

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

"Diseño del Sistema de Monitoreo y Control de un Hotel"

TESIS DE GRADO

Previo a la obtención del Título de:

INGENIERO EN ELECTRICIDAD

Especialización:

ELECTRÓNICA Y AUTOMATIZACIÓN INDUSTRIAL

Presentado por:

Juan Diego Rodríguez Sánchez Wilson Alfredo Trujillo Prieto

GUAYAQUIL - ECUADOR

Año: 2007

AGRADECIMIENTO

A Dios por haberme dado la fuerza y salud necesaria para poder seguir y culminar esta etapa muy importante de mi vida.

A toda mi familia, mis padres, hermanas, tíos, a mi novia Martha Bravo y a todos aquellos que de una forma u otra se han sacrificado o aportado con su granito de arena, que han permitido cumplir con mi objetivo y darme la oportunidad de desarrollarme profesionalmente.

A nuestro director de tesis el Ing. Alberto Manzur y a la Universidad por haberme aportado los conocimientos necesarios para poder culminar este trabajo.

Juan Diego Rodríguez Sánchez

AGRADECIMIENTO

A Dios, por quien le debemos todo lo que somos, por darnos la capacidad y fortaleza para alcanzar nuestras metas. Por brindarnos siempre una mano amiga cuando más lo necesitamos.

A mis padres Martha Prieto Correa y Wilson Trujillo Sánchez por su esfuerzo y apoyo para la culminación de mi carrera, a mis hermanos: Johnny por su apoyo incondicional en todo momento, Walter por mostrarme el camino que debo seguir y a mi hermana la Dra. Elizabeth que con su ejemplo me enseño que uno debe de tener coraje, ganas y deseos de superación a pesar de los obstáculos que se presenten en el camino.

A nuestro director de Tesis, el Ing. Alberto Manzur por la colaboración brindada durante la realización de la presente Tesis.

Al Ing. Xavier Erráez Tapia, Ing. Paúl Mantilla Solórzano, Ing. Juan Pablo Palacios y al Sr. Dover Moran, por habernos brindado todo su apoyo para el desarrollo de la presente investigación.

A las familias Barros-Prieto, Romero-Barros, por darme siempre aliento para seguir adelante con mis metas.

A mis amigas Isabel, Katty y Mónica por ser incondicionales y estar siempre presentes en los momentos buenos y malos de mi vida.

Al Ing. Wilson Chávez, Ing. Joseph Páez, Ing. Jaime Freire, Erwin Jurado y Adolfo Vargas que siempre estuvieron allí para apoyarme, sin esperar nada a cambio.

Por último a todo mi grupo de amigos(as) que han estado presentes en las diferentes etapas de mi vida.

Wilson Alfredo Trujillo Prieto

DEDICATORIA

LA DEDICATORIA DE ESTE TRABAJO A MIS PADRES NELSON RODRÍGUEZ E HILDA SÁNCHEZ QUE DEPOSITARON EN MI TODA SU CONFIANZA, BRINDÁNDOME SU APOYO, CONSEJOS Y SACRIFICIO EN TODO MOMENTO SOBRETODO EN LOS DIFÍCILES PARA QUE NO ME RINDA Y SIEMPRE SEGUIR ADELANTE HASTA ALCANZAR MI OBJETIVO.

A MI HERMANA ROSA RODRÍGUEZ QUE AÚN ESTANDO LEJOS SUPO ACONSEJARME, DARME FUERZAS Y TODO SU APOYO PARA CULMINAR ESTE TRABAJO Y EN SÍ A TODA MI FAMILIA QUE CREYÓ SIEMPRE EN MÍ.

Juan Diego Rodríguez Sánchez

DEDICATORIA

DEDICO ESTE TRABAJO A DIOS POR SER SIEMPRE MI FIEL AMIGO, A MI MADRE LA SRA. MARTHA PRIETO CORREA POR SER LO MAS GRANDE QUE DIOS ME HA DADO EN ESTA VIDA, A MIS HERMANOS JOHNNY, WALTER Y ELIZABETH QUE SIEMPRE ESTUVIERON A MI LADO.

A MIS SOBRINOS(AS) CRISTOPHER, JONATHAN, STEPHANY Y MICHELLE, A QUIENES LES DESEO MUCHOS EXITOS EN SU VIDA, PARA QUE ELLOS SEAN LOS FUTUROS PROFESIONALES DEL ECUADOR.

A DOS PERSONAS QUE YA NO SE ENCUENTRAN ENTRE NOSOTROS,
PERO SE HUBIERAN ALEGRADO DEL LOGRO CONSEGUIDO, LA SRA.
ARGENTINA DE PALOMINO Y A MI TIO HUMBERTO BARROS QUE DIOS
LOS GUARDE EN SU GLORIA PARA SIEMPRE.

Wilson Alfredo Trujillo Prieto

TRIBUNAL DE GRADUACIÓN

Ing. Holger Cevallos PRESIDENTE Ing. Alberto Manzur DIRECTOR DE TESIS

Ing. Hernán Gutiérrez MIEMBRO PRINCIPAL Ing. Holger Cevallos MIEMBRO PRINCIPAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta

Tesis de grado, nos corresponde

exclusivamente; y el patrimonio intelectual

de la misma a la ESCUELA SUPERIOR

POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

Juan Diego Rodríguez Sánchez

Wilson Alfredo Trujillo Prieto

RESUMEN

El proyecto se basa en lo siguiente:

- Realizar un sistema de monitoreo y control para el funcionamiento automatizado de las habitaciones del hotel, desde el punto de vista del ahorro y confort.
- Realizar un sistema de monitoreo y control para el funcionamiento automatizado del sistema de transferencia automática de energía.
- Realizar un sistema de monitoreo y control para el funcionamiento automatizado del sistema de bombeo, para el suministro de agua en el hotel. Realizando un análisis del sistema del control de realimentación PI

En el **primer capítulo** se describe sobre la importancia de la Domótica aplicada a los Hoteles (Inmótica)

En el **segundo capítulo** se presenta los puntos posibles que se pueden gestionan en la Inmótica

En el **tercer capítulo** se detalla sobre todos los dispositivos que pueden ser aplicados en la Inmótica y la justificación de su elección.

En el **cuarto capítulo** se presenta los puntos a tratar para el control del sistema Inmótico, tales como control de habitaciones, control de transferencia automática de energía y control del sistema de bombeo

En el **quinto capítulo** se detalla los términos utilizados en el diseño del control de lazo cerrado para el sistema de bombeo en el hotel, mediante un control PI y la obtención aproximada de los valores de estos parámetros, a través de la herramienta de simulación (Simulink).

En el **sexto capítulo** se detalla las características principales del PLC y del software de monitoreo InTouch, aplicados en el sistema Inmótico.

Por último se incluye las conclusiones y recomendaciones, anexos y bibliografía

ÍNDICE GENERAL

RESUMEN	VIII
ÍNDICE GENERAL	X
ABREVIATURAS	XVII
SIMBOLOGÍA	XIX
ÍNDICE DE FIGURAS	XX
ÍNDICE DE TABLAS	XXII
INTRODUCCIÓN	1
CAPÍTULO 1	
1. APLICACIÓN DE LA DOMÓTICA EN HOTELES	2
1.1. CONCEPTO DE DOMÓTICA E INMÓTICA	2
1.1.1. ¿Que es la Domótica?	2
1.1.2. Definición de Domótica	2
1.1.3. Definición de Inmótica	3
1.1.4. Diferencias entre Domótica e Inmótica	4

	1.2. JUSTIFICA	CION D	E LOS SI	STEM	AS INTEL	LIGEN	ΓES EN	LOS
	HOTELES.							4
	1.3. CARACTE	RÍSTICA	AS DE LOS	S SIS	TEMAS IN	NTELIG	ENTES	EN LOS
	HOTELES.							6
	1.4. DISPOSITI	vos	QUE	CON	IFORMAN	1 L	os	SISTEMAS
	INTELIGEN	NTES						7
	1.5. TIPOS DE	SISTEM	IAS DE CO	ONTR	OL			8
	1.6. ARQUITEC	CTURAS	DISPONI	IBLES	PARA EI	_ CON	TROL D	EL
	SISTEMA I	NTELIG	ENTE					12
C	APÍTULO 2							
2.	SISTEMA	DE	GESTIÓN	N	TÉCNICA	4 [DEL	SISTEMA
	INMÓTICO							14
	2.1. PUNTOS A	GESTI	ONAR EN	IELS	ISTEMA I	NMÓT	ICO	14
	2.1.1. Gesti	ión de la	Energía					14
	2.1.1.1.	Sistem	nas de Co	ntrol E	Eléctrico			15
	2.1.1.2.	Sistem	nas de Co	ntrol d	le tempera	atura		16
	2.1.1.3.	Sistem	nas de Co	ntrol d	le bombed	o		17
	2.1.1.4.	Sistem	na de Con	trol de	Transfer	encia A	Automát	ica19
	2.1.2. Gesti	ión de la	seguridad	d				20
	2.1.2.1.	Sistem	na de Con	trol de	Acceso			20
	2.1.2.2.	Sisten	na de Dete	ección	en Caso	de Ince	endio	21

	2.1.2.3.	Sistema Ar	nti intrusión.					21
	2.1.2.4.	Sistema de	Fallas Téc	nicas.				.22
	2.1.2.5.	Sistemas d	le Emergen	cia Mé	édica			.22
	2.1.3. Gest	ión del Confo	ort					.23
	2.1.3.1.	Sistema de	Control de	Confo	ort			23
CA	PÍTULO 3							
4.	INSTRUMENT	ACIÓN Y SE	ELECCIÓN	DE D	ISPOSIT	IVOS	UTILIZAD	os
	EN LOS SISTE	MAS INMÓT	CICOS					25
	4.1. PRINCIPA	LES SENSOI	RES UTILIZ	ADOS	S EN LA II	NMÓT	ICA	25
	4.1.1. Disp	ositivos aplica	ados al siste	ema de	e Control	de Ilur	ninación	.25
	4.1.2. Disp	ositivos	aplicados	al	sistema	de	Control	de
	temp	eratura						26
	4.1.3. Disp	ositivos aplica	ados al Sisto	ema d	le Control	de Bo	mbeo	28
	4.1.4. Dete	ctores aplica	dos al Siste	ma de	Control c	le Trar	nsferencia	ì
	Auto	mática						.31
	4.1.5. Disp	ositivos aplica	ados al Siste	ema d	le Control	de Ac	ceso	.32
	4.1.6. Disp	ositivos aplica	ados al Siste	ema d	le Detecci	ón de	Incendio.	33
	4.1.6.1.	Detectores	de Humo					.35
	4.1.6.2.	Detectores	de Calor					.39
	4.1.6.3.	Detector de	e Llamas					42
	4.1.7. Disp	ositivos aplica	ados al Sist	ema d	le control	Anti in	trusión	.44

	4.	1.7.1.	Detecc	ión de	presencia					44
	4.1.8.	Dispo	sitivos a	plicado	s al Sistema	a contro	ol de Fallas	6		
		Técni	cas							49
	4.1.9.	Dispo	sitivos a	plicado	s al Sistema	as de c	ontrol de E	merge	encia	l
		Médic	a							.49
	4.1.10	. Dispo	sitivos a	plicado	s al Sistema	a de Co	ntrol de C	onfort.		.50
	4.2. PRIN	ICIPAL	ES ACT	UADO	RES UTILIZA	ADOS	EN LA INN	ИÓТІС	Α	.50
	4.2.1.	Eléctr	icos							50
	4.2.2.	Electr	omecán	icos						.52
	4.3. SELE	ECCIÓI	N DE	LOS	DISPOSITI	IVOS	APLICAD	OS I	EN	LA
	INMĆ	TICA.								.57
C	APÍTULO	0 4								
4.	DISEÑO	DEL C	ONTRO	L EN E	L SISTEMA	INMÓ	ГІСО			63
	4.1. CON	TROL	DEL SIS	STEMA	EN HABITA	CIONE	S			63
	4.1.1.	Contro	ol de las	funcio	nes en la ha	bitacióı	າ			63
	4.1.2.	Contro	ol de ala	rmas e	n la habitaci	ión				74
	4.2. CON	TROL	DEL SIS	STEMA	DE BOMBE	O				76
	4.2.1.	Descr	ipción d	el conti	rol del sistem	na de b	ombeo			76
	4.2	2.1.1.	Selecci	ón del	modo de f	uncion	amiento p	ara m	anua	al o
			automá	itico						.77
	4.2	2.1.2.	Operac	ión de	funcionamie	ento en	modo auto	omátic	0	77

4.2.1.3.	Operación de funcionamiento en modo manuai82							
4.2.2. Operación del sistema de bombeo en caso de fallas								
4.2.2.1.	Operación de fallas para el funcionamiento en modo							
	automático88							
4.2.2.2.	Operación de fallas para el funcionamiento en							
	manual95							
4.3. CONTROL	DEL SISTEMA DE TRANSFERENCIA98							
4.3.1. Desc	cripción del control del sistema de Transferencia98							
4.3.1.1.	Selección de modo de funcionamiento para manual o							
	automático99							
4.3.1.2.	Operación de funcionamiento en modo automático100							
4.3.1.3.	Operación de funcionamiento en modo manual106							
CAPÍTULO 5								
5. DISEÑO DEL 0	CONTROL DE LAZO CERRADO PARA EL SISTEMA DE							
вомвео	109							
5.1. SISTEMA	DE CONTROL EN LAZO CERRADO109							
5.1.1. Parte	es que constituyen un Lazo Cerrado109							
5.2. DISEÑO D	EL SISTEMA DE BOMBEO113							
5.2.1. Desc	cripción de las señales utilizadas114							
5.2.2. Desc	cripción del diagrama de bloques del sistema de							
cont	rol116							

	5.2.3.	Simul	ación del sistema de control utilizando la herramie	enta de
		Simul	ink	118
	5.2	2.3.1.	Visualización de las señales y obtención de los	
			parámetros PI del controlador	119
C	APÍTULO	6		
6.	CONFIGU	JRACI	ÓN DEL SISTEMA INMÓTICO	124
	6.1. DESC	CRIPC	ÓN DEL PLC	124
	6.1.1.	Estruc	ctura Básica de un PLC	125
	6.1	.1.1.	CPU	125
	6.1	.1.2.	Memoria	126
	6.1	.1.3.	Sistema Entrada/Salida	127
	6.1	.1.4.	Buses	129
	6.1	.1.5.	Interfaz de Comunicación	129
	6.1.2.	Selec	ción del PLC	130
	6.1.3.	Descr	ipción del PLC GE Fanuc Automation Serie 90 Mi	icro130
	6.1.4.	Softwa	are de Programación CIMPLICITY	132
	6.1.5.	Reque	erimientos del CIMPLICITY	133
	6.2. DESC	CRIPC	IÓN DEL SOFTWARE DE MONITOREO INTOUC	H138
	6.2.1.	Carac	terísticas especiales de InTouch	138
	6.2.2.	Panta	llas de Visualización	142
	623	Progra	ama desarrollado en InTouch	148

XVI

CONCLUSIONES Y RECOMENDACIONES

BIBLIOGRAFÍA

ANEXO		INSTRUMENTA	\sim 10 11
	^		-1/ NRI
AINEAL	A	IIVOIRUNIENIA	

- ANEXO B CÁLCULOS REALIZADOS
- ANEXO C SELECCIONAMIENTO DE BOMBAS
- ANEXO D DISTRIBUCIÓN DE SEÑALES CONTROLADAS POR PLC
- ANEXO E PROGRAMACIÓN DESAROLLADA EN CIMPLICITY
- ANEXO F PANTALLAS DE SIMULACIÓN REALIZADAS EN INTOUCH
- ANEXO G SIMULACIÓN EN SIMULINK
- ANEXO H DIAGRAMAS DE CONTROL EN MODO MANUAL

ABREVIATURAS

HMI Interfase hombre máquina (Human Machine Interface)

PLC Controlador lógico programable (Programmable Logic Controller)

LDR Resistencia dependiente de luz (Light Dependent Resistors)

RTD Detector resistivo de temperatura (Resistance Temperature Detector)

NTC Coeficiente de temperatura negativo (Negative Temperatura Coefficient)

PTC Coeficiente de temperatura positivo (Positive Temperature Coefficient)

RFDI Identificación por Frecuencia de radio (Radio Frequency Identification)

PIR Rayos Infrarrojos Pasivos

LNG Gas licuado natural Liquefied Natural Gas

IGBT Transistor bipolar de puerta aislada (Isolated Gate Bipolar Transistors)

PWM Modulación por ancho de pulso

(Pulse-width modulation)

CPU Unidad Central de proceso (Central Processor Unit)

PC Computadora Personal (Personal Computer)

SCADA Control, supervisión y adquisición de datos

(Supervisión, Control and Data Adquisition)

UPS Unidad de Respaldo de Energía

(Unit Power Supply)

NA Normalmente Abierto

NC Normalmente Cerrado

I/O Entrada/Salida

%Al Entrada Analógica en un PLC Fanuc

%AQ Salida Analógica en un PLC Fanuc

%I Entrada en un PLC Fanuc

%M Referencia interna en un PLC Fanuc

%Q Salida en un PLC Fanuc

%R Registro en un PLC Fanuc

% Porcentaje

Rpm Revoluciones por minuto

Hp Potencia en Watts

Hz Hertz

V Voltios

mA Miliamperios

°C Grados Centígrados

Psi libras por pulgada cuadrada

m Metros

GPM Galones por minuto

SIMBOLOGÍA

Q Demanda total

PT Puntos totales

FE Factor según estadísticas

FC Factor de compensación

H Cabezal

 ΔZ Altura

F Factor de pérdida

L Longitud de tubería

ÍNDICE DE FIGURAS

CAPITULO 1		Pág
Figura 1.1.	Señal de control Todo/Nada	9
Figura 1.2.	Señal de control Todo/Nada con Histéresis	9
Figura 1.3.	Sistema en Lazo Abierto	10
Figura 1.4.	Sistema en Lazo Cerrado	11
CAPITULO 2		
Figura 2.1.	Esquema para la instalación de un sistemas de Control o	le
	bombeo	18
CAPITULO 3		
Figura 3.1.	Producción de humo en un incendio	34
Figura 3.2.	Detector de humo por cámara de ionización	37
Figura 3.3.	Detector de humo Fotoeléctrico	39
Figura 3.4.	Detector de calor por placa bimetálica	41
Figura 3.5.	Detector de presencia de tecnología PIR	45
Figura 3.6.	Detector de presencia de tecnología Ultrasónica	47
Figura 3.7.	Esquema de un sistema de control con variador	51
Figura 3.8.	Desconector de energía, esquema de instalación	53
Figura 3.9.	Contactores	55
Figura 3.10.	Clasificación de las Maquinas eléctricas rotativas	56

Figura 3.11.	Aplicación de la electroválvula en los Fan-Coil57
CAPITULO 5	
FIGURA 5.1.	Sistema de control en lazo cerrado
FIGURA 5.2.	Simulación del sistema de bombeo en Simulink114
FIGURA 5.3.	Gráficos obtenidos cuando la demanda es una señal recta119
FIGURA 5.4.	Gráficos obtenidos cuando la demanda es una onda
	cuadrática120
FIGURA 5.5.	Gráficos obtenidos cuando la demanda es una onda seno121
FIGURA 5.6.	Gráficos obtenidos cuando la demanda es una onda
	triangular122
CAPITULO 6	
FIGURA 6.1.	Esquema general de un PLC
FIGURA 6.2.	Esquema del software de Programación CIMPLICITY135

ÍNDICE DE TABLAS

TABLA 4.1.	Resumen	de	las	señales	generadas	por	el	selector	de	tres
	posiciones	S								79

INTRODUCCIÓN

El nacimiento de la Domótica surgió con la necesidad de integrar diferentes sistemas (de gestión energética, Seguridad y confort) en un solo sistema inteligente. Lo que se busca con el empleo de la Domótica en las viviendas es, lograr mediante el uso racional de los diferentes recursos, poder atender todas las necesidades de las personas que viven en un determinado predio. Por lo que el término Domótica ha sido llevado a edificaciones conformadas no solo por un entorno familiar, sino por un número mayor de usuarios. Es por esto que el término adecuado para la aplicación de este sistema inteligente en edificaciones grandes, se denomine Inmótica.

Para el empleo de un sistema inteligente es necesario contar con diferentes dispositivos (sensores y actuadores) que son necesarios para el envio y transmisión de las señales, todas estas gobernadas por la unidad central inteligente (PLC) que es el encargado de gestionar el sistema Inmótico y por medio del empleo de la interfaz grafica (InTouch) su visualización.

CAPÍTULO 1

APLICACIÓN DE LA DOMÓTICA EN HOTELES

1.1. CONCEPTO DE DOMÓTICA E INMÓTICA

1.1.1. ¿Que es la Domótica?

La Domótica más que una rama de la automatización, es la tecnología dedicada a la mejora de la calidad de vida de las personas.

Es buscar el mejor provecho de los diferentes recursos con los que contamos en nuestros hogares para adecuarlos a nuestro estilo de vida, evitando de este modo derroches innecesarios.

1.1.2. Definición de Domótica

El término Domótica proviene del Latín domus que significa casa y la palabra automática, que significa que funciona por si sola.

La Domótica es la integración de la tecnología aplicada para la automatización domestica, en la cual se encuentran presentes diferentes sistemas cuyo fin es el de ofrecer a las personas:

- Confort
- Seguridad
- Ahorro Energético

Cada uno de estos conceptos pueden contener a otros mas, con lo cual se dividiría la domótica, para conseguir un proyecto mas completo, ya que este término abarca no solo la parte eléctrica sino también en otras disciplinas con lo cual se consigue una mejor calidad de vida, ya que ofrece una disminución de accidentes y siniestros, incluyendo la disminución del consumo energético y gastos de mantenimiento.

Estos sistemas contemplan el tratamiento y la solución de los problemas que afectan también a los grandes edificios u hoteles.

1.1.3. Definición de Inmótica

Es la gestión técnica automatizada en las instalaciones de edificios, es una automatización integral con alta tecnología para la gestión eficiente en los hoteles.

La Inmótica ofrece a los hoteles soluciones diseñadas para contemplar un alto grado de requerimientos y necesidades, asegurando la máxima eficiencia en sus instalaciones, con lo cual se genera: ahorro, seguridad y confort en su más alto nivel.

1.1.4. Diferencias entre Domótica e Inmótica

El principio de la Inmótica es similar al de la Domótica, es por esto que suele hablarse de Domótica cuando nos referimos a edificios u hoteles, debido a la generalidad del término.

Pero debe tenerse en cuenta que los objetivos han cambiado un poco en su enfoque, no solo por la diferencia respecto al tamaño, sino a la complejidad del sistema, necesaria para la gestión de un inmueble.

Por lo cual es preferible mantener este término Inmótica para uso exclusivo de Edificios u Hoteles y el término Domótica aplicado solo para las viviendas.

1.2. JUSTIFICACIÓN DE LOS SISTEMAS INTELIGENTES EN LOS HOTELES

La automatización en hoteles tiene gran acogida debido a que soluciona y gestiona diferentes ámbitos para ayudar a reducir los costos de operación, sin dejar de lado la comodidad de sus clientes.

Se puede tener un control sobre la edificación, al tener control sobre los diferentes sistemas que lo componen, por ejemplo:

- Sistemas de Control Eléctrico
- Sistemas de Control de temperatura

- Sistema de Control de Bombeo
- Sistema de Control de Transferencia Automática de Energía
- Sistema de Control de Acceso
- Sistema de control de Alarmas
- Sistema de Control de Confort

Se puede tener control sobre todo esto, sin quitarles a los clientes la posibilidad del confort, es decir que se le da la posibilidad al cliente para tener ciertas libertades, mientras no atente contra la seguridad de la edificación y la suya propia.

El Sistema Inteligente se encuentra programado para realizar sus funciones diariamente, es decir en un estado de ahorro, pero si la habitación se encuentra habitada por algún cliente y este desee ejercer su voluntad, este podrá ejercerla. Una vez desocupada la habitación por parte del cliente, esta volverá a su estado de ahorro.

Por ejemplo, se puede ofrecer al cliente la posibilidad de tener un rango de climatización a su elección o la posibilidad de prender luminarias a la hora que lo desee entre otras más, mientras este se encuentre en su habitación. Ya que una vez fuera de esta, el Sistema Inteligente tomará el control.

1.3. CARACTERÍSTICAS DE LOS SISTEMAS INTELIGENTES EN LOS HOTELES.

Las características básicas que debe ofrecer un sistema de gestión técnica en un edificio deben ser:

Flexible

Es necesario que brinde las facilidades necesarias, para futuras expansiones de las instalaciones eléctricas. Por lo que es necesario que el sistema sea flexible, para que los costos de ampliación o modificación de la instalación no sean tan elevados.

Modular

Es importante porque permite añadir o eliminar ciertas aplicaciones del sistema sin que esta afecte de forma alguna el desempeño de la misma. Es decir que no necesita ser reestructurado en forma alguna, permitiendo con esto tener una mayor flexibilidad del sistema.

Facilidad de utilización

Para que el sistema sea aceptado por las personas encargadas de su funcionamiento, es necesario que el sistema sea amigable y de fácil manipulación. Por lo que se requiere de un interfaz que sea sencillo para

el usuario, de esta forma se tiene un mejor desempeño y se hace fácil el uso de la lógica.

Integral

El sistema de gestión debe ser capaz de interactuar con los diferentes dispositivos o equipos, dispuestos en las diferentes áreas de la edificación, así como también con los operarios. Por tal motivo se requiere que el sistema permita el fácil intercambio de información entre ellos.

1.4. DISPOSITIVOS QUE CONFORMAN LOS SISTEMAS INTELIGENTES

Para poder desarrollar un Sistema Inteligente se necesitan de los siguientes dispositivos:

Sensores

Son los dispositivos de entrada que permiten obtener información del medio que lo rodea. Son los que envían la información en forma directa al controlador en forma de señales, suelen clasificarse en función de lo que midan (señales analógicas) y también son capaces de detectar estados de Encendido/Apagado (señales digitales).

Actuadores

Son dispositivos de salida capaces de recibir órdenes del controlador y ejecutar una determinada acción sobre el sistema. Es decir, son elementos que utiliza el sistema para modificar el estado de ciertos equipos en las instalaciones.

Sistema de control

Es en este donde reside toda la inteligencia del sistema, posee gran capacidad de procesamiento y es el que recibe todas las señales de los sensores, las cuales interpreta y decide si activa o no determinada salida.

1.5. TIPOS DE SISTEMAS DE CONTROL

Existen diferentes métodos de control entre los cuales tenemos:

Control Todo/Nada

Es una de las formas más sencillas de control, el cual permite trabajar entre dos estados: superior e inferior, siempre y cuando sean procesos de evolución lenta como en el caso de la temperatura. Por lo cual se seleccionará un valor para que represente el punto fijo del sistema, si el valor medido disminuye del valor fijo estará en su nivel inferior (0%) y si su valor aumenta del valor fijo estará en su nivel superior (100%). Es

decir que el valor seteado será el límite entre sus dos estados superior (abierto) e inferior (cerrado). Como se puede observar en la **Figura 1.1.**

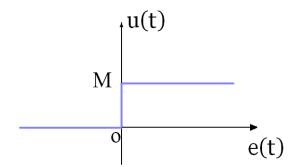


Figura 1.1 Señal de control Todo-Nada.

Control Todo/Nada con Histéresis

Es parecido al control Todo/Nada, pero con la diferencia de que goza de un rango de trabajo alrededor del punto fijo, lo cual permite admitir oscilaciones dentro de dicho rango (limites), ya que el limite mínimo permite ir del estado superior al estado inferior y por el otro lado el limite máximo permite ir del estado inferior al estado superior. Como se puede observar en la **Figura 1.2.**

Figura 1.2 Señal de control Todo-Nada con Histéresis.

Sistema de Control en Lazo Abierto

Las señales de salida son producidas en función de las consignas de entrada, las señales de salida no tienen influencia sobre las señales de entrada. Es decir que mediante este método no existe forma de verificar si lo que se esta realizando es realmente lo deseado, ya que no cuenta con un sistema de realimentación. Como se puede observar en la **Figura** 1.3.

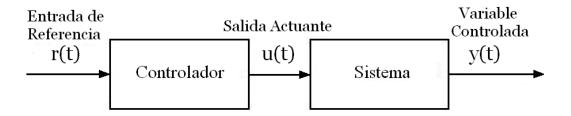


FIGURA 1.3 Sistema en Lazo Abierto.

Sistema de Control en Lazo Cerrado

Es un sistema de control más sofisticado cuyo funcionamiento se basa en la realimentación de la información de la salida, para corregir los errores que perturban esta señal de salida. Como se puede observar en la Figura 1.4.

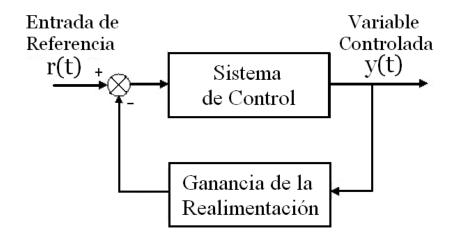


Figura 1.4 Sistema en Lazo Cerrado.

El controlador se encarga de recibir las señales del entorno, las procesa y luego las ejecuta, para controlar el proceso compara las señales recibidas con los valores establecidos, dependiendo del resultado de esta comparación el controlador corrige la señal de salida, con lo cual se puede auto ajustar ante cualquier perturbación indeseable del sistema. Mediante esta retroalimentación se consigue que el sistema tenga un control más efectivo. Dentro del lazo cerrado se tiene el control PID.

Control PID

El término P se refiere al control proporcional que se basa en la relación que existe entre la señal de salida del controlador y la señal de error, es decir que dicha relación es proporcional al error.

Este tipo de controlador actúa como un amplificador con ganancia ajustable.

El término I se refiere al control integral que se basa en la corrección proporcional de la integral del error, mediante el cual aseguramos que la reducción del error será cero. Por lo que se concluye que dado una referencia constante o perturbación, el error en régimen permanente será cero.

El término D se refiere al control derivativo el cual tiene propiedades predictivas a la actuación, generando una acción de control proporcional a la velocidad de cambio del error. Lo que permite tener un efecto estabilizante, pero por lo general se genera grandes valores en la señal de control.

1.6. ARQUITECTURAS DISPONIBLES PARA EL CONTROL DEL

SISTEMA INTELIGENTE

Existen dos formas de arquitecturas básicas de control, desde el punto de vista en donde reside su inteligencia. Los cuales son aplicados en los sistemas Inmóticos, ellos son:

Arquitectura Centralizada

La principal característica de un sistema de control centralizado es que los componentes que lo conforman se encuentran interconectados

alrededor del modulo de control (PLC), mediante módulos de entradas y salidas.

Arquitectura Distribuida

Estos sistemas no tienen un solo controlador específico, sino que poseen varios elementos de control con capacidad de procesamiento que se encuentran distribuidos en toda la instalación.

CAPÍTULO 2

SISTEMA DE GESTIÓN TÉCNICA DEL SISTEMA INMÓTICO

2.1. PUNTOS A GESTIONAR EN EL SISTEMA INMÓTICO

Este sistema es de gran flexibilidad debido a esto se puede adaptar fácilmente en las distintas áreas que posee el hotel. Las principales áreas de gestión de un edificio en las cuales podemos introducir estos sistemas de control son:

2.1.1. Gestión de la Energía

Son los encargados de controlar el uso racional del consumo de energía eléctrica en el hotel. La Gestión de Energía esta íntimamente relacionado con el ahorro energético, siendo este un factor importante a la hora de decidir la implementación de un "Sistema Inteligente".

Dentro de lo que es la Gestión de Energía tenemos diferentes sistemas que lo conforman, entre los principales están:

2.1.1.1. Sistemas de Control Eléctrico

En el cual podemos encontrar sus principales funciones:

Sistema de Iluminación

Dependiendo de la persona que se encuentre dentro de la habitación (cliente o empleado) y del grado de luminosidad que este presente en la habitación, harán posible que se enciendan/apaguen las luminarias de la habitación.

Las zonas de acceso múltiple como lo son los pasillos, tendrán la posibilidad de que sus luminarias se enciendan al detectar la presencia de personas, permaneciendo así mientras estas se encuentren en el pasillo. Una vez que la persona salga de dicha área, las **luminarias** encendidas permanecerán durante un tiempo determinado.

Sistema de Energía Eléctrica

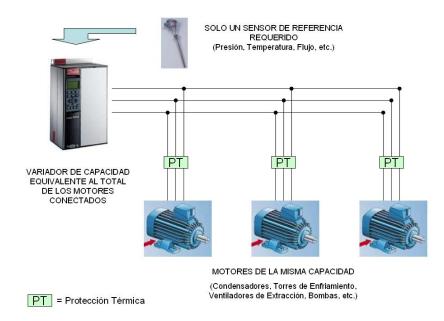
El dispositivo que permite desenergizar la habitación es el desconector de Energía Eléctrica, el cual permite discriminar entre cliente y empleado.

En el caso de que la persona que se encuentre dentro de la habitación sea huésped, tendrá la posibilidad de disfrutar de todas las comodidades dentro de la habitación y en el caso de ser empleado las comodidades se ven reducidas a lo más indispensable para que realice sus labores dentro de la habitación. Esto es para ejercer un mejor control y ahorro con respecto a la energización de los dispositivos eléctricos.

2.1.1.2. Sistemas de Control de temperatura

Existe un control de temperatura en las habitaciones dependiendo de la persona que se encuentre en ella, es decir si es cliente o empleado, esto garantiza un mejor desempeño del control de temperatura.

En el caso de habitaciones ocupadas se puede tener una climatización a gusto del cliente, por medio de un termostato y en el caso de habitaciones desocupadas u ocupadas por empleados, estas se encontrarían en un modo de ahorro, es decir con la temperatura controlada por el sistema en un valor específico.


2.1.1.3. Sistemas de Control de bombeo

El suministro de agua en un edificio debe ser confiable y seguro en los sistemas de bombeo.

La demanda de agua varía en forma considerable, a lo largo del día y a la última hora de la tarde su consumo es mayor, pero en las noches su consumo baja, por lo cual existe un desperdicio de energía cuando se hace trabajar a la bomba durante todas las horas del día.

Los nuevos sistemas brindan a la instalación un control que se ajusta automáticamente con la demanda.

La bomba funciona a mayor o menor velocidad dependiendo del número de servicios (gasto de agua) que se demande en ese momento. De este modo se trata de mantener la presión constante del sistema, el cual se mide en la línea principal de suministro. Además las bombas no trabajan al cien por ciento durante todo el tiempo, por lo que se produce un ahorro de energía, puesto que solamente consume lo que necesita para fijar la presión. Como se puede observar en la Figura 2.1.

Figura 2.1. Esquema para la instalación de un sistema de control de bombeo.

Por lo que es necesario un equipo que sea capaz de compensar automáticamente las variaciones de presión en la entrada de la línea principal de suministro del sistema, debido a las variaciones producidas por el consumo de agua (demanda) en el edificio. Es decir que a pesar de tener un sistema variable, el sistema de bombeo debe garantizar que la presión del suministro de agua sea siempre constante.

Mediante este sistema se elimina los golpes de ariete causado por la salida brusca de aire en la tubería.

2.1.1.4. Sistema de Control de Transferencia Automática de Energía

En la actualidad se hace indispensable contar con un sistema que permita garantizar el suministro de energía eléctrica, en el caso de producirse alguna falla. Por lo cual se hace necesario contar con el empleo de un generador de emergencia.

El sistema se encarga básicamente de arrancar el generador de emergencia, para permitir la transferencia por medio de contactores de la carga eléctrica a los alimentadores del generador. Esto lo realiza el sistema cuando detecta la falta de suministro de energía por parte de la empresa eléctrica y en el caso de que regrese, el sistema permitirá la transferencia de la carga eléctrica hacia los alimentadores de la empresa eléctrica, siempre y cuando sus valores de voltaje se encuentren en condiciones normales.

Este sistema permite tener al hotel funcionando en el caso de ocurrir fallas o fluctuaciones en la señal de la red eléctrica. Es decir que el sistema esta desarrollado para

trabajar tanto en condiciones normales, por medio de la Empresa Eléctrica y en el caso de fallas, por medio del Generador.

2.1.2. Gestión de la seguridad

Cuando se habla de seguridad se refiere a la seguridad de las personas y de los bienes materiales.

Por lo tanto es necesario tener en cuenta que es lo que se desea proteger y contra que o quien se desea proteger, por lo que este sistema se divide en:

2.1.2.1. Sistema de Control de Acceso

Cada habitación tendrá una tarjeta de acceso para su respectiva habitación, es decir que no es permitido entrar en otras habitaciones que no le hallan sido asignadas, a menos que sean zonas de acceso múltiple y tampoco pueden existir en el sistema dos tarjetas iguales ya que este no lo permite.

Mediante este sistema se elimina la necesidad de usar las tradicionales llaves metálicas, de este modo se tiene una mejor organización dentro del recinto, en sus diferentes áreas.

2.1.2.2. Sistema de Detección en Caso de Incendio

Los sistemas contra incendio brindan la posibilidad de prevenir situaciones peligrosas antes que estas se conviertan en verdaderas catástrofes.

La velocidad de propagación hace indispensable la detección temprana del incendio, por lo cual se requiere de una alarma automática, rápida y segura.

Por lo que el detector seleccionado debe ser capaz de detectar la clase de incendio que se espera se genere, en un determinado espacio.

2.1.2.3. Sistema Anti intrusión

En los sistemas de Iluminación se usa los sensores de presencia para el ahorro de energía eléctrica, estos mismos dispositivos se los puede utilizar para ser empleados en los "Sistemas Anti-intrusión".

Los sistemas de presencia están diseñados de tal forma que brindan por un lado ahorro de energía eléctrica, permitiendo la alimentación de la carga cuando lo necesitan (cuando hay presencia), y por el otro cuando tienen la función de informarnos si existe la presencia de

alguna persona en determinada área, es decir cuando se lo utiliza como un sistema de seguridad.

2.1.2.4. Sistema de Fallas Técnicas

El sistema de fallas técnicas permite la detección de situaciones anómalas que afectan el normal desempeño en el sistema de gestión, como es el caso de los térmicos de las bombas.

En el caso de generarse alguna alarma, el sistema tendrá la posibilidad de avisar cual es la naturaleza de la misma y dependiendo del tipo de alarma, esta podrá ser eliminada ya sea por medio de un reinicio del sistema o porque las condiciones del sistema volvieron a su estado normal.

2.1.2.5. Sistemas de Emergencia Médica

En el caso de que el cliente se encuentre dentro de la habitación este contará con un sistema de alarma médica, que indicará la necesidad de un auxilio inmediato. Es decir que el sistema de alarma médica es por petición voluntaria y urgente de asistencia, en el que la persona

después de sentirse mal, solicita voluntariamente la ayuda de terceros.

2.1.3. Gestión del Confort

Son los que permiten ofrecer de una u otra forma mayor satisfacción al cliente cuando utiliza las instalaciones. Es decir que por medio de la gestión del confort se puede aumentar el grado de satisfacción del cliente.

Por lo que no es de extrañarse que la gestión del confort se encuentra relacionado de una u otra forma con algún otro sistema de gestión.

2.1.3.1. Sistema de Control de Confort

Dentro de las habitaciones el cliente tendrá la posibilidad de escoger:

- El encendido/apagado de las luminarias.
- El punto de consigna para la climatización según sus necesidades.
- Acceso de energía para el consumo de TV y cable.

Ya que lo más importante es el cliente y este será el único que dispondrá a su gusto de todos los dispositivos

instalados dentro de la habitación para su mayor confort, mientras este se encuentre dentro de la habitación.

Es decir que el cliente es el que manda mientras se encuentre dentro de la habitación y cuando esta se encuentre vacía, el sistema gestionará en modo de ahorro.

También es posible encontrar el modo de ahorro cuando los empleados se encuentran dentro de la habitación realizando sus tareas de limpieza.

CAPÍTULO 3

INSTRUMENTACIÓN Y SELECCIÓN DE DISPOSITIVOS UTILIZADOS EN LOS SISTEMAS INMÓTICOS

3.1. PRINCIPALES SENSORES UTILIZADOS EN LA INMÓTICA

3.1.1. Dispositivos aplicados al sistema de Control de Iluminación

El Sistema de Control Eléctrico, esta formado por varios sistemas. Cuando nos referimos al "Sistema de Iluminación" estos requieren de los sensores de luz, los cuales hacen uso de las radiaciones luminosas para su funcionamiento.

Existen dos principales dispositivos para sensar la presencia de luz en el ambiente, el primero es por medio de fotorresistencias o fotoconductores, también conocidos como LDR, se basan en la variación de la resistencia eléctrica de un semiconductor al incidir sobre él radiación del tipo óptico, de manera que a mayor iluminación mayor será la conductividad del material. Tienen gran

uso en la iluminación de avenidas y calles, debido a su robustez y mínimo mantenimiento.

Otro dispositivo utilizado es por medio de fotodiodos, los cuales están hechos de una unión N-P (diodos) que al incidir el haz de luz a una determinada frecuencia (longitud de onda) producirá en el, un aumento de su corriente inversa. Los fototransistores se basan en el mismo principio que el fotodiodo, con la diferencia de que el haz de luz incide sobre la unión colector-base del transistor. El fototransistor es de uso más común que el fotodiodo.

Los sensores de luz tienen aplicaciones como interruptor de luz todo/nada, también conocido como detector crepuscular y como instrumento de medición proporcional de luz-corriente, también llamados como fotocélulas.

3.1.2. Dispositivos aplicados al sistema de Control de temperatura.

Sensor de Temperatura

Para este sistema de control se requiere de los sensores de temperatura, los cuales se basan en la variación de la temperatura para su funcionamiento.

Existen diferentes tipos de dispositivos para temperatura entre los que tenemos a las termorresistencias o conocidos como RTD, basados en la variación de la resistencia de un conductor con respecto a la temperatura. Otro tipo de sensor son los termistores que se basan en el mismo principio que los RTD, pero estos no utilizan conductores sino materiales semiconductores y dependiendo de su coeficiente pueden ser del tipo NTC (coeficiente de temperatura negativo), su resistencia disminuye cuando aumenta la temperatura o del tipo PTC (coeficiente de temperatura positivo), su resistencia aumenta cuando aumenta su temperatura.

Por último tenemos a las termocuplas o termopares que están formados básicamente por dos conductores metálicos conectados en sus extremos. Si las conexiones se encuentran a diferente temperatura, estas producirán un diferencial de potencial proporcional al diferencial de temperatura. Lo que hace factible la circulación de una corriente continúa en el circuito térmico, que será medida por medio de la interposición de un instrumento de medición en el circuito térmico, siendo esta proporcional al diferencial de temperatura.

Los sensores de temperatura tienen aplicaciones como interruptor de temperatura todo/nada, también conocidos como termostatos y como instrumento de medición proporcional de temperatura-voltaje, también llamados como sondas de temperatura.

Detectores de Apertura/Cierre

Son dispositivos que permiten detectar la apertura/cierre de puertas, sin la necesidad del contacto físico, están compuestos de dos partes, imán y mecanismo. El imán que se encuentra ubicado en la parte móvil y el mecanismo, que consta de un conmutador y los bornes para el cableado, que se encuentran en la parte fija. El campo magnético que produce el imán mantiene el contacto del conmutador cerrado, siempre У cuando se encuentren mutuamente a una distancia inferior a 5 milímetros, y que al alejarlo de la influencia del campo magnético, este disminuye provocando que se abra su contacto y active la alarma.

3.1.3. Dispositivos aplicados al Sistema de Control de Bombeo

Para este sistema de control se requiere de los sensores de presión, los cuales basan su funcionamiento en la fuerza ejercida perpendicularmente sobre una determinada superficie.

Existen diferentes tipos de dispositivos de presión, entre los principales tenemos los de funcionamiento mecánico y los electromecánicos.

Entre los de funcionamiento mecánico elástico tenemos al tubo de Bourdon, ya sea circular o retorcido tiende a deformarse de tal forma que al enderezarse es captado su movimiento por un aguja indicadora colocada en el otro extremo, debido a la fuerza aplicada en uno de sus extremos.

Otro de los dispositivos utilizados son los de diafragma, que están formados por uno o varios discos circulares que se encuentran conectadas rígidamente entre si por soldadura, de forma que al aplicar presión sobre estos produce que cada uno de ellos se deforme y la suma de todos estos pequeños desplazamientos sea amplificada por un par de palancas. Los diafragmas pueden ser planos, coarrugados o de cápsula.

Por último tenemos a los dispositivos de fuelle, que es parecido al de diafragma pero formado por una sola pieza flexible sin soldadura, que por efecto de la presión se puede dilatar o contraer.

Entre los de funcionamiento electromecánico tenemos el sensor capacitivo, que esta formado por dos placas fijas o membranas y uno móvil o diafragma, entre ellas se encuentra un fluido en contacto con el diafragma, este fluido es el que transmite la presión que soportan las membranas. Haciendo que varíe la constante dieléctrica entre las dos placas del condensador, el desplazamiento es proporcional a la presión diferencial.

Otro de los dispositivos utilizados son las galgas extensiométricas, que al ser sometido a presión variará su longitud y diámetro, en consecuencia varía también su resistencia eléctrica. Para medir dicha resistencia se conecta la galga a un puente de Wheatstone, con una pequeña tensión nominal en condiciones de equilibrio. Cualquier variación de presión que mueva el diafragma del transductor producirá la variación de la resistencia en la galga y desequilibra el puente.

También son utilizados los dispositivos inductivos, en el cual se desplaza un núcleo móvil dentro de una bobina, lo cual hará que aumente o disminuya la tensión inducida en el arrollamiento secundario.

Por último tenemos a los dispositivos piezoeléctricos, que están hechos de materiales cristalinos que al deformarse físicamente por acción de la presión generan una señal eléctrica. La señal de respuesta varía en forma lineal con la presión de entrada.

Los detectores de presión tienen aplicaciones como interruptor de presión todo/nada, también conocido como presostato y como instrumento de medición proporcional de presión-voltaje, también llamados sondas de presión.

3.1.4. Detectores aplicados al Sistema de Control de Transferencia Automática de Energía

Para este sistema de control se requiere de los supervisores de voltaje, cuya finalidad es la de proteger los equipos contra daños producidos por alguna alteración en el suministro de la energía eléctrica. Adicionalmente puede ser utilizado como dispositivo para control de estaciones de transferencia, voltímetro trifásico, herramienta para diagnóstico y reporte de fallas en tableros de arrancadores y de control.

La protección se logra mediante la medición constante del voltaje en cada una de las líneas trifásicas, desconectando la carga tan rápido se produzca alguna falla, fuera del rango permitido.

Si la carga es desconectada del suministro eléctrico esta no podrá reconectarse hasta después de un tiempo determinado, siempre y cuando regrese a sus valores de voltaje normales.

Este protector posee dos grupos de borneras, uno para la alimentación de las fases (L1, L2, L3) y el otro para el circuito de control (Relé de simple polo con doble tiro para bobina de contactor o similar).

3.1.5. Dispositivos aplicados al Sistema de Control de Acceso

Existen en el mercado diferentes clases de control de acceso para habitaciones, dependiendo del tipo de seguridad que se desee dar al sistema, estos pueden ser de tecnología RFDI los cuales permiten la identificación de códigos por medio de la radiofrecuencia sin la necesidad de tener contacto físico (a distancia) entre el lector y la tarjeta.

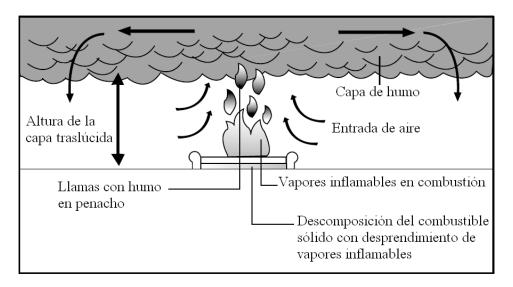
Otros sistemas que son utilizados son las tarjetas de banda magnética o de chip, en el cual se encuentra alojado el código que habilita al sistema. Para su funcionamiento debe existir contacto físico entre el lector y la tarjeta.

Estos sistemas constan básicamente de 3 dispositivos que son:

- Generador de claves (Base)
- Transmisor de código (Unidad portátil)
- Lector de códigos (cerradura)

Los generadores de claves son los encargados de administrar el acceso a sus clientes y empleados en sus respectivas áreas.

Los transmisores de código programan y auditan las cerraduras de cada habitación.


Los lectores de códigos son las unidades terminales del sistema, es decir que son las cerraduras ubicadas en la puerta principal de cada habitación. Por una ranura se introduce la tarjeta para tener acceder a dicho recinto siempre y cuando haya sido esta habilitada para dicha tarjeta.

3.1.6. Dispositivos aplicados al Sistema de Detección de Incendio

La selección de un tipo específico de sensor contra incendio depende de varios factores como lo son: la altura, la clase de área a proteger, así como también es importante tomar en cuenta la clase de materiales que contendrá dicha zona.

Dependiendo de estos detalles se escogerá el detector que cubra con la mayor parte de las necesidades del área a proteger y de esta forma tratar de evitar la generación de falsas alarmas en el diseño.

El humo y el calor ascienden en forma de columna y al llegar al techo estas se propagan radialmente. Como se puede observar en la **Figura 3.1.**

Figura 3.1. Producción de humo en un incendio.

Es por esto que al generarse un incendio, este pasa por diferentes fases y por cada fase existe un detector adecuado para cada una de ellas, existen tres fases que son:

 En la fase inicial no existe calor, llama o humo, pero se desprenden partículas invisibles para el ojo humano.

- En la siguiente fase se genera la emisión de abundante humo al ambiente
- Mientras que en la última fase de un incendio se producen las llamas.

Los detectores térmicos se aproximan a nuestra capacidad de identificar altas temperaturas, los detectores de humo se asemejan al sentido del olfato y los detectores de llamas son verdaderos ojos electrónicos. Una detección no tiene porque implicar la otra, todo dependerá de la finalidad para la cual se desee que trabaje.

3.1.6.1. Detectores de Humo

Los detectores de humo son utilizados para identificar el fuego mientras es incipiente, es decir cuando se encuentra en sus primeras etapas. Lo cual permite brindar un mayor tiempo de respuesta ante un incendio por parte del personal encargado. Es preferible colocarlo en lugares donde, lo más importante es la protección de vidas.

Son detectores que funcionan en base al tipo de material que entra en combustión en un área determinada. Son de dos tipos:

Ionización

Estos dispositivos detectan los materiales de combustión rápida, son ideales para emplearlos en zonas que contengan materiales químicos. Esta tecnología iónica funciona empleando el Americio, que es un material radiactivo.

Se caracterizan por detectar partículas de humo inferiores a los 0.03 micrones, por su tamaño no pueden dispersar la luz y como consecuencia de esto no pueden ser divisadas por el ser humano.

Estos detectores de humo basan su funcionamiento en el principio de Ionización, es decir que este dispositivo es capaz de detectar algún tipo de cambio en la conductividad del aire, debido a la presencia de partículas de humo en el ambiente producidas por la combustión.

