

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

SIMULACIÓN DE TRANSIENTES ELECTROMAGNÉTICOS EN LAS LÍNEAS DE

TRANSMISIÓN DE EAT

TESINA DE SEMINARIO DE GRADUACIÓN

Previa a la obtención del Título de: INGENIERO EN ELECTRICIDAD ESPECIALIZACIÓN POTENCIA

Presentada por:

Manuel John Cabrera Romero

GUAYAQUIL – ECUADOR

2012

AGRADECIMIENTO

Agradezco a.

Dios por	estar pre	esente e	n mi vida	у
darme	fuerzas	para	continuar.	Α
todas las	personas	que me	extendieron	la
mano, espe	ecialmente	al Ing. Jo	sé Layana Ch.	

DEDICATORIA

Dedicada a.

Todas las personas que jamás dejaron de confiar en mí, y sobre todo al esfuerzo realizado por mis padres, ya que sin ellos jamás hubiese podido plasmar mi sueño

TRIBUNAL DE SUSTENTACION

Ing. José Layana Chancay PROFESOR DE LA MATERIA DE GRADUACION -----

Ing. Jorge Flores PROFESOR DELEGADO DEL DECANATO

DECLARACION EXPRESA

"La responsabilidad del contenido de esta tesina de seminario de graduación me corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL"

(Reglamento de graduación de la ESPOL)

.....

Cabrera Romero Manuel John

RESUMEN

El presente trabajo destaca las posibles sobretensiones que se podrían presentar ante una repentina falla monofásica, y los efectos que trae consigo despejar la misma.

Inicialmente se dará a conocer los diferentes componentes que posee un sistema de potencia, donde se enfatizaran, los principales elementos que formaran parte de la simulación de transitorios electromagnéticos.

Posteriormente, se estudiaran transitorios electromagnéticos en circuitos básicos, utilizando fuentes de generación continua y alterna; además de presentar las diferentes causas que ocasionan este tipo de alteraciones

Para las simulaciones de transitorios electromagnéticos en líneas de EAT, se tomara de ejemplo, la futura incorporación del sistema nacional a 500KV operando en conjunto con el sistema actual. En este apartado se propondrá diferentes puntos de evaluación, se mostrara la cantidad de simulaciones y los diferentes métodos empleados para realizar el re-establecimiento del sistema.

El capítulo 4 se basa en la obtención de diferentes fuentes de información, las cuales permiten representar al Sistema Nacional de Transmisión mediante un diagrama unifilar sintetizado, en otras palabras se realizara un equivalente de red en la barra de El Inga a 230KV mediante la utilización del DIgSILENT Power Factory v13.2, para con ello mejorar el tiempo de respuesta

Luego se analizaran los resultados obtenidos a través del software de simulación ATPDraw v5.6 y se destacaran los máximos picos de sobretensión transitoria, valorados en cada una de las etapas del disturbio (durante la falla, durante el despeje y posterior al re-cierre)

Finalmente se establecerá una comparación entre los diferentes métodos empleados para normalizar el sistema, dando a conocer los comportamientos de sobretensión transitoria más relevantes

INDICE GENERAL

RESUMEN INDICE GENERAL INDICE DE FIGURAS INDICE DE TABLAS INTRODUCCIÓN ANTECEDENTES OBJETIVOS GENERALES *OBJETIVOS ESPECÍFICOS*

CAPÍTULO 1

GENERALIDADES

Pag.

1.1	ELEMENTOS DE UN SISTEMA ELECTRICO DE POTENCIA	2
1.1.1	ELEMENTOS BASICOS	4
1.1.1.1	<u>RESISTOR</u>	4
1.1.1.2	INDUCTOR	5
1.1.1.3	<u>CAPACITOR</u>	5
1.1.2	GENERADORES	6
1.1.3	LÍNEAS DE TRANSMISIÓN	7
1.1.3.1	<u>CLASIFICACIÓN DE LAS LÍNEAS DE ENERGIA</u>	7
1.1.3.2	PRINCIPALES ELEMENTOS DE UNA LÍNEA DE TRANSMISIÓN AÉREA.	7
1.1.3.3	SELECCIÓN DE CONDUCTORES DE FASE Y CABLE DE GUARDA	8
1.1.4	TRANSFORMADOR DE POTENCIA	9
1.1.5	BANCO DE REACTORES	12
1.1.6	BANCO DE CAPACITORES	12
1.1.7	INTERRUPTORES	
1.1.8	PARARRAYOS	

