Ruban Eanur 613/03

ESCUELA SUPERIOR POLITECNICA DEL LITORAL DEPARTAMENTO DE INGENIERIA MECANICA

ERFICIES

MECANIZADAS POR ARRANQUE DE VIRUTA"

TESIS DE GRADO

Previa a la obtención del Título de:

INGENIERO MECANICO

Presentada por:

JAIME ENRIQUE CUADRADO VACA

Guayaquil-Ecuador

AGRADECIMIENTO

A la Escuela Superior Politécnica del Litoral y a los Profesores del Departamento de Ingeniería Mecánica.

Al Ing. Manuel Helguero G., Director de Tesis, por su apoyo y colaboración para la realización de este trabajo, y al personal del Taller Mecánico de ESPOL, ya que con su ayuda fue posible llevar a cabo la culminación de la parte experimental.

En forma especial, dejo constancia de profundo agradecimiento a mis Padres, por sus consejos y apoyo en mi vida estudiantil.

DEDICATORIA

Este trabajo realizado a base de esfuerzo y paciencia, lo que querido dedicar a mis padres, María y Jaime, quienes con su amor y sacrificio han sido fundamentales para alcanzar esta meta; a mis hermanos, que con su comprensión y humildad me han estimulado a la consecución de mi profesión.

Ing. Manuel Helguero G

Ing. Manuel Helguero G.
DIRECTOR DE TESIS

DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta Tesis, me corresponden exclusivamente; y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL".

(Reglamento de Exámenes y Títulos Profesionales de la ESPOL).

DAIME ENVIQUE CUADRADO VACA

RESUMEN

En este trabajo se hace una presentación de las diferentes teorías sobre la formación de viruta, el efecto de los ángulos característicos así como factores de rigidez y tolerancia en el mecanizado. En el análisis experimental se prueba la resistencia al desgaste de la cuchilla de acero rápido 12% Co, bajo dos circunstancias de trabajo: con lubrorefrigerante y sin él, se selecciona el mejor en base a observaciones al microscopio de la rugosidad de la pieza mecanizada y el número de entalles formados en la punta de la cuchilla; se concluye con la construcción de tablas y su aplicación en base al diámetro de la pieza y la velocidad de corte.

INDICE GENERAL

Pág.
RESUMENVI
INDICE GENERALVII
INDICE DE FIGURAS X
INDICE DE TABLASXVII
INTRODUCCION
I FUNDAMENTOS TEORICOS DEL PROCESO DE ARRANQUE DE VI-
RUTA 21
1.1 Herramientas Elementales Monocorte, Geome-
tría y ángulos característicos 22
1.2 Mecanismos de Arranque de la Viruta y Modelos
de Estudio 38
1.3 Análisis de las Fuerzas entre la Herramienta
y el Material a Mecanizar: Ecuaciones funda-
mentales65
1.3.1 Método de la presión específica para el
cálculo de la fuerza de corte 72
1.4 Factores que influyen en el acabado superficial 90
1.4.1 Vibración de la Máquina 91
1.4.2 Angulos de la punta de la herramienta
de corte

			Pág.
	1.4.3	Desgaste de la punta de Herramienta de	
÷		Corte	108
	1.4.4	Acción Dinámica entre la Viruta y el	
		Material de la pieza en Mecanización	. 116
II	ANALISIS EX	PERIMENTAL	. 122
	2.1 Selec	ción y preparación de la máquina herra-	
	mient	a	, 122
	2.1.1	Análisis Vibracional	122
	2.1.2	Rigidez Estática	. 125
	2.1.3	Rigidez Dinámica	. 127
	2.1.4	Control de Tolerancias	. 127
	2.2 Herra	mientas de Corte	.136
	2.2.1	Diseño y Selección	. 136
	2.2.2	Preparación	145
	2.2.3	Microdureza	. 150
	2.3 Mater	ial a Mecanizarse	, 154
	2.3.1	Composición Química	155
	2.3.2	Microestructura	. 155
	2.3.3	Dureza	157
	2.4 Proce	so de Mecanizado	157
	2.4.1	Análisis del desgaste de la herramienta	
		de corte	160
	2.4.2	Análisis de la rugosidad del material	. 161
	2.4.3	Ontimización de los parámetros de corte	160

<u> 1</u>	Pág.
III ANALISIS DE RESULTADOS	169
CONCLUSIONES Y RECOMENDACIONES	
APENDICES	183
BIBLIOGRAFIA	215

INDICE DE FIGURAS

Nō	Pág.
1.1	Posición para identificar tipo de cuchillas 23
1.2	Esquema de mecanización con torno, proceso de
	cilindrado25
1.3	Planos principales generados por vectores de
	trabajo
1.4	Angulos característicos de la herramienta de corte 28
1.5	Caras generadas en la cuchilla de corte 30
1.6	Posición de la cuchilla respecto a la pieza y los
	ángulos característicos31
1.7	Selección del ángulo de corte principal χ según
	las fuerzas de corte
1.8	Representación normalizada americana (ASA) de
	cuchilla para tornear
1.9	Representación normalizada Europea (DIN) de
	cuchilla para tornear
1.10	Esquema de viruta de tipo fragmentada 40
1.11	Esquema de virutas parcialmente segmentadas 40
1.12	Viruta de tipo contínua
1.13	Representación de virutas onduladas

$\overline{N_{\circ}}$		Pág.
1.14	Representación de viruta contínua con filo	
	aportado	43
1.15	Torneado Cilíndrico	45
1.16	Sección de Viruta equivalente	. 47
1.17	Modelo propuesto por Pjispanen sobre la formación	
	de la Viruta	. 49
1.18	Hipotésis propuesta por E. Merchant sobre la	
	Tensión de Cizallamiento en función de la tensión	
	normal al plano de cizallamiento	. 52
1.19	Teoría de E. H. Lee y B. W. Schaffer. Gráfico	
	Tensiones-Deformaciones para un material rígido	
	plástico	. 54
1.20	Modelo de formación de viruta propuesto por Lee	
	y Schaffer	. 56
1.21	Comparación entre resultados teóricos (1,2) y ex-	
	perimentales (3,4,5,6,7) de las relaciones entre	
	los ángulos ϕ , τ - γ en corte octogonal	. 58
1.22	Dirección de cizallado y dirección de alargamiento)
	de los cristales	. 60
1.23	Modelo de formación de la viruta con zona de defor	c-
	mación plástica a superficies paralelas, según	
	Hasting y Oxley	61
1.24	Modelo de formación de la viruta en zona d cizalla	a-
	miento según K. Okushima y K. Hitomi	63

N o	Pág.
1.25	Fuerzas que actúan sobre la viruta 67
1.26	Distribución de esfuerzos en la punta de la
	herramienta de corte
1.27	Descomposición de la fuerza de corte resultante F 69
1.28	Relaciones entre la presión K_S de corte y el ángu-
	lo de desprendimiento γ
1.29	Presión de corte K _S en función de la sección de
	viruta, en mecanizados de materiales ferrosos78
1.30	Presión de corte en función de la sección de viruta,
	para materiales no ferrosos
1.31	Variación de la presión de corte, en función del
	espesor de viruta, en el torneado de diversos ma-
	teriales
1.32	Presión de corte, en función de la velocidad de
	corte, en trabajos de torneado de acero [ancho de
	<pre>viruta b = 1.27 mm; espesores de viruta h (mm)]</pre>
	γ = 10°
1.33	Triángulo de Velocidades
1.34	Rugosidad superficial ideal, para herramientas
	con vértice redondeado 92
1.35	Comparación entre rugosidad real y teórica 93
1.36	Modelo de un sistema masa-resorte con amortigua-
	miento viscoso y con un grado de libertad 95

N₀	<u>Pág.</u>
1.37	Respuesta del sistema masa-resorte de la Fig.1.36. 97
1.38	Comportamiento de un sistema masa-resorte con un
	grado de libertad de movimiento 99
1.39	Variación de la fuerza de corte101
1.40	Vibraciones regenerativas en un proceso de tor-
	neado102
1.41	Esquema para diferenciar la transferencia de calor
	según los ángulos característicos105
1.42	Algunas características del desgaste de una he-
	rramienta de filo único en torneado110
1.43	Variación del labio de desgaste de la herramienta
	para distintos materiales111
1.44	Relación entre la dimensión del labio de desgas-
	te y el tiempo de mecanizado112
1.45	Sección de la herramienta, franja de desgaste,
	profundidad de afilado114
1.46	Normalización ISO y sus propiedades para aplica-
	ción115
1.47	Influencia de la velocidad de craterización sobre
	la temperatura media en la superficie herramienta-
	viruta117
1.48	Corte a Régimen119
1.49	Superficie Ondulada119
1.50	Vibraciones de la herramienta en la dirección de

•

N∘	Ī	Pág.
	la fuerza de corte	120
1.51	Vibraciones de la herramienta en la dirección de	
	la fuerza de repulsión	120
2.1	Torno Turri T-220	123
2.2	Dimensiones y Características del Torno T-220	124
2.3	Equipo Monitor de Vibración Manual	126
2.4	Basamento para Torno T-220	128
2.5	Guías de la contrapunta paralela al desplazamiento	
	del carro longitudinal	130
2.6	Giro concéntrico del punto	131
2.7	Giro Concéntrico del Cono Exterior	131
2.8	Movimiento axial del frente del cono exterior	132
2.9	Giro Concéntrico del Extremo del Mandril	132
2.10	Husillo paralelo a la bancada	134
2.11	Movimiento del Carro portaherramientas paralelo	
	al husillo en el plano vertical	134
2.12	Casquillo paralelo a la bancada en el plano ver-	
	tical y horizontal	135
2.13	Mandril paralelo a la bancada en el plano vertical	
	y horizontal	137
2.14	Mandril entre puntos paralelo a la bancada en	
	plano vertical	138

N₀		Pág.
2.15	Dimensiones de los Patrones de Tolerancia	.139
	Patrones para medir Tolerancias	
	Microestructura del acero rápido al Cobalto TB-12.	
	Maquina para rectificar Cuchillas	
2.19	Soporte Móvil para Cuchillas	.140
2.20	Proceso de afilado de cuchillas de acero rápido	.149
2.21	Distribución de identaciones para durometría	.151
2.22	Microestructura del acero AISI/SAE 1148	.156
2.23	Curva esfuerzo-deformación del acero AISI/SAE 1148	8158
2.24	Rotura por tracción de la probeta de acero SAE	
	1148 en máquina INSTRON	.159
2.25	Comparación entre rugosidad real y teórica	.162
2.26	Secuencia del desgaste de la punta de la cuchilla	.163
2.27	Rugosimetro palpador SIGMA	.164
2.28	Palpador del Rugosimetro SIGMA	.165
2.29	Comparación de Rugosidades	.167
3.1	Distribución de dureza en la punta de la cuchi-	
	lla de acero rápido	.170
3.2	Número de entalles vs rugosidad con lubrorefri-	
	gerante	.173
3.3	Número de entalles vs rugosidad sin lubrorefrige-	
	rante	.174
3.4	Rugosidad vs distancia usando lubrorefrigerante	.175

Νº	Pág.
3.5	Rugosidad vs distancia sin lubrorefrigerante176
3.6	Entalles vs rugosidad usando lubrorefrigerante177
3.7	Entalles vs rugosidad sin usar lubrorefrigerante178

INDICE DE TABLAS

Nο	Pág.
I	Angulo de Inclinación λ según el tipo de corte
	y mecanizado190
II	Monograma para el cálculo de los ángulos ϕ de ci-
	zallamiento191
III	Valores máximos de las características mecánicas
	de los aceros AISI/SAE192
IV	Valores de presión de Corte K _S y presión específi-
	ca de corte K_{SO} , según h
V	Composición de los materiales clasificados en la
	Tabla IV
VI	Valores de la presión de côrte $K_{\rm S}$ en función de h195
VII	Elementos componentes de los materiales de la
	Tabla VI
VIII	Geometría de la Herramienta usada para pruebas196
IX	Valores de K _{SO} , f, g, de diversos materiales para
	calcular Ft
Х	Valores de Ks, Ft, de algunos materiales, conociendo
	Α, ΗΒ, β198
XI	Rugosidades superficiales requeridas según apli-
	cación199

XVIII

Na		Pág.
XII	Valores indicativos de rugosidad para varios	
	mecanizados	200
XIII	Valores recomendables del ángulo de desprendimien-	-
	to γ para trabajar distintos materiales y varias	
	herramientas	201
XIV	Variación de la duración de la herramienta cuando	
	se hace variar el ángulo de incidencia $\alpha \dots \dots$. 202
xv	Valores recomendables del ángulo de incidencia α ,	
	para distintos materiales y varias herramientas.	203
XVI	Valores recomendables del radio de la punta	204
XVII	Valores indicativos del desgaste VB y kT admisible	е
	en las herramientas de tornear	. 205
XVIII	Características Técnicas del T220	. 206
XIX	Selección de pasos y avances	. 208
XX	Diagrama de Velocidades	209
XXI	Clasificación de los materiales de las herramien-	
	tas según la dureza en caliente	. 210
XXII	Clasificación de los materiales de herramientas	
	según su tenacidad	. 211
XXIII	Utilizaciones normales de los aceros de herramien-	-
	tas y durezas que normalmente se emplean	212
XXIV	Elementos constituyentes de los diferentes tipos	
	de aceros rápidos	213

INTRODUCCION

Las máquinas-herramientas han tenido y tienen gran importancia para el desarrollo de la moderna civilización industrial. Casi todos los productos que tenemos hoy a nuestro alrededor han sido fabricados con máquinas, fabricadas a su vez mediante las máquinas-herramientas. El desarrollo en la industria de la metalistería es muy rápido y las modificacio nes en cuanto a estructura y a tecnología de los productos son muy grandes.

En el Ecuador el mayor porcentaje de talleres industriales está dedicado a la producción unitaria de elementos de ma quinaria y pocas industrias se dedican a la fabricación en serie de piezas mecanizadas por arranque de viruta, especialmente con tornos revolver. Pero una de las tendencias principales que tendrá gran importancia en los próximos años es la de conseguir mayor grado de automatización con mejor aprovechamiento de las máquinas-herramientas. Para ésto un factor predominante es la capacidad de corte de la cuchilla utilizada en esta maquinaria automática.

Entonces se hace necesario investigar los diferentes mate-

riales cortantes para seleccionar los parámetros óptimos que darán mayor eficiencia en el corte continuo de metales. El motivo de este trabajo está encaminado a analizar la calidad de las cuchillas de acero rápido 12% de cobalto que se usa en la actualidad para arranque de viruta y su posible apli - cación para fabricar piezas en serie especialmente para utilización en el programa automotriz que tiene proyectado nuestro país.

Para ésto se ha de tomar en cuenta el ahorro de hombre-horamáquina que genera el aumentar la duración de la herramienta de trabajo; conservando las cualidades superficiales requeridas, todo lo cual se refleja en un aumento de la producción y disminución de costos.

Es de anotar que la selección de la herramienta ha sido basada en la utilización que tiene en los actuales momentos en los talleres industriales, tratando de enfocar principalmente el problema que se les presenta a ellos por el uso de esta herramienta.

CAPITULO I

FUNDAMENTOS TEORICOS DEL PROCESO DE ARRANQUE DE VIRUTA

El análisis teórico del mecanismo de arranque de viruta se basa en la utilización de una herramienta elemental simple, que dispuesta en forma diversa, solo o unido a otros ele - mentos semejantes, es común a toda herramienta de arranque de viruta.

Una herramienta normal de corte trabaja como una cuña más bien que como un cuchillo, es decir que desgaja el material de la pieza en mecanización. Al ir avanzando la herramienta cortante, el material que se encuentra frente a ella se comprime y luego tiene lugar a la rotura por cizallamiento. La parte cortada empieza a deslizarse sobre la cara de la herramienta en forma de viruta.

El estudio y comprensión de estas cuchillas elementales simples nos hace posible su aplicación a los demás tipos de herramientas cortantes derivadas de la misma, ya sean bicortes (brocas helicoidales), o multicortes (fresas).

1.1 HERRAMIENTAS ELEMENTALES MONCCORTE GEOMETRIA Y ANGU-LOS CARACTERISTICOS.

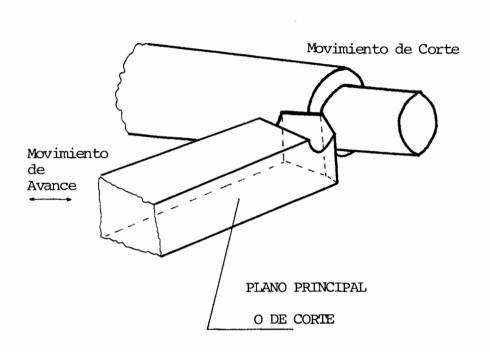
Las herramientas o cuchillas simples, utilizadas en tornos, limadoras, cepilladores, mortajadoras, etc., están
constituidas por un cuerpo o mango de sección cuadrada,
rectangular o a veces circular, que sirve de soporte a
la parte activa de la misma y queda fijada al portahe rramientas de la máquina.

La parte de la herramienta, que afecta directamente el corte e incluye el filo y las caras de corte con la forma y ángulos característicos perfectamente definidos, se llama punta o parte activa. La cara del mango que corresponde al plano de apoyo, se llama base, mientras la proyección de la cabeza sobre la base se define como perfil y corresponde a la vista en planta de la herra mienta. La posición normal en la cual se observa el perfil, es la que corresponde a la punta hacia abajo y el mango hacia arriba; con este criterio se define la herramienta izquierda o derecha, según que el filo principal sea observado en la izquierda o en la derecha respectivamente. Fig. 1.1.

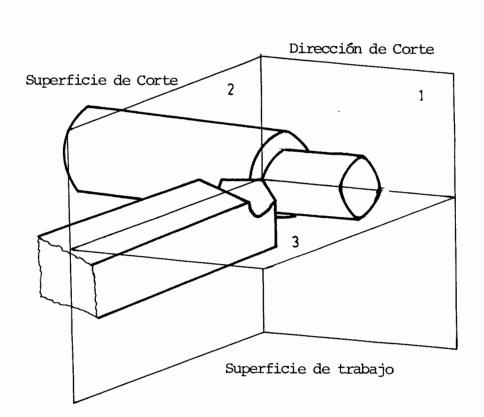
La herramienta elemental está constituida por dos caras

FIGURA Nº 1.1

planas, que se cortan según una arista o filo cortante, y está limitada por otras dos caras laterales oportunamente dispuestas, que no tienen una relación directa con el corte pero que sirven para definir la herramienta. Fig. 1.2.


La herramienta así dispuesta arranca, en su movimiento una capa de material de un cierto espesor, transformándola en viruta.

Antes de delinear geométricamente la cuchilla definiremos planos imaginarios los cuales contienen las direc ciones de los movimientos del sistema de mecanización y
sirven de referencia para la determinación de los ángulos característicos en el corte de la herramienta. Estos planos se cortan en ángulo recto correspondiendo
sus intersecciones en el vértice que forma la punta de
la cuchilla que es el punto donde se generan componentes
vectoriales en cada plano para cuantificarlos en el espacio. Fig. 1.3.


PLANOS PRINCIPALES

a) El plano 1, es perpendicular al avance en profundidad y contiene la dirección del corte y la del avance en

FIGURA N° 1.2

ESQUEMA DE MECANIZACION CON TORNO PROCESO DE CILINDRADO

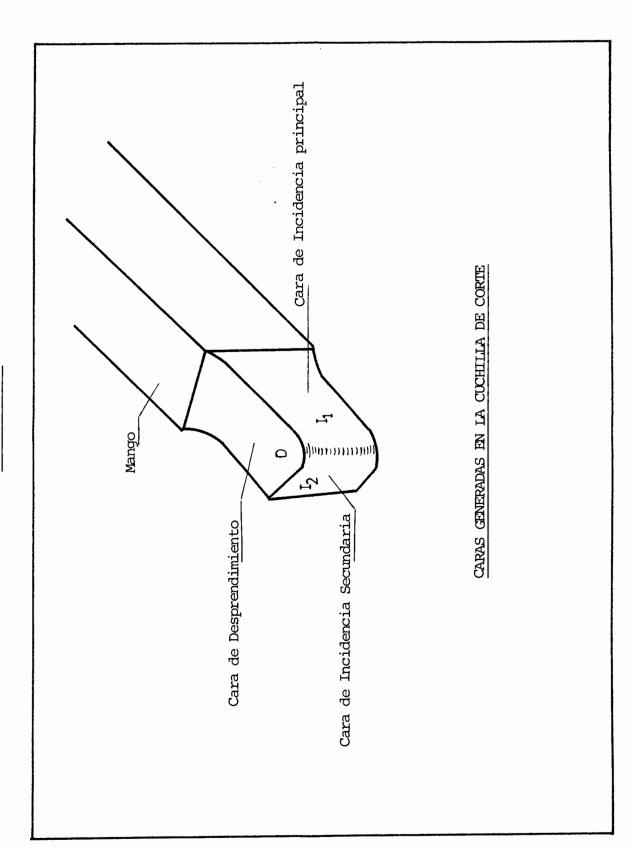
PLANOS PRINCIPALES GENERADOS POR VECTORES DE TRABAJO

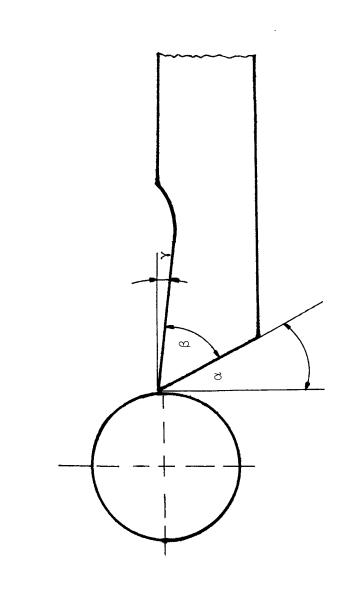
en sentido transversal, este plano es tangente a la superficie mecanizada en la altura de la linea de corte.

- b) Plano 2, es perpendicular al plano anterior y contiene la dirección de corte y la del avance en sentido de profundidad.
- c) El plano 3, es perpendicular a los planos 1 y 2 y contiene las direcciones de los avances en sentido transversal y en el de la profundidad. Este plano también contiene la línea entre puntas del torno.

ANGULOS CARACTERISTICOS

Las características más importantes de una herramienta de corte son las caras cuyas intersecciones forman dos filos. Fig. 1.4.


- a) El filo principal, que remueve generalmente la mayor parte del metal.
- b) El filo secundario, que controla principalmente el acabado superficial de la pieza.


FIGURA Nº 1.4

En la Fig. 1.5 la cara D es la cara de desprendimiento y sobre la misma desliza la viruta separada de la pieza. La cara I es la cara de la incidencia y queda siempre frente al material que se convierte en viruta. La cara queda frente a la superficie mecanizada de la pieza. Estas caras forman respectivamente con el plano normal a la superficie de la pieza y con el plano tangente a dicha superficie que contienen al filo del corte, tres ángulos: El ángulo γ o de desprendimiento, el ángulo α o de incidencia principal y el ángulo α ' de incidencia secundaria. Entre las caras D I queda delimitado el ángulo sólido β Fig. 1.6.

ANGULO Y DE DESPRENDIMIENTO

Dicho ángulo, comprendido entre la cara de desprendi miento y la normal a la superficie de la pieza, influye notablemente en la formación de la viruta; en efecto
el arranque de viruta está provocado por la acción combinada de la arista o filo cortante y la cara de des prendimiento; principalmente es ésta la que determina
la deformación plástica del material provocando la separación de la viruta en correspondencia con el filo de
corte.

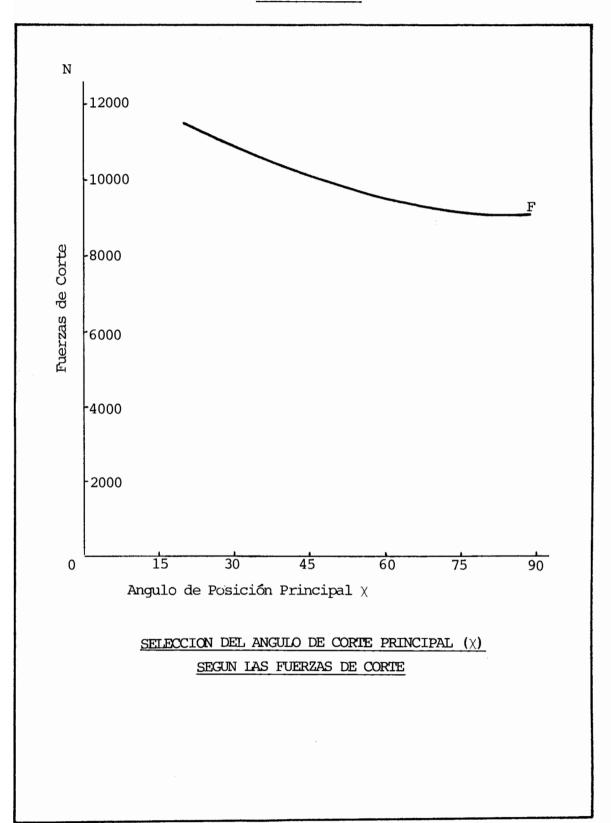
POSICION DE LA CUCHILLA RESPECTO A LA PIEZA Y ANGULOS CARACTERISTICOS

FUENTE: Manual del Ingeniero Técnico, Herramientas y Máquinas Herramientas, Tomo I, Bruins, Pág. 24.

ANGULO DE INCIDENCIA α

Es el ángulo comprendido entre el dorso de la herramienta y la superficie trabajada de la pieza, tiene la misión de evitar el roce entre el talón de la herramienta y la parte de la pieza ya mecanizada.

ANGULO DE FILO PRINCIPAL X

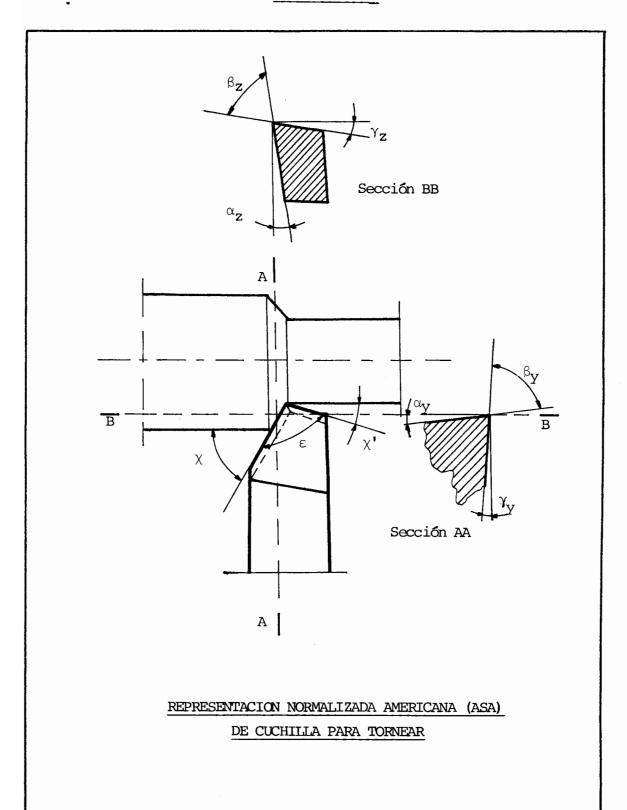

La proyección de la arista de filo principal determina con la generatriz del cilindro, el ángulo de filo principal . Este ángulo marca de una forma clara la posición de la herramienta con respecto a la pieza. La Figura 1.7 nos da valores de χ según la magnitud de la fuerza de corte.

ANGULO DE FILO SECUNDARIO X'

Es el ángulo análogo correspondiente a la arista de corte secundaria y debe ser lo suficientemente grande para que no roce con la superficie mecanizada de la pieza. La Tabla I no da valores de χ' según las características de mecanización.