Posee una pequeña fuente de radiación que produce las moléculas de aire cargadas eléctricamente, llamadas iones. Estos iones permiten que fluya una pequeña corriente eléctrica dentro de una cámara.

Las partículas de humo que entren en la cámara neutralizarán a los iones, con lo cual se reduce el flujo eléctrico entre los electrodos, provocando que la alarma detecte un aumento de corriente en el ramal que se encuentra paralelo a esta, disparando la alarma en presencia del humo. Como se puede observar en la Figura 3.2.

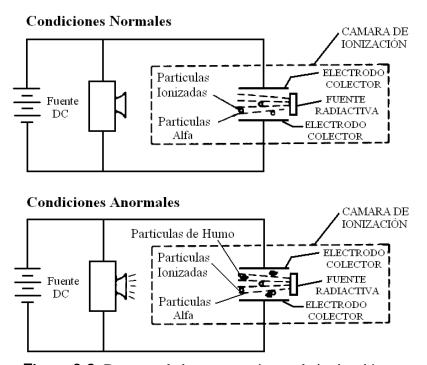


Figura 3.2. Detector de humo por cámara de ionización.

Fotoeléctrico

Estos dispositivos detectan materiales de combustión lenta. Tienen mayor inmunidad al humo de cigarrillo, como también a los contaminantes normalmente encontrados en el ambiente diario.

Se caracterizan por detectar partículas de humo mayores a los 0.03 micrones, por su tamaño estos dispersan la luz y como consecuencia de esto pueden ser divisadas por el ser humano.

Estos detectores de humo basan su funcionamiento en el fenómeno de la difracción de la luz, consta de una lámpara flash que emite destellos de luz y una fotocélula, dispuestos en un ángulo distinto el uno del otro. Se encuentran instalados dentro de una cámara negra que impide la entrada de luz pero no de humo.

Este dispositivo es capaz de detectar la presencia de partículas de humo en el aire, mediante la emisión de destellos de luz en forma periódica. Las cuales al ser desviadas (difracción) por las partículas de humo, logran

que estas incidan en la fotocélula, consiguiendo con esto que se active la alarma. Mientras no exista humo la fotocélula no podrá recibir la luz procedente de la lámpara, ya que esta es emitida en un ángulo diferente al de la fotocélula. Como se puede observar en la **Figura 3.3.**

Detección por REFLEXIÓN Fuente de luz Dispositivo sensible a la luz

Figura 3.3. Detector de humo Fotoeléctrico.

Dispositivo sensible a la luz

3.1.6.2. Detectores de Calor

Fuente de luz

Los detectores de calor tienen un tiempo de respuesta extremadamente lento con respecto a los detectores de humo, por lo que no se los considera en unidades familiares o habitacionales. Ya que al producirse un

incendio este desprende primero humo y gases tóxicos que ponen en peligro la integridad de las personas que habiten en ella. En áreas donde existe polvo, humo, vapores no se pueden implementar los detectores de humo, pues generarían falsas alarmas lo cual obliga a implementar los detectores de temperatura o calor.

Son detectores que funcionan en base al cambio de la temperatura en un área determinada. Son de dos tipos:

Temperatura Fija

Los detectores de temperatura fija actúan cuando la temperatura en el mismo se eleve al valor de activación propuesta por el fabricante (Usualmente 57, 2° C ó 87, 8° C - 125° F ó 190° F).

Están conformados por un elemento bimetálico que se deflecta debido al aumento de la temperatura. Esto se debe a que el elemento posee dos coeficientes diferentes de dilatación, que al doblarse cerrarán el circuito produciéndose la activación de la alarma. Como se puede observar en la Figura 3.4.

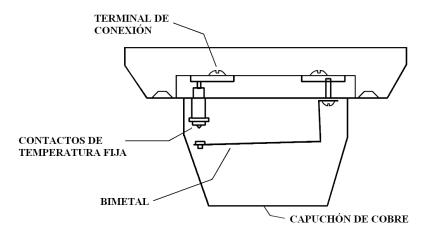


Figura 3.4. Detector de calor por placa bimetálica.

Cambio de Temperatura

Estos detectores de calor poseen las características del detector de temperatura fija y además puede ser activado al identificar un aumento rápido de temperatura de 15° F (-9,4° C) o más por minuto, es decir que un aumento rápido de temperatura producirá la activación de la alarma.

Se basa su funcionamiento en diversos fenómenos como es el caso de la dilatación de una varilla metálica, expansión de gases, etc. Estos dispositivos también se basan en el diferencial de respuesta entre dos componentes del mismo dispositivo, ante un incremento de temperatura superior al nivel determinado.

3.1.6.3. Detector de Llamas

Los detectores de llamas reaccionan frente a radiaciones (ultravioletas o infrarrojas) no visibles de las llamas, propias del espectro.

Se lo utiliza en lugares de ambiente hostil, por lo que son utilizados en aplicaciones de energía y transporte, en donde otros detectores podrían generar falsas alarmas este es el mas efectivo.

Una de sus desventajas es que su mantenimiento es muy caro y para que funcionen de la mejor forma estos deben ser enfocados directamente sobre el posible generador de fuego, es decir que este tipo de detector trata de semejarse al sentido humano de la vista. No son recomendables en unidades familiares o habitacionales. Son activados de manera automática ante la presencia de llamas en un área determinada. Son de dos tipos.

Detector Ultravioleta

Estos detectores son recomendados en áreas abiertas y lugares donde existan materiales inflamables. Son

altamente sensibles a las radiaciones ultravioleta (380 nanómetros) de todo tipo de llamas, incluyendo las producidas por líquidos y gases inflamables.

Es inmune a condiciones ambientales de iluminación, como luz solar, luces incandescentes o fluorescentes. Ya que contienen filtro óptico, célula captadora y retardador de alarma, para evitar la generación de falsas alarmas ante radiaciones de corta duración. Los efectos perturbadores son radiaciones de cualquier tipo como lo son: el sol, los cuerpos incandescentes, la soldadura, etc. Por lo que es necesaria la utilización de filtros, para poder reducir la sensibilidad de la célula

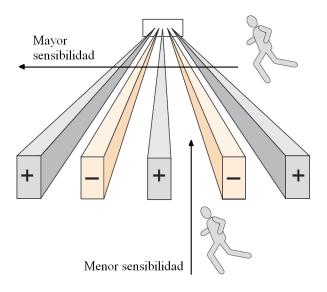
Detector Infrarrojo

Estos detectores son recomendados en áreas con bajo nivel de luz y lugares donde existan hidrocarburos tales como: gasolina, combustible, aceite y madera. Son sensibles a las radiaciones infrarrojas superiores a los 780 nanómetros.

No se lo recomienda en la detección de incendios con alcohol, LNG, hidrógeno o magnesio.

3.1.7. Dispositivos aplicados al Sistema de control Anti-intrusión

3.1.7.1. Detección de presencia:


Estos detectores nos sirven para determinar la presencia de una persona, dentro de un lugar determinado. Por lo que son de suma importancia para determinar la intrusión de alguna persona, cuando la vivienda se encuentra deshabitada.

También se los puede implementar para el sistema de control de iluminación en áreas de uso común, como es el caso de los pasillos, permitiendo además su utilización en otras áreas como son los baños, con lo que se evita el uso de interruptores o pulsadores.

La gama de detectores de presencia ofrecen tres diferentes tipos de tecnologías en detección que son:

Sensores de Tecnología PIR.-

Los sensores infrarrojos son sistemas pasivos (no emiten radiación) que reaccionan ante las radiaciones (energía calórica) emitidas por el cuerpo humano, el termino PIR significa Rayos Infrarrojos Pasivos. Como se puede observar en la **Figura 3.5.**

Se tiene una mejor sensibilidad cuando alguien se mueve perpendicular al patrón de cobertura, que cuando se mueve paralelo.

Figura 3.5. Detector de presencia de tecnología PIR

Estos sensores detectan la diferencia de temperatura emitida por los cuerpos con el espacio que los rodea. Incluyen un filtro especial de luz para evitar falsas detecciones causadas por la luz visible (rayos solares).

Utiliza el principio del lente Fresnel el cual distribuye los rayos infrarrojos a diferentes zonas, con diferentes longitudes e inclinaciones posibles para obtener una mayor cobertura del área a controlar. Es decir que el área que se encuentra cubierta, esta dividida en varias zonas

sensibles. Que al movernos de una zona a otra, esta detecta que existe una diferencia de temperatura en dicha zona. Por lo que en una persona quieta no puede ser detectada su presencia, pero cuando empieza a moverse se dispara el detector.

Se debe tomar en cuenta que los sensores tengan una vista directa sobre el área a sensar y no halla algún elemento que provoque la obstrucción entre ellos (muebles, vidrios, etc.), con lo cual se garantiza un mejor desempeño en este tipo de sensores.

Sensores de Tecnología Ultrasónica.

Los sensores ultrasónicos son detectores de movimiento basados en la emisión de ondas ultrasónicas.

Estos sensores detectan el movimiento por medio de ondas ultrasónicas que detectan la variación de la frecuencia en la onda. Utilizan el principio del Efecto Doppler, pues al emitir un haz de ondas estas son enviadas a una determinada frecuencia y al existir el movimiento de alguna persona, estas rebotan sobre el

cuerpo produciendo que regresen al receptor a una frecuencia distinta de la enviada, con lo cual se produce la detección al ser interpretada como una presencia en el área. Como se puede observar en la Figura 3.6.

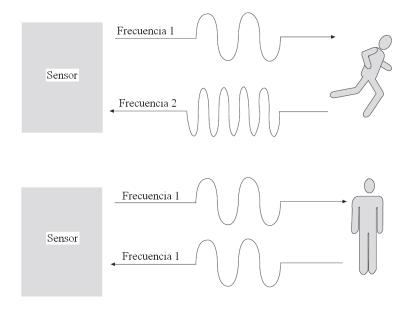


Figura 3.6. Detector de presencia de tecnología Ultrasónica

Estos sensores poseen un emisor y uno o varios receptores, estos transmiten las ondas sonoras a una alta frecuencia generada por un oscilador de cristal de cuarzo. Es tan alta la frecuencia, que no es percibida por el oído humano, por lo que no causan ningún daño.

Es por esto que los sensores ultrasónicos son capaces de detectar pequeños movimientos y de "ver" a través de divisiones o separaciones, siempre y cuando éstas no sean de piso a techo. El sensor debe evitar superficies gruesas como alfombras y materiales antiacústicos, además de verse afectada por flujos de aire que se encuentren cerca de este

Sensores de Tecnología Dual.-

La tecnología Dual es la combinación de las tecnologías PIR y Ultrasónica. Esta tecnología puede ser utilizada en diferentes configuraciones de operación, siendo la estándar la más utilizada.

Es ideal para controlar características específicas de cada lugar a controlar, ya que permite tener las ventajas de ambas, eliminando las debilidades de cada una, ya que los sensores de una sola tecnología tienen algún grado de limitación.

El detector se activa siempre y cuando las dos tecnologías detecten la presencia de una persona, manteniéndose activa mientras una de las dos siga detectando presencia y solo se desactivara cuando se desocupe el sitio, es decir cuando no detecta presencia alguna en dicha área.

3.1.8. Dispositivos aplicados al Sistema control de Fallas Técnicas Térmico

Es el dispositivo que sirve de protección para el motor. Su función consiste en desconectar el circuito cuando la intensidad de corriente que pasa por el motor supera durante un tiempo corto a la permitida por este. Esto se debe al aumento de la temperatura entre las láminas bimetálicas haciendo que estas se curven y produzca la apertura de las mismas.

3.1.9. Dispositivos aplicados al Sistemas de control de Emergencia Médica

La implementación de estos sistemas debe permitir dar un servicio rápido y oportuno de auxilio inmediato, para lo cual se necesita de dispositivos que generen la alarma de emergencia para lo cual se cuenta con:

Pulsadores

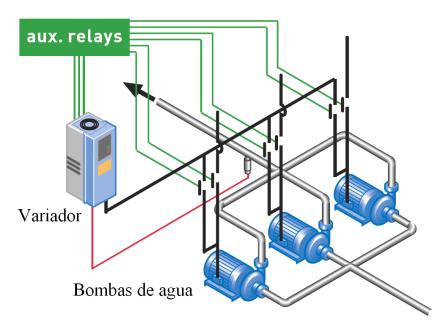
Los pulsadores, son dispositivos que poseen una sola posición estable (de reposo). Es decir que al aplicar presión sobre él provoca un cambio de estado, el cual se mantendrá hasta que se deje de ejercer presión sobre él, ya que en ese momento regresará a su posición de reposo.

3.1.10. Dispositivos aplicados al Sistema de Control de Confort

En estos sistemas lo que se busca es la máxima satisfacción del usuario, para lo cual cuenta con:

- Termostatos
- Pulsadores

Ambos casos ya fueron tratados anteriormente, en lo referente a los termostatos y en lo referente a los pulsadores que se usan en las alarmas médicas, pero este último con la diferencia que tiene aplicaciones distintas a los pulsadores utilizados para el confort. Ya que su aplicación en este caso seria en lo referente a la iluminación. Mientras la una sirve para aviso de una emergencia médica la otra sirve para encender/apagar la iluminación, pero ambas mantienen el mismo principio de funcionamiento.


3.2. PRINCIPALES ACTUADORES APLICADOS EN LA INMÓTICA

3.2.1. Eléctricos

Variadores

Debido a que la frecuencia entregada por las compañías de electricidad es constante, la velocidad con la que funcionan los motores asincrónicos es constante. Pero en algunos casos se necesita poder controlar la velocidad de los motores eléctricos

para que funcionen a diferentes velocidades, para lo cual la forma más sencilla y económica de lograrlo es por medio de un variador de velocidad, es decir un variador de frecuencia/voltaje. Como se puede observar en la **Figura 3.7.**

Figura 3.7. Esquema de un sistema de control con variador.

El variador de velocidad regula la frecuencia del voltaje de entrada al motor, con lo cual se consigue modificar su velocidad. Pero al mismo tiempo que cambia la frecuencia, debe cambiarse el voltaje aplicado al motor, para lograr mantener constante la relación V/F.

Los variadores de velocidad están compuestos por varias etapas, en la etapa rectificadora se convierte la corriente alterna en continua, en la etapa intermedia se dispone de un filtro que suaviza la corriente rectificada y reduce la aparición de

armónicos, en la etapa inversora o inverter se convierte la corriente continua en corriente alterna de voltaje y frecuencia variable (ambos deben ser regulables para poder mantener constante la relación de voltaje/frecuencia), mediante la generación de pulsos empleando IGBT's, ya en la última etapa encontramos la etapa de control que es la que se encarga de controlar a los IGBT para generar los pulsos variables de tensión y de frecuencia.

Los variadores más utilizados en la actualidad son los de Modulación de Ancho de Pulsos (PWM).

3.2.2. Electromecánicos

Desconectores

Los Desconectores de Energía son dispositivos microprocesados e inteligentes (dependiendo del modelo) que permiten gestionar el ahorro de energía eléctrica mediante el uso de tarjetas de banda magnética. Nos brinda la posibilidad de utilizar la misma tarjeta de banda magnética empleada en el sistema de Control de Acceso, mientras esta contenga al menos una pista libre en la cual se pueda grabar su código de activación. Este dispositivo no permite la utilización de cualquier tipo de tarjeta plástica, solo funciona con

la tarjeta plástica que contenga su respectivo código grabado en su banda magnética. Una vez habilitada podrá disfrutar de todas las comodidades disponibles para el cliente dentro de la habitación, es decir que toda la carga eléctrica será habilitada para cubrir con todas sus necesidades. Como se puede observar en la

Figura 3.8.

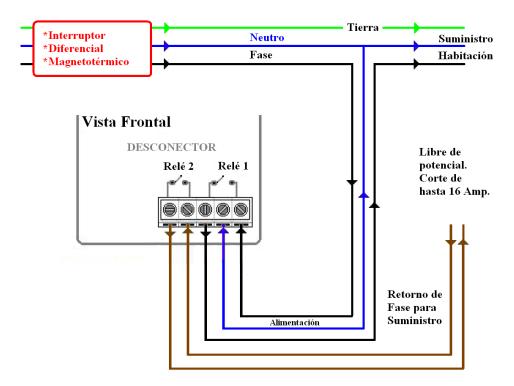


Figura 3.8. Desconector de energía, esquema de instalación

Este sistema permite discriminar entre cliente y empleado, con lo cual se logra un mejor control de la carga eléctrica que se desea habilitar, dependiendo siempre de la persona que se encuentre

dentro de la habitación. Además posee indicadores de situación y estado actual en el que se encuentra el dispositivo.

Cuando el cliente desee salir de la habitación, es decir que cuando retire su tarjeta del tarjetero este podrá acceder a un tiempo de cortesía, que consistirá en dejar conectada un tiempo prudencial toda la carga eléctrica de la habitación, en caso de que desee regresar o en caso de algún olvido.

Relés y Contactores

Es un interruptor electromecánico que permite conectar o desconectar el circuito eléctrico de la corriente eléctrica en condiciones normales, la ventaja de estos dispositivos es que funcionan como mandos a distancia o en lugares de difícil acceso. Su principio de funcionamiento radica en la energización de su bobina, la cual atrae sus contactos por su efecto electromagnético y en el momento en que la fuerza de accionamiento (corriente eléctrica) se suprime, sus contactos vuelven a su posición inicial de reposo debido a su efecto mecánico.

El contactor consta de contactos principales que son manejados por circuitos de fuerza o de gran potencia y los auxiliares que son manejados por circuitos de mando es decir de menor intensidad que los principales. Como se puede observar en la Figura 3.9.

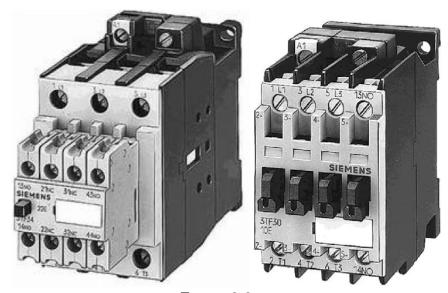


Figura 3.9 Contactores.

En cambio los relés son dispositivos electromecánicos que no poseen contactos de potencia, sino solo contactos de mando.

Motores

Los motores eléctricos son maquinas que transforman la energía eléctrica en energía mecánica.

De acuerdo al tipo de alimentación que requiera el motor existen las maquinas de corriente continua y las de corriente alterna. Estos últimos son de gran importancia en la industria, pero dependiendo de la velocidad que se requiera, pueden ser

sincrónicos o asincrónicos, siendo los asincrónicos los de mayor demanda por no precisar de un campo magnético alimentado por corriente continua sino por corriente alterna para su funcionamiento, de acuerdo a la construcción de su rotor estos pueden ser de rotor bobinado o rotor tipo jaula de ardilla. Como se puede observar en la **Figura 3.10.**

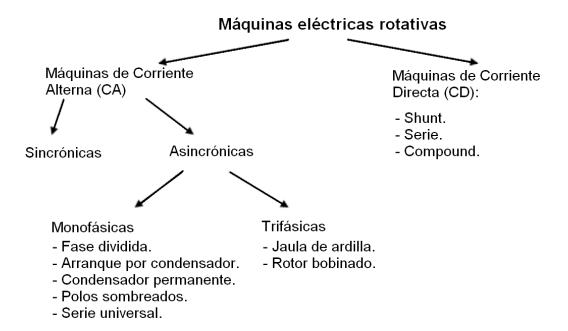


Figura 3.10. Clasificación de las Maquinas eléctricas rotativas

Electroválvulas

Las electroválvulas son válvulas solenoides es decir que son controladas por señales eléctricas. Los solenoides son dispositivos que nos permiten aplicar una fuerza mecánica en una dirección fija. Básicamente consta de una bobina y un núcleo

ferromagnético, el cual es atraído ante la presencia de la fuerza electromagnética producida por la energización de la bobina.

Por lo que las electroválvulas tienen la función de actuar como llave de paso del agua, mientras no reciba la señal eléctrica estará cerrada y en el momento que la reciba esta se abrirá, permitiendo el paso del líquido. Como se puede observar en la Figura 3.11.

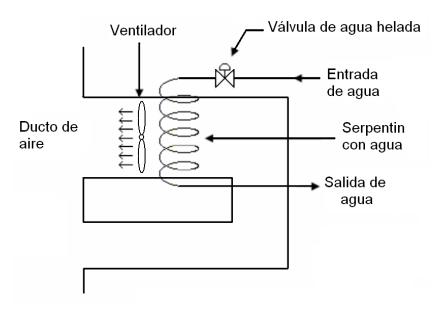


Figura 3.11. Aplicación de la electroválvula en los Fan-Coil

3.1. SELECCIÓN DE LOS DISPOSITIVOS APLICADOS EN LA INMÓTICA Desconector de Energía:

Para poder activar/desactivar las funciones en la habitación, se seleccionó el desconector de energía (DESCBASICP1) que es activado por medio de una tarjeta con banda magnética, debido a su sencillez de

funcionamiento que permite discriminar entre cliente y empleado, por medio de dos relés.

Sensor de Iluminación Interior:

Para poder permitir el encendido/apagado de las luminarias en la habitación dependiendo si es día o noche, se seleccionó un sensor de luminosidad (DOM-204) que permite ajustar el nivel de luz, con el cual se producirá el encendido de las luminarias. Este es un sensor con salida analógica de 0 a 10 V lineales.

Detector de presencia de tecnología Dual:

Este detector de presencia es utilizado en la habitación, para la detección de intruso en el momento que la tarjeta no sea introducida en el tarjetero a tiempo. Además se lo usa para desconectar la energía de la habitación si es que esta se encuentra vacía con la tarjeta introducida. Este detector de tecnología dual, es una combinación de tecnologías PIR y ultrasónicas que permiten conseguir coberturas más precisas en la detección de personas evitando falsas alarmas, por lo que su uso es recomendado para habitaciones. Por lo cual se seleccionó el detector de presencia de tecnología dual (DT-200)

Detector de presencia de tecnología PIR:

Este detector de presencia es utilizado para el encendido y apagado de la luminaria en el baño de la habitación, debido a que el baño es pequeño y sin divisiones, se seleccionó la tecnología PIR.(WI-200)

Detector Ultrasónico de pasillo

Este detector de presencia es utilizado en los pasillos para el encendido y apagado de las luminarias, al detectar cualquier tipo de presencia.

Este detector de tecnología ultrasónica (W-2000H) es recomendado para los pasillos, por ser estas áreas en continuo movimiento. Además la altura del techo no es mayor a los 4,2m que es lo recomendado para estos detectores.

Termostato Electrónico

Para realizar el control de temperatura en la habitación a gusto del cliente, se seleccionó el termostato electrónico (CEPRA 4100) debido a su sencillez de funcionamiento por medio de dos teclas que le permiten al cliente seleccionar la temperatura de consigna que desee y una pantalla para la visualización de la temperatura ambiente y de consigna.

Sensor de temperatura

Para que el sistema realice el control de temperatura en la habitación para los casos de empleado o habitación vacía, se seleccionó el sensor de temperatura (DOM 203) que permite ajustar la temperatura del sistema. Este es un sensor con salida analógica de 0 a 10 V lineales.

Conmutador magnético de superficie

Para evitar el funcionamiento del Fan- Coil cuando la puerta de la habitación se encuentre abierta, se seleccionó el conmutador magnético de superficie (CONMAGSUP1), el cual tiene sus terminales libres de contacto físico entre si.

Fan-Coil

Es el dispositivo evaporador que permite a través del agua fría mantener la temperatura ambiente en la habitación, este Fan-Coil esta constituido por el radiador o serpentín por el cual fluye el agua helada para enfriar el ambiente, la electroválvula de tres vías que permite o no el flujo de agua a través del serpentín y por último el ventilador el cual distribuye el aire frío por toda la habitación. Para lo cual se selecciono el modelo de Fan-Coil (42C), debido a su fácil montaje y su reducido espacio de ocupación para el uso en habitaciones

Detector de Humo

Este dispositivo es utilizado para identificar el fuego en sus primeras etapas, evitando con esto males mayores. Se selecciono el sensor de humo fotoeléctrico (SHA-965R) porque posee un tiempo de respuesta rápido ante la detección de un incendio

Presostato

Para el sistema de bombeo en modo manual se necesita de un dispositivo que pueda proteger la tubería de presiones altas, para lo cual se seleccionó el presostato (KPS 35(603108)) que al sobrepasar los 65 Psi manda a apagar las bombas.

Sensor de Presión

Para el control de la presión del sistema de bombeo en modo automático se seleccionó el sensor de presión (Sitrans P Z), el cual posee una salida analógica de 4 a 20 mA lineales.

Bombas

Para suministrar de agua al hotel se dispuso de 3 bombas de inducción trifásicas de 10 Hp, 2 polos y velocidad 3600rpm. Dos para operación y una como auxiliar, cuya capacidad se seleccionó de acuerdo a la demanda calculada para el hotel.

Variador de Velocidad

Para poder mantener el sistema de bombeo a presión constante con un ahorro de energia significativo se seleccionó el variador de velocidad (Danfoss VLT 6000), el cual permite consumir la energía necesaria de acuerdo a la demanda de agua requerida por el hotel.

Supervisores de voltaje

Para poder realizar el control del sistema de transferencia de energía en caso de la ausencia de esta o de que salga de sus márgenes de funcionamiento adecuados, se seleccionó el supervisor de voltaje trifásico (Genius II plus)

CAPÍTULO 4

DISEÑO DEL CONTROL EN EL SISTEMA INMÓTICO

4.1. CONTROL DEL SISTEMA EN HABITACIONES

4.1.1. Control de las funciones en la habitación

El sistema de control de las funciones en la habitación se divide básicamente en dos partes que son:

- Funcionamiento de la Habitación para caso cliente
- Funcionamiento de la Habitación para caso empleado

Se contará con una tarjeta de banda magnética con su propia codificación tanto para cliente como para empleado. Esta tarjeta constará de dos pistas diferentes, una para dar acceso a la habitación y otra para habilitar el funcionamiento de la habitación dependiendo del caso.

Descripción del funcionamiento de la Habitación para el caso Cliente

Una vez que el cliente ha ingresado a la habitación, este deberá ingresar la tarjeta en el tarjetero, el cual energiza dos relés que activarán las señales RELE TARJETA EMPLEADO y RELE TARJETA CLIENTE como entradas al PLC.

Al activarse estas señales, el sistema dará inicio a las funciones de la habitación, las cuales serán las siguientes:

- El PLC activa la señal CLIENTE que indicará la presencia del cliente dentro de la habitación
- proviene del transductor de luz, que le indicará si es de día o es de noche. Si este le indica que es de noche, entonces el PLC activará la señal LUZ HABITACION la cual encenderá las luminarias de la habitación, de lo contrario si le indica que es de día, entonces las luminarias permanecerán apagadas. Además el cliente tendrá la opción de controlar el encendido y el apagado de las luminarias cuando lo desee sin importar que sea de día o de noche; esto lo realiza a través de un pulsador que envía al PLC la señal ON/OFF LUZ HABITACION MANUAL.

- El PLC verifica el estado de la señal de relé SENSOR PRESENCIA BAÑO proveniente del sensor infrarrojo. Si esta señal se activa, entonces el PLC activará la señal LUZ BAÑO para encender las luminarias del cuarto de baño, y si la señal SENSOR PRESENCIA BAÑO se desactiva, entonces el PLC desactivará la señal LUZ BAÑO para desenergizar las luminarias del cuarto de baño.
- El PLC activa la señal TOMAS, la cual energizará los puntos de toma corriente de la habitación para poder suministrar energía al cliente. Además activará la señal TV que energizará los puntos de toma corriente para suministrarle servicio de TV y CABLE.
- El PLC activa la señal VENTILADOR_FAN COIL la cual energizará el ventilador del FAN-COIL. Además verificará el estado de la señal de relé TERMOSTATO proveniente del termostato en la habitación para controlar la temperatura de esta, a través de la válvula de tres vías del FAN-COIL. Por medio de este termostato el cliente tendrá la opción de escoger la temperatura que desee. Si la señal TERMOSTATO se activa, entonces el PLC activará la señal

VALVULA_FAN COIL la cual energizará la válvula de tres vías y si la señal TERMOSTATO se desactiva, entonces el PLC desactivará la señal VALVULA_FAN COIL para desenergizar la válvula de tres vías.

El PLC verifica el estado de la señal de relé CONTACTO MAGNETICO PUERTA proveniente del contacto magnético colocado en la puerta de la habitación, para controlar el apagado y encendido del FAN-COIL. Si la señal CONTACTO MAGNETICO PUERTA se activa, el PLC esperará un tiempo de (10 minutos) para que esta señal se desactive, luego de los cuales si continua presente esta señal. entonces el PLC desactivará las señales VENTILADOR_FAN COIL y VALVULA_FAN COIL para desenergizar el ventilador y la válvula de tres vías del FAN-COIL. Una vez que la señal CONTACTO MAGNETICO PUERTA se desactive, el PLC activará nuevamente las señales VENTILADOR_FAN COIL y VALVULA_FAN COIL. para energizar el ventilador y la válvula de tres vías del FAN-COIL.

- El PLC verifica si las señales RELE TARJETA EMPLEADO y RELE TARJETA CLIENTE se desactivan, lo cual ocurre al retirar la tarjeta de la habitación. Si esto sucede, el PLC esperará un tiempo de 5 minutos (tiempo de cortesía) para que la tarjeta sea introducida nuevamente, si esto no sucede dentro del tiempo establecido, entonces el PLC mandará a desactivar todas las funciones de la habitación (Iluminación, temperatura y puntos de toma corriente).
- Si el cliente abandona la habitación sin retirar la tarjeta, entonces el PLC verificará el estado de la señal SENSOR PRESENCIA HABITACION proveniente del sensor de presencia ubicado dentro de la habitación, al desactivarse esta señal el PLC mandará a desactivar todas la funciones de la habitación (Iluminación, temperatura y puntos de toma corriente) y estas funciones se activarán nuevamente cuando la señal (SENSOR PRESENCIA HABITACION) se active, indicando que el cliente ha ingresado a la habitación.
- Si la tarjeta o tarjetero de la habitación sufren algún daño, entonces desde la computadora se podrá activar la señal TARJETA CLIENTE VIRTUAL a través de una botonera,

por medio de la cual el PLC simulará el funcionamiento de la tarjeta para poder activar todas las funciones de la habitación (Iluminación, temperatura y puntos de toma corriente) y de esta manera poder seguir suministrando confort al cliente hasta resolver el problema.

Si el termostato de la habitación sufre algún daño, entonces desde la computadora se podrá activar la señal TERMOSTATO VIRTUAL a través de una botonera, por medio de la cual el PLC desactivará la función del termostato y dejará que la temperatura sea controlada automáticamente por el sistema y de esta manera seguir suministrando confort al cliente hasta resolver el problema.

Descripción del funcionamiento de la Habitación para el caso Empleado

Una vez que el empleado ha ingresado a la habitación, este deberá ingresar la tarjeta en el tarjetero, el cual energizará un relé que activará la señal RELE TARJETA EMPLEADO como entrada al PLC.

Al activarse esta señal, el sistema dará inicio a las funciones de la habitación, las cuales serán las siguientes:

- El PLC activa la señal EMPLEADO que indicará la presencia del empleado en la habitación.
- proviene del transductor de luz que le indicará si es de día o es de noche. Si este le indica que es de noche, entonces el PLC activará la señal LUZ HABITACION la cual encenderá las luminarias de la habitación, de lo contrario si le indica que es de día, entonces las luminarias permanecerán apagadas. En este caso el empleado no tendrá la opción de controlar el encendido y apagado de las luminarias cuando lo desee, es decir que el pulsador se deshabilita para impedir el cambio de estado de las luminarias, así este sea accionado.
- El PLC verifica el estado de la señal de relé SENSOR PRESENCIA BAÑO proveniente del sensor infrarrojo. Si esta señal se activa, entonces el PLC activará la señal LUZ BAÑO para encender las luminarias del cuarto de baño, y si la señal SENSOR LUZ BAÑO se desactiva, entonces el PLC desactivará la señal LUZ BAÑO para desenergizar las luminarias del cuarto de baño.

- El PLC activa la señal TOMAS, la cual energizará los puntos de toma corriente de la habitación para poder suministrar energía para uso del empleado. En este caso no se activará la señal TV, es decir el empleado no tendrá acceso al servicio de TV y CABLE.
- El PLC deshabilitará el funcionamiento del termostato para que no pueda ser utilizado, de tal manera que el empleado no tenga la opción de controlar o escoger la temperatura que desee. En su lugar el PLC controlará la temperatura a través de la señal analógica SENSOR TEMPERATURA proveniente del transductor de temperatura ubicado en la habitación. Esta señal es comparada por el PLC con las señales SET POINT+1 y SET POINT-2, las cuales se producen a través de la señal SISTEMA proveniente de la computadora (InTouch), por medio de la cual se puede escoger el valor de temperatura para la habitación. Este valor de temperatura no es manipulable por el cliente, pero si por el sistema de control. Aunque este valor de temperatura es manipulable por medio de un deslizador, este se ha fijado en un valor determinado (24°C) tanto para el caso empleado, como para el caso de habitación vacía.

Dicho valor puede ser modificado en el caso que se lo desee hacer.

En el momento que el valor de la señal SENSOR TEMPERATURA es mayor o igual que el valor de la señal SET POINT+1. el **PLC** activará las señales VENTILADOR_FAN COIL y VALVULA_FAN COIL que energizarán al ventilador y a la válvula de 3 vías del FAN-COIL. Y cuando el valor de la señal SENSOR TEMPERATURA sea menor o igual que el valor de la señal SET POINT-2, el PLC desactivará las VENTILADOR_FAN COIL y VALVULA_FAN COIL para desenergizar el ventilador y la válvula de 3 vías del FAN-COIL, y de esta manera controlar la temperatura. Cave recalcar que el sistema de control de temperatura esta provisto de histéresis, para evitar la energización y desenergización abrupta de los dispositivos, para lo cual el sistema cuenta con un diferencial de temperatura alrededor de la señal SISTEMA. Esto se da tanto para el caso de empleado, como habitación vacía.

- El PLC verifica el estado de la señal de relé CONTACTO MAGNETICO PUERTA proveniente del contacto magnético colocado en la puerta de la habitación para controlar el apagado y encendido del FAN-COIL. Si la señal CONTACTO MAGNETICO PUERTA se activa, el PLC esperará un tiempo de (10 minutos) para que esta señal se desactive, luego de los cuales si esta señal sigue presente, PLC desactivará entonces el las señales VENTILADOR_FAN COIL y VALVULA_FAN COIL para desenergizar el ventilador y la válvula de tres vías del FAN-COIL. Una vez que la señal CONTACTO MAGNETICO PUERTA se desactive, el PLC activará nuevamente las señales VENTILADOR_FAN COIL y VALVULA_FAN COIL para energizar el ventilador y la válvula de tres vías del FAN-COIL.
- El PLC verifica si la señal RELE TARJETA EMPLEADO se desactiva, lo cual ocurre al retirar la tarjeta de la habitación.
 Si esto sucede, el PLC esperará un tiempo de 5 minutos (tiempo de cortesía) para que la tarjeta sea introducida nuevamente, si esto no sucede dentro de este tiempo, entonces el PLC mandará a desactivar todas las funciones

de la habitación (Iluminación, temperatura y puntos de toma corriente).

- Si el empleado abandona la habitación sin retirar la tarjeta, entonces el PLC verificará el estado de la señal SENSOR PRESENCIA HABITACION proveniente del sensor de presencia ubicado en la habitación, al desactivarse esta señal, el PLC mandará a desactivar todas la funciones de la habitación (Iluminación, temperatura y puntos de toma corriente) y estas funciones se activarán nuevamente cuando la señal SENSOR PRESENCIA HABITACION se active, indicando que el empleado ha regresado a la habitación.
- Si la tarjeta o tarjetero de la habitación sufren algún daño, entonces desde la computadora también se podrá activar la señal TARJETA CLIENTE VIRTUAL a través de una botonera, por medio de la cual el PLC simulará el funcionamiento de la tarjeta para poder activar todas las funciones de la habitación (Iluminación, temperatura y puntos de toma corriente) permitidas en este caso para que el empleado pueda realizar sus labores.

4.1.2. Control de alarmas en la habitación

Sin importar la naturaleza de la persona que ingrese en la habitación, esta constará de tres tipos de alarma para brindarles apoyo o seguridad a las personas que se encuentran dentro de la habitación, estas son:

- Sistema de alarma contra intruso
- Sistema de alarma de detección de Fuego
- Sistema de alarma por detección de emergencia médica

Sistema de alarma contra intruso

Una vez que la persona entre a la habitación, este es detectado por el sensor de presencia, el cual activará la señal SENSOR PRESENCIA HABITACION indicando la presencia de este, luego de lo cual el controlador esperará un tiempo de un minuto para que la tarjeta sea introducida. Si esto no sucede entonces el control del PLC activará la señal ALARMA INTRUSO Indicando la presencia de intruso en la habitación.

Una vez que la señal de alarma es activada, esta podrá ser desactivada de dos maneras:

 En forma manual introduciendo la tarjeta en el tarjetero, para que active las señales RELE TARJETA EMPLEADO y RELE TARJETA CLIENTE. En forma virtual a través de la computadora activando la señal TARJETA CLIENTE VIRTUAL.

Sistema de alarma de detección de Fuego

Esta parte se encarga de detectar y visualizar la presencia de fuego en la habitación; esto se realiza a través del sensor de humo que al detectar la presencia de fuego en la habitación activa la señal SENSOR FUEGO, enviándola al control del PLC para que active la señal ALARMA FUEGO.

Una vez que la alarma es activada, esta podrá ser desactivada a través de la señal OFF ALARMA FUEGO a través de una botonera desde la computadora y que además la señal SENSOR FUEGO enviada por el sensor de humo se desactive.

Sistema de alarma por detección de emergencia medica

Esta parte se encarga de detectar y visualizar el pedido de ayuda médica en la habitación; esto se realiza a través de dos pulsadores colocados, uno en la cabecera de la cama y el otro en el baño, que activan las señales AYUDA CAMA y AYUDA BAÑO respectivamente enviándolas al control del PLC para que active la señal ALARMA MEDICA.

Una vez que la alarma es activada esta podrá ser desactivada a través de la señal DESACTIVA ALARMA MEDICA a través de una botonera desde la computadora.

4.2. CONTROL DEL SISTEMA DE BOMBEO.

Para el sistema de bombeo se utilizarán dos bombas, una trabajando a velocidad variable por medio de un variador de frecuencia de acuerdo a la demanda de agua y otra que funcionará a velocidad nominal cuando la anterior no abastezca la demanda requerida. Además existirá una tercera bomba "bomba auxiliar" que funcionará si una de las anteriores sufre algún daño. También habrá una pequeña bomba "jockey" con una capacidad del 2.5 al 5% de la demanda total, se la utilizará para presurizar el sistema cuando la presión caiga por causa de fugas.

Este sistema de bombeo constará de dos modos de funcionamiento manual y automático.

4.2.1. Descripción del control del sistema de bombeo

El panel de control consta principalmente de tres partes que son:

- selección del modo de funcionamiento para manual o automático
- operación de funcionamiento en modo automático
- operación de funcionamiento en modo manual

4.2.1.1. Selección del modo de funcionamiento para manual o automático.

Básicamente esta parte consiste en elegir que tipo de funcionamiento se desea que tenga el sistema de bombeo, es decir que trabaje en forma automática controlada por el PLC o en forma manual controlada por el panel de control.

Esta selección se la realiza mediante un selector de tres posiciones que genera dos señales; para la posición uno tenemos la señal SI_AUT que es la señal de entrada al PLC que da inicio al funcionamiento en modo automático, para la posición dos tenemos la señal SI_ MANUAL que es la señal de entrada al circuito eléctrico del panel de control para el funcionamiento del sistema en modo manual y la tercera posición del selector es para el apagado del sistema de bombeo.

4.2.1.2. Operación de funcionamiento en modo automático

La operación del funcionamiento en modo automático consiste en tres partes que son:

 Selección de secuencia para el funcionamiento de las bombas

- Puesta en marcha del sistema de bombeo
- Reinicio del sistema de bombeo en caso de falla

Selección de secuencia para el funcionamiento de las bombas.

Una vez seleccionado el funcionamiento en modo automático, se procede a la selección de la secuencia de funcionamiento de las bombas. Esta selección de secuencia consiste en elegir que trabajo va a desempeñar cada una de las tres bombas del sistema, es decir que bomba (B1, B2, B3) va a trabajar a velocidad variable, cual a velocidad fija y cual como bomba auxiliar.

Esta selección se la realiza mediante un selector de tres posiciones. Con los cuales se tiene que:

- Para la posición uno se tiene la señal SEC_1 (F1)
 que da la siguiente secuencia de funcionamiento:
 Bomba 1 (B1) velocidad variable, bomba 2 (B2)
 velocidad fija y bomba 3 (B3) bomba auxiliar.
- Para la posición dos se tiene la señal SEC_2 (F2)
 que da la siguiente secuencia de funcionamiento:

Bomba 1 (B1) velocidad fija, bomba 2 (B2) bomba auxiliar y bomba 3 (B3) velocidad variable.

Para la posición tres se tiene la señal SEC_3 (F3)
 que da la siguiente secuencia de funcionamiento:
 Bomba 1 (B1) bomba auxiliar, bomba 2 (B2)
 velocidad variable y bomba 3 (B3) velocidad fija.

Es decir que lo anteriormente expuesto se lo puede resumir en una tabla, para una mejor comprensión. Como se puede observar en la **Tabla 4.1.**

	Bomba 1	bomba 2	bomba 3
F1	velocidad variable	velocidad fija	bomba auxiliar
F2	velocidad fija	bomba auxiliar	velocidad variable
F3	bomba auxiliar	velocidad variable	velocidad fija

Tabla 4.1. Resumen de las señales generadas por el selector de tres posiciones.

Puesta en marcha del sistema de bombeo

Una vez seleccionada la secuencia de funcionamiento de las bombas se activa la señal ON_SISTEMA AUTOMATICO, como entrada al PLC a través de una botonera para que el sistema empiece a trabajar.

Reinicio del sistema de bombeo en caso de falla

El reinicio del sistema consiste en enviar la señal RESET_FALLA AUTOMATICO al PLC a través de una botonera para reiniciar el sistema. Esto se debe al fallo de alguna bomba o variador, logrando por medio de esto la eliminación del estado de alarma.

Una vez reiniciado el sistema, este se apagará por lo que se deberá activar nuevamente la señal ON_SISTEMA AUTOMATICO para dar marcha al sistema bajo sus condiciones iniciales.

Descripción del funcionamiento en modo automático

Cuando la demanda del sistema sea cero, es decir que al no existir consumo de agua, las bombas estarán apagadas y el sistema estará presurizado a 60 Psi. En este punto al existir una fuga que provoque la caída de presión a 57 Psi se encenderá la bomba Jockey, con lo que se consigue presurizar nuevamente el sistema a 60 Psi y como consecuencia de esto, la bomba Jockey se apaga.

Con el sistema a 60 Psi y empiece a producirse demanda la presión caerá, cuando llegue a 57 Psi se encenderá la

Jockey, pero si la presión sigue cayendo, cuando esta llegue por debajo de 55 Psi se encenderá la bomba con velocidad variable y se apagará la Jockey. La bomba variará su velocidad de acuerdo a la demanda requerida, es decir que si se incrementa la demanda se incrementa la velocidad y si disminuye la demanda disminuye la velocidad, para mantener la presión constante en 55 Psi (presión mínima para llevar el agua al último piso).

A medida que disminuye la demanda, disminuirá también la velocidad de la bomba. Pero esta no podrá seguir disminuyendo por debajo de la velocidad mínima que se programe en el variador, que en este caso es de 10 Hz.

Esto se lo realiza para que cuando la demanda sea cero, la bomba siga funcionando a esa velocidad (velocidad mínima), lo que provocará que la presión suba y cuando esta llegue a 60 Psi con frecuencia de 10 Hz, entonces se apagará la bomba variable y todo iniciará nuevamente.

La bomba variable cubre el 50% de la demanda total; si la demanda sobrepasa la capacidad de la bomba variable, esto provocará que la presión caiga debido a que la bomba ya esta trabajando a su máxima velocidad (60 Hz).

Por lo tanto cuando la presión sea menor de 55 Psi y la frecuencia sea 60 Hz, se encenderá la bomba a velocidad nominal (encendido directo) para tomar la otra mitad de la demanda total y al mismo tiempo estará ajustando la velocidad de la bomba variable, para seguir manteniendo constante los 55 Psi.

En este punto si la demanda disminuye provocando que la presión llegue a 60 Psi y si además la bomba variable llega a su velocidad mínima 10 Hz, producirán como consecuencia que la bomba variable se apague.

Si aquí la presión llega a ser menor que 55 Psi debido al aumento de la demanda, se encenderá nuevamente la bomba variable. Pero si al contrario la demanda sigue disminuyendo provocando que la presión llegue a 65 Psi entonces se apagará la bomba a velocidad nominal, para que con esto el sistema vuelva a las condiciones iniciales de funcionamiento.

4.2.1.3. Operación de funcionamiento en modo manual

El funcionamiento en modo manual depende exclusivamente de las maniobras del operario bajo las condiciones de funcionamiento del sistema.

La operación del funcionamiento en modo manual, consiste en ocho partes que son:

- Selección de bomba variable
- Encendido de variador
- Selección de bomba nominal
- Encendido de bomba Jockey
- Reinicio de Fallas
- Reinicio de variador
- Prueba de fallas
- Visualización de estado de bombas

Selección de bomba variable

Aquí se selecciona que bomba (B1, B2, B3) va a trabajar con el variador. Esta selección consiste en cerrar los contactos de los contactores a través de botoneras que generan su respectiva señal ON_CONTACTOB1, ON_CONTACTOB2, ON_CONTACTOB3 independientemente para cada bomba, y de esta manera activar los contactos de trabajo bomba variador.

Cave recalcar que las bombas son mutuamente excluyentes entre si, es decir que al seleccionar una bomba las otras dos quedan deshabilitadas. Para poder

seleccionar otra bomba necesitamos deshabilitar primero la bomba seleccionada anteriormente, es decir abrir los contactos de la bomba. Esto se realiza mediante la botonera que activa la señal OFF_CONTACTOS BOMBAS.

Encendido de variador

Una vez seleccionada la bomba que va a trabajar con el variador, se procede al encendido de este, lo cual se realizar por medio de la botonera que genera la señal ON_VARIADORM.

Pero en el caso que se desee apagar el conjunto bomba variador, hay que seleccionar primero la botonera que genera la señal OFF_ VARIADORM para el apagado del variador y luego la botonera que genera la señal OFF_CONTACTOS BOMBAS para deshabilitar la bomba seleccionada anteriormente como variable.

No será permitido encender el variador primero y después seleccionar la bomba, como tampoco será permitido abrir contactos bomba primero y después apagar el variador.

Selección de bomba nominal

Aquí se selecciona que bomba (B1, B2, B3) va a trabajar en forma nominal. Esto consiste en cerrar los contactos de los contactores que energizan la bomba en forma directa, a través de las botoneras que generan su respectiva señal MARCHA DIRECTA B1, MARCHA DIRECTA B2, MARCHA DIRECTA B3.

Esto se relaciona en forma excluyente con la selección de bomba variable, es decir con la bomba que va a trabajar con el variador. Por lo que será deshabilitada para la selección de la bomba en forma nominal, por ejemplo si se seleccionó la bomba B1 para el variador, entonces B2 y B3 podrán ser seleccionadas en forma nominal.

Estas dos bombas que pueden ser seleccionadas en forma nominal están excluyentes entre si, es decir que una vez que se escoja una bomba la otra queda deshabilitada.

El apagado de estas bombas se lo realiza a través de las botoneras que generan su respectiva señal PARO DIRECTO B1, PARO DIRECTO B2, PARO DIRECTO B3.

Como medida de seguridad se ha colocado un presostato para que actúe cuando la presión del sistema sobrepase los 65 Psi y apague la bomba nominal.

Encendido de bomba Jockey

Aquí se cuenta con botoneras marcha/paro que genera la señal ON/OFF BOMBA JOCKYE, para el encendido y apagado de la bomba jockey, la cual realiza la función de presurizar el sistema por causa de alguna fuga.

Reinicio de variador

Esta función es la que se encarga de reiniciar el variador manualmente a través de una botonera que genera la señal RESET MANUAL_VARIADOR para que este retorne a sus condiciones iniciales de trabajo, luego de haber salido de estas condiciones debido a problemas, ya sea del mismo variador o por fallo de alguna bomba.

Reinicio de Fallas

En esta parte al igual que en el funcionamiento automático se trata de reiniciar el sistema de bombeo para que retorne a sus condiciones iniciales de trabajo cuando se ha producido el fallo de alguna bomba. Este reinicio se lo realiza manualmente a través de una botonera que genera la señal RESET_FALLA MANUAL.

Prueba de fallas

En esta parte al igual que en el funcionamiento automático consiste en poder energizar manualmente en forma directa una bomba, para poder darle mantenimiento cuando esta haya sufrido algún tipo de falla. Debido a que el sistema deshabilita el encendido de la bomba que ha sufrido la falla.

Esta prueba de falla se la realiza a través de un selector simple que genera la señal OPERACIÓN BOMBAS EN FALLA, la cual habilita el encendido de la bomba.

Visualización de estado de bombas

Esta parte consiste en tres grupos de tres luminarias que indican el estado de operación de las bombas a saber:

- El primer grupo indica que bomba esta trabajando en forma nominal
- El segundo grupo indica que bomba esta trabajando en forma variable

 El tercer grupo indica que bomba ha sufrido algún fallo

4.2.2. Operación del sistema de bombeo en caso de fallas.

El sistema de bombeo tiene la capacidad de reconocer el fallo que se haya producido ya sea por alguna bomba o por el variador, para lo cual se debe de ejecutar una secuencia de operaciones para resolver este problema. Esta capacidad de reconocer y resolver el problema la tiene tanto en funcionamiento manual como en automático, diferenciándose ambas en el trabajo a ejecutar.

4.2.2.1. Operación de fallas para el funcionamiento en modo automático

Fallo del variador de velocidad.

Para el caso en que exista un mal funcionamiento del equipo variador de velocidad exclusivamente, se activa la señal FALLA_VARIADOR, lo que provoca que el control del PLC inmediatamente mande a apagar el sistema de bombeo, desconectando todas las bombas. Es decir que se apagarán todas las bombas y no se podrá dar inicio nuevamente al sistema, hasta que se halla resuelto el

problema del variador y se halla activado la señal RESET_FALLA AUTOMATICO para reiniciar el sistema.

En el caso de generarse fallas y el sistema de bombeo es apagado sin solucionar el problema, el control tendrá la capacidad de reconocer la falla en el momento que se vuelva a encender el sistema. Para lo cual es necesario resolver el problema mediante los pasos explicados anteriormente dependiendo del caso a solucionar.