CAPÍTULO 2

TRANSITORIOS ELECTROMAGNETICOS EN SISTEMAS DE POTENCIA

2.1 PRINCIPIOS DURANTE LOS TRANSITORIOS	17
2.2 TRANSITORIOS EN CIRCUITOS ELÉCTRICOS ELEMENTALES	17
2.2.1 CIRCUITO SERIE RC	17
2.2.2 CIRCUITO SERIE RL	20
2.2.3 CIRCUITO SERIE LC	23
2.2.4 CIRCUITO SERIE RLC	29
2.2.5 CARACTERISTICAS DE LOS CIRCUITOS ELEMENTALES	33
2.3 DESCRIPCIÓN DE SOBREVOLTAJES	34
2.3.1 SOBREVOLTAJE A FRECUENCIA INDUSTRIAL	34
2.3.2 SOBREVOLTAJES TEMPORALES	34
2.3.3 SOBREVOLTAJES TRANSITORIOS	35
2.3.3.1 <u>SOBREVOLTAJES TRANSITORIOS DE FRENTE LENTO</u>	35
2.3.3.2 <u>SOBREVOLTAJES TRANSITORIOS DE FRENTE RAPIDO</u>	36
2.3.3.3 <u>SOBREVOLTAJES TRANSITORIOS DE FRENTE MUY RAPIDO</u>	37
2.3.4 SOBREVOLTAJE COMBINADO	38
2.3.5 RESUMEN DE SOBREVOLTAJES	38
2.4 CAUSAS DE SOBREVOLTAJES TEMPORALES O DE FRECUENCIA INDUSTRIAL	39
2.4.1 FALLAS A TIERA	39
2.4.1.1 FALLAS MONOFÁSICAS DE LÍNEA A TIERRA	41
2.4.2 RECHAZO DE CARGA	45
2.4.3 EFECTO FERRANTI	46
2.4.4 RESONANCIA Y FERRO-RESONANCIA	47
2.5 CAUSAS DE SOBREVOLTAJES DE FRENTE RAPIDO O POR DESCAR	GAS
ATMOSFERICAS	48
2.5.1 DESCARGAS ATMOSFERICAS	49
2.5.1.1 DESCARGAS ATMOSFERICAS PRODUCIDAS EN LA TORRE O EN EL HILO) <u>DE</u>
<u>GUARDA</u>	49
2.5.1.2 DESCARGAS ATMOSFERICAS PRODUCIDAS EN LOS CONDUCTORES DE FA	<u>SE</u>
51	
2.5.1.3 DESCARGAS ATMOSFERICAS PRODUCIDAS EN LAS CERCANIAS DE LA LINE	4 <i>DE</i>
<u>TRANSMISIÓN</u>	53
2.6 CONTROL DE SOBRETENSIONES	53

2.6.1	UTILIZACIÓN DE PARARRAYOS	56
2.6.2	UTILIZACIÓN DE RESISTENCIA DE PRE-INSERCIÓN	57
2.6.3	DISYUNTORES SINCRONIZADOS	59

CAPÍTULO 3

ESTUDIO DE FALLAS MONOFASICAS EN LINEAS DE TRANSMISION MEDIANTE EL USO DE EL ATPDRAW V5.6

DETALLES DE LA PROPUESTA	64
TEMAS DE ESTUDIO	65
MODELADO DE LÍNEAS DE TRANSMISIÓN PARA EL ANALISÍS DE FALLAS	66
PI NOMINAL	66
PARAMETROS DISTRIBUIDOS CONCENTRADOS	69
SEMLYEN	70
J MARTÍ	71
TAKÚ NODA	71
MODELO A UTILIZAR	72
JUSTIFICACIÓN DEL TRABAJO	74
	DETALLES DE LA PROPUESTA TEMAS DE ESTUDIO MODELADO DE LÍNEAS DE TRANSMISIÓN PARA EL ANALISÍS DE FALLAS PI NOMINAL PARAMETROS DISTRIBUIDOS CONCENTRADOS SEMLYEN J MARTÍ TAKÚ NODA MODELO A UTILIZAR JUSTIFICACIÓN DEL TRABAJO

CAPÍTULO 4

PARAMETROS DE LOS ELEMENTOS DEL SISTEMA DE POTENCIA

4.1	PARAMETROS UTILIZADOS EN LAS UNIDADES DE GENERACIÓN CCS	77
4.2	PARAMETROS UTILIZADOS EN LAS UNIDADES DE TRANSFORMACIÓN CCS Y	EL
	INGA	78
4.3	PARAMETROS UTILIZADOS EN LA LÍNEA DE TRANSMISIÓN CCS - EL INGA	80
4.3.1	CARACTERISTICAS DE LOS CONDUCTORES DE FASE	81
4.3.2	CARACTERISTICAS DE LAS TORRES	82
4.4	OBTENCIÓN DE DATOS	83
4.4.1	FUENTE GENERADORA, CCS A 13.8KV	83
4.4.2	FUENTE EQUIVALENTE, EL INGA A 230KV	84
4.4.2.	1 <u>MAXIMA CORRIENTE DE CORTOCIRCUITO</u>	85
4.4.2.2	2 <u>RESULTADO DE LAS PRUEBAS DE CORTOCIRCUITO</u>	96
4.4.3	TRANSFORMADORES, CCS Y EL INGA A 230/34.5/500KV	98
4.4.4	TRANSFORMADORES, CCS A 13.8/138/230KV	98

4.4.5	REACTORES	
4.4.6	INTERRUPTORES	100
4.5	PROCEDIMIENTO EN EL ATP	101
4.5.1	FUENTE GENERADORA Y EQUIVALENTE DE RED	101
4.5.2	LINEA DE TRANSMISIÓN	102
4.5.3	TRANSFORMADORES	105
4.5.4	REACTORES	106
4.5.5	INTERRUPTORES	106