El ángulo inclinación del filo con respecto a la base λ

FIGURA Nº 1.7


generalmente toma un valor de \approx 10° dependiendo del valor de $\gamma.$

A continuación se indican las dos formas normalizadas más comunes de representación gráfica:

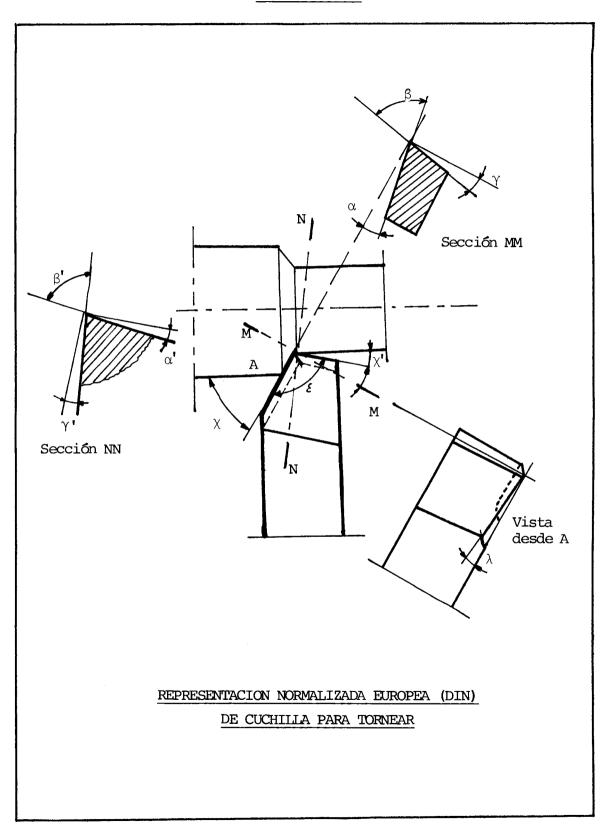
Americana (ASA: American Standard Association), la cual especifica la cara de la herramienta definiendo su pendiente en dos planos octogonales: uno paralelo y otro perpendicular al eje de la herramienta, ambos planos perpendiculares a la base de la herramienta. La ventaja de esta herramienta es la sencillez de su aplicación en el afilado de herramientas monocorte Aún así, la herramienta no puede ser afilada en sus inclinaciones laterales y longitudinal sin el uso de ecuaciones o curvas. En estas secciones octogonales aparecen los ángulos de desprendimiento γz , γy y de incidencia αz , αy . Fig. 1.8.

El Sistema Europeo o Alemán (DIN: Deutsche Industrie Normalisí-erung), también especificados ángulos llama - dos inclinación longitudinal e inclinación lateral, pero en este sistema los ángulos están asociados con la posición del filo. La inclinación longitudinal es la pendiente del filo medido en un plano que contiene es-

FIGURA Nº 1.8

te filo y perpendicular a la base de la herramienta; la inclinación lateral es la pendiente de la cara de la herramienta medida en un plano perpendicular al plano en que se mide la inclinación longitudinal y a la base de la herramienta. Este sistema está en relación con el proceso de corte porque ambos ángulos se especifican de acuerdo con el filo que realiza la operación. Fig. 1.9.

Según esta representación, los ángulos de desprendimiento γ y de incidencia α quedan dibujados e individualizados en la sección MM.


Los ángulos γ' de desprendimiento secundario y α' de incidencia secundaria quedan determinados en la sección MM. El ángulo λ de inclinación es el comprendido entre el filo principal y la recta que pasando por el vértice de la herramienta es paralela al plano base.

Las relaciones entre dichos ángulos son:

a) En el plano principal

$$\chi + \varepsilon + \chi' = 180 \tag{1}$$

FIGURA Nº 1.9

b) sobre el plano normal

$$\alpha + \beta + \gamma = 90^{\circ} \tag{2}$$

c) para obtener la conversión entre el sistema unificado ASA y el europeo

$$tg\gamma_y = tg\gamma Cos\chi - tg\lambda Sen\chi$$
 (3)

$$tg\gamma_{z} = tg\gamma Sen\chi + tg\lambda Cos\chi \tag{4}$$

y así mismo

$$tg\gamma = tg\gamma_z Sen\chi + tg\gamma_y Cos\chi$$
 (5)

$$tg\lambda = tg\gamma_z Cos\chi - tg\gamma_y Sen\chi$$
 (6)

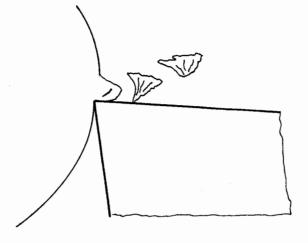
$$tg\gamma' = tg\gamma Cos(\chi + \chi') - tg\lambda Sen(\chi - \chi')$$
 (7)

1.2 MECANISMOS DE ARRANQUE DE LA VIRUTA Y MODELOS DE ESTUDIO

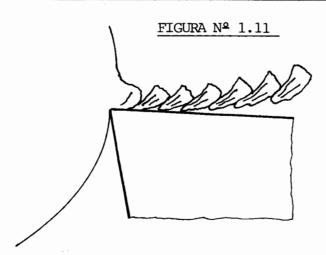
Antes de desarrollar el estudio sobre la formación de la viruta y analizar como ocurre el arranque, veamos las características de los distintos tipos de virutas las cuales dependen del material maquinado y las condiciones de corte adoptadas.

a) VIRUTAS CON ELEMENTOS FRAGMENTADOS Y SEPARADOS. Fig.

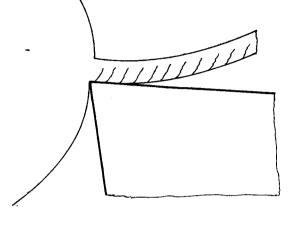
1.10


También llamada viruta discontinua. La originan los materiales duros con bajo coeficiente de alargamiento. La superficie de contacto entre la viruta y la cara de desprendimiento es reducida lo mismo que la acción de rozamiento, el ángulo de desprendimiento de la herramienta puede tomar valores muy bajos, nulos o incluso negativos.

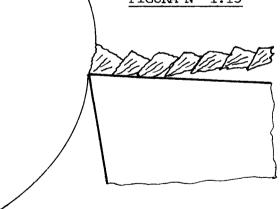
- b) VIRUTAS PARCIALMENTE SEGMENTADAS. Fig. 1.11 Es una variante del caso anterior, aunque la viruta está compuesta de elementos parcialmente unidos y ligados entre sí.
- c) VIRUTA CONTINUA. Fig. 1.12.


La continuidad del material está asegurada; se produce en condiciones de deformación plástica en la zona de deslizamiento; la originan los materiales tenaces; el ángulo de desprendimiento de la herramienta debe tomar valores elevados.

d) VIRUTAS ONDULADAS. Fig. 1.13


Es característica de los metales dúctiles, pero se produce incluso con materiales tenaces cuando las condiciones de flujo plástico son inestables debido

ESQUEMA DE VIRUTA DE TIPO FRAGMENTADA



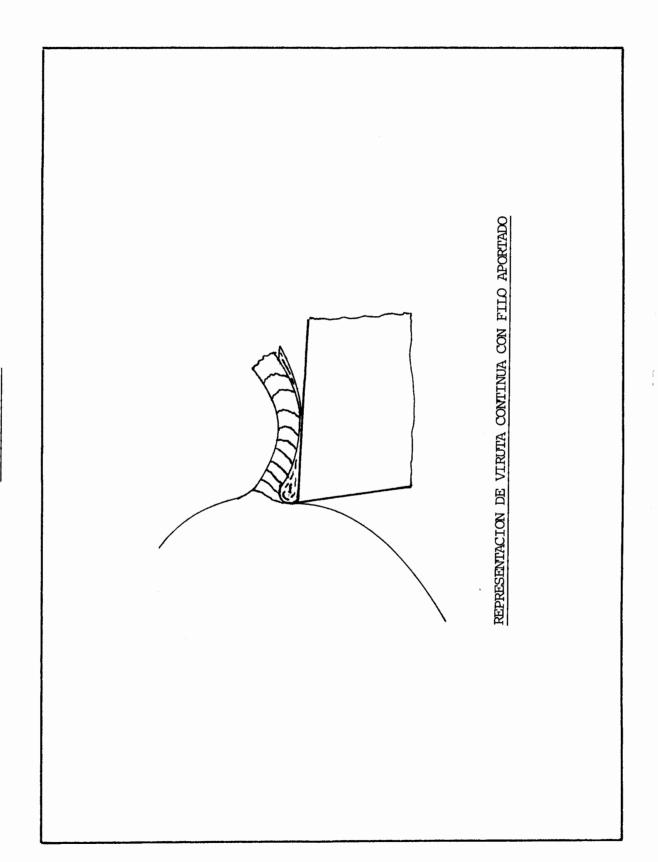
ESQUEMA DE VIRUTAS PARCIALMENTE FRAGMENTADAS

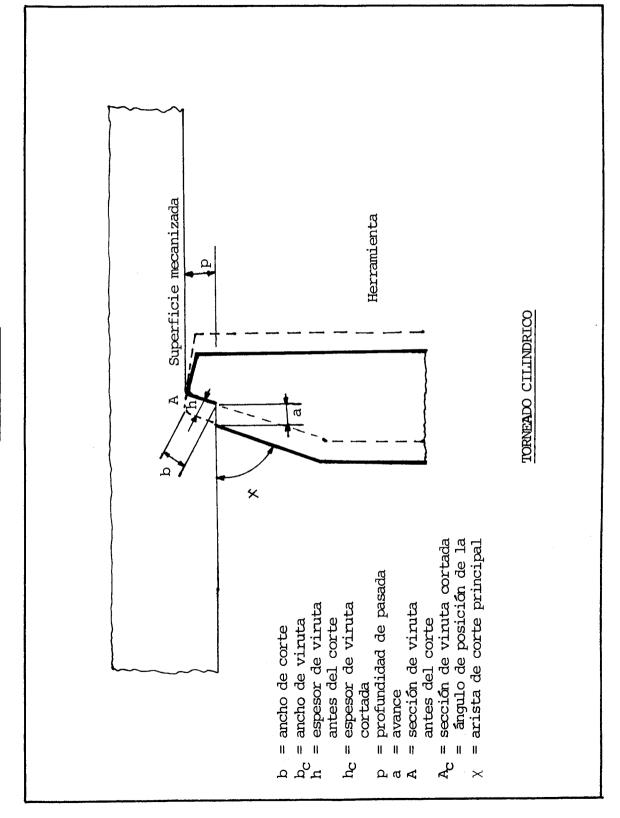
VIRUTA DE TIPO CONTINUA

FIGURA Nº 1.13

REPRESENTACION DE VIRUTAS ONDULADAS

a vibraciones incluidas por el sistema.


e) VIRUTA CONTINUA CON FILO APORTADO. Fig. 1.14


En la superficie de contacto se forman a causa del rozamiento capas de viruta que, permaneciendo adheridas a la herramienta en la zona del filo, modifican su comportamiento, influyendo ya sea sobre las fuerzas en juego, ya sea sobre el acabado superficial, ya sea sobre la propia duración del filo de la herramienta. El filo aportado tiende así a crecer gradualmente hasta que, en un cierto momento, y de una forma irregular se rompe bruscamente dando lugar a perturbaciones dinámicas. Así, como una parte del filo aportado es arrastrado por la propia viruta y otra parte se queda pegada a la superficie mecanizada de la pieza sobre la cual se producen irregularidades.

La importancia o volumen del filo aportado está relacionada con el espesor de viruta, con las condi ciones de riego de la zona de corte, y muy especialmente con la velocidad de corte.

SECCIONES DE LA VIRUTA

Se pueden considerar en el corte de los metales, tres

secciones de la viruta:

1) SECCION TEORICA (A), que es la sección antes de ser separada de la pieza, definida por el espesor h y por su ancho b antes de ser arrancada. El espesor de viruta, antes del arranque es proporcional al avance (a) en el cilindrado.

$$h = a.Sen\chi \tag{8}$$

El ancho de viruta b en torneado octogonal corresponde a la profundidad de corte p

La sección teórica vale

$$A = h.b = p.aSen\chi$$
 (9)

- 2) SECCION REAL (Ae) de viruta arrancadas, es decir la sección modificada con respecto a la A, por cuanto presenta mayor espesor (he) y quizá también modificaciones de anchura (be) a causa del flujo lateral por lo cual toma un aspecto disimétrico. Fig. 1.15.
- 3) Sección equivalente, a la que corresponde un espesor he de la viruta equivalente, referido a la longitud

desarrollada del filo de corte activo. Fig. 1.16.

Por tanto

 $Ae = he.be \tag{10}$

TEORIAS PRINCIPALES SOBRE EL ARRANQUE DE VIRUTA

Para el desarrollo de este estudio será necesario introducir algunas simplificaciones, a fin de reducir el número de parámetros de corte y facilitar así el planeamiento y resolución del problema.

- a) corte octogonal, material maleable.
- b) flujo contínuo de viruta y sin filo de aportación
- c) todas las fuerzas están en un plano y pueden ser restituidas por su resultante.

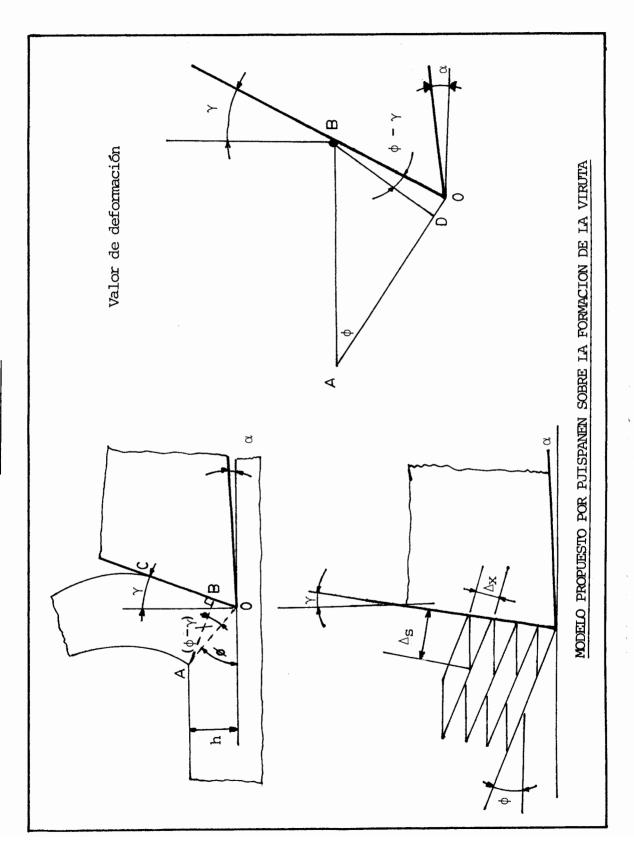
Los primeros estudios sobre la formación de la viruta se basaron en el modelo del plano de cizallamiento propuesto por PIJSPANEN (1937) el cual propone la viruta dividida en muchísimos pequeños elementos de espesor infinitesimal, que resbalan uno sobre otro por la acción de la herramienta, según una dirección común, de-

terminada por el plano de cizallamiento inclinado a un α ángulo α con respecto a un plano tangente a la pieza cilindrada, en el punto de contacto filo cortante pieza.

El valor del ángulo ϕ depende del material a mecanizar y las condiciones de corte. Fig. 1.17.

Notemos en la figura como la viruta se separa de la pieza con una deformación plástica, correspondiente al desplazamiento relativo Δs. de los elementos de espesor Δs. Además, la viruta después de ser arrancada resbala sobre la cara de desprendimiento de la cuchilla manifestándose una acción de rozamiento entre ambas.

El valor de la deformación γ s referida por el material es:


$$\gamma_s = \frac{\Delta s}{\Delta X}$$

OA = ∆s

$$DB = \Delta X$$
 $\frac{\Delta s}{\Delta X} = \frac{QA}{BD} = \frac{AD}{BD} + \frac{OD}{BD}$

$$\gamma_{\rm S} = \frac{\Delta_{\rm S}}{\Delta X} = \cot \phi + \tan (\phi - \gamma) = \frac{\cos \gamma}{\operatorname{Sen}\phi \cos (\phi - \gamma)}$$
 (11)

El valor de ϕ , que hace mínima la deformación será

$$\frac{\partial \gamma s}{\partial \phi} = -\cos^2 \phi + \sec^2 (\phi - \gamma) = 0$$

$$\phi = \frac{\pi}{4} + \frac{\gamma}{2} \tag{12}$$

Siendo γ el ángulo de desprendimiento de la cuchilla.

Si consideramos el factor de recalcado (c) de la viruta tenemos:

$$c = \frac{h}{he} = \frac{OA \ Sen\phi}{OA \ Cos(\phi - \gamma)} = \frac{Sen\phi}{Cos(\phi - \gamma)}$$

de donde:

$$tg\phi = \frac{c \cos \gamma}{1 - c \operatorname{Sen}\gamma} \tag{13}$$

La Tabla II muestra valores de esta ecuación

Posteriormente H. ERNST y MERCHANT propusieron una teoría para relacionar particularmente los parámetros ángulo de cizallado ϕ , ángulo de rozamiento τ , y el ángulo de desprendimiento γ según una relación del tipo

$$\phi = f(\eta, \gamma, \tau, \pi) \tag{14}$$

donde n es un coeficiente menor que la unidad.

Esto se basa en dos conceptos fundamentales siguientes:

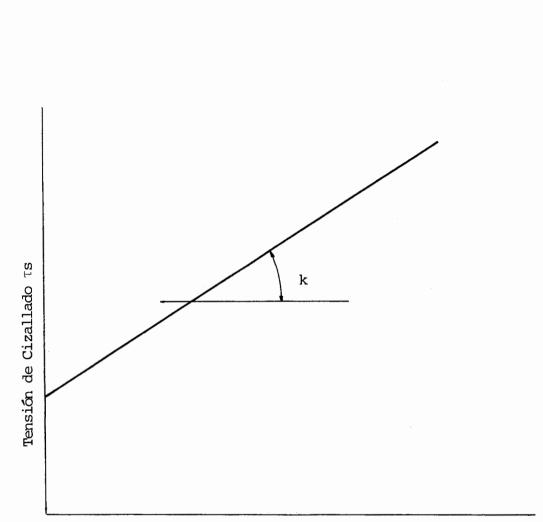
a) El plano de cizallamiento se orienta de forma que el trabajo absorbido sea mínimo.

$$2\phi + \tau - \gamma = \frac{\pi}{2} \tag{15}$$

b) El valor máximo del ángulo de rozamiento en el plano de cizallamiento $\tau_{\rm S}$ está sobre este mismo plano de cizallamiento.

$$\tau_{S} = \tau_{O} + k \sigma_{S} \tag{16}$$

τo ⇒ valor de τs para σs = 0


La ecuación (16) indica que la resistencia al cizallado del material aumenta linealmente con el aumento de la tensión normal en dicho plano. Fig. 1.18.

Sustituyendo τ s en las ecuaciones de fuerza se llega a:

$$Ft = \frac{\tau_0 A Cos (\tau - \gamma)}{Sen \phi Cos (\phi + \tau - \gamma) [1 - k Tang (\phi + \tau - \gamma)]}$$
(17)

Siendo K, τ_{O} constantes para un material y

A y γ constantes para cierta operación

Tensión Normal al plano de cizallado os

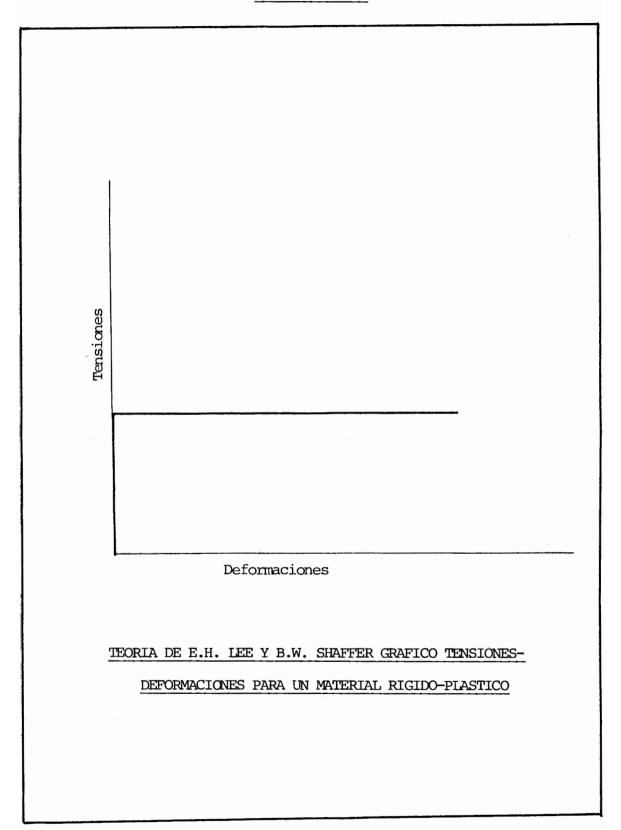
HIPOTESIS PROPUESTA POR E. MERCHANT SOBRE LA

TENSION DE CIZALLAMIENTO EN FUNCION DE LA TENSION NORMAL

AL PLANO DE CIZALLAMIENTO

y encontramos
$$\frac{\partial Ft}{\partial \phi} = 0$$

Tenemos:


$$2\phi + \tau - \gamma = tg^{-1} \frac{1}{K} = c$$
 (18)

de donde resulta que la constante c está ligada a la pendiente de la recta τs , σs y toma valores entre 70 y 80° para aceros. La Tabla # III nos da valores de C, τs y μ para diferentes materiales.

TEORIA DE E.H. LEE Y B.W. SHAFFER (1951)

Aplicación de la teoría de plasticidad al corte de metales y, tratando el fenómeno bajo este aspecto, enun - ciaron algunas hipótesis sobre el comportamiento de los materiales:

1) El material a mecanizar es rígido plástico; o sea la deformación elástica es despreciable y una vez alcanzado el límite de fluencia del material, la deformación prosigue con una tensión constante. Fig. 1.19.

- 2) Las variaciones de temperatura durante la deforma ción no soportan efectos sensibles.
- 3) Las fuerzas de inercia, debidas a las aceleraciones del material durante el corte, no implican sensi bles consecuencias.

Estas hipotésis son aplicables al corte de viruta donde se verifican grandes deformaciones y elevadísimas velocidades de deformación. Fig. 1.20.

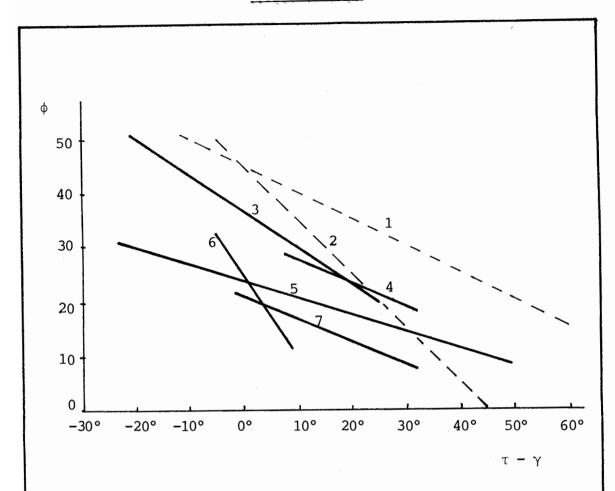
Sobre el plano de cizallamiento OA ocurren las deformaciones como consecuencia de las fuerzas transmitidas por la herramienta a través de la viruta, lo cual lleva a considerar la zona OAB, en la cual no ocurren deformaciones sino solamente tensiones que elevan al material hasta el límite de resistencia por cizallamiento Ts que actúa sobre el plano OA. Después de que la viruta ha atravesado la línea AB no se pueden transmitir tensiones a través de AB la cual es llamada superficie límite al ángulo BÃO vale 45°.

Suponiendo que las tensiones que actúan sobre la superficie herramienta-viruta son constantes (válido en primera aproximación), la tensión principal en el límite

FIGURA Nº 1.20

OB encontrará a estos límites bajo ángulos τ y τ + 90°.

Las direcciones de la máxima tensión de cizallamiento están a 45° con las direcciones de las tensiones principal, por lo tanto el ángulo \hat{OBC} = 45° - τ de donde:

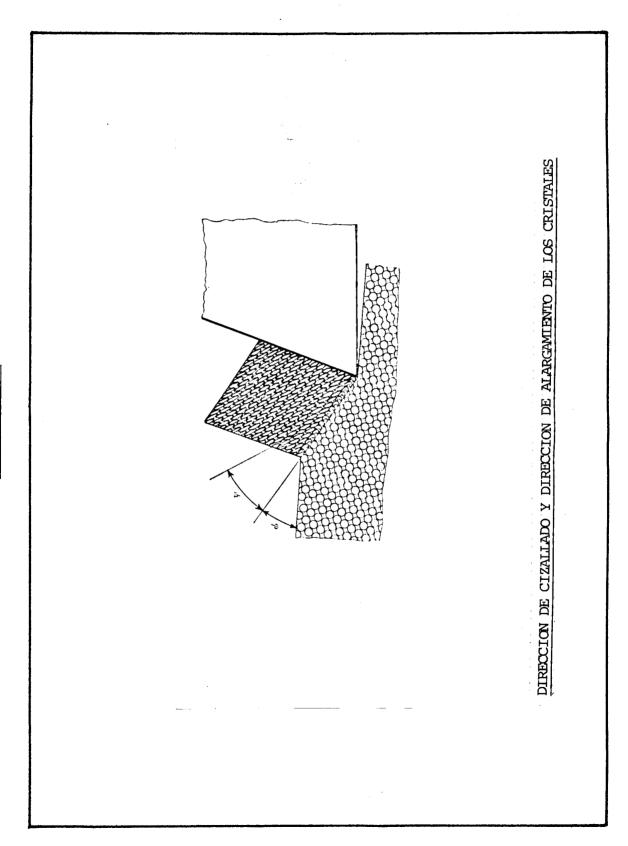

$$\phi + \tau - \gamma = \frac{\pi}{4} \tag{19}$$

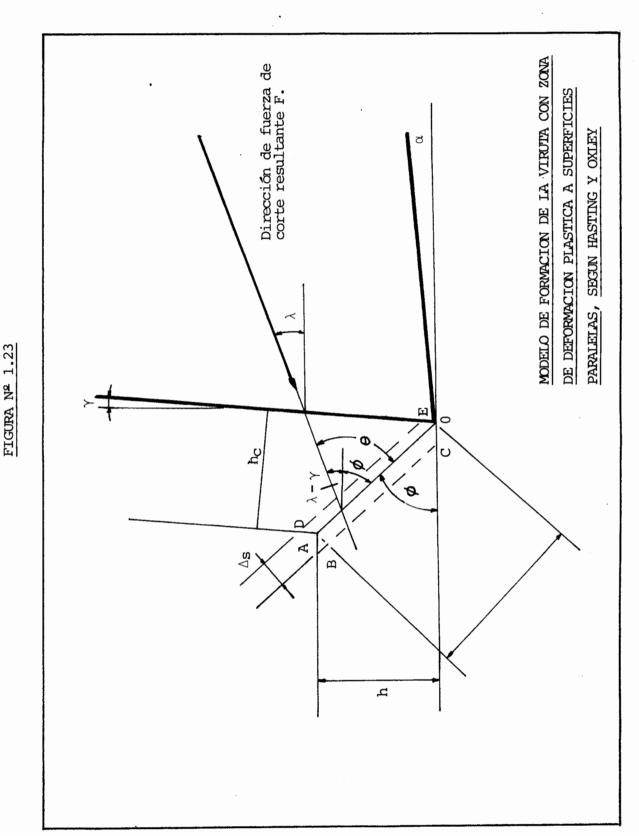
Esta ecuación no es aplicable cuando τ = 45° y γ = 0

La Fig. 1.21 compara los resultados teóricos obtenidos por Ernest Merchant y Lee Shaffer con los resultados experimentales de τ - γ Vs ϕ .

MODELOS DE ZONAS DE DESLIZAMIENTO Y CIZALLAMIENTO

En el modelo de plano de cizallamiento se considera válida la hipotésis de que la deformación plástica se verifica exclusivamente en el plano de deslizamiento, bajo la acción de la tensión de cizallamiento Ts, que en dicho plano alcanza su valor máximo instantaneámente, partiendo de un valor nulo, justo antes del plano mismo, y anulándose instantaneámente a continuación. Esta hipotésis implica una discontinuidad en la velocidad del

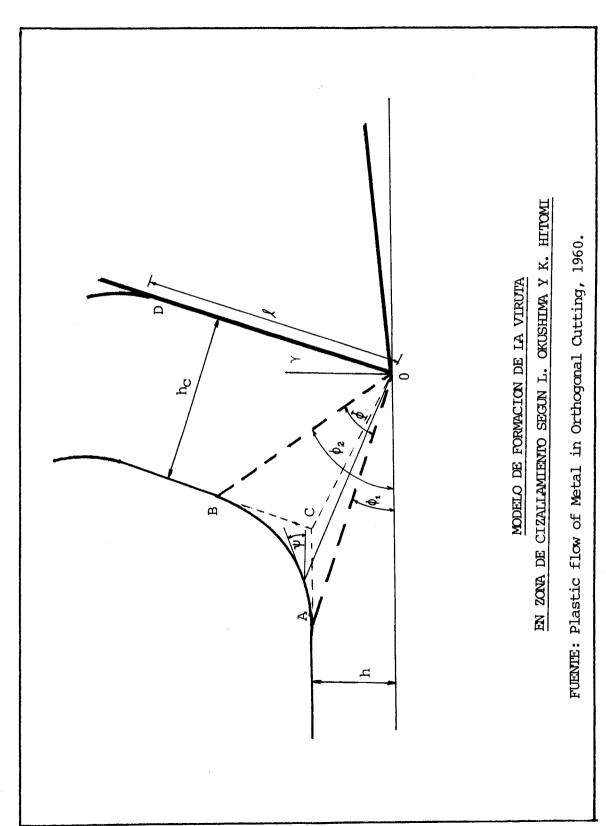

COMPARACION ENTRE RESULTADOS TEORICOS (1,2) Y EXPERIMENTALES (3, 4, 5, 6, 7) DE LAS RELACIONES ENTRE LOS ANGULOS ϕ , τ - γ en CORTE ORTOGONAL


FUENTE: PUGH, Mechanics of the Cutting Process, Conference on Technology of Eng. Manufacture, E. 237, 1958.

material, al atravesar el plano de cizallamiento; lo que equivale a suponer una aceleración infinita. Además, se ha observado que la dirección del cizallamiento no coincide con la del alargamiento de los cristales. Fig. 1.22; la dirección de estos cristales forman un ángulo Ψ con respecto al plano de cizallamiento a partir del cual aparecen tales deformaciones.