Cave recalcar que el variador solo podrá trabajar con una sola bomba a la vez, es decir que este podrá trabajar con cualquiera de las tres bombas

Fallo por bombas

El sistema de control automático tiene la capacidad de reconocer el fallo de alguna bomba debido a las protecciones térmicas que estas poseen en trabajo directo y a la protección térmica que les proporciona el variador de velocidad.

Estas protecciones térmicas son las siguientes señales de entrada al PLC:

 TERMO MAGNETICO BOMBA1 para la protección de la Bomba 1 energizada en forma directa.

- TERMO MAGNETICO BOMBA2 para la protección de la Bomba 2 energizada en forma directa.
- TERMO MAGNETICO BOMBA3 para la protección de la Bomba 3 energizada en forma directa.
- TERMO MAGNETICO VARIADOR para la protección de la bomba que este trabajando con el variador, independientemente de la secuencia de funcionamiento de las bombas.

Descripción del funcionamiento al presentarse una falla.

Independientemente de la secuencia de funcionamiento en las bombas F1(SEC_1), F2(SEC_2) y F3(SEC_3), siempre habrá una bomba trabajando con el variador, otra trabajando en forma directa a velocidad nominal y otra bomba que estará como auxiliar en caso de falla.

Por lo tato aquí se pueden presentar las siguientes posibilidades de fallas de bombas:

- Falla de bomba variable.
- Falla de bomba nominal.
- Falla bomba variable y después bomba nominal.
- Falla bomba nominal y después bomba variable.

- Falla bomba variable y después bomba auxiliar.
- Falla bomba nominal y después bomba auxiliar.
- Falla bomba variable, nominal y auxiliar.

Falla de bomba variable.

Al activarse la protección térmica de esta bomba, el control del PLC inmediatamente manda a abrir los contactos bomba-variador, para después activar (cerrando los contactos bomba-variador) la bomba auxiliar, luego se resetea el variador para después encenderlo. De tal manera que pueda tomar su lugar como bomba variable

Falla de bomba nominal.

Al activarse la protección térmica de esta bomba, el control del PLC inmediatamente manda a apagar la bomba (abriendo los contactos bomba-fase), para después activar (cerrando los contactos bomba-fase) la bomba auxiliar y poder darle encendido en forma directa. De tal manera que pueda tomar su lugar como bomba nominal.

Falla bomba variable y después bomba nominal.

En este caso la bomba variable falla primero y luego lo hace la bomba nominal. Al fallar la bomba variable el control del PLC inmediatamente manda a abrir los contactos bomba-variador, para después activar (cerrando los contactos bomba-variador) la bomba auxiliar y tome su lugar como bomba variable, luego de lo cual se resetea el variador y se lo enciende. Si después falla la bomba nominal, entonces el PLC inmediatamente manda a apagar esta bomba (abriendo los contactos bomba-fase), por lo que el sistema de bombeo continúa operando solo con la bomba auxiliar trabajando como bomba variable.

Falla bomba nominal y después bomba variable.

En este caso la bomba nominal falla primero y luego lo hace la bomba variable. Al fallar la bomba nominal el control del PLC inmediatamente manda a apagar la bomba (abriendo los contactos bomba-fase), para después activar (cerrando los contactos bomba-fase) la bomba auxiliar y tome su lugar como bomba nominal. Si después falla la bomba variable, el PLC inmediatamente manda a abrir los contactos bomba-variador, luego manda a apagar la

bomba auxiliar (abriendo sus contactos bomba-fase) que esta trabajando como bomba nominal, para después activar (cerrando los contactos bomba-variador) la bomba auxiliar, luego de lo cual se resetea el variador y se lo enciende. De esta manera el sistema de bombeo continúa operando solo con lo bomba auxiliar trabajando como bomba variable.

Falla bomba variable y después bomba auxiliar.

En este caso la bomba variable falla primero y luego lo hace la bomba auxiliar. Al fallar la bomba variable, el control del PLC inmediatamente manda a abrir los bomba-variador, contactos para después activar (cerrando los contactos bomba-variador) la bomba auxiliar y tome su lugar como bomba variable, luego de lo cual se resetea el variador y se lo enciende. Si después falla la bomba auxiliar, el PLC inmediatamente manda a abrir los contactos bomba-variador, luego manda a apagar la bomba nominal (abriendo los contactos bomba-fase), para después activar (cerrando los contactos bomba-variador) la bomba nominal, luego de lo cual se resetea el variador y se lo enciende. De esta manera el sistema de bombeo

continúa operando solo con lo bomba nominal trabajando como bomba variable.

Falla bomba nominal y después bomba auxiliar.

En este caso la bomba nominal falla primero y luego lo hace la bomba auxiliar. Al fallar lo bomba nominal el control del PLC inmediatamente manda a apagar la bomba (abriendo los contactos bomba-fase), para después activar (cerrando los contactos bomba-fase) la bomba auxiliar y tome su lugar como bomba nominal. Si después falla la bomba auxiliar, el PLC inmediatamente manda a apagar la bomba (abriendo los contactos bomba-fase).

De esta manera el sistema de bombeo continúa operando solo con lo bomba variable.

Falla bomba variable, nominal y auxiliar.

Para el caso en que fallen las tres bombas, el control del PLC inmediatamente manda a apagar el sistema de bombeo, es decir que se apagarán todas las bombas y no se podrá dar inicio nuevamente al sistema, hasta que se halla resuelto el problema de las bombas y se halla

activado la señal RESET_FALLA AUTOMATICO para reiniciar el sistema.

Para los casos en que han fallado dos bombas, esto provocará que el sistema de bombeo solamente tenga la capacidad de abastecer el 50% de la demanda.

Una vez que se produjo el fallo de una bomba, no se podrá cambiar la secuencia de funcionamiento de las bombas hasta que se solucione el problema y se haya activado la señal RESET_FALLA AUTOMATICO

4.2.2.2. Operación de fallas para el funcionamiento en manual Fallo del variador de velocidad.

Esta parte tiene que ver exclusivamente con el mal funcionamiento del equipo variador de velocidad, debido a la presencia de algún problema, este activa la señal FALLA_VARIADOR, lo que provoca que el control externo (panel de control) mande a apagar el sistema de bombeo, desconectando todas las bombas. En este punto se podrá encender solamente las bombas en forma nominal, pero activando el interruptor que genera la señal OPERACIÓN

BOMBAS EN FALLA. Una vez que se resuelva el problema, se podrá encender la bomba con el variador de velocidad después de accionar la botonera que genera la señal RESET FALLAS.

El sistema de bombeo tiene la capacidad de reconocer las fallas, sin importar en que modo este funcionando, ya sea en modo manual o automático. Es decir que si el sistema esta trabajando en automático y se produce el fallo de alguna bomba y en ese momento se cambia al modo manual sin resolver el problema, el control manual reconocerá la falla y no permitirá el encendido de dicha bomba de ninguna forma (ya sea esta variable o nominal). Así mismo si el sistema esta trabajando en modo manual y se produce el fallo de alguna bomba y en ese momento se cambia al modo automático sin resolver el problema, el control del PLC reconocerá la falla y no permitirá el encendido de dicha bomba de ninguna forma (ya sea esta variable o nominal).

Fallo por bombas

El sistema de control manual también tiene la capacidad de reconocer el fallo de alguna bomba debido a las protecciones térmicas que estas poseen en trabajo directo y a la protección térmica que les proporciona el variador de velocidad, y de acuerdo a esto tomar las acciones correspondientes al problema.

Descripción del funcionamiento al presentarse una falla.

Si esta funcionando la bomba variable y se activa su protección térmica, el control externo (panel de control) inmediatamente manda a abrir los contactos bombavariador, y no va a permitir que se encienda nuevamente esta bomba en forma variable o en forma nominal. Para poder encender otra bomba en forma variable, primero se deberá reiniciar el variador y ahí si seleccionar la bomba deseada y encender el variador para que trabaje el sistema de bombeo.

Si esta funcionando la bomba nominal y se activa su protección térmica, el control externo (panel de control) inmediatamente manda a abrir los contactos (bomba-fase) para apagar la bomba, y no va a permitir que se encienda nuevamente esta bomba en forma variable o en forma nominal. De esta manera se tendrá que seleccionar otra bomba para poder encenderla en forma nominal.

Una vez solucionado el problema de las bombas se tendrá que activar la botonera que genera la señal RESET_FALLA MANUAL y de esta forma las bombas que han sufrido el problema quedarán otra vez habilitadas para que puedan ser seleccionadas nuevamente, para trabajar en la forma que se desee.

4.3. CONTROL DEL SISTEMA DE TRANSFERENCIA

4.3.1. Descripción del control del sistema de Transferencia

El panel de control consta principalmente de tres partes que son:

- Selección de modo de funcionamiento para manual o automático
- Selección de condiciones para modo automático
- Operación de funcionamiento en modo manual

4.3.1.1. Selección de modo de funcionamiento para manual o automático.

Básicamente esta parte consiste en elegir que tipo de funcionamiento se desea que tenga el sistema de transferencia de energía, es decir que trabaje en forma automática controlada por el PLC o en forma manual controlada por el panel de control.

Esta selección se la realiza mediante un selector de tres posiciones que genera tres señales; para la posición uno se tiene la señal S_AUT que es la señal de entrada al PLC que da inicio al funcionamiento en modo automático. Para la posición dos se tiene la señal S_ MANUAL que es la señal de entrada al circuito eléctrico del panel de control para el funcionamiento del sistema en modo manual. La posición tres del interruptor es la de apagado, esto consiste en poner en la posición de abierto los contactos de los contactores de transferencia que alimentan al hotel con la energía de la Empresa Eléctrica o del generador. Esta situación se da si el interruptor permanece en la posición de apagado por 10 segundos.

Si el sistema esta funcionando en modo automático y se cambia a modo manual, este continuará operando como lo estaba haciendo, es decir que si estaba activado el contactor de transferencia de la Empresa Eléctrica en modo automático este continuará activado al cambiar a modo manual. Lo mismo sucede si se cambia de modo manual a modo automático.

4.3.1.2. Operación de funcionamiento en modo automático.

La operación del funcionamiento en modo automático consiste en dos partes que son:

- Encendido del generador desde el computador
- Reinicio del sistema de transferencia en caso de falla de generador

Encendido del generador desde el computador.

Esta parte consiste en poder encender independientemente el generador desde el computador, sin afectar el funcionamiento del sistema de control. Esto se realiza a través de un interruptor que genera la señal ENC_GEN_VACIO como entrada al PLC.

Reinicio del sistema de transferencia en caso de falla de generador.

Esta parte consiste en poder reiniciar el sistema de transferencia automática para que vuelva a sus condiciones iniciales de trabajo, ante la presencia de alguna falla en el sistema de encendido del generador, el cual causaría una paralización del sistema.

El reinicio se lo realiza a través de una botonera que genera la señal RESET_SIST como entrada al PLC.

Descripción del funcionamiento del Sistema de transferencia automática.

El funcionamiento del sistema de transferencia en modo automático se basa en las señales SUP_EEE y SUP_GEN de los supervisores de voltaje conectados a las líneas de fuerza de la Empresa Eléctrica y del generador respectivamente, estas señales ingresan al sistema de control del PLC para indicarle el trabajo y la secuencia a realizar.

Una vez posicionado el selector de funcionamiento del sistema de transferencia en el modo automático, el sistema inicia su funcionamiento de la siguiente forma:

El sistema de control espera 5 segundos para preguntar por la señal SUP_EEE indicando que está presente la energía por parte de la empresa eléctrica, si esto es así **PLC** el control del activa entonces la señal ON_CONT_EEE, la cual es un pulso de 2 segundos que energiza la bobina del contactor EEE para cerrar sus contactos normalmente abiertos y poder energizar la carga con la Empresa Eléctrica. Luego de estos 2 segundos la bobina se desenergiza, pero los contactos continúan cerrados por retención mecánica.

En este punto si la tensión por parte de la empresa eléctrica desaparece o sale de los márgenes adecuados, entonces la señal SUP_EEE desaparecerá, con lo cual el control del PLC activará la señal OFF_CONT_EEE que liberará la retención mecánica para abrir los contactos del contactor EEE, luego de lo cual esperará 5 segundos por la señal SUP_EEE, si esta no aparece el PLC empezará el

encendido del generador, el cual se realizará a través de la señal ENC_GEN. Pero si dentro de estos 5 segundos la señal SUP_EEE se activa, el PLC otra vez activará la señal ON_CONT_EEE, cerrando los contactos del contactor EEE y cancelando el encendido del generador.

Una vez que el PLC envíe la señal ENC_GEN para el encendido del generador, el control esperará 10 segundos por la activación de la señal SUP_GEN que indica que el generador se ha encendido, luego de lo cual el PLC activará la señal ON_CONT_GEN, la cual es un pulso de 2 segundos que energiza la bobina del contactor GEN para cerrar sus contactos normalmente abiertos y poder energizar la carga con el generador. Luego de estos 2 segundos la bobina se desenergiza, pero los contactos continúan cerrados por retención mecánica. Si la señal SUP_GEN no llega a activarse dentro de estos 10 segundos, entonces el PLC intentará encender el generador por dos ocasiones mas, si en estos intentos de encendido del generador la señal SUP_GEN no llega a entonces **PLC** apagará activarse. el el sistema desconectando todo y activará la señal ALARMA que

indicará el fallo de encendido del generador. La señal ALARMA permanecerá activada hasta que se active la señal RESET_SIST a través de una botonera, la cual reiniciará el sistema, permitiendo que este inicie nuevamente su secuencia. Esta falla de encendido del generador se la simulará mediante InTouch que activará la señal SIM_FALLA_GEN a través de un interruptor.

Si en algún momento en que la carga esta siendo energizada por el generador y la energía por parte de la empresa eléctrica regresa activando la señal SUP_EEE, el control del PLC hará lo siguiente: La carga continuará trabajando con el generador por 5 segundos mas, luego de lo cual se activará la señal OFF_CONT_GEN que liberará la retención mecánica para abrir los contactos del contactor GEN desenergizando la carga, después de esto se activará la señal ON_CONT_EEE cerrando los contactos del contactor EEE para energizar la carga con la energía de la empresa eléctrica. El generador continuará operando en vacío por 15 minutos mas, luego de los cuales se apagará.

Si en el momento en el que el generador esta trabajando en vacío, la energía por parte de la empresa eléctrica desaparece, entonces el PLC activará nuevamente la señal OFF_CONT_EEE para abrir los contactos del contactor EEE y activar la señal ON_CONT_GEN para cerrar los contactos del contactor GEN y de esta manera energizar la carga con el generador.

También se podrá encender el generador en vacío desde el computador siempre que se lo requiera, esta acción se la realizará activando la señal ENC_GEN_VACIO a través de una botonera. Esto permitirá hacerle algún tipo de prueba o darle mantenimiento al generador.

En el momento que se escoja el modo automático y este de inicio, el PLC controlará también el encendido semanal del generador para que este trabaje en vació durante 15 minutos. Esta acción se realiza para darle mantenimiento y poder recargar las baterías del generador.

Si estando el generador encendido en vació por acción del encendido semanal y la energía por parte de la Empresa Eléctrica desaparece, entonces el control del PLC mandará a activar la señal OFF_CONT_EEE para abrir los contactos del contactor EEE y luego mandará inmediatamente a activar la señal ON_CONT_GEN para cerrar los contactos del contactor GEN, y de esta manera energizar la carga con el generador.

El tiempo de encendido semanal se lo podrá reiniciar, para que empiece a contar de nuevo a través de la señal RESET_SIST.

4.3.1.3. Operación de funcionamiento en modo manual

El sistema de transferencia en modo manual consta de tres partes que son:

- Encendido y apagado del contactor de transferencia
 EEE para empresa eléctrica.
- Encendido y apagado del contactor de transferencia
 GEN para el generador.
- Encendido y apagado del generador.

Encendido y apagado del contactor de transferencia EEE para empresa eléctrica.

Esta parte consiste en poder activar y desactivar los contactos del contactor EEE, el cual nos permite

energizar la carga por medio de la empresa eléctrica cuando se lo requiera, esta acción se lo realiza por medio de las botoneras M_CONT_EEE para cerrar los contactos del contactor EEE y P_CONT_EEE para abrir los contactos del contactor EEE.

Encendido y apagado del contactor de transferencia GEN para el generador.

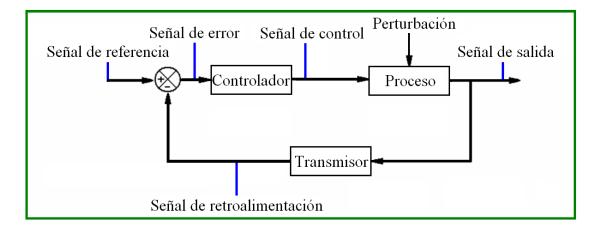
Esta parte consiste en poder activar y desactivar los contactos del contactor GEN, el cual nos permite energizar la carga por medio del generador cuando se lo requiera, esta acción se lo realiza por medio de las botoneras M_CONT_GEN para cerrar los contactos del contactor GEN y P_CONT_GEN para abrir los contactos del contactor GEN.

Estos dos contactores EEE y GEN están enclavados eléctrica y mecánicamente entre si, de tal manera que si se activa uno, el otro no podrá ser activado hasta que se desactive el anterior. Esto para evitar un eventual cortocircuito entre empresa eléctrica y generador. Además poseen retención mecánica.

Encendido y apagado del generador.

Esta parte consiste en poder encender y apagar el generador cuando se lo requiera sin importar el modo de funcionamiento del sistema, así esté en la posición de apagado. Esto se lo realiza a través del interruptor ENC_GEN_VACIO.

Cave recalcar que el contactor GEN que energiza la carga con el generador no se activará a menos que primero se encienda el generador.


CAPÍTULO 5

DISEÑO DEL CONTROL DE LAZO CERRADO PARA EL SISTEMA DE BOMBEO

5.1. SISTEMA DE CONTROL EN LAZO CERRADO

5.1.1. Partes que constituyen un Lazo Cerrado

Tenemos en el siguiente esquema, la representación de un control de lazo cerrado. Como se puede observar en la **Figura 5.1.**

Figura 5.1 Sistema de control en lazo cerrado.

Para continuar con el análisis hecho en capítulos anteriores del control de lazo cerrado es necesario definir algunos términos básicos.

Señal de salida

Es la variable que se desea controlar en el sistema (posición, velocidad, presión, temperatura, etc.). También llamada variable controlada.

Señal de referencia

Es el valor que se desea que alcance la señal de salida. Es un valor propio de cada sistema.

Señal de Error

Es la diferencia que existe entre la señal de referencia y la señal de salida real (retroalimentada). Esta señal de error es la que le dice al controlador que se ha producido una perturbación.

Señal de control

Es la señal que genera el controlador para modificar la variable controlada y de esta forma disminuir o eliminar el error.

Señal análoga

Es una señal continua en el tiempo.

Señal digital

Es una señal que solo toma valores de 1 y 0. El PC solo envía y/o recibe señales digitales.

Conversor análogo/digital

Es un dispositivo que convierte una señal analógica en una señal digital (1 y 0).

Conversor digital/análogo

Es un dispositivo que convierte una señal digital en una señal analógica (corriente o voltaje).

Controlador

Es aquel que recibe la señal correspondiente al error y dependiendo de esta, calcula cual es la mejor acción que debe ejercer para mantener el control.

Planta

Es el elemento físico que se desea controlar. Planta puede ser: un motor, un horno, un sistema de disparo, un sistema de navegación, un tanque de combustible, etc.

Proceso

Operación que conduce a un resultado concreto.

Sistema

Consiste en un conjunto de elementos que actúan en forma coordinada para realizar un objetivo concreto.

Perturbación

Es una señal indeseable en el sistema, el cual tiende a afectar la señal de salida desviándola de su valor deseado.

Sensor

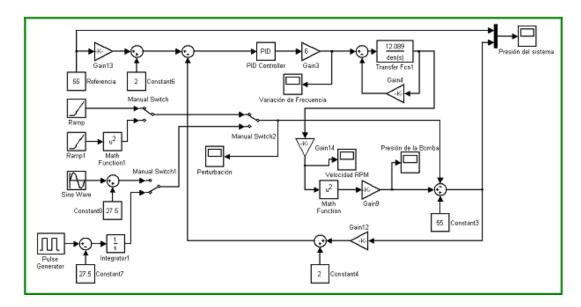
Es un dispositivo que convierte el valor medido de una magnitud física (presión, flujo, temperatura, etc.) a una señal eléctrica, codificada en forma de señal analógica o digital. También es llamado transductor, el cual convierte la magnitud de efecto físico del sensor en una señal estándar.

Actuador

Es un dispositivo que convierte las señales eléctricas en una acción física que actúa sobre el sistema.

Sistema de control en lazo cerrado

Es aquel mediante el cual se puede monitorear continuamente la señal de salida para compararla con la señal de referencia y poder así calcular la señal de error, la que a su vez es aplicada al controlador para generar la señal de control y con esta tratar de llevar la señal de salida al valor deseado. También es llamado control realimentado.


Sistema de control en lazo abierto

En estos sistemas de control la señal de salida no es monitoreada para generar una señal de control. Es decir que el sistema no permitirá realizar alguna corrección automática, ante la presencia de una perturbación.

5.2. DISEÑO DEL SISTEMA DE BOMBEO

A continuación se muestra la simulación de un sistema de control. Como se puede observar en la **Figura 5.2.**

Esta simulación se aplico para el sistema de bombeo en un hotel, para el cual se tomaron en cuenta todos los factores que intervinieron en el mismo.

Figura 5.2 Simulación del sistema de bombeo en Simulink.

5.2.1. Descripción de las señales utilizadas

Señal de salida

Es la variable que se desea controlar, en este caso es la presión en Psi que se mide en la tubería principal del sistema de bombeo.

Señal de realimentación

Esta señal se la obtiene mediante la señal de salida (la cual esta en Psi) que pasa a través del transductor de presión para obtener una señal en voltios, de tal manera que se reste con la señal de referencia y poder obtener la señal de error.

Señal de referencia

En este caso la señal de referencia es el valor de presión que se desea mantener constante, en este caso de 55 Psi (presión mínima para que el agua llegue al último piso)

Señal de Error

Esta señal de error se la obtiene como la diferencia entre la señal de referencia y la señal de salida, esta señal de error esta en voltios.

Señal de control

En este caso la señal de control es la que se produce para modificar la presión en la tubería principal de tal manera que se trate de eliminar el error y poder seguir manteniendo la presión constante.

Perturbación

La perturbación es la señal que afecta la señal de salida del sistema, en este caso esta representado por la demanda de agua en el hotel, la cual afecta la presión en la tubería principal del sistema a controlar.

Esta señal va hacia un punto de suma junto con la presión que pone la bomba para obtener la presión del sistema.

Sensor

Para nuestro sistema de bombeo se utilizo el transductor de presión de 0 a 100 Psi y de 4 a 20 mA.

5.2.2. Descripción del diagrama de bloques del sistema de control

Planta

En el sistema de bombeo, la planta o elemento físico que se desea controlar, es el conjunto formado por motor-bomba

Sistema

El sistema de bombeo esta conformado por el dispositivo variador de velocidad, el conjunto motor-bomba, el dispositivo transductor de presión para la retroalimentación del sistema y la tubería principal del suministro de agua

Bloque referencia

En este bloque tenemos la referencia que para este caso es la presión a mantener, el cual es un valor constante de 55 Psi. Este valor en voltaje es igual a 6.4 V.

Controlador

Este es el bloque que se encarga de recibir la señal de error para poder obtener la señal de control (0 a 10 V) para modificar la señal de salida. Este es un controlador PI.

Constante del Variador

Este es un valor que representa al variador de velocidad cuyo valor es 6. Esta constante multiplicada con la señal del controlador (0 a 10 V) produce una señal que va de 0 a 60 Hz.

Modelo del motor

Este bloque es el modelo que representa matemáticamente al motor de inducción trifásico, que sirve para realizar el análisis de control en el sistema.

Este bloque recibe como señal de entrada la señal del variador 0 a 60 Hz y produce como señal de salida la velocidad del motor en radianes por segundo.

Bloque Convertidor de Velocidad

Este es un valor constante de 9.55 el cual transforma la velocidad del motor de radianes por segundo a revoluciones por minuto (0 a 3500RPM)

Bloque de Relación Velocidad con Presión

En este bloque se obtiene la relación que existe entre la velocidad de la bomba y la presión de agua que esta pone en el sistema. Esta relación se obtiene mediante las leyes de afinidad.

La señal de entrada en este bloque es la velocidad de la bomba (0 a 3500 RPM) y la señal de salida es la presión que pone la bomba (0 a 55 Psi)

5.2.3. Simulación del sistema de control utilizando la herramienta de simulink

5.2.3.1. Visualización de las señales y obtención de los parámetros PI del controlador

En esta sección se mostrara como se comporta la señal de salida, debido a una señal perturbadora que en este caso es la demanda de agua en el hotel. Además se podrá visualizar como varían los valores de las señales de velocidad, presión de agua y la variación de frecuencia en la bomba.

Variación de las señales para diferentes perturbaciones

Caso 1: Variación de las señales para cuando la perturbación o demanda es una señal recta. Como se puede observar en la Figura 5.3.

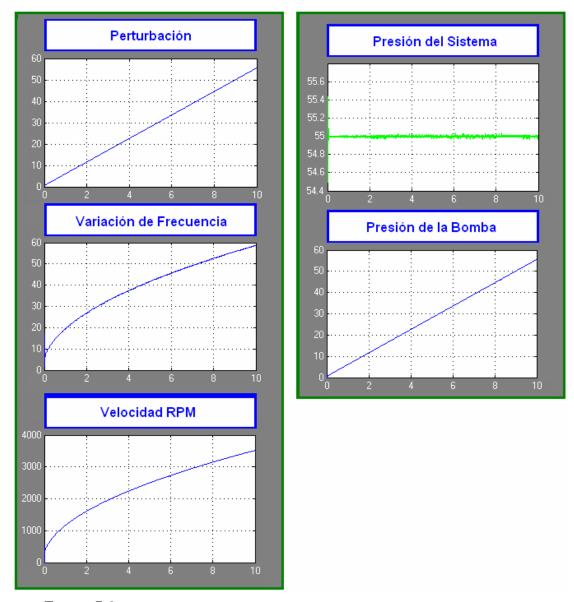


Figura 5.3 Gráficos obtenidos cuando la demanda es una señal recta

Caso 2: Variación de las señales para cuando la perturbación o demanda es una onda cuadrática Como se puede observar en la Figura 5.4.

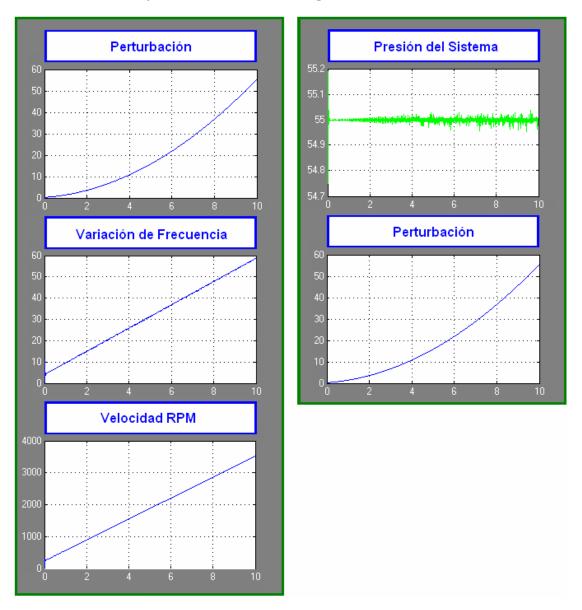


Figura 5.4 Gráficos obtenidos cuando la demanda es una onda cuadrática

Caso 3: Variación de las señales para cuando la perturbación o demanda es una onda seno. Como se puede observar en la Figura 5.5.

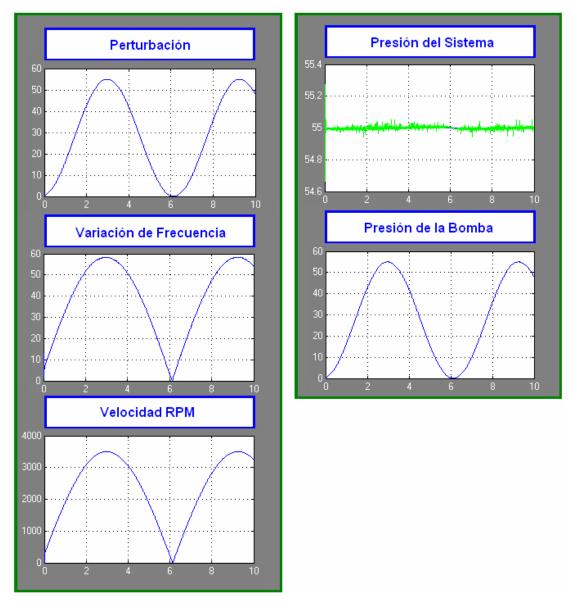


Figura 5.5 Gráficos obtenidos cuando la demanda es una onda seno

Caso 4: Variación de las señales para cuando la perturbación o demanda es una onda triangular Como se puede observar en la Figura 5.6.

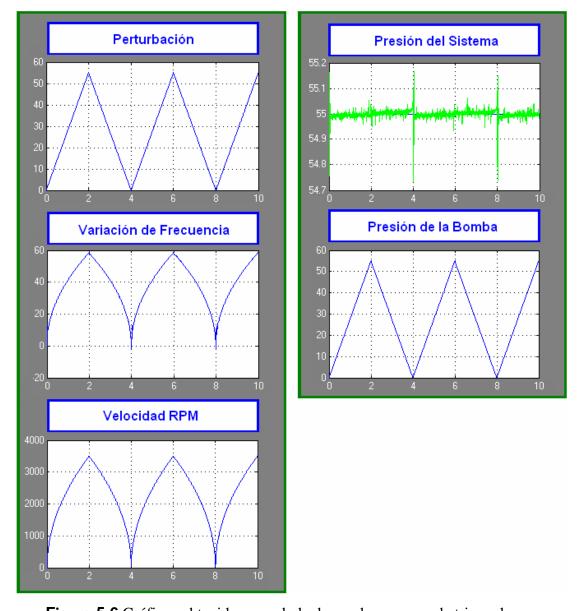


Figura 5.6 Gráficos obtenidos cuando la demanda es una onda triangular

Parámetros PI

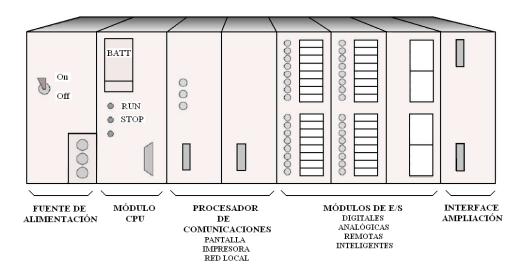
Los parámetros PI del controlador se los obtuvo a partir de la simulación del sistema en Simulink, esto se logro variando los valores del bloque controlador PI de tal forma que se obtuvo la mejor señal de salida posible con respecto a la variación de la demanda. Estos valores aproximados son:

P = 8 e I = 10000

CAPÍTULO 6

CONFIGURACIÓN DEL SISTEMA INMÓTICO

6.1. DESCRIPCIÓN DEL PLC


Anteriormente la lógica de los sistemas implementados era solo en forma cableada y con múltiples elementos discretos, lo que hacia difícil poder implementar algún nuevo cambio en el sistema.

Lo que originó como respuesta a estos múltiples problemas fue un único elemento programable, el cual se encarga de realizar la parte lógica del control. Por lo que fue llamado Controlador Lógico Programable (PLC), el simple hecho de ser programable es en donde radica su importancia, ya que nos permite tener flexibilidad y adaptabilidad a los cambios de una forma simple.

El control lógico Programable es importante en todo proceso de producción, ya que estos emplean una secuencia repetitiva, realizando operaciones fijas que requieren de pasos y decisiones lógicas

6.1.1. Estructura Básica de un PLC.

Internamente el PLC esta compuesto por diferentes elementos que nos permiten realizar funciones básicas para los cuales ha sido diseñado, como se puede observar en la **Figura 6.1.** Entre lo principales elementos tenemos:

Figura 6.1 Esquema general de un PLC.

6.1.1.1. CPU

La Unidad Central de Procesamiento (CPU) es donde radica la inteligencia de todo el sistema, es decir que el CPU es el cerebro del PLC, ya que es el encargado de monitorear las entradas y tomar las decisiones en función de las instrucciones almacenadas en la memoria, es decir que es la encargada de ejecutar el programa de control del sistema.

6.1.1.2. Memoria

Los PLC disponen de un área de memoria formada por diferentes zonas de trabajo específicas, entre las principales están:

Memoria del programa

Es el que permite almacenar el programa diseñado por el usuario. Generalmente es una memoria del tipo EEPROM, de forma que una vez almacenado el programa no se requiera que sea alimentado por una fuente de poder, para mantener guardado el programa. Es decir una vez que guardada las instrucciones en la memoria del programa, en caso de fallar la energía eléctrica este no perderá la información contenida en el, evitando volver a cargar el programa.

Memoria de datos

Es el que permite almacenar los datos temporales debido a la ejecución del programa. La memoria de esta área de datos generalmente es del tipo RAM, por lo que al desconectarse de la fuente de alimentación este perderá

sus datos. Durante la ejecución del programa se puede acceder a la información almacenada en él.

Memoria de sistema

También se lo denomina con el nombre de Firmware, en el cual se almacena el programa que monitorea todo el sistema y es ejecutado directamente por el microprocesador/microcontrolador que posee el autómata. Este programa es grabado directamente por el fabricante del autómata. Básicamente consta de dos modos de funcionamiento: el modo RUN, que permite la ejecución del programa de usuario, y el modo STOP, que permite ejecutar la transferencia y el almacenamiento del programa de usuario en la memoria del programa.

6.1.1.3. Sistema Entrada/Salida

Para el sistema de entrada/salida dependiendo de la naturaleza de la señal que recibe o envía entre los diferentes dispositivos periféricos conectados al PLC, se clasifican en:

Digitales:

Se basan en el principio de todo o nada, por lo que la información que se maneja es de un bit. El PLC codifica las señales o las asigna según su amplitud en: 1 lógico para el valor de amplitud mayor y 0 lógico para el nivel de amplitud menor. Los niveles de amplitud que el PLC entenderá son definidos por el fabricante. Sus valores típicos de entrada por corriente son en CC de 0 a 24 VDC y en CA de 0 a 230 VAC, y sus valores típicos de salida por tensión de carga nominal son de 24 VDC/230 VAC, y por corriente de carga máxima de 2A.

Analógicas:

El PLC recibe o envía señales en forma continua, es decir comprendidos en un rango de valores posibles. Para el caso de la entrada, los valores son convertidos de una magnitud eléctrica analógica a una magnitud eléctrica de tipo digital, correspondiente a una medición de magnitud física. En cambio para el caso de la salida, sus valores estarán comprendidos por voltaje entre 0 a 10 VDC y por corriente entre 4 mA a 10 mA, aunque estos valores varían según el fabricante.

6.1.1.4. Buses

El bus permite la comunicación entre los diferentes componentes del sistema. Dependiendo de la información que transmita el bus, se clasifica en:

Bus de Datos

Permite intercambiar datos de información entre los CPU y el área de memoria, es por donde tienen lugar las transferencias de datos del sistema, los cuales peden ser de dos tipos: instrucciones o datos.

Bus de Direcciones

Permite seleccionar la posición de memoria del dato que el CPU necesita, ya sea para leer o escribir.

Bus de Control

El CPU puede gestionar y controlar todo el sistema, mediante la información que se transmite a través de las líneas de este bus.

6.1.1.5. Interfaz de Comunicación

El interfaz de comunicación permite tener la comunicación del autómata con sus periféricos, lo más normal es que

posea una interfaz serie del tipo RS-232. A través de este medio se pueden manejar todas las características internas del controlador, incluyendo la programación del mismo y suele usarse también en lo referente a monitorización de algún proceso en lugares remotos.

6.1.2. Selección del PLC.

La selección del PLC dependerá del tipo de proceso y de las funciones específicas que valla a cumplir, para que pueda realizar los diferentes trabajos requeridos por el sistema.

Para elegir el PLC adecuado, es necesario tomar en cuenta las siguientes características para su elección:

Memoria

Tanto la memoria de programa como las variables deben ser lo suficientemente grandes como para poder albergar todo el sistema de control, sin dejar de considerar futuras ampliaciones del sistema a automatizar, por lo que es necesario que sobre memoria suficiente para posibles expansiones futuras del sistema.

Etapas de Saida/Entrada

Hay que tomar en cuenta tanto el número de ellas, así como determinar el tipo que se requiere y considerar también la

posibilidad de expansiones futuras como en el caso anterior. Por lo que es necesario tener en cuenta, la posibilidad de ampliación por medio de módulos de entrada y salida.

Lenguaje de Programación soportados

Puede ser determinado según la persona que va a programar o manejar el sistema a automatizar, debido a la continua normalización y semejanza entre lenguajes de programación es cada vez menos importante.

Velocidad de ejecución

Puede llegar a ser un punto muy importante en la elección del PLC, sobre todo para situaciones criticas, es importante el tiempo de reacción del CPU frente a los cambios de las entradas, de forma que el PLC pueda responder en forma inmediata.

Tipos de Operaciones y funciones que incorpora

Es necesario que pueda realizar operaciones de cálculo complejas, dependiendo del tipo de aplicación que se requiera podrá realizar funciones de control PID. Además es necesario que incorpore una serie de instrucciones u operaciones especiales,

como es el caso de las operaciones matemáticas para que pueda desarrollar sus tareas de la mejor manera.

Criterios Económicos

Dependiendo de la complejidad del sistema que se desee automatizar se necesitará de uno o varios PLC's, por lo que es necesario tomar en cuenta los factores anteriormente citados para en lo posible utilizar un solo PLC. Esto se puede lograr mediante el empleo una programación eficiente, que maximice las características físicas de trabajo del PLC a utilizarse.

6.1.3. Descripción del PLC GE Fanuc Automation Serie 90 Micro

De la gran familia de PLC's de GE Fanuc, tenemos la serie 90 MICRO PLC's que son de diseño compacto, pero de grandes prestaciones ya que son fáciles de instalar y ofrecen grandes ventajas de programación, ya que posee una gran variedad de operaciones lógicas, lo que permite utilizarlas en las diferentes aplicaciones de control.

La serie 90 Micro posee las siguientes características:

 Un CPU, que consta de fuente de poder, entradas/ salidas, todo reunido en el mismo módulo.

- Posee compatibilidad con el resto de equipos de la familia
 GE Fanuc serie TM90.
- La mayoría de los modelos posee un contador de alta velocidad
- Proporciona integración de sistemas en forma más sencilla, mediante el uso de protocolos y equipos de comunicación estándar.
- Puede almacenar/descargar los programas de aplicación y de control del PLC, mediante el uso del software de programación CIMPLICITY que contiene rutinas de comunicación con el programador.

6.1.4. Software de Programación CIMPLICITY

El paquete de CIMPLICITY® Machine Edition ofrece soluciones completas para el desarrollo de aplicaciones de automatización con una sola aplicación. Con un entorno y herramientas de desarrollo integradas en Machine Edition, permite dedicar más tiempo a la construcción de aplicaciones y se gaste menos tiempo en aprender a manejar el software.

Los productos Machine Edition permiten:

- Compartir la misma base de datos en los proyectos, lo que evita la pérdida de tiempo, ya que sincroniza los puntos de datos entre las aplicaciones.
- Compartir un idéntico juego de herramientas, proporcionando una interfaz de usuario coherente en todo el proceso de desarrollo.
- Dar prestaciones complejas del tipo arrastrar/soltar entre las herramientas y los editores.
- Presentar soluciones escalables, pudiendo elegir a que tipo de máquina se pueden descargar/ejecutar los proyectos.

Además de proporcionar todas las herramientas necesarias para crear aplicaciones de control. Como se puede observar en la **Figura 6.2.** Machine Edition posee las siguientes características:

- Cada herramienta y editor esta totalmente integrado con otros dispositivos.
- Logic Developer PC, es un software de control escalable basado en ordenador que incluyen todos los editores estándar conforme a la normas.
- Logic Developer PLC, es una herramienta de software, que permite programar la línea de PLC's de GE Fanuc en su totalidad.

- View, es un sistema que sirve para la creación de HMIs (Interfaces Humano – Máquina) para equipos provistos con Windows NT, Windows CE y Quick Panel.
- Motion Developer, sirve para desarrollar aplicaciones de control en movimiento
- Prestaciones Web Access (de acceso a la web) que permite tener acceso a los datos HMI (Interface Humano – Máquina) en tiempo real, en cualquier momento y de cualquier lugar.

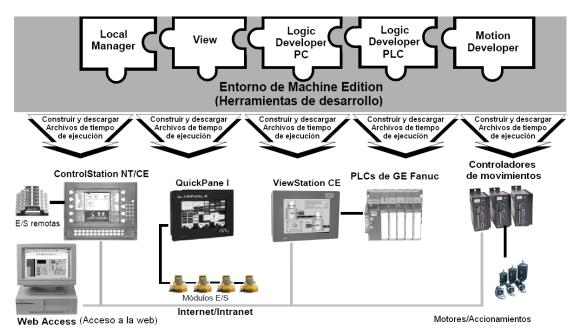


Figura 6.2 Esquema del software de Programación CIMPLICITY

 Local Manager, un sistema que controla las versiones, la seguridad y seguimiento de auditorias para su proceso de desarrollo de automatización y control.

6.1.5. Requerimientos del CIMPLICITY

Para utilizar Machine Edition y sus herramientas, se requiere de lo siguiente:

Entorno de desarrollo

Windows® NT versión 4.0 con Service Pack 6 o más reciente

Windows 2000 Professional

Windows XP

Windows 98 SE

- Internet Explorer □versión 5.5 Service Pack 1 o más reciente
- Estación de trabajo basada en Pentium 200 MHz (300 MHz en Windows 2000 o XP).
- 128 MB RAM mínimo.
- 110-310 MB de espacio en disco duro, en función de los productos seleccionados.
- 200 MB de espacio en disco duro para ejemplos de proyectos (opcional).
- Espacio adicional en el disco duro para proyectos y archivos temporales.

Windows® NT Runtime (versión tiempo de ejecución)

- Windows® NT versión 4.0 con Service Pack 4 o más reciente
- Windows 2000 Professional
- Windows XP
- Estación de trabajo basada en Pentium 200 MHz (300 MHz en Windows 2000 o XP).
- 64 MB RAM.
- 200 MB de espacio libre en disco duro.

HRT Runtime (versión tiempo de ejecución)

- Windows® NT versión 4.0 con Service Pack 4 o más reciente.
- VentureCom RTX versión 4.3 ó 5.0.
- Estación basada en Pentium 200 MHz.
- 64 MB RAM.
- 200 MB de espacio libre en disco duro.

Windows® CE Runtime (versión tiempo de ejecución)

- Para componentes de HMI y Lógica: ControlStation CE,
 ControlStation CE II
- ControlStation CE IIx de GE Fanuc.
- Sólo para HMI: ViewStation CE, ViewStation CE II o
 ViewStation CE IIx de GE Fanuc.

6.2. DESCRIPCIÓN DEL SOFTWARE DE MONITOREO INTOUCH

El paquete InTouch es un software que es utilizado para desarrollar aplicaciones de interfase hombre-máquina bajo un entorno PC.

Este software utiliza como sistema operativo el entorno WINDOWS 95/98/NT/2000. El paquete consta básicamente de dos elementos:

WINDOWMAKER

Es el sistema de desarrollo, que permite trabajar en todas las funciones necesarias para crear ventanas animadas e interactivas conectadas a los sistemas de entrada/salida o a otras aplicaciones Windows.

WINDOWVIEWER

Es el sistema de ejecución del programa (runtime), que permite utilizarlo para trabajar junto con todas las aplicaciones creadas con el sistema de desarrollo de Windowmaker.

En cualquier pantalla de Windowmaker se dispone de una ayuda sensitiva pulsando la tecla F1.

6.2.1. Características especiales de InTouch

El paquete InTouch esta conformado por diferentes elementos, los cuales permiten desarrollar cualquier clase de proyecto, para lo cual se debe tomar en cuenta lo siguiente:

- Los Wizards son los que permiten hacer que las aplicaciones de InTouch puedan ser generadas de un modo más rápido y eficiente. Los Wizards Dispone de los Elementos Wizards, que permiten crear rápidamente un objeto en la pantalla. Seleccionamos el objeto que deseamos asociar con links (animación), tagnames o incluso incluir una lógica a dicho objeto. Se puede agrupar varios de estos objetos, con lo cual se puede crear un elemento completo, acabado y programado, para utilizarlo cuantas veces sea necesario.
- Durante la ejecución del runtime, el Diccionario de Tagnames contiene todos los valores de los elementos existentes en la base de datos. Para crear esa base de datos, InTouch necesita saber qué tipo de elementos la van a componer.
- Por lo que es necesario crear una base de datos con todos aquellos datos que necesitemos para nuestra aplicación. A

cada uno de estos datos (Tags) se debe asignarle un nombre. Al final, se dispondrá de un diccionario con todos los Tagnames o datos que nosotros mismos hemos creado para nuestra aplicación.

- Todo objeto gráfico puede ser animado mediante el empleo del Animation Links, con el cual se puede lograr que el objeto cambie de apariencia, estos cambios serán reflejados en los valores de la base de datos. Incluso se puede asociar varios Animation Links a un mismo objeto o símbolo.
- La lógica (Script) de InTouch es un programa que permite realizar acciones determinadas, mediante una estructura lógica (IF...THEN...ELSE.). La lógica será activada de acuerdo al tipo de lógica elegida (por aplicación, por ventana, etc.).
- Una alarma es un proceso anormal que puede ser perjudicial para el proceso del sistema propuesto, por lo que es necesario se tome algún tipo de acción por parte del operador. Cada alarma se asocia a un Tag, dependiendo

del tipo de Tag podremos crear diferentes tipos de alarma.

Las alarmas se pueden asociar a un nivel específico de prioridad (importancia).

 InTouch permite mostrar curvas y tendencias en la pantalla tanto en tiempo real como en valores históricos. Las curvas en tiempo real no almacenan el valor mostrado, sino que presenta un valor real del PLC (o interno de InTouch) y lo representa en la pantalla en forma de una curva. La herramienta Toolbox, permite crear una curva en tiempo real.

Y por último se tiene las curvas históricas que permiten visualizar la evolución con respecto al tiempo de un dato en forma de curva o tendencia. Este dato debe ser almacenado previamente, por lo que el Tagname visualizado en este tipo de curvas debe haber sido previamente definido como del tipo Logged.

Requerimientos del Sistema

- Cualquier PC compatible IBM con processor Pentium 200
 MHz o superior
- Mínimo 500 Mb de disco duro

- Mínimo 64 Mb RAM
- Adaptador display SVGA (recomendado 2 Mb mínimo)
- Puntero (mouse, trackball, touchscreen)
- Adaptador de red
- Microsoft Windows W95/98 SE o NT

6.2.2. Pantallas de visualización

En el Anexo F, se muestran todas las pantallas de visualización realizadas para este proyecto. Para lo cual las pantallas han sido divididas dependiendo del caso a tratar en:

 Para el caso de la pantalla principal disponemos de la siguiente pantalla con su respectivo nombre:

EDIFICIO

En esta pantalla se puede visualizar toda la edificación desde la parte exterior, para observar una vista panorámica del hotel.

Por medio de las flechas CUARTO DE BOMBAS, TRANSFERENCIA Y VISU.HABITACIONES se podrá tener acceso directo a dichas pantallas. Para el caso de las habitaciones disponemos de las siguientes pantallas con su respectivo nombre:

VISUALIZACION HABITACIONES

En esta pantalla se puede visualizar todas las habitaciones con las que cuenta el hotel, además de brindar acceso directo a cada una de ellas. Esto permite observar en forma rápida, en que habitación se genera un estado de alarma. Por medio de la flecha EDIFICIO se podrá tener acceso a la pantalla principal de visualización.

HABITACION

En esta pantalla se puede visualizar lo referente a pasillo y al estado actual de la habitación seleccionada, en la cual se simula la inserción de la tarjeta que habilita la energía en la habitación, el encendido de las luminarias y la selección de temperatura, estos dos últimos por medio de deslizadores, para simular el valor que mide el sensor y para seleccionar el punto fijo deseado en el sistema. Además de contar con pulsadores para simular el encendido y apagado del sensor de humo, ayuda medica, luz, presencia, tarjeta virtual y control de temperatura virtual.

Por medio de las flechas ESTADO HABITACION, VISU.HABITACIONES Y EDIFICIO se podrá tener acceso directo a dichas pantallas.

ESTADO HABITACION

En esta pantalla podremos visualizar todo lo referente al estado de los diferentes dispositivos que existen dentro de la habitación, así como también de las diferentes alarmas que se pueden generar en la habitación.

Por medio de las flechas VISU.HABITACIONES y HABITACION se podrá tener acceso directo a dichas pantallas.

 Para el caso del sistema de bombeo disponemos de las siguientes pantallas con su respectivo nombre:

PANEL DE CONTROL DE BOMBAS

En esta pantalla se puede visualizar todo lo referente al panel de control de las bombas, la cual permite simular el funcionamiento del sistema en forma manual o automática. Adicionalmente se dispone de un manómetro que permite visualizar la presión existente en la tubería principal.

Por medio de las flechas CIRCUITO ELECTRICO, CUARTO DE BOMBAS Y ESTADO DE BOMBAS se podrá tener acceso directo a dichas pantallas.

CUARTO DE BOMBAS

En esta pantalla se puede visualizar la simulación del encendido de las bombas, así como también del variador. Para la visualización de la presión en la tubería principal del sistema de bombeo, se dispone de un gráfico de tendencia real.

Para la simulación de la demanda del sistema se cuenta con un deslizador que va desde 0 hasta el 100% de la demanda total del hotel. Además se cuenta con tres medidores, uno de presión en Psi, otro de frecuencia en Hz y el de velocidad en RPM.

Por medio de las flechas PANEL DE CONTROL, ESTADO DE BOMBAS, EDIFICIO Y CIRCUITO ELECTRICO se podrá tener acceso directo a dichas pantallas.

ESTADO DE BOMBAS

En esta pantalla se puede visualizar si el sistema se encuentra habilitado para funcionar en forma automática y cual es su respectiva secuencia.

En el caso de que este se encuentre habilitado, se contará con cuatro zonas de visualización las cuales permiten observar:

- En la zona de Funcionamiento de bombas, que bombas están habilitadas.
- En la zona de velocidad nominal, que bomba está funcionando como nominal, es decir a una sola velocidad.
- En la zona de velocidad variable, que bomba esta funcionando como variable, es decir que funciona a diferentes velocidades debido a su conexión con el variador.
- En la zona de fallo de bombas, que bombas están funcionando en forma anormal.

Por medio de las flechas CUARTO DE BOMBAS Y PANEL DE CONTROL se podrá tener acceso directo a dichas pantallas.