CAPÍTULO 5

SIMULACION DE FALLAS MONOFASICAS UTLIZANDO EL SOFTWARE ATPDRAW V5.6

5.1	PROCESO DEL DISTURBIO 109
5.1.1	FALLAS 110
5.1.2	RE-CIERRE
5.1.3	ESTABILIDAD TRANSITORIA 111
5.2	ANÁLISIS TRANSITORIO ORIGINADO POR UNA FALLA TEMPORAL
5.2.1	FALLAS MONOFÁSICAS PRODUCIDAS AL 10% DE LA S/E EL INGA A 500KV 112
5.2.2	FALLAS MONOFÁSICAS PRODUCIDAS AL 10% DE LA S/E CCS A 500KV 127
5.2.3	FALLAS MONOFÁSICAS PRODUCIDAS AL 50% DE LA LÍNEA DE TRANSMISIÓN
	COCA CODO SINCLAIR – EL INGA A 500KV 141
5.2.4	FALLAS MONOFÁSICAS PRODUCIDAS AL 10% DE LA S/E EL INGA A 500KV
	OPERANDO CON UNA SOLA LÍNEA DE TRANSMISIÓN 156
5.2.5	FALLAS MONOFÁSICAS PRODUCIDAS AL 10% DE LA S/E CCS A 500KV OPERANDO
	CON UNA SOLA LÍNEA DE TRANSMISIÓN169
5.2.6	FALLAS MONOFÁSICAS PRODUCIDAS AL 50% DE LA LÍNEA DE TRANSMISIÓN
	COCA CODO SINCLAIR – EL INGA A 500KV OPERANDO CON UNA SOLA LÍNEA DE
	TRANSMISIÓN

CONCLUSIONES Y RECOMENDACIONES

ANEXOS

REFERENCIAS BIBLIOGRAFICAS

INDICE DE FIGURAS

Figura 1.	Diagrama simplificado del proceso de producción de energía eléctrica	6
Figura 2. transforma	Referencia de valores óhmicos de impedancias monofásicas de un lado a otro lado d ador trifásico	el 10
Figura 3.	Transformador regulante para el control de magnitud de voltaje	11
Figura 4. uno con el	Transformador regulante para el control de ángulo de fase. Los devanados paralelos otro están en el mismo núcleo de acero	.11
Figura 5.	Circuito RC	18
Figura 6.	Solución grafica del circuito RC	19
Figura 7.	Circuito RL	20
Figura 8.	Grafica de IL (t) en un circuito RL	23
Figura 9.	Circuito LC	24
Figura 10.	Gráfica de Vc (t) en un circuito LC	27
Figura 11.	Gráfica de Vc (t) e Ic (t) en un circuito LC	29
Figura 12.	Circuito serie RLC	29
Figura 13.	Gráfica I(t) para diferentes casos de amortiguamiento	33
Figura 14.	Circuitos elementales	33
Figura 15.	Forma de onda de sobretensión tipo maniobra	36
Figura 16.	Forma de onda de sobretensión tipo rayo	36
Figura 17.	Forma de onda de sobretensión de frente extra rápido	37
Figura 18.	Representación gráfica de las sobretensiones de un sistema de extra alta tensión	38

Figura 19. Representación de una falla monofásica producida por un rayo o por el contacto físico entre una torre y un conductor
Figura 20. Factor de falla a tierra (k) en función de X0/X1 y R0/X1 =Rf =0 41
Figura 21. Máximo valores de Sobrevoltajes debido a ocurrencias de fallas en función de la resistencia del sistema
Figura 22. Diagrama de una falla de línea a tierra 43
Figura 23. Circuito equivalente de secuencia positiva, negativa y cero, que representa la falla de una fase a tierra
Figura 24. Elevación de tensión por rechazo de carga. (a) Rechazo de carga en un sistema radial. (b) Diagrama fasorial antes del rechazo de carga. (c) Diagrama fasorial después del rechazo de carga
Figura 25. Línea de transmisión operando en vacio o con pequeñas cargas
Figura 26. Impacto del rayo sobre la torre o el hilo de guarda 50
Figura 27. Impacto del rayo en uno de sus conductores de fase
Figura 28. Impacto de un rayo en la cercanía de una Línea de Transmisión
Figura 29. Magnitud de tensiones y sobretensiones en función de su duración, tensiones soportadas por el aislamiento del equipo y tensiones limitadas por el pararrayos
Figura 30. Disposición de equipos para maniobras utilizando resistencias de pre-inserción 57
Figura 31. Comparación entre cierre y re-cierre de una línea de transmisión con diferentes valores de resistencias de pre-inserción
Figura 32. Circuito equivalente Π
Figura 33. Sección incremental de una Línea de Transmisión 69
Figura 34. Modelo de Torre para líneas de transmisión a 500 KV 83
Figura 35. Ingreso de datos previo a la obtención de la máxima corriente de corto circuito 3Φ en la barra de El Inga a 230KV
Figura 36. Resultados de la prueba de cortocircuito trifásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2