Como el modelo de plano de cizallamiento no tiene en cuenta las modificaciones de las características del material durante el flujo, como el endurecimiento o la influencia de la velocidad de deformación, para tomar en cuenta tales características se ha definido un modelo de zona de cizallamiento con superficies paralelas, en el cual la velocidad de cizallamiento cam bia dentro de una zona bien definida entre la pieza y la viruta, Fig. 1.23, el sector BCED, no tiene solu ción en los valores de velocidad.

Se considera siempre que el material de la pieza es rígido-plástico e isótropo. La geometría global del modelo es la misma que el plano de cizallamiento, con la línea central OA equivalente a la zona de deslizamiento/cizallamiento.



Otro modelo considera para el arranque de viruta, una zona de cizallamiento delante del filo, en forma de diedro, Fig. 1.24, el cual presenta algunas ventajas con respecto a los modelos anteriores.

- a) toma en cuenta la deformación de la capa superfi cial de la pieza mecanizada.
- b) considera la microestructura del material, permi tiendo la observación de que la velocidad de corte y la temperatura inicial de la pieza modifican la geometría y las tensiones en la zona de cizallamiento.

La superficie que separa la zona de cizallamiento de la pieza viene definida como aquella superficie donde la tensión de cizallamiento ha alcanzado el límite de rotura la misma que depende de la temperatura, velo - cidad de deformación (velocidad de corte) y condiciones iniciales de la pieza.

Este modelo considera que las tensiones de fluencia o cizallamiento sobre las superficies OA, OB, OC son iguales entre sí e iguales a la resistencia del material de corte, ésto es:

$$\tau OA = \tau OB = \tau OC \tag{20}$$

$$\tau OC = \frac{FSen\tau}{\ell \cdot b}$$
 (21)

\$\lambda = longitud del contacto viruta herramienta
b = ancho de viruta (profundidad de corte (p)

Las relaciones angulares para este caso son:

$$\phi_1 = \frac{K_1}{2} - \frac{\tau}{2} + \frac{\gamma}{2} \tag{22}$$

$$\phi_2 = \frac{K_2}{2} - \frac{\tau}{2} + \gamma \tag{23}$$

de donde:

$$K_1 = \text{Sen}^{-1} \left[\frac{2}{k_1} \text{Sen} \tau + \text{Sen} (\tau - \gamma) \right]$$
 (24)

$$K_2 = \cos^{-1} \left[\frac{2}{k_2} \operatorname{Sen} \tau - \operatorname{Cos} \tau \right]$$
 (25)

$$k_1 = \frac{\ell}{h}$$
; $k_2 = \frac{\ell}{h_C}$

 ℓ = longitud de contacto entre herramienta y viruta h = espesor teórico de viruta hc = espesor real de viruta El ángulo Φ de la zona plástica vale

$$\Phi = \phi_2 - \phi_1 = \frac{\gamma}{2} - \frac{k_1}{2} + \frac{k_2}{2} \tag{26}$$

la deformación dentro de la zona plástica vale

$$\gamma s = \cot \phi - \cot (\phi + \psi) \tag{27}$$

1.3 ANALISIS DE LAS FUERZAS ENTRE LA HERRAMIENTA Y EL MA-TERIAL A MECANIZAR: ECUACIONES FUNDAMENTALES

Diversos motivos inducen a acometer con atención el estudio de las fuerzas de corte que se manifiestan entre herramienta y pieza, durante el arranque de viruta.

- a) Verificación de las características de los diversos materiales a mecanizar, de las herramientas, de las condiciones de trabajo.
- b) Conocimiento de las solicitaciones, aplicadas a los diversos órganos de las máquinas-útiles para poder efectuar el dimensionado con vistas al proyecto y para evaluar eventuales deformaciones, que inciden directamente sobre la calidad de los mecanizados.

c) evaluación de la potencia necesaria.

Analizando las fuerzas en el plano ortogonal, Fig.1.25, se observa que la viruta OABC, se encuentra en equilibrio por una fuerza resultante F, aplicada por la herramienta y una reacción F' igual y contraria, aplicada por la pieza en correspondencia con el plano de cizallamiento.

La eventual falta de alineación entre F y F' puede ser despreciada, ya que tiene un brazo muy pequeño con respecto a la magnitud de las mismas fuerzas.

La fuerza F equivale a una distribución de presiones normales o, entre viruta y cara de corte de la herramien+ ta (superficie de desprendimiento) para lo cual se suponen los siguientes valores en los límites. Fig. 1.26.

- $\sigma = \sigma max en las proximidades del filo$
- σ = 0 en la separación punto D

La fuerza resultante F que se supone aplicada en el punto o, puede ser descompuesta, Fig. 1.27 de las siguientes maneras (los ejes x e y son los indicados en la figura, el eje z es normal a la figura.)

FIGURA Nº 1.25

FIGURA Nº 1.26

- a) según las dirección de corte Ft y normal Fn
- b) según las direcciones de la cara de desprendimiento $F_{\gamma} \ y \ su \ normal \ F_{\gamma n}, \ los \ cuales \ están \ ligados \ por \ el coeficiente de rozamiento (<math>\mu$) entre la viruta y la superficie de desprendimiento

$$\mu = \frac{F\gamma}{F\gamma n} = Tg\tau \tag{28}$$

c) según las direcciones Fs (del plano de cizallamiento) y Fsn (normal al mismo).

Por las descomposiciones, resulta que los vértices de los varios vectores están todos sobre una circunferencia, cuyo diámetro es la resultante F, además se pue den establecer las siguientes relaciones

$$Ft = F Cos (\tau - \gamma)$$
 (29)

$$F_n = F Sen (\tau - \gamma)$$
 (30)

$$F_{S} = F\cos(\phi + \tau - \gamma) = F_{t}Sec(\tau - \gamma)Cos(\phi + \tau - \gamma)$$
 (31)

$$F_{SN} = FSen(\phi + \tau - \gamma) = F_{t}Sec(\tau - \gamma)Sen(\phi + \tau - \gamma)$$
 (32)

$$F_{\gamma} = F \text{ Sen}_{\tau} = Ft \text{ Sec } (\tau - \gamma) \text{ Sen}_{\tau}$$
 (33)

$$F_{T_n} = F Cos_T = F_t Sec (\tau - \gamma) Cos_T$$
 (34)

$$F = \frac{F_S}{\cos(\phi + \tau - \gamma)}$$
 (35)

Si tomamos en cuenta la tensión dinámica de cizalla - miento (τs) , que actúa a lo largo de la superficie de deslizamiento.

$$A_{S} = \frac{A}{Sen\phi}$$
 (36)

y la tensión normal al plano de cizallamiento σs resul-

$$F_{S} = As \ \tau_{S} = \frac{A}{Sen\phi} \ \tau_{S} \tag{37}$$

$$F_{SN} = A_S \sigma_S = \frac{A}{Sen\phi} \sigma_S$$
 (38)

sustituyendo se obtiene

$$F = A \tau s \frac{1}{Sen_{\phi} Cos (\phi + \tau - \gamma)}$$
 (39)

$$F_t = A\tau s \frac{Cos(\tau - \gamma)}{Sen\phi Cos(\phi + \tau - \gamma)}$$
 (40)

$$F_n = A\tau_S \frac{Sen (\tau - \gamma)}{Sen \phi Cos (\phi + \tau - \gamma)}$$
 (41)

El esfuerzo dinámico de corte en función de la fuerza resultante tenemos:

$$\tau s = \frac{F \operatorname{Sen} \phi \operatorname{Cos} (\phi + \tau - \gamma)}{A} \tag{42}$$

y el esfuerzo normal a este plano es:

$$\sigma_{S} = \frac{FSen \phi Sen (\phi + \tau - \gamma)}{A}$$
 (43)

1.3.1 <u>Método de la Presión Específica para el Cálculo</u> de la Fuerza de Corte

El estudio del arranque de viruta y el cálculo de las fuerzas y la potencia de corte pueden ser abordados introduciendo una nueva magnitud sig nificativa, la presión de corte $K_{\rm S}$ también conocida como fuerza específica de corte.

La presión de corte es la relación entre la fuerza de corte Ft y la sección de viruta A:

$$K_{S} = \frac{Ft}{A} \tag{44}$$

Cuando A toma el valor unitario (1 mm^2) se tiene la presión o fuerza específica de corte $K_{\rm SO}$, que resulta relacionada con las características me - cánicas del material a mecanizar.

Pero al concepto de fuerza específica de corte se puede llegar también considerando la potencia

necesaria para arrancar un volumen unitario de material por unidad de tiempo; ésta es una magnitud característica de cada material, denominada potencia específica de corte P_SP_i

$$P_{Sp} = \frac{Potencia}{unidad de volumen}$$

Para el cálculo de la potencia se puede utilizar el producto de la fuerza por la velocidad. La fuerza resultante de corte F puede ser descom - puesta en Ft y Fn; pero Fn absorbe una pequeña potencia con respecto a Ft, e incluso puede ser nula cuando es perpendicular a la dirección del movimiento de corte, por tanto se puede escribir

$$P = Ft \times V$$

Ft = fuerza de corte tangencial
V = velocidad de corte

El volumen de material arrancado en 1 minuto vale:

$$Z = A.V$$

Por lo que la potencia específica de corte vale

$$Psp = \frac{Ft \cdot V}{A \cdot V} = \frac{Ft}{A}$$

Para representar Ft en función del ángulo de deslizamiento de la viruta, tenemos de (19) y (5)

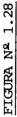
$$Ft = 2F Sen \phi Cos \phi \tag{45}$$

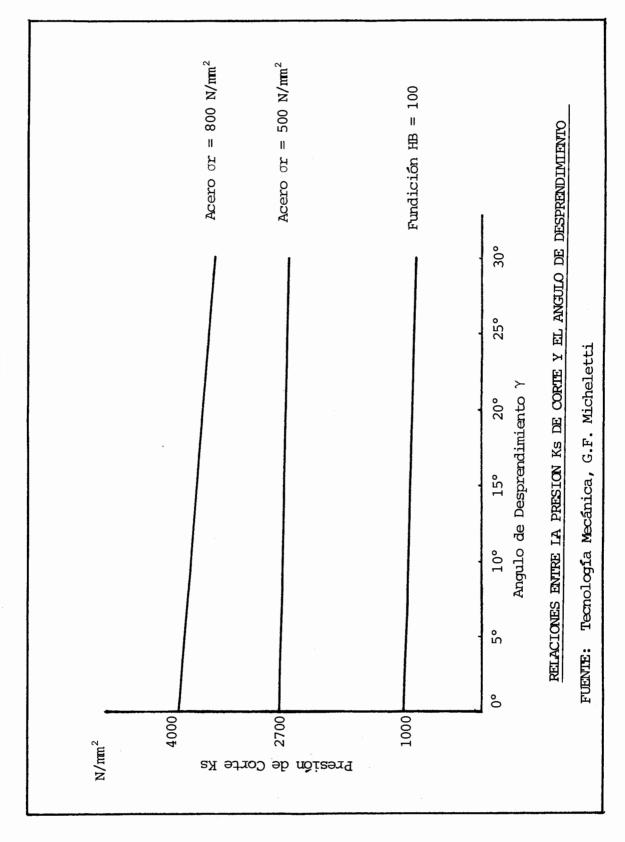
reemplazando (25) en (35) tenemos

$$Ft = 2 Fs Cos \phi \tag{46}$$

Si la representamos en función del esfuerzo de corte τ s tenemos de (36) y (27)

$$\frac{\text{Ft}}{A} = 2\tau s \cot g \phi = Ks \tag{47}$$

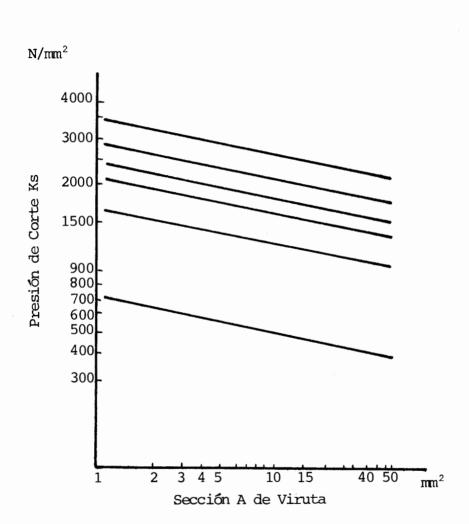

Entonces se puede calcular la fuerza de corte utilizando la fuerza específica de corte K_S que es función de:


- a) Características del material a mecanizar
- b) material y geometría de la herramienta (ángulo de desprendimiento, ángulo de ataque, ángulo de inclinación y radio de curvatura entre filos)

- c) profundidad de corte, avance
- d) velocidad de corte
- e) condiciones lubro-refrigerantes
- f) desgaste de la herramienta.
- a) CARACTERISTICAS DEL MATERIAL A MECANIZAR. Influyen sobre la presión de corte diversas ca racterísticas mecánicas, como la carga de ro tura, alargamiento, dureza, maquinabilidad.
- b) MATERIAL Y GEOMETRIA DE LA HERRAMIENTA.- El material de la herramienta influye sobre Ks en virtud de los diversos valores del coeficiente de rozamiento μ en el contacto viruta cara de desprendimiento de la herramienta.

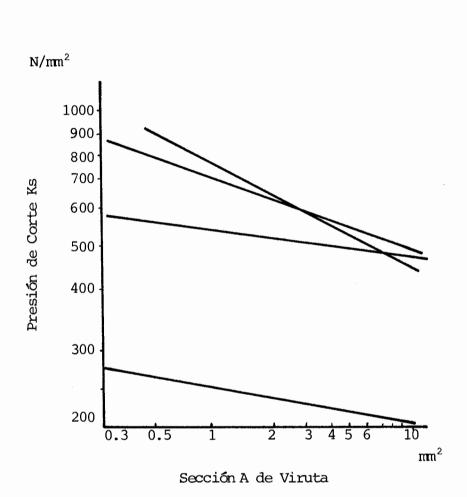
Al crecer el ángulo γ de desprendimiento se obtiene una disminución de la presión de corte. Fig. 1.28.

Los valores elevados del ángulo de ataque X, conducen a un aumento de la presión de corte y a un mayor deterioro del segmento del filo activo, ya que dicho segmento tiene menor longitud.

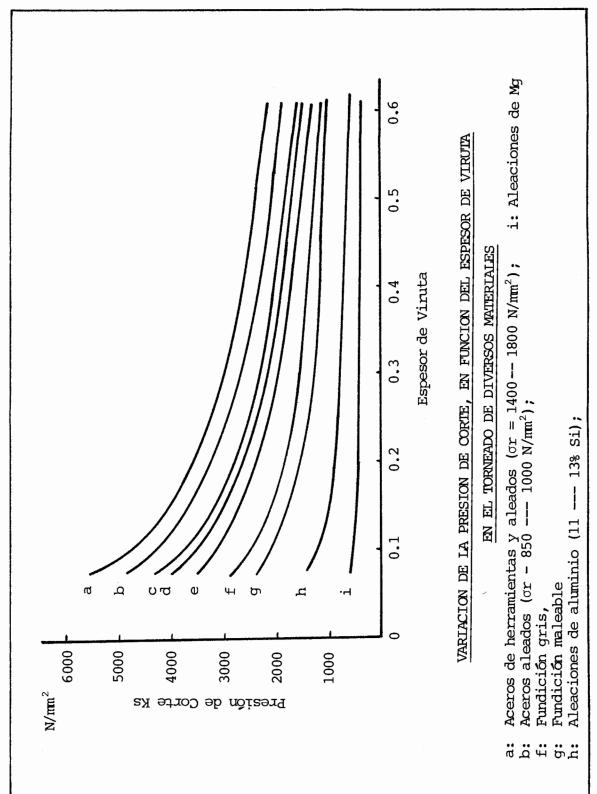

También el ángulo de posición del filo secundario X', influye sobre Ks ya que con el aumento de dicho ángulo y del avance disminuye la sección indeformada de la viruta. Así mismo influyen sobre Ks todo el ángulo de inclinación del filo λ como el radio entre filos cortantes.

c) SECCION DE VIRUTA. - Ensayos experimentales confirman que la presión de corte Ks es función de la sección A de viruta, precisamente Ks disminuye al aumentar dicha sección A. Figs.

1.29 y 1.30.


Se puede observar la distinta influencia del espesor de viruta y del avance sobre la pre - sión de corte. En efecto, para la misma sección de viruta la presión de corte decrece con el aumento de espesor de viruta. Esto es muy importante, ya que explica los diversos valores que la presión de corte toma en los dis - tintos mecanizados, citaremos por ejemplo el rectificado donde Ks toma valores muy altos aunque el espesor de viruta es muy pequeño.

La Fig. 1.31 ilustra la variación de la pre -


PRESION DE CORTE KS EN FUNCION DE LA SECCION DE VIRUTA EN MECANIZADO DE MATERIALES FERROSOS

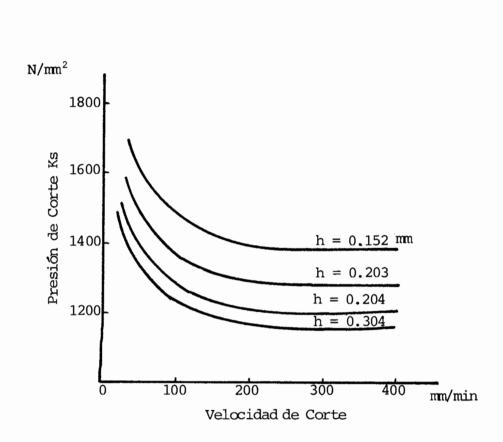
FUENTE: Tecnología Mecánica, G. F. Micheletti

PRESION DE CORTE EN FUNCION DE LA SECCION DE VIRUTA, PARA MATERIALES NO FERROSOS

FUENTE: Tecnología Mecánica, G. F. Micheletti

FUENTE: Hütte, Taschenbuch Für Betrie Bsingenieure, Vol I, 467, VI, 1964

sión de corte para diversos valores del espesor de viruta, en el torneado, para diferentes materiales.


d) VELOCIDAD DE CORTE. - Este parámetro también influye sobre la presión de corte; éste disminuye con el aumento de velocidad.

En la fig. 1.32 tenemos la función de varia - ción, para un determinado ángulo de desprendimiento y para diversos valores de espesor de viruta h.

Para valores de corte superiores de 200 RPM/minuto la presión de corte Ks es constante.

- e) CONDICIONES DE LUBRICACION Y REFRIGERACION. Influyen sobre Ks modificando las condiciones
 de rozamiento entre viruta y cara de corte.
- f) DESGASTE DE LA HERRAMIENTA. Modifica la geometría de la herramienta y en general provoca el aumento de la presión de corte.

Considerando la ecuación (34) que define la fuer-

PRESION DE CORTE EN FUNCION DE LA VELOCIDAD DE CORTE, EN TRABAJOS DE TORNEADO DE ACERO

[Ancho de viruta b = 1.27 mm; espesores de viruta h (mm)] $\gamma = 10^{\circ}$

za específica de corte, la cual podemos representarla en función de la presión específica de corte Kso con la sección de viruta A la misma que
está dada en función del espesor medio de viruta
hm y el ancho medio de viruta bm

Ft = Ks hm bm = Kso hm
X
 bm Y (48)

En la que los exponentes x e y toman valores menores que uno, pero siendo muy próximos a la unidad,
indican la distinta influencia del espesor de viruta y de su ancho, así:

$$y = 1$$
; $1 - x = z$; $x = 1 - z$

entonces
$$Ks = Kso hm^{-2}$$
 (49)

la cual confirma que la presión específica de corte Ks depende del espesor medio de viruta.

Ks y z dependen del material a trabajar, de la geometría de la herramienta y del material de la misma, Kso es la fuerza específica de corte, siendo h=1.

Se puede obtener los valores de Ks de la tabla IV en la que los valores de Ks están clasificados en función del espesor de viruta para diversos materiales; la tabla V indica la composición de los materiales clasificados en la Tabla IV según las normas DIM; la tabla VI proporciona los valores de Ks para aleaciones ligeras y la Tabla VII la composición de las aleaciones clasificadas y recogidas en la Tabla VI.

Los valores de Ks de las Tablas IV y VI se refieren a operaciones de torneado con una geometría de herramienta perfectamente definida para un determinado material de herramienta, pero puede usarse para diversos mecanizados, como taladro, fresa, y con herramientas de diversa geometría y material, Tabla VIII.

La única corrección que debe hacerse es la concerniente al ángulo de desprendimiento γ : para diferencia de un grado con respecto al valor de referencia, Ks varía en $^{\pm}$ 1..2% a mayor Ks menor γ y viceversa.

Utilizando la presión de corte Ks, M. Kronenberg

encuentra la fuerza de corte Ft

$$Ks = \frac{Kso. (\frac{G}{5})^{g}}{A^{f}}$$
 (50)

donde:

A = área de sección de viruta

Ko, g y f dependen del material mecanizado Tabla IX.

$$G = \frac{b}{h} = \frac{\text{ancho de corte}}{\text{profundidad de corte}}$$
 (51)

Por lo tanto, la expresión de la fuerza de corte se convierte en:

$$Ft = K_{SO} \cdot (\frac{G}{5})^g \cdot A^{(1-f)}$$
 (52)

Este mismo autor M. Kronenberg, basándose en pruebas experimentales anteriores, ha expresado la fuerza principal de corte y la presión específica en función de la dureza Brinell (HB) del material y del ángulo de salida de corte β de la herramienta.

El cuadro siguiente nos da las funciones de Ft y
Ks para varios materiales. Tabla X.

Además, se llega a la expresión generalizada de presión específica Ks válida para aceros y fundiciones (α = 10°) en función del esfuerzo a la rotura y dureza del material mecanizado.

Aceros: Kso = 2.4
$$\sqrt[2.2]{\text{or}}$$
 $\sqrt[1.5]{80^{\circ} - \gamma}$ (53)

Fundiciones: Kso = 0.9
$$\sqrt[2.5]{HB} \sqrt[1.5]{80^{\circ} - \gamma}$$
 (54)

Debe notarse que, con herramientas desgastadas y arrancando un pequeño espesor medio de viruta, las fuerzas de corte, y por tanto la presión específica de corte deben aumentar de 2 a 2.5 veces.

1.3.2 Potencia de Corte

La potencia necesaria para el corte, donde éste requiere una fuerza Ft y una velocidad V con una relación:

$$P_{t} = F_{t}.V \tag{55}$$

La potencia de corte es la suma de la siguientes cargas:

- a) Potencia de cizallamiento (Ps) requerida para provocar la deformación plástica de la viruta en la zona de deslizamiento y cizallado.
- b) Potencia de rozamiento (Pat) necesaria para vencer las resistencias de rozamiento entre viruta y herramienta.
- c) Potencia absorbida en el arrollamiento de la viruta (Pit), esta potencia es 5% con respecto a la potencia total.

Entonces:

$$P_{+} = Ps + Pat = Fs.Vs + F\gamma.V$$
 (56)

Sustituyendo los valores de Fs y F_n en función de Ft y Fn de (25) y (23)

Fs = F Cos
$$(\phi + \tau - \gamma)$$

Fs = F [Cos ϕ Cos $(\tau - \gamma)$ - Sen ϕ Sen $(\tau - \gamma)$]

$$Fs = Ft Cos\phi - FnSen\phi$$
 (57)

$$F\gamma = Fn Cos\gamma + Ft Sen\gamma$$
 (58)

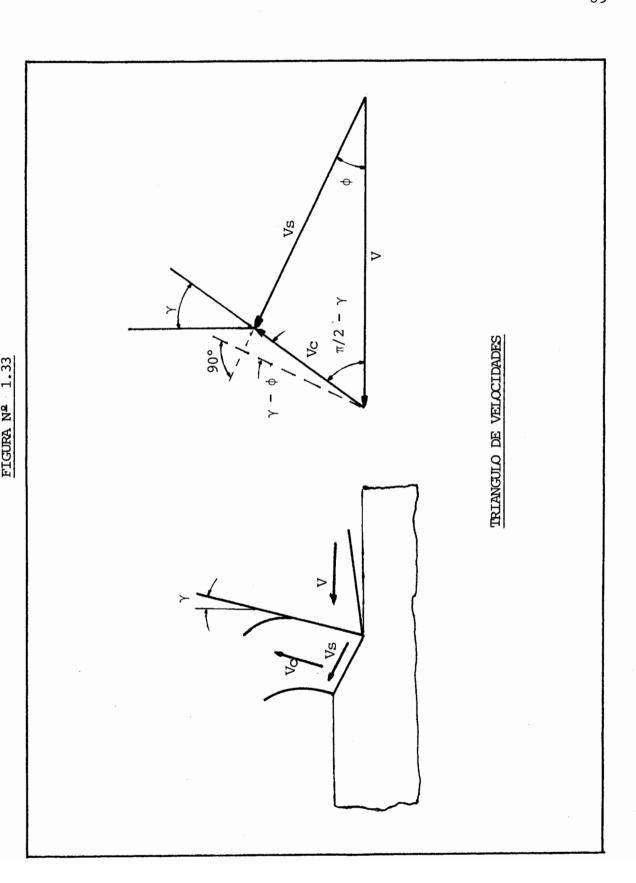
Del gráfico vectorial de velocidades Fig. 1.33

$$\frac{Vc}{V} = \frac{h}{hc} = c$$

$$Vc = C.V = \frac{Sen\phi}{Cos(\phi - \gamma)} . V$$

$$\frac{Vs}{V} = \frac{Cos\gamma}{Cos(\phi - \gamma)}$$
(59)

V = velocidad de corte;


Vs = velocidad de deslizamiento de la viruta con respecto a la pieza.

$$Ft.V = (FtCos\phi - FnSen\phi) \frac{V.Cos\gamma}{Cos(\phi - \gamma)} + (FnCos\gamma + FtSen\gamma)$$

$$\frac{V.Sen \phi}{Cos(\phi - \gamma)}$$

$$= Ft.V \left[\frac{Cos\phi Cos\gamma + Sen\gamma Sen\phi}{Cos(\phi - \gamma)} \right]$$

Como el factor entre parantésis es la unidad la relación (1) queda demostrada.

1.4 FACTORES QUE INFLUYEN EN EL ACABADO SUPERFICIAL

El acabado superficial que presenta una pieza después de haber sido trabajada por arranque de viruta es el reflejo de la eficiencia de corte, ya que en ella se manifiestan cada una de las anomalías del sistema, ya sea por la vibración entre la herramienta de corte y la pieza, la mala selección de los ángulos de corte en la cuchilla o posición de ésta; formación del filo de aportación en el filo de corte o desgaste del mismo.

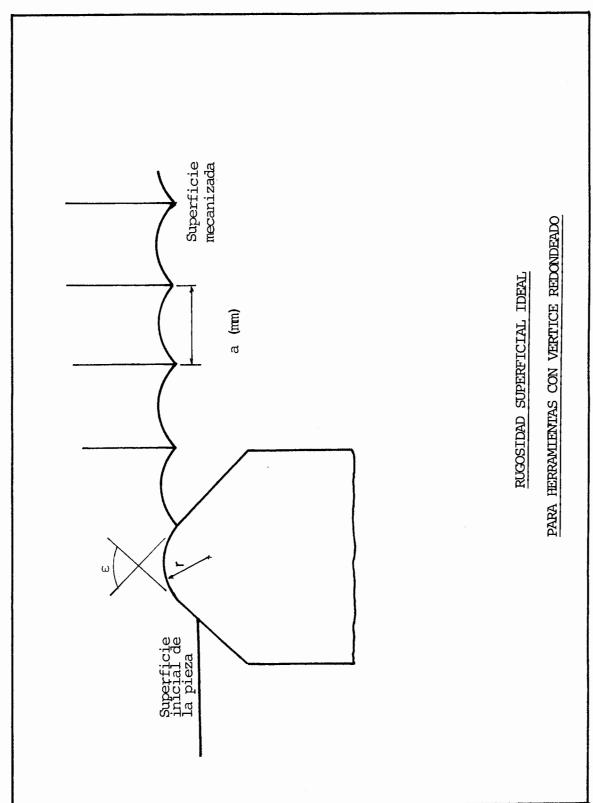
La aspereza superficial obtenida al final de una operación de mecanizado puede considerarse como la suma de dos efectos independientes:

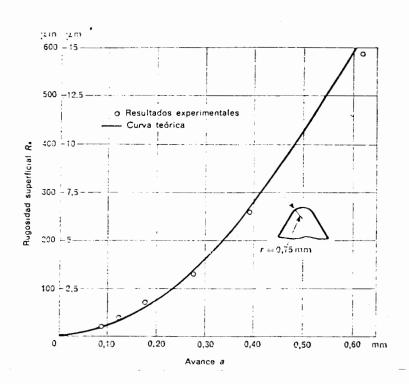
- a) El acabado superficial ideal que es el resultado de la geometría de la herramienta y del avance de la herramienta.
- b) El acabado superficial real que depende de las irregularidades en la operación de mecanización.