CIRCUITO ELECTRICO DEL SIST. BOMBEO

En esta pantalla se puede visualizar que dispositivos se encuentran habilitados por medio de sus respectivos contactores como es el caso de las bombas, así como también del variador.

Por medio de las flechas CUARTO DE BOMBAS Y PANEL DE CONTROL se podrá tener acceso directo a dichas pantallas.

 Para el caso del sistema de transferencia disponemos de la siguiente pantalla con su respectivo nombre:

TRANSFERENCIA

En esta pantalla se puede visualizar la simulación de la energización de la carga eléctrica del hotel, ya sea por medio de la EEE o por medio del generador. Además se puede visualizar lo referente al panel de control del sistema de transferencia, lo que permite simular el funcionamiento del sistema en forma manual o automática, adicionalmente dispone de un cuadro informativo del encendido semanal del generador.

Por medio de la flecha EDIFICIO se podrá tener acceso directo a dicha pantalla.

6.2.3. Programa desarrollado en InTouch

Los Scripts son herramientas que permiten ejecutar comandos y operaciones lógicas basadas en criterios específicos deseados.

Al usar los scripts, se puede tener una amplia variedad de funciones para aplicaciones tanto personalizadas como propias del programa.

A continuación se muestra en forma detallada las funciones programadas en lenguaje PASCAL, proporcionados por el software de monitoreo InTouch, con el cual se diseño la simulación del sistema de control inteligente en el hotel.

APLICACIÓN DE LOS SCRIPS

```
{Sistema de Bombeo automático}

IF i19 == 0 AND i20 == 0 THEN
i21 = 1;
ELSE
i21 = 0;
ENDIF;

IF i18 == 0 AND i17 == 0 THEN
off_sistemaB = 1;
ELSE
off_sistemaB = 0;
ENDIF:
```

```
on_n = 0;
bomba1 = 0;
bomba2 = 0;
bomba3 = 0;
bomba1AUT = 0;
bomba2AUT = 0;
bomba3AUT = 0;
variable_b1 = 0;
variable_b2 = 0;
variable_b3 = 0;
IF i18 == 1 THEN
  IF m263 == 0 AND m264 == 0 AND m265 == 0 THEN
    flag_falla = 0;
  ENDIF;
  IF flag_falla == 0 THEN
    flag_falla_2 = 0;
  ENDIF;
  IF m6 == 1 AND flag_falla == 1 THEN
    flag_falla_2 = 0;
    IF function == 1 AND m264 == 1 THEN
      flag_falla_2 = 1;
    ENDIF:
    IF function == 2 AND m263 == 1 THEN
      flag_falla_2 = 1;
    ENDIF;
    IF function == 3 AND m265 == 1 THEN
      flag_falla_2 = 1;
    ENDIF:
  ENDIF;
  IF m7 == 0 AND m8 == 0 AND m9 == 0 THEN
    falla n = 0;
  ENDIF;
  IF m7 OR m8 OR m9 THEN
    falla_n = 1;
  ENDIF;
  IF m6 == 1 THEN
    flag_falla = 1;
  ENDIF;
```

```
IF m263 == 1 AND m266 == 0 AND flag_falla == 0 THEN
    function = 1;
  ENDIF;
  IF m264 == 1 AND m267 == 0 AND flag_falla == 0 THEN
    function = 3;
  ENDIF;
  IF m265 == 1 AND m268 == 0 AND flag_falla == 0 THEN
    function = 2;
  ENDIF;
  IF function == 1 THEN
    IF m267 == 1 AND m8 == 0 THEN
      bomba2 = 1;
      on_n = 1;
    ENDIF;
    IF m8 == 1 AND flag_falla == 0 AND m268 == 1 AND flag_falla_2 == 0
THEN
      bomba3 = 1;
      on_n = 1;
    ENDIF;
  ENDIF;
  IF function == 2 THEN
    IF m266 == 1 AND m7 == 0 THEN
      bomba1 = 1;
      on_n = 1;
    ENDIF:
    IF m7 == 1 AND flag_falla == 0 AND m267 == 1 AND flag_falla_2 == 0
THEN
      bomba2 = 1;
      on_n = 1;
    ENDIF;
  ENDIF;
  IF function == 3 THEN
    IF m268 == 1 AND m9 == 0 THEN
      bomba3 = 1;
      on_n = 1;
    ENDIF;
    IF m9 == 1 AND flag_falla == 0 AND m266 == 1 AND flag_falla_2 == 0
THEN
      bomba1 = 1;
```

```
on_n = 1;
 ENDIF;
ENDIF;
IF m270 == 1 THEN
  IF function == 1 THEN
   IF flag_falla == 0 THEN
      bomba1 = 1;
   ENDIF;
   IF m265 == 1 THEN
     bomba3 = 1;
   ENDIF;
   IF flag_falla_2 == 1 THEN
      bomba2 = 1;
   ENDIF;
 ENDIF;
 IF function == 2 THEN
   IF flag_falla == 0 THEN
      bomba3 = 1;
   ENDIF;
   IF m264 == 1 THEN
     bomba2 = 1;
   ENDIF;
   IF flag_falla_2 == 1 THEN
     bomba1 = 1;
   ENDIF;
 ENDIF;
  IF function == 3 THEN
   IF flag_falla == 0 THEN
      bomba2 = 1;
   ENDIF:
   IF m263 == 1 THEN
      bomba1 = 1;
   ENDIF;
   IF flag_falla_2 == 1 THEN
     bomba3 = 1;
   ENDIF;
 ENDIF;
```

ELSE

```
IF function == 1 THEN
   IF flag_falla == 1 THEN
      bomba1 = 0;
   ENDIF;
 ENDIF;
  IF function == 2 THEN
   IF flag_falla == 1 THEN
      bomba3 = 0;
   ENDIF;
 ENDIF;
  IF function == 3 THEN
   IF flag_falla == 1 THEN
      bomba2 = 0;
   ENDIF;
 ENDIF;
ENDIF;
IF m271 == 1 THEN
  jocker = 1;
ELSE
 jocker = 0;
ENDIF;
ai1 = 60 + hpv + hpn + hpj - Dm1;
ne = Sqrt(12250000 * hpv / 55);
ai33 = 60 * ne / 3500;
IF ai 1 \ge 65 THEN
 i45 = 1; {Presostato}
ELSE
  i45 = 0;
ENDIF;
IF m270 == 1 THEN
 IF ai33 < 10 THEN
   ai33 = 10;
   ne = 583.333333;
 ENDIF;
ELSE
 ai33 = 0;
 ne = 0;
ENDIF;
```

```
IF m271 == 1 AND m270 == 0 AND on_n == 0 THEN
 IF ai 1 < 60 THEN
    hpj = hpj + 0.075;
 ENDIF;
 IF ai1 >= 60 THEN
    Dm1 = 0;
    hpj = 0;
 ENDIF;
ELSE
 IF ai 1 < 60 AND hpj > 0 THEN
    hpj = 0;
 ENDIF;
ENDIF;
IF m270 == 1 THEN
 IF ai1 \leq 54 AND Dm1 > 5 AND hpv < 55 THEN
    hpv = hpv + 1;
 ENDIF;
 IF ai 1 > 55 AND Dm1 \Leftrightarrow 0 AND hpv > 0 AND ai 33 \Leftrightarrow 10 THEN
    hpv = hpv - 1;
 ENDIF;
ELSE
 IF hpv > 0 THEN
    hpv = 1;
 ENDIF;
ENDIF;
IF on_n == 1 \text{ AND Dm1} > 60 \text{ THEN}
 IF hpn < 55 THEN
    hpn = hpn + 1.2;
    IF hpn > 55 THEN
      hpn = 55;
    ENDIF;
 ENDIF;
ELSE
 IF hpn > 0 AND on_n == 0 AND falla_n == 0 THEN
    IF m270 == 1 AND falla_n == 0 THEN
      hpn = hpn - 1.5;
    ELSE
      hpn = hpn - 0.1;
```

```
ENDIF;
   IF hpn < 0 THEN
     hpn = 0;
   ENDIF;
 ENDIF;
  IF hpn > 0 AND on_n == 0 AND falla_n == 1 THEN
   IF m270 == 1 OR falla_n == 0 THEN
      hpn = hpn - 1.5;
   ELSE
      hpn = hpn - 0.1;
   ENDIF;
   IF hpn < 0 THEN
     hpn = 0;
   ENDIF;
 ENDIF;
ENDIF;
IF ai1 < 0 THEN
 ai1 = 0;
ENDIF;
IF Dm1 < 1 THEN
 Dm1 = 0;
 hpv = 0;
ENDIF;
IF m270 == 1 AND m263 == 1 THEN
 b1 = 1;
ELSE
 b1 = 0;
ENDIF;
IF m270 == 1 AND m264 == 1 THEN
 b2 = 1;
ELSE
 b2 = 0;
ENDIF;
IF m270 == 1 AND m265 == 1 THEN
b3 = 1;
ELSE
b3 = 0;
ENDIF;
IF (m226 == 1 \text{ AND } m270 == 1) \text{ OR } m227 == 1 \text{ THEN}
 bomba1AUT = 1;
ELSE
```

```
bomba1AUT = 0;
  ENDIF;
  IF (m228 == 1 \text{ AND } m270 == 1) \text{ OR } m229 == 1 \text{ THEN}
    bomba2AUT = 1;
  ELSE
    bomba2AUT = 0;
  ENDIF;
  IF (m230 == 1 \text{ AND } m270 == 1) \text{ OR } m231 == 1 \text{ THEN}
    bomba3AUT = 1;
  ELSE
    bomba3AUT = 0;
  ENDIF;
  IF m226 == 1 AND m270 == 1 THEN
    variable_b1 = 1;
  ELSE
    variable_b1 = 0;
  ENDIF:
  IF m228 == 1 AND m270 == 1 THEN
    variable_b2 = 1;
  ELSE
    variable_b2 = 0;
  ENDIF;
  IF m230 == 1 AND m270 == 1 THEN
    variable_b3 = 1;
  ELSE
    variable_b3 = 0;
  ENDIF;
{Operación de bombas en falla}
IF i39 == 1 THEN
  IF m266 == 1 THEN
    bomba1 = 1;
    on_n = 1;
    bomba1AUT = 1;
    ofb1 = 1;
  ENDIF;
  IF m267 == 1 THEN
    bomba2 = 1;
    on_n = 1;
    bomba2AUT = 1;
    ofb2 = 1;
  ENDIF;
   IF m268 == 1 THEN
```

```
bomba3 = 1;
    on_n = 1;
    bomba3AUT = 1;
    ofb3 = 1;
  ENDIF;
ENDIF;
ELSE
{SISTEMA BOMBEO MANUAL}
    IF m263 == 1 THEN
      function = 1;
    ENDIF;
    IF m264 == 1 THEN
      function = 3;
    ENDIF;
    IF m265 == 1 THEN
      function = 2;
    ENDIF;
    IF function == 1 THEN
      IF m267 == 1 THEN
        bomba2 = 1;
        on_n = 1;
      ENDIF;
      IF m268 == 1 THEN
        bomba3 = 1;
        on_n = 1;
      ENDIF;
    ENDIF;
    IF function == 2 THEN
      IF m266 == 1 THEN
        bomba1 = 1;
        on_n = 1;
      ENDIF;
     IF m267 == 1 THEN
        bomba2 = 1;
        on_n = 1;
```

```
ENDIF;
ENDIF;
IF function == 3 THEN
  IF m268 == 1 THEN
    bomba3 = 1;
    on_n = 1;
  ENDIF;
  IF m266 == 1 THEN
    bomba1 = 1;
    on_n = 1;
  ENDIF;
ENDIF;
IF m270 == 1 THEN
  IF function == 1 THEN
      bomba1 = 1;
  ENDIF;
  IF function == 2 THEN
      bomba3 = 1;
  ENDIF;
  IF function == 3 THEN
      bomba2 = 1;
  ENDIF;
ELSE
    IF m267 == 1 THEN
      bomba2 = 1;
      on_n = 1;
    ENDIF;
    IF m268 == 1 THEN
      bomba3 = 1;
      on_n = 1;
    ENDIF;
```

```
IF m266 == 1 THEN
          bomba1 = 1;
          on_n = 1;
        ENDIF;
   ENDIF;
    IF m271 == 1 THEN
      jocker = 1;
    ELSE
      jocker = 0;
    ENDIF;
ai1 = 60 + hpv + hpn + hpj - Dm1;
  ne = Sqrt(12250000 * hpv / 55);
  ai33 = 60 * ne / 3500;
  IF ai 1 \ge 65 THEN
    i45 = 1;
  ELSE
    i45 = 0;
  ENDIF;
  IF m270 == 1 THEN
   IF ai33 < 10 THEN
      ai33 = 10;
      ne = 583.333333;
   ENDIF;
  ELSE
   ai33 = 0;
   ne = 0;
  ENDIF;
  IF m271 == 1 AND m270 == 0 AND on_n == 0 THEN
   IF ai1 < 60 THEN
      hpj = hpj + 0.075;
   ENDIF;
   IF ai 1 >= 60 THEN
      Dm1 = 0;
```

```
hpj = 0;
 ENDIF;
ELSE
 IF ai 1 < 60 AND hpj > 0 THEN
   hpj = 0;
 ENDIF;
ENDIF;
IF m270 == 1 THEN
 IF ai1 \leq 54 AND Dm1 > 5 AND hpv < 55 THEN
   hpv = hpv + 1;
 ENDIF;
 IF ai 1 > 55 AND Dm1 <> 0 AND hpv > 0 AND ai 33 <> 10 THEN
   hpv = hpv - 1;
 ENDIF;
ELSE
 IF hpv > 0 THEN
   hpv = 1;
 ENDIF;
ENDIF;
IF on_n == 1 \text{ AND Dm1} > 60 \text{ THEN}
 IF hpn \,<\,55 THEN
   hpn = hpn + 1.2;
   IF hpn > 55 THEN
      hpn = 55;
   ENDIF;
 ENDIF;
ELSE
 IF hpn > 0 AND on_n == 0 AND falla_n == 0 THEN
   IF m270 == 1 AND falla_n == 0 THEN
      hpn = hpn - 1.5;
   ELSE
      hpn = hpn - 0.1;
   ENDIF;
    IF hpn < 0 THEN
      hpn = 0;
   ENDIF;
 ENDIF;
  IF hpn > 0 AND on_n == 0 AND falla_n == 1 THEN
    IF m270 == 1 OR falla_n == 0 THEN
      hpn = hpn - 1.5;
   ELSE
```

```
hpn = hpn - 0.1;
      ENDIF;
      IF hpn < 0 THEN
        hpn = 0;
      ENDIF;
    ENDIF;
  ENDIF;
  IF ai1 < 0 THEN
    ai1 = 0;
  ENDIF;
  IF\ Dm1\ < 1\ THEN
    Dm1=0;
    hpv = 0;
  ENDIF;
  IF m270 == 1 AND m263 == 1 THEN
    b1 = 1;
  ELSE
    b1 = 0;
  ENDIF;
  IF m270 == 1 AND m264 == 1 THEN
    b2 = 1;
  ELSE
    b2 = 0;
  ENDIF;
  IF m270 == 1 AND m265 == 1 THEN
  b3 = 1;
  ELSE
  b3 = 0;
  ENDIF;
ENDIF;
IF m364 OR m366 OR m368 == 1 THEN
  falla\_bombas = 1;
ELSE
  falla\_bombas = 0;
ENDIF;
IF m270 AND m263 == 1 THEN
  b1p = 1;
ELSE
```

```
b1p = 0;
ENDIF;
IF m270 AND m264 == 1 THEN
  b2p = 1;
ELSE
  b2p = 0;
ENDIF;
IF m270 AND m265 == 1 THEN
  b3p = 1;
ELSE
  b3p = 0;
ENDIF;
IF m266 AND m364 AND i39 AND i18 == 1 THEN
  ofb1 = 1;
ELSE
  ofb1 = 0;
ENDIF;
IF m267 AND m366 AND i39 AND i18 == 1 THEN
  ofb2 = 1;
ELSE
  ofb2 = 0;
ENDIF;
IF m268 AND m368 AND i39 AND i18 == 1 THEN
  ofb3 = 1;
ELSE
  ofb3 = 0;
ENDIF;
{Siatema de Transferencia Automatica de Energía}
IF i55 == 1 THEN
  EEE = 1;
ELSE
  EEE = 0;
ENDIF;
IF m482 == 1 THEN
  i46 = 1;
ELSE
  i46 = 0;
ENDIF;
IF EEE == 1 AND m480 == 1 THEN
```

```
L\_EEE = 1;
ELSE
  L_EEE = 0;
ENDIF;
IF m482 == 1 AND m481 == 1 THEN
  L_GEN = 1;
ELSE
  L_GEN = 0;
ENDIF;
IF L_EEE == 1 OR L_GEN == 1 THEN
  L CARGA = 1;
  IF\ FLAG\_CARGA == 0\ THEN
    CONT_CARGA = CONT_CARGA + 3;
  ENDIF;
  IF CONT_CARGA == 99 THEN
    FLAG\_CARGA = 1;
  ENDIF;
  IF FLAG_CARGA == 1 THEN
    CONT_CARGA = 0;
  ENDIF;
  IF CONT_CARGA == 0 THEN
    FLAG\_CARGA = 0;
  ENDIF:
ELSE
  L_CARGA = 0;
  CONT\_CARGA = 0;
ENDIF;
{ENCENDIDO SEMANAL GENERADOR}
SEMANA = 7 - r280;
MINUTOS = 15 - r283;
{CONTROL DE HABITACION}
{Simulación tarjeta de energización de habitación}
IF cliente == 1 OR empleado == 1 THEN
  tarjeta = tarjeta + 4;
  IF tarjeta >= 30 THEN
    tarjeta = 30;
    entro = 1;
    IF cliente == 1 THEN
```

```
i58 = 1;
      i57 = 1;
    ENDIF;
    IF empleado == 1 THEN
      i57 = 1;
    ENDIF;
  ENDIF;
ELSE
  tarjeta = tarjeta - 4;
  IF tarjeta <= 0 THEN
    tarjeta = 0;
    entro = 0;
    i58 = 0;
    i57 = 0;
  ENDIF;
ENDIF;
{Control Temperatura Habitación Cliente y Empleado}
IF m428 == 1 THEN
  IF m431 == 0 THEN
    f1 = f1 + 0.0075;
  ENDIF;
  IF e >= 27 OR m436 == 1 THEN
    aspa = 0;
    i65 = 0;
    i69 = 1;
    IF f1 >= 27 THEN
      f1 = 27;
    ENDIF;
  ELSE
    i69 = 0;
    IF f1 \ge e + 1 THEN
      i65 = 1;
    ENDIF;
  ENDIF;
  IF m431 == 1 THEN
    f1 = f1 - 0.0075;
  ENDIF:
  IF f1 < e - 1 THEN
    i65 = 0;
  ENDIF;
  ban1 = 0;
  IF ban1 == 0 THEN
    aspa = aspa + 1.5;
  ENDIF;
  IF aspa == 15 THEN
    ban1 = 1;
```

```
aspa = 0;
 ENDIF;
 IF aspa == 0 THEN
   ban 1 = 0;
 ENDIF;
ELSE
  i69 = 0;
  IF m431 == 0 THEN
    f1 = f1 + 0.0075;
  ENDIF;
  IF h \ge 27 OR m436 == 1 THEN
    i67 = 1;
    IF f1 >= 27 THEN
      f1 = 27;
    ENDIF;
  ELSE
    i67 = 0;
  ENDIF;
  IF m431 == 1 THEN
    f1 = f1 - 0.0075;
  ENDIF;
  IF m430 == 1 THEN
    ban1 = 0;
    IF ban1 == 0 THEN
      aspa = aspa + 1.5;
    ENDIF;
    IF aspa == 15 THEN
      ban1 = 1;
      aspa = 0;
    ENDIF;
    IF aspa == 0 THEN
      ban1 = 0;
    ENDIF;
  ELSE
    aspa = 0;
  ENDIF;
ENDIF;
ai38 = h - 0;
ai37 = h + 0;
ai36 = f1;
IF m431 == 0 THEN
  a = 1;
ELSE
  a = 0;
ENDIF;
IF m411 OR m418 == 1 THEN
  Tomas = 1;
ELSE
```

```
Tomas = 0;
ENDIF;
{Estado de la Habitación}
IF m444 == 0 THEN
  IF m445 == 0 THEN
    vacio = 1;
  ELSE
     vacio = 0;
  ENDIF;
ELSE
  vacio = 0;
ENDIF;
{Alerta de alarmas}
IF m446 OR m448 OR m462 == 1 THEN
  ALERTA\_ALARMA = 1;
ELSE
   ALERTA\_ALARMA = 0;
ENDIF;
{CONTROL DE HABITACION 2}
{Simulación tarjeta de energización de habitación 2}
IF cliente2 == 1 OR empleado2 == 1 THEN
  tarjeta2 = tarjeta2 + 4;
  IF tarjeta2 >= 30 THEN
    tarjeta2 = 30;
    entro2 = 1;
    IF cliente2 == 1 THEN
      i77 = 1;
      i76 = 1;
    ENDIF;
    IF empleado2 == 1 THEN
      i76 = 1;
    ENDIF;
  ENDIF;
ELSE
  tarjeta2 = tarjeta2 - 4;
  IF tarjeta2 <= 0 THEN
    tarjeta2 = 0;
    entro2 = 0;
    i77 = 0;
```

```
i76 = 0;
  ENDIF;
ENDIF;
{Control Temperatura Habitación 2 Cliente y Empleado}
IF m513 == 1 THEN
  IF m516 == 0 THEN
    f2 = f2 + 0.0075;
  ENDIF;
  IF e2 >= 27 OR m521 == 1 THEN
    aspa2 = 0;
    i84 = 0;
    i88 = 1;
    IF f2 >= 27 THEN
      f2 = 27;
    ENDIF;
  ELSE
    i88 = 0;
    IF f2 \ge e2 + 1 THEN
      i84 = 1;
    ENDIF;
  ENDIF;
  IF m516 == 1 THEN
    f2 = f2 - 0.0075;
  ENDIF;
  IF f2 < e2 - 1 THEN
    i84 = 0;
  ENDIF;
  ban2 = 0;
  IF ban2 == 0 THEN
    aspa2 = aspa2 + 1.5;
  ENDIF;
  IF aspa2 == 15 THEN
    ban2 = 1;
    aspa2 = 0;
  ENDIF;
  IF aspa2 == 0 THEN
    ban2 = 0;
  ENDIF;
ELSE
  i88 = 0;
  IF m516 == 0 THEN
     f2 = f2 + 0.0075;
  ENDIF:
  IF h2 >= 27 OR m521 == 1 THEN
     i86 = 1;
     IF f2 >= 27 THEN
```

```
f2 = 27;
    ENDIF;
  ELSE
    i86 = 0;
  ENDIF;
  IF m516 == 1 THEN
     f2 = f2 - 0.0075;
  ENDIF;
  IF m515 == 1 THEN
     ban2 = 0;
     IF ban2 == 0 THEN
       aspa2 = aspa2 + 1.5;
     ENDIF;
     IF aspa2 == 15 THEN
       ban2 = 1;
       aspa2 = 0;
     ENDIF;
     IF aspa2 == 0 THEN
       ban2 = 0;
    ENDIF;
  ELSE
     aspa2 = 0;
  ENDIF;
ENDIF;
ai43 = h2 - 0;
ai42 = h2 + 0;
ai41 = f2;
IF m516 == 0 THEN
  a2 = 1;
ELSE
  a2 = 0;
ENDIF;
IF m496 OR m503 == 1 THEN
  Tomas 2 = 1;
ELSE
  Tomas 2 = 0;
ENDIF;
{Estado de la Habitación}
IF m529 == 0 THEN
  IF m530 == 0 THEN
    vacio2 = 1;
  ELSE
     vacio2 = 0;
  ENDIF;
ELSE
  vacio2 = 0;
```

```
ENDIF;
{Alerta de alarmas}
IF m531 OR m533 OR m547 == 1 THEN
  ALERTA\_ALARMA2 = 1;
ELSE
   ALERTA\_ALARMA2 = 0;
ENDIF;
{CONTROL DE HABITACION 3}
{Simulación tarjeta de energización de habitación}
IF cliente3 == 1 OR empleado3 == 1 THEN
  tarjeta3 = tarjeta3 + 4;
  IF tarjeta3 >= 30 THEN
    tarjeta3 = 30;
    entro3 = 1;
    IF cliente3 == 1 THEN
      i96 = 1;
      i95 = 1;
    ENDIF:
    IF empleado3 == 1 THEN
      i95 = 1;
    ENDIF;
  ENDIF;
ELSE
  tarjeta3 = tarjeta3 - 4;
  IF tarjeta3 <= 0 THEN
    tarjeta3 = 0;
    entro3 = 0;
    i96 = 0;
    i95 = 0;
  ENDIF;
ENDIF;
{Control Temperatura Habitación Cliente y Empleado}
IF m578 == 1 THEN
  IF m581 == 0 THEN
    f3 = f3 + 0.0075;
  ENDIF:
  IF e3 >= 27 OR m586 == 1 THEN
    aspa3 = 0;
    i103 = 0;
```

```
i107 = 1;
   IF f3 \ge 27 THEN
      f3 = 27;
   ENDIF;
 ELSE
   i107 = 0;
   IF f3 \ge e3 + 1 THEN
      i103 = 1;
   ENDIF;
 ENDIF;
 IF m581 == 1 THEN
   f3 = f3 - 0.0075;
 ENDIF;
 IF f3 < e3 - 1 THEN
   i103 = 0;
 ENDIF;
 ban3 = 0;
 IF ban3 == 0 THEN
   aspa3 = aspa3 + 1.5;
 ENDIF;
 IF aspa3 == 15 THEN
   ban3 = 1;
   aspa3 = 0;
 ENDIF;
 IF aspa3 == 0 THEN
   ban 3 = 0;
 ENDIF;
ELSE
  i107 = 0;
  IF m581 == 0 THEN
    f3 = f3 + 0.0075;
  ENDIF;
  IF h3 >= 27 OR m586 == 1 THEN
    i105 = 1;
    IF f3 \ge 27 THEN
      f3 = 27;
    ENDIF;
  ELSE
    i105 = 0;
  ENDIF;
  IF m581 == 1 THEN
    f3 = f3 - 0.0075;
  ENDIF;
  IF m580 == 1 THEN
    ban3 = 0:
    IF ban3 == 0 THEN
      aspa3 = aspa3 + 1.5;
    ENDIF;
```

```
IF aspa3 == 15 THEN
       ban3 = 1;
       aspa3 = 0;
     ENDIF;
     IF aspa3 == 0 THEN
       ban 3 = 0;
     ENDIF;
  ELSE
    aspa3 = 0;
  ENDIF;
ENDIF;
ai48 = h3 - 0;
ai47 = h3 + 0;
ai46 = f3;
IF m581 == 0 THEN
  a3 = 1;
ELSE
  a3 = 0;
ENDIF;
IF m561 OR m568 == 1 THEN
  Tomas3 = 1;
ELSE
  Tomas 3 = 0;
ENDIF;
{Estado de la Habitación}
IF m594 == 0 THEN
  IF m595 == 0 THEN
    vacio3 = 1;
  ELSE
     vacio3 = 0;
  ENDIF;
ELSE
  vacio 3 = 0;
ENDIF;
{Alerta de alarmas}
IF m596 OR m598 OR m612 == 1 THEN
  ALERTA\_ALARMA3 = 1;
ELSE
  ALERTA\_ALARMA3 = 0;
ENDIF;
{CONTROL DE HABITACION 4}
```

```
{Simulación tarjeta de energización de habitación}
IF cliente4 == 1 OR empleado4 == 1 THEN
  tarjeta4 = tarjeta4 + 4;
  IF tarjeta4 >= 30 THEN
    tarjeta4 = 30;
    entro4 = 1;
    IF cliente4 == 1 THEN
      i115 = 1;
      i114 = 1;
    ENDIF;
    IF empleado4 == 1 THEN
      i114 = 1;
    ENDIF;
  ENDIF;
ELSE
  tarjeta4 = tarjeta4 - 4;
  IF tarjeta4 <= 0 THEN
    tarjeta4 = 0;
    entro 4 = 0;
    i115 = 0;
    i114 = 0;
  ENDIF;
ENDIF;
{Control Temperatura Habitación Cliente y Empleado}
IF m643 == 1 THEN
  IF m646 == 0 THEN
    f4 = f4 + 0.0075;
  ENDIF;
  IF e4 >= 27 OR m651 == 1 THEN
    aspa4 = 0;
    i122 = 0;
    i126 = 1;
    IF f4 \ge 27 THEN
      f4 = 27;
    ENDIF;
  ELSE
    i126 = 0;
    IF f4 \ge e4 + 1 THEN
      i122 = 1;
    ENDIF;
  ENDIF:
  IF m646 == 1 THEN
    f4 = f4 - 0.0075;
  ENDIF;
```

```
IF f4 < e4 - 1 THEN
   i122 = 0;
 ENDIF;
 ban4 = 0;
 IF ban4 == 0 THEN
    aspa4 = aspa4 + 1.5;
 ENDIF;
 IF aspa4 == 15 THEN
   ban4 = 1;
   aspa4 = 0;
 ENDIF;
 IF aspa4 == 0 THEN
   ban 4 = 0;
 ENDIF;
ELSE
  i126 = 0;
  IF m646 == 0 THEN
    f4 = f4 + 0.0075;
  ENDIF;
  IF h4 >= 27 OR m651 == 1 THEN
    i124 = 1;
    IF f4 >= 27 THEN
      f4 = 27;
    ENDIF;
  ELSE
    i124 = 0;
  ENDIF:
  IF m646 == 1 THEN
    f4 = f4 - 0.0075;
  ENDIF;
  IF m645 == 1 THEN
    ban 4 = 0;
    IF ban4 == 0 THEN
      aspa4 = aspa4 + 1.5;
    ENDIF;
    IF aspa4 == 15 THEN
      ban4 = 1;
      aspa4 = 0;
    ENDIF;
    IF aspa4 == 0 THEN
      ban 4 = 0;
    ENDIF;
  ELSE
    aspa4 = 0;
  ENDIF;
ENDIF;
ai53 = h4 - 0;
ai52 = h4 + 0;
```

```
ai51 = f4;
IF m646 == 0 THEN
  a4 = 1;
ELSE
  a4 = 0;
ENDIF;
IF m626 OR m633 == 1 THEN
  Tomas4 = 1;
ELSE
  Tomas 4 = 0;
ENDIF;
{Estado de la Habitación}
IF m659 == 0 THEN
  IF m660 == 0 THEN
    vacio 4 = 1;
  ELSE
     vacio 4 = 0;
  ENDIF;
ELSE
  vacio 4 = 0;
ENDIF;
{Alerta de alarmas}
IF m661 OR m663 OR m677 == 1 THEN
  ALERTA\_ALARMA4 = 1;
ELSE
   ALERTA\_ALARMA4 = 0;
ENDIF;
{CONTROL DE HABITACION 5}
{Simulación tarjeta de energizacion de habitación}
IF cliente5 == 1 OR empleado5 == 1 THEN
  tarjeta5 = tarjeta5 + 4;
  IF tarjeta5 >= 30 \text{ THEN}
    tarjeta5 = 30;
    entro5 = 1;
    IF cliente5 == 1 THEN
      i134 = 1;
      i133 = 1;
    ENDIF;
    IF empleado5 == 1 THEN
```

```
i133 = 1;
    ENDIF;
  ENDIF;
ELSE
  tarjeta5 = tarjeta5 - 4;
  IF tarjeta5 <= 0 THEN
    tarjeta5 = 0;
    entro5 = 0;
    i134 = 0;
    i133 = 0;
  ENDIF;
ENDIF;
{Control Temperatura Habitación Cliente y Empleado}
IF m708 == 1 THEN
  IF m711 == 0 THEN
    f5 = f5 + 0.007;
  ENDIF;
  IF e5 >= 27 OR m716 == 1 THEN
    aspa5 = 0;
    i141 = 0;
    i145 = 1;
    IF f5 \ge 27 THEN
      f5 = 27;
    ENDIF;
  ELSE
    i145 = 0;
    IF f5 \ge e5 + 1 THEN
      i141 = 1;
    ENDIF;
  ENDIF;
  IF m711 == 1 THEN
    f5 = f5 - 0.007;
  ENDIF;
  IF f5 < e5 - 1 THEN
    i141 = 0;
  ENDIF;
  ban5 = 0;
  IF ban5 == 0 THEN
    aspa5 = aspa5 + 1.5;
  ENDIF;
  IF aspa5 == 15 THEN
    ban5 = 1;
    aspa5 = 0;
  ENDIF;
  IF aspa5 == 0 THEN
    ban5 = 0;
```

```
ENDIF;
ELSE
  i145 = 0;
  IF m711 == 0 THEN
    f5 = f5 + 0.007;
  ENDIF:
  IF h5 >= 27 OR m716 == 1 THEN
    i143 = 1;
    IF f5 >= 27 THEN
      f5 = 27;
    ENDIF;
  ELSE
    i143 = 0;
  ENDIF;
  IF m711 == 1 THEN
    f5 = f5 - 0.007;
  ENDIF;
  IF m710 == 1 THEN
    ban5 = 0;
    IF ban5 == 0 THEN
      aspa5 = aspa5 + 1.5;
    ENDIF;
    IF aspa5 == 15 THEN
      ban5 = 1;
      aspa5 = 0;
    ENDIF;
    IF aspa5 == 0 THEN
      ban5 = 0;
    ENDIF;
  ELSE
    aspa5 = 0;
  ENDIF;
ENDIF;
ai58 = h5 - 0;
ai57 = h5 + 0;
ai56 = f5;
IF m711 == 0 THEN
  a5 = 1;
ELSE
  a5 = 0;
ENDIF;
IF m691 OR m698 == 1 THEN
  Tomas5 = 1;
ELSE
  Tomas 5 = 0;
ENDIF;
{Estado de la Habitación}
```

```
IF m724 == 0 THEN
    IF m725 == 0 THEN
        vacio5 = 1;
    ELSE
        vacio5 = 0;
    ENDIF;
ELSE
        vacio5 = 0;
ENDIF;

{Alerta de alarmas}

IF m726 OR m728 OR m742 == 1 THEN
    ALERTA_ALARMA5 = 1;
ELSE
    ALERTA_ALARMA5 = 0;
ENDIF;
```

```
IF ALERTA_ALARMA OR ALERTA_ALARMA2 OR ALERTA_ALARMA3 OR ALERTA_ALARMA4 OR ALERTA_ALARMA5 == 1 THEN PELIGRO = 1; ELSE PELIGRO = 0; ENDIF;
```

CONCLUSIONES Y RECOMENDACIONES

En la actualidad en muchos países, se han desarrollado diferentes sistemas inteligentes para la gestión de edificios, ya que brindan ahorro, seguridad y confort.

Para el control de este sistema inmótico (hotel), se utilizó el autómata programable (PLC) y para su monitoreo (visualización) el software InTouch, que en conjunto con los diferentes dispositivos sensores permiten realizar las funciones del hotel con una gran eficiencia, precisión y ahorro.

El control de temperatura de las habitaciones del hotel cumple con dos características: la una dedicada al confort del cliente, la cual le permite a este seleccionar la temperatura a su gusto y la otra dedicada al ahorro de energía, la cual es controlada por el sistema para mantener una temperatura fija manipulable solo por este.

Los sistemas de bombeo a presión constante con variador de velocidad son actualmente los de mayor uso, ya que las bombas trabajan dependiendo de la demanda de agua requerida por el sistema y es debido a esto que se produce el ahorro de energía.

El sistema de bombeo tiene dos tipos de control, manual y automático. El sistema manual se desarrolló para que en caso de que el control automático por alguna razón deje de funcionar, se pueda seguir suministrando agua al hotel.

El sistema de bombeo tiene la capacidad de distinguir la falla de alguna bomba tanto en manual como en automático y de no permitir el funcionamiento de esta.

El sistema Inmótico deberá tener la capacidad de garantizar el suministro de energía para el confort del cliente, esto se realiza a través de un sistema de transferencia automática que al sensar la falla en el suministro de energía por parte de la empresa eléctrica transfiera la carga al generador.

Las pantallas de visualización fueron desarrolladas para permitir que el operario tenga un acceso e identificación de forma rápida en las distintas áreas de funcionamiento del hotel.

Es necesario que los ingenieros eléctricos tengan una formación adicional de otras carreras afines como es el caso de ingeniería mecánica, ya que en los sistemas automatizados es inevitable tratar con esta área.

ANEXO A

INSTRUMENTACIÓN

Sensor de Temperatura

Descripción:

Detector analógico de temperatura para ser montado sobre superficies planas en interiores. Es indicado para medir la temperatura y poder actuar sobre los sistemas de control de clima.

Aplicación:

SALIDA 0 a 10 Vpc

A DOM-04 (ENTRADA ANALOGICA AIDC)

Puede ser instalado tanto en habitaciones, oficinas o en cualquier lugar que se crea conveniente. Para su correcto funcionamiento deberá estar alejado tanto de fuentes de calor como de frío. Igualmente se evitará su colocación en lugares de paso o donde existan corrientes de aire.

Resumen de Características:

Marca BJC

Referencia DOM 203

Medidas 84mm x 84mm x 23.5mm

Alimentación 15 - 24 Vdc

Consumo Máx 6 mA

Salida Analógica de 0 a +10 Vdc Rango de temperatura -50 a +50° C

Estanco IP20

Blanco puro similar RAL

ALIMENTACION 24 Vpc

la

A DOM-08

Color 9010 Material envolvente ABS

Sensor de Iluminación Interior

Descripción:

Este detector registra el nivel de luz de la estancia donde se ha instalado y cuando está activado, actúa sobre los dispositivos de iluminación. Manteniendo un nivel constante de luxes previamente definido por el usuario.

Aplicación:

Está indicado para medir el nivel lumínico en interiores y poder actuar sobre el control de la iluminación del sistema. A través del uso de estos detectores es posible obtener ahorros de energía por encima del 30 %.

Resumen de Características:

Marca BJC Referencia DOM-204

Medidas 80 x 80 x 23,5 mm

Alimentación 15 a 24 Vdc

Consuma Máx 6mA

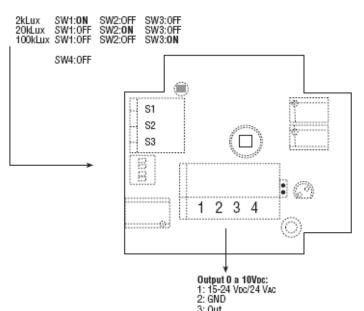
Salida Analógica 0...10 Vdc (lineal)

2kLux Sw1:on Sw2:off

Rango de Lux w3:off

20kLux Sw1:off Sw2:on

w3:off


100kLux Sw1:off Sw2:off

w3:on

Grado de protección IP 20 Material envolvente ABS

Blanco puro similar RAL

Color 9010

Conexionado:

24 Vpc a borne positivo de DOM-08 GND a borne negativo de DOM-08 Out a borne positivo de Al de DOM-04

(puentear borne negativo de Al de DOM-04 con borne – de alimentación del módulo)

Desconector de energía inteligente

Descripción:

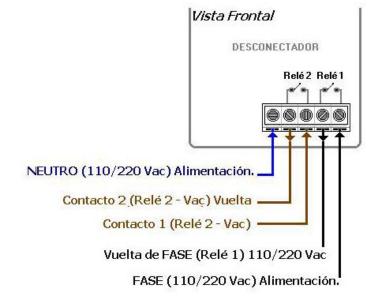
A qué se denomina inteligente en un desconector: TEHSA, S.L. entiende que como mínimo, un desconector inteligente ha de leer e interpretar, tarjetas con mensajes distintos y actuar en consecuencia al mensaje leído, a la vez que memoriza los eventos ocurridos, como activaciones, incidencias, etc.

Por esta definición, **TEHSA**, **S.L.**, entiende que hay equipos intermedios entre un equipo inteligente y un sistema mecánico, que podríamos denominar como **"Listillos"**, lo que nos permitiría a un bajo coste discriminar entre clientes y empleados y/o activar determinados servicios en función de si se es uno u otro el usuario que lo utiliza. (Evita la clásica picaresca de otros equipos que son simplemente un interruptor y que se activan con cualquier cartón, o tarjeta de visita).

El desconector i SWITCH BASIC de **TEHSA**, **S.L.**, viene a cubrir ese hueco entre estos dos tipos de equipo, pues somos conscientes de que en determinadas instalaciones, prima el coste de la inversión sobre posibles prestaciones adicionales, buscando una inversión reducida y unas prestaciones básicas de ahorro de energía, y el menor tiempo de amortización posible.

El desconector i SWITCH BASIC es un equipo de superficie, capaz de controlar dos relés de 16 Amp. a 220Vca, lo que le permite manejar cargas de hasta 3.500w por cada relé, no necesitando contactores adicionales. (*Ahorro de un mínimo de 4 a 6.000-Ptas.*) Y discriminando entre empleados y clientes.

Al no requerir contactores, pues suele ser más que suficiente, para el corte de corriente que se utiliza en una habitación, y al ser capaz de manejar tanto la iluminación, como el aire acondicionado y ser de superficie posibilitando la instalación sobre cajas de mecanismos, o llaves de la luz existentes, lo hacen ideal para producir grandes ahorros de energía donde no se necesitan o tienen otras pretensiones de control.


Marca
Referencia
Desconectador de energía
Lectura de tarjetas de banda
magnética

Alimentación
Consumo nominal
Consumo Máx.
Potencia Máx.
Velocidad de lectura
Indicadores luminosos de
actuación
Relés de salida
Relés temporizados
Consumo Máx por relé
Dimensiones
Peso

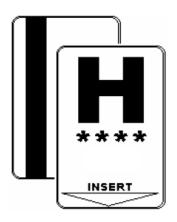
TEHSA
DESCBASICP1
microprocesado e inteligente

emplea solo la pista 1 110v ó 230v CA. 10 % de tolerancia 15 m/Amp 29 m/Amp 6,6 Watts Entre 7 y 70 cm/seg

2 leds de colores rojo y verde 2 ±3 minutos 12 Amp a 220v CA a 3500W 132 x 97 x 35 mm 195 gramos

Set de Tarjetas de B. M

Resumen de Características:


Marca TEHSA

Referencia01 TARBASICDIS

Numero de Tarjetas Set de **5.000** tarjetas

Incluye fotolitos a 3 colores + fondos

Color blancos Normas ISO 7810 y 7811

Kit de Grabación de Tarjetas

Descripción:

- Consta de software, adaptador y grabador de tarjetas de pasada para la pista 1 del desconector.
- Permite grabar las tarjetas uno mismo, sin depender del proveedor.
- Posibilita la grabación de cualquier tarjeta existente y/o nueva <950 Oer.
- Compatible con otros grabadores y mensajes grabados.

Resumen de Características:

Marca TEHSA

Referencia KITGRABTAR

Numero de Tarjetas Set de **5.000** tarjetas

Incluye fotolitos a 3 colores + fondos

Color blancos.
Normas ISO 7810 y 7811

Conmutador magnético de superficie

Descripción:

- Conmutador magnético para cortar el aire acondicionado de las habitaciones al abrir las puertas, ventanas, balcones o terrazas.
- Consta de dos partes, Imán y Mecanismo.
- Funciona por campo magnético, sin llegar a tocarse las 2 piezas.
- Servicio continuo.
- En el mecanismo está ubicado un conmutador con contactos de plata, y los bornes de conexión.
- Al acercar el imán al mecanismo a una distancia inferior a 5 mm se conecta el borne común 1 con el 3. (Abierto conecta 1 con 2).

Resumen de Características:

Marca TEHSA

Referencia CONMAGSUP1

Alimentación 220 Vca. Consumo 5 Amperios

Contactos NC y NA según conexionado

Contactos de plata Muelle INOX caja ABS

Termostato Electrónico

Descripción:

- Climatización conectada y símbolo de climatización.
- Visualización de temperatura ambiente y de consigna.
- Indicador de ajuste de la temperatura de consigna
- Tecla para elevar la temperatura de consigna
- Tecla para reducir la temperatura de consigna

Resumen de Características:

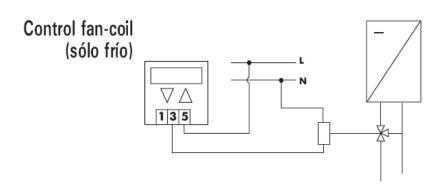
Marca CEPRA 4100

Referencia 337100

Dos baterías alcalinas

Alimentación

LR03/AAA


Intensidad

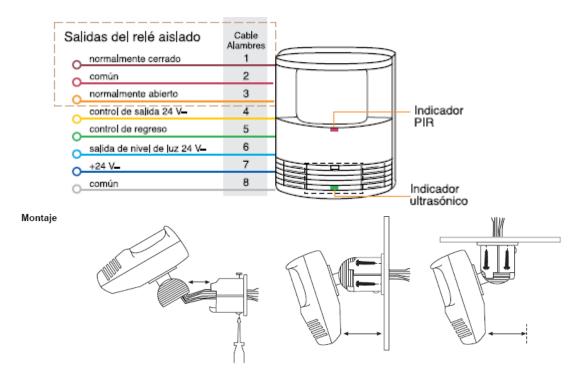
Permanente 7 (3) A
Rango de temperatura 5 A 35°C
Diferencial Aprox. 0,5 K
Contacto Conmutado

(1) N.A. Calefacción(2) N.C. Refrigeración

(3) C. Común

Color Blanco puro

Detector de presencia de tecnología dual


Descripción:

El detector de ocupación (patentado) de tecnología dual de Watt Stopper es el más avanzado que se haya creado para control de alumbrado. Combina en una sola unidad las ventajas de las tecnologías PIR y ultrasónica para conseguir coberturas precisas y significativos ahorros de energía.

El DT-200 es un detector de ocupación que controla el alumbrado a través de un Power Pack de Watt Stopper. En la configuración estándar, la unidad enciende las luces cuando ambas tecnologías detectan ocupación. Después de esto, sólo una tecnología mantiene las luces encendidas. Cuando se desocupa el área controlada, las luces se apagan después de un tiempo especificado por el usuario.

Se dispone de otras opciones de controles que necesitan de una sola tecnología para activar o mantener el alumbrado encendido.

El DT-200 cuenta con un sensor de nivel de luz que mantiene apagado el alumbrado cuando la luz ambiente es adecuada. Este modelo también cuenta con un relé aislado que le permite al sensor interconectarse con EMS, HVAC y otros sistemas de control de edificios.

Marca Bticino

Referencia Watt Stopper DT-200 Tecnología PIR y Ultrasónica

Suministro de Necesita conexión al Power

alimentación Pack Alimentación 24 V

Unidades por Power Pack. hasta 2 unidades Frecuencia ultrasónica de 40kHz ±0.006%

Angulo de cobertura 90° Máximo alcance (frente) 15.2m Máximo alcance (lados) 6.0m

Lugar de instalación techo ó pared

contactos aislados son 2: NA

Salida por relé y NC.

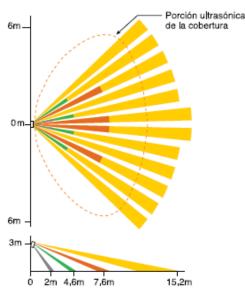
Led para Indicar detección de tecnología PIR

detección de tecnología

Ultrasónica

Nivel de luz de 27 a 4627 luxes.

Perillas de ajuste 2


Tiempo de apagado

automático 15 seg. a 15 min.

Certificado por NOM ANCE y SELLO FIDE

CX-100-... y DT-200... CB-100

Cobertura planta

Cobertura horizontal

Cobertura para modelos CX-100 y DT-200 y CB-100.

Power Pack

Descripción:

Las fuentes de poder son necesarias para poder utilizar la totalidad de los sensores de la línea Watt Stopper de BTicino.

En su empaque de resina ABS, se incluye un transformador y un relevador interconectados.

El transformador es necesario para alimentar a los detectores, mientras que el relevador controla la carga de la iluminación.

Resumen de Características:

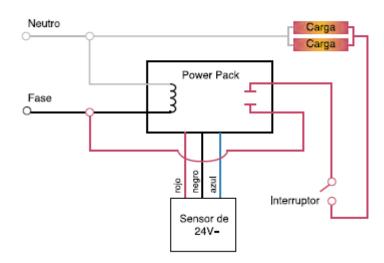
Marca Bticino

Referencia Watt Stopper (B120E-P)

transformador-relevador

Sistema interconectados Alimentación 120V~ 60Hz Voltaje de salida 24V a 100mA

Carga máxima:


Balastro 20A, 2500 watts

Motor 1HP

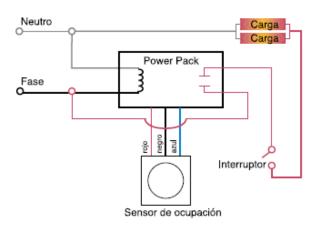
Incandescente 13A, 1500 watts

Dimensiones 45mm x 70mm x 38mm Empaque caja de resina 94V-0 Certificado por NOM ANCE y UL

Diagrama de instalación

Detectores ultrasónicos de pasillo

Descripción:


Cuando un sensor ultrasónico detecta movimiento en un área controlada, enciende las luces a través de la unidad Power Pack. Una vez que el área está vacía y ha pasado el tiempo de retraso ajustable, las luces se apagan. Los detectores ultrasónicos presentan una sensibilidad ajustable y un desvío de llave lógica/encendido, además posee un LED simplifica los ajustes de sensibilidad.

Dado que la cobertura ultrasónica puede "ver" a través de puertas y divisiones, es necesario darle una ubicación adecuada al sensor para evitar así, posibles detecciones fuera de la zona deseada.

Las áreas con alfombra gruesa y materiales antiacústicos absorben el sonido ultrasónico y pueden reducir la cobertura. La eficiencia del sensor también puede verse alterada por flujo excesivo de aire (provocado por aires acondicionados, ventiladores, calefacción, etc.).

Para uso general en pasillos y corredores con paredes, el W-2000H es la mejor opción. El sensor se debe orientar de tal manera que los receptores (orificios en la parte lateral del sensor) apunten hacia el pasillo.

Diagrame de instalación

Las ondas que emite el sensor ultrasónico rebotan en techo y paredes, lo que permite una sensibilidad elevada

Marca Bticino

Referencia Watt Stopper (W-2000H)

Tecnología Ultrasónica

Suministro de Necesita conexión al Power

alimentación Pack Alimentación 24V

Unidades por Power Pack. hasta 3 unidades Frecuencia ultrasónica de 25kHz ± 0.005%

Angulo de cobertura 360°

Altura de montaje menor a 3.6m

Máximo alcance (frente) 13.7m

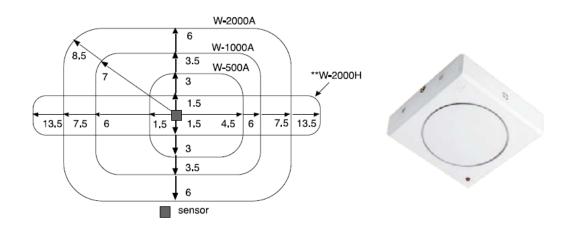
Máximo alcance (lados) 1.5m

Lugar de instalación techo

Led para Indicar detección

Perillas de ajuste 2

Tiempo de apagado


automático 15 seg. a 15 min.