Figura 37. Ingreso de datos previo a la obtención de la máxima corriente de cortocircuito 1Φ en la barra de El Inga a 230KV
Figura 38. Resultados de la prueba de cortocircuito monofásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2
Figura 39. Ingreso de datos previo a la obtención de la máxima corriente de cortocircuito 3Φ en la barra de El Inga a 230KV
Figura 40. Resultados de la prueba de cortocircuito trifásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2
Figura 41. Ingreso de datos previo a la obtención de la máxima corriente de cortocircuito 1Φ en la barra de El Inga a 230KV
Figura 42. Resultados de la prueba de cortocircuito monofásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2
Figura 43. I Ingreso de datos previo a la obtención de la máxima corriente de cortocircuito 3Φ en la barra de El Inga a 230KV
Figura 44. Resultados de la prueba de cortocircuito trifásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2
Figura 45. Ingreso de datos previo a la obtención de la máxima corriente de cortoci rcuito 1Φ en la barra de El Inga a 230KV
Figura 46. Resultados de la prueba de cortocircuito monofásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2
Figura 47. Especificaciones técnicas de una fuente Generadora de voltaje en CCS a 13.8KV, acsource tipo 14
Figura 48. Parámetros de secuencia positiva y cero de la fuente Generadora de voltaje en CCS a 13.8KV
Figura 49. Especificaciones técnicas de una fuente Generadora de voltaje en El Inga a 230KV, acsource tipo 14
Figura 50. Parámetros de secuencia positiva y cero de la fuente Equivalente de voltaje en El Inga a 230KV
Figura 51. Modelo y generalidades de la línea en estudio 103
Figura 52. Parámetros geométricos de los conductores y torres

Figura 53. Modelo y especificaciones técnicas del transformador 105
Figura 54. Modelo y especificaciones técnicas del reactor 106
Figura 55. Especificaciones técnicas para interruptores con opción de re-cierre 107
Figura 56. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar
Figura 57. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar
Figura 58. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (4 unidades de generación y RF=0) 115
Figura 59. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (4 unidades de generación y RF=20) 116
Figura 60. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar
Figura 61. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar
Figura 62. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (6 unidades de generación y RF=0)
Figura 63. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (6 unidades de generación y RF=20)
Figura 64. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar
Figura 65. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar
Figura 66. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (8 unidades de generación y RF=0)
Figura 67. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (8 unidades de generación y RF=20) 126
Figura 68. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre tripolar

Figura 69. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre monopolar
Figura 70. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (4 unidades de generación y RF=0)
Figura 71. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (4 unidades de generación y RF=20)
Figura 72. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre tripolar
Figura 73. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre monopolar
Figura 74. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (6 unidades de generación y RF=0)
Figura 75. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (6 unidades de generación y RF=20)
Figura 76. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre tripolar
Figura 77. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre monopolar
Figura 78. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (8 unidades de generación y RF=0)
Figura 79. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (8 unidades de generación y RF=20)
Figura 80. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar
Figura 81. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar
Figura 82. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (4 unidades de generación y RF=0). 143

Figura 83. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (4 unidades de generación y RF=20) 145
Figura 84. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar
Figura 85. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar
Figura 86. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (6 unidades de generación y RF=0). 148
Figura 87. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (6 unidades de generación y RF=20) 150
Figura 88. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar
Figura 89. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar
Figura 90. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (8 unidades de generación y RF=0). 153
Figura 91. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (8 unidades de generación y RF=20) 154
Figura 92. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión
Figura 93. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión
Figura 94. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (4 unidades de generación y RF=0)
Figura 95. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (4 unidades de generación y RF=20)

Figura 96. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión
Figura 97. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión
Figura 98. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (6 unidades de generación y RF=0)
Figura 99. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (6 unidades de generación y RF=20)
Figura 100. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión
Figura 101. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión
Figura 102.Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (8 unidades de generación y RF=0)
Figura 103.Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (8 unidades de generación y RF=20)
Figura 104.Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión
Figura 105.Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión
Figura 106.Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (4 unidades de generación y RF=0)
Figura 107.Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (4 unidades de generación y RF=20)
Figura 108.Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión

Figura 109. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza Figura 110. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (6 unidades de generación Figura 111. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (6 unidades de generación Figura 112. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza Figura 113. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza Figura 114. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (8 unidades de generación Figura 115. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (8 unidades de generación Figura 116. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión 182 Figura 117. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión Figura 118. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (4 unidades de generación y RF=0). 184 Figura 119. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (4 unidades de generación y RF=20) 186 Figura 120. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión 187

Figura 121.Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión

Figura 122.Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (6 unidades de generación y RF=0). 189

Figura 123.Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (6 unidades de generación y RF=20) 190

Figura 124.Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión 191

Figura 126. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (8 unidades de generación y RF=0). 193

Figura 127.Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (8 unidades de generación y RF=20) 194