En el caso de torneado cilíndrico la rugosidad ideal o geométrica lo analizaremos utilizando una cuchilla con radio r y el avance lo determinamos bajo la hipotésis

de introducir solamente la parte curvilinea del filo, Fig. 1.34, es decir,

$$a \leq 2r \cos \frac{\epsilon}{2}$$


La rugosidad teórica Ra vale:


$$Ra = \frac{1}{32} \frac{a^2}{r} \times 10^{-3}$$
 (60)

La Fig. 1.35 hace una comparación entre la rugosidad teórica y real en condiciones óptimas. La Tabla XI según la aplicación a maquinaria. La Tabla XII nos da valores indicativos de rugosidad para varios tipos de mecanizado.

1.4.1 Vibración de la Máquina

Cualquiera que sea la fuente de vibración en el sistema, provoca condiciones transientes de corte sobre la pieza, lo que trae como consecuencia espesores variables en la viruta como efecto de un cambio de magnitud en la fuerza de corte; todos estos efectos cíclicos traen como consecuen-

COMPARACION ENTRE RUGOSIDAD REAL Y TEORICA

FUENTE: N.E. Woldman y R.C. Gibbons, Tecnología Mecánica, G. F. Micheletti

cia superficies irregulares en las piezas. Para analizar las vibraciones forzadas en un torno se va a simular el efecto cortante del sistema (torno, cuchilla y pieza) por el sistema mecánico masa resorte amortiguador de un grado de libertad. Fig. 1.36, cuya ecuación es:

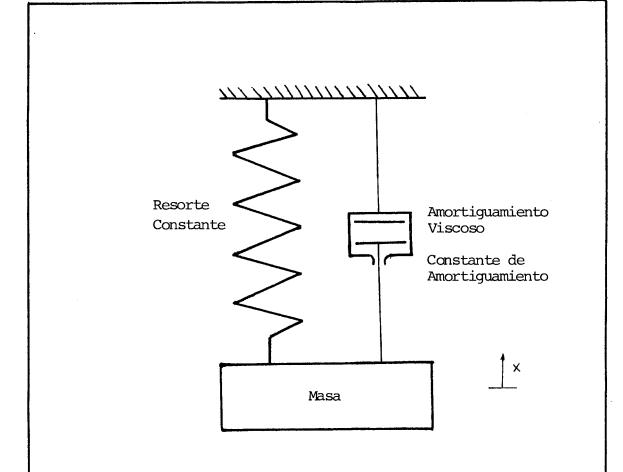
$$m\ddot{X} + C\dot{X} + K_RX = Fmax Cos\omegat$$
 (61)

en donde:

X = desplazamiento

t = tiempo

m = masa equivalente


C = constante de amortiguamiento

KR = constante del resorte

 $F_{\mbox{\scriptsize max}}$ = valor máximo de la fuerza armónica externa $\omega \mbox{ = frecuencia angular de la fuerza armónica externa}.$

El desplazamiento de este sistema en estado estacionario está dado por

$$x = \frac{F_{o}Cos (\omega t - \phi)}{\sqrt{4S^{2}\omega^{2} + (\omega_{p}^{2} - \omega^{2})^{2}}}$$
 (62)

MODELO DE UN SISTEMA MASA-RESORTE

CON AMORTIGUAMIENTO VISCOSO Y CON UN GRADO DE LIBERTAD

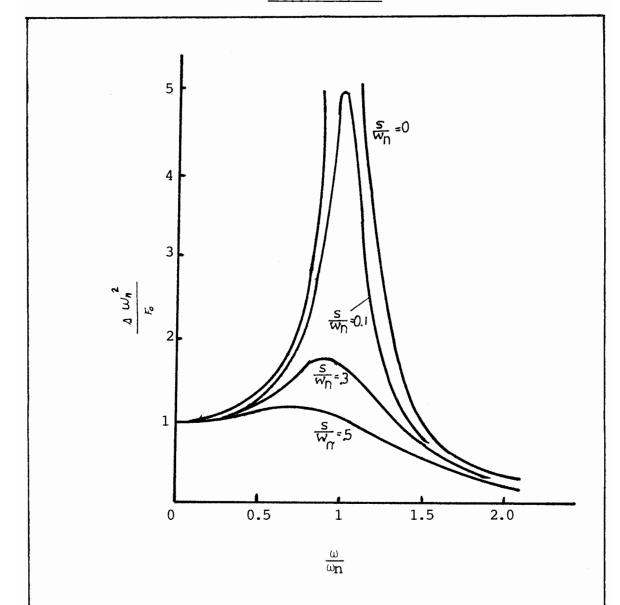
donde

$$F_{O} = \frac{Fmax}{m} \tag{63}$$

$$\omega n = \sqrt{\frac{K_R}{m}}$$
 (frecuencia natural)

$$S = \frac{C}{2m}$$
 (coeficiente viscoso de amortiguamiento)

cuya amplitud de vibración es:

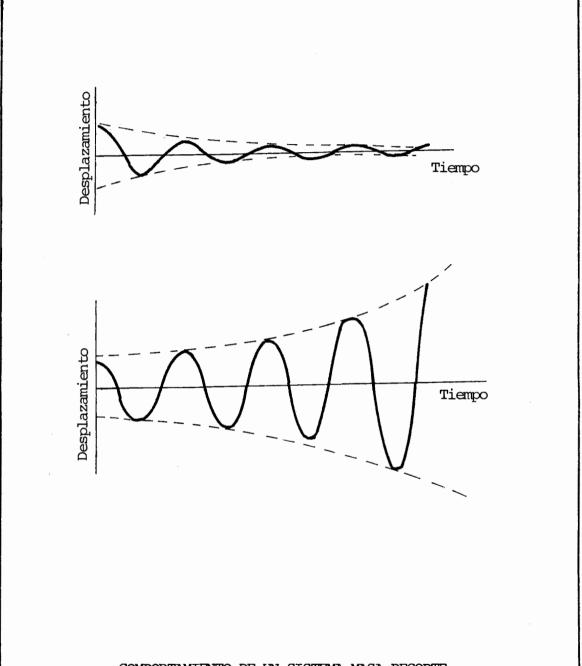

$$\Delta = \frac{F_{O}}{4S^{2}\omega^{2} + (\omega_{n}^{2} - \omega^{2})^{2}}$$
 (64)

cuya respuesta a este sistema está dado por la Fig. 1.37.

Lo cual para minimizar la amplitud de vibra - ción de un sistema masa resorte amortiguado, el coeficiente de amortiguación debe ser tan grande como sea posible y la frecuencia natural del sistema debe ser significativamente menor que la frecuencia de la fuerza perturbadora.

VIBRACIONES INDUCIDAS

Son vibraciones generadas por la operación de


RESPUESTA DEL SISTEMA MASA-RESORTE DE LA FIG. 1.36

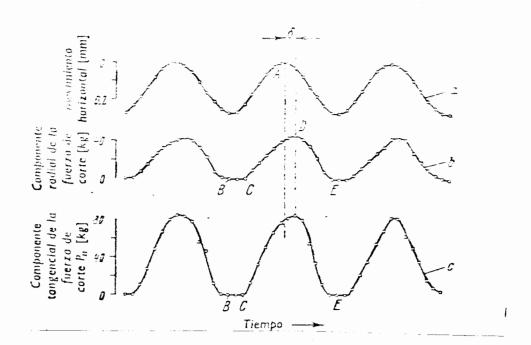
mecanización en las cuales no hay variaciones cíclicas de las fuerzas de corte, como por ejemplo, en el torneado de una pieza cilindrica. Este tipo de vibraciones no es tan bien entendido como lo son las vibraciones forzadas, y es dificil predecir las condiciones en las que ocurrirán o determinar los cambios en las condiciones de corte necesarios para corregir este fenómeno.

En el mecanizado, las vibraciones autoinducidas pueden originarse en dos formas diferentes: primero, en determinadas condiciones, el proceso de corte puede ser básicamente inestable de tal manera que cualquier desplazamiento pequeño de la herramienta con respecto a la pieza se convierte rápidamente en una vibración de gran amplitud. Esta situación de inestabilidad puede ser modelada suponiendo que la constante de amortiguamiento (C) es negativa lo cual genera un sistema dinámicamente inestable.

En la Fig. 1.38 se compara el comportamiento de un sistema masa resorte con amortiguación nega - tiva con su comportamiento cuando la amortigua - ción es positiva C > 0.

FIGURA Nº 1.38

COMPORTAMIENTO DE UN SISTEMA MASA-RESORTE CON UN GRADO DE LIBERTAD DE MOVIMIENTO


- a) Amortiguación positiva (la constante de amortiguación c > o);
- b) Amortiguación negativa, (la constante de amortiguación c < o)

La segunda forma en que se pueden originar las vibraciones autoinducidas es más complicada pero mucho más común. En este caso, el proceso de corte puede ser básicamente estable (C > 0) y las vibraciones ocasionadas por un desplazamiento súbito entre la herramienta y la pieza decaen a medida que el corte progresa, sin embargo en las operaciones de mecanización los cortes se trasladan, y cuando la herramienta remueve las irregularidades dejadas por la vibración durante la revolución previa de la pieza, se induce una vibración forzada a causa de las variaciones en la fuerza que actúa sobre la herramienta. Fig. 1.39.

Cuando este tipo de vibraciones autoinducidas aumentan su amplitud de vibración se conoce como vibración regenerativa. Fig. 1.40.

1.4.2 Angulos en la punta de la Herramienta de Corte

Los ángulos en la punta de la herramienta que influyen notablemente sobre el acabado superficial son el de desprendimiento γ y de incidencia α , y el radio de la punta.

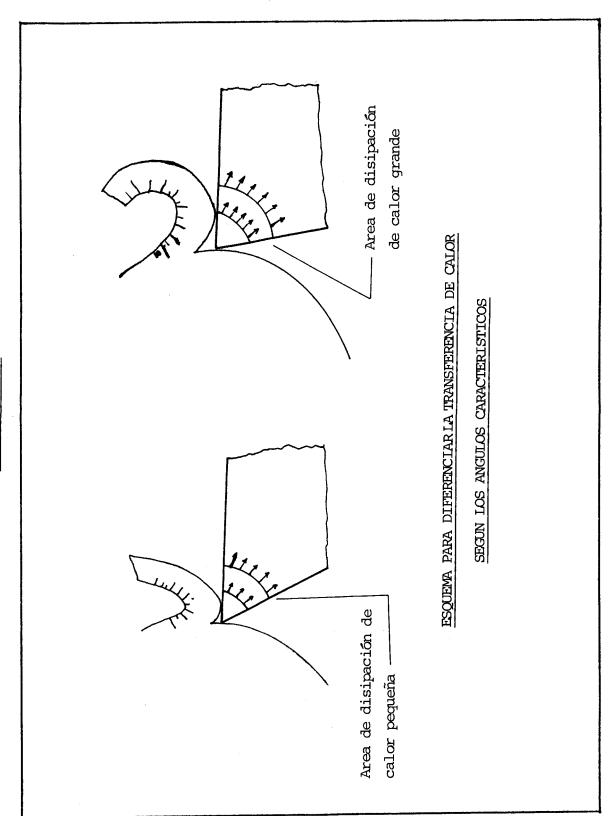
VARIACION DE LA FUERZA DE CORTE

- a) Variación del espesor de viruta;
- b) Componente normal de la fuerza de corte Fn;
- c) Fuerza de corte tangencial Ft

FUENTE: DOI, S. y S. KATO; Chatter Vibration of Lathe Tools Transaction, ASME 78 P. 1127, 1956.

FIGURA Nº 1.40

ANGULO Y DE DESPRENDIMIENTO


Para seleccionar el ángulo de desprendimiento hay que tomar en cuenta los materiales a mecanizarse; los que tienen elevada resistencia provocarán en la herramienta esfuerzos mayores y como conse cuencia deberán emplearse ángulos de desprendi miento menores a fin de reforzar la herramienta, opuestamente esta disminución de γ aumenta consumo de potencia ya que la viruta tiene mayor dificultad doblarse y salir. Pero toda esta potencia se transforma en calor el cual funde una pequeña parte de viruta que se va depositando en la punta de la herramienta la cual llega un mo mento que no corta sino que arranca material cual afecta negativamente a la superficie meca nizada, a este fenómeno se lo conoce como filo de aportación.

También influye el tipo de material que se corta ya que un acero ductil el punto de aplicación del esfuerzo de corte está relativamente alejado de la punta de la herramienta lo que crea una mayor área de transferencia calorífica hacia el medio, lo que no ocurre con materiales de poca

ductilidad para los cuales el punto de aplicación del esfuerzo de corte está en la punta de la herramienta teniendo menor área de transferencia de calor. La Fig. 1.41 hace una comparación entre ambos tipos.

El avance también afecta al ángulo de desprendimiento en forma inversa, ya que al aumentar éste hay que disminuir γ para obtener mayor resistencia al esfuerzo cortante en la punta de la cuchilla. Si seleccionamos un avance pequeño, nece sariamente hay que aumentar γ para disminuir el filo de aportación y obtener un buen acabado superficial.

El ángulo de desprendimiento negativo no tiene aplicación en acero rápido porque su uso demanda una gran resistencia a la compresión y soporta temperaturas alrededor de 800°C condiciones que no posee este acero. Los materiales de corte con estas características son el carburo metálico y los materiales cerámicos; ello explica los óptimos acabados que pueden obtenerse con he rramientas de este tipo trabajando a altas ve locidades. La Tabla XIII recomienda valores de

γ según el material a trabajar.

ANGULO DE INCIDENCIA α

En el instante en que el filo de la cuchilla arranca viruta, está comprimiendo la parte de pieza situada bajo su influencia; apenas ha so - brepasado el filo, el material libre ya de la fuerza de compresión, tiende a dilatarse nuevamente por efecto de su propia elasticidad. Si dicho ángulo fuese nulo, el talón de la herra mienta rozaría con la superficie de la pieza, incrementándose dicho roce con el desgaste y provocando un calentamiento progresivamente mayor. Para evitar este inconveniente, todos los tipos de herramientas deben siempre presentar un ángulo de incidencia real positivo.

La precisión de real nace del hecho de que, a veces la herramienta puede estar afilada con un ángulo de incidencia positivo, pero situada sobre la máquina de forma que, como consecuencia de algún movimiento relativo dicho ángulo se anula durante el corte; hay que considerar pués esta posibilidad y corregirla, a fin de evitar

los inconvenientes ya citados.

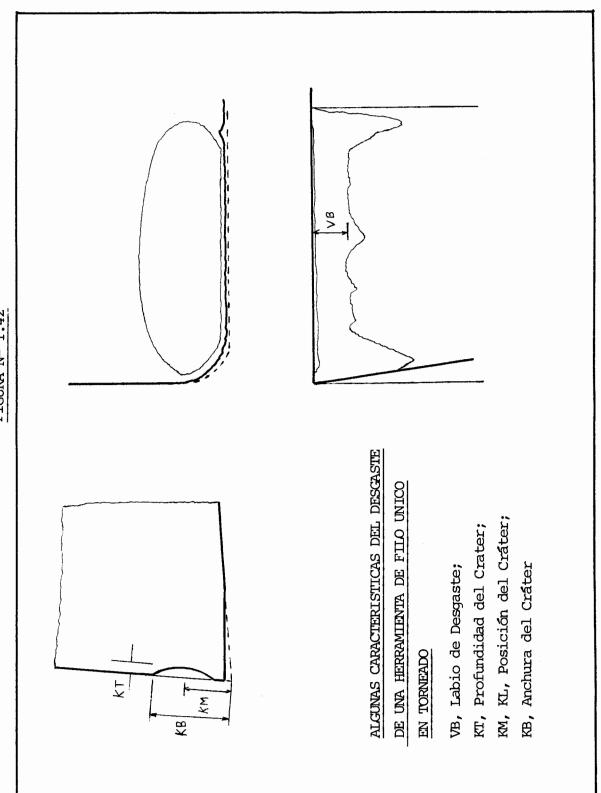
Los valores del ángulo α son siempre los menores posibles a fin de no debilitar excesivamente la punta de la herramienta, es decir no disminuir el ángulo β . Por otra parte, una vez conseguida la seguridad de que no se va a producir fricción, de nada servirá exagerar la amplitud de α , cuyas pequeñas variaciones dependen principalmente de la resistencia y elasticidad del material a me - canizar. Las Tablas XIV y XV dan una pauta para seleccionar α .

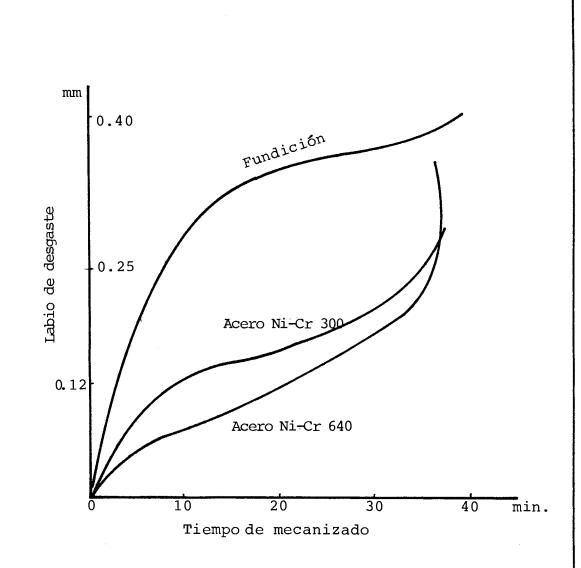
RADIO DE LA PUNTA DE LA CUCHILLA

La intersección de las aristas de corte primarias y secundarias en la punta de la cuchila forman un vértice agudo al cual es necesario suavizarlo mediante un radio que tiene un doble objeto; aumentar la resistencia de la cuchilla y obtener una buena superficie de mecanización. La regla práctica Tabla XVI nos da valores del radio de la punta de la cuchilla según los parámetros de corte.

1.4.3 Desgaste de la punta de la Herramienta de Corte

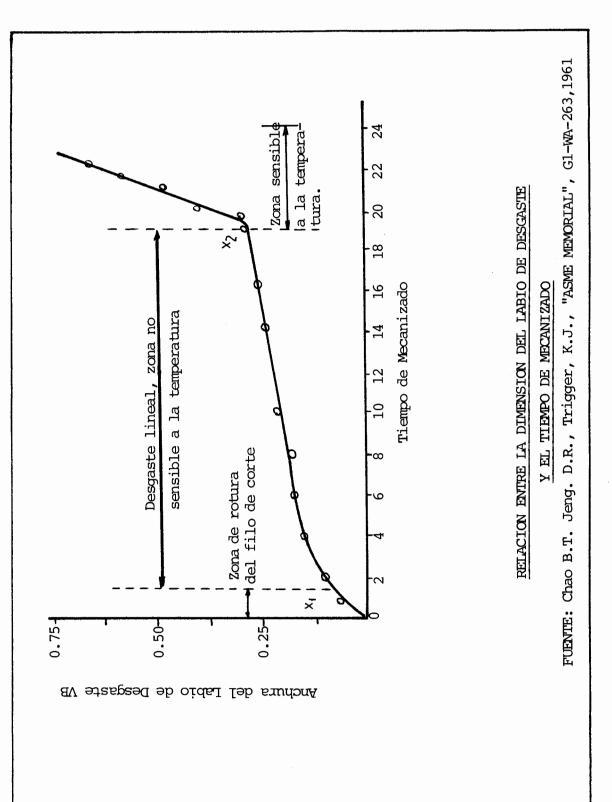
En la actualidad se tiende a definir la duración de la herramienta de corte a través de la medida de desgaste sufrida por la misma en función de un cierto mecanizado superficial. Además, el problema de la optimización de las condiciones de corte y el consiguiente estudio del control a adoptarse están basados en el conocimiento de determinados parámetros, entre los cuales asume notable importancia el desgaste de la herramienta. Y de este conocimiento se pueden elaborar modelos matemáticos, para el cálculo de las condiciones de corte óptimos, como para el control superficial.


La herramienta, durante su trabajo, está sujeta a acciones mecánicas, térmicas y químicas que ejercen una acción de desgaste, que trae como consecuencia una pérdida gradual de material por la acción mutua entre viruta y herramienta y entre pieza y herramienta. Este desgaste viene señalado por sensibles incrementos en las fuerzas de corte, por la aparición de vibraciones entre pieza y herramienta, o por un empeoramien-


to brusco del acabado superficial.

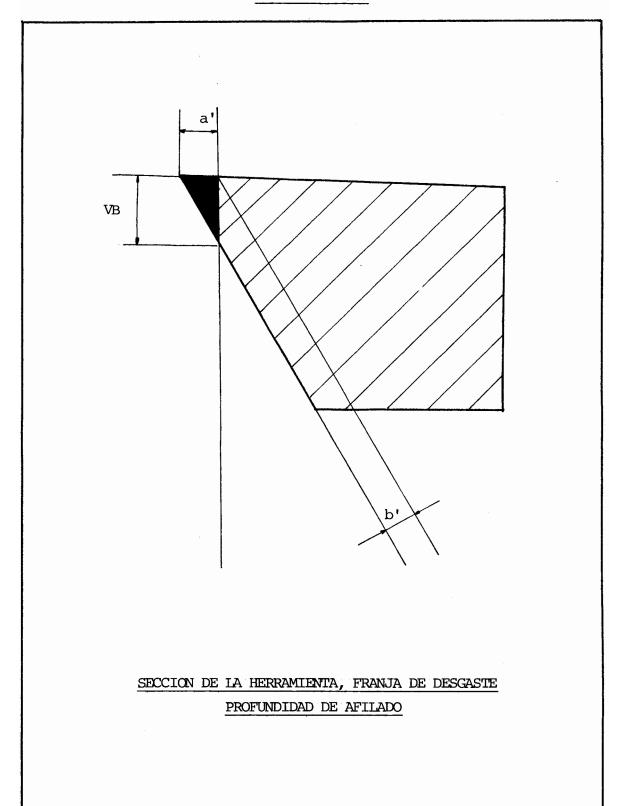
El desgaste de la punta de la herramienta tiene dos focos de ataque:

Desgaste Dorsal: es el labio de desgaste que se produce en la cara de incidencia como consecuencia del contacto herramienta-pieza. Esta cuencia de desgaste tiene tres zonas perfecta mente definidas en función del ancho del labio de desgaste VB y del tiempo de mecanizado Fig. 1.42 y Fig. 1.43. En la primera zona hay un desgaste lineal del labio de la herramienta hasta que se produce la rotura del filo de corte en donde el desgaste es casi lineal y no es afectado por la temperatura y por último la zona tres donde surte efecto el calor generado en el corte acelerando el desgaste de la punta de la herra mienta. Fig. 1.44. En la zona dos $x_1 - x_2$ se ha comprobado experimentalmente que el ancho de desgaste VB crítico depende solamente del mate rial a mecanizar más no de la velocidad de corte. [Takeyama, H. Murata]


Para un valor de VB de la franja de desgaste en

VARIACION DEL LABIO DE DESGASTE DE LA HERRAMIENTA PARA DISTINTOS MATERIALES:

Fundición 170 HB/ISO K10; Acero Ni-Cr 300 HB/ISO M 20; Acero Ni-Cr 640 HB/ISO P 10.


la cara de incidencia antes del próximo afilado se deberá sacar paralela a la cara de incidencia una capa de espesor. Fig. 1.45

$$e = VB \frac{Tan\alpha}{Cos\gamma} Cos(\alpha + \gamma)$$
(65)
(Para $\gamma \neq 0^{\circ}$)

Desgaste frontal: Es la craterización que se produce en la cara de desprendimiento. Fig. 1.46, producido por la acción que la viruta o el filo de aportación ejercen sobre la herramienta, y se manifiesta especialmente al mecanizar materiales duros.

El mecanismo de desgaste frontal es por adhesión mediante el cual dos superficies metálicas se sueldan por presión formándose una capa fundida la cual es arrastrada por la viruta fluyente.

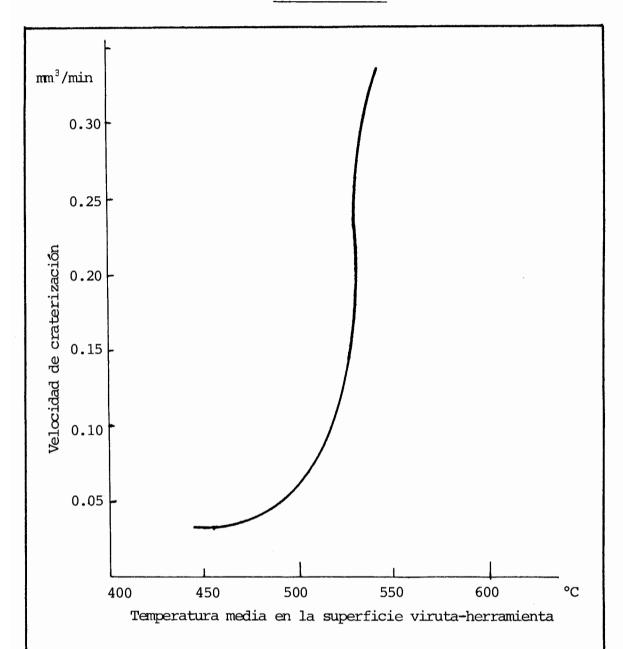
También se produce el fenómeno microscópico de difusión activado por un aumento local de temperatura entre la viruta y herramienta, entre los cuales se produce una transmisión de átomos desde la red cristalina de un metal hacia el otro cuya intensidad depende del tiempo de con -

150		CUALIDADES
āl Desgaste	P01 P05 P10 P15 P20 P25 P30 P35 P40 P50	Para desbaste de acero con corte interrumpido y bajas velocidades de corte.
Resistencia ál Desgaste Tenacidad	M05 M10 M15 M20 M30 M40	Calidad universal para aceros de fundición gris o maleables acero inoxidable a medianas velocidades.
	K01 K03 K05 K10 K15 K20 K30 K40	Para mecanizar aleaciones ligeras, aleaciones no ferro- sas, vidrio, materiales abra- sivos y plásticos.

NORMALIZACION ISO Y SUS PROPIEDADES PARA APLICACION

tacto, afinidad y nivel de agitación atómica entre ambos metales.

Un caso práctico tenemos al emigrar átomos de tungsteno desde la herramienta hacia la viruta quedando la primera empobrecida y debilitada por la difusión del hierro en el carburo y la decarburación parcial de la superficie de la herramienta. Fig. 1.47.


Un modo de medir el desgaste frontal es por la profundidad de crater KT.

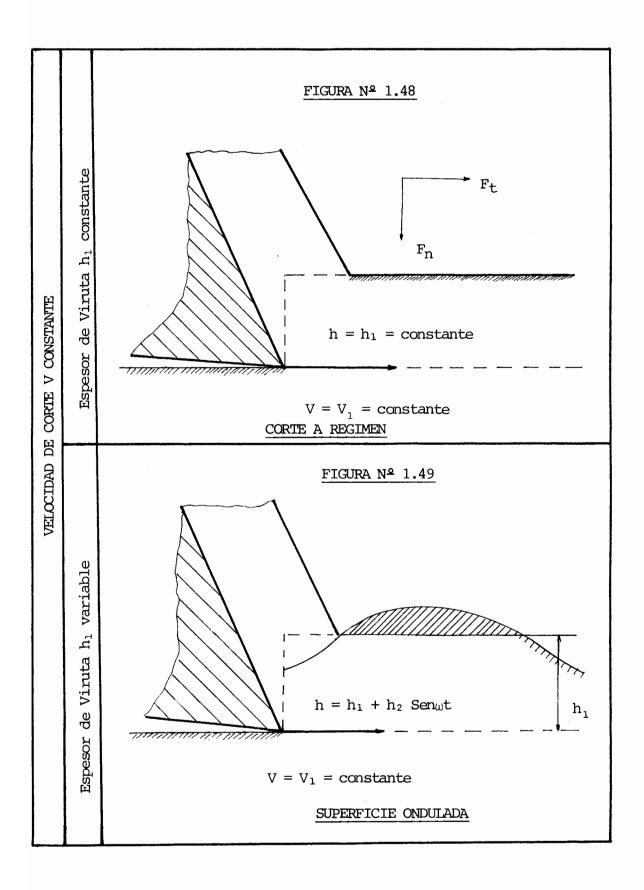
Dependiendo del tiempo de trabajo estos dos efectos de desgaste se combinan y dependiendo de las condiciones de acabado superficial Tabla XVIII se seleccionan los valores de VB y KT.