Dimensiones 115mm X 115mm X 32mm

Empaque caja de resina 94V-0

NOM ANCE, SELLO FIDE

Certificado por y UL

^{**}La cobertura del detector W-2000H no está a escala. Las distancias están en metros.

Cerradura Vingcard Classic

Descripción:

Classic es una cerradura de tarjeta magnética que ofrece una amplia gama de acabados. Se puede instalar en un ambiente normal ó costeño, ya que cumple con los estándares de durabilidad mas estrictos de la industria. Es compatible con tarjetas inteligentes.

La gama competa de sistemas de cerraduras electrónicas para hotel de VingCard consta de control de accesos electrónico y mecánico para hoteles, y una variada selección de cerraduras Ving que nos permite satisfacer sus necesidades específicas.

Como filial de ASSA ABLOY, líder mundial en el suministro de cerraduras y productos asociados, ello nos permite ofrecerle una gama completa de accesorios sin par en la industria.

Se puede instalar en un ambiente normal ó costeño, ya que cumple con los estándares de durabilidad más estrictos de la industria.

Accesorios opcionales incluyen: cilindro con llave para apertura manual en emergencias y un auto-deadbolt de alta seguridad.

La cerradura Classic funciona con baterías AA. Para obtener acceso a una habitación, inserte una tarjeta magnética en el lector de la cerradura.

Se requiere un sistema de administración para programar / auditar las cerraduras, codificar las tarjetas, y otras funciones mas. Este sistema requiere de la estación check-in 2100 plus

Marca VingCard Referencia Classic

Cerradura de tarjeta magnética

sistema administrativo 2100 Plus

Soporte Máximo de uso 5 millones de aperturas

opcional de 100 eventos (hora, fecha,

Auditoria nombre)

Flash RAM, no se borra si quitan las

Tipo de memoria pilas

Alimentación con baterías AA

Accesorios opcionales cilindro para aperturas manuales

auto-deadbolt de alta seguridad

Dimensiones 24cmx 11cmx 3cm Certificación ANSI grade 1 / EURO

El grosor minimo requerido del canto de las puertas debe ser de 3 cm. para embutir el mecanismo Borde o canto de la puerta Borde o canto de la puerta Borde o canto de la puerta Si la puerta cuenta con molduras o resaltes la distancia minima del borde a estos debe de ser de 11.5 cm 3cm 7.7cm

Estacion Check-in Vingcard 2100 Plus

Descripción:

Para hoteles pequeños y medianos Sistema portátil para 400 habitaciones y 75 puertas en común Programación y auditoria de cerraduras Codificación de tarjetas magnéticas Restringe y controla el acceso de empleados a las habitaciones

Consiste de base codificadora y unidad portátil. La base codifica las tarjetas magnéticas para uso con cerraduras VingCard, mientras que la unidad portátil programa / audita las cerraduras.

El 2100 Plus es un paquete compacto que no requiere PC para su operación.

Funcionamiento del sistema:

El 2100 Plus es una unidad compacta que ocupa muy poco espacio en su front-desk y no requiere PC para su operación. Todos los movimientos se realizan directamente desde la unidad, a través de un interfaz intuitivo tipo menú.

Las funciones principales del 2100 Plus:

Programación de cerraduras:

El controlador portátil del 2100 Plus programa la cerradura alámbricamante, a través de una tarjeta contacto que se ingresa a la cerradura.

Codificación tarjetas huéspedes:

Ingrese los datos de su huésped en el sistema, y pase una tarjeta en blanco por el codificador.

Codificación tarjetas empleados:

Con el 2100 Plus, ud. podrá asignar horarios de accesos restringidos en las tarjetas de su personal. Cada nivel de empleado tendrá un plan de acceso distinto.

Auditoria y reportes:

Inserte la tarjeta de contacto en la cerradura para descargar hasta 100 eventos al controlador portátil.

Este sistema de control de acceso es Autónomo, es decir independiente de cualquier sistema de control

Marca VingCard Referencia 2100 Plus

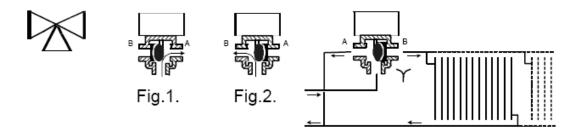
Sistema gestiona un de 400 habitaciones y 75 puertas en

Máx. común

Consta de : unidad portátil

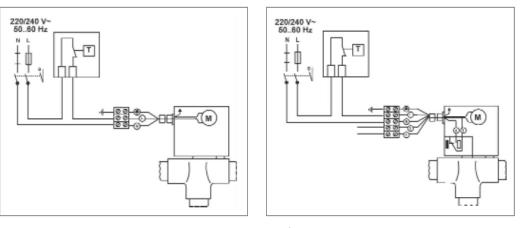
base codificadora

Unidad portátil programa y audita las cerraduras Base codificadora codifica las tarjetas magnéticas Restringe el acceso de empleados a las habitaciones Software 2100 Plus no requiere PC para su operación


Válvulas motorizadas de tres vías

Descripción:

La válvula es accionada por un motor eléctrico que se encarga de abrirlas o cerrarlas (actuación todo/nada), además incorpora una palanca que permite el accionamiento de forma manual. Opcionalmente y bajo pedido, se puede suministrar las válvulas con contratos auxiliares.


Antes de realizar cualquier manipulación, compruebe que no hay que no hay tensión de alimentación. Es imprescindible que el motor de la válvula esté correctamente puesto a tierra, para ello las válvulas disponen del cable adecuado (amarillo-verde).

Sin alimentación eléctrica la válvula se posiciona según se muestra en la Fig1. Cuando se alimenta, el servomotor vence la fuerza del muelle y permite el paso del fluido según se indica en la Fig. 2

Esquema de conexión sin contacto auxiliar.

Esquema de conexión con contacto auxiliar.

Leyenda: L - Línea (marrón) / N- Neutro (azul) / = - Tierra (verde/amarillo) 3 - Común contacto auxiliar (naranja) / 4 - Contacto auxiliar (gris) T- termostato

Marca CEPRA
Referencia C 3VH
Alimentación 220 V
Potencia consumida 5W

Máxima temperatura

ambiente 43 C Tiempo de apertura 15 s

15 s (muelle de

Tiempo de cierre retorno)
Long. del cable 60 cm
Presión Nominal PN 16
Válvula 3 Vías

Máxima temperatura del

fluido 95 C

IP 40segun DIN

Grado de Protección 40050

CARACTERÍSTICAS HIDRÁULICAS:

Vías	DN	Código	Referencia	Kvs (m³/h)	Δ pvmax (Kpa)
	1/2"	0338615	C 2VH-15	2,5	175
2	3/4"	0338620	C 2VH-20	2,5	175
	1"	0338625	C 2VH-25	6	80
	1/2"	0338715	C 3VH-15	4,5	90
3	3/4"	0338720	C 3VH-20	4,5	90
	1"	0338725	C 3VH-25	6	70

DIMENSIONES: C 3VH...

D "n		Α	В	С	D	Е	Peso Kgs
1/2"	15	86	23.5	R 1/2"	15	33.5	1.1
3/4"	20	86	23.5	R 3/4"	15	33.5	1.1
1″	25	86	25	R 1"	17.5	36	1.2

Presostato

Descripción:

Las unidades CAS son conmutadores controlados por presión. La posición de los contactos depende de la presión en la conexión de entrada y del valor ajustado en la escala. En esta serie, se ha prestado una atención especial para satisfacer las demandas de un elevado nivel de protección diferencial bajo construcción robusta y compacta resistencia a los impactos y vibraciones.

La serie CAS cumple la mayoría de los requisitos aplicables a las instalaciones tanto exteriores como interiores. Los presostatos CAS son apropiados para ser empleados en sistemas de alarma y de regulación de fábricas, instalaciones diesel, compresores, centrales y a bordo de barcos.

Terminología:

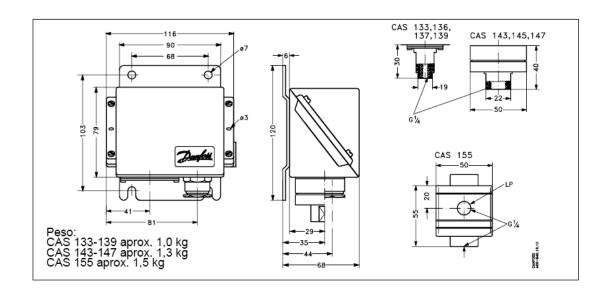
Rango de ajuste

Es el margen de presión en el cual la unidad proporcionará una señal (conmutación de los contactos).

Diferencial

Es la diferencia entre la presión de cierre y la presión de apertura de los contactos.

Presión de funcionamiento admisible


Es la presión permanente más elevada o la presión recurrente a la cual puede someterse la unidad.

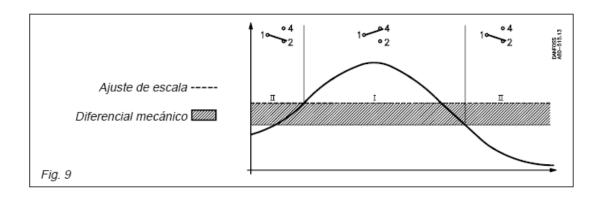
Presión de prueba máx.

Es la presión más elevada a la cual puede someterse la unidad cuando, por ejemplo, se efectúa la comprobación del sistema para determinar la presencia de fugas. Por consiguiente, esta presión no debe producirse bajo la forma de una presión recurrente en el sistema.

Presión de rotura

Es la presión que el elemento sensible a la presión podrá soportar sin fugas.

Descripción:


Las unidades KPS son conmutadores controlados por presión. La posición de los contactos depende de la presión en la conexión de entrada y del valor ajustado en la escala. En esta serie se ha prestado una atención especial para satisfacer las demandas de un elevado nivel de protección, de construcción robusta y compacta, así como de resistencia a los impactos y vibraciones.

La serie KPS cubre la mayoría de los requisitos aplicables a las instalaciones tanto exteriores como interiores. Los presostatos KPS son apropiados para ser empleados en sistemas de alarma y de regulación de fábricas, instalaciones diesel, compresores, centrales y a bordo de barcos.

Con respecto a sus contactos tenemos que, los contactos 1-4 se cierran y los contactos 1-2 se abren cuando la presión sube por encima del valor ajustado en el rango. Los contactos vuelven a su posición inicial cuando la presión disminuye de nuevo al valor del rango menos el diferencial

Todos los presostatos KPS a excepción del modelo KPS 31 están configurados la activación de sus alarmas de la siguiente forma: En la región I. Alarma para presión creciente dada en el valor ajustado en el rango.

Y en la región II. Alarma para presión decreciente dada en el valor ajustado en el rango menos el diferencial

Terminología:

Rango de ajuste

Es el rango de presión en el cual la unidad proporcionará una señal (conmutación de los contactos).

Diferencial

Es la diferencia entre la presión de cierre y la presión de apertura de los contactos.

Sobrepresión admisible

Es la presión permanente más elevada o la presión continua a la cual puede someterse la unidad.

Presión de prueba máx.

Es la presión más elevada a la cual puede ser sometida la unidad cuando, por ejemplo, se efectúa la comprobación del sistema para determinar la presencia de fugas. Por consiguiente, esta presión no debe producirse bajo la forma de una presión continua en el sistema.

Presión de rotura mín.

Es la presión que el elemento sensible a la presión podrá soportar sin fugas.

Marca Danfoss

Referencia KPS 35 (603108)

Temperatura ambiente KPS 31 - 39: -40 hasta +70 °C Temperatura del fluido KPS 31 - 39: -40 hasta +100 °C Para agua dulce y agua de mar,

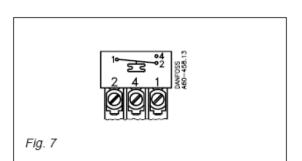
máx. 80 °C

Rango de ajuste Pe (bar) 0 a 8 Diferencial de Ajuste/fija (bar) 0.4 a 1.5

Presión de Operación permisible

Ps (bar) 12 Presión de prueba Máx. (bar) 12

Conexión de presión G 1/4


Carga de los contactos

Corriente alterna:

carga óhmica 10 A, 440 V, AC-1 carga inductiva 6A,44OVAC-3 Corriente continua: 12 W, 220 V, DC-11

Protección IP 67 según IEC 529 y DIN 40050

Supervisor Trifásico

Aplicación:

Función de supervisión, protección de motores y cargas trifásicas, contra daños producidos por alteraciones en el suministro de energía eléctrica.

Adicionalmente puede ser utilizado como dispositivo para control de estaciones de transferencia, voltímetro trifásico, herramienta para diagnóstico y reporte de fallas en tableros de arrancadores y de control.

Supervisor Trifásico GII - Genius II plus

- Supervisor trifásico con microcontrolador.
- Pantalla de cristal líquido que indica la condición de la línea y fallas ocurridas.
- Voltímetro y frecuencímetro digital.
- Reporte de las últimas 20 fallas.
- Protección contra alto y bajo voltaje, desbalance, y frecuencia incorrecta.
- Programación por ciclos.
- Diseñado y verificado bajo normas IEC.

Referencia

Ajuste de voltaje mínimo permitido: -30% al 0%. Ajuste de voltaje máximo permitido: 0% al 30%.

Ajuste de la protección por

desbalance: 2% al 20% permitida: 2% al 10% Ajuste del tiempo de conexión: 5 a 600 seg.

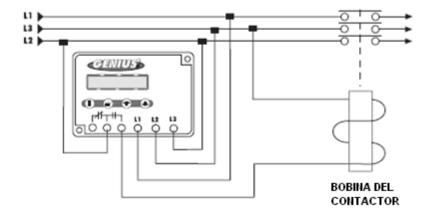
Ajuste del tiempo de desconexión:

Modo de operación:

0.4 a 9.9 seg.

manual / automático

Capacidad de salida: 3.5A - 250 VAC 1.5A - 480 VAC


Temperatura de operación: -5 A +55°C

Humedad relativa máxima: 85%.

Medidas: 124 x 91 x 42 mm.

Peso: 245 grs.

Material de la carcaza: LEXAN 500R

Detector de Humo

Aplicación:

Detectores autónomos de humo con tecnología de detección fotoeléctrica. Estos dispositivos están concebidos para darnos un aviso acústico al menor indicio de fuego. Una intervención rápida ante un conato de fuego puede ser clave para evitar males mayores.

Resumen de Características:

Marca Domout Referencia SHA-965R Detector de humo autónomo

Tipo se sensor Óptico fotoeléctrico de humo.

Medidas 120mm de diámetro x 29 de alto

Alimentación de 12 a 24VDC. Superficie de vigilancia 50 - 60 m2.

Alarma acústica 85dB intermitente. Salida a Relé contactos C/NA/NC

Carga Máx. por relé 1A - 24VDC.

Alarma visual LED rojo intermitente.

Temperatura de trabajo -5 y +50°C.

Grado de protección IP43

Humedad de trabajo <90% sin condensación.

Material envolvente ABS.

CONEXIÓN RELÉ DE SALIDA:

- Borna 1: Alimentación positivo (+ 12 A 24VDC).
- Borna 2: Alimentación negativo.
- Borna 4: Normalmente abierto. (NA)
- Borna 5: Normalmente cerrado. (NC)
- Borna 6: Común.

ANEXO B

CÁLCULOS REALIZADOS

Cálculo de la demanda total de agua en el edificio y la Presión mínima requerida

Cálculo de la demanda total:

El cálculo de la demanda total de agua en el edificio se la obtiene de la siguiente manera.

 $Q = PT \times FE \times FC$

Demanda total (Q)
Puntos totales (PT)
Factor según estadísticas (FE)
Factor de compensación (FC)

Donde:

Demanda total: Es el consumo total de agua en el edifico medido en GPM.

<u>Puntos totales</u>: Es el número total de puntos de salida de agua que tiene el edificio

<u>Factor según estadísticas</u>: Este es un valor que depende del tipo de edificación y del número totales de puntos de salida de agua, obtenidos a partir de tablas

<u>Factor de compensación</u>: Es un valor promedio, el cual produce una compensación a la demanda total debido al consumo de agua por lavandería, tipo de huéspedes del hotel y otros varios.

Obtención de los Puntos totales:

	Puntos por	Puntos por	Puntos por	Puntos
	lavaderos	sanitarios	duchas	varios
	125	125	125	5
	2	5	4	2
	2	3	4	6
	2	5		
	3	3		
	5			
Total de cada columna	139	141	133	13
Total puntos del hotel				426

Obtención del factor según estadísticas:

EDIFICIOS PÚBLICOS

Capacidad requerida de la bomba en galones de EE.UU. por minuto por artefacto para edificios públicos									
		Νú	ímero to	otal de a	rtefacto	S			
Tipo de edificio	25 o	26-	51-	101-	201-	401-	Más de		
	menos	50	100	200	400	600	600		
Hospitales	1.00	1.00	.80	.60	.50	.45	.40		
Edificios mercantiles	1.30	1.00	.80	.71	.60	.54	.48		
Edificios de oficinas	1.20	.90	.72	.65	.50	.40	.35		
Escuelas	1.20	.85	.65	.60	.55	.45			
Hoteles, moteles	.80	.60	.55	.45	.40	.35	.33		
Edificios de apartamentos	.60	.50	.37	.30	.28	.25	.24		

Este valor se obtiene según la tabla de **Edificios Públicos**, en esta se puede observar que el valor a escoger es de 0,35 que equivale a hoteles y moteles, para el tipo de edificios con puntos de salidas entre 401 y 600.

Obtención del Factor de compensación:

En este caso el Factor de Compensación es de 1,56

Por lo tanto el valor de la demanda total será:

Q = PT x FE x FC Q = 426 x 0,35 x 1,56 Q = 232,596 GPM

Cálculo de la Presión mínima requerida:

Es la mínima presión que se debe obtener para poder llevar el agua hasta el último piso

El cálculo de la presión mínima requerida en el edificio se la obtiene de la siguiente manera.

 $H = \Delta Z + F \times L + 5Psi$

Cabezal (H) Altura (∆Z) Factor de pérdida (F) Longitud de tubería (L)

Donde:

<u>Cabezal</u>: Es la Presión mínima requerida, para llevar el agua hasta el último piso de la edificación.

Altura: Es la altura del edificio, medido desde la salida del grupo de presión hasta el grifo más alto. En este caso dicho valor es de 23 metros.

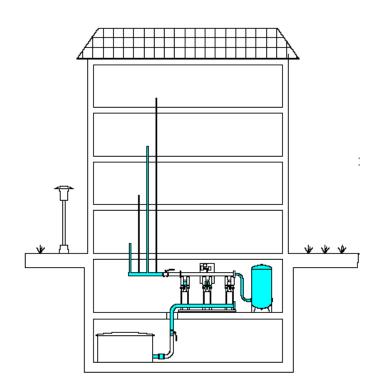
<u>Factor de pérdida</u>: Es un valor promedio que corresponde a las pérdidas por fricción, tanto en tuberías como en accesorios utilizados, este valor es de 0,1.

Longitud de tubería: Es la longitud de tubería promedio que se toma desde el grupo de presión hasta el punto más lejano. En este caso se considera, el ancho del edificio más el alto del edificio, más un porcentaje que va del 40 al 50% de esta suma que representa la longitud medida de los codos, válvulas y otros accesorios del sistema

<u>5Psi</u>: es el valor de presión deseado a la salida de los puntos de agua.

Obtención de la Longitud de tubería:

Unidades en Metros	
Alto	23
Ancho	54
Total	77
50% del total	38,5
Longitud de tubería	115,5


Por lo tanto el valor de la demanda total será:

 $H = \Delta Z + F \times L + 5Psi$

H = (23m + 0.1x 115.5m) 3.28 + (5Psi) 2.31

H = (124,87 Pies) 0,43278

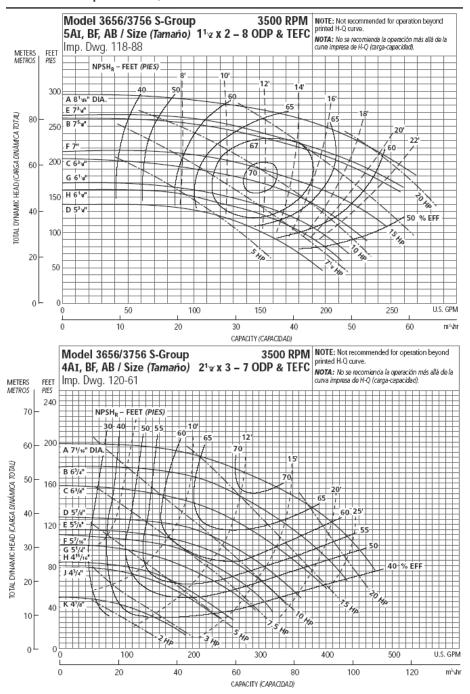
H = 54,04Psi ≈ 55Psi.

ANEXO C

SELECCIONAMIENTO DE BOMBAS

Selección de las bombas

Las bombas a utilizar en este sistema se las selecciona a partir de la demanda de agua total del edificio (caudal en GPM) y la presión mínima requerida en Psi.


Con relación a la demanda se considerara un 40% más que representa el desgaste de las bombas por envejecimiento de los rodamientos y del eje de estas. Por lo tanto la demanda total o caudal total será:

Unidades en GPM							
Caudal	232,596						
40% de Caudal	93,0384						
Total	325,63						

Para este caso se utilizarán dos bombas por lo que cada bomba se seleccionará con el total de GPM dividido para dos es decir 162,81 GPM para una presión de 55 Psi (127.05 pies).

Con estos valores se recurrirá a las graficas H-Q para obtener la potencia en Hp de las bombas requeridas.

Según el gráfico se puede observar que la potencia requerida para las bombas es de 10Hp. Además el modelo de bomba a elegir es el de la tabla Model 3656/3756 S-Group Imp Dwg. 118-88 debido a que este modelo es el que posee la mejor eficiencia, la cual es del 70%.

ANEXO D

DISTRIBUCIÓN DE SEÑALES CONTROLADAS POR PLC

Nombre	Tipo	Fuente	Detalles de la Fuente	Valor	Descripción
<u>Al0001</u>	INT	GE FANUC PLC	%Al0001	0	SENSOR_PRESION. ENTRADA ANALÓGICA DE PRESIÓN PROVENIENTES DEL VARIADOR DE FRECUENCIA DEL SISTEMA DE BOMBEO
<u>Al0033</u>	INT	GE FANUC PLC	%AI0033	0	SENSOR_FRECUENCIA. ENTRADA ANALÓGICA DE FRECUENCIA PROVENIENTES DEL VARIADOR DE FRECUENCIA DEL SISTEMA DE BOMBEO
<u>Al0034</u>	INT	GE FANUC PLC	%AI0034	0	SENSOR LUZ. SENSOR DE LUZ ANALÓGICO UBICADO EN LA HABITACIÓN 1
<u>Al0035</u>	INT	GE FANUC PLC	%AI0035	0	SET POINT. SEÑAL SIMULADA DESDE INTOUCH PARA SELECCIONAR EL NIVEL DE LUZ EN HABITACIÓN 1
<u>Al0036</u>	INT	GE FANUC PLC	%AI0036	0	SENSOR DE TEMPERATURA. SENSOR DE TEMPERATURA ANALÓGICO UBICADA EN LA HABITACIÓN 1
<u>Al0037</u>	INT	GE FANUC PLC	%AI0037	0	SET POIN+1. SEÑAL SIMULADA DESDE INTOUCH PARA EL CONTROL DEL NIVEL SUPERIOR DE TEMPERATURA EN HABITACIÓN 1
<u>Al0038</u>	INT	GE FANUC PLC	%AI0038	0	SET POINT-2. SEÑAL SIMULADA DESDE INTOUCH PARA EL CONTROL DEL NIVEL INFERIOR DE TEMPERATURA EN HABITACIÓN 1
<u>Al0039</u>	INT	GE FANUC PLC	%AI0039	0	SENSOR LUZ 2. SENSOR DE LUZ ANALÓGICO UBICADO EN LA HABITACIÓN 2
<u>Al0040</u>	INT	GE FANUC PLC	%AI0040	0	SET POINT 2. SEÑAL SIMULADA DESDE INTOUCH PARA SELECCIONAR EL NIVEL DE LUZ EN HABITACIÓN 2
<u>Al0041</u>	INT	GE FANUC PLC	%Al0041	0	SENSOR DE TEMPERATURA 2. SENSOR DE TEMPERATURA ANALÓGICO UBICADA EN LA HABITACIÓN 2
<u>Al0042</u>	INT	GE FANUC PLC	%AI0042	0	SET POINT+1 2. SEÑAL SIMULADA DESDE INTOUCH PARA EL CONTROL DEL NIVEL SUPERIOR DE TEMPERATURA EN HABITACIÓN 2
<u>Al0043</u>	INT	GE FANUC PLC	%Al0043	0	SET POINT-2 2. SEÑAL SIMULADA DESDE INTOUCH PARA EL CONTROL DEL NIVEL INFERIOR DE TEMPERATURA EN HABITACIÓN 2
<u>Al0044</u>	INT	GE FANUC PLC	%AI0044	0	SENSOR LUZ 3. SENSOR DE LUZ ANALÓGICO UBICADO EN LA HABITACIÓN 3
<u>Al0045</u>	INT	GE FANUC PLC	%Al0045	0	SET POINT 3. SEÑAL SIMULADA DESDE INTOUCH PARA SELECCIONAR EL NIVEL DE LUZ EN HABITACIÓN 3
<u>Al0046</u>	INT	GE FANUC PLC	%AI0046	0	SENSOR DE TEMPERATURA 3. SENSOR DE TEMPERATURA ANALÓGICO UBICADA EN LA HABITACIÓN 3
<u>Al0047</u>	INT	GE FANUC PLC	%AI0047	0	SET POINT+1 3. SEÑAL SIMULADA DESDE INTOUCH PARA EL CONTROL DEL NIVEL SUPERIOR DE TEMPERATURA EN HABITACIÓN 3
<u>Al0048</u>	INT	GE FANUC PLC	%AI0048	0	SET POINT-2 3. SEÑAL SIMULADA DESDE INTOUCH PARA EL CONTROL DEL NIVEL INFERIOR DE TEMPERATURA EN HABITACIÓN 3
<u>Al0049</u>	INT	GE FANUC PLC	%AI0049	0	SENSOR LUZ 4. SENSOR DE LUZ ANALÓGICO UBICADO EN LA HABITACIÓN 4
<u>AI0050</u>	INT	GE FANUC PLC	%AI0050	0	SET POINT 4. SEÑAL SIMULADA DESDE INTOUCH PARA SELECCIONAR EL NIVEL DE LUZ EN HABITACIÓN 4
<u>Al0051</u>	INT	GE FANUC PLC	%AI0051	0	SENSOR DE TEMPERATURA 4. SENSOR DE TEMPERATURA ANALÓGICO UBICADA EN LA HABITACIÓN 4
<u>AI0052</u>	INT	GE FANUC PLC	%AI0052	0	SET POINT+1 4. SEÑAL SIMULADA DESDE INTOUCH PARA EL CONTROL DEL NIVEL SUPERIOR DE TEMPERATURA EN HABITACIÓN 4
<u>Al0053</u>	INT	GE FANUC PLC	%AI0053	0	SET POINT-2 4. SEÑAL SIMULADA DESDE INTOUCH PARA EL CONTROL DEL NIVEL INFERIOR DE TEMPERATURA EN HABITACIÓN 4
<u>Al0054</u>	INT	GE FANUC PLC	%AI0054	0	SENSOR LUZ 5. SENSOR DE LUZ ANALÓGICO UBICADO EN LA HABITACIÓN 5
AI0055	INT	GE FANUC	%AI0055	0	SET POINT 5.

		PLC			SEÑAL SIMULADA DESDE INTOUCH PARA SELECCIONAR EL NIVEL DE LUZ EN HABITACIÓN 5
<u>AI0056</u>	INT	GE FANUC PLC	%AI0056	0	SENSOR DE TEMPERATURA 5. SENSOR DE TEMPERATURA ANALÓGICO UBICADA EN LA HABITACIÓN 5
<u>Al0057</u>	INT	GE FANUC PLC	%AI0057	0	SET POINT+1 5. SEÑAL SIMULADA DESDE INTOUCH PARA EL CONTROL DEL NIVEL SUPERIOR DE TEMPERATURA EN HABITACIÓN 5
<u>Al0058</u>	INT	GE FANUC PLC	%AI0058	0	SET POINT-2 5. SEÑAL SIMULADA DESDE INTOUCH PARA EL CONTROL DEL NIVEL INFERIOR DE TEMPERATURA EN HABITACIÓN 5
<u>100017</u>	BOOL	GE FANUC PLC	%100017	Off	SI_MANUAL. SELECTOR DE TRES POSICIONES, EN POSICIÓN MANUAL PARA EL SISTEMA DE BOMBEO
<u>100018</u>	BOOL	GE FANUC PLC	%100018	Off	SI_AUT. SELECTOR DE TRES POSICIONES, EN POSICIÓN AUTOMÁTICO PARA EL SISTEMA DE BOMBEO
<u>100019</u>	BOOL	GE FANUC PLC	%100019	Off	SEC_1 (F1). SELECTOR DE TRES POSICIONES, PARA LA SECUENCIA F1 DEL FUNCIONAMIENTO DE BOMBAS
100020	BOOL	GE FANUC PLC	%100020	Off	SEC_2 (F2). SELECTOR DE TRES POSICIONES, PARA LA SECUENCIA F2 DEL FUNCIONAMIENTO DE BOMBAS
<u>100021</u>	BOOL	GE FANUC PLC	%100021	Off	SEC_3 (F3). SELECTOR DE TRES POSICIONES, PARA LA SECUENCIA F3 DEL FUNCIONAMIENTO DE BOMBAS
100022	BOOL	GE FANUC PLC	%100022	Off	ON_CONTACTO B1. BOTONERA PARA SELECCIÓN DE TRABAJO DE LA BOMBA1 CON EL VARIADOR
100023	BOOL	GE FANUC PLC	%100023	Off	ON_CONTACTO B2. BOTONERA PARA SELECCIÓN DE TRABAJO DE LA BOMBA2 CON EL VARIADOR
100024	BOOL	GE FANUC PLC	%100024	Off	ON_CONTACTO B3. BOTONERA PARA SELECCIÓN DE TRABAJO DE LA BOMBA3 CON EL VARIADOR
100025	BOOL	GE FANUC PLC	%100025	Off	ON_VARIADOR M. BOTONERA DE ENCENDIDO DEL VARIADOR EN FORMA MANUAL
<u>100026</u>	BOOL	GE FANUC PLC	%100026	Off	OFF_VARIADOR M. BOTONERA DE APAGADO DEL VARIADOR EN FORMA MANUAL
100027	BOOL	GE FANUC PLC	%100027	Off	OFF_CONTACTOS BOMBAS. BOTONERA PARA DESHABILITAR EL FUNCIONAMIENTO DE LAS BOMBAS CON EL VARIADOR
100028	BOOL	GE FANUC PLC	%100028	Off	ON/OFF_BOMBA JOCKYE. SELECTOR PARA ENCENDIDO Y APAGADO DE LA BOMBA JOCKYE
100029	BOOL	GE FANUC PLC	%100029	Off	RESET_FALLA MANUAL. BOTONERA PARA EL RESETEO DE FALLAS PARA EL MODO MANUAL
100030	BOOL	GE FANUC PLC	%100030	Off	RESET MANUAL_VARIADOR. BOTONERA PARA EL RESETEO DEL VARIADOR EN FORMA MANUAL
<u>100031</u>	BOOL	GE FANUC PLC	%100031	Off	ON_SISTEMA AUTOMATICO. BOTONERA PARA INICIO DEL SISTEMA DE BOMBEO EN MODO AUTOMÁTICO
100032	BOOL	GE FANUC PLC	%100032	Off	RESET_FALLA AUTOMATICO. BOTONERA PARA EL RESETEO DE FALLAS PARA EL MODO AUTOMÁTICO
100033	BOOL	GE FANUC PLC	%100033	Off	MARCHA DIRECTA B1. BOTONERA DE MARCHA EN FORMA DIRECTA DE LA BOMBA1 (ENCENDIDO MANUAL)
100034	BOOL	GE FANUC PLC	%100034	Off	PARO DIRECTO B1. BOTONERA DE PARO EN FORMA DIRECTA DE LA BOMBA1 (ENCENDIDO MANUAL)
100035	BOOL	GE FANUC PLC	%100035	Off	MARCHA DIRECTA B2. BOTONERA DE MARCHA EN FORMA DIRECTA DE LA BOMBA2 (ENCENDIDO MANUAL)
<u>100036</u>	BOOL	GE FANUC PLC	%100036	Off	PARO DIRECTO B2. BOTONERA DE PARO EN FORMA DIRECTA DE LA BOMBA2 (ENCENDIDO MANUAL)
100037	BOOL	GE FANUC PLC	%100037	Off	MARCHA DIRECTA B3. BOTONERA DE MARCHA EN FORMA DIRECTA DE LA BOMBA3 (ENCENDIDO MANUAL)
100038	BOOL	GE FANUC PLC	%100038	Off	PARO DIRECTO B3. BOTONERA DE PARO EN FORMA DIRECTA DE LA BOMBA3 (ENCENDIDO MANUAL)
100039	BOOL	GE FANUC PLC	%100039	Off	SELECCIÓN OPERACION BOMBAS EN FALLA. SELECTOR PARA LA OPERACIÓN DE BOMBAS EN FALLAS
<u>100040</u>	BOOL	GE FANUC PLC	%100040	Off	TERMO MAGNETICO VARIADOR. CONTACTO DE SALIDA DEL VARIADOR DEL FRECUENCIA POR FALLA TÉRMICA DE LA

					ВОМВА
100041	BOOL	GE FANUC PLC	%l00041	Off	TERMO MAGNETICO BOMA1. TERMO MAGNÉTICO PARA LA BOMBA1
100042	BOOL	GE FANUC PLC	%100042	Off	TERMO MAGNETICO BOMBA2. TERMO MAGNÉTICO PARA LA BOMBA2
100043	BOOL	GE FANUC PLC	%100043	Off	TERMO MAGNETICO BOMBA3. TERMO MAGNÉTICO PARA LA BOMBA3
100044	BOOL	GE FANUC PLC	%100044	Off	FALLA_VARIADOR. CONTACTO DE SALIDA DEL VARIADOR CUANDO SE PRODUCE UNA FALLA DE ESTE EQUIPO
<u>100045</u>	BOOL	GE FANUC PLC	%100045	Off	PRESOSTATO. PRESOSTATO DEL SISTEMA DE BOMBEO
100046	BOOL	GE FANUC PLC	%100046	Off	SUP_GEN. SUPERVISOR DE VOLTAJE PARA LAS LÍNEAS DEL GENERADOR
100047	BOOL	GE FANUC PLC	%100047	Off	ENC_GEN_VACIO. SELECTOR PARA EL ENCENDIDO DEL GENERADOR EN VACÍO
100048	BOOL	GE FANUC PLC	%100048	Off	RESET_SIST. BOTONERA PARA EL RESETEO DEL SISTEMA DE TRANSFERENCIA
100049	BOOL	GE FANUC PLC	%100049	Off	S_MANUAL. SELECTOR DE TRES POSICIONES, EN POSICIÓN MANUAL PARA EL SISTEMA DE TRANSFERENCIA
100050	BOOL	GE FANUC PLC	%100050	Off	S_AUT. SELECTOR DE TRES POSICIONES, EN POSICIÓN AUTOMÁTICO PARA EL SISTEMA DE TRANSFERENCIA
100051	BOOL	GE FANUC PLC	%100051	Off	M_CONT_EEE. BOTONERA PARA ENERGIZAR EL CONTACTOR DE TRANSFERENCIA PARA EEE
100052	BOOL	GE FANUC PLC	%100052	Off	M_CONT_GEN. BOTONERA PARA ENERGIZAR EL CONTACTOR DE TRANSFERENCIA PARA GENERADOR
100053	BOOL	GE FANUC PLC	%100053	Off	P_CONT_EEE. BOTONERA PARA DESENERGIZAR EL CONTACTOR DE TRANSFERENCIA PARA EEE
100054	BOOL	GE FANUC PLC	%100054	Off	P_CONT_GEN. BOTONERA PARA DESENERGIZAR EL CONTACTOR DE TRANSFERENCIA PARA GENERADOR
100055	BOOL	GE FANUC PLC	%100055	Off	SUP_EEE. SUPERVISOR DE VOLTAJE PARA LAS LÍNEAS DE LA EEE
100056	BOOL	GE FANUC PLC	%100056	Off	SIM_FALLA_GEN. ENTRADA VIRTUAL PARA SIMULAR FALLA DEL GENERADOR
100057	BOOL	GE FANUC PLC	%100057	Off	RELE TARJETA EMPLEADO. ENTRADA POR RELÉ PROVENIENTE DEL TARJETERO EN LA HABITACIÓN PARA CASO EMPLEADO EN HABITACIÓN 1
100058	BOOL	GE FANUC PLC	%100058	Off	RELE TARJETA CLIENTE. ENTRADA POR RELÉ PROVENIENTE DEL TARJETERO EN LA HABITACIÓN PARA CASO CLIENTE EN HABITACIÓN 1
100059	BOOL	GE FANUC PLC	%100059	Off	ON/OFF LUZ HABITACION MANUAL. PULSADOR PARA ENCENDIDO Y APAGADO DE LAS LUMINARIAS EN LA HABITACIÓN 1
100060	BOOL	GE FANUC PLC	%100060	Off	SENSOR PRESENCIA HABITACION. SENSOR DUAL DE PRESENCIA PIR-ULTRASONICO EN LA HABITACIÓN 1
100061	BOOL	GE FANUC PLC	%100061	Off	SENSOR PRESENCIA BAÑO. SENSOR DE PRESENCIA PIR EN EL BAÑO DE LA HABITACIÓN 1
100062	BOOL	GE FANUC PLC	%100062	Off	CONTACTO MAGNÉTICO PUERTA. CONTACTO MAGNÉTICO DE LA PUERTA EN LA HABITACIÓN 1
100063	BOOL	GE FANUC PLC	%100063	Off	AYUDA BAÑO. PULSADOR DE EMERGENCIA MEDICA UBICADA EN EL BAÑO DE LA HABITACIÓN 1
100064	BOOL	GE FANUC PLC	%100064	Off	AYUDA CAMA. PULSADOR DE EMERGENCIA UBICADA EN LA CABECERA DE LA CAMA EN LA HABITACIÓN 1
100065	BOOL	GE FANUC PLC	%100065	Off	TERMOSTATO. TERMOSTATO UBICADO EN LA HABITACIÓN 1
100066	BOOL	GE FANUC PLC	%100066	Off	ACTIVA SIEMPRE COMPARADOR DE TEMPERATURA. ENTRADA DE MEMORIA QUE ACTIVA EL COMPARADOR INTERNO DE TEMPERATURA EN EL PLC EN LA HABITACIÓN 1
100067	BOOL	GE FANUC PLC	%100067	Off	ON/OFF FAN-COIL SIMULACION INTOUCH. ENTRADA ACTIVADA DESDE INTOUCH PARA EL ENCENDIDO / APAGADO DEL

					VENTILADOR Y VÁLVULA DEL FAN-COIL EN LA HABITACIÓN 1
		GE FANUC		<u> </u>	VENTILABOR T VALVOLA BLE TAR-OOIL EN LA TIABITACION T
100068	BOOL	PLC	%100068	Off	SIMULACION INTOUCH POR CAMBIO TEMPERATURA.
100069	BOOL	GE FANUC PLC	%100069	Off	ON/OFF VENT. SIMULACION TEMP. INTOUCH. ENTRADA ACTIVADA DESDE INTOUCH PARA EL ENCENDIDO / APAGADO DEL VENTILADOR DEL FAN-COIL EN LA HABITACIÓN 1
100070	BOOL	GE FANUC PLC	%100070	Off	DESACTIVA ALARMA MÉDICA. PULSADOR PARA DESACTIVAR LA ALARMA MÉDICA DE LA HABITACIÓN 1
<u>100071</u>	BOOL	GE FANUC PLC	%100071	Off	TARJETA CLIENTE VIRTUAL. ENTRADA SIMULADA DESDE INTOUCH DEL TARJETERO EN LA HABITACIÓN 1
100072	BOOL	GE FANUC PLC	%100072	Off	TERMOSTATO VIRTUAL. ENTRADA SIMULADA DESDE INTOUCH EN CASO DE FALLA PARA EL CONTROL DE TEMPERATURA EN LA HABITACIÓN 1
100073	BOOL	GE FANUC PLC	%100073	Off	SENSOR PRESENCIA PASILLO. SENSOR DUAL DE PRESENCIA PIR-ULTRASONICO EN EL PASILLO DEL PISO 1
100074	BOOL	GE FANUC PLC	%100074	Off	SENSOR FUEGO. SENSOR DE HUMO EN LA HABITACIÓN 1
100075	BOOL	GE FANUC PLC	%100075	Off	OFF ALARMA FUEGO. PULSADOR PARA DESACTIVAR LA ALARMA DE FUEGO EN LA HABITACIÓN 1
100076	BOOL	GE FANUC PLC	%100076	Off	RELE TARJETA EMPLEADO2. ENTRADA POR RELÉ PROVENIENTE DEL TARJETERO EN LA HABITACIÓN PARA CASO EMPLEADO EN HABITACIÓN 2
100077	BOOL	GE FANUC PLC	%100077	Off	RELE TARJETA CLIENTE2. ENTRADA POR RELÉ PROVENIENTE DEL TARJETERO EN LA HABITACIÓN PARA CASO CLIENTE EN HABITACIÓN 2
100078	BOOL	GE FANUC PLC	%100078	Off	ON/OFF LUZ HABITACION MANUAL2. PULSADOR PARA ENCENDIDO Y APAGADO DE LAS LUMINARIAS EN LA HABITACIÓN 2
100079	BOOL	GE FANUC PLC	%100079	Off	SENSOR PRESENCIA HABITACION2. SENSOR DUAL DE PRESENCIA PIR-ULTRASONICO EN LA HABITACIÓN 2
100080	BOOL	GE FANUC PLC	%100080	Off	SENSOR PRESENCIA BAÑO2. SENSOR DE PRESENCIA PIR EN EL BAÑO DE LA HABITACIÓN 2
<u>100081</u>	BOOL	GE FANUC PLC	%100081	Off	CONTACTO MAGNETICO PUERTA2. CONTACTO MAGNÉTICO DE LA PUERTA EN LA HABITACIÓN 2
100082	BOOL	GE FANUC PLC	%100082	Off	AYUDA BAÑO2. PULSADOR DE EMERGENCIA MEDICA UBICADA EN EL BAÑO DE LA HABITACIÓN 2
100083	BOOL	GE FANUC PLC	%100083	Off	AYUDA CAMA2. PULSADOR DE EMERGENCIA UBICADA EN LA CABECERA DE LA CAMA EN LA HABITACIÓN 2
100084	BOOL	GE FANUC PLC	%100084	Off	TERMOSTATO2. TERMOSTATO UBICADO EN LA HABITACIÓN 2
100085	BOOL	GE FANUC PLC	%100085	Off	ACTIVA SIEMPRE COMPARADOR DE TEMPERATURA2. ENTRADA DE MEMORIA QUE ACTIVA EL COMPARADOR INTERNO DE TEMPERATURA EN EL PLC EN LA HABITACIÓN 2
100086	BOOL	GE FANUC PLC	%100086	Off	ON/OFF FAN-COIL SIMULACION INTOUCH2. ENTRADA ACTIVADA DESDE INTOUCH PARA EL ENCENDIDO / APAGADO DEL VENTILADOR Y VÁLVULA DEL FAN-COIL EN LA HABITACIÓN 2
100087	BOOL	GE FANUC PLC	%100087	Off	SIMULACION INTOUCH POR CAMBIO TEMPERATURA2.
100088	BOOL	GE FANUC PLC	%100088	Off	ON/OFF VENT. SIMULACION TEMP. INTOUCH2. ENTRADA ACTIVADA DESDE INTOUCH PARA EL ENCENDIDO / APAGADO DEL VENTILADOR DEL FAN-COIL EN LA HABITACIÓN 2
100089	BOOL	GE FANUC PLC	%100089	Off	DESACTIVA ALARMA MEDICA2. PULSADOR PARA DESACTIVAR LA ALARMA MÉDICA DE LA HABITACIÓN 2
100090	BOOL	GE FANUC PLC	%100090	Off	TARJETA CLIENTE VIRTUAL2. ENTRADA SIMULADA DESDE INTOUCH DEL TARJETERO EN LA HABITACIÓN 2
<u>100091</u>	BOOL	GE FANUC PLC	%100091	Off	TERMOSTATO VIRTUAL2. ENTRADA SIMULADA DESDE INTOUCH EN CASO DE FALLA PARA EL CONTROL DE TEMPERATURA EN LA HABITACIÓN 2
100092	BOOL	GE FANUC PLC	%100092	Off	SENSOR PRESENCIA PASILLO2. SENSOR DUAL DE PRESENCIA PIR-ULTRASONICO EN EL PASILLO DEL PISO 2
100093	BOOL	GE FANUC PLC	%100093	Off	SENSOR FUEGO2. SENSOR DE HUMO EN LA HABITACIÓN 2
100094	BOOL	GE FANUC PLC	%100094	Off	OFF ALARMA FUEGO2. PULSADOR PARA DESACTIVAR LA ALARMA DE FUEGO EN LA HABITACIÓN 2

				1	
<u>100095</u>	BOOL	GE FANUC PLC	%100095	Off	RELE TARJETA EMPLEADO3. ENTRADA POR RELÉ PROVENIENTE DEL TARJETERO EN LA HABITACIÓN PARA CASO EMPLEADO EN HABITACIÓN 3
100096	BOOL	GE FANUC PLC	%100096	Off	RELE TARJETA CLIENTE3. ENTRADA POR RELÉ PROVENIENTE DEL TARJETERO EN LA HABITACIÓN PARA CASO CLIENTE EN HABITACIÓN 3
100097	BOOL	GE FANUC PLC	%100097	Off	ON/OFF LUZ HABITACION MANUAL3. PULSADOR PARA ENCENDIDO Y APAGADO DE LAS LUMINARIAS EN LA HABITACIÓN 3
100098	BOOL	GE FANUC PLC	%100098	Off	SENSOR PRESENCIA HABITACION3. SENSOR DUAL DE PRESENCIA PIR-ULTRASONICO EN LA HABITACIÓN 3
100099	BOOL	GE FANUC PLC	%100099	Off	SENSOR PRESENCIA BAÑO3. SENSOR DE PRESENCIA PIR EN EL BAÑO DE LA HABITACIÓN 3
100100	BOOL	GE FANUC PLC	%100100	Off	CONTACTO MAGNETICO PUERTA3. CONTACTO MAGNÉTICO DE LA PUERTA EN LA HABITACIÓN 3
<u>100101</u>	BOOL	GE FANUC PLC	%100101	Off	AYUDA BAÑO3. PULSADOR DE EMERGENCIA MEDICA UBICADA EN EL BAÑO DE LA HABITACIÓN 3
100102	BOOL	GE FANUC PLC	%100102	Off	AYUDA CAMA3. PULSADOR DE EMERGENCIA UBICADA EN LA CABECERA DE LA CAMA EN LA HABITACIÓN 3
<u>100103</u>	BOOL	GE FANUC PLC	%100103	Off	TERMOSTATO3. TERMOSTATO UBICADO EN LA HABITACIÓN 3
<u>100104</u>	BOOL	GE FANUC PLC	%I00104	Off	ACTIVA SIEMPRE COMPARADOR DE TEMPERATURA3. ENTRADA DE MEMORIA QUE ACTIVA EL COMPARADOR INTERNO DE TEMPERATURA EN EL PLC EN LA HABITACIÓN 3
<u>100105</u>	BOOL	GE FANUC PLC	%l00105	Off	ON/OFF FAN-COIL SIMULACION INTOUCH3. ENTRADA ACTIVADA DESDE INTOUCH PARA EL ENCENDIDO / APAGADO DEL VENTILADOR Y VÁLVULA DEL FAN-COIL EN LA HABITACIÓN 3
100106	BOOL	GE FANUC PLC	%I00106	Off	SIMULACION INTOUCH POR CAMBIO EN TEMPERATURA3
<u>100107</u>	BOOL	GE FANUC PLC	%l00107	Off	ON/OFF VENT. SIMULACION TEMP. INTOUCH3. ENTRADA ACTIVADA DESDE INTOUCH PARA EL ENCENDIDO / APAGADO DEL VENTILADOR DEL FAN-COIL EN LA HABITACIÓN 3
100108	BOOL	GE FANUC PLC	%I00108	Off	DESACTIVA ALARMA MEDICA3. PULSADOR PARA DESACTIVAR LA ALARMA MÉDICA DE LA HABITACIÓN 3
<u>100109</u>	BOOL	GE FANUC PLC	%100109	Off	TARJETA CLIENTE VIRTUAL3. ENTRADA SIMULADA DESDE INTOUCH DEL TARJETERO EN LA HABITACIÓN 3
<u>100110</u>	BOOL	GE FANUC PLC	%100110	Off	TERMOSTATO VIRTUAL3. ENTRADA SIMULADA DESDE INTOUCH EN CASO DE FALLA PARA EL CONTROL DE TEMPERATURA EN LA HABITACIÓN 3
<u>100111</u>	BOOL	GE FANUC PLC	%100111	Off	SENSOR PRESENCIA PASILLO3. SENSOR DUAL DE PRESENCIA PIR-ULTRASONICO EN EL PASILLO DEL PISO 3
<u>100112</u>	BOOL	GE FANUC PLC	%100112	Off	SENSOR FUEGO3. SENSOR DE HUMO EN LA HABITACIÓN 3
<u>100113</u>	BOOL	GE FANUC PLC	%100113	Off	OFF ALARMA FUEGO3. PULSADOR PARA DESACTIVAR LA ALARMA DE FUEGO EN LA HABITACIÓN 3
<u>100114</u>	BOOL	GE FANUC PLC	%l00114	Off	RELE TARJETA EMPLEADO4. ENTRADA POR RELÉ PROVENIENTE DEL TARJETERO EN LA HABITACIÓN PARA CASO EMPLEADO EN HABITACIÓN 4
<u>100115</u>	BOOL	GE FANUC PLC	%I00115	Off	RELE TARJETA CLIENTE4. ENTRADA POR RELÉ PROVENIENTE DEL TARJETERO EN LA HABITACIÓN PARA CASO CLIENTE EN HABITACIÓN 4
<u>100116</u>	BOOL	GE FANUC PLC	%l00116	Off	ON/OFF LUZ HABITACION MANUAL4. PULSADOR PARA ENCENDIDO Y APAGADO DE LAS LUMINARIAS EN LA HABITACIÓN 4
<u>100117</u>	BOOL	GE FANUC PLC	%100117	Off	SENSOR PRESENCIA HABITACION4. SENSOR DUAL DE PRESENCIA PIR-ULTRASONICO EN LA HABITACIÓN 4
<u>100118</u>	BOOL	GE FANUC PLC	%100118	Off	SENSOR PRESENCIA BAÑO4. SENSOR DE PRESENCIA PIR EN EL BAÑO DE LA HABITACIÓN 4
<u>100119</u>	BOOL	GE FANUC PLC	%100119	Off	CONTACTO MAGNETICO PUERTA4. CONTACTO MAGNÉTICO DE LA PUERTA EN LA HABITACIÓN 4
100120	BOOL	GE FANUC PLC	%I00120	Off	AYUDA BAÑO4. PULSADOR DE EMERGENCIA MEDICA UBICADA EN EL BAÑO DE LA HABITACIÓN 4
<u>100121</u>	BOOL	GE FANUC PLC	%I00121	Off	AYUDA CAMA4. PULSADOR DE EMERGENCIA UBICADA EN LA CABECERA DE LA CAMA EN LA HABITACIÓN 4