INDICE DE TABLAS

TABLA 1: Clasificación de los transitorios electromagnéticos	2
TABLA 2: Niveles de voltaje para diferentes líneas de energía	7
TABLA 3: Caracteristicas de los reactores shunt	12
TABLA 4: Caracteristicas de los capacitores shunt	13
TABLA 5: Causas y caracteristicas de los sobrevoltajes temporales	35
TABLA 6: Clasificación de sobretensiones según su origen	
TABLA 7: Clases, formas de onda y tiempos característicos de las sobrete	nsiones
TABLA 8:Caracteristicas de los sistemas efectivamente y No efectivament42	e puestos a tierra
TABLA 9: Técnicas para limitar las sobretensiones por maniobra	56
TABLA 10: Caracteristicas de la Línea de Transmisión Coca Codo Sinclair -	El Inga a 500KV 63
TABLA 11: Banco de reactores en la línea de transmisión de 500KV	63
TABLA 12: Total de simulaciones monofásicas a diferentes niveles de gene operación	ración y 2 circuitos en 65
TABLA 13: Total de simulaciones monofásicas a diferentes niveles de gene operación	ración y 1 circuitos en
TABLA 14: Total de simulaciones producidas por una falla de fase a tierra de la línea de transmisión CCS – El Inga	, en diferentes puntos 66
TABLA 15: Parámetros utilizados en las unidades de generación de CCS	
TABLA 16: Parámetros utilizados en las unidades de transformación CCS y	EL INGA 79
TABLA 17: Parámetros utilizados en las unidades de transformación CCS	

TABLA 18: Parámetros de la Línea de Transmisión CCS – El Inga, obtenidos atraves del ATP79
TABLA 19: Parámetros de secuencia (+), (-) y (0) expresados es ohmios 81
TABLA 20: Característica del conductor ACAR 750 (500 KV) 81
TABLA 21: Característica del cable de guarda de acero galvanizado 82
TABLA 22: Característica del cable de guarda tipo OPGW 82
TABLA 23: Datos del equivalente de red a partir de la corriente de cortocircuito máxima en la barrade El Inga a 230KV (4 unidades de generación)97
TABLA 24: Datos del equivalente de red a partir de la corriente de cortocircuito máxima en la barrade El Inga a 230KV (6 unidades de generación)97
TABLA 25: Datos del equivalente de red a partir de la corriente de cortocircuito máxima en la barrade El Inga a 230KV (8 unidades de generación)97
TABLA 26: Tiempo de operación de los interruptores tripolares y monopolares
TABLA 27: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación (Falla al 10% de El Inga y RF=0) 114
TABLA 28: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación (Falla al 10% de El Inga y RF=20) 115
TABLA 29: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación (Falla al 10% de El Inga y RF=0) 119
TABLA 30: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación (Falla al 10% de El Inga y RF=20) 120
TABLA 31: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación (Falla al 10% de El Inga y RF=0) 123
TABLA 32: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación (Falla al 10% de El Inga y RF=20) 125
TABLA 33: Tiempo de operación de los interruptores tripolares y monopolares
TABLA 34: Resultado de los máximos valores en KV y PU durante el proceso del disturbiooperando con 4 unidades de generación (Falla al 10% de CCS y RF=0)128

TABLA 35: Resultado de los máximos valores en KV y PU durante el proceso del disturbiooperando con 4 unidades de generación (Falla al 10% de CCS y RF=20)129
TABLA 36: Resultado de los máximos valores en KV y PU durante el proceso del disturbiooperando con 6 unidades de generación (Falla al 10% de CCS y RF=0)132
TABLA 37: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación (Falla al 10% de CCS y RF=20)
TABLA 38: Resultado de los máximos valores en KV y PU durante el proceso del disturbiooperando con 8 unidades de generación (Falla al 10% de CCS y RF=0)137
TABLA 39: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación (Falla al 10% de CCS y RF=20)
TABLA 40: Comparación de las sobretensiones obtenidas posterior a una re-conexión tripolar, empleando un RF=0 ohm y diferentes niveles de generación140
TABLA 41: Tiempo de operación de los interruptores tripolares y monopolares
TABLA 42: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=0)
TABLA 43: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=20)
TABLA 44: Comparación de la intensidad de corriente de falla, en diferentes etapas de operación,utilizando 4 unidades generadoras145
TABLA 45: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=0)
TABLA 46: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=20)
TABLA 47: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=0)

 TABLA 65: Tiempo de operación de los interruptores tripolares y monopolares
 183

INTRODUCCIÓN

Un sistema eléctrico, está constituido por centrales de generación de energía eléctrica, subestaciones, líneas de transmisión, líneas de distribución, una diversidad de cargas eléctricas y una gran variedad de equipos adicionales, con el objetivo de que el suministro de energía eléctrica se realice con una calidad de servicio óptima.

La demanda total de un sistema eléctrico, está formada por un gran número de cargas individuales de diferentes tipos (industrial, comercial, residencial); en general, una carga absorbe potencia activa y potencia reactiva, de modo que la potencia total suministrada por el sistema en cada instante es igual a la potencia total absorbida por las cargas, más las pérdidas del sistema.

La potencia media total suministrada por el sistema varía en función del tiempo siguiendo una curva que puede predeterminarse con bastante aproximación y que depende del ritmo de las actividades humanas en la región servida por el sistema (conexión y desconexión de cargas individuales en forma aleatoria).

