COLECTIVE OF

FECHA : 30 de Mayo de 1987

1,000 1,000	(%) (%) (20)	44 1 4 1 8 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	enter the second
egoved	nghadag Hija mangan attanna	262 262 262 37 37 37 37 37 37	1754 37-5 37-5 37-7 37-7 1
	Cod o	82 0 1 4 1 8 8 7 7 4 4 6 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6202-6497
	re-mil F28 	55 77 308 475 475 631	unitary named
	[**s.] **********************************	25 1 55 1 55 4 56 1 57 57 57 57 57 57 57 57 57 57 57 57 57	40 40 40
**************************************	Special Special Stranger Allians	56 47 49 49 400 199 757	6136-6497
Party	1,"**-c.] 124 	66 32 32 32 34 44 44	
*press	124 124 11524 11534	60 81 69 57 57 57 57 867 946	adiacion inci- los colectores inclinacion TS
		00 10 14 40 00 00 0 4 1 10 10 10 10 10 10 10 10 10 10 10 10 1	de de la solution de
2004	tymeng hija Armyga tylinen	20 80 80 80 80 80 80 80 80 80 80 80 80 80	3 5 5
Control of	123 125 135	321212852 221212	
*gman	SA SA SA SA SA SA SA SA SA SA SA SA SA S	50 67 77 70 70 71 71 883 833	
	8754 68 5880	73	
Tasan ^a *gamed	19-1-1 13-1 16-18-1	4 K 4 6 8 8 8 8 7 8 6 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9	
0440	E'SI 60 500 500 500 500 500 500 500 500 500	25 1 4 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
**************************************	10 10 10 10 10 10	8 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	CH chart h CH
3	1754 69 1882	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Tankan Tankan Tankan	Speed Speed Speed Speed	34 48 48 72 72 332 458 426	
	COLECTORES		A. I.

FUNCTONAMIENTO DE COLECTORES CPC

FECHA : 21 de Junio de 1987

HORA	O HBO	00460	00400	00411			14400	212	OLD.
·	M	7	P)	747		Ť			
*	77		0	7		IO 	;i		
- -	100		,—i	NO.	40	9	N	90	/. 7
Angele .		N	46			1000	1,277	Y	
0	**	200 - 100 -			O/	*/		17) V)	
0	N			**************************************	vi M	4	Y	√0 ₹	/_ **/
- - -	QZ.	OZ	000	0	0 M	N	M		[\]
needen Street	004	\$ D	710	25.25	1	909	70 70 70		
Li En		M		05		ni mi	9		
	990	/6/	000		11		N99	99	40 50 70 70
IT; (W/m²)	O K M	9 9 10	/5/	NO O	11"	00 4	150		

Aumento de radiacion 6220-5884 incidente sobre el colector ------ 5.7% debido a la inclinacion TS 5884

TABLA 4.3.10

15/ABRIL/87

	Ta	ì	Tr.i	Travers .	r ₌ 0	Ī	T
HORA	CFC real	CPC ideal		CPC real	CPC ideal	CPC real	CPC ideal
08h00	27	25	28	38	42	31	35
09h00	34	31	33	50	55	39	44
10h00	46	43	44	61	83	50	63
11h00	54	45	55	68	87	58	71
12h00	58	48	45	79	94	67	80
13h00	54	39	59	81	92	67	76
14h00	53	43	53	64	79	57	66
15h00	49	41	53	59	77	56	45
16h00	46	32	52	55	56	53	54

Tabla 4.4.1.- Valores de Ta; Tri; Tro y Tr para un CPC real, Ta, Tro y Tr esperados para un CPC ideal.

HORA	08h00	09h00	10h00	11h00	12h00	13h00	14h00	15h00	16h00
									*
Δ⊺ real*	10	17	17	13	1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1 /1	22	Feb. 1.	6	3
ƕ ideal	<u>i</u> 1	22	39	32	29	33	26	24	Ą

^{*}ΔT = Tr,o - Tr,i

Tabla 4.4.2.- Incrementos reales y esperados de temperaturas, entre la entrada y salida del fluido en el colector CPC.(15 ABRIL/85).