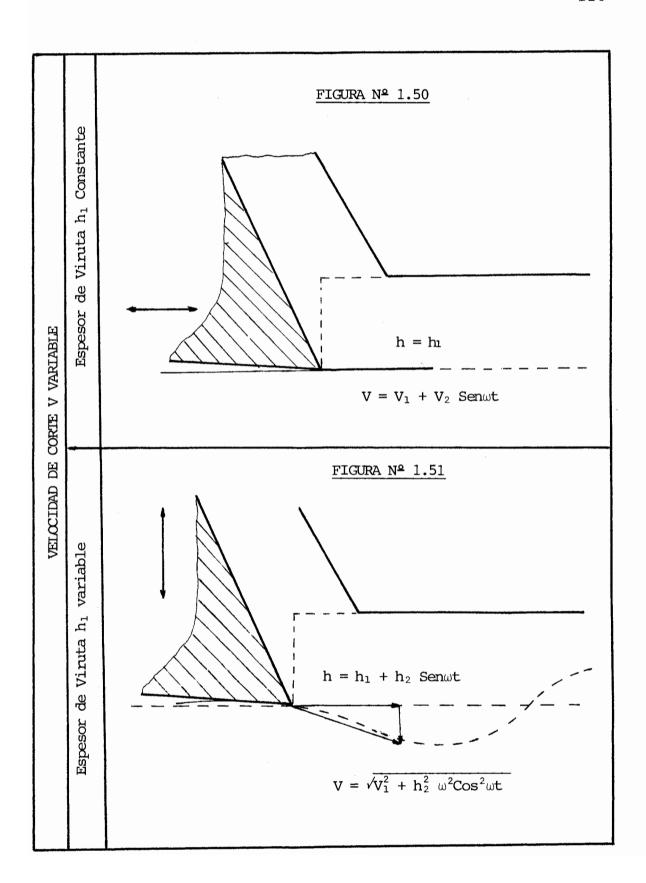
1.4.4 Acción Dinámica entre la Viruta y el Material de la Pieza en Mecanización.

El efecto que causa el material en mecanización sobre la formación de viruta en condiciones di - námicas producen sobre la integridad superficial de la pieza diferentes síntomas característicos

FIGURA Nº 1.47

INFLUENCIA DE LA VELOCIDAD DE CRATERIZACION


SOBRE LA TEMPERATURA MEDIA EN SUPERFICIE HERRAMIENTA-VIRUTA


- Material mecanizado AISI/SAE 4142; herramienta de acero rápido 12% Co

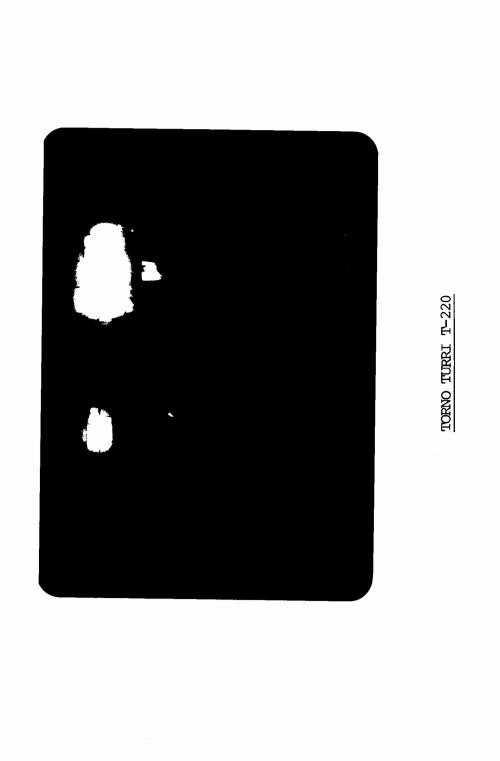
de cada condición de corte.

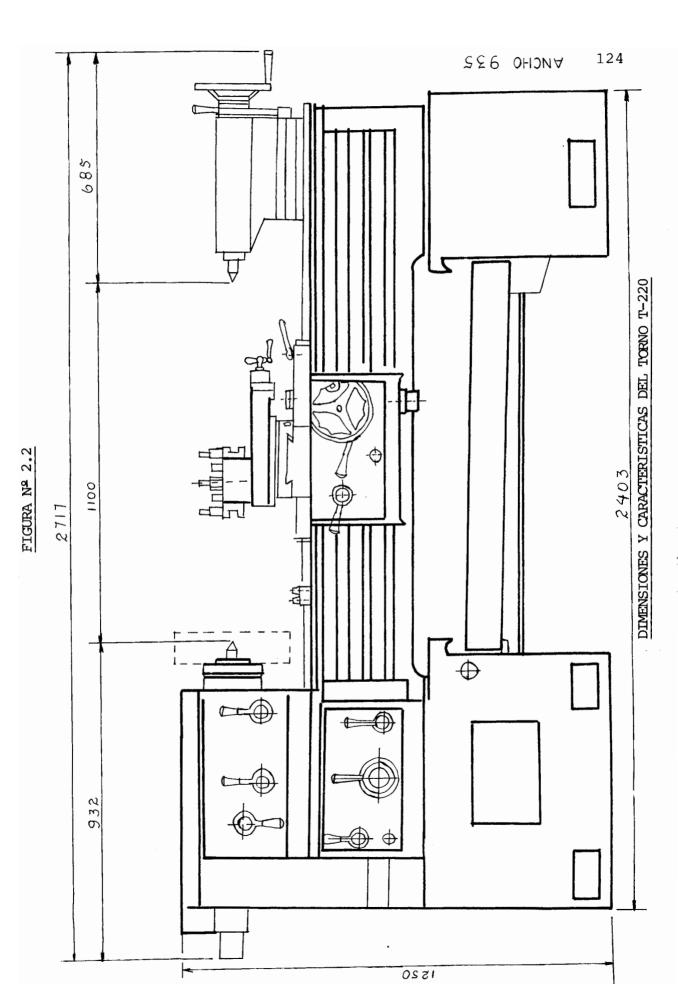
- A) Condiciones ideales del sistema; el espesor de corte h, la sección de viruta, la velocidad de corte y las fuerzas son constantes, y el material es homogéneo entonces no se producen vibraciones autoinducidas lo cual se obtiene un acabado superficial homogéneo. Fig. 1.48.
- B) Cuando la superficie de la pieza a mecanizar es ondulada, varía el espesor de viruta en forma senoidal, aun cuando la velocidad de corte se mantiene constante, las fuerzas varían y hay posibilidad de vibraciones regenerativas, siempre y cuando el sistema no tenga un amortiguamiento suficientemente elevado.

 Fig. 1.49.
- C) Si la herramienta vibra en dirección del movimiento de corte la sección de viruta no varía, mientras que el valor de la velocidad de corte cambia en cada instante. Fig. 1.50.
- D) La herramienta está vibrando en dirección normal al movimiento de corte, variando la fuerza

de corte y la sección de viruta obteniéndose una superficie mecanizada ondulada conocida como retemblado. Fig. 1.51.

CAPITULO II


2.1 SELECCION Y PREPARACION DE LA MAQUINA HERRAMIENTA


Para efectuar la operación de cilindrado, se ha selec - cionado un torno TURRI modelo T-220 utilizado en el Ta-ller Mecánico de la ESPOL. Fig. 2.1.

Las dimensiones y características de esta máquina se encuentran impresos en la Fig. 2.2; Características Técnicas Tabla XVIII; Selección de Pasos y Avances, Tabla XIX, y Diagrama de Velocidad Tabla XX.

2.1.1 Análisis Vibracional

El análisis vibracional del Torno consiste en medir la amplitud de vibración a la frecuencia crítica de 3 partes de la máquina, éstas son: Estructura, Carro Longitudinal y los Cojinetes del Husillo del Mandril.

El equipo para análisis vibraciones que más se ajusta a nuestro requerimiento es el monitor de vibración manual, Fig. 2.3, ya que el palpador de éste se coloca sobre la superficie vibrante y la cantidad de vibración es leída en el dial del instrumento.

Una vez efectuadas las mediciones se las compara con la tabla de severidad para máquinas herra - mientas de la cual se concluye que la máquina está dentro de los rangos admisibles de vibraciones.

	Valor Leido	Valor de la Tabla
Husillo del Mandril	0.011 mm.	min.0.005-0.025 max.
Carro Longitudinal	0.018	min.0.005-0.025 max.
Estructura	0.025	min.0.005-0.025 max.

2.1.2 Rigidez Estática

La rigidez estática que se obtenga en el Torno depende principalmente de las condiciones de anclaje y nivelación a la que está sometida la maquinaria, ya que un mal acentamiento de su base

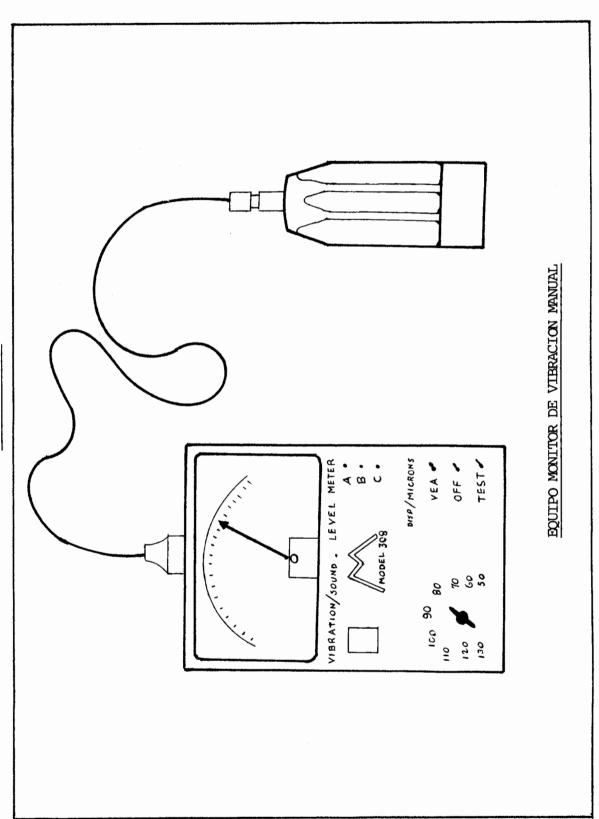
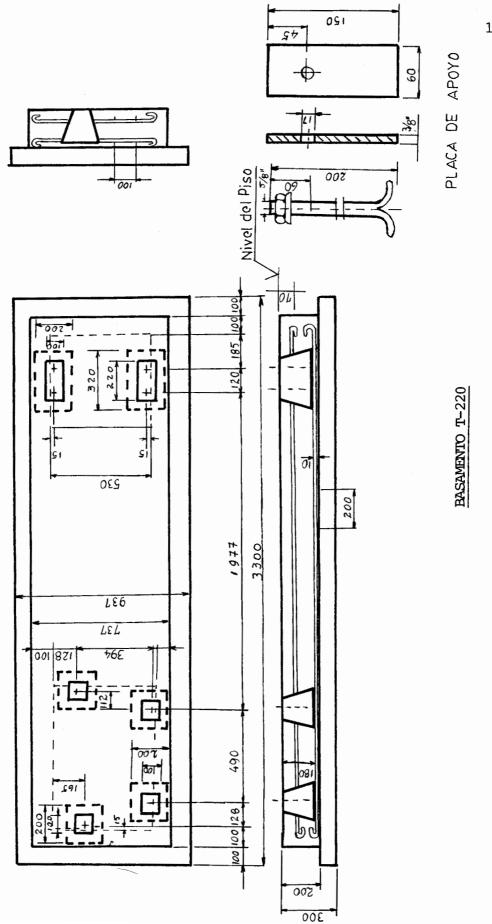


FIGURA Nº 2.3

provocaría distorsiones en la bancada y guías para desplazamiento del carro longitudinal. La Fig. 2.4 muestra las características del basamento utilizado para el torno T220.

2.1.3 Rigidez Dinámica


La rigidez dinámica consiste en medir la vibra - ción de las partes una vez que la máquina está trabajando y la cuchilla está efectuando los cortes sobre la pieza.

Los datos de amplitud de vibración son:

	<u>Valor</u>
Husillo del Mandril	0.016 mm.
Carro Longitudinal	0.012 mm.
Carro porta-herramienta	0.008 mm.
Estructura	0.022 mm.

2.1.4 Control de Tolerancias

El control de tolerancias consiste en comprobar y medir cada una de las partes del torno las cuales debido al uso podrían alterar el ajuste pri -

mitivo, por efecto de abuso o errores en la operación podrían resultar elementos necesarios que están desempeñando su función en forma no adecuada.

BANCADA

Guías de la contrapunta paralelas al desplazamiento del carro longitudinal Fig. 2.5

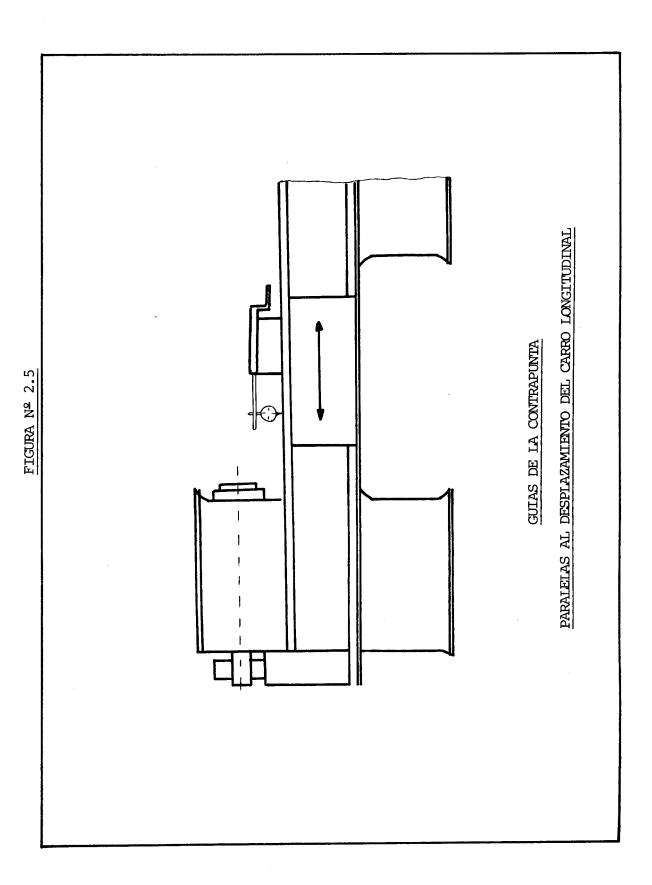
admitido 0.02 mm/m efectivo 0.005 mm/m

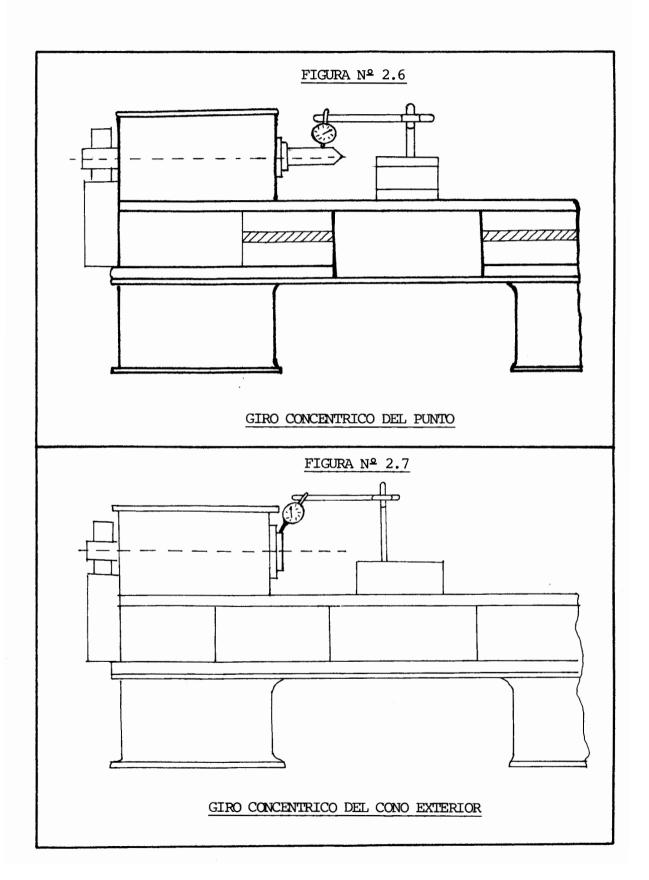
HUSILLO

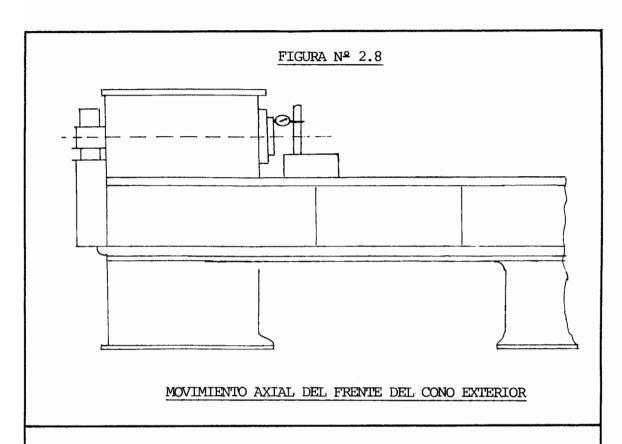
Giro concentrico del punto. Fig. 2.6 admitido 0.01 mm efect-vo 0.003 mm.

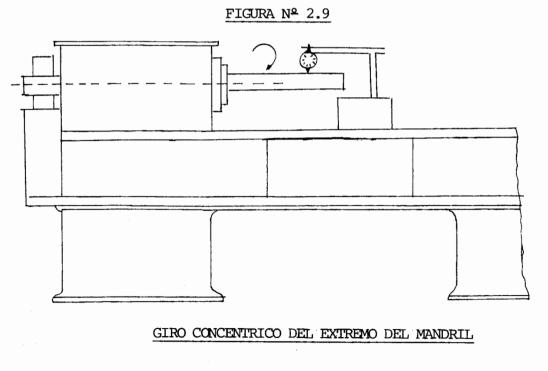
Giro concéntrico del cono exterior.Fig. 2.7

admitido 0.01


efectivo 0.005


Movimiento axial del frente del cono exterior.


Fig. 2.8


admitido 0.01 efectivo 0.005

Giro concéntrico del extremo del mandril.Fig.2.9

admitido 0.03/300 efectivo 0.022/300

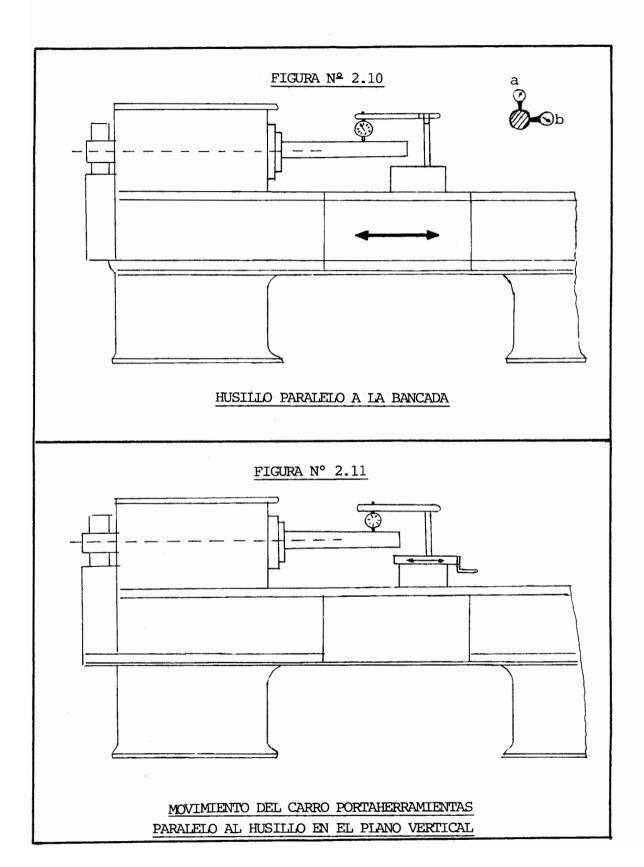
Husillo paralelo a la bancada

- a) En el plano vertical Fig. 2.10a
 admitido 0.02/300
 efectivo 0.015
- b) En el plano horizontal. Fig. 2.10b

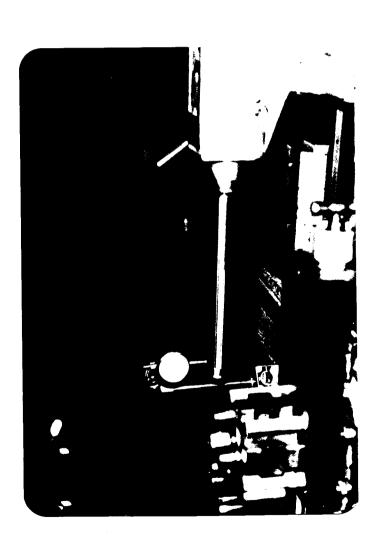
 admitido 0.02/300

 efectivo 0.008/300

CARRO PORTAHERRAMIENTAS


Movimiento paralelo al husillo en el plano vertical. Fig. 2.11.

admitido 0.03/150 efectivo 0.005/150


CONTRAPUNTA

Casquillo paralelo a la bancada. Fig. 2.12a

- a) En el plano vertical admitido 0.02/100 efectivo 0.01/100
- b) En el plano horizontal. Fig. 2.12b admitido 0.01/100 efectivo 0.01/100

a) CASQUILLO PARALELO A LA BANCADA EN EL PLANO VERTICAL

b) CASQUILLO PARALELO A LA BANCADA EN EL PLANO HORIZONTAL

Idem al anterior con mandril Fig. 2.13a

a) En el plano vertical admitido 0.03/300

b) En el plano horizontal Fig. 2.13b admitido 0.02/300 efectivo 0.02/300

efectivo 0.015/300

Mandril entre puntas, paralelo a la bancada en el plano vertical. Fig. 2.14

admitido 0.02

efectivo 0.02

Como implemento para medir las tolerancias se ha construido dos patrones cuyas características se dan en Figs. 2.15 y 2.16.

2.2 HERRAMIENTA DE CORTE

2.2.1 Diseño y Selección

Este estudio versa sobre análisis de herramientas de los tipos de acero rápido existentes en el mercado; se han seleccionado los llamados al Cobalto TB 12, cuyos elementos están en la siguiente pro-

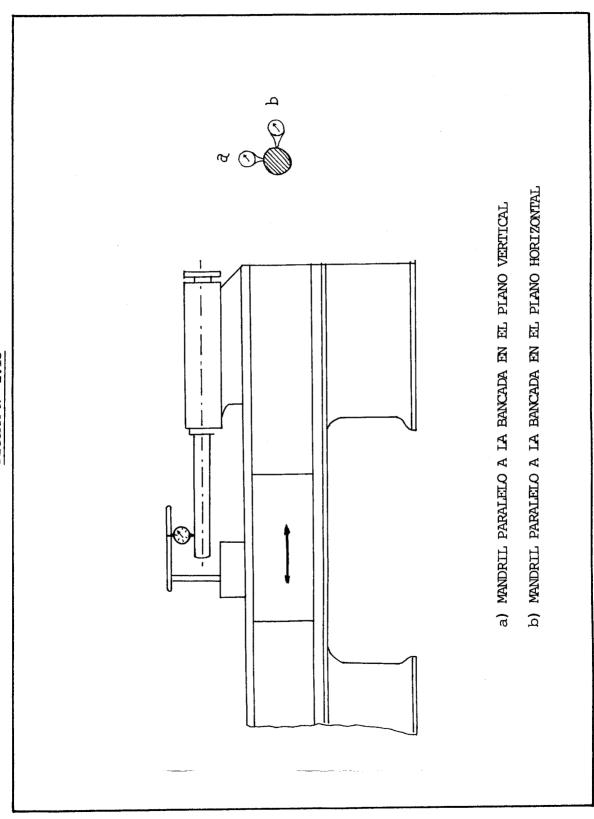
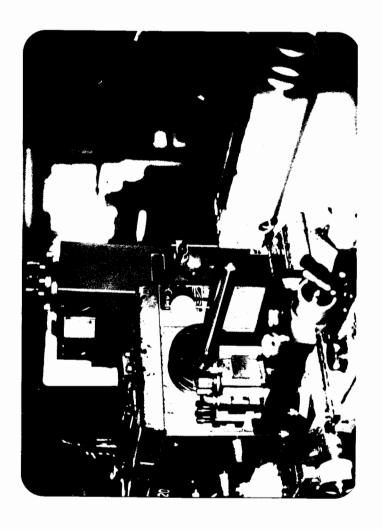



FIGURA Nº 2.13

MANDRIL ENTRE PUNTOS PARALEIO A LA BANCADA EN EL PLANO VERTICAL

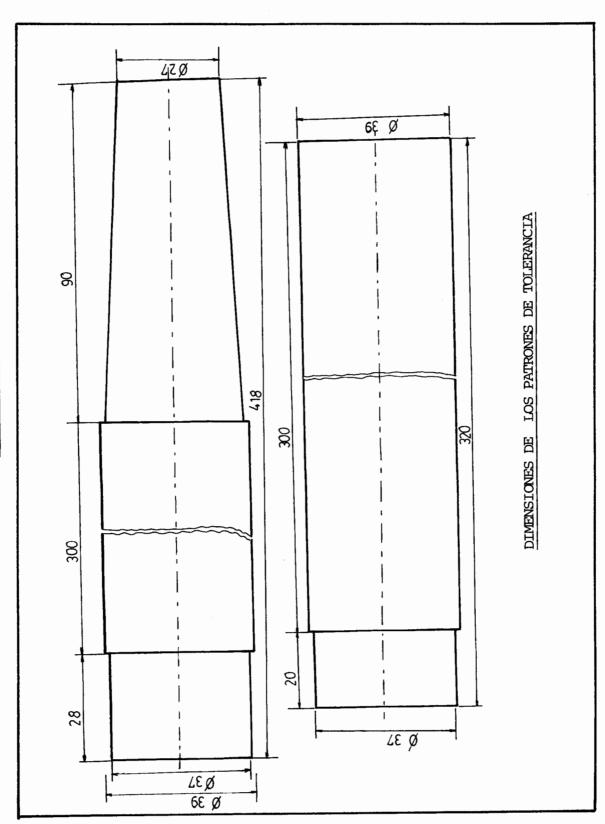


FIGURA Nº 2.15

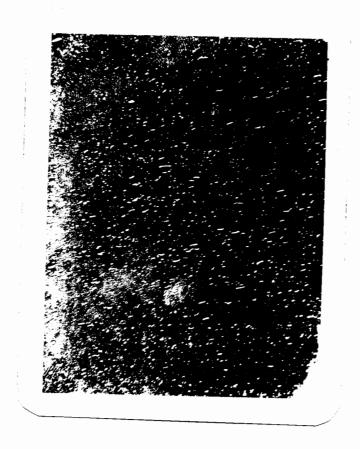
PATRONES PARA MEDIR TOLERANCIAS

porción química

C W Cr V Mo Co
0.80% 20.00% 4.10% 1.75% 0.80% 12.00%

Cada uno de estos elementos influye en el tratamiento térmico del acero.

CARBONO.- El contenido de carbono relativamente elevado ayuda a alcanzar dureza suficiente des - pués del temple, y también evitar que en el mi - croestructura aparezca ferrita libre que no ha llegado a transformarse en austenita en el calentamiento dado por el temple.


TUNGSTENO. - Es un aleante básico de los aceros rápidos. Forma después del temple un carburo complejo que da lugar a soluciones sólidas estables; en parte, permanece en solución en la martensita, confiriéndole gran dureza en caliente, El tungsteno baja la velocidad crítica de tem ple, de tal manera que el enfriamiento en corriente de aire es suficiente para templar el acero.

CROMO. - Favorece el temple de los carburos dobles de tungsteno y, por la presencia del tungsteno, permanece en solución en la martensita, que así resulta resistente al calor; reduce la oxidación en caliente y en conjunto aumenta la dureza del material.

VANADIO.- Manifiesta gran afinidad por el carbono, da carburos muy estables y afina el grano, mejorando la capacidad de corte y la resistencia a la abrasión.

MOLIBDENO. - Reduce la fragilidad y mejora todas las características del material.

COBALTO. - Este elemento no tiene gran tendencia a combinarse con el carbono presentándose generalmente disuelto en la ferrita mejorando la resistencia en caliente. Además, eleva la tempe - ratura de fusión del acero y permite aumentar la temperatura de temple y, con ello, al poderse emplear temperaturas elevadas, se favorece la disolución de los carburos en la austenita. La Fig. 2.17 da la forma microestructural del TB12.

MICROESTRUCTURA DEL ACERO RAPIDO AL COBALTO TB 12

Cada uno de estos elementos aporta para obtener una cuchilla de muy buena tenacidad y dureza en caliente, Tabla XXI, pudiendo alcanzar temperaturas hasta de 600°C en la punta de la cuchilla sin que cambie su condición cortante.