La energía eléctrica proviene de la transformación de la energía existente en alguna de las siguientes fuentes:

1. Hidroenergía: Transforma la energía por medio de centrales hidráulicas.

- 2. Eólica: Aprovecha la energía del viento.
- Térmica: Mediante el uso de Combustibles fósiles, como carbón, petróleo, gas o nuclear, permite accionar turbinas.
- Geotérmica: Se sirve de elevadas temperaturas que se encuentran en las capas subterráneas
- 5. Biomasa: Aprovechan residuos vegetales y/o plantaciones con carácter energético
- Solar: Se puede emplear directamente mediante celdas fotovoltaicas o para elevar la temperatura de algún líquido que, gasificado, accionará una turbina

ANTECEDENTES

Los transitorios en circuitos eléctricos nacen con la invención de la pila, la bombilla y las maquinas eléctricas. En la historia de las maquinas eléctricas podemos encontrar referencias para visualizar una línea de tiempo, en la cual, los estudios de este fenómeno se hacen necesarios, y comienza a ser de importancia su conocimiento y entendimiento, para de esta forma garantizar la máxima seguridad posible de los sistemas eléctricos.

Durante la segunda mitad del siglo XVIII hasta principios del siglo XX, la electricidad tuvo una evolución bastante acelerada, en el transcurso de ese periodo ocurrieron muchos inventos interesantes, que produjeron una gran revolución a favor de la innovación de la energía eléctrica,

la cual trajo consigo nuevas formas de comportamiento del fenómeno, que dependiendo del sistema, tendría un cierto nivel de afectación. Muchos físicos, matemáticos e incluso filósofos dedicaban su tiempo a la investigación y desarrollo de principios, leyes o teoremas que permitan explicar el comportamiento de los circuitos eléctricos, y es allí donde surgen importantes aportes a favor de la electricidad y entendimiento de la misma, "El equivalente Thevenin y el método de las componentes simétricas

En la actualidad tenemos un sinnúmero de herramientas que nos permiten controlar, prevenir y corregir cualquier acontecimiento anormal en un sistema eléctrico de potencia, todo esto es posible gracias a la implementación de la electrónica de potencia, los programas de simulación, los interruptores de re-cierre sincronizado etc.

OBJETIVO GENERAL

 El objetivo principal de este trabajo, es simular el comportamiento transitorio de la línea de transmisión Coca Codo Sinclair – El Inga, cuando en ella se produzcan fallas monofásicas. Las respectivas simulaciones se efectuaran mediante el uso del Alternative Transient Program v5.6

OBJETIVOS ESPECIFICOS

- Simular la línea de transmisión Coca Codo Sinclair El Inga en diferentes estados de generación y con las máximas corrientes de cortocircuito que se puedan presentar
- Identificar las afecciones que produzcan las fallas monofásicas en la línea de transmisión Coca Codo Sinclair – El Inga a 500KV
- 10. Efectuar simulaciones con diferentes resistencias de falla y realizar las respectivas comparaciones tanto de corriente como voltaje en distintos puntos del sistema

CAPITULO 1

1. GENERALIDADES

Los sistemas eléctricos de Potencia son dinámicos y no lineales por naturaleza, por ejemplo: cuando los breakers cierran y operan, las fallas son despejadas, la generación es función de la demanda, además los sistemas eléctricos están expuestos a descargas atmosféricas, como los rayos.

Un factor importante de considerar en la planificación de un sistema de transmisión, es la presencia de disturbios que pueden producir cambios en su comportamiento normal, obligando a todos sus componentes a trabajar a niveles altos de operación, provocando valores excesivos de corriente y voltaje, la predicción y corrección de etas alteraciones, es el objetivo principal de la simulación de fallas en sistemas de potencia.

Las principales causas de las perturbaciones en los sistemas de potencia, cuyos tiempos de duración se presentan en la tabla 1 son:

Origen	Tiempo de duración del transitorio en sistemas eléctricos
Energización de Trafos	
Rayos	0.1µs - 1.0ms
Maniobras	10μs o menor a un segundo
Resonancia sub-sincrónica	0.1ms - 5s
Estabilidad transitoria	1ms - 10s
Estabilidad dinámica	0.5 - 1000s

Tabla 1: Clasificación de los transitorios electromagnéticos

Por lo general cuando se producen descargas atmosféricas en la cercanía de una línea de transmisión, existen ocasiones en que los rayos producidos por una descarga atmosférica impacta la línea de transmisión, produciendo sobre voltajes en las mismas y en todos sus componentes, las mismas que pueden ser causantes de fallas en el aislamiento de los aisladores y perdida de la coordinación de aislamiento.

1.1 ELEMENTOS DE UN SISTEMA ELECTRICO DE POTENCIA

Para analizar un sistema eléctrico de potencia, es necesario conocer el comportamiento de cada elemento ya que cada uno de ellos tiene su respectiva característica, es decir unos tienden a ser más resistivos, otros más inductivos, otros capacitivos e incluso tener una combinación de los antes mencionados.

Los elementos de un sistema eléctrico pueden representarse a través de impedancias lineales o impedancias no lineales.