100122	BOOL	GE FANUC PLC	%I00122	Off	TERMOSTATO4. TERMOSTATO UBICADO EN LA HABITACIÓN 4
100123	BOOL	GE FANUC PLC	%100123	Off	ACTIVA SIEMPRE COMPARADOR DE TEMPERATURA4. ENTRADA DE MEMORIA QUE ACTIVA EL COMPARADOR INTERNO DE TEMPERATURA EN EL PLC EN LA HABITACIÓN 4
100124	BOOL	GE FANUC PLC	%100124	Off	ON/OFF FAN-COIL SIMULACION INTOUCH4. ENTRADA ACTIVADA DESDE INTOUCH PARA EL ENCENDIDO / APAGADO DEL VENTILADOR Y VÁLVULA DEL FAN-COIL EN LA HABITACIÓN 4
<u>100125</u>	BOOL	GE FANUC PLC	%l00125	Off	SIMULACION INTOUCH POR CAMBIO EN TEMPERATURA4.
<u>100126</u>	BOOL	GE FANUC PLC	%I00126	Off	ON/OFF VENT. SIMULACION TEMP. INTOUCH4. ENTRADA ACTIVADA DESDE INTOUCH PARA EL ENCENDIDO / APAGADO DEL VENTILADOR DEL FAN-COIL EN LA HABITACIÓN 4
100127	BOOL	GE FANUC PLC	%100127	Off	DESACTIVA ALARMA MEDICA4. PULSADOR PARA DESACTIVAR LA ALARMA MÉDICA DE LA HABITACIÓN 4
100128	BOOL	GE FANUC PLC	%100128	Off	TARJETA CLIENTE VIRTUAL4. ENTRADA SIMULADA DESDE INTOUCH DEL TARJETERO EN LA HABITACIÓN 4
100129	BOOL	GE FANUC PLC	%100129	Off	TERMOSTATO VIRTUAL4. ENTRADA SIMULADA DESDE INTOUCH EN CASO DE FALLA PARA EL CONTROL DE TEMPERATURA EN LA HABITACIÓN 4
<u>100130</u>	BOOL	GE FANUC PLC	%100130	Off	SENSOR PRESENCIA PASILLO4. SENSOR DUAL DE PRESENCIA PIR-ULTRASONICO EN EL PASILLO DEL PISO 4
<u>100131</u>	BOOL	GE FANUC PLC	%100131	Off	SENSOR FUEGO4. SENSOR DE HUMO EN LA HABITACIÓN 4
100132	BOOL	GE FANUC PLC	%100132	Off	OFF ALARMA FUEGO4. PULSADOR PARA DESACTIVAR LA ALARMA DE FUEGO EN LA HABITACIÓN 4
<u>100133</u>	BOOL	GE FANUC PLC	%l00133	Off	RELE TARJETA EMPLEADO5. ENTRADA POR RELÉ PROVENIENTE DEL TARJETERO EN LA HABITACIÓN PARA CASC EMPLEADO EN HABITACIÓN 5
100134	BOOL	GE FANUC PLC	%100134	Off	RELE TARJETA CLIENTE5. ENTRADA POR RELÉ PROVENIENTE DEL TARJETERO EN LA HABITACIÓN PARA CASC CLIENTE EN HABITACIÓN 5
<u>100135</u>	BOOL	GE FANUC PLC	%I00135	Off	ON/OFF LUZ HABITACION MANUAL5. PULSADOR PARA ENCENDIDO Y APAGADO DE LAS LUMINARIAS EN LA HABITACIÓN
100136	BOOL	GE FANUC PLC	%I00136	Off	SENSOR PRESENCIA HABITACION5. SENSOR DUAL DE PRESENCIA PIR-ULTRASONICO EN LA HABITACIÓN 5
100137	BOOL	GE FANUC PLC	%100137	Off	SENSOR PRESENCIA BAÑO5. SENSOR DE PRESENCIA PIR EN EL BAÑO DE LA HABITACIÓN 5
<u>100138</u>	BOOL	GE FANUC PLC	%100138	Off	CONTACTO MAGNETICO PUERTA5. CONTACTO MAGNÉTICO DE LA PUERTA EN LA HABITACIÓN 5
100139	BOOL	GE FANUC PLC	%100139	Off	AYUDA BAÑO5. PULSADOR DE EMERGENCIA MEDICA UBICADA EN EL BAÑO DE LA HABITACIÓN 5
<u>100140</u>	BOOL	GE FANUC PLC	%I00140	Off	AYUDA CAMA5. PULSADOR DE EMERGENCIA UBICADA EN LA CABECERA DE LA CAMA EN LA HABITACIÓN 5
<u>100141</u>	BOOL	GE FANUC PLC	%100141	Off	TERMOSTATO5. TERMOSTATO UBICADO EN LA HABITACIÓN 5
<u>100142</u>	BOOL	GE FANUC PLC	%I00142	Off	ACTIVA SIEMPRE COMPARADOR DE TEMPERATURA5. ENTRADA DE MEMORIA QUE ACTIVA EL COMPARADOR INTERNO DE TEMPERATURA EN EL PLC EN LA HABITACIÓN 5
100143	BOOL	GE FANUC PLC	%100143	Off	ON/OFF FAN-COIL SIMULACION INTOUCH5. ENTRADA ACTIVADA DESDE INTOUCH PARA EL ENCENDIDO / APAGADO DEL VENTILADOR Y VÁLVULA DEL FAN-COIL EN LA HABITACIÓN 5
<u>100144</u>	BOOL	GE FANUC PLC	%I00144	Off	SIMULACION INTOUCH POR CAMBIO TEMPERATURA5
<u>100145</u>	BOOL	GE FANUC PLC	%100145	Off	ON/OFF VENT. SIMULACION TEMP. INTOUCH5. ENTRADA ACTIVADA DESDE INTOUCH PARA EL ENCENDIDO / APAGADO DEL VENTILADOR DEL FAN-COIL EN LA HABITACIÓN 5
<u>100146</u>	BOOL	GE FANUC PLC	%I00146	Off	DESACTIVA ALARMA MEDICA5. PULSADOR PARA DESACTIVAR LA ALARMA MÉDICA DE LA HABITACIÓN 5
<u>100147</u>	BOOL	GE FANUC PLC	%I00147	Off	TARJETA CLIENTE VIRTUAL5. ENTRADA SIMULADA DESDE INTOUCH DEL TARJETERO EN LA HABITACIÓN 5
<u>100148</u>	BOOL	GE FANUC PLC	%100148	Off	TERMOSTATO VIRTUAL5. ENTRADA SIMULADA DESDE INTOUCH EN CASO DE FALLA PARA EL CONTROL DE TEMPERATURA EN LA HABITACIÓN 5

		GE FANUC			SENSOR PRESENCIA PASILLO5.
<u>100149</u>	BOOL	PLC	%100149	Off	SENSOR DUAL DE PRESENCIA PIR-ULTRASONICO EN EL PASILLO DEL PISO 5
<u>100150</u>	BOOL	GE FANUC PLC	%100150	Off	SENSOR FUEGO5. SENSOR DE HUMO EN LA HABITACIÓN 5
<u>100151</u>	BOOL	GE FANUC PLC	%100151	Off	OFF ALARMA FUEGO5. PULSADOR PARA DESACTIVAR LA ALARMA DE FUEGO EN LA HABITACIÓN 5
M00001	BOOL	GE FANUC PLC	%M00001	Off	INICIO CIMPLICITY
M00002	BOOL	GE FANUC PLC	%M00002	Off	HABILITA FUNCIONAMIENTO SISTEMA BOMBEO AUTOMÁTICO
M00003	BOOL	GE FANUC PLC	%M00003	Off	DESABILITA LAS SECUENCIA 2 Y 3 DE BOMBAS
M00004	BOOL	GE FANUC PLC	%M00004	Off	DESABILITA LAS SECUENCIAS 1 Y 3 DE BOMBAS
M00005	BOOL	GE FANUC PLC	%M00005	Off	DESABILITA LAS SECUENCIAS 1 Y 2 DE BOMBAS
M00006	BOOL	GE FANUC PLC	%M00006	Off	PROTECCIÓN TÉRMICA DE VARIADOR PARA BOMBA1 EN SEC1
M00007	BOOL	GE FANUC PLC	%M00007	Off	TRABAJO POR ACTIVACIÓN DEL TÉRMICO DE BOMBA1
M00008	BOOL	GE FANUC PLC	%M00008	Off	TRABAJO POR ACTIVACIÓN DEL TÉRMICO DE BOMBA2
M00009	BOOL	GE FANUC PLC	%M00009	Off	TRABAJO POR ACTIVACIÓN DEL TÉRMICO DE BOMBA3
<u>M00010</u>	BOOL	GE FANUC PLC	%M00010	Off	INICIO SECUENCIA1 DE BOMBAS
M00011	BOOL	GE FANUC PLC	%M00011	Off	PULSO DE ACTIVACIÓN CONTACTOR DE BOMBA1 CON VARIADOR PARA SEC1
M00012	BOOL	GE FANUC PLC	%M00012	Off	ACTIVACIÓN CONTACTOR DE BOMBA1 CON VARIADOR PARA SEC1
M00013	BOOL	GE FANUC PLC	%M00013	Off	INDICA QUE LA PRESIÓN ES MENOR O IGUAL DE 57 PSI EN SEC1
M00014	BOOL	GE FANUC PLC	%M00014	Off	PULSO PARA ACTIVAR CONTACTOR BOMBA JOCKYE
M00015	BOOL	GE FANUC PLC	%M00015	Off	SEÑAL QUE ACTIVA CONTACTOR BOMBA JOCKYE EN SEC1
M00016	BOOL	GE FANUC PLC	%M00016	Off	INDICA QUE LA PRESIÓN ES MAYOR O IGUAL A 60 PSI EN SEC1
M00017	BOOL	GE FANUC PLC	%M00017	Off	PULSO PARA DESACTIVAR CONTACTOR DE BOMBA JOCKYE EN SEC1
M00018	BOOL	GE FANUC PLC	%M00018	Off	INDICA QUE LA PRESIÓN ES MENOR O IGUAL A 54 PSI EN SEC1
M00019	BOOL	GE FANUC PLC	%M00019	Off	PULSO QUE SE PRODUCE CUANDO LA PRESIÓN ES MENOR O IGUAL A 54 PSI EN SEC1
M00020	BOOL	GE FANUC PLC	%M00020	Off	DESABILITA CONTACTOR BOMBA JOCKYE EN SEC1
M00021	BOOL	GE FANUC PLC	%M00021	Off	SEÑAL PARA ENCENDER VARIADOR EN SEC1
M00022	BOOL	GE FANUC PLC	%M00022	Off	INDICA QUE LA FRECUENCIA ES MENOR O IGUAL A 10 HZ EN SEC1
M00023	BOOL	GE FANUC PLC	%M00023	Off	PULSO QUE DESACTIVA SEÑAL DE ENCENDIDO VARIADOR EN SEC1
M00024	BOOL	GE FANUC PLC	%M00024	Off	PULSO QUE SE PRODUCE CUANDO SE DESACTIVA SEAÑAL ENCENDIDO VARIADOR EN SEC1
M00025	BOOL	GE FANUC PLC	%M00025	Off	INDICA QUE SE HA APAGADO EL VARIADOR EN SEC1
M00026	BOOL	GE FANUC PLC	%M00026	Off	SEÑAL RESET DE VARIADOR AL INICIAR PROCESO EN SEC1
M00027	BOOL	GE FANUC PLC	%M00027	Off	INDICA SI LA FRECUENCIA ES MAYOR O IGUAL A 60 HZ EN SEC1
M00028	BOOL	GE FANUC	%M00028	Off	PULSO QUE SE ACTIVA A FRECUENCIA 60 HZ EN SEC1

		PLC			
M00029	BOOL	GE FANUC PLC	%M00029	Off	ACTIVA CONTACTOR BOMBA2 ENCENDIDO DIRECTO EN SEC1
M00030	BOOL	GE FANUC PLC	%M00030	Off	INDICA QUE LA PRESIÓN HA LLEGADO A 65 PSI EN SEC1
M00031	BOOL	GE FANUC PLC	%M00031	Off	DESACTIVA CONTACTOR BOMBA2 ENCENDIDO DIRECTO
M00032	BOOL	GE FANUC PLC	%M00032	Off	FUNCIONAMIENTO POR PROTECCIÓN TÉRMICA DE VARIADOR PARA BOMBA1
M00033	BOOL	GE FANUC PLC	%M00033	Off	PULSO QUE SE PRODUCE POR ACTIVACIÓN DE FALLA TÉRMICA EN SEC1
M00034	BOOL	GE FANUC PLC	%M00034	Off	IMPIDE QUE SE ENCIENDA EL VARIADOR EN SEC1
M00035	BOOL	GE FANUC PLC	%M00035	Off	ACTIVA LOS TEMPORIZADORES R7, R10, R13 Y DESACTIVA CONTACTOR BOMBA1 CON VARIADOR EN SEC1
M00036	BOOL	GE FANUC PLC	%M00036	Off	TEMPORIZADOR QUE ACTIVA CONTACTOR BOBMA3 CON VARIADOR EN SEC1
M00037	BOOL	GE FANUC PLC	%M00037	Off	TEMPORIZADOR QUE ACTIVA SEÑAL ENCENDIDO VARIADOR EN SEC1
M00038	BOOL	GE FANUC PLC	%M00038	Off	SEÑAL QUE ACTIVA CONTACTOR BOMBA3 CON VARIADOR EN SEC1
M00039	BOOL	GE FANUC PLC	%M00039	Off	PULSO QUE ACTIVA SEÑAL RESET VARIADOR EN SEC1
M00040	BOOL	GE FANUC PLC	%M00040	Off	PULSO QUE ACTIVA SEÑAL ENCENDIDO VARIADOR EN SEC1
M00041	BOOL	GE FANUC PLC	%M00041	Off	TRBAJO POR FALLA DEL TÉRMICO DE BOMBA2 EN SEC1
M00042	BOOL	GE FANUC PLC	%M00042	Off	PULSO PARA TRABAJO POR FALLA DE BOMBA2 EN SEC1
M00043	BOOL	GE FANUC PLC	%M00043	Off	DESABILITA CONTACTOR BOMBA2 Y ACTIVA CONTACTOR BOMBA3 TRABAJO DIRECTO EN SEC1
M00044	BOOL	GE FANUC PLC	%M00044	Off	SEÑAL PARA ACTIVAR CONTACTOR BOMBA2 TRABAJO DIRECTO EN SEC1
M00045	BOOL	GE FANUC PLC	%M00045	Off	SEÑAL PARA ACTIVAR CONTACTOR BOMBA3 TRABAJO DIRECTO EN SEC1
M00046	BOOL	GE FANUC PLC	%M00046	Off	INDICA FALLA DE BOMBA1 Y DESPUES BOMBA2 EN SEC1
M00047	BOOL	GE FANUC PLC	%M00047	Off	DESACTIVA CONTACTOR BOMBA2 TRABAJO DIRECTO EN SEC1
M00048	BOOL	GE FANUC PLC	%M00048	Off	INDICA FALLA DE BOMBA2 Y DESPUES BOMBA1 EN SEC1
M00049	BOOL	GE FANUC PLC	%M00049	Off	DESACTIVA CONTACTOR BOBMA3 TRABAJO DIRECTO EN SEC1
M00050	BOOL	GE FANUC PLC	%M00050	Off	INICIA SECUENCIA DE FALLA DE BOMBA1 EN SEC1
M00051	BOOL	GE FANUC PLC	%M00051	Off	INDICA QUE FALLO BOMBA1 Y DESPUES BOMBA3 EN SEC1
M00052	BOOL	GE FANUC PLC	%M00052	Off	ACTIVA SECUENCIA POR FALLA DE BOMBA1 Y BOMBA3 EN SEC1
M00053	BOOL	GE FANUC PLC	%M00053	Off	SE PRODUCE POR FALLA DE BOMBA1 Y BOMBA3 EN SEC1
M00054	BOOL	GE FANUC PLC	%M00054	Off	AUXILIAR PARA DESABILITAR ENCENDIDO VARIADOR EN SEC1
M00055	BOOL	GE FANUC PLC	%M00055	Off	DESABILITA ENCENDIDO DEL VARIADOR EN SEC1
M00056	BOOL	GE FANUC PLC	%M00056	Off	HABILITA TEMPORIZADORES ACTIVAR CONTATOR BOMBA2 Y ENCENDER VARIADOR EN SEC1
M00057	BOOL	GE FANUC PLC	%M00057	Off	TEMPORIZADOR PARA ACTIVAR CONTACTOR BOMBA2 CON VARIADOR EN SEC1
M00058	BOOL	GE FANUC PLC	%M00058	Off	TEMPORIZADOR QUE HABILITA ENCENDIDO VARIADOR EN SEC1

M00059	BOOL	GE FANUC PLC	%M00059	Off	SEÑAL QUE ACTIVA CONTACTOR BOMBA2 CON VARIADOR EN SEC1
<u>M00060</u>	BOOL	GE FANUC PLC	%M00060	Off	SEÑAL QUE HABILITA RESET VARIADOR EN SEC1
M00061	BOOL	GE FANUC PLC	%M00061	Off	SEÑAL QUE ACTIVA ENCENDIDO VARIADOR EN SEC1
M00062	BOOL	GE FANUC PLC	%M00062	Off	INDICA QUE FALLO BOMBA2 Y DESPUES BOMBA3 EN SEC1
M00063	BOOL	GE FANUC PLC	%M00063	Off	DESACTIVA CONTACTOR BOMBA3 TRABAJO DIRECTO EN SEC1
M00064	BOOL	GE FANUC PLC	%M00064	Off	INDICA QUE FALLO BOMBA1 DESPUES BOMBA2 Y DESPUES BOMBA3 EN SEC1
M00065	BOOL	GE FANUC PLC	%M00065	Off	INDICA QUE FALLO BOMA1 DESPUES BOMBA3 Y DESPUES BOMBA2 EN SEC1
M00066	BOOL	GE FANUC PLC	%M00066	Off	HABILITA INDICADOR DE FALLA DE BOMBA1 BOMBA3 Y BOMBA2 EN SEC1
M00067	BOOL	GE FANUC PLC	%M00067	Off	INDICA QUE FALLO BOMBA2 DESPUES BOMBA1 Y DESPUES BOMBA3 EN SEC1
M00068	BOOL	GE FANUC PLC	%M00068	Off	HABILITA INDICADOR DE FALLA DE BOMBA2 BOMBA1 Y BOMBA3 EN SEC1
M00069	BOOL	GE FANUC PLC	%M00069	Off	INDICA QUE FALLO BOMBA2 DESPUES BOMBA3 Y DESPUES BOMBA1 EN SEC1
<u>M00070</u>	BOOL	GE FANUC PLC	%M00070	Off	INDICA QUE HAN FALLADO LAS 3 BOMBAS EN SEC1
M00071	BOOL	GE FANUC PLC	%M00071	Off	TEMPORIZACIÓN 1 SEG PARA DESABILITAR SEÑAL RESET VARIADOR EN SEC1
M00072	BOOL	GE FANUC PLC	%M00072	Off	HABILITA EL COMPARADOR DE PRESION PARA MENOR DE 54 PSI EN SEC1
M00073	BOOL	GE FANUC PLC	%M00073	Off	SEÑAL GENERAL PARA RESET VARIADOR EN SEC1
M00074	BOOL	GE FANUC PLC	%M00074	Off	ACTIVACIÓN CONTACTOR BOMBA1 CON VARIADOR EN SEC1
M00075	BOOL	GE FANUC PLC	%M00075	Off	ACTIVACIÓN CONTACTOR BOMBA2 CON VARIADOR EN SEC1
<u>M00076</u>	BOOL	GE FANUC PLC	%M00076	Off	ACTIVACIÓN CONTACTOR BOMBA3 CON VARIADOR EN SEC1
M00077	BOOL	GE FANUC PLC	%M00077	Off	ACTIVACIÓN CONTACTOR BOMBA2 TRABAJO DIRECTO EN SEC1
M00078	BOOL	GE FANUC PLC	%M00078	Off	ACTIVACIÓN CONTACTOR BOMBA3 TRABAJO DIRECTO EN SEC1
M00079	BOOL	GE FANUC PLC	%M00079	Off	ACTIVACIÓN CONTACTOR BOMBA JOCKYE EN SEC1
M00080	BOOL	GE FANUC PLC	%M00080	Off	ACTIVACIÓN ENCENDIDO VARIADOR EN SEC1
M00081	BOOL	GE FANUC PLC	%M00081	Off	INICIO SECUENCIA2 DE BOMBAS
M00082	BOOL	GE FANUC PLC	%M00082	Off	PULSO DE ACTIVACIÓN CONTACTOR DE BOMBA3 CON VARIADOR PARA SEC2
M00083	BOOL	GE FANUC PLC	%M00083	Off	ACTIVACIÓN CONTACTOR DE BOMBA3 CON VARIADOR PARA SEC2
M00084	BOOL	GE FANUC PLC	%M00084	Off	INDICA QUE LA PRESIÓN ES MENOR O IGUAL DE 57 PSI EN SEC2
M00085	BOOL	GE FANUC PLC	%M00085	Off	PULSO PARA ACTIVAR CONTACTOR BOMBA JOCKYE
M00086	BOOL	GE FANUC PLC	%M00086	Off	SEÑAL QUE ACTIVA CONTACTOR BOMBA JOCKYE EN SEC2
M00087	BOOL	GE FANUC PLC	%M00087	Off	INDICA QUE LA PRESIÓN ES MAYOR O IGUAL A 60 PSI EN SEC2
M00088	BOOL	GE FANUC PLC	%M00088	Off	PULSO PARA DESACTIVAR CONTACTOR DE BOMBA JOCKYE EN SEC2
M00089	BOOL	GE FANUC	%M00089	Off	INDICA QUE LA PRESIÓN ES MENOR O IGUAL A 54 PSI EN SEC2

		PLC			
M00090	BOOL	GE FANUC PLC	%M00090	Off	PULSO QUE SE PRODUCE CUANDO LA PRESIÓN ES MENOR O IGUAL A 54 PSI EN SEC2
M00091	BOOL	GE FANUC PLC	%M00091	Off	DESABILITA CONTACTOR BOMBA JOCKYE EN SEC2
M00092	BOOL	GE FANUC PLC	%M00092	Off	SEÑAL PARA ENCENDER VARIADOR EN SEC2
M00093	BOOL	GE FANUC PLC	%M00093	Off	INDICA QUE LA FRECUENCIA ES MENOR O IGUAL A 10 HZ EN SEC2
M00094	BOOL	GE FANUC PLC	%M00094	Off	PULSO QUE DESACTIVA SEÑAL DE ENCENDIDO VARIADOR EN SEC2
M00095	BOOL	GE FANUC PLC	%M00095	Off	PULSO QUE SE PRODUCE CUANDO SE DESACTIVA SEAÑAL ENCENDIDO VARIADOR EN SEC2
M00096	BOOL	GE FANUC PLC	%M00096	Off	INDICA QUE SE HA APAGADO EL VARIADOR EN SEC2
M00097	BOOL	GE FANUC PLC	%M00097	Off	SEÑAL RESET DE VARIADOR AL INICIAR PROCESO EN SEC2
M00098	BOOL	GE FANUC PLC	%M00098	Off	INDICA SI LA FRECUENCIA ES MAYOR O IGUAL A 60 HZ EN SEC2
M00099	BOOL	GE FANUC PLC	%M00099	Off	PULSO QUE SE ACTIVA A FRECUENCIA 60 HZ EN SEC2
M00100	BOOL	GE FANUC PLC	%M00100	Off	ACTIVA CONTACTOR BOMBA1 ENCENDIDO DIRECTO EN SEC2
M00101	BOOL	GE FANUC PLC	%M00101	Off	INDICA QUE LA PRESIÓN HA LLEGADO A 65 PSI EN SEC2
M00102	BOOL	GE FANUC PLC	%M00102	Off	DESACTIVA CONTACTOR BOMBA1 ENCENDIDO DIRECTO
M00103	BOOL	GE FANUC PLC	%M00103	Off	FUNCIONAMIENTO POR PROTECCIÓN TÉRMICA DE VARIADOR PARA BOMBA3
M00104	BOOL	GE FANUC PLC	%M00104	Off	PULSO QUE SE PRODUCE POR ACTIVACIÓN DE FALLA TÉRMICA EN SEC2
M00105	BOOL	GE FANUC PLC	%M00105	Off	IMPIDE QUE SE ENCIENDA EL VARIADOR EN SEC2
M00106	BOOL	GE FANUC PLC	%M00106	Off	ACTIVA LOS TEMPORIZADORES R34, R37, R40 Y DESACTIVA CONTACTOR BOMBA3 CON VARIADOR EN SEC2
M00107	BOOL	GE FANUC PLC	%M00107	Off	TEMPORIZADOR QUE ACTIVA CONTACTOR BOBMA2 CON VARIADOR EN SEC2
M00108	BOOL	GE FANUC PLC	%M00108	Off	TEMPORIZADOR QUE ACTIVA SEÑAL ENCENDIDO VARIADOR EN SEC2
M00109	BOOL	GE FANUC PLC	%M00109	Off	SEÑAL QUE ACTIVA CONTACTOR BOMBA2 CON VARIADOR EN SEC2
M00110	BOOL	GE FANUC PLC	%M00110	Off	PULSO QUE ACTIVA SEÑAL RESET VARIADOR EN SEC2
M00111	BOOL	GE FANUC PLC	%M00111	Off	PULSO QUE ACTIVA SEÑAL ENCENDIDO VARIADOR EN SEC2
M00112	BOOL	GE FANUC PLC	%M00112	Off	TRBAJO POR FALLA DEL TÉRMICO DE BOMBA1 EN SEC2
M00113	BOOL	GE FANUC PLC	%M00113	Off	PULSO PARA TRABAJO POR FALLA DE BOMBA1 EN SEC2
M00114	BOOL	GE FANUC PLC	%M00114	Off	DESABILITA CONTACTOR BOMBA1 Y ACTIVA CONTACTOR BOMBA2 TRABAJO DIRECTO EN SEC2
M00115	BOOL	GE FANUC PLC	%M00115	Off	SEÑAL PARA ACTIVAR CONTACTOR BOMBA1 TRABAJO DIRECTO EN SEC2
M00116	BOOL	GE FANUC PLC	%M00116	Off	SEÑAL PARA ACTIVAR CONTACTOR BOMBA2 TRABAJO DIRECTO EN SEC2
M00117	BOOL	GE FANUC PLC	%M00117	Off	INDICA FALLA DE BOMBA3 Y DESPUES BOMBA1 EN SEC2
M00118	BOOL	GE FANUC PLC	%M00118	Off	DESACTIVA CONTACTOR BOMBA1 TRABAJO DIRECTO EN SEC2
M00119	BOOL	GE FANUC PLC	%M00119	Off	INDICA FALLA DE BOMBA1 Y DESPUES BOMBA3 EN SEC2

M00120	BOOL	GE FANUC PLC	%M00120	Off	DESACTIVA CONTACTOR BOBMA2 TRABAJO DIRECTO EN SEC2
M00121	BOOL	GE FANUC PLC	%M00121	Off	INICIA SECUENCIA DE FALLA DE BOMBA3 EN SEC2
M00122	BOOL	GE FANUC PLC	%M00122	Off	INDICA QUE FALLO BOMBA3 Y DESPUES BOMBA2 EN SEC2
M00123	BOOL	GE FANUC PLC	%M00123	Off	ACTIVA SECUENCIA POR FALLA DE BOMBA3 Y BOMBA2 EN SEC2
M00124	BOOL	GE FANUC PLC	%M00124	Off	SE PRODUCE POR FALLA DE BOMBA3 Y BOMBA2 EN SEC2
M00125	BOOL	GE FANUC PLC	%M00125	Off	AUXILIAR PARA DESABILITAR ENCENDIDO VARIADOR EN SEC2
M00126	BOOL	GE FANUC PLC	%M00126	Off	DESABILITA ENCENDIDO DEL VARIADOR EN SEC2
M00127	BOOL	GE FANUC PLC	%M00127	Off	HABILITA TEMPORIZADORES ACTIVAR CONTATOR BOMBA1 Y ENCENDER VARIADOR EN SEC2
M00128	BOOL	GE FANUC PLC	%M00128	Off	TEMPORIZADOR PARA ACTIVAR CONTACTOR BOMBA1 CON VARIADOR EN SEC2
M00129	BOOL	GE FANUC PLC	%M00129	Off	TEMPORIZADOR QUE HABILITA ENCENDIDO VARIADOR EN SEC2
M00130	BOOL	GE FANUC PLC	%M00130	Off	SEÑAL QUE ACTIVA CONTACTOR BOMBA1 CON VARIADOR EN SEC2
M00131	BOOL	GE FANUC PLC	%M00131	Off	SEÑAL QUE HABILITA RESET VARIADOR EN SEC2
M00132	BOOL	GE FANUC PLC	%M00132	Off	SEÑAL QUE ACTIVA ENCENDIDO VARIADOR EN SEC2
M00133	BOOL	GE FANUC PLC	%M00133	Off	INDICA QUE FALLO BOMBA1 Y DESPUES BOMBA2 EN SEC2
M00134	BOOL	GE FANUC PLC	%M00134	Off	DESACTIVA CONTACTOR BOMBA2 TRABAJO DIRECTO EN SEC2
M00135	BOOL	GE FANUC PLC	%M00135	Off	INDICA QUE FALLO BOMBA3 DESPUES BOMBA1 Y DESPUES BOMBA2 EN SEC2
M00136	BOOL	GE FANUC PLC	%M00136	Off	INDICA QUE FALLO BOMA3 DESPUES BOMBA2 Y DESPUES BOMBA1 EN SEC2
M00137	BOOL	GE FANUC PLC	%M00137	Off	HABILITA INDICADOR DE FALLA DE BOMBA3 BOMBA2 Y BOMBA1 EN SEC2
M00138	BOOL	GE FANUC PLC	%M00138	Off	INDICA QUE FALLO BOMBA1 DESPUES BOMBA3 Y DESPUES BOMBA2 EN SEC2
M00139	BOOL	GE FANUC PLC	%M00139	Off	HABILITA INDICADOR DE FALLA DE BOMBA1 BOMBA3 Y BOMBA2 EN SEC2
M00140	BOOL	GE FANUC PLC	%M00140	Off	INDICA QUE FALLO BOMBA1 DESPUES BOMBA2 Y DESPUES BOMBA3 EN SEC2
M00141	BOOL	GE FANUC PLC	%M00141	Off	INDICA QUE HAN FALLADO LAS 3 BOMBAS EN SEC2
M00142	BOOL	GE FANUC PLC	%M00142	Off	TEMPORIZACIÓN 1 SEG PARA DESABILITAR SEÑAL RESET VARIADOR EN SEC2
M00143	BOOL	GE FANUC PLC	%M00143	Off	HABILITA EL COMPARADOR DE PRESION PARA MENOR DE 54 PSI EN SEC2
M00144	BOOL	GE FANUC PLC	%M00144	Off	SEÑAL GENERAL PARA RESET VARIADOR EN SEC2
<u>M00145</u>	BOOL	GE FANUC PLC	%M00145	Off	ACTIVACIÓN CONTACTOR BOMBA3 CON VARIADOR EN SEC2
<u>M00146</u>	BOOL	GE FANUC PLC	%M00146	Off	ACTIVACIÓN CONTACTOR BOMBA1 CON VARIADOR EN SEC2
M00147	BOOL	GE FANUC PLC	%M00147	Off	ACTIVACIÓN CONTACTOR BOMBA2 CON VARIADOR EN SEC2
<u>M00148</u>	BOOL	GE FANUC PLC	%M00148	Off	ACTIVACIÓN CONTACTOR BOMBA1 TRABAJO DIRECTO EN SEC2
M00149	BOOL	GE FANUC PLC	%M00149	Off	ACTIVACIÓN CONTACTOR BOMBA2 TRABAJO DIRECTO EN SEC2
M00150	BOOL	GE FANUC	%M00150	Off	ACTIVACIÓN CONTACTOR BOMBA JOCKYE EN SEC2

		PLC			
M00151	BOOL	GE FANUC PLC	%M00151	Off	ACTIVACIÓN ENCENDIDO VARIADOR EN SEC2
M00152	BOOL	GE FANUC PLC	%M00152	Off	INICIO SECUENCIA3 DE BOMBAS
M00153	BOOL	GE FANUC PLC	%M00153	Off	PULSO DE ACTIVACIÓN CONTACTOR DE BOMBA2 CON VARIADOR PARA SEC3
M00154	BOOL	GE FANUC PLC	%M00154	Off	ACTIVACIÓN CONTACTOR DE BOMBA2 CON VARIADOR PARA SEC3
M00155	BOOL	GE FANUC PLC	%M00155	Off	INDICA QUE LA PRESIÓN ES MENOR O IGUAL DE 57 PSI EN SEC3
M00156	BOOL	GE FANUC PLC	%M00156	Off	PULSO PARA ACTIVAR CONTACTOR BOMBA JOCKYE
M00157	BOOL	GE FANUC PLC	%M00157	Off	SEÑAL QUE ACTIVA CONTACTOR BOMBA JOCKYE EN SEC3
M00158	BOOL	GE FANUC PLC	%M00158	Off	INDICA QUE LA PRESIÓN ES MAYOR O IGUAL A 60 PSI EN SEC3
M00159	BOOL	GE FANUC PLC	%M00159	Off	PULSO PARA DESACTIVAR CONTACTOR DE BOMBA JOCKYE EN SEC3
M00160	BOOL	GE FANUC PLC	%M00160	Off	INDICA QUE LA PRESIÓN ES MENOR O IGUAL A 54 PSI EN SEC3
M00161	BOOL	GE FANUC PLC	%M00161	Off	PULSO QUE SE PRODUCE CUANDO LA PRESIÓN ES MENOR O IGUAL A 54 PSI EN SEC3
M00162	BOOL	GE FANUC PLC	%M00162	Off	DESABILITA CONTACTOR BOMBA JOCKYE EN SEC3
M00163	BOOL	GE FANUC PLC	%M00163	Off	SEÑAL PARA ENCENDER VARIADOR EN SEC3
M00164	BOOL	GE FANUC PLC	%M00164	Off	INDICA QUE LA FRECUENCIA ES MENOR O IGUAL A 10 HZ EN SEC3
M00165	BOOL	GE FANUC PLC	%M00165	Off	PULSO QUE DESACTIVA SEÑAL DE ENCENDIDO VARIADOR EN SEC3
M00166	BOOL	GE FANUC PLC	%M00166	Off	PULSO QUE SE PRODUCE CUANDO SE DESACTIVA SEAÑAL ENCENDIDO VARIADOR EN SEC3
M00167	BOOL	GE FANUC PLC	%M00167	Off	INDICA QUE SE HA APAGADO EL VARIADOR EN SEC3
M00168	BOOL	GE FANUC PLC	%M00168	Off	SEÑAL RESET DE VARIADOR AL INICIAR PROCESO EN SEC3
M00169	BOOL	GE FANUC PLC	%M00169	Off	INDICA SI LA FRECUENCIA ES MAYOR O IGUAL A 60 HZ EN SEC3
M00170	BOOL	GE FANUC PLC	%M00170	Off	PULSO QUE SE ACTIVA A FRECUENCIA 60 HZ EN SEC3
M00171	BOOL	GE FANUC PLC	%M00171	Off	ACTIVA CONTACTOR BOMBA3 ENCENDIDO DIRECTO EN SEC3
M00172	BOOL	GE FANUC PLC	%M00172	Off	INDICA QUE LA PRESIÓN HA LLEGADO A 65 PSI EN SEC3
M00173	BOOL	GE FANUC PLC	%M00173	Off	DESACTIVA CONTACTOR BOMBA3 ENCENDIDO DIRECTO
M00174	BOOL	GE FANUC PLC	%M00174	Off	FUNCIONAMIENTO POR PROTECCIÓN TÉRMICA DE VARIADOR PARA BOMBA2
M00175	BOOL	GE FANUC PLC	%M00175	Off	PULSO QUE SE PRODUCE POR ACTIVACIÓN DE FALLA TÉRMICA EN SEC3
M00176	BOOL	GE FANUC PLC	%M00176	Off	IMPIDE QUE SE ENCIENDA EL VARIADOR EN SEC3
M00177	BOOL	GE FANUC PLC	%M00177	Off	ACTIVA LOS TEMPORIZADORES R61, R64, R67 Y DESACTIVA CONTACTOR BOMBA3 CON VARIADOR EN SEC3
M00178	BOOL	GE FANUC PLC	%M00178	Off	TEMPORIZADOR QUE ACTIVA CONTACTOR BOBMA1 CON VARIADOR EN SEC3
M00179	BOOL	GE FANUC PLC	%M00179	Off	TEMPORIZADOR QUE ACTIVA SEÑAL ENCENDIDO VARIADOR EN SEC3
M00180	BOOL	GE FANUC PLC	%M00180	Off	SEÑAL QUE ACTIVA CONTACTOR BOMBA1 CON VARIADOR EN SEC3

M00181	BOOL	GE FANUC PLC	%M00181	Off	PULSO QUE ACTIVA SEÑAL RESET VARIADOR EN SEC3
M00182	BOOL	GE FANUC PLC	%M00182	Off	PULSO QUE ACTIVA SEÑAL ENCENDIDO VARIADOR EN SEC3
M00183	BOOL	GE FANUC PLC	%M00183	Off	TRBAJO POR FALLA DEL TÉRMICO DE BOMBA3 EN SEC3
M00184	BOOL	GE FANUC PLC	%M00184	Off	PULSO PARA TRABAJO POR FALLA DE BOMBA3 EN SEC3
M00185	BOOL	GE FANUC PLC	%M00185	Off	DESABILITA CONTACTOR BOMBA3 Y ACTIVA CONTACTOR BOMBA1 TRABAJO DIRECTO EN SEC3
M00186	BOOL	GE FANUC PLC	%M00186	Off	SEÑAL PARA ACTIVAR CONTACTOR BOMBA3 TRABAJO DIRECTO EN SEC3
M00187	BOOL	GE FANUC PLC	%M00187	Off	SEÑAL PARA ACTIVAR CONTACTOR BOMBA1 TRABAJO DIRECTO EN SEC3
M00188	BOOL	GE FANUC PLC	%M00188	Off	INDICA FALLA DE BOMBA2 Y DESPUES BOMBA3 EN SEC3
M00189	BOOL	GE FANUC PLC	%M00189	Off	DESACTIVA CONTACTOR BOMBA3 TRABAJO DIRECTO EN SEC3
M00190	BOOL	GE FANUC PLC	%M00190	Off	INDICA QUE FALLO BOMBA3 Y DESPUES BOMBA2 EN SEC3
M00191	BOOL	GE FANUC PLC	%M00191	Off	DESACTIVA CONTACTOR BOBMA1 TRABAJO DIRECTO EN SEC3
M00192	BOOL	GE FANUC PLC	%M00192	Off	INICIA SECUENCIA DE FALLA DE BOMBA2 EN SEC3
M00193	BOOL	GE FANUC PLC	%M00193	Off	INDICA QUE FALLO BOMBA2 Y DESPUES BOMBA1 EN SEC3
M00194	BOOL	GE FANUC PLC	%M00194	Off	ACTIVA SECUENCIA POR FALLA DE BOMBA2 Y BOMBA1 EN SEC3
M00195	BOOL	GE FANUC PLC	%M00195	Off	SE PRODUCE POR FALLA DE BOMBA2 Y BOMBA1 EN SEC3
M00196	BOOL	GE FANUC PLC	%M00196	Off	AUXILIAR PARA DESABILITAR ENCENDIDO VARIADOR EN SEC3
M00197	BOOL	GE FANUC PLC	%M00197	Off	DESABILITA ENCENDIDO DEL VARIADOR EN SEC3
M00198	BOOL	GE FANUC PLC	%M00198	Off	HABILITA TEMPORIZADORES ACTIVAR CONTATOR BOMBA3 Y ENCENDER VARIADOR EN SEC3
M00199	BOOL	GE FANUC PLC	%M00199	Off	TEMPORIZADOR PARA ACTIVAR CONTACTOR BOMBA3 CON VARIADOR EN SEC3
M00200	BOOL	GE FANUC PLC	%M00200	Off	TEMPORIZADOR QUE HABILITA ENCENDIDO VARIADOR EN SEC3
M00201	BOOL	GE FANUC PLC	%M00201	Off	SEÑAL QUE ACTIVA CONTACTOR BOMBA3 CON VARIADOR EN SEC3
M00202	BOOL	GE FANUC PLC	%M00202	Off	SEÑAL QUE HABILITA RESET VARIADOR EN SEC3
M00203	BOOL	GE FANUC PLC	%M00203	Off	SEÑAL QUE ACTIVA ENCENDIDO VARIADOR EN SEC3
M00204	BOOL	GE FANUC PLC	%M00204	Off	INDICA QUE FALLO BOMBA3 Y DESPUES BOMBA1 EN SEC3
M00205	BOOL	GE FANUC PLC	%M00205	Off	DESACTIVA CONTACTOR BOMBA1 TRABAJO DIRECTO EN SEC3
M00206	BOOL	GE FANUC PLC	%M00206	Off	INDICA QUE FALLO BOMBA2 DESPUES BOMBA3 Y DESPUES BOMBA1 EN SEC3
M00207	BOOL	GE FANUC PLC	%M00207	Off	INDICA QUE FALLO BOMA2 DESPUES BOMBA1 Y DESPUES BOMBA3 EN SEC3
M00208	BOOL	GE FANUC PLC	%M00208	Off	HABILITA INDICADOR DE FALLA DE BOMBA2 BOMBA1 Y BOMBA3 EN SEC3
M00209	BOOL	GE FANUC PLC	%M00209	Off	INDICA QUE FALLO BOMBA3 DESPUES BOMBA2 Y DESPUES BOMBA1 EN SEC3
M00210	BOOL	GE FANUC PLC	%M00210	Off	HABILITA INDICADOR DE FALLA DE BOMBA3 BOMBA2 Y BOMBA1 EN SEC3
M00211	BOOL	GE FANUC	%M00211	Off	INDICA QUE FALLO BOMBA3 DESPUES BOMBA1 Y DESPUES BOMBA2 EN SEC3

		PLC			
M00212	BOOL	GE FANUC PLC	%M00212	Off	INDICA QUE HAN FALLADO LAS 3 BOMBAS EN SEC3
M00213	BOOL	GE FANUC PLC	%M00213	Off	TEMPORIZACIÓN 1 SEG PARA DESABILITAR SEÑAL RESET VARIADOR EN SEC3
M00214	BOOL	GE FANUC PLC	%M00214	Off	HABILITA EL COMPARADOR DE PRESION PARA MENOR DE 54 PSI EN SEC3
M00215	BOOL	GE FANUC PLC	%M00215	Off	SEÑAL GENERAL PARA RESET VARIADOR EN SEC3
M00216	BOOL	GE FANUC PLC	%M00216	Off	ACTIVACIÓN CONTACTOR BOMBA2 CON VARIADOR EN SEC3
M00217	BOOL	GE FANUC PLC	%M00217	Off	ACTIVACIÓN CONTACTOR BOMBA3 CON VARIADOR EN SEC3
M00218	BOOL	GE FANUC PLC	%M00218	Off	ACTIVACIÓN CONTACTOR BOMBA1 CON VARIADOR EN SEC3
M00219	BOOL	GE FANUC PLC	%M00219	Off	ACTIVACIÓN CONTACTOR BOMBA3 TRABAJO DIRECTO EN SEC3
M00220	BOOL	GE FANUC PLC	%M00220	Off	ACTIVACIÓN CONTACTOR BOMBA1 TRABAJO DIRECTO EN SEC3
M00221	BOOL	GE FANUC PLC	%M00221	Off	ACTIVACIÓN CONTACTOR BOMBA JOCKYE EN SEC3
M00222	BOOL	GE FANUC PLC	%M00222	Off	ACTIVACIÓN ENCENDIDO VARIADOR EN SEC3
M00223	BOOL	GE FANUC PLC	%M00223	Off	PULSO POR FALLA DEL VARIADOR
M00224	BOOL	GE FANUC PLC	%M00224	Off	SEÑAL DE SALIDA PARA RESET DEL VARIADOR
M00225	BOOL	GE FANUC PLC	%M00225	Off	SEÑAL DE SALIDA PARA ENCENDIDO DEL VARIADOR
M00226	BOOL	GE FANUC PLC	%M00226	Off	SALIDA PARA ACTIVACIÓN CONTACTOR BOMBA1 CON VARIADOR
M00227	BOOL	GE FANUC PLC	%M00227	Off	SALIDA PARA ACTIVACIÓN CONTACTOR BOMBA1 TRABAJO DIRECTO
M00228	BOOL	GE FANUC PLC	%M00228	Off	SALIDA PARA ACTIVACIÓN CONTACTOR BOMBA2 CON VARIADOR
M00229	BOOL	GE FANUC PLC	%M00229	Off	SALIDA PARA ACTIVACIÓN CONTACTOR BOMBA2 TRABAJO DIRECTO
M00230	BOOL	GE FANUC PLC	%M00230	Off	SALIDA PARA ACTIVACIÓN CONTACTOR BOMBA3 CON VARIADOR
M00231	BOOL	GE FANUC PLC	%M00231	Off	SALIDA PARA ACTIVACIÓN CONTACTOR BOMBA3 TRABAJO DIRECTO
M00232	BOOL	GE FANUC PLC	%M00232	Off	SALIDA PARA ACTIVACIÓN CONTACTOR BOMBA JOCKYE
M00233	BOOL	GE FANUC PLC	%M00233	Off	TEMPORIZADOR QUE ACTIVA RESET VARIADOR EN SEC1
M00234	BOOL	GE FANUC PLC	%M00234	Off	TEMPORIZADOR QUE ACTIVA RESET VARIADOR EN SEC2
M00235	BOOL	GE FANUC PLC	%M00235	Off	TEMPORIZADOR QUE ACTIVA RESET VARIADOR EN SEC3
M00236	BOOL	GE FANUC PLC	%M00236	Off	APAGA SISTEMA BOMBEO AUTOMÁTICO POR FALLA DEL VARIADOR
M00246	BOOL	GE FANUC PLC	%M00246	Off	SELECCIÓN SISTEMA BOMBEO MODO MANUAL
M00247	BOOL	GE FANUC PLC	%M00247	Off	SELECCIÓN SISTEMA BOMBEO MODO AUTOMÁTICO
M00248	BOOL	GE FANUC PLC	%M00248	Off	SECUENCIA UNO DE BOMBAS
M00249	BOOL	GE FANUC PLC	%M00249	Off	SECUENCIA DOS DE BOMBAS
M00250	BOOL	GE FANUC PLC	%M00250	Off	SECUENCIA TRES DE BOMBAS

M00251	BOOL	GE FANUC PLC	%M00251	Off	SELECCIÓN BOMBA1 PARA VARIADOR
M00252	BOOL	GE FANUC PLC	%M00252	Off	SELECCIÓN BOMBA2 PARA VARIADOR
M00253	BOOL	GE FANUC PLC	%M00253	Off	SELECCIÓN BOMBA3 PARA VARIADOR
M00254	BOOL	GE FANUC PLC	%M00254	Off	ENCENDIDO MANUAL VARIADOR
M00255	BOOL	GE FANUC PLC	%M00255	Off	DESABILITA BOMBAS PARA VARIADOR
M00256	BOOL	GE FANUC PLC	%M00256	Off	ENERGIZA BOMBA JOCKYE
M00257	BOOL	GE FANUC PLC	%M00257	Off	RESET VARIADOR MANUAL
M00258	BOOL	GE FANUC PLC	%M00258	Off	INICIO SISTEMA BOMBEO AUTOMÁTICO
M00259	BOOL	GE FANUC PLC	%M00259	Off	RESET FALLAS RESUELTAS
M00260	BOOL	GE FANUC PLC	%M00260	Off	SELECCIÓN BOMBA1 VELOCIDAD NOMINAL
M00261	BOOL	GE FANUC PLC	%M00261	Off	SELLECIÓN BOMBA2 VELOCIDAD NOMINAL
M00262	BOOL	GE FANUC PLC	%M00262	Off	SELECCIÓN BOMBA3 VELOCIDAD NOMINAL
M00263	BOOL	GE FANUC PLC	%M00263	Off	CONTACTOR DE BOMBA1 VARIABLE
M00264	BOOL	GE FANUC PLC	%M00264	Off	CONTACTOR DE BOMBA2 VARIABLE
M00265	BOOL	GE FANUC PLC	%M00265	Off	CONTACTOR DE BOMBAS VARIABLE
M00266	BOOL	GE FANUC PLC	%M00266	Off	CONTACTOR BOMBA1 VELOCIDAD NOMINAL
M00267	BOOL	GE FANUC PLC	%M00267	Off	CONTACTOR BOMBA2 VELOCIDAD NOMINAL
M00268	BOOL	GE FANUC PLC	%M00268	Off	CONTACTOR BOMBA3 VELOCIDAD NOMINAL
M00269	BOOL	GE FANUC PLC	%M00269	Off	SALIDA PARA RESET VARIADOR
M00270	BOOL	GE FANUC PLC	%M00270	Off	SALIDA PARA ENCENDIDO VARIADOR
M00271	BOOL	GE FANUC PLC	%M00271	Off	CONTACTOR BOMBA JOCKYE
M00272	BOOL	GE FANUC PLC	%M00272	Off	INICIO SISTEMA BOMBEO MODO AUTOMÁTICO
M00273	BOOL	GE FANUC PLC	%M00273	Off	SE ACTIVO SALIDA VARIADOR POR PROTECCIÓN TÉRMICA DE BOMBAS
M00275	BOOL	GE FANUC PLC	%M00275	Off	TRABAJO EN MODO AUTOMÁTICO
M00276	BOOL	GE FANUC PLC	%M00276	Off	TIEMPO DE ESPERA DE LA SEÑAL SUPEEE
M00277	BOOL	GE FANUC PLC	%M00277	Off	HABILITA CONTACTOR EEE
M00278	BOOL	GE FANUC PLC	%M00278	Off	SALIDA PARA CONTACTOR DE EEE
M00279	BOOL	GE FANUC PLC	%M00279	Off	SALIDA DE ENCENDIDO DE GENERADOR
M00280	BOOL	GE FANUC PLC	%M00280	Off	TIEMPO DE ESPERA DE LA SEÑAL SUPGEN
M00281	BOOL	GE FANUC PLC	%M00281	Off	TIEMPO PARA FALLA DE GENERADOR
M00282	BOOL	GE FANUC	%M00282	Off	PULSO PARA CONTAR ENC. GENERADOR