Las tablas XXII, XXIII, XXIV dan las propiedades y características que se han tomado en cuenta para seleccionar la cuchilla según las condiciones de corte y los requerimientos de material a trabajar.

Para el diseño de la herramienta de corte se ha tomado en cuenta principalmente los ángulos de la punta de la herramienta y el tipo de material a trabajar.

De la literatura expuesta en el Capítulo I seleccionamos los ángulos óptimos para corte. Estos son:

Angulo de filo principal χ = 45° Fig. 1.7 Angulo de filo secundario χ' = 10° Tabla I Angulo de Incidencia α = 8° Tablas XIV y XV Angulo de Desprendimiento γ = 15° Tabla XIII Radio de la punta de la Herramienta γ = 0.3 mm. (Tabla XVI)

2.2.2 Preparación

La preparación de la herramienta comienza desde la selección de la muela abrasiva para formar los ángulos característicos en la cuchilla que es conocido como afilado. Se utilizó una piedra cilíndrica para afilado de útiles con las siguientes características:

Diametro exterior $\phi = 100 \text{ mm}$

Anchura B = 8 mm

Agujero central $\phi = 30 \text{ mm}$

Material abrasivo corindon puro

Grano 46

Dureza media

Estructura compacta

Aglutinante cerámico

Denominación 38A54-15VBE

condiciones de rectificado:

Profundidad de pasada 0.05 mm

Velocidad axial de la muela 2 m/min

Velocidad periférica de la

muela 25 m/seg

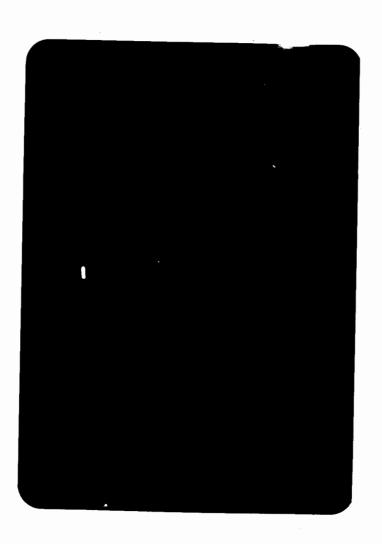
Temperatura admisible en el

útil 300°C

AFILADO DE LA HERRAMIENTA

Para el afilado de la inclinación de la piedra y mesa se lo hace con relación a los planos octogonales para lo cual haremos el cálculo en los distintos planos para obtener los ángulos caracte - rísticos. Figs. 2.18, 2.19, 2.20.

Para el ángulo de desprendimiento Ecuación (3)(4)


Tg
$$\gamma$$
 y = Tg15° Cos45° - Tg10° Sen 45° = 0.092
 γ y = 5°

Tg
$$\gamma$$
 z = Tg15° Sen45° + Tg10° Cos45° = 0.31
 γ z = 17°

o sea que con respecto al eje de las z y y hay que inclinar la muela abrasiva 17° y 5° respectivamente para obtener un ángulo γ = 15°.

Para
$$\alpha$$
: Cot α y = Cos χ Cot α - Sen χ 'Tg λ
Cot α z = Sen χ Cot α + Cos χ Tg λ

$$\chi = 45^{\circ}$$
; $\alpha = 8^{\circ}$; $\lambda = 10^{\circ}$

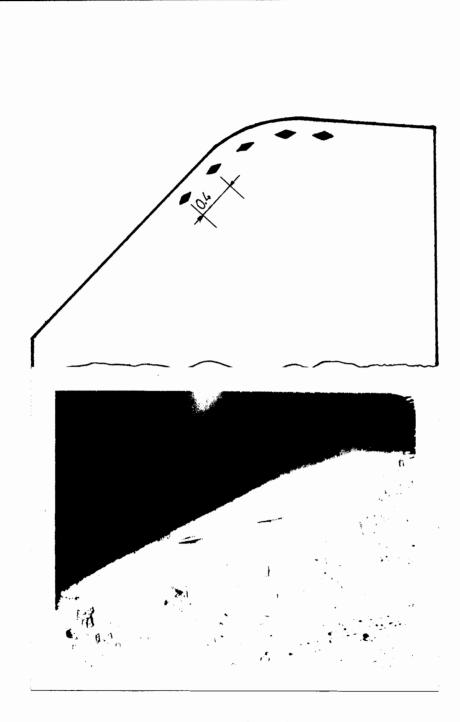
MAQUINA PARA RECTIFICAR CUCHILLAS

PROCESO DE AFILADO DE CUCHILLA DE ACERO RAPIDO TB 12

 $\alpha_{y} = 11^{\circ}$

 $\alpha z = 12^{\circ}$

Para una buen aproximación y para estar seguros de que no va a rozar el talón de la herramienta con la pieza α = α '


2.2.3 Microdureza

Debido al corte con la muela abrasiva la punta de la cuchilla tiende a alterar la dureza en mínimo grado pero dada la importancia de mantener la máxima dureza sobre todo en la punta se hace necesario medir cuánto es la desviación de ésta.

Para la ejecución de ésta se ha utilizado el método KNOOP cuyo identador es de diamante y se ha puesto una carga de 500 gr.

La forma como están distribuidas estas identaciones en la punta de la herramienta lo representa la Fig. 2.21 estando la primera identación \mathbf{x}_5 en el sector de corte principal y \mathbf{x}_1 en el plano secundario repartidas a lo largo de un arco de 2mm de longitud cada huella separada 0.4mm y situadas

FIGURA N° 2.21

DISTRIBUCION DE IDENTACIONES PARA DUROMETRIA

en la punta de la cuchilla.

Para hacer un análisis estadístico se ha tomado 38 cuchillas con 5 puntos en cada una. La recta representativa de los cambios de dureza (y) con respecto a la distancia (x) será del tipo

$$y = ax + b \tag{66}$$

de la cual los valores de a y b son recabados de la elaboración estadística de datos utilizando el procedimiento de regresión lineal

$$a = \frac{N\Sigma xy - (\Sigma x)(\Sigma y)}{N\Sigma x^2 - (\Sigma x)^2}$$
 (67)

$$b = \frac{\sum y - a \sum x}{N}$$
 (68)

donde N es el número de puntos del diagrama objeto de estudio.

Los valores de dureza con respecto a la distancia se dan a continuación:

	X 5	Хц	х 3	x ₂	x ₁
1	1006	1040	1086	1390	1202
2	1023	1028	1039	960	1217
	960	1006	1110	1142	1251
4	1039	1260	1390	1110	1148
5	1028	1006	1028	1068	1039
6	1051	1217	1390	1028	1162
7	965	985	1086	1086	1028
8	1068	1195	1051	1182	1135
9	965	995	985	1028	955
10	1142	1056	1023	1268	245
11	1028	1068	1195	1092	1268
12	1023	1162	1080	1123	1092
13	1123	1135	1045	1148	1245
14	1168	1245	1080	1148	1251
15	1034	1142	1104	1135	1323
16	1217	1275	1260	1291	1238
17	1092	1135	1129	1129	1231
18	1092	1195	1090	1045	1195
19	1006	975	1028	1028	1175
20	1116	1155	1110	1092	1182
21	1045	1092	1092	1116	1056
22	1000	1028	1056	1068	1039
23	1054	1135	1238	1253	1092
24	1086	1001	1090	1056	1090
25	1092	1090	1148	1142	1123
26	975	985	1028	1001	1051
27	1074	1142	1090	1202	1169
28	1039	1090	1231	1148	1142
29	1017	1012	1074	1068	1028
30	1034	1039	1039	1221	1169
31	1028	1023	1056	1034	1238
32	1051	1080	1110	1092	1231
33	1090	1028	1068	1039	1086
34	1110	1074	1110	1169	1068
35	1051	1017	1080	1028	1056 1110
36	1104	1092	1086	1092 1169	1110
37	1116	1092	1090	1142	1110
38	1051	1162	1124		1410
	1056.84	1090.97	1108.40	1119.23	1147.05

Además, se ha calculado el coeficiente de corrección lineal (R) cuya expresión es:

$$R = \frac{N\Sigma xy - (\Sigma x) (\Sigma y)}{\sqrt{(N\Sigma x^2 - (\Sigma x)^2) (N\Sigma y^2 - (\Sigma y)^2)}}$$
(69)

el cual indica hasta qué limite hay dependencia lineal de y con respecto a x.

Todos estos datos han sido elaborados en el minicomputador del Departamento de Ingeniería Mecánica de la ESPOL lo mismo que el trazado de las
curvas.

El programa empleado es el siguiente (Apéndice A).

2.3 MATERIAL A MECANIZARSE

El material sobre el cual se va a practicar los cortes es conocido en el mercado como acero al carbono ASSAB 760, cuya especificación estándar es AISI/SAE 1148, que es un acero que se caracteriza por tener:

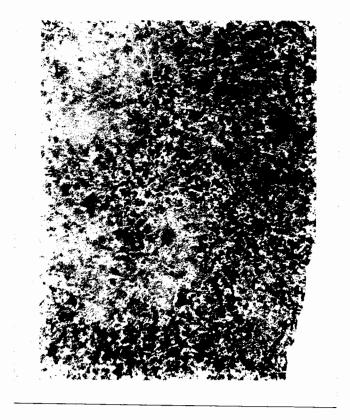
Excelente maquinabilidad

Buena resistencia a la abrasión

Buena resistencia mecánica

2.3.1 Composición Química

El acero AISI/SAE 1148 contiene los siguientes elementos:


C Si Mn S
0.50% 0.30% 0.60% 0.040%

cada uno de éstos en las proporciones señaladas le dan las siguientes propiedades:

El contenido de carbono sirva para aumentar la dureza. El silicio y el magnesio dado su porcentaje menor que 1% tienen una acción desoxidante. El azufre es la causa de la excelente maquinabilidad.

2.3.2 Microestructura

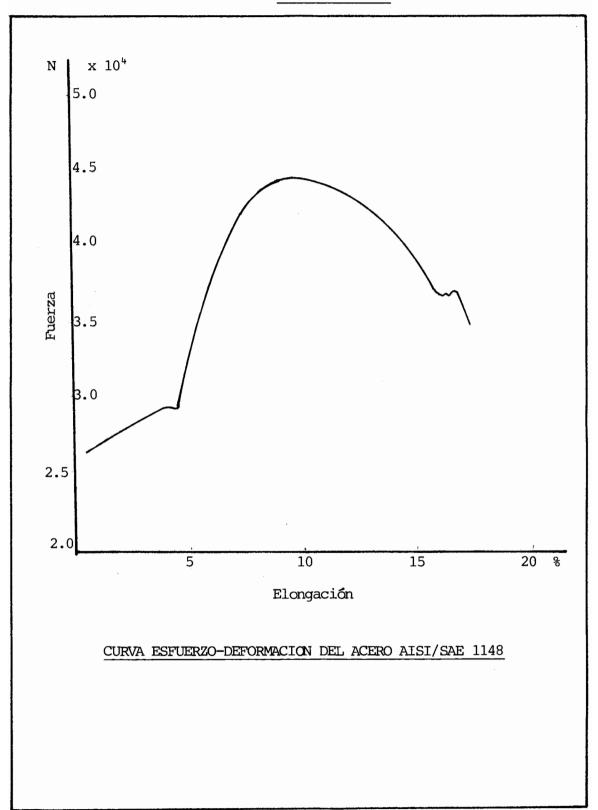
La microfotografía Fig. 2.22 muestra las características microscópicas del ASSAB760 de las cuales podemos decir que son típicas de un acero hipoeutectoide cuyas zonas negras representan la perlita en un 25% aproximadamente y el otro 75% lo constituye la ferrita libre.

MICROESTRUCTURA DEL ACERO AISI/SAE 1148

2.3.3 Dureza

La dureza está incluida entre su propiedades mecánicas, las cuales son:

Dureza	200 HB
Esfuerzo a la tensión	640 N/mm
Punto de fluencia	340 N/mm
Reducción de área	40%
Elongación	20%


Las figuras 2.23 y 2.24 muestran la curva esfuerzo vs deformación y rotura de la probeta respec tivamente, efectuada en la máquina INSTRON.

Este acero es utilizado en estado de suministro sin recocer y se lo emplea en la industra espe - cialmente para: porta-punzones, bastidores y guías para herramientas, placas de respaldo, componentes estructurales simples y para reparación.

2.4 PROCESO DE MECANIZADO

El proceso de mecanizado consiste en cilindrar en mun torno, varias barras cilíndricas sujetas entre puntas

FIGURA Nº 2.23

FIGURA Ѻ 224

ROTURA POR TRACCION DE LA PROBETA DE ACERO AISI/SAE 1148
EN LA INSTRON

y se maquina utilizando las cuchillas de acero rápido objeto de nuestro análisis bajo dos condiciones: a) usando fluido lubrorefrigerante (aceite soluble al 5% diluido en agua) y b) sin fluido lubrorefrigerante.

2.4.1 Análisis del desgaste de la herramienta de corte

Se puede observar como varía el comportamiento de la punta de la cuchilla del mismo modo que la superficie generada en el transcurso del maquinado. La prueba consiste en trabajar el utensilio cortante durante un tiempo determinado en forma intermitente y controlar periódicamente la punta de la cuchilla al microscopio y contabilizar el número de entalle.

Los parámetros seleccionados son:

Avance 0.084 mm/vuelta

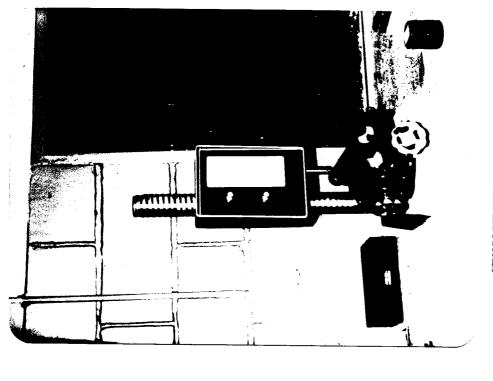
Profundidad de corte 0.4 mm

Número de revoluciones 630 RPM

Dimensiones de la barra 300 x ϕ 34

Velocidad de corte 70 metros/minuto

La selección de la velocidad de corte se ha hecho


de acuerdo a la Fig. 2.25 donde se la relaciona con el grado de rugosidad superficial.

Para cada cuchilla hay una longitud total de corte de 150 metros alrededor de la periferia cilíndrica de la pieza mecanizada. Cada 15 metros que equivalen a 13 segundos de trabajo se interrumpe instantaneámente el corte mediante un sistema de freno neumático en el torno, en ese momento se saca la cuchilla y se la lleva al microscopio y así sucesivamente hasta obtener una secuencia del crecimiento de éstos hasta el final del proceso. Fig. 2.26.

2.4.2 Análisis de la Rugosidad del Material

Mientras la cuchilla se observa al microscopio se lleva la pieza mecanizada hacia el rugosímetro palpador sigma Fig. 2.27 y Fig. 2.28 donde se mide la altura de las crestas y la profundidad de los valles que genera la punta de la cuchilla sobre la pieza. El dial del rugosímetro da medidas en micras (10⁻³mm) y estos surcos formados por el corte se los ha comparado al microscopio con plaquetas estándares de rugosidad RO-

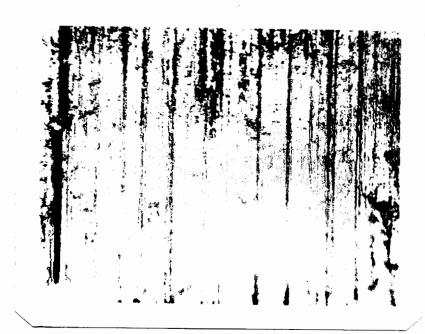
FIGURA Nº 2.26

RUGOSIMETRO PALPADOR SIGMA

FIGURA Nº 2.28

PALPADOR DE RUGOSIMETRO

BERT Nº 130. Fig. 2.29.


A continuación se detallan los valores medios de rugosidad, número de entalles y longitud obtenidos para cada una de las pruebas de corte:

SIN LUBROREFRIGERANTE

	№ de Entalles	Rugosidad (mm x 10^{-3})	Longitud (mts.)
1	0	1.5	15
2	0.10	2.55	30
3	0.50	4.06	45
4	0.75	4.50	60
5	1.50	5 . 63	75
6	1.75	6.39	90
7	2.50	7.82	105
8	2.50	8.40	120
9	3.00	8.60	135
10	3.50	8.95	150

CON LUBROREFRIGERANTE

	Nº de Entalles	Rugosidad (mm x 10 ⁻³)	Longitud (mts.)
1	0	1.25	15
2	0	1.30	30
3	0	1.90	45
4	0.03	2.05	60
5	0.08	2.38	75
6	0.42	3.60	90
7	0.83	4.40	105
8	1.45	5.60	120
9	2.32	7 . 60	135
10	2.43	8.20	150

Huellas de la Pieza Trabajada

Huellas en el Estandard de Rugosidad, Robert Nº 130

COMPARACION DE RUGOSIDADES

2.4.3 Optimización de Parámetros de Corte

En el transcurso de este trabajo y en el desarrollo de cada etapa experimental se ha ido seleccionando cada uno de los parámetros hasta optimizarlos. Entonces específicamente para este tipo de
análisis los más aconsejados son:

En condiciones de corte

Velocidad de corte

70 m/min

Avance

0.084 mm/vuelta

Profundidad de Corte

0.4 mm

Angulos característicos:

 $\gamma = 15^{\circ}$

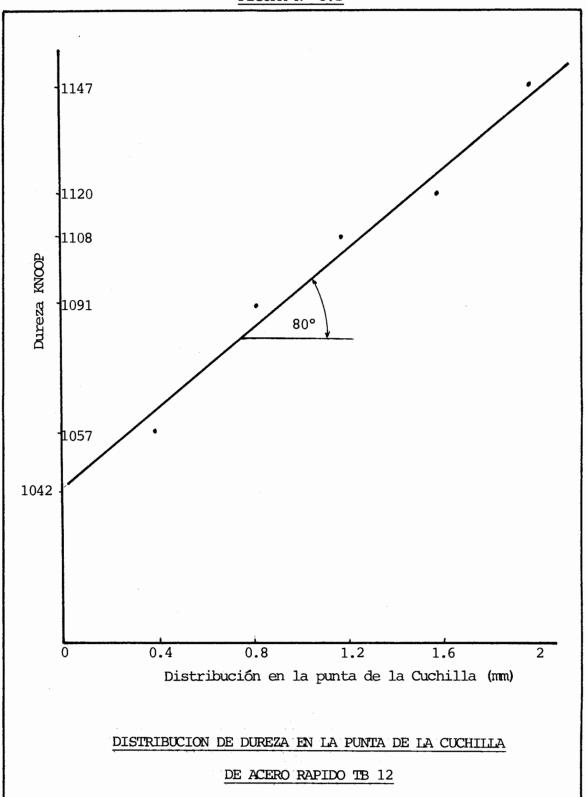
 $\chi = 45$

 $\chi' = 10^{\circ}$

 $\alpha = 8^{\circ}$

 α = 8°

CAPITULO III


ANALISIS DE RESULTADOS

El resultado de este análisis experimental ha sido condensado en diagramas experimentales elaborados estadísticamente sobre la duración al corte por parte de cuchillas de acero rápido T B 12 sobre acero AISI/SAE 1148 de fácil maquinado.

Comenzando por la preparación de la herramienta mediante el afilado y su control de calidad mediante tomas de microdureza sobre el radio de la punta de la cuchilla Fig. 3.1, siendo la primera identación en el sector de la arista secundaria se nota que conforme ésta avanza al filo princi pal de corte, la dureza aumenta con una taza de 5 unidades KNOOP por cada décima de mm. Siendo ésto un indicio de un correcto afilado que depende directamente de la selección de la muela abrasiva y la velocidad de corte.

Las 38 cuchillas se dividen en 2 grupos, uno de los cuales se trabajará con lubrorefrigerante y el otro sin él, y se medirá para cada uno el número de entalles, la rugosidad y

FIGURA Nº 3.1

la distancia maquinada.

Al analizar la curva número de entalles vs rugosidad Fig. 3.2 y 3.3 se nota que la pendiente es la misma tanto para lubrorefrigerante como sin él, y la segunda pendiente aunque son iguales, se obtiene menor rugosidad con lubrorefrigerante aunque el número de entalles sea el mismo.

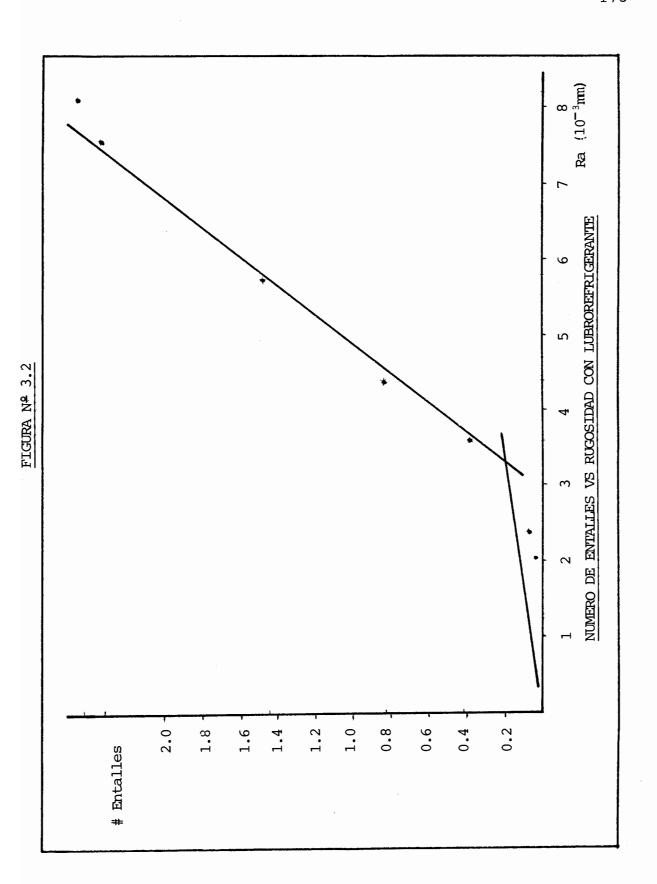
Si enfrentamos la rugosidad vs la distancia maquinada Fig. 3.4 y 3.5 se nota que si no se usa lubrorefrigerante esta pendiente aumenta aceleradamente desde el primer momento. En cambio, si se usa lubrorefrigerante el cambio de rugo - sidad es apenas 1.5 micras en una distancia de 80 metros y a partir de este punto la pendiente aumenta.

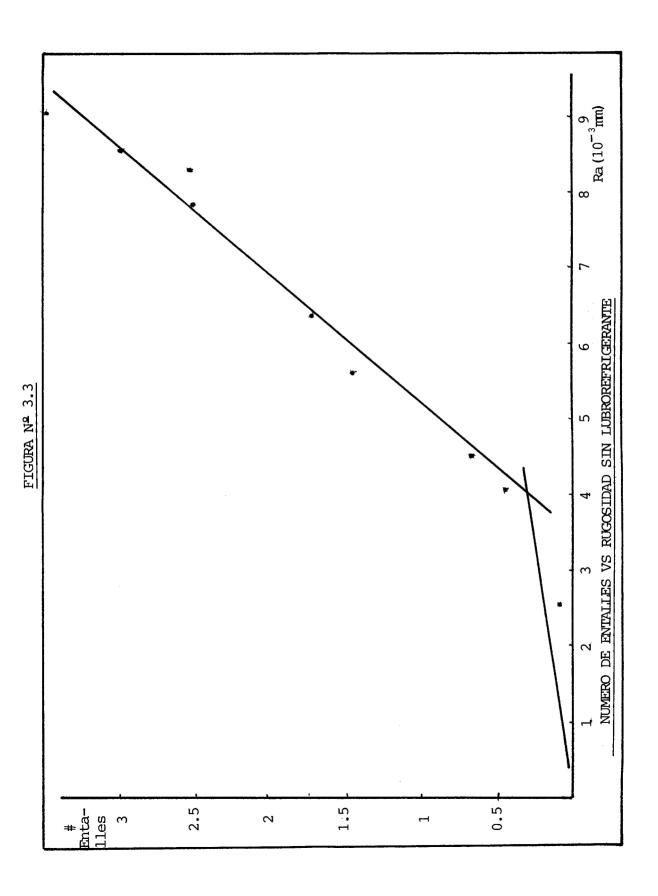
Si contabilizamos el número de entalles con respecto a la distancia Fig. 3.6 y 3.7 se nota que el número de entalles crece rápidamente si no se aplica lubrorefrigerante, obteniéndose mayor distancia trabajada y menor propagación de entalles si se aplica éste.

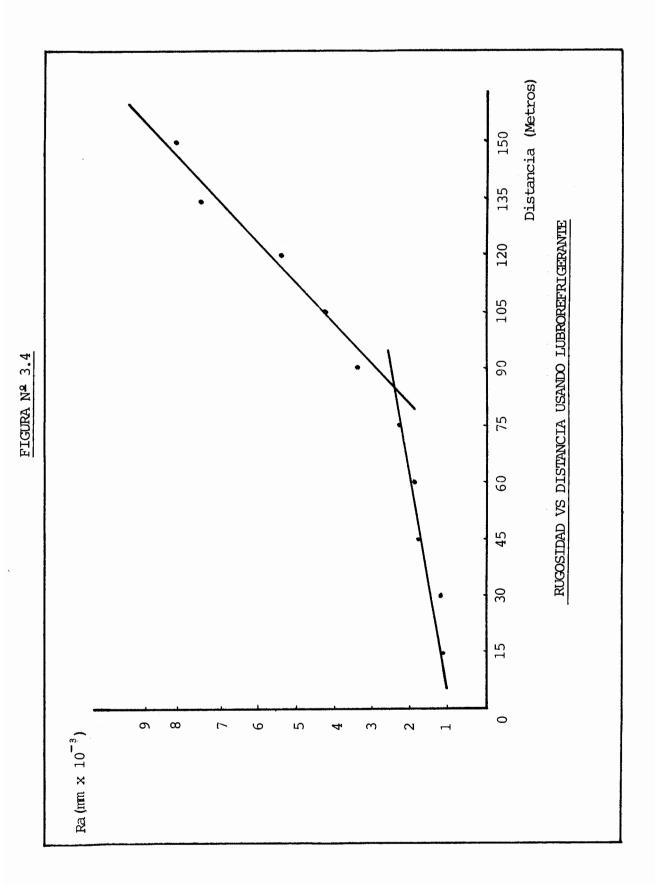
De estas curvas se ha logrado encontrar la distancia periférica de corte alrededor de 80 metros manteniendo buena rugosidad. Entonces se puede llegar a una ecuación en la que sabiendo el diámetro del eje a mecanizar y el avance, encontrar la distancia paralela al eje hasta la cual se debe mecanizar la pieza con la seguridad de obtener buen acabado superficial.