Bh(W/mZ)	723 723 724 724 734 60 60	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	SI 00 00 M 00 M 00 M	r 1		- 1 1 1 1 1	-	150 150 150		4 ()	9 1	and one yes can	5270	4011	1 1 1	E 		9599	0 T	I I I	man and and and	and the state of the	# # # # # # # # # # # # # # # # # # #	me out and and	10 to 00 an		(C) (C) (C)		1 5 E	1 1	1 1 1
1261	00 00 00 60 60 444 40 00	1700	1 00 5 60 5 105	- 00 - 15 - 15	200	I CC self	1 40	1~1 10 10 10 10 10 10 10 10 10 10 10 10 10	100 150 1015	1 -40 - 65 - 65		1 (C) 1 (C) 1 (C)	45/5	- Lr:	3 70 1 70 1 70 1 70	D INC C IOS C IOS		0 1				~ ~1 = ~1 d Li	0 (C) 0 (C) 3 (C) 6 (C)		4 4 5 1		k let Let Let		0 00 0 05 0 155		05 05 00
(Z	75 75 75 75 75 75 75 75 75 75 75 75 75 7	13.7 13.7 14.7 19.0	9 100	1 1	[54] [54]	i i i	1 1	(00) (00) (04)	1000 1000 1000	00 LC 	1 1	0 to 10		1 1 1 1 1 1 1 1	1 1	117	-40 -40	1 1	1 1 2 2	1	1 1 1	Total data new man	1 1	1 1 2	1 1	1 1	[60] [60]	1 1 1	1	1 1	1 1
(ZW/M)HQ	u u e e e e	75 05	1 10% 1 90f 1 000	i ka	70 00	'sh 'oo '	Harrist Constitution Harrist		A-00	CSI PO 900 9-4	5-4 5-4 500 4-4		PO CM IOO W			50 00	************************************		1 1 1 1	and only the day	[*****] [*****************************	1.177	[,"*] [,",",",", [,",,	1.7	1	1324 12			0	124 120 120 120	
,			1000	0,44			100 100 100	0.0	2000	17-	0,40		Limit Help Help Help Help Help Help Help Help	P-0	\$0 \$0 \$0		S	that then mad mad	1	1	8	0.34	**************************************	50	1 1 1	100		5	Period		92.0
1. ~ J	0 0 0 0	117 100 100 101 101		1 2 2	09249	=======================================	1	101-	-p]	0750		may need think from	(00) (00) (00) (4"))	1 1	100 100 100 100 100	100 100 100 100		***	1 11	# H			1 1 1			1 1	907- 9401 9401 14701	1	1	2 2 2	1
	TJ TJ TJ TJ	A 200	140 001 031 84	100 100 100 100 100 100 100 100 100 100	4948		00 95h 150	4094	2632	"" + 1	-0.05 05 05	00 P		140 140 140	2992	2074	100 100 100	100 mm and	1	***	S 50 50 50 50 50 50 50 50 50 50 50 50 50	<u>~</u> <u>~</u> <u>~</u>	Z005	 	1 1	(A)	[27] [28] [28] [29]	2022	3028	1000 PM	21 21 21
	(70/8)	19701	Link Self Col Col	10229	150 150 150 150 150	70	["			LC1 [54] (55) (40)	9000	10087	7901	[*****, *******************************	1700		50 00 05 05	70 70 10 10 10	9944	150 150 150 150 150		100 100 100 100	001	50 60 60 60			05 55 65		9725	2079	100 100 100
CID.		-CI	um	1 1	00	131°-	12 64	1723 1723			************************************	[]] 		nol-	(12)** 12**)	[****. ********************************	Clari is language	1	1	-	1,754 ************************************	tim est	oo ser	1400]** 14 1400]**	1 1	1572	ion luna		*~. 	**(*) ******	1000000 6000000000000000000000000000000
E ^{tte}		CI~	D~	P.0	**************************************	Lm Or	-101 -101	Proc.	00	G-		special special		[95] (C) (m)	remet	LTI S	*[**] *******************************	[*************************************	00	137~	**************************************	-1[-1[1,	\$****** *******	1422[** *********************************	13"71		I'm.	1301	Cr.	20
ee ee		*greenf an partially heart		P0.	< > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < < > < < < > < < < < > < < < < < > < < < < < > < < < < < > < < < < < > < < < < < > < < < < < < < > < < < < < < < < < < < < < < < < < < < <	<u></u>	-101 -100 -100 -100 -100 -100 -100 -100	[****** 1 	00	05	12************************************	*6****	[\sigma	-11 1	1922-jj	1,1"3	~ICI	[*******	50	[]*-	1 (1000) (0000) [1000]	used USA		INO INO	est- USA	1,003	50	P~-	59	ijr-	120