- 11. Las impedancias lineales corresponden a aquellos elementos en los que existe una relación proporcional entre la tensión y la corriente para las mismas componentes de frecuencias. Entre los elementos que pueden representarse a través de impedancias lineales, se encuentran las líneas, los transformadores, las maquinas eléctricas y algunas cargas.
- 12. Las **impedancias no lineales** son aquellos elementos que no presentan esta relación proporcional. Entre estos se destacan los dispositivos de estado sólido, los dispositivos electrónicos como por ejemplo los FATS entre otros

Entre los principales elementos de un sistema eléctrico de potencia podemos destacar los siguientes:

- 13. Generadores
- 14. Líneas de transmisión
- 15. Los transformadores de potencia
- 16. Reactores en derivación
- 17. Banco de Capacitores
- 18. Interruptores
- 19. Pararrayos

La representación de los elementos en un circuito eléctrico (líneas, transformadores) es de vital importancia en la obtención de soluciones, su representación puede ser mediante parámetros concentrados o mediante parámetros distribuidos.

Los estudios con parámetros concentrados generalmente corresponden a aquellos en los que no es importante la precisión que se introduce al no considerar los parámetros distribuidos, algunos de estos estudios con parámetros concentrados son:

- 20. Corto circuito simétrico o asimétrico
- 21. Armónicos
- 22. Flujo de Carga
- 23. Estabilidad

En el caso de los elementos de control y protección, el análisis de circuito puede incorporar una diferencia básica.

- 24. Con parámetros lineales
- 25. Con parámetros no lineales

1.1.1 Elementos básicos

1.1.1.1 <u>Resistor</u>

La resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las cargas eléctricas o electrones.

La resistencia es un elemento pasivo debido a que disipa energía, siendo el valor de la energía disipada a cada instante:

$$E = I^2 R \qquad (1.1)$$

1.1.1.2 <u>Inductor</u>

Un inductor o bobina es un componente pasivo de un circuito eléctrico. Una característica interesante de los inductores es que se oponen a los cambios bruscos de la corriente que circula por ellas, esto significa que a la hora de modificar la corriente que circula por ellos, esta intentará mantener su condición anterior.

El inductor almacena energía en forma de campo magnético, el valor de esta energía almacenada es función de la corriente y viene dada por:

$$E = \frac{1}{2}LI^2 \qquad (1.2)$$

1.1.1.3 <u>Capacitor</u>

Los capacitores consisten básicamente de dos placas metálicas separadas por un material aislante (llamado dieléctrico). Este material dieléctrico puede ser aire, mica, papel, cerámica, etc.

26. La tensión no puede variar instantáneamente en un sistema de capacitancia fija.

Si se conecta un capacitor descargado a una fuente de energía, fluirá una corriente de manera instantánea y el capacitor se podrá considerar como equivalente a un cortocircuito.

El capacitor almacena energía en forma de campo eléctrico, el valor de esta energía almacenada es función de la tensión y viene dada por:

$$E = \frac{1}{2}CV^2 \tag{1.3}$$

1.1.2 Generadores

Los generadores son dispositivos que permiten en las máquinas, la producción de una determinada fuerza o energía. En el caso de un generador eléctrico, lo que éste realiza es, transformar la energía.

El proceso de generación de energía eléctrica es el de transformación a partir de generadores. Y para que haya una transformación, debe haber una fuente que se tome como base para realizar el cambio. Dicha fuente es toda energía que sea considerada como no eléctrica. En este grupo entran las siguientes energías: térmica, mecánica, luminosa, química, entre otras. Este cambio en la energía se lleva a cabo en inmediaciones apropiadamente denominadas centrales eléctricas, las cuales realizan tan solo los primeros pasos del proceso. La Fig. 1 corresponde al suministro de la energía que ha sido generada, es decir, todos los pormenores del transporte y la distribución.

Figura 1. Diagrama simplificado del proceso de producción de energía eléctrica

1.1.3 Líneas de Transmisión

Las líneas de transmisión es el medio más adecuado para transportar la energía eléctrica desde una fuente de generación hacia los centros de consumo (las cargas).

Estos son utilizados normalmente cuando no es costeable producir la energía eléctrica en los centros de consumo o cuando afecta el medio ambiente (visual, acústico o físico), buscando siempre maximizar la eficiencia, haciendo las perdidas por calor o por radiaciones las más pequeñas posibles.

1.1.3.1 <u>Clasificación de las líneas de Energía</u>

De acuerdo con el nivel de tensión y el sistema eléctrico en el cual se ubica una línea, estas se pueden clasificar en:
LINEAS	VOLTAJE (KV)
Líneas de Distribución (LD)	$13.8 \le \mathrm{LD} \ge 34.5$
Líneas de Subtransmisión (LS)	$34.5 \leq \text{LS} \geq 110$
Líneas de Transmisión de alto Voltaje (HV)	110 ≤ HV ≥ 345
Líneas de Transmisión de Extra-Alto- Voltaje	345 ≤ HV ≥ 765
Líneas de Transmisión de Ultra-Alto- Voltaje	UHV ≥ 765

Tabla 2: Niveles de	voltaje p	oara diferentes l	Líneas de En	ergía Eléctrica

1.1.3.2 <u>Principales elementos de una Línea de Transmisión Aérea</u>

Entre los principales elementos constan:

- 27. Aisladores
- 28. Postes
- 29. Seccionadores
- 30. Conductores
- 31. Banco de Capacitores
- 32. Pararrayos
- 33. Hilos de Guarda

1.1.3.3 <u>Selección de conductores de Fase y Cables de Guarda</u>

Para Selección de Conductores de Fase y Cables de Guarda se deben cumplir ciertos criterios técnicos los cuales aseveran la integridad de la línea y minimizan la afectación al entorno (medio ambiente y personas), buscando reducir los costos dentro de un margen aceptable.