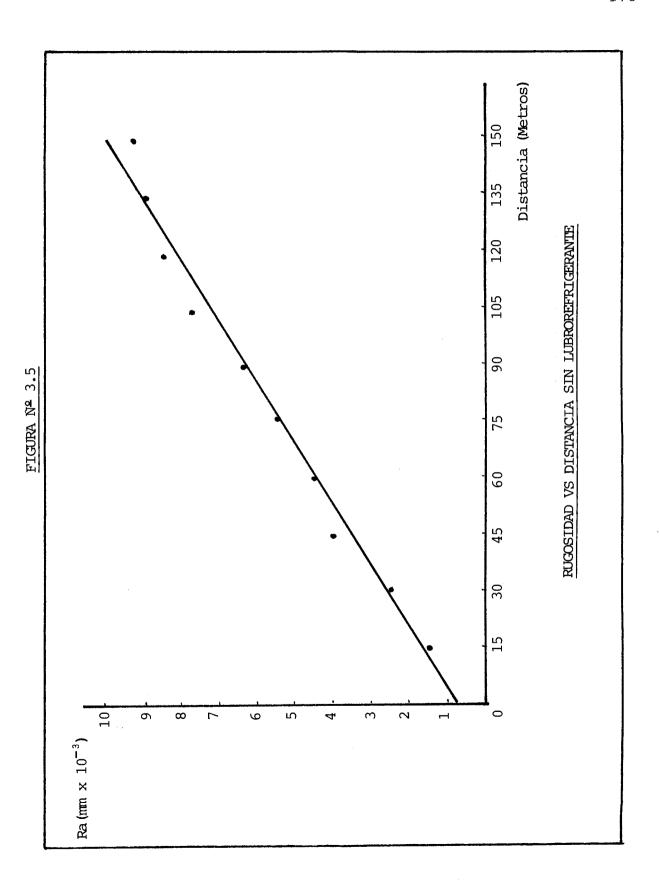
Dis = Distancia periférica recorrida por la cuchilla (m)

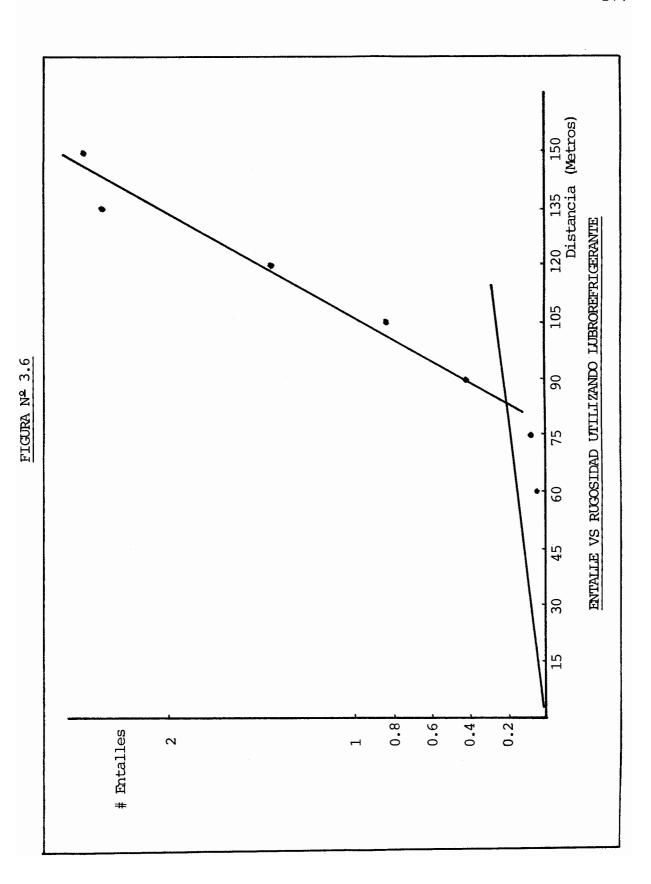
- ϕ = diametro del eje a mecanizar (mm)
- L = longitud paralela al eje hasta donde se debe mecanizar (mm).
- a = avance (mm/rev)

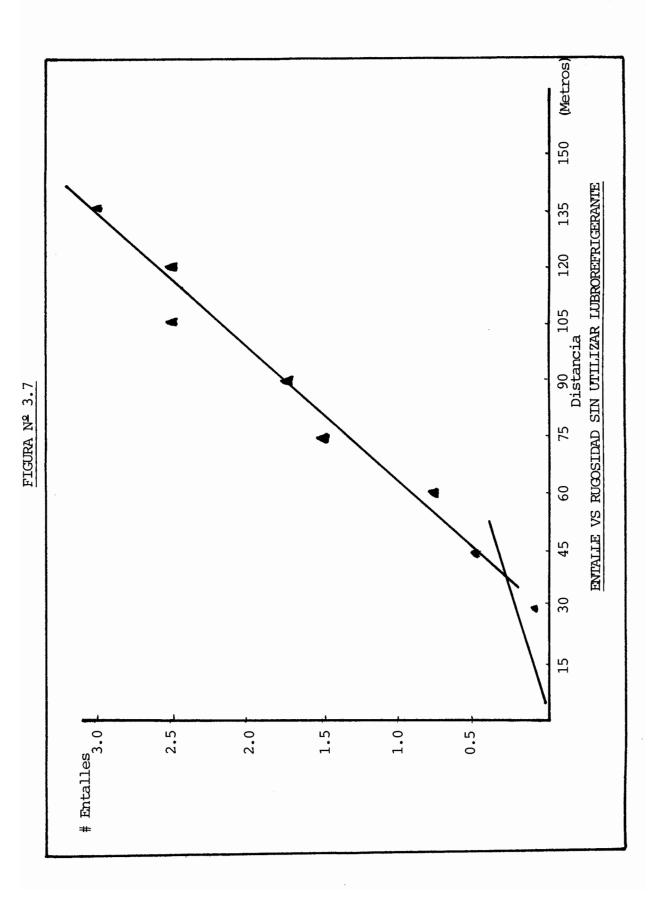

Dis \leq 80.000 mm.


Dis
$$\leq \frac{\pi \times \phi \times L}{a}$$


de donde:


$$L \leq 25464 \left(\frac{a}{\phi}\right) \quad [mm] \quad (70)$$


La cual nos permite saber hasta qué posición del eje se obtiene un buen acabado superficial, para valores mayores que la ecuación (70) el acabado superficial va desmejorando.



CONCLUSIONES Y RECOMENDACIONES

Las pruebas de corte sobre acero AISI/SAE 1148 con cuchi - llas de acero rápido 12% de Co TB-12 son de dos tipos:

Pruebas con baño de lubrorefrigerante, aceite soluble 5% en agua y corte sin baño de refrigerante.

La prueba con baño de lubrorefrigerante se lo hace con un buen caudal de éste, sobre la cuchilla y la pieza conjuntamente para transferir el calor generado por el corte y la fricción.

Para las pruebas sin baño de ninguna especie se trata de probar la resistencia que tiene la cuchilla a la alta temperatura ya que por su composición de 12% Co le da esa propiedad.

La velocidad de corte empleada ha sido seleccionada en basea: capacidad de la máquina, velocidades recomendadas por tablas y curvas de acuerdo al diámetro y número de revoluciones, siendo ésta constante para toda la prueba a 70m/min y con 630 rpm con \$44 mm.

Como conclusión general en cuanto a curvas obtenidas pode mos mencionar que entre los dos tipos de pruebas es reco mendable trabajar con baño de lubrorefrigerante ya que así
se logra aumentar el tiempo de duración de la cuchilla, obteniendo un mejor acabado superficial. En ningún momento
se debe trabajar sin lubrorefrigerante para este tipo de
cuchillas ya que su destrucción acelerada comienza desde
el primer momento de trabajo.

Aunque los ángulos característicos en la punta de la cuchilla y los demás parámetros de corte se han seleccionado
cuidadosamente no se ha logrado obtener mayor duración de
la cuchilla de acero rápido TB-12, siendo esta vida de corte tan pequeña que se hace imposible aplicar este tipo de
cuchillas a un trabajo de cilindrado en serie, ni siquiera de piezas pequeñas ya que en el mercado existe otro tipo de herramientas de corte como las pastillas de carburo
que tienen mayor duración que la anterior.

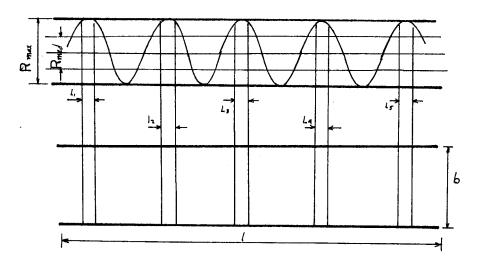
Entonces estas cuchillas quedan recomendadas para trabajos unitarios de desbaste y para cilindrado de piezas pequeñas que no excedan de los 70 metros de corte periférico con un acabado superficial regular.

De su aplicación para trabajos unitarios, dirigidos a re-

construcción de piezas y mantenimiento genera su ventaja ya que en esas circunstancias está la mano hábil, el ingenio y sobre todo la paciencia del operario para maquinar formas no comunes dando a la cuchilla esa forma requerida, siendo la única que se presta para estos trabajos ya que los otros tipos de cuchilla son endurecidas superficial mente y vienen como pastilla de forma determinada e invariable.

A continuación se resume las contribuciones específicas generadas del presente trabajo:

- Como se ha efectuado el afilado de la punta de la herramienta es muy importante para el acabado superficial de la pieza mecanizada. El acero rápido debe afilarse con piedra de dureza media, con material abrasivo cordindon puro con una velocidad de corte de 25 m/seg con profundi dad de pasada menor de 0.05 mm., sin que la cuchilla exceda los 300°C.
- La máquina herramienta debe estar rígidamente anclada según las recomendaciones del fabricante, además como parte del mantenimiento se debe controlar periódicamente su nivel vibratorio y medir tolerancias en el carro portaherramientas, bancada, contrapunta y husillo.


- Introducir el control de calidad superficial de las piezas mecanizadas mediante análisis microgeométrico, lo cual nos da la ventaja de conocer las características y cualidades de cualquier superficie, ya que ésto es importante, sobre todo cuando la pieza está cumpliendo la función para la cual fue hecha, siendo los surcos superficiales una de las principales causas de las que se generan las fallas por fatiga en ejes y demás elementos mecánicos sometidos a cargas.

A P E N D I C E S

APENDICE A

MEDIDA DE LA RUGOSIDAD

Considerando el caracter irregular de los perfiles de la superficie, para valorar cuantitativamente la rugosidad sería necesario efectuar un gran número de mediciones. Como ayuda se han introducido parámetros, ligados estadística - mente a la amplitud de las desviaciones y a la forma del perfil, cuya amplitud se toma como medida de rugosidad.

Los parámetros tomados en consideración para la medida de la rugosidad son los siguientes:

R: media aritmética de las distancias entre las crestas

predominantes y los puntos más profundos de los surcos (unidad de medida la micra µm)

Re: Media Aritmética de las distancias de las crestas a la línea media.

Ri: Media Aritmética de las distancias de los valles a la línea media.

Ra: Media Aritmética de los valores absolutos de las desviaciones del perfil real con respecto a la línea media.

$$Ra = \frac{1}{L} \int_{O}^{L} |Y| dx$$
 [µm]

$$R = 3....5 Ra^{0.97}$$
 (para superficies torneadas)

Raq: Media Cuadrática de las desviaciones del perfil con respecto a la linea media

$$Raq = \sqrt{\frac{1}{L} \int_{0}^{L} y^{2} dx} \qquad [\mu m]$$

A continuación se detallan valores de rugosidad para cuchillas unitarias representativas:

Cuchilla # 22 (con lubrorefrigerante)

Interrupciones	Rugosidad	Ra	Raq
1	2, 1, 1.5, 2, 1	1.5	1.10
2	2, 3, 2, 4, 1	2.4	1.84
- 3	1, 3, 8, 2, 2	3.2	2.86
4	5, 3, 4, 8, 9	5.8	4.42
5	4, 2, 5, 1, 8	4.0	3.32
6	2, 4, 6, 10, 5	5.4	4.25
7	8, 9, 4, 6, 12	7.8	5.84
8	6, 8, 10, 5, 9	7.6	5.54
9	6, 6, 4, 1, 12	7.8	3.16
10	2, 8, 9, 3, 7	5.8	4.55

261 GOTO 310 262 R=0

265 FOR I=1 TO N 270 Y1=A*X(I)+B

PROGRAMA

```
-5 DIM X(100),Y(100),Y1(150),XG(100),YG(100),S$(1)
6 GRAPHICS 0
-7 PRINT "INCREMENTO X CONSTANTE S/N";:INPUT S#:GRAPHICS O
8 IF S$="N" THEN 10
9 PRINT "INCREMENTO X=";:INPUT DEX:DE1=DEX
10 PRINT "NUMERO DE PUNTOS"::INPUT N
15 L#1
-20 FOR I=1 TO N
22 IF S$="N" THEN 30
24 X(I)=DEX:XG(I)=X(I):GOTO 40
30 PRINT "X";I;;INPUT X;X(I)=X;XG(I)=X
35 POSITION 15,L
40 PRINT "Y":I::INPUT Y:Y(I)=Y:YG(I)=Y
45 IF L=20 THEN GRAPHICS 0:L=0
46 L=L+1
47 DEX=DEX+DE1
50 NEXT I
55 GRAPHICS 0
60 PRINT "SELECCIONE"
70 PRINT "1_ Y=aX+b"
-80 FRINT "2_ Y=aX^b"
90 FRINT "3_ Y=ae^bx"
91 PRINT "4_ Y=X/(a+bX)"
100 PRINT "CUAL": INPUT S
110 ON S COSUB 200,400,600,800
115 ON S GOTO 120.130.140.150
-120 GRAPHICS OFFRINT "s="fAFRINT "b="fBFRINT "R="fRFRINT "t="fT
125 GOTO 1000
130 M=A:A=EXP(B):B=M:GOTO 120
140 M=A:A=EXP(B):B=M:GOTO 120
150 COTO 120
200 SX=0:SY=0:SX2=0:SXY=0:SY2=0
210 FOR I=1 TO N
-220 SX=SX+X(I):SY=SY+Y(I):SX2=SX2+X(I)^2:SXY=SXY+X(I)*Y(I):SY2=SY2+Y(I
230 NEXT I
240 D=N*SX2-SX*SX
250 A=(NxSXY-SXxSY)/D
260 B=(SY*SX2-SXY*SX)/D
```

```
260 B=(SY*SX2-SXY*SX)/D
 262 R=0-
 265 FOR I=1 TO N
 270 Y1=A*X(I)+B
 280 R=R+((Y(I)-Y1)^2)
 290 NEXT I
 300 R=SQR(R/(N-1))
 310 RETURN
 400 FOR I=1 TO N
 410 X(I)=LOG(X(I)):Y(I)=LOG(Y(I))
 420 NEXT I
 430 COSUE 200
 440 RETURN
 600 FOR I=1 TO N
 610 Y(I)=LOG(Y(I))
 620 NEXT I
 430 GOSUB 200
 650 RETURN
 800 FOR I=1 TO N
 810 X(I)=1/X(I):Y(I)=1/Y(I)
 820 NEXT I
 830 GOSUB 200
 040 RETURN
 1000 X0=0:DX=XG(N)+0.1*XG(N):DX=DX/150
 1 70 ON S GOTO 1100,1200,1300,1400
  *<del>T</del>₩<del>Y1(I)=A*X0+B</del>
 1115 X0=X0+DX
 1120 NEXT 1:GOTO 1435
 1200 FOR I=1 TO 150
 1210 Y1(I)=A*X0^B
 1220 X0=X0+DX
 1230 NEXT I:GOTO 1435
 1300 FOR I=1 TO 150
 1310 Y1(I)=A*EXP(B*X0)
 1330 NEXT I:GOTO 1435
 1400 FOR I=1 TO 150
1410 Y1(I)=X0/(A+D*X0)
 1420 X0=X0+DX
 1430 NEXT I
 1435 YMA-0:YMI-0
 1440 FOR I=1 TO N
 1445 IF YG(I)>YMA THEN YMA=YG(I)
 1450 IF YG(I)<YMI THEN YMI=YG(I)
 1500 NEXT I
```

```
1440 FOR I=1 TO N
1445 IF YG(I)>YMA THEN YMA=YG(I)
1450 IF YG(I) < YMI THEN YMI=YG(I)
1500 NEXT I
1510 FOR I=1 TO 150
1520 IF Y1(I)>YMA THEN YMA=Y1(I)
1530 IF Y1(I) YMI THEN YMI=Y1(I)
1540 NEXT I -
1550 F=80/(YMA+ABS(YMI))
1560 FX=150/(XG(N)+0.1*XG(N))
1570 GRAPHICS 7
1580 SETCOLOR 4,0,10
1590 COLOR 3
1600 EJ=F*YMA
1610 PLOT 0,0:DRAWTO 0,80:PLOT 0,EJ:DRAWTO 150,EJ
1615-COLOR 1
1620 FOR I=1 TO 150
1625 X=I-1
1630 IF Y1(I)>=0 THEN Y=F*(YMA-Y1(I))
1640 IF Y1(I)<0 THEN Y=F*(YMA+ABS(Y1(I)))
1660 FLOT X.Y
1670 NEXT I
1675 COLOR 3
1680 FOR I=1 TO N
1690 IF YG(I)>=0 THEN Y=F*(YMA-YG(I))
1700 IF YG(I)<0 THEN Y=F*(YMA+ABS(YG(I)))
1710 X=FX*XG(I)
1720 PLOT X.Y
1730 NEXT I
1750 END
```

TABLA I

ANGULO DE INCLINACION DEL FILO SEGUN EL TIPO DE CORTE Y MECANIZADO

Para tornear materiales de viruta

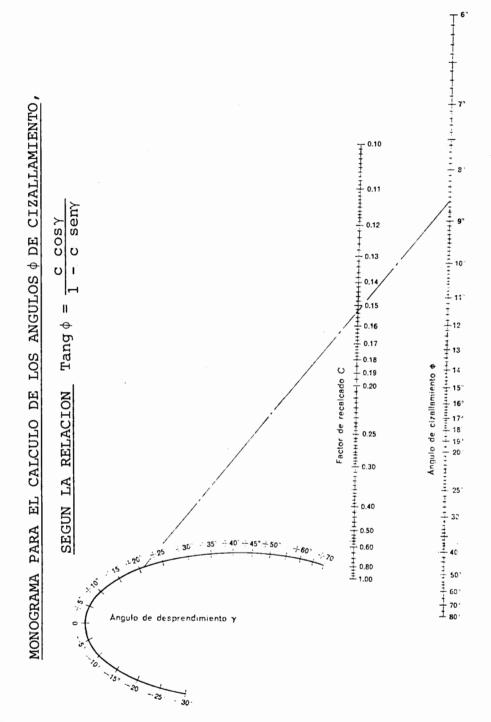
larga y mecanización fina. λ

 $\lambda = 1:09$

Para tornear con corte interrumpido

 $\lambda = -5^{\circ} \text{ a } -10^{\circ}$

Para fresar


 $\lambda = -15^{\circ}$

Para cepillar

 $\lambda = -6^{\circ} a -20^{\circ}$

FUENTE: Manual del Ingeniero Técnico, Vol. IX

D.H. Bruins, Tomo I, Pág. 23.

FUENTE: Mecanizado por Arranque de Viruta: Micheletti, Pág. 48

TABLA III

MECANICAS DE ALGUNOS ACEROS AISI/SAE

MATERIALES: ACEROS AISI	Tratamiento	Dureza Brinell HB	Constan- te ¹ C en grados	Resistencia al cizallamiento ¹ τ _s (daN/mm²)	Coeficiente de rozamiento 1
1010	laminado en cal.	103	69,8	48	1,32
1019	laminado en cal.	147	73,1	56	0,95
1019	laminado en frío	169	73,7	53	0,98
1020 -	laminado en cal.	109	69,6	52	0,94
1022 (con Pb)	laminado en cal.	121	71.8	54	0,40
1045	laminado en cal.	190	78,0	65	0,96
1045	laminado en frío	213	81,2	67	0,94
1070	laminado en cal.	217	78,8	78	0,84
1095	laminado en cal.	182	73,0	67	0,89
1113 (con S)	laminado en frío	170	71.1	51	0,53
1340	laminado en cal.	192	74,8	65	1,10
2340	laminado en cal.	197	76,2	64	0,99
3115	laminado en cal.	131	78,4	49	1,14
3130	laminado en cal.	169	72,4	58	0,94
3140	laminado en cal.	185	70,6	58	1,12
3150	laminado en cal.	197	75,7	62	1,13
4340	laminado en cal.	210	74,5	65	1,06
52100	laminado en cal.	186	71.3	51	1,11
52100	laminado en frío	240	72,9	55	1,04
Aceros inoxid.					
303 (con S)	laminado en cal.	162	92.0	75	0,80
304	laminado en cal.	139	82,0	83	1,18
410	laminado en cal.	217	79,3	62	0,87
416 (con S)	laminado en cal.	215	82,7	58	0,82
430	laminado en cal.	156	73.1	57	0,92
430 F (con S)	laminado en cal.	181	74,6	59	0,80

¹ Los datos se han obtenido en pruebas de corte ortogonal por Cincinnati Milacron (USA), con herramientas de metal duro: $\gamma = 10^{\circ}$; v = 130 m/min; a = 0.075 mm/vuelta y A = 0.5 mm².

FUENTE: Tool Engineer Handbook

TABLA IV

VALORES DE PRESION DE CORTE KS, Y PRESION ESPECIFICA DE CORTE KSO, SEGUN h

2		or o HB	ores i de efection					k, [daN	k, [daN/mm²] para	a h [mm]			
ż	Material	o HK. [daN/mm"]	2	V80	90,0	0,1	0,16	0,25	6,4	69'0	-	1,6	2,5
-	St 50.11	52	0,253	199	420	361	319	283	250	224	199	178	158
7	St 60.11	62	0,155	211	331	308	283	262	244	227	211	196	182
<u>س</u>	St 70.11	72	0,300	226	512	450	392	341	299	260	226	198	174
4	Ck 45 (C 40)	19	0,140	220	324	304	284	592	250	234	220	209	196
2	Ck 60 (C 60)	77	0,173	213	343	315	292	270	249	230	213	196	181
9	16 MnCr5	77	0,267	210	435	383	340	302	566	236	210	188	167
7	18 CrNi6	63	0,300	226	514	451	392	341	300	259	226	198	175
∞	42 CrMo4	73	0,267	250	200	450	400	355	315	280	250	224	200
6	34 CrMo4	09	0,215	224	400	361	329	300,	275	246	224	205	187
10	50 CrV4	09	0,264	221	462	410	361	319	282	250	221	199	178
11	55 NiCrMoV6 rec.	94	0,240	174	347	307	272	239	217	193	174	154	135
12	55 NiCrMoV6 bon.	HB = 352	0,240	192	367	331	295	266	238	210	192	172	153
13	15 CrMo5	59	0,170	229	365	339	313	290	268	247	229	202	198
14	Meehanite	36	0,265	127	258	230	205	184	164	144	127	113	101
15	Fundición dura	$HR_e = 46$	0,195	206	350	319	294	268	245	224	506	190	174
16	16 GG 26	$\mathbf{HB} = 200$	0,264	116	236	211	187	166	147	130	116	103	93

FUENTE: Mecanizado por Arranque de Viruta: Micheletti, Pág. 84

TABLA V

COMPOSICION DE MATERIALES CLASIFICADOS EN LA TABLA IV

Si Sull Mn P S Cr Mo Quoss Si Sull Mn P S Cr Mo Quoss Si Sull 0,22 — — 0,055 — — — Si Gall 0,4 — — 0,88 0,055 — — — 16 Ma Cr S 0,140,19 — 113 — 0,88 0,055 — <td< th=""><th>3</th><th>Materiales</th><th></th><th></th><th>COM</th><th>POSICIÓN</th><th>COMPOSICIÓN PORCENTUAL</th><th>NTUAL</th><th></th><th></th><th>G_p</th></td<>	3	Materiales			COM	POSICIÓN	COMPOSICIÓN PORCENTUAL	NTUAL			G _p
St 50.11 0,222 — 0,055 —	3.39	(DIN-UNI)	၁	Si	Mn	Ь	S	ڻ	Мо	Qtros	HB o HRc
St 60.11 0,4 — — 0,88 0,055 — — — 16 Ma Cr 5 0,140,19 — 11,3 — — 0.81,1 — <t< td=""><th>os.</th><td>St 50.11</td><td>0,22</td><td>1</td><td>l</td><td>0,055</td><td>0,055</td><td></td><td>1</td><td></td><td>30 60</td></t<>	os.	St 50.11	0,22	1	l	0,055	0,055		1		30 60
16 Mta Cr S 0,140,19 — 11,3 — — 0,81,1 — — 1,41,7 Ni 18 Cr Ni 6 0,150,2 — 0,40,6 — — 1,82,1 — 1,41,7 Ni 42 Cr Mo 4 0,150,45 0,150,35 0,50,8 0,035 0,035 0,91,2 0,150,25 — 50 Cr V 4 0,240,55 0,150,35 0,50,8 0,035 0,035 0,91,2 — 1,41,7 Ni CK 45 (C 40) 0,320,4 0,150,35 0,50,8 0,035 0,035 0,91,2 — — — CK 60 (C 60) 0,420,5 0,150,35 0,50,8 0,035 0,035 0,91,2 0,150,12 V — 34 Cr Mo 4 0,300,37 0,150,35 0,50,8 0,035 0,035 0,91,2 0,150,25 — 15 Cr Mo 5 0,150,17 — 0,40,6 — — 0,81,2 0,150,23 — Acc Mc 60	Ą	St 60.11	0,4	1		88'0	550'0			1	60 72
18 Cr Ni 6 0,150,2 — 0,40,6 — — 1,82,1 — 1,41,7 Ni 42 Cr Mo 4 0,380,45 0,150,35 0,50,8 0,035 0,035 0,91,2 0,150,25 — 50 Cr V 4 0,470,55 0,150,35 0,50,8 0,035 0,035 0,91,2 — 0,0770,12 V CK 45 (C 40) 0,320,4 0,150,35 0,50,8 0,035 0,035 — — — — CK 60 (C 60) 0,420,5 0,150,35 0,50,8 0,035 0,035 — — — — 34 Cr Mo 4 0,300,37 0,150,35 0,50,8 0,035 0,991,2 0,150,25 — 15 Cr Mo 5 0,150,17 — 0,40,6 — — 0,81,2 0,150,3 — Acehanite A — — 0,40,6 — — — 0,81,2 0,150,3 — Meehanite A — —	ပ	16 Ma Cr 5	0,14 0,19	l	1 1,3	1	1	0,8 1,1			85 110
42 Cr Mo 4 0,380,45 0,150,35 0,50,8 0,035 0,035 0,91,2 0,150,25 — 50 Cr V 4 0,470,55 0,150,35 0,50,8 0,035 0,035 0,91,2 — 0,070,12 V CK 45 (C 40) 0,320,4 0,150,35 0,50,8 0,035 0,035 0,035 — — — CK 60 (C 60) 0,420,5 0,150,35 0,50,8 0,035 0,035 0,035 0,035 0,0150,25 — 34 Cr Mo 4 0,300,37 0,150,35 0,50,8 0,035 0,035 0,0150,3 — — — 15 Cr Mo 5 0,150,17 — 0,40,6 — — 0,81,2 0,150,3 — GG 26 — — — — — — — — — Fundición dura — — — — — — — — — Fundición dura — — — — — — — — <	P	18 Cr Ni 6	0,15 0,2		0,4 0,6	I	١	1,8 2,1	l	1,4 1,7 Ni	120 140
SO Cr V 4 0,470,55 0,150,35 0,81,1 0,035 0,035 0,91,2 — 0,070,12 V CK 45 (C 40) 0,320,4 0,150,35 0,50,8 0,035 0,035 — — — CK 60 (C 60) 0,420,5 0,150,35 0,50,8 0,035 0,035 — — — — 34 Cr Mo 4 0,500,37 0,150,35 0,50,8 0,035 0,035 0,91,2 0,150,25 — 15 Cr Mo 5 0,150,17 — 0,40,6 — — 0,81,2 0,150,3 — GG 26 — — — — — — — — Fundición dura — — — — — — — — Fundición dura — — — — — — — — Fundición dura — — — — — — — —	မ	42 Cr Mo 4	0,38 0,45	0,15 0,35	8,0 5,0	0,035	0,035	0,9 1,2	0,15 0,25		110 130
CK 45 (C 40) 0,320,4 0,150,35 0,50,8 0,035 0,035 — — CK 60 (C 60) 0,420,5 0,150,35 0,50,8 0,035 0,035 — — — 34 Cr Mo 4 0,300,37 0,150,35 0,50,8 0,035 0,035 0,91,2 0,150,25 — 15 Cr Mo 5 0,150,17 — 0,40,6 — — 0,81,2 0,150,3 — GG 26 — — — — — — — — — — Meehanite A — <th></th> <td>50 Cr V 4</td> <td>0,47 0,55</td> <td>0,15 0,35</td> <td>0,8 1,1</td> <td>0,035</td> <td>0,035</td> <td>0,9 1,2</td> <td>I</td> <td>0,07 0,12 V</td> <td>110 130</td>		50 Cr V 4	0,47 0,55	0,15 0,35	0,8 1,1	0,035	0,035	0,9 1,2	I	0,07 0,12 V	110 130
CK 60 (C 60) 0,420,5 0,150,35 0,50,8 0,035 0,035	0.5	CK 45 (C 40)	0,32 0,4	0,15 0,35	8,0 5,0	0,035	0,035	1	I		75 90
34 Cr Mo 4 0,30 0,37 0,15 0,35 0,5 0,8 0,035 0,035 0,9 1,2 0,15 0,25 — 15 Cr Mo 5 0,15 0,17 — 0,4 0,6 — — 0,8 1,2 0,2 0,3 — GG 26 — — — — — — — Mcehanite A — — — — — — Fundición dura — — — — — —	-	CK 60 (C 60)	0,42 0,5	0,15 0,35	8,0 5,0	0,035	0,035		l	1	85 105
15 Cr Mo 5 0,150,17 - 0,40,6 - - 0,81,2 0,20,3 - GG 26 -		34 Cr Mo 4	0,30 0,37	0,15 0,35	8,0 5,0	0,035	0,035	0.9 1,2	52'0 51'0	To the state of th	100 120
GG 26	_	15 Cr Mo 5	0,15 0,17	1	0,4 0,6	1	1	0,8 1,2	0,2 0,3	1	85 110
Mechanite A — <td< td=""><th>ď</th><td>GG 26</td><td>1</td><td></td><td> </td><td>1</td><td>1</td><td>1</td><td>l</td><td>l</td><td>HB = 200</td></td<>	ď	GG 26	1			1	1	1	l	l	HB = 200
Fundición dura	-	Meehanite A	l	1	l	1	ı	ļ	1	İ	36
Fundición dura	0.	Fundición dura	1	1	1	1	l		1	İ	HRc 46
		Fundición dura		1	I	ŀ	l		ŀ		HRc 55

FUENTE: Mecanizado por arranque de viruta: Micheletti, Pág. 85

VALORES DE LA PRESION DE CORTE KS EN FUNCION DE h

Motorioles	HB		k, (di	N/mm²)	k_* (daN/mm²) en función de h (mm)	n de h (n	nn)	
Materiales	(daN/mm³)	1	9'0	0.4	0,25	0,16	0,05	0,01
1100-H-14	18	23	56	29	34	39	55	68
2011-T-3	97	34	40	45	52	59	8	135
2014-T-6	139	87	101,1	114,1	131,4	150.2	213	345
2017-T-4	115	80	93,2	105	121	139	197	319
2024-T-4	122	9/	68	8	115	132	186	302
4032-T-4	115	9/	68	001	115	132	981	302
6061-T-6	94	29	69	78	68	102	145	235
7075-T-6	153	100,4	117	132	152	174	247	400

Para aleaciones ligeras $k_s = k_{so} h^{-0.3}$.