TABLA 5.1.1.- Radiacion Solar Global (Mh) y sus componentes difusa (Dh) y directa (Bh) sobre una superficie horizontal en la Tierra. Para el mes de Abril/87

-1041-	70	00 05 05	60h 650 150 150	20 120 121 121	IND Refr CNI LICH		88	20	LC)	750 1,73 1,40	07 07 07 40	9
11	in in	4740	4536	4920	Proc.	67 67 67 67 67		1200 p. 1200 p	-50 100 100 100 100	4622		1473 1254 1254
	70 10 10 10 10 10 10 10 10 10 10 10 10 10	05 05 05 05 05	977	00 M1 M1 M1 M1		2071	2990	100 201 00 01	tra 60 67 19	7029		
3	rgi rgi lilli tri tri tri	1554 1554 1550 1551 1551	60)- 60)- 60)- 60)-	100 101 100	400. 400. 400. 400.	1281 1881 1881	1711	17	2492 25	200	170 100 100 100 100	100 100 100 100 100 100 100 100 100 100
_E3		70.0	0.0	<u></u>	Inc.	000			17	<u> </u>	75.0	Processor of the Proces
Esse		1,,(·-	05 64		17Po			1,"**. 1,"**. 1,"********* 1,**********	**************************************	1171	73	
				0	************************************	- C	0	E'nd speed	1000fm 14d		1	~(C) ["~]

Cara del colector inclinada 15° y orientada hacia el Este

TABLA 5.1.2.- Radiacion solar global sobre un superficie horizontal (Hh) y sobre una superficie inclinada ($\mathbf{I_{\tau,\tau}}$).

deal-	70 70 70 01 01	05 05 50 50	\$2 \$2 \$2	1231 1231 1471 1401	150 153 153	2042	-40 -40 -50 -50 -50	55 55 50		1471 1471 1471	05 05 05 00	9
11/11/11/11	estiment and	04/40	7556	200 100 100 100 100 100 100 100 100 100	1944	50 50 611 611 70			7000 1000	1770	20 20 20	
	10 10 6 6	500 600 600 600 600 600 600 600 600 600	200	50 50 50 50		2071	2665	00 00 00 00 00	100 105 105 100	Per LITE LETE SCI		7190
	100	4022	10°	000 128 200 128	\$00¢	2552	17-7	\stack	Z\$95	ngh (SS) (SS)	15- 540 00 981	4523
-60			5.0		5.0	/ · ·	D-	5				Pro-
t		ijin	Ch-	1,,1%		100	lije.	1,751 6,775 4,776	(C)	1471	· IOI · Const	·-dall treed
		*p==== 10 1	CS CS	40)- 40)- 40)-	************************************	122	O5	I, S.	specific	I.1";I	14.100 14.100	5451 1754

© Cara del colector inclinada 15° y orientada hacia el Esta

TABLA 5.1.2.- Radiacion solar global sobre un superficie horizontal (Hh) y sobre una superficie inclinada ($\mathbf{I_{T,T}}$).