		PLC			
M00283	BOOL	GE FANUC PLC	%M00283	Off	CUENTA 2 ENCENDIDOS DE GENERADOR
M00284	BOOL	GE FANUC PLC	%M00284	Off	RESET DEL SISTEMA DE TRANSFERENCIA
M00285	BOOL	GE FANUC PLC	%M00285	Off	INDICA FALLA DE GENERADOR
M00286	BOOL	GE FANUC PLC	%M00286	Off	HABILITA CONTACTOR GENERADOR
M00287	BOOL	GE FANUC PLC	%M00287	Off	SALIDA DE CONTACTOR DE GENERADOR
M00288	BOOL	GE FANUC PLC	%M00288	Off	RESETEA TIEMPO DE ESPERA POR SUPEEE
M00289	BOOL	GE FANUC PLC	%M00289	Off	PULSO POR RETORNO DE SUPEEE
M00290	BOOL	GE FANUC PLC	%M00290	Off	HABILITA TIEMPO TRANSFERENCIA CARGA
M00291	BOOL	GE FANUC PLC	%M00291	Off	TIEMPO DE TRANSFERENCIA DE CARGA
M00292	BOOL	GE FANUC PLC	%M00292	Off	HABILITA TIEMPO ENCENDIDO GENERADOR
M00293	BOOL	GE FANUC PLC	%M00293	Off	RESETEA TIEMPO TRANSFERENCIA DE CARGA
M00294	BOOL	GE FANUC PLC	%M00294	Off	TIEMPO ENCENDIDO GENERAD CON EEE
M00295	BOOL	GE FANUC PLC	%M00295	Off	YA SE DIO TIEMPO DE TRANSFERENCIA
M00296	BOOL	GE FANUC PLC	%M00296	Off	SUPEEE DESAPARECE DE NUEVO
M00297	BOOL	GE FANUC PLC	%M00297	Off	MEMORIZA DESAPARECE SUPEEE DE NUEVO
M00298	BOOL	GE FANUC PLC	%M00298	Off	DESACTIVA MEMORIA QUE SUPEEE DESAPARECE
M00299	BOOL	GE FANUC PLC	%M00299	Off	MANTIENE ENCENDIDO DE GENERADOR
M00300	BOOL	GE FANUC PLC	%M00300	Off	LIBERA RETENCIÓN MECÁNICA CONT. GENENERADOR
M00301	BOOL	GE FANUC PLC	%M00301	Off	HABILITA PULSO DE CONTACTOR EEE
M00302	BOOL	GE FANUC PLC	%M00302	Off	PULSO DE 2 Seg. PARA CONTACTOR EEE
M00303	BOOL	GE FANUC PLC	%M00303	Off	SALIDA PARA CONTACTOR DE EEE
M00304	BOOL	GE FANUC PLC	%M00304	Off	LIBERA RETENCIÁN MECÁNICA CONT. EEE
M00305	BOOL	GE FANUC PLC	%M00305	Off	HABILITA PULSO DE CONTACTOR GENERADOR
M00306	BOOL	GE FANUC PLC	%M00306	Off	PULSO DE 2 Seg. PARA CONTACTOR GENERADOR
M00307	BOOL	GE FANUC PLC	%M00307	Off	SALIDA PARA CONTACTOR DE GENERADOR
M00308	BOOL	GE FANUC PLC	%M00308	Off	LIBERA RETENCIÓN MECÁNICA EEE
M00309	BOOL	GE FANUC PLC	%M00309	Off	MANTIENE FALLA POR GENERADOR HASTA REINICIAR
M00310	BOOL	GE FANUC PLC	%M00310	Off	DESACTIVA ENCENDIDO DE GENERADOR
M00311	BOOL	GE FANUC PLC	%M00311	Off	TIEMPO PARA APAGADO DE TRANS. AUTOMATICA
M00312	BOOL	GE FANUC PLC	%M00312	Off	INDICA TRABAJO BOMBA1 VARIABLE

M00313	BOOL	GE FANUC PLC	%M00313	Off	INDICA TRABAJO BOMBA2 VARIABLE
M00314	BOOL	GE FANUC PLC	%M00314	Off	INDICA TRABAJO BOMBA3 VARIABLE
M00315	BOOL	GE FANUC PLC	%M00315	Off	DESABILITA BOMBAS 2 Y 3 PARA VARIADOR
M00316	BOOL	GE FANUC PLC	%M00316	Off	DESABILITA BOMBAS 1 Y 3 PARA VARIADOR
M00317	BOOL	GE FANUC PLC	%M00317	Off	DESABILITA BOMBAS 1 Y 2 PARA VARIADOR
M00318	BOOL	GE FANUC PLC	%M00318	Off	SE ACTIVÓ TÉRMICO BOMBA1
M00319	BOOL	GE FANUC PLC	%M00319	Off	SE ACTIVÓ TÉRMICO BOMBA2
M00320	BOOL	GE FANUC PLC	%M00320	Off	SE ACTIVÓ TÉRMICO BOMBA3
M00321	BOOL	GE FANUC PLC	%M00321	Off	DESABILITA BOMBA1 PARA VARIADOR
M00322	BOOL	GE FANUC PLC	%M00322	Off	DESABILITA BOMBA2 PARA VARIADOR
M00323	BOOL	GE FANUC PLC	%M00323	Off	DESABILITA BOMBA3 PARA VARIADOR
M00324	BOOL	GE FANUC PLC	%M00324	Off	ACTIVACIÓN DEL PRESOSTATO
M00325	BOOL	GE FANUC PLC	%M00325	Off	SALIDA VARIADOR PROTECCIÓN TÉRMICA
M00326	BOOL	GE FANUC PLC	%M00326	Off	FALLÓ BOMBA1 VARIABLE EN MANUAL
M00327	BOOL	GE FANUC PLC	%M00327	Off	FALLÓ BOMBA2 VARIABLE EN MANUAL
M00328	BOOL	GE FANUC PLC	%M00328	Off	FALLÓ BOMBA3 VARIABLE EN MANUAL
M00329	BOOL	GE FANUC PLC	%M00329	Off	FALLO DE BOMBA1 EN MANUAL
M00330	BOOL	GE FANUC PLC	%M00330	Off	FALLO DE BOMBA2 EN MANUAL
M00331	BOOL	GE FANUC PLC	%M00331	Off	FALLO DE BOMBA3 EN MANUAL
M00332	BOOL	GE FANUC PLC	%M00332	Off	RESET DE FALLAS EN MANUAL
M00333	BOOL	GE FANUC PLC	%M00333	Off	INDICA FALLA DEL VARIADOR
M00334	BOOL	GE FANUC PLC	%M00334	Off	OPERACIÓN DE BOMBAS EN FALLA
M00336	BOOL	GE FANUC PLC	%M00336	Off	MEMORIZA QUE FALLÓ UNA BOMBA FUNCIONANDO A VELOCIDAD VARIABLE
M00337	BOOL	GE FANUC PLC	%M00337	Off	MEMORIZA QUE FALLÓ UNA BOMBA FUNCIONANDO EN FORMA DIRECTA
M00338	BOOL	GE FANUC PLC	%M00338	Off	TIEMPO QUE HABILITA SECUENCIA DE IDENTIFICACIÓN QUE BOMBA FALLÓ
M00339	BOOL	GE FANUC PLC	%M00339	Off	INDICA QUE FALLÓ BOMBA1 VARIABLE EN SECUENCIA1
M00340	BOOL	GE FANUC PLC	%M00340	Off	INDICA QUE FALLÓ BOMBA3 VARIABLE EN SECUENCIA 2
M00341	BOOL	GE FANUC PLC	%M00341	Off	INDICA QUE FALLÓ BOMBA2 VARIABLE EN SECUENCIA 3
M00342	BOOL	GE FANUC PLC	%M00342	Off	INDICA QUE FALLÓ BOMBA2 A VELOCIDAD NOMINAL EN SECUENCIA1
M00343	BOOL	GE FANUC PLC	%M00343	Off	INDICA QUE FALLÓ BOMBA1 A VELOCIDAD NOMINAL EN SECUENCIA2
M00344	BOOL	GE FANUC	%M00344	Off	INDICA QUE FALLÓ BOMBA3 A VELOCIDAD NOMINAL EN SECUENCIA3

		PLC			
M00345	BOOL	GE FANUC PLC	%M00345	Off	INDICA QUE LA FALLA SE DIO EN LA SECUENCIA1 Y NO PERMITE CAMBIO DE SECUENCIA
M00346	BOOL	GE FANUC PLC	%M00346	Off	INDICA QUE LA FALLA SE DIO EN LA SECUENCIA2 Y NO PERMITE CAMBIO DE SECUENCIA
M00347	BOOL	GE FANUC PLC	%M00347	Off	INDICA QUE LA FALLA SE DIO EN LA SECUENCIA3 Y NO PERMITE CAMBIO DE SECUENCIA
M00348	BOOL	GE FANUC PLC	%M00348	Off	FALLA BOMBAS SECUENCIA1
M00349	BOOL	GE FANUC PLC	%M00349	Off	FALLA BOMBAS SECUENCIA2
M00350	BOOL	GE FANUC PLC	%M00350	Off	FALLA BOMBAS SECUENCIA3
M00351	BOOL	GE FANUC PLC	%M00351	Off	MEMORIZA QUE FALLARON BOMBA NOMINAL Y AUXILIAR EN CUALQUIER SECUENCIA
M00352	BOOL	GE FANUC PLC	%M00352	Off	AL REINICIAR EL SISTEMA INDICA QUE FALLARON B2 NOMINAL Y B3 AUXILIAR EN SEC 1
M00353	BOOL	GE FANUC PLC	%M00353	Off	AL REINICIAR EL SISTEMA INDICA QUE FALLARON B1 NOMINAL Y B2 AUXILIAR EN SEC 2
M00354	BOOL	GE FANUC PLC	%M00354	Off	AL REINICIAR EL SISTEMA INDICA QUE FALLARON B3 NOMINAL Y B1 AUXILIAR EN SEC 3
M00355	BOOL	GE FANUC PLC	%M00355	Off	MEMORIZA QUE FALLARON BOMBA VARIABLE Y AUXILIAR EN CUALQUIER SECUENCIA
M00356	BOOL	GE FANUC PLC	%M00356	Off	AL REINICIAR INDICA FALLARON BOMBAS VARIABLE Y AUXILIAR EN SEC1
M00357	BOOL	GE FANUC PLC	%M00357	Off	AL REINICIAR INDICA FALLARON BOMBAS VARIABLE Y AUXILIAR EN SEC2
M00358	BOOL	GE FANUC PLC	%M00358	Off	AL REINICIAR INDICA FALLARON BOMBAS VARIABLE Y AUXILIAR EN SEC3
M00359	BOOL	GE FANUC PLC	%M00359	Off	MEMORIZA FALLA BOMBAS VARIABLE Y AUXILIAR AL REINICAR
M00360	BOOL	GE FANUC PLC	%M00360	Off	INIDICA QUE HA FALLADO ALGUNA BOMBA
M00361	BOOL	GE FANUC PLC	%M00361	Off	INICIA EL HABILITADOR DE INICADORES DE FALLAS
M00362	BOOL	GE FANUC PLC	%M00362	Off	HABILITA INDICADORES DE FALLAS BOMBAS VARIABLE Y AUXILIAR AL REINICIAR
M00363	BOOL	GE FANUC PLC	%M00363	Off	INDICA QUE FALLO BOMBA1
M00364	BOOL	GE FANUC PLC	%M00364	Off	HABILITA SALIDA PARA FALLA DE BOMBA1
M00365	BOOL	GE FANUC PLC	%M00365	Off	INDICA QUE FALLO BOMBA2
M00366	BOOL	GE FANUC PLC	%M00366	Off	HABILITA SALIDA POR FALLA DE BOMBA2
M00367	BOOL	GE FANUC PLC	%M00367	Off	INDICA QUE FALLO BOMBA3
M00368	BOOL	GE FANUC PLC	%M00368	Off	HABILITA SALIDA POR FALLA DE BOMBA3
M00369	BOOL	GE FANUC PLC	%M00369	Off	ACTIVA SALIDAS POR FALLAS DE BOMBAS
M00370	BOOL	GE FANUC PLC	%M00370	Off	PULSO PARA SALIDA DE FALLA DE BOMBA1
M00371	BOOL	GE FANUC PLC	%M00371	Off	PULSO PARA SALIDA DE FALLA DE BOMBA2
M00372	BOOL	GE FANUC PLC	%M00372	Off	PULSO PARA SALIDA DE FALLA DE BOMBA3
M00373	BOOL	GE FANUC PLC	%M00373	Off	INDICA AL SIST. AUTOMÁTICO QUE FALLÓ BOMBA1 EN SIST. MANUAL
M00374	BOOL	GE FANUC PLC	%M00374	Off	INDICA AL SIST. AUTOMÁTICO QUE FALLÓ BOMBA2 EN SIST. MANUAL

M00375	BOOL	GE FANUC PLC	%M00375	Off	INDICA AL SIST. AUTOMÁTICO QUE FALLÓ BOMBA3 EN SIST. MANUAL
M00376	BOOL	GE FANUC PLC	%M00376	Off	INDICA QUE FALLARON BOMBAS 1 Y 2 EN SIT. MANUAL
M00377	BOOL	GE FANUC PLC	%M00377	Off	INDICA QUE FALLARON BOMBAS 1 Y 3 EN SIT. MANUAL
M00378	BOOL	GE FANUC PLC	%M00378	Off	INDICA QUE FALLARON BOMBAS 2 Y 3 EN SIT. MANUAL
M00379	BOOL	GE FANUC PLC	%M00379	Off	PULSO PARA MEMORIZAR FALLA DE BOMBA1 VARIABLE EN SECUENCIA1
M00380	BOOL	GE FANUC PLC	%M00380	Off	PULSO PARA MEMORIZAR FALLA DE BOMBA2 NOMINAL EN SECUENCIA1
M00381	BOOL	GE FANUC PLC	%M00381	Off	PULSO PARA MEMORIZAR QUE FALLARON B1 VARIABLE Y B3 AUX. EN SEC1
M00382	BOOL	GE FANUC PLC	%M00382	Off	PULSO PARA MEMORIZAR QUE FALLARON B2 NOMINAL Y B3 AUX. EN SEC1
M00383	BOOL	GE FANUC PLC	%M00383	Off	PULSO PARA MEMORIZAR QUE FALLARON B1 VARIABLE Y B3 AUX. EN SEC1 M/A
M00384	BOOL	GE FANUC PLC	%M00384	Off	PULSO PARA MEMORIZAR QUE FALLARON B2 NOMINAL Y B3 AUX. EN SEC1 M/A
M00385	BOOL	GE FANUC PLC	%M00385	Off	PULSO PARA MEMORIZAR FALLA DE BOMBA3 VARIABLE EN SECUENCIA2
M00386	BOOL	GE FANUC PLC	%M00386	Off	PULSO PARA MEMORIZAR FALLA DE BOMBA1 NOMINAL EN SECUENCIA2
M00387	BOOL	GE FANUC PLC	%M00387	Off	PULSO PARA MEMORIZAR QUE FALLARON B3 VARIABLE Y B2 AUX. EN SEC2
M00388	BOOL	GE FANUC PLC	%M00388	Off	PULSO PARA MEMORIZAR QUE FALLARON B1 NOMINAL Y B2 AUX. EN SEC2
M00389	BOOL	GE FANUC PLC	%M00389	Off	PULSO PARA MEMORIZAR QUE FALLARON B3 VARIABLE Y B2 AUX. EN SEC2 M/A
M00390	BOOL	GE FANUC PLC	%M00390	Off	PULSO PARA MEMORIZAR QUE FALLARON B1 NOMINAL Y B2 AUX. EN SEC2 M/A
M00391	BOOL	GE FANUC PLC	%M00391	Off	PULSO PARA MEMORIZAR FALLA DE BOMBA2 VARIABLE EN SECUENCIA3
M00392	BOOL	GE FANUC PLC	%M00392	Off	PULSO PARA MEMORIZAR FALLA DE BOMBA3 NOMINAL EN SECUENCIA3
M00393	BOOL	GE FANUC PLC	%M00393	Off	PULSO PARA MEMORIZAR QUE FALLARON B2 VARIABLE Y B1 AUX. EN SEC3
M00394	BOOL	GE FANUC PLC	%M00394	Off	PULSO PARA MEMORIZAR QUE FALLARON B3 NOMINAL Y B1 AUX. EN SEC3
M00395	BOOL	GE FANUC PLC	%M00395	Off	PULSO PARA MEMORIZAR QUE FALLARON B2 VARIABLE Y B1 AUX. EN SEC3 M/A
M00396	BOOL	GE FANUC PLC	%M00396	Off	PULSO PARA MEMORIZAR FALLA B3 NOMINAL Y B1 AUX. EN SEC3 M/A
M00397	BOOL	GE FANUC PLC	%M00397	Off	FALLARON LAS 3 BOMBAS EN SIST. MANUAL
M00400	BOOL	GE FANUC PLC	%M00400	Off	SE ACTIVÓ SOLO EL RELÉ DE EMPLEADO EN HAB1
M00401	BOOL	GE FANUC PLC	%M00401	Off	SE ACTIVARON RELÉ DE CLIENTE Y EMPLEADO EN HAB1
M00402	BOOL	GE FANUC PLC	%M00402	Off	ACTIVA COMPARADOR DE NIVEL DE LUZ EN HAB1
M00403	BOOL	GE FANUC PLC	%M00403	Off	ESTE COMPARADOR INDICA QUE ES DIA EN HAB1
M00404	BOOL	GE FANUC PLC	%M00404	Off	ESTE COMPARADOR INDICA QUE ES NOCHE EN HAB1
M00405	BOOL	GE FANUC PLC	%M00405	Off	PULSO PARA ENCENDER Y APAGAR LUZ POR BOTONERA EN NOCHE EN HAB1
M00406	BOOL	GE FANUC PLC	%M00406	Off	ENCIENDE LUZ POR BOTONERA EN NOCHE EN HAB1
M00407	BOOL	GE FANUC	%M00407	Off	APAGA LUZ POR BOTONERA EN NOCHE EN HAB1

		PLC			
M00408	BOOL	GE FANUC PLC	%M00408	Off	PULSO PARA ENCENDER Y APAGAR LUZ POR BOTONERA EN DIA EN HAB1
M00409	BOOL	GE FANUC PLC	%M00409	Off	ENCIENDE LUZ POR BOTONERA EN DIA EN HAB1
M00410	BOOL	GE FANUC PLC	%M00410	Off	APAGA LUZ POR BOTONERA EN DIA EN HAB1
M00411	BOOL	GE FANUC PLC	%M00411	Off	ACTIVA SALIDAS DE TOMAS, TV Y CABLE PARA CLIENTE EN HAB1
M00412	BOOL	GE FANUC PLC	%M00412	Off	RESETEA ENCENDIDO LUZ AL SALIR DE LA HABITACIÓN EN HAB1
M00413	BOOL	GE FANUC PLC	%M00413	Off	RESETEA ENCENDIDO LUZ AL LLEGAR LA NOCHE EN HAB1
M00414	BOOL	GE FANUC PLC	%M00414	Off	RESETEA CONTADOR DE ENCENDIDO LUZ POR BOTONERA EN NOCHE EN HAB1
M00415	BOOL	GE FANUC PLC	%M00415	Off	APAGA LUZ POR BOTONERA EN DIA EN HAB1
M00416	BOOL	GE FANUC PLC	%M00416	Off	RESETEA ENCENDIDO LUZ AL LLEGAR EL DIA EN HAB1
M00417	BOOL	GE FANUC PLC	%M00417	Off	ACTIVA SALIDA DE ENCENDIDO DE LUMINARIA DE HABITACIÓN EN HAB1
M00418	BOOL	GE FANUC PLC	%M00418	Off	SALIDA PARA LUMINARIAS Y TOMAS PARA EMPLEADO EN HAB1
M00419	BOOL	GE FANUC PLC	%M00419	Off	PULSO PARA APAGAR CARGAS AL RETIRAR TARJETA EN HAB1
M00420	BOOL	GE FANUC PLC	%M00420	Off	ACTIVA TIEMPO DE CORTESIA PARA APAGADO DE CARGAS EN HAB1
M00421	BOOL	GE FANUC PLC	%M00421	Off	TIEMPO DE COTESIA PARA APAGAR CARGAS AL RETIRAR TARJETA EN HAB1
M00422	BOOL	GE FANUC PLC	%M00422	Off	DESABILITA ACTIVACIÓN DE TIEMPO DE CORTESIA EN HAB1
M00423	BOOL	GE FANUC PLC	%M00423	Off	PULSO PARA APAGAR CARGAS AL SALIR DE HABITACIÓN SIN RETIRARA TARJETA EN HAB1
M00424	BOOL	GE FANUC PLC	%M00424	Off	ACTIVA TIEMPO CORTESIA PARA APAGAR CARGAS AL SALIR DE LA HABITACIÓN EN HAB1
M00425	BOOL	GE FANUC PLC	%M00425	Off	TIEMPO DE CORTESÍA PARA APAGAR CARGAS AL SALIR DE HABITACIÓN SIN RETIRAR TARJETA EN HAB1
M00426	BOOL	GE FANUC PLC	%M00426	Off	RESETEA ENCENDIDO LUZ AL VOLVER A ENTRAR A LA HABITACIÓN EN HAB1
M00427	BOOL	GE FANUC PLC	%M00427	Off	ACTIVA ENCENDIDO LUZ BAÑO
M00428	BOOL	GE FANUC PLC	%M00428	Off	ACTIVA ENCENDIDO VENTILADOR DEL FAN-COIL PARA CLIENTE EN HAB1
M00429	BOOL	GE FANUC PLC	%M00429	Off	ACTIVA ENCENDIDO VALVULA DEL FAN-COIL PARA CLIENTE EN HAB1
M00430	BOOL	GE FANUC PLC	%M00430	Off	ENCENDIDO VENTILADOR DEL FAN-COIL EN HAB1
M00431	BOOL	GE FANUC PLC	%M00431	Off	ENCENDIDO VÁLVULA DEL FAN-COIL EN HAB1
M00432	BOOL	GE FANUC PLC	%M00432	Off	COMPARADOR QUE HABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB1
M00433	BOOL	GE FANUC PLC	%M00433	Off	COMPARADOR QUE DESABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB1
M00434	BOOL	GE FANUC PLC	%M00434	Off	HABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB1
M00435	BOOL	GE FANUC PLC	%M00435	Off	ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB1
M00436	BOOL	GE FANUC PLC	%M00436	Off	TIEMPO PARA APAGAR EL FAN-COIL CUANDO LA PUERTA SE ABRE EN HAB1
M00437	BOOL	GE FANUC PLC	%M00437	Off	DESABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB1

M00438	BOOL	GE FANUC PLC	%M00438	Off	SE ACTIVA POR CAMBIO DE TEMPERATURA EN HAB1
M00439	BOOL	GE FANUC PLC	%M00439	Off	RESETEA TIEMPO DE CORTESIA DE APAGADO LUZ POR SALIR HABITACIÓN DEJANDO TARJETA PUESTAEN HAB1
M00440	BOOL	GE FANUC PLC	%M00440	Off	TIEMPO PARA INTRODUCIR TARJETA ANTES DE ACTIVAR ALARMA POR INTRUSO EN HAB1
M00441	BOOL	GE FANUC PLC	%M00441	Off	AUXILIAR PARA DESABILITAR TIEMPO DE ESPERA PARA INTRUSO EN HAB1
M00442	BOOL	GE FANUC PLC	%M00442	Off	DESABILITA TIEMPO DE ESPERA PARA DETECCIÓN DE INTRUSO EN HAB1
M00443	BOOL	GE FANUC PLC	%M00443	Off	RESETEA TIEMPO DE ESPERA POR INTRUSO EN HAB1
M00444	BOOL	GE FANUC PLC	%M00444	Off	INDICA PRESENCIA DE EMPLEADO EN HAB1
M00445	BOOL	GE FANUC PLC	%M00445	Off	INDICA PRESENCIA DE CLIENTE EN HAB1
M00446	BOOL	GE FANUC PLC	%M00446	Off	ACTIVA ALARMA POR INTRUSO
M00447	BOOL	GE FANUC PLC	%M00447	Off	PULSO POR EMERGENCIA MÉDICA EN HAB1
M00448	BOOL	GE FANUC PLC	%M00448	Off	ACTIVA ALARMA POR EMERGENCIA MÉDICA EN HAB1
M00449	BOOL	GE FANUC PLC	%M00449	Off	ACTIVA LA TARJETA VIRTUAL CLIENTE EN HAB1
M00450	BOOL	GE FANUC PLC	%M00450	Off	ACTIVA CONTROL TEMPERATURA VIRTUAL EN HAB1
M00452	BOOL	GE FANUC PLC	%M00452	Off	ACTIVA LUZ PARA PASILLO EN HAB1
M00453	BOOL	GE FANUC PLC	%M00453	Off	SALIDA DE ENCENDIDO LUMINARIAS DE PASILLO EN HAB1
M00454	BOOL	GE FANUC PLC	%M00454	Off	PULSO PARA ACTIVAR APAGADO LUZ PASILLO EN HAB1
M00455	BOOL	GE FANUC PLC	%M00455	Off	HABILITA TIEMPO APAGADO LUZ PASILLO EN HAB1
M00456	BOOL	GE FANUC PLC	%M00456	Off	TIEMPO PARA APAGADO LUZ PASILLO EN HAB1
M00457	BOOL	GE FANUC PLC	%M00457	Off	DESABILITA TIEMPO APAGADO LUZ PASILLO EN HAB1
M00458	BOOL	GE FANUC PLC	%M00458	Off	PULSO PARA ENCENDER LUZ PASILLO AL ABRIR LA PUERTA EN HAB1
M00459	BOOL	GE FANUC PLC	%M00459	Off	ENCIENDE LUZ PASILLO AL ABRIR PUERTA DE HABITACIÓN EN HAB1
M00460	BOOL	GE FANUC PLC	%M00460	Off	HABILITA TIEMPO DE ESPERA PARA APAGAR LUZ PASILLO POR ABRIR PUERTA EN HAB1
M00461	BOOL	GE FANUC PLC	%M00461	Off	TIEMPO PARA APAGAR LUZ PASILLO POR ABRIR PUERTA EN HAB1
M00462	BOOL	GE FANUC PLC	%M00462	Off	ACTIVA ALARMA POR DETECCIÓN DE FUEGO EN HAB1
M00464	BOOL	GE FANUC PLC	%M00464	Off	HABILITA TIEMPO ENCENDIDO GENERADOR
M00465	BOOL	GE FANUC PLC	%M00465	Off	ESTE TEMPORIZADOR CUENTA 1 HORA
M00466	BOOL	GE FANUC PLC	%M00466	Off	CON ESTE CONTADOR CUENTA 1 DIA
M00467	BOOL	GE FANUC PLC	%M00467	Off	ESTE CONTADOR CUENTA LOS 7 DIAS DE UNA SEMANA
M00468	BOOL	GE FANUC PLC	%M00468	Off	RESETEA EL TEMPORIZADOR DE 1 HORA
M00469	BOOL	GE FANUC PLC	%M00469	Off	AVTIVA LA BOBINA DE ENCENDIDO GENERADOR SEMANAL
M00470	BOOL	GE FANUC	%M00470	Off	TEMPORIZADOR DE 60 SEGUNDOS

		PLC			
M00471	BOOL	GE FANUC PLC	%M00471	Off	CUENTAS 15 MINUTOS LUEGO SE APAGA GENRADOR SEMANAL
M00472	BOOL	GE FANUC PLC	%M00472	Off	ACTIVA MODO MANUAL DEL SITEMA DE TRANSFERENCIA
M00473	BOOL	GE FANUC PLC	%M00473	Off	ACTIVA MODO AUTOMÁTICO DEL SISTEMA DE TRANSFERENCIA
M00474	BOOL	GE FANUC PLC	%M00474	Off	ACCIONA CONTACTOR PARA ENERGIZAR LA CARGA CON EEE EN MANUAL
M00475	BOOL	GE FANUC PLC	%M00475	Off	ACCIONA CONTACTOR PARA ENERGIZAR CARGA CON GENERADOR EN MANUAL
M00476	BOOL	GE FANUC PLC	%M00476	Off	ACCIONA CONTACTOR DE EEE CON RETENCIÓN MECÁNICA EN MANUAL
M00478	BOOL	GE FANUC PLC	%M00478	Off	ACCIONA CONTACTOR DE GENERADOR CON RETENCIÓN MECÁNCIA EN MANUAL
M00480	BOOL	GE FANUC PLC	%M00480	Off	SALIDA CONTACTOR DE TRANSFERENCIA EEE EN MANUAL
M00481	BOOL	GE FANUC PLC	%M00481	Off	SALIDA CONTACTOR DE TRANSFERENCIA GENERADOR EN MANUAL
M00482	BOOL	GE FANUC PLC	%M00482	Off	SALIDA ENCENDIDO GENERADOR EN MANUAL
M00483	BOOL	GE FANUC PLC	%M00483	Off	10 SEGUNDOS PARA APAGAR SITEMA TRANSFERENCIA EN MANUAL EN MANUAL
M00485	BOOL	GE FANUC PLC	%M00485	Off	SE ACTIVÓ SOLO EL RELÉ DE EMPLEADO EN HAB2
M00486	BOOL	GE FANUC PLC	%M00486	Off	SE ACTIVARON RELÉ DE CLIENTE Y EMPLEADO EN HAB2
M00487	BOOL	GE FANUC PLC	%M00487	Off	ACTIVA COMPARADOR DE NIVEL DE LUZ EN HAB2
M00488	BOOL	GE FANUC PLC	%M00488	Off	ESTE COMPARADOR INDICA QUE ES DIA EN HAB2
M00489	BOOL	GE FANUC PLC	%M00489	Off	ESTE COMPARADOR INDICA QUE ES NOCHE EN HAB2
M00490	BOOL	GE FANUC PLC	%M00490	Off	PULSO PARA ENCENDER Y APAGAR LUZ POR BOTONERA EN NOCHE EN HAB2
M00491	BOOL	GE FANUC PLC	%M00491	Off	ENCIENDE LUZ POR BOTONERA EN NOCHE EN HAB2
M00492	BOOL	GE FANUC PLC	%M00492	Off	APAGA LUZ POR BOTONERA EN NOCHE EN HAB2
M00493	BOOL	GE FANUC PLC	%M00493	Off	PULSO PARA ENCENDER Y APAGAR LUZ POR BOTONERA EN DIA EN HAB2
M00494	BOOL	GE FANUC PLC	%M00494	Off	ENCIENDE LUZ POR BOTONERA EN DIA EN HAB2
M00495	BOOL	GE FANUC PLC	%M00495	Off	APAGA LUZ POR BOTONERA EN DIA EN HAB2
M00496	BOOL	GE FANUC PLC	%M00496	Off	ACTIVA SALIDAS DE TOMAS, TV Y CABLE PARA CLIENTE EN HAB2
M00497	BOOL	GE FANUC PLC	%M00497	Off	RESETEA ENCENDIDO LUZ AL SALIR DE LA HABITACIÓN EN HAB2
M00498	BOOL	GE FANUC PLC	%M00498	Off	RESETEA ENCENDIDO LUZ AL LLEGAR LA NOCHE EN HAB2
M00499	BOOL	GE FANUC PLC	%M00499	Off	RESETEA CONTADOR DE ENCENDIDO LUZ POR BOTONERA EN NOCHE EN HAB2
M00500	BOOL	GE FANUC PLC	%M00500	Off	APAGA LUZ POR BOTONERA EN DIA EN HAB2
M00501	BOOL	GE FANUC PLC	%M00501	Off	RESETEA ENCENDIDO LUZ AL LLEGAR EL DIA EN HAB2
M00502	BOOL	GE FANUC PLC	%M00502	Off	ACTIVA SALIDA DE ENCENDIDO DE LUMINARIA DE HABITACIÓN EN HAB2
M00503	BOOL	GE FANUC PLC	%M00503	Off	SALIDA PARA LUMINARIAS Y TOMAS PARA EMPLEADO EN HAB2

M00504	BOOL	GE FANUC PLC	%M00504	Off	PULSO PARA APAGAR CARGAS AL RETIRAR TARJETA EN HAB2
M00505	BOOL	GE FANUC PLC	%M00505	Off	ACTIVA TIEMPO DE CORTESIA PARA APAGADO DE CARGAS EN HAB2
M00506	BOOL	GE FANUC PLC	%M00506	Off	TIEMPO DE COTESIA PARA APAGAR CARGAS AL RETIRAR TARJETA EN HAB2
M00507	BOOL	GE FANUC PLC	%M00507	Off	DESABILITA ACTIVACIÓN DE TIEMPO DE CORTESIA EN HAB2
M00508	BOOL	GE FANUC PLC	%M00508	Off	PULSO PARA APAGAR CARGAS AL SALIR DE HABITACIÓN SIN RETIRARA TARJETA EN HAB2
M00509	BOOL	GE FANUC PLC	%M00509	Off	ACTIVA TIEMPO CORTESIA PARA APAGAR CARGAS AL SALIR DE LA HABITACIÓN EN HAB2
M00510	BOOL	GE FANUC PLC	%M00510	Off	TIEMPO DE CORTESÍA PARA APAGAR CARGAS AL SALIR DE HABITACIÓN SIN RETIRAR TARJETA EN HAB2
M00511	BOOL	GE FANUC PLC	%M00511	Off	RESETEA ENCENDIDO LUZ AL VOLVER A ENTRAR A LA HABITACIÓN EN HAB2
M00512	BOOL	GE FANUC PLC	%M00512	Off	ACTIVA ENCENDIDO LUZ BAÑO
M00513	BOOL	GE FANUC PLC	%M00513	Off	ACTIVA ENCENDIDO VENTILADOR DEL FAN-COIL PARA CLIENTE EN HAB2
M00514	BOOL	GE FANUC PLC	%M00514	Off	ACTIVA ENCENDIDO VALVULA DEL FAN-COIL PARA CLIENTE EN HAB2
M00515	BOOL	GE FANUC PLC	%M00515	Off	ENCENDIDO VENTILADOR DEL FAN-COIL EN HAB2
M00516	BOOL	GE FANUC PLC	%M00516	Off	ENCENDIDO VÁLVULA DEL FAN-COIL EN HAB2
M00517	BOOL	GE FANUC PLC	%M00517	Off	COMPARADOR QUE HABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB2
M00518	BOOL	GE FANUC PLC	%M00518	Off	COMPARADOR QUE DESABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB2
M00519	BOOL	GE FANUC PLC	%M00519	Off	HABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB2
M00520	BOOL	GE FANUC PLC	%M00520	Off	ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB2
M00521	BOOL	GE FANUC PLC	%M00521	Off	TIEMPO PARA APAGAR EL FAN-COIL CUANDO LA PUERTA SE ABRE EN HAB2
M00522	BOOL	GE FANUC PLC	%M00522	Off	DESABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB2
M00523	BOOL	GE FANUC PLC	%M00523	Off	SE ACTIVA POR CAMBIO DE TEMPERATURA EN HAB2
M00524	BOOL	GE FANUC PLC	%M00524	Off	RESETEA TIEMPO DE CORTESIA DE APAGADO LUZ POR SALIR HABITACIÓN DEJANDO TARJETA PUESTAEN HAB2
M00525	BOOL	GE FANUC PLC	%M00525	Off	TIEMPO PARA INTRODUCIR TARJETA ANTES DE ACTIVAR ALARMA POR INTRUSO EN HAB2
M00526	BOOL	GE FANUC PLC	%M00526	Off	AUXILIAR PARA DESABILITAR TIEMPO DE ESPERA PARA INTRUSO EN HAB2
M00527	BOOL	GE FANUC PLC	%M00527	Off	DESABILITA TIEMPO DE ESPERA PARA DETECCIÓN DE INTRUSO EN HAB2
M00528	BOOL	GE FANUC PLC	%M00528	Off	RESETEA TIEMPO DE ESPERA POR INTRUSO EN HAB2
M00529	BOOL	GE FANUC PLC	%M00529	Off	INDICA PRESENCIA DE EMPLEADO EN HAB2
M00530	BOOL	GE FANUC PLC	%M00530	Off	INDICA PRESENCIA DE CLIENTE EN HAB2
M00531	BOOL	GE FANUC PLC	%M00531	Off	ACTIVA ALARMA POR INTRUSO EN HAB2
M00532	BOOL	GE FANUC PLC	%M00532	Off	PULSO POR EMERGENCIA MÉDICA EN HAB2
M00533	BOOL	GE FANUC PLC	%M00533	Off	ACTIVA ALARMA POR EMERGENCIA MÉDICA EN HAB2
M00534	BOOL	GE FANUC	%M00534	Off	ACTIVA LA TARJETA VIRTUAL CLIENTE EN HAB2

M00537 BO M00538 BO M00539 BO	00L 00L 00L	GE FANUC PLC GE FANUC PLC GE FANUC	%M00535 %M00537	Off	ACTIVA CONTROL TEMPERATURA VIRTUAL EN HAB2
M00538 BO	OOL	PLC	%M00537		1
M00539 BO		GE FANUC		Off	ACTIVA CONTROL TEMPERATURA VIRTUAL EN HAB2
	OOL	PLC	%M00538	Off	SALIDA DE ENCENDIDO LUMINARIAS DE PASILLO EN HAB2
M00540 BO		GE FANUC PLC	%M00539	Off	PULSO PARA ACTIVAR APAGADO LUZ PASILLO EN HAB2
	OOL	GE FANUC PLC	%M00540	Off	HABILITA TIEMPO APAGADO LUZ PASILLO EN HAB2
M00541 BO	OOL	GE FANUC PLC	%M00541	Off	TIEMPO PARA APAGADO LUZ PASILLO EN HAB2
M00542 BO	OOL	GE FANUC PLC	%M00542	Off	DESABILITA TIEMPO APAGADO LUZ PASILLO EN HAB2
M00543 BO	OOL	GE FANUC PLC	%M00543	Off	PULSO PARA ENCENDER LUZ PASILLO AL ABRIR LA PUERTA EN HAB2
M00544 BO	OOL	GE FANUC PLC	%M00544	Off	ENCIENDE LUZ PASILLO AL ABRIR PUERTA DE HABITACIÓN EN HAB2
M00545 BO	OOL	GE FANUC PLC	%M00545	Off	HABILITA TIEMPO DE ESPERA PARA APAGAR LUZ PASILLO POR ABRIR PUERTA EN HAB2
M00546 BO	OOL	GE FANUC PLC	%M00546	Off	TIEMPO PARA APAGAR LUZ PASILLO POR ABRIR PUERTA EN HAB2
M00547 BO	OOL	GE FANUC PLC	%M00547	Off	ACTIVA ALARMA POR DETECCIÓN DE FUEGO EN HAB2
M00550 BO	OOL	GE FANUC PLC	%M00550	Off	SE ACTIVÓ SOLO EL RELÉ DE EMPLEADO EN HAB3
M00551 BO	OOL	GE FANUC PLC	%M00551	Off	SE ACTIVARON RELÉ DE CLIENTE Y EMPLEADO EN HAB3
M00552 BO	OOL	GE FANUC PLC	%M00552	Off	ACTIVA COMPARADOR DE NIVEL DE LUZ EN HAB3
M00553 BO	OOL	GE FANUC PLC	%M00553	Off	ESTE COMPARADOR INDICA QUE ES DIA EN HAB3
M00554 BO	OOL	GE FANUC PLC	%M00554	Off	ESTE COMPARADOR INDICA QUE ES NOCHE EN HAB3
M00555 BO	OOL	GE FANUC PLC	%M00555	Off	PULSO PARA ENCENDER Y APAGAR LUZ POR BOTONERA EN NOCHE EN HAB3
M00556 BO	OOL	GE FANUC PLC	%M00556	Off	ENCIENDE LUZ POR BOTONERA EN NOCHE EN HAB3
M00557 BO	OOL	GE FANUC PLC	%M00557	Off	APAGA LUZ POR BOTONERA EN NOCHE EN HAB3
M00558 BO	OOL	GE FANUC PLC	%M00558	Off	PULSO PARA ENCENDER Y APAGAR LUZ POR BOTONERA EN DIA EN HAB3
M00559 BO	OOL	GE FANUC PLC	%M00559	Off	ENCIENDE LUZ POR BOTONERA EN DIA EN HAB3
M00560 BO	OOL	GE FANUC PLC	%M00560	Off	APAGA LUZ POR BOTONERA EN DIA EN HAB3
M00561 BO	OOL	GE FANUC PLC	%M00561	Off	ACTIVA SALIDAS DE TOMAS, TV Y CABLE PARA CLIENTE EN HAB3
M00562 BO	OOL	GE FANUC PLC	%M00562	Off	RESETEA ENCENDIDO LUZ AL SALIR DE LA HABITACIÓN EN HAB3
M00563 BO	OOL	GE FANUC PLC	%M00563	Off	RESETEA ENCENDIDO LUZ AL LLEGAR LA NOCHE EN HAB3
M00564 BO	OOL	GE FANUC PLC	%M00564	Off	RESETEA CONTADOR DE ENCENDIDO LUZ POR BOTONERA EN NOCHE EN HAB3
M00565 BO	OOL	GE FANUC PLC	%M00565	Off	APAGA LUZ POR BOTONERA EN DIA EN HAB3
M00566 BO	OOL	GE FANUC PLC	%M00566	Off	RESETEA ENCENDIDO LUZ AL LLEGAR EL DIA EN HAB3
M00567 BO	OOL	GE FANUC PLC	%M00567	Off	ACTIVA SALIDA DE ENCENDIDO DE LUMINARIA DE HABITACIÓN EN HAB3

M00568	BOOL	GE FANUC PLC	%M00568	Off	SALIDA PARA LUMINARIAS Y TOMAS PARA EMPLEADO EN HAB3
M00569	BOOL	GE FANUC PLC	%M00569	Off	PULSO PARA APAGAR CARGAS AL RETIRAR TARJETA EN HAB3
M00570	BOOL	GE FANUC PLC	%M00570	Off	ACTIVA TIEMPO DE CORTESIA PARA APAGADO DE CARGAS EN HAB3
M00571	BOOL	GE FANUC PLC	%M00571	Off	TIEMPO DE COTESIA PARA APAGAR CARGAS AL RETIRAR TARJETA EN HAB3
M00572	BOOL	GE FANUC PLC	%M00572	Off	DESABILITA ACTIVACIÓN DE TIEMPO DE CORTESIA EN HAB3
M00573	BOOL	GE FANUC PLC	%M00573	Off	PULSO PARA APAGAR CARGAS AL SALIR DE HABITACIÓN SIN RETIRARA TARJETA EN HAB3
M00574	BOOL	GE FANUC PLC	%M00574	Off	ACTIVA TIEMPO CORTESIA PARA APAGAR CARGAS AL SALIR DE LA HABITACIÓN EN HAB3
M00575	BOOL	GE FANUC PLC	%M00575	Off	TIEMPO DE CORTESÍA PARA APAGAR CARGAS AL SALIR DE HABITACIÓN SIN RETIRAR TARJETA EN HAB3
M00576	BOOL	GE FANUC PLC	%M00576	Off	RESETEA ENCENDIDO LUZ AL VOLVER A ENTRAR A LA HABITACIÓN EN HAB3
M00577	BOOL	GE FANUC PLC	%M00577	Off	ACTIVA ENCENDIDO LUZ BAÑO EN HAB3
M00578	BOOL	GE FANUC PLC	%M00578	Off	ACTIVA ENCENDIDO VENTILADOR DEL FAN-COIL PARA CLIENTE EN HAB3
M00579	BOOL	GE FANUC PLC	%M00579	Off	ACTIVA ENCENDIDO VALVULA DEL FAN-COIL PARA CLIENTE EN HAB3
M00580	BOOL	GE FANUC PLC	%M00580	Off	ENCENDIDO VENTILADOR DEL FAN-COIL EN HAB3
M00581	BOOL	GE FANUC PLC	%M00581	Off	ENCENDIDO VÁLVULA DEL FAN-COIL EN HAB3
M00582	BOOL	GE FANUC PLC	%M00582	Off	COMPARADOR QUE HABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB3
M00583	BOOL	GE FANUC PLC	%M00583	Off	COMPARADOR QUE DESABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB3
M00584	BOOL	GE FANUC PLC	%M00584	Off	HABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB3
M00585	BOOL	GE FANUC PLC	%M00585	Off	ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB3
M00586	BOOL	GE FANUC PLC	%M00586	Off	TIEMPO PARA APAGAR EL FAN-COIL CUANDO LA PUERTA SE ABRE EN HAB3
M00587	BOOL	GE FANUC PLC	%M00587	Off	DESABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB3
M00588	BOOL	GE FANUC PLC	%M00588	Off	SE ACTIVA POR CAMBIO EN TEMPERATURA EN HAB3
M00589	BOOL	GE FANUC PLC	%M00589	Off	RESETEA TIEMPO DE CORTESIA DE APAGADO LUZ POR SALIR HABITACIÓN DEJANDO TARJETA PUESTAEN HAB3
M00590	BOOL	GE FANUC PLC	%M00590	Off	TIEMPO PARA INTRODUCIR TARJETA ANTES DE ACTIVAR ALARMA POR INTRUSO EN HAB3
M00591	BOOL	GE FANUC PLC	%M00591	Off	AUXILIAR PARA DESABILITAR TIEMPO DE ESPERA PARA INTRUSO EN HAB3
M00592	BOOL	GE FANUC PLC	%M00592	Off	DESABILITA TIEMPO DE ESPERA PARA DETECCIÓN DE INTRUSO EN HAB3
M00593	BOOL	GE FANUC PLC	%M00593	Off	RESETEA TIEMPO DE ESPERA POR INTRUSO EN HAB3
M00594	BOOL	GE FANUC PLC	%M00594	Off	INDICA PRESENCIA DE EMPLEADO EN HAB3
M00595	BOOL	GE FANUC PLC	%M00595	Off	INDICA PRESENCIA DE CLIENTE EN HAB3
M00596	BOOL	GE FANUC PLC	%M00596	Off	ACTIVA ALARMA POR INTRUSO EN HAB3
M00597	BOOL	GE FANUC PLC	%M00597	Off	PULSO POR EMERGENCIA MÉDICA EN HAB3
M00598	BOOL	GE FANUC	%M00598	Off	ACTIVA ALARMA POR EMERGENCIA MÉDICA EN HAB3

		PLC			
M00599	BOOL	GE FANUC PLC	%M00599	Off	ACTIVA LA TARJETA VIRTUAL CLIENTE EN HAB3
M00600	BOOL	GE FANUC PLC	%M00600	Off	ACTIVA CONTROL TEMPERATURA VIRTUAL EN HAB3
M00602	BOOL	GE FANUC PLC	%M00602	Off	ACTIVA LUZ PARA PASILLO EN HAB3
M00603	BOOL	GE FANUC PLC	%M00603	Off	SALIDA DE ENCENDIDO LUMINARIAS DE PASILLO EN HAB3
M00604	BOOL	GE FANUC PLC	%M00604	Off	PULSO PARA ACTIVAR APAGADO LUZ PASILLO EN HAB3
M00605	BOOL	GE FANUC PLC	%M00605	Off	HABILITA TIEMPO APAGADO LUZ PASILLO EN HAB3
M00606	BOOL	GE FANUC PLC	%M00606	Off	TIEMPO PARA APAGADO LUZ PASILLO EN HAB3
M00607	BOOL	GE FANUC PLC	%M00607	Off	DESABILITA TIEMPO APAGADO LUZ PASILLO EN HAB3
M00608	BOOL	GE FANUC PLC	%M00608	Off	PULSO PARA ENCENDER LUZ PASILLO AL ABRIR LA PUERTA EN HAB3
M00609	BOOL	GE FANUC PLC	%M00609	Off	ENCIENDE LUZ PASILLO AL ABRIR PUERTA DE HABITACIÓN EN HAB3
M00610	BOOL	GE FANUC PLC	%M00610	Off	HABILITA TIEMPO DE ESPERA PARA APAGAR LUZ PASILLO POR ABRIR PUERTA EN HAB3
M00611	BOOL	GE FANUC PLC	%M00611	Off	TIEMPO PARA APAGAR LUZ PASILLO POR ABRIR PUERTA EN HAB3
M00612	BOOL	GE FANUC PLC	%M00612	Off	ACTIVA ALARMA POR DETECCIÓN DE FUEGO EN HAB3
M00615	BOOL	GE FANUC PLC	%M00615	Off	SE ACTIVÓ SOLO EL RELÉ DE EMPLEADO EN HAB4
M00616	BOOL	GE FANUC PLC	%M00616	Off	SE ACTIVARON RELÉ DE CLIENTE Y EMPLEADO EN HAB4
M00617	BOOL	GE FANUC PLC	%M00617	Off	ACTIVA COMPARADOR DE NIVEL DE LUZ EN HAB4
M00618	BOOL	GE FANUC PLC	%M00618	Off	ESTE COMPARADOR INDICA QUE ES DIA EN HAB4
M00619	BOOL	GE FANUC PLC	%M00619	Off	ESTE COMPARADOR INDICA QUE ES NOCHE EN HAB4
M00620	BOOL	GE FANUC PLC	%M00620	Off	PULSO PARA ENCENDER Y APAGAR LUZ POR BOTONERA EN NOCHE EN HAB4
M00621	BOOL	GE FANUC PLC	%M00621	Off	ENCIENDE LUZ POR BOTONERA EN NOCHE EN HAB4
M00622	BOOL	GE FANUC PLC	%M00622	Off	APAGA LUZ POR BOTONERA EN NOCHE EN HAB4
M00623	BOOL	GE FANUC PLC	%M00623	Off	PULSO PARA ENCENDER Y APAGAR LUZ POR BOTONERA EN DIA EN HAB4
M00624	BOOL	GE FANUC PLC	%M00624	Off	ENCIENDE LUZ POR BOTONERA EN DIA EN HAB4
M00625	BOOL	GE FANUC PLC	%M00625	Off	APAGA LUZ POR BOTONERA EN DIA EN HAB4
M00626	BOOL	GE FANUC PLC	%M00626	Off	ACTIVA SALIDAS DE TOMAS, TV Y CABLE PARA CLIENTE EN HAB4
M00627	BOOL	GE FANUC PLC	%M00627	Off	RESETEA ENCENDIDO LUZ AL SALIR DE LA HABITACIÓN EN HAB4
M00628	BOOL	GE FANUC PLC	%M00628	Off	RESETEA ENCENDIDO LUZ AL LLEGAR LA NOCHE EN HAB4
M00629	BOOL	GE FANUC PLC	%M00629	Off	RESETEA CONTADOR DE ENCENDIDO LUZ POR BOTONERA EN NOCHE EN HAB4
M00630	BOOL	GE FANUC PLC	%M00630	Off	APAGA LUZ POR BOTONERA EN DIA EN HAB4
M00631	BOOL	GE FANUC PLC	%M00631	Off	RESETEA ENCENDIDO LUZ AL LLEGAR EL DIA EN HAB4