FUENTE: Mecanizado por Arranque de Viruta: Micheletti, Pág. 87

TABLA VII

ELEMENTOS COMPONENTES DE LOS MATERIALES DE LA TABLA VI

AISI		Po	orcentaje	de comp	onentes, a	demás de	aluminio		
materiales	Cu	Si	Mπ	Mg	Zn	Ni	Cr	Pb	Bs
1100-H-14									
2011-T-3	5,5		_					0,5	0,5
2014-T-6	4,4	0,8	0,8	0,4					
2017-T-4	4,0		0,5	0,5					-
2024-T-4	4,5		0,6	1,5			-		
4032- T- 6	0,9	12,5		1,0		0,9			
6061 -T-6	0,25	0,6		1,0			0,25		
7075-T-6	1.6		0,2	2,5	5,6		0,3		

TABLA VIII

GEOMETRIA DE HERRAMIENTA USADA PARA PRUEBAS

	α	β	Y	ε	X	λ	,
Torneado de acero	5°	, 79°	6°	90°	60°	4°	1 mm
Torneado de fundición	5°	83*	2°	90°	60°	4°	1 mm

FUENTE: Mecanizado por arranque de Viruta: Micheletti, Pág. 87

VALORES DE Kso,f, g, DE DIVERSOS PATERIALES

PARA CALCULAR E+

	TAIM CAL	CULAR Ft	,	
MATERIAL	НВ	f	g	k_{40} $A = 1$ $G = 5:1$
SAE 1020	127	0,1	0,1	215
SAE 1020	160	0,1	0,1	230
SAE X 1020	126	0,1	0,1	208
SAE X 1020	156	0,1	0,1	224
SAE 1035	174	0,1	0,1	237
SAE 1045	187	0.1	0,1	252
SAE 1050	201	0,1	0,1	264
SAE 1060	217	0,1	0,1	288
SAE 1095	280	0,1	0,1	330
SAE 1095	207	0,1	0,1	248
SAE 1112	130	0,1	0,1	123
SAE 1112	167	0,1	0,1	148
SAE X 1112	183	0,1	0,1	148
SAE X 1315	120	0,1	0,1	127
SAE X 1315	161	0,1	0,1	124
SAE T 1340	217	0,1	0,1	284
SAE 2315	192	0,1	0,1	214
SAE 2330	223	0,1	0,1	236
SAE 2340	223	0,1	0,1	236
SAE 2512		0,1	0,1	214
SAE 3115	128	0,1	0,1	156
SAE 3115	163	0,1	0,1	163
SAE 3130	210	0,1	0,1	228
SAE 3140	207	0,1	0,1	210
SAE 3140	285	0,1	0,1	260
SAE 3240	170	0,1	0,1	172
SAE 4340	400	0,1	0,1	360
SAE 4340	302	0,1	0,1	274
SAE 4310	415	0,1	0,1	358
SAE 4615	212	0,1	0,1	214
SAE 4640	248	0,1	0,1	232
SAE 4815	187	0,1	0,1	205
SAE 5120	149	0.1	0,1	182
SAE 5135	207	0,1	0,1	203
SAE 52100	187	0,1	0,1	218
SAE 6115	170	0,1	0,1	214
SAE 6140	187	0,1	0,1	280
Fundición acicular o de grafito difuso	263 .	0,15	0,15	181
Fundición nodular		0,15	0,15	160
Fundición gris		0,15	0,15	155
GM		0,15	0,15	145
GMB	100	0,19	0,19	81 .

FUENTE: Tecnología Mecánica, Micheletti, Pág. 88

TABLA X

VALORES DE Ks, Ft, DE ALGUNOS MATERIALES

CONOCIENDO A, HB, β.

MATERIAL	Ft [daN]	k. [daN/mm²]
Acero al Cromo- Níquel	$F_{\rm t} = A^{0,802} 26 \sqrt[2.2]{\frac{1.50}{\text{HB}}} \sqrt{\frac{\beta}{50}}$	$k_{n} = \frac{26 \sqrt[2.2]{\frac{1,56}{\text{YB}}} \sqrt{\frac{\beta}{50}}}{\sqrt[5,05]{\text{A}}}$
Acero St. 70.11 (SAE 1060)	$F_{\rm t} = A^{0.803} 25.9 \sqrt[2.2]{\text{HB}} \sqrt{\frac{\beta}{50}}$	$k_{s} = \frac{25.9 \sqrt[2.2]{\text{HB}} \sqrt[3]{\frac{\beta}{50}}}{\sqrt[5.07]{\text{A}}}$
Acero St. 42.11 (SAE 1025)	$F_{\rm t} = A^{0.862} 19.8 \sqrt{\rm HB} \sqrt{\frac{\beta}{50}}$	$k_{\rm s} = \frac{19.8 \sqrt[2.2]{\text{HB}} \sqrt[1.36]{\frac{\beta}{50}}}{\sqrt[7.25]{\text{A}}}$
Fundición	$F_{\rm t} = A^{0.865} - 9.6 \sqrt{{\rm HB}} \sqrt{\frac{\beta}{50}}$	$k_{s} = \frac{9.6 \sqrt[2.5]{\text{HB}} \sqrt[1.51]{\frac{\beta}{50}}}{\sqrt[7.4]{\text{A}}}$

Cálculo de la fuerza de corte, utilizando datos experimentales (Kronenberg)

FUENTE: Tecnología Mecánica: Micheletti, Pág. 89

TABLA XI

RUGOSIDADES SUPERFICIALES REQUERIDAS SEGUN APLICACION

Rugosidad R. (µm)	APLICACIONES (a título indicativo)
0,025	Planos de apoyo de micrómetros - Espejos - Bloques de compara- ción o contraste (Calas).
0,05	Caras de calibres de taller - Planos de apoyo de comparadores.
0,1	Caras de calibres correderos - Pernos de articulación - Útiles y herramientas de precisión - Cojinetes superacabados - Acoplamientos estancos de alta presión en movimiento alternativo - Superficies acopladas con partes en movimiento alternativo conteniendo líquido bajo presión - Superficies (bruñidas) de retención sin guarnición o retén.
0,2	Soportes de cigüeñales y árboles de levas - Pernos de biela - Pies de válvulas - Superficies de levas - Superficies de cilindros de bombas hidráulicas - Cojinetes lapeados - Pernos de turbinas (ejes) - Acoplamientos estancos móviles a mano - Guías de mesas de máquinas herramientas - Palancas alta veíocidad - Pernos de árboles para rotores de turbinas, reductores, etc.
0,4	Árboles acanalados - Cojinetes de árboles motores - Superficie exterior de pistones - Superficie de cilindros - Pernos de grandes máquinas eléctricas - Acoplamientos prensados - Asientos de válvulas - Superficies de retención de asientos y obturadores de válvulas, etc Pernos de cigüeñales y soportes de alineación de árboles - Cojinetes de metal blanco - Superficies de partes deslizantes, como patines y sus guías.
0,8	Tambores de freno - Agujeros brochados - Cojinetes de bronce - Partes de precisión - Dientes de engranajes - Cojinetes rectificados - Superficies de retención laterales sin retén o guarnición - Pernos de cigüeñales y soportes de líneas de árboles - Cojinetes de metal blanco (antifricción) - Superficies de partes deslizantes, como patines y sus guías.
1,6	Caras particulares de engranajes - Árboles y agujeros de engrana- jes - Cabeza de cilindro - Cajas de engranajes de fundición - Cara de émbolo - Superficies de retención laterales con guarniciones me- tálicas (retenes).
3	Pernos y cojinetes para transmisión a mano - Superficies de acoplamiento de partes fijas desmontables.
6	Superficies laterales de retención con retenes normales.

FUENTE: Tecnología Mecánica; Micheletti, Pág. 348

TABLA XII

VALORES INDICATIVOS DE RUGOSIDAD

PARA VARIOS MECANIZADOS

The state of the s			*/***	**************************************	Rug	osid	lad			*		
Mecanizados	$R_{\alpha}(\mathrm{grin})$	- 0	-	ω	9.		25	120	250	569	800	630
	$R_n(\oplus m)$	0.05	1.0	6.2	6,4	8,0	7,6	m	9	12	16	50
Desbarbado - Corte a la llama o con sopiete								[200	
Torneado - Fresado - Limado				E		77.0	I		d			
Trepanado, taladrado						H		1	_			
Cepillado	1									1	- 2/8	
Alesado, mandrinado						I		П				
Brochado]	_			:
Rectificado										1		
Levigado, bruñido				İ		1					-	
Superacabado (lapeado)				<u> </u>]		1	_				
Abrillantado (lucidado)	E F		П	_ :			1					
Perdigonado, granallado						olon molan			킈.		-	
Laminación en caliente									Ε		<u> </u>	
Colada en arena												
Forja												
Colada en coquilla										-		j
Colada a presión . (fundición a presión)									į			
Laminado, estirado y trefilado en frío											į	
Extrusión									-			

FUENTE: Micheletti, Pág. 349

TABLA XIII

VALORES RECOMENDABLES DEL ANGULO DE DESPRENDIMIENTO γ PARA TRABAJAR DISTINTOS MATERIALES CON VARIOS TIPOS

DE HERRAMIENTAS

Material a trabajar	Hía. de Acero Rápido (Tenacidad elevada)	Aleaciones fundidas (Estalita) (Tenacidad media)	Carburos Me- tálicos (Baja tenaci- dad)
Fundición de aluminio	20° 30°	15° 25°	10° 20°
Bronce de aluminio	~15° 20°	10° 15°	6° 12°
Bronce de manganeso	10° 16°	8° 14°	4° 10°
Fundición de bronce Fundición Blanda (170 Brinell) Media (250 Brinell) Dura (400 Brinell) En coquilla	15° 20° 12° 18° 10° 15° 5° 10° 3° 5°	10° 15° 10° 16° 7° 12° 2° 7° 5° 2°	6° 12° 6° 12° 4° 9° 0° 5° 10° 0
Cobre	20° 30°	15° 25°	10° 20°
Monel	10° 15°	7° 12°	4° 9°
Magnesio (fundido)	25° 35°	20° 30°	15° 25°
Hierro maleable Fundición aleada Plásticos Aceros	10° 15°	7° 12°	5° 10°
	10° 15°	7° 12°	5° 10°
	20° 35°	15° 30°	10° 25°
F 221	15° 25°	12° 20°	8° 15°
F 114	12° 20°	8° 16°	6° 12°
F 131	10° 15°	7° 12°	4° 8°
F 122	10° 15°	7° 12°	4° 8°
F 143	8° 14°	5° 10°	3° 7°
Tratado a 350 Brinell	5° 10°	0° 6°	0° 4°
Acero inox, de fácil mecan.	10° 15°	7° 12°	5° 10°
Acero inoxidable endurecido	5° 12°	3° 8°	0° 5°

NOTA: Emplear los valores grandes para avances menores de 0,1 mm/vuelta. Los valores pequeños para avances mayores de 0,8 mm/vuelta. Para avances intermedios emplear valores intermedios.

FUENTE: Herramientas de Corte, Tomo I; Ramón Forn Valls, Pág. 247.

TABLA XIV

Ancho de Zona de Desgaste: 1.2 mm.

Angulo de incidencia	Número de piezas mecanizadas	Я de duración res- pecto a la duración óptima
2	53	29 %
3	78	43 %
4	104	57 %
5	124	68 %
6	146	80 %
7	165	90 %
8	182	100 %
9	139	76 %
10	95	52 %
11	65	36 %
12	43	23 %

FUENTE: Herramienta de Corte: Ramón Forn Valls,

Tomo I, Pág. 244.

TABLA XV

Material a trabajar	Hta. de Acero Rápido (Tenacidad elevada)	Aleaciones fundidas (estelitas) (Tenacidad media)	Carburos me- tálicos (Baja tenaci- dad)				
Fundición de aluminio Bronce de manganeso Fundición de bronce Fundición Blando (170 Brinell) Medio (250 Brinell) Duro (400 Brinell) en coquilla Cobre Monel Magnesio (fundido) Hierro maleable Plásticos Acero F 220 F 114 F 131 F 122 F 143	12° 14° 10° 12° 9° 11° 10° 12° 8° 10° 7° 9° 5° 7° 3° 5° 10° 12° 8° 10° 12° 14° 7° 9° 14° 16° 9° 11° 8° 10° 7° 9° 7° 9° 7° 9° 6° 8°	10° 12° 8° 10° 7° 9° 8° 10° 7° 9° 6° 8° 4° 6° 2° 4° 8° 10° 7° 9° 10° 12° 6° 8° 11° 13° 7° 9° 6° 8° 6° 8° 6° 8°	8° 10° 7° 9° 6° 8° 7° 9° 6° 8° 5° 7° 3° 5° 2° 4° 7° 9° 6° 8° 6° 8° 5° 7° 9° 11° 6° 8° 5° 7° 5° 7° 5° 6°				

NOTA: emplear el ángulo menor para trabajos severos y el mayor para trabajos ligeros.

NOTA: Emplear el ángulo menor para trabajos severos y el mayor para trabajos ligeros.

FUENTE: Herramientas de Corte I; Ramón Forn Valls, Pág. 245.

TABLA XVI

VALORES RECOMENDABLES DEL RADIO DE LA PUNTA

- 1) El radio de la punta debe ser aproximadamente: 4 x avance x vuelta.
- 2) El radio de la punta debe ser aproximadamente 1/4 x profundidad de corte.

Si con estas dos reglas resultan valores distintos para el radio de la punta, se elegirá el mayor.

FUENTE: Monografías CEAC, Colección Mecánica, Vol.21, Pág. 161.

TABLA XVII

VALORES INDICATIVOS DEL DESGASTE VB Y KT ADMISIBLES EN LAS HERRAMIENTAS DE TORNEAR

Material de la herramienta	Tipo de desgaste	Condición I (mm)	(mm) (mm) (mm)	Condición II Condición III (mm)
Acero rápido	franja VB Cráter KT	0.20	0,50	11,4
Metal duro	franja VB Cráter KT	0,3 0,5 0,10	0,50,7 0,20	0.5 0.7
Cerámicas de corte	franja VB Cráter KT	0.15	0,30	0,30

FUENTE: Criterios de Duración propuestos por ISO.

TABLA XVIII

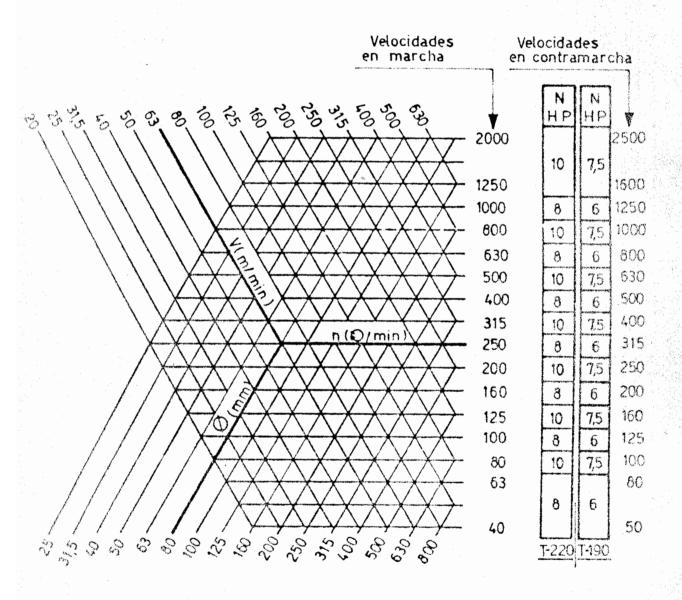
CARACTERISTICAS TECNICAS DEL T-220

GENERALES	T-190	T-220
Distancia máxima entre puntasmm Altura de puntos sobre bancadamm Diámetro máximo de pasaje	(+)900-1300 190	(+) 1100–1600 220
Sobre bancadamm Sobre carro transversalmm Sobre escotemm	380 220 560 220	450 250 650 250
Cargo del escotemm Distancia desde la cara del plato al final del escotemm Diámetro del plato de 4 mordazasmm Ancho de la bancadamm	188 340 300	183 340 350
HUSILLO	300	330
Nariz del husillo	6" 83 52 16 (40–2000) 140	6" 83 52 16 (40–2000) 140
AVANCES Y ROSCAS		
112 avances longitudinalesmm/v 112 avances transversalesmm/v 25 pasos métricosmm 35 pasos whitworthh/1" 25 pasos módulo p = M π mm 35 pasos diametral Pitch p = $\frac{\pi}{DP}$. (")	0.060-0.9970 0.030-0.4985 1 a 15 2 a 56 0.5 a 7.5 112 a 4	0.060-0.9970 0.030-0.4985 1 a 15 2 a 56 0.5 a 7.5 112 a 4
CARROS		
Carrera máxima del carro transversal mm Carrera máxima del carrito portahe-	210	240
rramientas	135	150
husillo	41 20 x 20	50 25 x 25
Angulo máximo de rotación ca- rrito portaherramientas	±180°	±180°

TABLA XVIII

(Continuación)

CONTRAPUNTA	T- 190	T-220
Diámetro de la pínula	55 155 4	65 180 4
Peso máximo pieza sujeta entre puntas	500	800 430
plato	300	450
(mín. y máx.)	10-140	10-160
(mín. y máx.)mm	10-110	15–110
POTENCIA		
Motor NormalHP	6/75 1400/2800 270m	8/10 1400/2800 rpm
Peso aproximadoKg	1600–1900	1900-2200


TABLA XIX SELECCION DE PASOS Y AVANCES

METRICA

		1 B3		35	A7
		125	B2	375	A7
		15	B4	4 C	3
z 666 132 66	z 66 132 66	175	В7	45 C7	
Z 6 13 13	** ' ' ' ' ' ' '	2 A3 225 A7		5 55 C	C2
16 B7 A7 4 C7	.211 B7 A7 A7 C7	25	A2	6	C4
118 C6 12 C6	187 B6 A6 750 C6	275 A7 3	A4	7 75	C7 C7
19 B5 A5 4 3/4 C5	.177 B5 A5 A5 .710		0.150	$\frac{Z_1}{Z_2} \frac{150}{110} \frac{15}{9}$	$\frac{50\ 150\ 140}{66\ 66}$
	168 B4 A4 675 C4	MODULO MODULO	TT	$= 1/2 \times M$	
20 B4 A4 5 C4		MODOLO	•	- 1/2 X M	EIRICA
22 22 32 37 37	.153 B3 A3 .614				
24 B2 A2 6 C2	.140 B2 A2 A2 C2				
28 B1 A1 7	.120 B1 A1 .482				
32 B7 B7 C7	.105 B7 .422 A7 C7	Z 1 .		· · ·	
36 B B 6 9 C 6	.088.093 B5 B6 .355.375 A5 A6 C5 C6	$\frac{Z_1}{Z_2}$ 1	4 099 .1		25 .132 .149
38 9% A55 C5	.088 .355 .355 A5 C5	110 A.1	11 397 .4	34 <i>A</i> 77 50	51 .265 .299 02 .531 .598
40 10 A4 C4	.084 B4 .337 A4 C4	$\frac{130}{90}$ A 20	03 121 .1 8 243 .2 16 486 .5	65 291 30	
44 111 C3	.070 .076 .084 B2 B3 B4 .281 .307 .337 A2 A3 A4 C2 C3 C4	150 B.14	11 165 .18 34 331 .3	80 198 20 62 397 4 1	08 .220 .249 .8 .442 .498
48 48 48 C2 C2		140 B.13	58 663 .7. 33 155 .10 56 310 .3		6 .207 232
56 B1 14 A1 C1	.060 B1 .241 A1 C1			77 744 78	

TABLA XX

DIAGRAMA DE VELOCIDADES

FUENTE: Manual de Instrucciones T 220

TABLA XXI

CLASIFICACION DE LOS MATERIALES DE LAS HERRAMIENTAS SEGUN LA DUREZA EN CALIENTE

Clase de material		Dureza en	caliente a Rockwell	Orden de excelencia			
		550° C 600° C 650° C					
1	Diamante	demasia	do duro p	máxima			
2	Carburos metálicos	75	73	muy grande			
3	Aleación fundida	56	55	5 3	grande		
	Acero rápido al Co con 12 % de Co	57	55	44	muy buena		
4	Acero rápido al Co con 8% de Co	54	51	40	huena		
	Acero rápido al Co con 5% de Co	53	48	34	bastante buena		
5	Acero rápido normal	52	46	32	regular		
в	Acero de herramienta al carbono	22		_	pobre		

FUENTE: Monografías CEAC, Volumen 21

TABLA XXII

CLASIFICACION DE LOS MATERIALES

DE HERRAMIENTAS SEGUN SU TENACIDAD

CLASE DE MATERIAL	TENACIDAD
1 Acero al Carbono	La mayor
2 Acero Rápido Normal (B)	Muy elevada
2a Acero Rápido Normal (SD)	Elevada
2b Acero Rápido Normal D	Muy buena
3 Acero Rápido al Co (5% Co)	SD: Muy buena; B: elevada
	D: Buena
3a Acero Rápido al Co (8% Co)	SD: Muy buena; B: elevada
	D: buena
3b Acero Rápido al Co (12% Co)	SD: Buena; B: Muy buena
	D: Bastante buena
4 Aleación fundida	Buena
5 Carburo Metálico B	Bastante buena
5a Carburo Metálico SD	Regular
5b Carburo Metálico D	Pobre
6 Diamante	Muy Pobre

FUENTE: Monografías CEAC, Vol. 21

TABLA XXIII

UTILLZACIONES NORMALES DE LOS ACEROS DE HERRAMIENTAS
Y DUREZAS QUE NORMALMENTE SE EMPLEAN

CONTENIDO DE CARBONO %	UTILIZACIONES	DUREZAS NORMALES DE UTILIZACION
0.5	Alicates, tenzas, destornilladores, martillos, herramientas agrícolas.	45-60
09.0	Cinceles, cortafríos, martillos de forja, herramientas de minas, tijeras, hachas.	45–61
0.70	Herramientas para madera, navajas, cuchillos, matrices y estampas en caliente.	50–62
06.0	Matrices para embutir, cuchillos	56–63
1,00	Troqueles, herramientas cortantes	58-63
1.10	Brocas, fresas, terrajas	60–64
1.30	Limas, herramientas de torno, navajas de afeitar	62–64

FUENTE: Monografías CEAC, Vol. 21

TABLA XXIV

ELEMENTOS CONSTITUYENTES DE LOS DIFERENTES TIPOS DE ACEROS RAPIDOS

		·																
	Mejor resistencia	Fungsteno								Choque	Choque	Ahrasión	Elevada abrasión	Elevada abrasión	Abrasión			
	Columbio o Boro													1,25	Columbia			
	Cobalto																	
en %	Molib. deno		Fungsteno	Fungsteno	Fungsteno	Fungsteno	Aceros Rápidos al Tungsteno	0.80	3		0,75	0,0	Molibdeno	8,50	5,00	5,25	4.50	4,50
Composición en &	Vanadio	ápidos al J	1,10	3.25	2,00	3,00	A,' '	Aceros Rápidos con Molibdeno	1,15	1,90	3,25	4,00	1,50	2,00				
Š	Сгото	Aceros Rá	Aceros Rá	4,10	4,10	4,00	9,4	3,000	Aceros Rá	4,00	4,10	4,10	4,50	4,25	4,25			
	Tungsteno		18,00	18,50	14,00	14,00	10,00		1,50	6,25	5,75	5,50	5,50	ı				
	Carbono		0,70	1,05	0,70	1,00	2,20		08'0	0,83	1,15	1,27	0,80	0,85				
	Abreviación Carbono Tungsteno Cromo		18-4-1 18-4-2	18-4-3	14-4-2	18-4-3			8-2-1	6-6-2	6-6-3	4-5-4	4-5-1	8-0-2				
	Símbolo		T 1 T 2	Т 3	1 7	T 17-A T 18-A			M-1	M-1	M-3	M-4	φ. Ψ.	M-10				

FUENTE: Monografías CEAC, Vol. 21

CONTINUACION DE LA TABLA XXIV

															\neg										
	Mejor resistencia		Calor y choque Calor v abrasión	Elevado calor	Calor y choque	Calor y elevada abrasión		Elevado calor y	elevada abrasión	Calor y abrasión	Abrasión	Calor y abrasión	Calor y abrasión	Elevados calor y	abrasion										
	Columbio o Boro											0,25 Boro		0,50 Boro											
	Cobalto	alto	5,00	12,00	2,00	5,00	ılto	12,00		4,00	2,50	8,50	8,00	8,20											
8 u	Molib. deno	steno Coba	gsteno Coba	gsteno Coba	gsteno Coba	gsteno Coba	gsteno Coba	gsteno Cob	gsteno Cob	gsteno Coba	gsteno Coba	steno Cobal	0,50	0,80	0,80		deno Coba	5,00		0,06	8,00	8,50	2,00	8,00	
Composición en %	Vanadio	os al Tung	1,00	1,75	2,00	5,00	Aceros rápidos al Molibdeno Cobalto	1,40		1,50	1,25	1,20	2,00	1,80	-										
Con	Cromo	Aceros rápidos al Tungsteno Cobalto	eros rápidos	ceros rápido	4,10	4,10	4,00	4,00	ros rápido	4,00		8,00	2,00	4,00	4,10	4,20									
-	Tungsteno	Ao	18,00	20,00	14,00	14,00	Ace	4,00		1,50	-	1,50	6,00	1,70											
	Carbono		0,75	0,80	0,80	1,50		0,78		0,30	0,50	0,80	0,85	0,60											
	Abreviación Carbono		18-4-1-5 18-4-1-8	18-4-2-12	14-4-2-5	13-4-5-5		5-4-1-12		9-8-3-4	8-5-2	8-2-1-5	6-6-2-8	8-4-1-8											
	Sírabolo		T-4 T-5	T-6	T-8	T-15		M-6		M-11	M-20	M-30	M-36	M-40											

FUENTE: Monografías CEAC, Vol. 21

BIBLIOGRAFIA

- 1.- BRUINS, D.H. Herramientas y Máquinas Herramientas, Tomos I y II, URMO S.A., 1981.
- 2.- CARRO CAO, G., Gli Utensilio per il Taglio Dei Metalli
 "La Metallurgia Italiana", Vol. 63, # 7, 270, 1951.
- 3.- CENIM, Revista de Metalurgia, Vol. 13, # 3, mayo-junio 1977, Madrid.
- 4.- CONSIGLIO NAZIONALE DELLE RICERCHE, Laboratorio per la lavorazione dei Metalli, Publicazioni del Laboratorio Nel Triennio, 1970-1972.
- 5.- DOBROVOLSKI. V., Elementos de Máquinas, Moscú, MIR-1970.
- 6.- ENGELHARD KARL, Ing. Afilado y Conservación de útiles para máquinas herramientas, Barcelona, José Monteso, 1961.
- 7.- FORN VALLS RAMON, Herramientas de Corte I-II, Diseño y Construcción, Monografías CEAC, Volumen 21,22, Bar-

celona, 1967.

- 8.- GEOFFREY BOOTHROYD, Fundamentos del Corte de Metales y las Máquinas-Herramientas, Colombia, Presencia Ltda.,1978
- 9.- INDUSTRIAL WORLD, Gran Impulso de la Metalistería para la próxima década. Vol. 204, Nº 8, Agosto 1979.
- 10.- MICHELETTI GIAN FEDERICO, Mecanizado por Arranque de Viruta, Barcelona, Editorial Blume, 1980. Edición Castellana.
- 11.- MILLER IRWIN and FREUND JOHN, Probability and Statistics for Engineers, New Jersey, Prince-Hall, Inc. Englewood Cliffs, N.J., 1965.
- 12.- ORTUÑO MODESTO, Control Estadístico de Calidad, Barcelona, CEAC, 1966.
- 13.- SCHRÖCK OFFENBACH M., Montaje, Ajuste, Verificación de Elementos de Máquinas, Barcelona, Reverté.
- 14.- TOBIAS S.A., Vibraciones en Máquinas-Herramientas, Bilbao, URMO Ediciones, 1972.