	C2 C2	1 1	1	1,3°°) 1,3°°) 1,3°°)	25.00	1,3,600 1,000 1,000 1,000	(A) (C) (L)	00 20 24	1	12 1 1 1 1 1 1 1 1 1	1
	1	F0 E4	229	64 60 80	65 65 64	ir) Mo		N N	I,**SI speed speed I	717	392
12h00 15h00 15h00 15h00	054 653	-	.	57	CF CS E-	150 150 150	12.00 10.00 10.00	150 100 100	1.00 509 100	~0 100 00	1
	nood Paris	street street	771	00 65 00	07 50	9	154 153 153	***** ****** ******	1754 1473 1473	CPs regle CPs	50 10 50
	6.3 6.4	1 1	1		020	2036		0.00	175- - 171	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1
		7070	50 60	07.1 , 	10 0 0	2064	© 05 05	55 55 55	1-	 	174 174 40
	C-1	1	1 1 1	Partie	2670	1754 400 1754	 	99 67	1001 *203 *403	# Z# Z	1
	rassed Frankl	S 500 500 500 500 500 500 500 500 500 500	12	1175	105 100 100 104	124 120 124	100	con Con PCD	Lini Ele-	962Z	100 100 100 100 100
	654 653	# # #			154 100 105	6.4 00 00 60 60	1950 1015 1016 1554	52 50 17	1-1	## ## P P P P P P P P P P P P P P P P P	
	special Process	505	<u></u>	Secret Secret		1,"***.] ******. 1,"***.]	C4 05 05 150	Territ	14"31 14"31 120%	0577	15.2 15.3 15.3
tring tring tring distri- speed speed	ESI E3	1	1 1	150 135 150		2002	50 155 150	3009	100 105 105 105 105 105 105 105 105 105	64 00 00 00 00 00	1
	oproof Land	100% 000% 000% 1000%	1022	2702	ion ion ion ion ion	00 70 07	2525	00 05 54	1,71,71 1,77,1 1,77,1	9	17 07 07 07
09400 10400	C3	1 1 2		以 (2)		150 150 150	17-4 19-4 17-4	C-4 000 000 000 000	3230		1
	·poort I'man	2793	505 05 05 154	2736	esh con ura ura ura	5	700Z	F3 F3 F3	150 150 150 150 150	95 57	72
	(2) (2)	1 1	1	00 03 e	9	05 40 50 50	2202	100 140 140		10.35 15.00 15.00 15.00 15.00	1
	rend Luid	1,"*-,1 1,"*-,1 1,	9092	00 00 00	500 160 154	50 (51 (50 (50	831 150 154	<u> </u>	2365	- 127 127 127	-401
0.0480	CS4 C0	ļ	1	20 20 00	127 -127 -127	704	er co cd	1," -1 1," 1," -1		S0 65 52	1
		95 65 65	Clari 1970 1276 1981	speed Interest Interest Interest	areas profit stiller	-40 -40		170	**************************************	Dr. Pro- Pro- Pro- Pro- Pro- Pro- Pro- Pro-	135 1300 14-4 14-4
HURA ENERGIA UTIL(w/m²)		01/ABRIL/87	07/ABRIL/87	09/ABRL/67	12/ABR11/97	15/ABRIL/87	10/11W89/97	Z6/ABRIL/87	17/44/0/87	30/14440/87	78/01M10/57

TABLA 5.2.1.— Energia util instantanea (qu) para el colector CPC.

HORA Energ. uti ⟨W/mZ⟩	08h00	09h00	10h00	11h00	12h00 -	13h00	14h00	15h00	16h00	Energ. util Total
CPC-ideal	597	1147	2648	2460	2246	2406	1666	1189	118	14477
CPC-real	704	1359	3203	3093	2884	2762	2036	1532	279	17852

TABLA 5.2.2.- Comparacion de energia util instantanea, entre un CPC-ideal y un CPC-real.

Ambos con la misma radiacion incidente e igual Tr-i

FECHA		ion total nte I ~ (W/m2)	Energia uti del colecto	l total diaria r (W/m2)	Eficiencia diaria de	promedio cada colector	Eficiencia Promedio
	Emile Franction of the control of th	CLT 2	CLT i	CLT 2	CLT 1	CLT 2	diaria
01/abril/87	5968	Mar No. 444	15882	PER AND DESCRIPTION	0.49	this area and ass	0.49
07/abril/87 09/abril/87	5243 6088	6274	14615		0.59		0.59
12/abril/87	6120	6125	15793 16919	14448 17040	0.53 0.57	0.54 0.57	0.53 0.57
15/abril/87	6564	6597	17574	17852	0.57	0.57	0.57
16/abril/87	6929	6925	18620	18796	0.57	0.57	0.57
26/abril/87 17/mayo/87	5530 4429	5577 4416	15265 11392	15342 11377	0.58	0.57	0.58
30/mayo/87	6136	6202	15766	16232	0.49 0.55	0.48 0.56	0.49 0.56
21/junio/87	6220	THE STE May No	15693	100 000 one max	0.53		0.53