M00632	BOOL	GE FANUC PLC	%M00632	Off	ACTIVA SALIDA DE ENCENDIDO DE LUMINARIA DE HABITACIÓN EN HAB4
M00633	BOOL	GE FANUC PLC	%M00633	Off	SALIDA PARA LUMINARIAS Y TOMAS PARA EMPLEADO EN HAB4
M00634	BOOL	GE FANUC PLC	%M00634	Off	PULSO PARA APAGAR CARGAS AL RETIRAR TARJETA EN HAB4
M00635	BOOL	GE FANUC PLC	%M00635	Off	ACTIVA TIEMPO DE CORTESIA PARA APAGADO DE CARGAS EN HAB4
M00636	BOOL	GE FANUC PLC	%M00636	Off	TIEMPO DE COTESIA PARA APAGAR CARGAS AL RETIRAR TARJETA EN HAB4
M00637	BOOL	GE FANUC PLC	%M00637	Off	DESABILITA ACTIVACIÓN DE TIEMPO DE CORTESIA EN HAB4
M00638	BOOL	GE FANUC PLC	%M00638	Off	PULSO PARA APAGAR CARGAS AL SALIR DE HABITACIÓN SIN RETIRARA TARJETA EN HAB4
M00639	BOOL	GE FANUC PLC	%M00639	Off	ACTIVA TIEMPO CORTESIA PARA APAGAR CARGAS AL SALIR DE LA HABITACIÓN EN HAB4
M00640	BOOL	GE FANUC PLC	%M00640	Off	TIEMPO DE CORTESÍA PARA APAGAR CARGAS AL SALIR DE HABITACIÓN SIN RETIRAR TARJETA EN HAB4
M00641	BOOL	GE FANUC PLC	%M00641	Off	RESETEA ENCENDIDO LUZ AL VOLVER A ENTRAR A LA HABITACIÓN EN HAB4
M00642	BOOL	GE FANUC PLC	%M00642	Off	ACTIVA ENCENDIDO LUZ BAÑO EN HAB4
M00643	BOOL	GE FANUC PLC	%M00643	Off	ACTIVA ENCENDIDO VENTILADOR DEL FAN-COIL PARA CLIENTE EN HAB4
M00644	BOOL	GE FANUC PLC	%M00644	Off	ACTIVA ENCENDIDO VALVULA DEL FAN-COIL PARA CLIENTE EN HAB4
M00645	BOOL	GE FANUC PLC	%M00645	Off	ENCENDIDO VENTILADOR DEL FAN-COIL EN HAB4
M00646	BOOL	GE FANUC PLC	%M00646	Off	ENCENDIDO VÁLVULA DEL FAN-COIL EN HAB4
M00647	BOOL	GE FANUC PLC	%M00647	Off	COMPARADOR QUE HABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB4
M00648	BOOL	GE FANUC PLC	%M00648	Off	COMPARADOR QUE DESABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB4
M00649	BOOL	GE FANUC PLC	%M00649	Off	HABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB4
M00650	BOOL	GE FANUC PLC	%M00650	Off	ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB4
M00651	BOOL	GE FANUC PLC	%M00651	Off	TIEMPO PARA APAGAR EL FAN-COIL CUANDO LA PUERTA SE ABRE EN HAB4
M00652	BOOL	GE FANUC PLC	%M00652	Off	DESABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB4
M00653	BOOL	GE FANUC PLC	%M00653	Off	SE ACTIVA POR CAMBIO DE TEMPERATURA EN HAB4
M00654	BOOL	GE FANUC PLC	%M00654	Off	RESETEA TIEMPO DE CORTESIA DE APAGADO LUZ POR SALIR HABITACIÓN DEJANDO TARJETA PUESTAEN HAB4
M00655	BOOL	GE FANUC PLC	%M00655	Off	TIEMPO PARA INTRODUCIR TARJETA ANTES DE ACTIVAR ALARMA POR INTRUSO EN HAB4
M00656	BOOL	GE FANUC PLC	%M00656	Off	AUXILIAR PARA DESABILITAR TIEMPO DE ESPERA PARA INTRUSO EN HAB4
M00657	BOOL	GE FANUC PLC	%M00657	Off	DESABILITA TIEMPO DE ESPERA PARA DETECCIÓN DE INTRUSO EN HAB4
M00658	BOOL	GE FANUC PLC	%M00658	Off	RESETEA TIEMPO DE ESPERA POR INTRUSO EN HAB4
M00659	BOOL	GE FANUC PLC	%M00659	Off	INDICA PRESENCIA DE EMPLEADO EN HAB4
M00660	BOOL	GE FANUC PLC	%M00660	Off	INDICA PRESENCIA DE CLIENTE EN HAB4
M00661	BOOL	GE FANUC PLC	%M00661	Off	ACTIVA ALARMA POR INTRUSO EN HAB4
M00662	BOOL	GE FANUC	%M00662	Off	PULSO POR EMERGENCIA MÉDICA EN HAB4

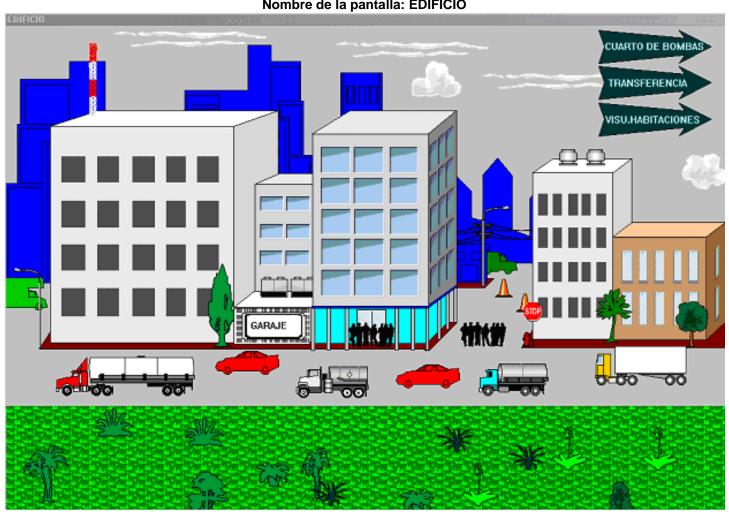
		PLC			
M00663	BOOL	GE FANUC PLC	%M00663	Off	ACTIVA ALARMA POR EMERGENCIA MÉDICA EN HAB4
M00664	BOOL	GE FANUC PLC	%M00664	Off	ACTIVA LA TARJETA VIRTUAL CLIENTE EN HAB4
M00665	BOOL	GE FANUC PLC	%M00665	Off	ACTIVA CONTROL TEMPERATURA VIRTUAL EN HAB4
M00667	BOOL	GE FANUC PLC	%M00667	Off	ACTIVA LUZ PARA PASILLO EN HAB4
M00668	BOOL	GE FANUC PLC	%M00668	Off	SALIDA DE ENCENDIDO LUMINARIAS DE PASILLO EN HAB4
M00669	BOOL	GE FANUC PLC	%M00669	Off	PULSO PARA ACTIVAR APAGADO LUZ PASILLO EN HAB4
M00670	BOOL	GE FANUC PLC	%M00670	Off	HABILITA TIEMPO APAGADO LUZ PASILLO EN HAB4
M00671	BOOL	GE FANUC PLC	%M00671	Off	TIEMPO PARA APAGADO LUZ PASILLO EN HAB4
M00672	BOOL	GE FANUC PLC	%M00672	Off	DESABILITA TIEMPO APAGADO LUZ PASILLO EN HAB4
M00673	BOOL	GE FANUC PLC	%M00673	Off	PULSO PARA ENCENDER LUZ PASILLO AL ABRIR LA PUERTA EN HAB4
M00674	BOOL	GE FANUC PLC	%M00674	Off	ENCIENDE LUZ PASILLO AL ABRIR PUERTA DE HABITACIÓN EN HAB4
M00675	BOOL	GE FANUC PLC	%M00675	Off	HABILITA TIEMPO DE ESPERA PARA APAGAR LUZ PASILLO POR ABRIR PUERTA EN HAB4
M00676	BOOL	GE FANUC PLC	%M00676	Off	TIEMPO PARA APAGAR LUZ PASILLO POR ABRIR PUERTA EN HAB4
M00677	BOOL	GE FANUC PLC	%M00677	Off	ACTIVA ALARMA POR DETECCIÓN DE FUEGO EN HAB4
M00680	BOOL	GE FANUC PLC	%M00680	Off	SE ACTIVÓ SOLO EL RELÉ DE EMPLEADO EN HABS
M00681	BOOL	GE FANUC PLC	%M00681	Off	SE ACTIVARON RELÉ DE CLIENTE Y EMPLEADO EN HAB5
M00682	BOOL	GE FANUC PLC	%M00682	Off	ACTIVA COMPARADOR DE NIVEL DE LUZ EN HAB5
M00683	BOOL	GE FANUC PLC	%M00683	Off	ESTE COMPARADOR INDICA QUE ES DIA EN HAB5
M00684	BOOL	GE FANUC PLC	%M00684	Off	ESTE COMPARADOR INDICA QUE ES NOCHE EN HAB5
M00685	BOOL	GE FANUC PLC	%M00685	Off	PULSO PARA ENCENDER Y APAGAR LUZ POR BOTONERA EN NOCHE EN HAB5
M00686	BOOL	GE FANUC PLC	%M00686	Off	ENCIENDE LUZ POR BOTONERA EN NOCHE EN HAB5
M00687	BOOL	GE FANUC PLC	%M00687	Off	APAGA LUZ POR BOTONERA EN NOCHE EN HAB5
M00688	BOOL	GE FANUC PLC	%M00688	Off	PULSO PARA ENCENDER Y APAGAR LUZ POR BOTONERA EN DIA EN HAB5
M00689	BOOL	GE FANUC PLC	%M00689	Off	ENCIENDE LUZ POR BOTONERA EN DIA EN HAB5
M00690	BOOL	GE FANUC PLC	%M00690	Off	APAGA LUZ POR BOTONERA EN DIA EN HAB5
M00691	BOOL	GE FANUC PLC	%M00691	Off	ACTIVA SALIDAS DE TOMAS, TV Y CABLE PARA CLIENTE EN HAB5
M00692	BOOL	GE FANUC PLC	%M00692	Off	RESETEA ENCENDIDO LUZ AL SALIR DE LA HABITACIÓN EN HAB5
M00693	BOOL	GE FANUC PLC	%M00693	Off	RESETEA ENCENDIDO LUZ AL LLEGAR LA NOCHE EN HAB5
M00694	BOOL	GE FANUC PLC	%M00694	Off	RESETEA CONTADOR DE ENCENDIDO LUZ POR BOTONERA EN NOCHE EN HAB5
M00695	BOOL	GE FANUC PLC	%M00695	Off	APAGA LUZ POR BOTONERA EN DIA EN HABS

M00696	BOOL	GE FANUC PLC	%M00696	Off	RESETEA ENCENDIDO LUZ AL LLEGAR EL DIA EN HAB5
M00697	BOOL	GE FANUC PLC	%M00697	Off	ACTIVA SALIDA DE ENCENDIDO DE LUMINARIA DE HABITACIÓN EN HAB5
M00698	BOOL	GE FANUC PLC	%M00698	Off	SALIDA PARA LUMINARIAS Y TOMAS PARA EMPLEADO EN HAB5
M00699	BOOL	GE FANUC PLC	%M00699	Off	PULSO PARA APAGAR CARGAS AL RETIRAR TARJETA EN HAB5
M00700	BOOL	GE FANUC PLC	%M00700	Off	ACTIVA TIEMPO DE CORTESIA PARA APAGADO DE CARGAS EN HAB5
M00701	BOOL	GE FANUC PLC	%M00701	Off	TIEMPO DE COTESIA PARA APAGAR CARGAS AL RETIRAR TARJETA EN HAB5
M00702	BOOL	GE FANUC PLC	%M00702	Off	DESABILITA ACTIVACIÓN DE TIEMPO DE CORTESIA EN HAB5
M00703	BOOL	GE FANUC PLC	%M00703	Off	PULSO PARA APAGAR CARGAS AL SALIR DE HABITACIÓN SIN RETIRARA TARJETA EN HAB5
M00704	BOOL	GE FANUC PLC	%M00704	Off	
M00705	BOOL	GE FANUC PLC	%M00705	Off	TIEMPO DE CORTESÍA PARA APAGAR CARGAS AL SALIR DE HABITACIÓN SIN RETIRAR TARJETA EN HAB5
<u>M00706</u>	BOOL	GE FANUC PLC	%M00706	Off	RESETEA ENCENDIDO LUZ AL VOLVER A ENTRAR A LA HABITACIÓN EN HAB5
<u>M00707</u>	BOOL	GE FANUC PLC	%M00707	Off	ACTIVA ENCENDIDO LUZ BAÑO EN HAB5
M00708	BOOL	GE FANUC PLC	%M00708	Off	ACTIVA ENCENDIDO VENTILADOR DEL FAN-COIL PARA CLIENTE EN HAB5
M00709	BOOL	GE FANUC PLC	%M00709	Off	ACTIVA ENCENDIDO VALVULA DEL FAN-COIL PARA CLIENTE EN HAB5
M00710	BOOL	GE FANUC PLC	%M00710	Off	ENCENDIDO VENTILADOR DEL FAN-COIL EN HAB5
<u>M00711</u>	BOOL	GE FANUC PLC	%M00711	Off	ENCENDIDO VÁLVULA DEL FAN-COIL EN HAB5
M00712	BOOL	GE FANUC PLC	%M00712	Off	COMPARADOR QUE HABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB5
M00713	BOOL	GE FANUC PLC	%M00713	Off	COMPARADOR QUE DESABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB5
M00714	BOOL	GE FANUC PLC	%M00714	Off	HABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB5
M00715	BOOL	GE FANUC PLC	%M00715	Off	ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB5
M00716	BOOL	GE FANUC PLC	%M00716	Off	TIEMPO PARA APAGAR EL FAN-COIL CUANDO LA PUERTA SE ABRE EN HAB5
M00717	BOOL	GE FANUC PLC	%M00717	Off	DESABILITA ENCENDIDO FAN-COIL PARA EMPLEADO EN HAB5
M00718	BOOL	GE FANUC PLC	%M00718	Off	SE ACTIVA POR CAMBIO DE TEMPERATURA EN HAB5
M00719	BOOL	GE FANUC PLC	%M00719	Off	RESETEA TIEMPO DE CORTESIA DE APAGADO LUZ POR SALIR HABITACIÓN DEJANDO TARJETA PUESTAEN HAB5
M00720	BOOL	GE FANUC PLC	%M00720	Off	TIEMPO PARA INTRODUCIR TARJETA ANTES DE ACTIVAR ALARMA POR INTRUSO EN HAB5
M00721	BOOL	GE FANUC PLC	%M00721	Off	AUXILIAR PARA DESABILITAR TIEMPO DE ESPERA PARA INTRUSO EN HABS
M00722	BOOL	GE FANUC PLC	%M00722	Off	DESABILITA TIEMPO DE ESPERA PARA DETECCIÓN DE INTRUSO EN HAB5
M00723	BOOL	GE FANUC PLC	%M00723	Off	RESETEA TIEMPO DE ESPERA POR INTRUSO EN HAB5
M00724	BOOL	GE FANUC PLC	%M00724	Off	INDICA PRESENCIA DE EMPLEADO EN HAB5
M00725	BOOL	GE FANUC PLC	%M00725	Off	INDICA PRESENCIA DE CLIENTE EN HAB5
M00726	BOOL	GE FANUC	%M00726	Off	ACTIVA ALARMA POR INTRUSO EN HAB5

		PLC			
M00727	BOOL	GE FANUC PLC	%M00727	Off	PULSO POR EMERGENCIA MÉDICA EN HAB5
M00728	BOOL	GE FANUC PLC	%M00728	Off	ACTIVA ALARMA POR EMERGENCIA MÉDICA EN HAB5
M00729	BOOL	GE FANUC PLC	%M00729	Off	ACTIVA LA TARJETA VIRTUAL CLIENTE EN HAB5
M00730	BOOL	GE FANUC PLC	%M00730	Off	ACTIVA CONTROL TEMPERATURA VIRTUAL EN HAB5
M00732	BOOL	GE FANUC PLC	%M00732	Off	ACTIVA LUZ PARA PASILLO EN HAB5
M00733	BOOL	GE FANUC PLC	%M00733	Off	SALIDA DE ENCENDIDO LUMINARIAS DE PASILLO EN HAB5
M00734	BOOL	GE FANUC PLC	%M00734	Off	PULSO PARA ACTIVAR APAGADO LUZ PASILLO EN HAB5
M00735	BOOL	GE FANUC PLC	%M00735	Off	HABILITA TIEMPO APAGADO LUZ PASILLO EN HAB5
M00736	BOOL	GE FANUC PLC	%M00736	Off	TIEMPO PARA APAGADO LUZ PASILLO EN HAB5
M00737	BOOL	GE FANUC PLC	%M00737	Off	DESABILITA TIEMPO APAGADO LUZ PASILLO EN HAB5
M00738	BOOL	GE FANUC PLC	%M00738	Off	PULSO PARA ENCENDER LUZ PASILLO AL ABRIR LA PUERTA EN HAB5
M00739	BOOL	GE FANUC PLC	%M00739	Off	ENCIENDE LUZ PASILLO AL ABRIR PUERTA DE HABITACIÓN EN HAB5
M00740	BOOL	GE FANUC PLC	%M00740	Off	HABILITA TIEMPO DE ESPERA PARA APAGAR LUZ PASILLO POR ABRIR PUERTA EN HAB5
M00741	BOOL	GE FANUC PLC	%M00741	Off	TIEMPO PARA APAGAR LUZ PASILLO POR ABRIR PUERTA EN HAB5
M00742	BOOL	GE FANUC PLC	%M00742	Off	ACTIVA ALARMA POR DETECCIÓN DE FUEGO EN HAB5
M00743	BOOL	GE FANUC PLC	%M00743	Off	HABILITA SELECCIÓN BOMBA1 VARIABLE
M00744	BOOL	GE FANUC PLC	%M00744	Off	HABILITA SELECCIÓN BOMBA2 VARIABLE
M00745	BOOL	GE FANUC PLC	%M00745	Off	HABILITA SELLECIÓN BOMBA3 VARIABLE
Q00002	BOOL	GE FANUC PLC	%Q00002	Off	RESET VARIADOR AUT. RESETEO DEL VARIADOR
Q00003	BOOL	GE FANUC PLC	%Q00003	Off	ON VARIADOR AUT. ENCENDIDO DEL VARIADOR
Q00004	BOOL	GE FANUC PLC	%Q00004	Off	CONTACTO BOMB1 VARIABLE. CONTACTOR DE BOMBA 1 PARA TRABAJO CON VARIADOR
Q00005	BOOL	GE FANUC PLC	%Q00005	Off	CONTACTO BOMBA1 DIRECTA. CONTACTOR DE BOMBA 1 PARA ENCENDIDO DIRECTO
<u>Q00006</u>	BOOL	GE FANUC PLC	%Q00006	Off	CONTACTO BOMBA2 VARIABLE. CONTACTOR DE BOMBA 2 PARA TRABAJO CON VARIADOR
Q00007	BOOL	GE FANUC PLC	%Q00007	Off	CONTACTO BOMBA2 DIRECTA. CONTACTOR DE BOMBA 2 PARA ENCENDIDO DIRECTO
Q00008	BOOL	GE FANUC PLC	%Q00008	Off	CONTACTO BOMBA3 VARIABLE. CONTACTOR DE BOMBA 3 PARA TRABAJO CON VARIADOR
<u>Q00009</u>	BOOL	GE FANUC PLC	%Q00009	Off	CONTACTO BOMBA3 DIRECTA. CONTACTOR DE BOMBA 3 PARA ENCENDIDO DIRECTO
Q00010	BOOL	GE FANUC PLC	%Q00010	Off	BOMBA JOCKYE. CONTACTOR DE BOMBA JOCKYE
Q00011	BOOL	GE FANUC PLC	%Q00011	Off	FALLO B1 DE AUT. A MAN. SALIDA POR FALLO DE BOMBA 1
Q00012	BOOL	GE FANUC PLC	%Q00012	Off	FALLO B2 DE AUT. A MAN. SALIDA POR FALLO DE BOMBA 2
Q00013	BOOL	GE FANUC PLC	%Q00013	Off	FALLO B3 DE AUT. A MAN. SALIDA POR FALLO DE BOMBA 3

Q00014	BOOL	GE FANUC PLC	%Q00014	Off	ON_CONT_EEE. SALIDA PARA EL CONTACTOR DE TRANSFERENCIA DE LA EEE
Q00015	BOOL	GE FANUC PLC	%Q00015	Off	OFF_CONT_EEE. SALIDA PARA LIBERAR LA RETENCIÓN MECÁNICA DEL CONTACTOR DE EEE
Q00016	BOOL	GE FANUC PLC	%Q00016	Off	ON_CONT_GEN. SALIDA PARA EL CONTACTOR DE TRANSFERENCIA DEL GENERADOR
Q00017	BOOL	GE FANUC PLC	%Q00017	Off	OFF_CONT_GEN. SALIDA PARA LIBERAR LA RETENCIÓN MECÁNICA DEL CONTACTOR DEL GENERADOR
Q00018	BOOL	GE FANUC PLC	%Q00018	Off	ENC_GEN. SALIDA PARA ENCENDIDO DEL GENERADOR
Q00019	BOOL	GE FANUC PLC	%Q00019	Off	ALARMA. SALIDA DE ALARMA POR FALLA DEL GENERADOR
Q00020	BOOL	GE FANUC PLC	%Q00020	Off	LUZ HABITACION. SALIDA PARA ENCENDIDO DE LUMINARIA DE LA HABITACIÓN 1
<u>Q00021</u>	BOOL	GE FANUC PLC	%Q00021	Off	TV. SALIDA PARA ACTIVACIÓN DE PUNTOS DE TOMAS DE TV Y CABLE-TV DE LA HABITACIÓN 1
Q00022	BOOL	GE FANUC PLC	%Q00022	Off	TOMAS. SALIDA PARA PUNTOS DE TOMAS DE USO GENERAL DE LA HABITACIÓN 1
Q00023	BOOL	GE FANUC PLC	%Q00023	Off	LUZ BAÑO. SALIDA PARA ENCENDIDO DE LUMINARIA DEL BAÑO DE LA HABITACIÓN 1
Q00024	BOOL	GE FANUC PLC	%Q00024	Off	VENTILADOR_FAN COIL. SALIDA PARA EL ENCENDIDO DEL VENTILADOR DEL FAN-COIL EN LA HABITACIÓN 1
Q00025	BOOL	GE FANUC PLC	%Q00025	Off	VALVULA_FAN COIL. SALIDA PARA EL ENCENDIDO DE LA VÁLVULA DEL FAN-COIL EN LA HABITACIÓN 1
Q00026	BOOL	GE FANUC PLC	%Q00026	Off	EMPLEADO. SALIDA DE INDICACIÓN DE EMPLEADO EN LA HABITACIÓN 1
Q00027	BOOL	GE FANUC PLC	%Q00027	Off	CLIENTE. SALIDA DE INDICACIÓN DE CLIENTE EN LA HABITACIÓN 1
Q00028	BOOL	GE FANUC PLC	%Q00028	Off	ALARMA_INTRUSO. SALIDA DE ALARMA POR INTRUSO EN LA HABITACIÓN 1
Q00029	BOOL	GE FANUC PLC	%Q00029	Off	ALARMA_MEDICA. SALIDA DE ALARMA POR EMERGENCIA MEDICA EN LA HABITACIÓN 1
Q00030	BOOL	GE FANUC PLC	%Q00030	Off	LUZ_PASILLO. SALIDA PARA ENCENDIDO DE LUZ DEL PASILLO EN EL PISO 1
Q00031	BOOL	GE FANUC PLC	%Q00031	Off	ALARMA_FUEGO. SALIDA POR ALARMA DE FUEGO EN LA HABITACIÓN 1
Q00032	BOOL	GE FANUC PLC	%Q00032	Off	LUZ HABITACION 2. SALIDA PARA ENCENDIDO DE LUMINARIA DE LA HABITACIÓN 2
Q00033	BOOL	GE FANUC PLC	%Q00033	Off	TV 2. SALIDA PARA ACTIVACIÓN DE PUNTOS DE TOMAS DE TV Y CABLE-TV DE LA HABITACIÓN 2
Q00034	BOOL	GE FANUC PLC	%Q00034	Off	TOMAS 2. SALIDA PARA PUNTOS DE TOMAS DE USO GENERAL DE LA HABITACIÓN 2
Q00035	BOOL	GE FANUC PLC	%Q00035	Off	LUZ BAÑO 2. SALIDA PARA ENCENDIDO DE LUMINARIA DEL BAÑO DE LA HABITACIÓN 2
Q00036	BOOL	GE FANUC PLC	%Q00036	Off	VENTILADOR_FAN COIL 2. SALIDA PARA EL ENCENDIDO DEL VENTILADOR DEL FAN-COIL EN LA HABITACIÓN 2
Q00037	BOOL	GE FANUC PLC	%Q00037	Off	VALVULA_FAN COIL 2. SALIDA PARA EL ENCENDIDO DE LA VÁLVULA DEL FAN-COIL EN LA HABITACIÓN 2
Q00038	BOOL	GE FANUC PLC	%Q00038	Off	EMPLEADO 2. SALIDA DE INDICACIÓN DE EMPLEADO EN LA HABITACIÓN 2
Q00039	BOOL	GE FANUC PLC	%Q00039	Off	CLIENTE 2. SALIDA DE INDICACIÓN DE CLIENTE EN LA HABITACIÓN 2
Q00040	BOOL	GE FANUC PLC	%Q00040	Off	ALARMA_INTRUSO 2. SALIDA DE ALARMA POR INTRUSO EN LA HABITACIÓN 2
Q00041	BOOL	GE FANUC PLC	%Q00041	Off	ALARMA_MEDICA 2. SALIDA DE ALARMA POR EMERGENCIA MEDICA EN LA HABITACIÓN 2
Q00042	BOOL	GE FANUC PLC	%Q00042	Off	LUZ_PASILLO 2. SALIDA PARA ENCENDIDO DE LUZ DEL PASILLO EN EL PISO 2
Q00043	BOOL	GE FANUC PLC	%Q00043	Off	ALARMA_FUEGO 2. SALIDA POR ALARMA DE FUEGO EN LA HABITACIÓN 2

Q00044	BOOL	GE FANUC PLC	%Q00044	Off	LUZ HABITACION 3. SALIDA PARA ENCENDIDO DE LUMINARIA DE LA HABITACIÓN 3
Q00045	BOOL	GE FANUC PLC	%Q00045	Off	TV 3. SALIDA PARA ACTIVACIÓN DE PUNTOS DE TOMAS DE TV Y CABLE-TV DE LA HABITACIÓN 3
Q00046	BOOL	GE FANUC PLC	%Q00046	Off	TOMAS 3. SALIDA PARA PUNTOS DE TOMAS DE USO GENERAL DE LA HABITACIÓN 3
Q00047	BOOL	GE FANUC PLC	%Q00047	Off	LUZ BAÑO 3. SALIDA PARA ENCENDIDO DE LUMINARIA DEL BAÑO DE LA HABITACIÓN 3
Q00048	BOOL	GE FANUC PLC	%Q00048	Off	VENTILADOR_FAN COIL 3. SALIDA PARA EL ENCENDIDO DEL VENTILADOR DEL FAN-COIL EN LA HABITACIÓN 3
Q00049	BOOL	GE FANUC PLC	%Q00049	Off	VALVULA_FAN COIL 3. SALIDA PARA EL ENCENDIDO DE LA VÁLVULA DEL FAN-COIL EN LA HABITACIÓN 3
Q00050	BOOL	GE FANUC PLC	%Q00050	Off	EMPLEADO 3. SALIDA DE INDICACIÓN DE EMPLEADO EN LA HABITACIÓN 3
Q00051	BOOL	GE FANUC PLC	%Q00051	Off	CLIENTE 3. SALIDA DE INDICACIÓN DE CLIENTE EN LA HABITACIÓN 3
Q00052	BOOL	GE FANUC PLC	%Q00052	Off	ALARMA_INTRUSO 3. SALIDA DE ALARMA POR INTRUSO EN LA HABITACIÓN 3
Q00053	BOOL	GE FANUC PLC	%Q00053	Off	ALARMA-MÉDICA 3. SALIDA DE ALARMA POR EMERGENCIA MEDICA EN LA HABITACIÓN 3
Q00054	BOOL	GE FANUC PLC	%Q00054	Off	LUZ_PASILLO 3. SALIDA PARA ENCENDIDO DE LUZ DEL PASILLO EN EL PISO 3
Q00055	BOOL	GE FANUC PLC	%Q00055	Off	ALARMA_FUEGO 3. SALIDA POR ALARMA DE FUEGO EN LA HABITACIÓN 3
Q00056	BOOL	GE FANUC PLC	%Q00056	Off	LUZ HABITACION 4. SALIDA PARA ENCENDIDO DE LUMINARIA DE LA HABITACIÓN 4
Q00057	BOOL	GE FANUC PLC	%Q00057	Off	TV 4. SALIDA PARA ACTIVACIÓN DE PUNTOS DE TOMAS DE TV Y CABLE-TV DE LA HABITACIÓN 4
Q00058	BOOL	GE FANUC PLC	%Q00058	Off	TOMAS 4. SALIDA PARA PUNTOS DE TOMAS DE USO GENERAL DE LA HABITACIÓN 4
Q00059	BOOL	GE FANUC PLC	%Q00059	Off	LUZ BAÑO 4. SALIDA PARA ENCENDIDO DE LUMINARIA DEL BAÑO DE LA HABITACIÓN 4
Q00060	BOOL	GE FANUC PLC	%Q00060	Off	VENTILADOR_FAN COIL 4. SALIDA PARA EL ENCENDIDO DEL VENTILADOR DEL FAN-COIL EN LA HABITACIÓN 4
Q00061	BOOL	GE FANUC PLC	%Q00061	Off	VALVULA_FAN COIL 4. SALIDA PARA EL ENCENDIDO DE LA VÁLVULA DEL FAN-COIL EN LA HABITACIÓN 4
Q00062	BOOL	GE FANUC PLC	%Q00062	Off	EMPLEADO 4. SALIDA DE INDICACIÓN DE EMPLEADO EN LA HABITACIÓN 4
Q00063	BOOL	GE FANUC PLC	%Q00063	Off	CLIENTE 4. SALIDA DE INDICACIÓN DE CLIENTE EN LA HABITACIÓN 4
Q00064	BOOL	GE FANUC PLC	%Q00064	Off	ALARMA_INTRUSO 4. SALIDA DE ALARMA POR INTRUSO EN LA HABITACIÓN 4
Q00065	BOOL	GE FANUC PLC	%Q00065	Off	ALARMA_MEDICA 4. SALIDA DE ALARMA POR EMERGENCIA MEDICA EN LA HABITACIÓN 4
Q00066	BOOL	GE FANUC PLC	%Q00066	Off	LUZ_PASILLO 4. SALIDA PARA ENCENDIDO DE LUZ DEL PASILLO EN EL PISO 4
<u>Q00067</u>	BOOL	GE FANUC PLC	%Q00067	Off	ALARMA_FUEGO 4. SALIDA POR ALARMA DE FUEGO EN LA HABITACIÓN 4
<u>Q00068</u>	BOOL	GE FANUC PLC	%Q00068	Off	LUZ HABITACION 5. SALIDA PARA ENCENDIDO DE LUMINARIA DE LA HABITACIÓN 5
Q00069	BOOL	GE FANUC PLC	%Q00069	Off	TV 5. SALIDA PARA ACTIVACIÓN DE PUNTOS DE TOMAS DE TV Y CABLE-TV DE LA HABITACIÓN 5
Q00070	BOOL	GE FANUC PLC	%Q00070	Off	TOMAS 5. SALIDA PARA PUNTOS DE TOMAS DE USO GENERAL DE LA HABITACIÓN 5
Q00071	BOOL	GE FANUC PLC	%Q00071	Off	LUZ BAÑO 5. SALIDA PARA ENCENDIDO DE LUMINARIA DEL BAÑO DE LA HABITACIÓN 5
Q00072	BOOL	GE FANUC PLC	%Q00072	Off	VENTILADOR_FAN COIL 5. SALIDA PARA EL ENCENDIDO DEL VENTILADOR DEL FAN-COIL EN LA HABITACIÓN 5
Q00073	BOOL	GE FANUC	%Q00073	Off	VALVULA_FAN COIL 5.

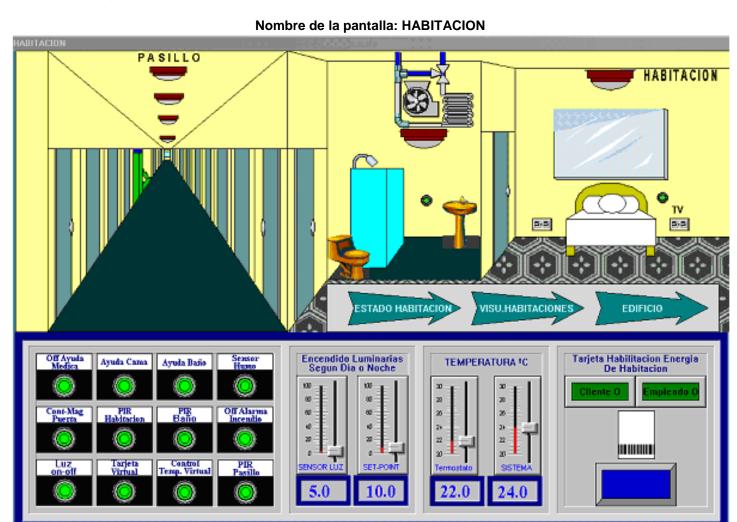

		PLC			SALIDA PARA EL ENCENDIDO DE LA VÁLVULA DEL FAN-COIL EN LA HABITACIÓN 5
Q00074	BOOL	GE FANUC PLC	%Q00074	Off	EMPLEADO 5. SALIDA DE INDICACIÓN DE EMPLEADO EN LA HABITACIÓN 5
Q00075	BOOL	GE FANUC PLC	%Q00075	Off	CLIENTE 5. SALIDA DE INDICACIÓN DE CLIENTE EN LA HABITACIÓN 5
Q00076	BOOL	GE FANUC PLC	%Q00076	Off	ALARMA_INTRUSO 5. SALIDA DE ALARMA POR INTRUSO EN LA HABITACIÓN 5
Q00077	BOOL	GE FANUC PLC	%Q00077	Off	ALARMA_MEDICA 5. SALIDA DE ALARMA POR EMERGENCIA MEDICA EN LA HABITACIÓN 5
Q00078	BOOL	GE FANUC PLC	%Q00078	Off	LUZ_PASILLO. SALIDA PARA ENCENDIDO DE LUZ DEL PASILLO EN EL PISO 5
Q00079	BOOL	GE FANUC PLC	%Q00079	Off	ALARMA_FUEGO 5. SALIDA POR ALARMA DE FUEGO EN LA HABITACIÓN 5

ANEXO E

PROGRAMACIÓN DESAROLLADA EN CIMPLICITY

PANTALLA PRINCIPAL DEL HOTEL

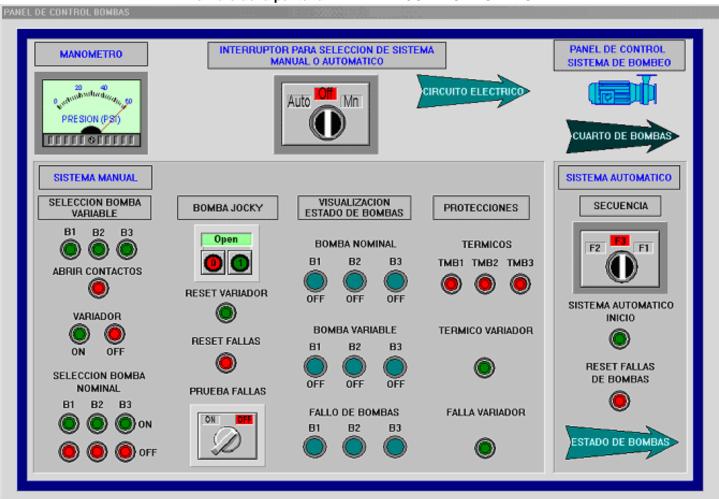
Nombre de la pantalla: EDIFICIO



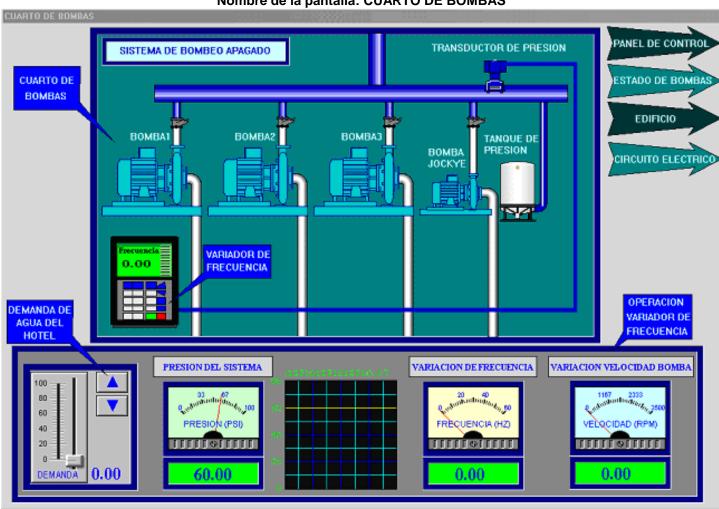
VISUALIZACIÓN GENERAL DE TODAS LAS HABITACIONES

Nombre de la pantalla: VISUALIZACION HABITACIONES

VISUALIZACIÓN Y ESQUEMA DEL PANEL DE CONTROL PROPIA DE CADA HABITACIÓN PARA EL MODO CLIENTE/EMPLEADO


VISUALIZACIÓN DEL ESTADO DE LOS DIFERENTES DISPOSITIVOS APLICADOS EN CADA HABITACIÓN

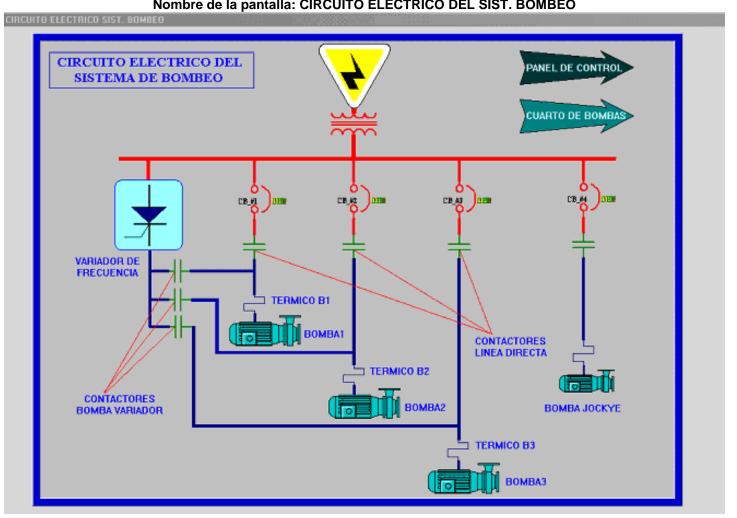
Nombre de la pantalla: ESTADO HABITACION


ESQUEMA DEL PANEL DE CONTROL EN MODO MANUAL/AUTOMÁTICO

Nombre de la pantalla: PANEL DE CONTROL BOMBAS


ESQUEMA DEL SISTEMA DE BOMBEO

Nombre de la pantalla: CUARTO DE BOMBAS


VISUALIZACIÓN DEL ESTADO Y SECUENCIA AUTOMÁTICA DE LAS BOMBAS

Nombre de la pantalla: ESTADO DE BOMBAS

ESQUEMA DEL CIRCUITO ELÉCTRICO PARA EL SISTEMA DE BOMBEO

Nombre de la pantalla: CIRCUITO ELÉCTRICO DEL SIST. BOMBEO

VISUALIZACIÓN Y ESQUEMA DEL PANEL DE CONTROL, PARA EL SISTEMA DE TRANSFERENCIA EN MODO MANUAL/AUTOMÁTICO

Nombre de la pantalla: TRANSFERENCIA NCENDIDO SEMENAL GENERADOR APAGADO DEL GENERADOR CONTACTOR GENERADOR OFF FALTAN 7.0 DIAS CARGA DESENERGIZADA TRANSFERENCIA AUTOMATICA DE ENERGIA TEMPO DE ENCENDIDO DEL GENERADOR ENERGIA E.E.E. OFF [15 MINUTOS] CONTACTOR E.E.E. OFF van (),() minutos **EDIFICIO** SISTEMA DE FUERZA PANEL DE CONTROL SELECTOR M/A ENC GEN PC SIM FALLA GEN SUP E.E.E. SUP GEN. RESET Auto 0.00 CONTACTOR E.E.E. CONTACTOR GEN. CONTACTOR EEE OFF SUPEEE OFF ON OFF ON OFF ENC GEN SUPGEN OFF CONTACTOR GEN OFF ALARMA GEN OFF

ANEXO G

SIMULACIÓN EN SIMULINK

ANEXO H

DIAGRAMAS DE CONTROL EN MODO MANUAL

Control Manual del Sistema de Bombeo

```
S M/A
        1 [
                CB1
                              RB2A
                                                                          RB1
                                     RB3A LB1A
                RB1
                      ONVM1
                +
                CB2
                       Pa
                              RB1A
                                     RB3A LB2A
                                                     FB2
                                                                          RB2
                       +
                RB2
                      ONVM
                +
                СВЗ
                              RB1A
                                     RB2A
                                           LB3A
                                                     FB3
                                                                          RB3
                                      -1/1-
                                                     1/-
                RB3
                      ONVM
                +
                      M_VAR P_VAR FVB1 FVB2
                RB1
                                                     FVB3
                                                                         ONVM
                +\vdash
                                     -1/-
                                                                          <del>-</del>
                RB2
                      ONVM
                +\vdash
                       \dashv \vdash
                RB3
                +\vdash
               A_CB
                                                                          Pa
  М
        M/P_BJ
                                                                          RJ
 R_VAR
                                                                         RVM
\dashv \vdash
 RFAI
_____
 OVNM
                                                                         ONVM1
\dashv \vdash
                                                                          \bigcirc
               M_B1
         F۷
                       P B1 RB1A
                                      LB3
                                             LB2
                                                     FB1
                                                            PR
                                                                  OLB1
                                                                          LB1
  М
                              \dashv \land
                                                     OF
                LB1
\dashv
                +
               M_B2
                       P_B2 RB2A
                                      LB3
                                             LB1
                                                     FB2
                                                            PR
                                                                  OI B2
                                                                          LB2
                                                     OF
                LB2
                +
               M_B3
                       P_B3 RB3A
                                      LB2
                                             LB1
                                                     FB3
                                                            PR
                                                                  OLB3
                                                                          LB3
                                                     OF
                +
                LB1
                                                                         LB1A
                                                                          <del>-</del>O-
                LB2
                                                                         LB2A
                +
                                                                          <del>-</del>O-
                LB3
                +
```

```
V1
                             L1
-|∤
  RB1
   Q4
  +
  RB2
                    V3
                                                                                             V2
++
   Q6
\dashv
   RB3
                     V2
                             L3
                                                                                             ٧3
   4 H
   Q8
\dashv \vdash
                                                                                            L1
   LB1
           V1
\dashv \vdash
   Q5
\dashv \vdash
  LB2
           V2
\dashv \vdash
           1/1
                                                                                             \bigcirc
   Q7
\dashv
  LB3
           ٧3
                                                                                             L3
\dashv \vdash
   Q9
\dashv \vdash
   RVM
                                                                                             RVA
\dashv \vdash
  Q2
-\tilde{}
   ONVM
                                                                                             ONV
   4 H
                                                                                             -
   Q3
\dashv \vdash
  RJ
                                                                                             BJ
   Q10
\dashv \vdash
M
                   ONVM1
                                                                                             B1V
                    \dashv \vdash
                                                                                             <del>-</del>
           V2
                   ONVM1
                                                                                             B2V
                    \dashv \vdash
                                                                                             \bigcirc
           V3
                   ONVM1
                                                                                             B3V
                    +\vdash
           F۷
                     RB1
                                                                                           RB1A
                     +\vdash
                                                                                             \bigcirc
                    RB2
                                                                                           RB2A
                    +
                                                                                            -0-
                    RB3
                                                                                           RB3A
                    +
                                                                                            -0-
 OLB1
                                                                                           TMB1
\dashv \vdash
                                                                                            <del>-</del>O-
 OLB2
                                                                                           TMB2
\dashv \vdash
                                                                                            <del>-</del>O-
 OLB3
                                                                                           ТМВ3
\dashv \vdash
                                                                                            -0-
```

```
PRT
OLV
      RB1A RVM RFM
FVB1
                                                               \leftarrow
FVB1
+
То
      RB2A RVM RFM
                                                               FVB2
+
            1/-
                   1/-
                                                               FVB2
+\vdash
      RB3A
                                                               FVB3
То
           RVM
                   RFM
      1
            +/-
                   1/-
                                                                \bigcirc
FVB3
+\vdash
TMB1 RFM
                                                               FB1
FVB1
4 |-
FB1
+\vdash
Q11
+
TMB2 RFM
                                                               FB2
+
                                                                \bigcirc
FVB2
+\vdash
FB2
+
Q12
+\vdash
                                                               FB3
TMB3 RFM
<del>|</del> | |-
FVB3
+\vdash
FB3
+
Q13
1 –
RFMI
                                                               RFM
                                                                \bigcirc
                                                               FV
———
FVI
      RFM
+
OPFI
```

Control Manual del Sistema de Transferencia

```
1 |
                                                                     <del>-</del>O-
             MG
                    CE
                                                                      CG
                                                                      EEE
       GE
-|/-
Q14
       PE
                                                                      RME
       Q15
       EEE
                                                                      GE
———
Q16
       OFF
       PG
⊥
.⊹
                                                                      RMG
       Q17
                                                                     RK1
                                                                      0
                                                                     RK2
GE
                                                                     MG
MG
Q18
                                                                      To 10'
                                                                      OFF
                                                                      T12'
OFF
                                                                      <del>-</del>
                                                                      Ro
```

BIBLIOGRAFÍA

- Castelvetri Nicolás, Smart Home, Universidad de Belgramo, Facultad de Ingeniería y Tecnología Informática - Carrera de Ingeniería en Informática, Abril 2005, Nº 179.
- Ficha Teórica Nº 3 Domótica y Edificios Inteligentes, Cátedra SCG,
 Instalaciones 2 / 2002.
- Montesdeoca Cesar, Sistemas Electrónicos Industriales: Diseño de un panel de transferencia automático utilizando el micro PLC S7 – 200 y el software de monitoreo y mando InTouch, Ecuador, 1999.
- Millán Juan, Técnicas y Procesos en las Instalaciones Automatizadas en los Edificios, Paraninfo, España, 2001.
- El hogar digital como solución a las necesidades de las personas mayores, CEDITEC - ETSIT - UPM, Madrid.
 http://www.ceditec.etsit.upm.es
- Control Inteligente de Viviendas, BJC Dialogo, 2005, Catálogo.
 http://www.bjc-domotica.com

Guías de especificaciones de detectores de presencia Watt Stopper,
 BTicino de México S.A, Documento.

http://www.bticino.com.mx

 Termostatos y cronotermostatos electrónicos eléctricos para instalaciones de calefacción y aire acondicionado, CEPRA, España, Folleto.

www.temperclima.es

Hoja de características. Presostatos y termostatos, tipo CAS,
 Danfoss., Agosto 2000, Documentación.

http://www.elhinel.com.ar/danfoss

Supervisores Trifásicos, Productos. L – Gente, LG, Perú, 2003,
 Documentación.

http://www.lgbcperu.com/supertrifasicos.

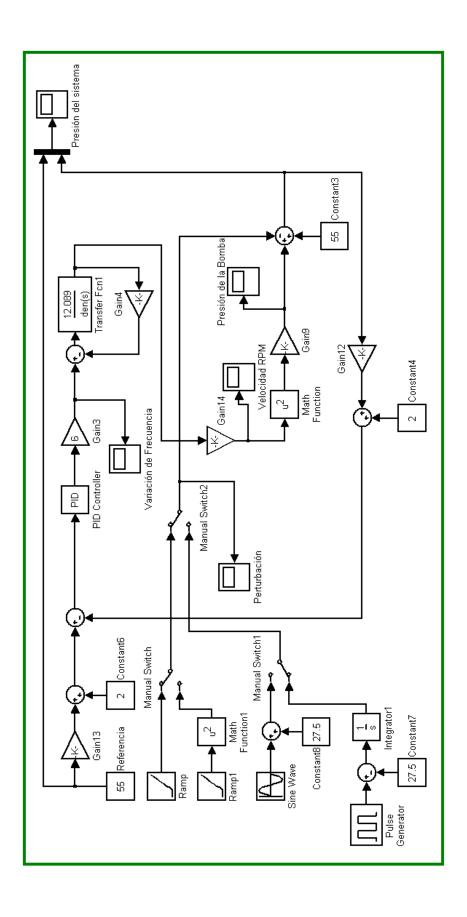
11. Válvulas de zonas motorizadas para instalaciones de calefacción y aire acondicionado, CEPRA, España, Folleto.

www.temperclima.es

12. Desconectadores de Energía Inteligentes i SWITCH, TEHSA, España, Folleto explicativo.

http://www.tehsa.com

13. Bombas centrífugas en hierro fundido con accesorios de bronce, Goulds Pumps, 3656/3756S, 2003.


www.goulds.com

14. Datos técnicos. Productos para agua, Goulds Pumps, TTECHWPSP, 2002.

www.goulds.com

- 15. Ing. Eguiluz Eduardo, Tendencias en la selección de detectores de incendio, Securum Publicación Oficial de la Asociación Latinoamericana de Seguridad, Noviembre/Diciembre, Vol 4 N°6.
 www.ventasdeseguridad.com
- 16.Trabajo Práctico Nº 6 Instalación Sanitaria Sistemas contra Incendios: prevención, extinción e instalaciones., Cátedra Czajkowski Gómez, Instalaciones 2 / 2006.
- 17. Guía del Usuario, Wonderware Corporation, EEUU, Enero 1997.

18. Cimplicity Machine Edition Iniciación, GFK-1868-SP, Versión 3.00, EEUU, Agosto 2002.