TABLA 5.3.1.- Eficiencia promedio diaria η c para el colector CPC

Dia de prueba	
	diaria (Kw)
1	4.8
2	4 . 4
3	4.7
Ą	5.1
5	5.3
6 7	5.6
7	4.6
8	3.4
9	4.7
10	4 . 7
ENERGIA UTIL	TOTAL 47.3
ENERGIA UTIL	PROME-
DIO DIARIA	A. 7

TABLA 6.2.1.- Energia util del CPC

AÑO	Vida util de colectores (años)	Incremento anual Tarifa-Kw-Hr (sucres)	Costo Kw-Hr producido Emp. electrica (sucres)		
	1 217 2 2 1		CLT plano	CLT CPC	
			and one one one was not seen one		
1988	01	7.58	23437	74299	
1989	02	9.85	30469	94589	
1990	03	12.81	39609	125565	
1991	04	16.65	51492	163235	
1992	05	21.65	66939	212206	
1993	06	28.14	87021	275868	
1994	07	36.59	113128	358628	
1995	08	47.56	147066	466216	
1996	09	61.83	191186	606081	
1997	10	80.38	248541	787905	

#Qu-anual-colector plano = 3092 Kw-Hr/m2 Qu-anual-colector CPC = 9802 Kw-Hr/m2

TABLA 6.2.2.- Costo comparativo de energia producida por unidad de area, para un colector plano convencional y un colector CPC *

BIBLIOGRAFIA

- 1.- KREITH., KREIDER J. Principles of Solar Engineering.
 1978.
- 2.- KREIDER J. Kreith F. Solar Heating and Cooling. 1977
- 3.- PAZMIRO M., TESSITORE M. "Determinación de la Radiación Solar Global en la Región Litoral". ESPOL 1981.
- 4.- LIU B, JORDAN R. The Interrelationship and Characterristic Distribution of Direct, Diffuse and Total Solar Radiation, Sol. Energy, vol., p4, 1-19.
- 5.- Natural Bureau Standars. U.S. Circ. 564,1955.
- 6.- DUFFIE J., BECKMAN W. Solár Engineering of Thermal Processes. 1980.
- 7.- PAZ R. Introducción a la Energía Solar. ESPOL. 1983.
- 8.- EDLIN, F., " Solar Utilization Now. IV ", Chap. 12,
 Arizona State University, Tempe, 1976.
- 9.- DUFF W., LAMEIRO G., " A Performance Comparison Method for Solar Concentrators", ASME Paper 74-WA/sol-4, 1974.
- 10.- Mc Daniels, Enhanced Solar Energy Collectors Using Reflector-Solar Thermal Collector Combinations, Solar Energy, vol. 17, 1975.
- 11.- Westinghouse Electric Corporation, Solar Heating and Cooling Experiment for a School in Atlanta. NTIS. Rept. PB240611, 1974.
- 12.- Rabl A, " Optical and Thermal Properties of Compound Parabolic Concentrators ". Solar Energy, vol. 18,

- 13.- Rabl A, Comparison of Solar Concentrators. Solar Energy, vol. 18, 1975.
- 14.- Kreider J, "Performance Study of the Compound Parabolic Concentrator Solar Collector", Enviromental Consulting Services Inc., Boulder, Colorado, 1974.
- 15.- University of Chicago. Enrico Fermi Institute.

 "Compound Parabolic Concentrators with non-evacuated receibers". Sun, 1978.
- 16.- F. Mestanza, "Aplicabilidad de los Concentradores

 Cilíndricos Parábolicos de Energía Solar Para la

 Obtención de Vapor" (Tesís, Facultad de Ingeniería

 Mecánica, Escuela Superior Politécnica del Litoral,

 1784).
- 17.- University Of Chicago. Enrico Fermi Institute. " A
 Compound Parabolic Concentrator for a High Temperature Solar Collector Requiring Only Twelve Tilt
 Adjustments per Year". Sun. 1978.
- 18.- M. León, "Diseño y Construcción de un Colector Solar de Doble Exposición" (Tésis, Facultad de <mark>Ing</mark>eniería Mecánica, Escuela Superior Politécnica del Litoral, 1984.
- 19.- Morrison G., Ranatunga B. "Thermosyphon Circulation in Solar Collectors". Solar Energy, vol. 24, 1980.
- 20.- Anderson B., "Solar Energy ", McGrawn-Hill Book Company, 1977.