Criterios de Selección

Conductores de Fase:

- 34. Corriente de la línea: Campos magnéticos y capacidad de transporte de corriente (calentamiento).
- 35. Nivel de tensión: Efecto corona y fenómenos asociados (radio-interferencia, ruido audible, pérdidas corona); y campos eléctricos.
- 36. Selección económica de los conductores de fase.

Cables de Guarda:

- 37. Capacidad de corriente de cortocircuito del cable de guarda.
- 38. Comportamiento frente al impacto directo de descargas atmosféricas.
- 39. Corrientes inducidas en los cables de guarda

Estos son unos de los tantos criterios que existen en la construcción de una línea de transmisión, aquí se destacan los que intervienen en el proceso transitorio, sin dejar de lado el aislamiento.

1.1.4 Transformador de Potencia

Es una máquina eléctrica que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. Este tipo de transformadores generalmente los encontramos en las subestaciones, sirviendo de enlaces entre los generadores del sistema de potencia y las líneas de transmisión y también entre líneas de diferentes niveles de tensión. En la Fig.2 se muestran las diferentes conexiones del transformador.

Figura 2 Referencia de valores óhmicos de impedancias monofásicas de un lado a otro lado del transformador trifásico

Generalmente los transformadores están provistos de pequeños ajustes (Magnitud y ángulo). Algunos componentes regulan tanto magnitud como ángulo de fase.

40. Regulación de voltaje.- es la diferencia que existe entre el voltaje a plena carga y el voltaje sin carga en por ciento del voltaje a plena carga, medido en las terminales en que se coloca la carga y conservando el voltaje de entrada constante.

% Re
$$g = \frac{|V_{2,sc}| - |V_{2,pc}|}{|V_{2,pc}|} *100$$
 (1.4)

 $|V_{\rm 2,sc}|~$ Magnitud de V2 (la terminal de carga) en ausencia de carga

 $|V_{2,pc}|$ Magnitud de V2 a plena carga con V1 constante

Casi todos los transformadores tienen derivaciones en sus devanados para ajustar la relación de transformación y cambiarla cuando el transformador este des-energizado, aquellos transformadores que realizan esta regulación cuando están energizados se les denomina Transformadores con cambio de derivación con carga (TCC) o Transformadores cambiadores de derivación bajo carga (TCBC). El cambio de regulación es automático y opera con motores que corresponden a un conjunto de relevadores que los lleva a un nivel prescrito de voltaje, estos circuitos son especiales por que permiten hacer cambios sin interrumpir la corriente.

Figura 3. Transformador regulante para el control de magnitud de voltaje

Figura 4. Transformador regulante para el control de ángulo de fase. Los devanados paralelos uno con el otro están en el mismo núcleo de acero

1.1.5 Banco de Reactores

Es uno de los medios más económicos para absorber potencia reactiva, maniobrado mecánicamente o mediante el disparo de un interruptor con la señal de un relé de tensión.

Estos elementos ayudan a compensar los excedentes de reactivos de la línea de transmisión cuando esta se encuentra bajo carga, es decir nos ayudan a controlar los voltajes de régimen permanente, no son ideales para controlar transitorios.

Se pueden conectar directamente en las líneas de transmisión en las barras de las subestaciones o en terciarios de los transformadores del sistema. A continuación se presentan características relevantes de los reactores Shunt

Reactor Shunt						
	circuito			Tiempo de respuesta	El transitorio de conexión dura alrededor de 100ms	
circuito			11	Conexión al sistema Directamente a la barra o atravez de un transformador		ansformador
] [Valores nominales Vn, Qn	
Tipo	Reactor trifasico o de 3 unidad	les monofasicas	11		Rango de tension	
Alternativas	Nucleo de aire o nucleo	de hierro]]	Criterio de diseño	Requerimiento de consumo de react en la barra de conexión	
	V V_{n} $(1) 0 = Gn (V/Yh) 2$ $(2) 0 \Rightarrow Gn (V/Yh) 2$ $(3) 0 \Rightarrow Gn (V/Yh) 2$		11		Limitaciones de sobretension ante rechazos de carga	
Constanting V . I					Cambios de tension debido a transitorios de maniobra	
Caracteristicas v - 1			Ιſ	Criterios de comportamiento		
			[Reaccion		
Valores Nominales	Vn, Qn, Vcodo][Capacidad de sobrecarga	Alta por un medio limitado de tiempo	
	Control de tension en estado estacionario	Si][Variacion de la pot reactiva	La pot reactiva consumida depende del cuadro de la tension	
	Control transitorio de tension	Por saturacion si tiene nucleo de hierro		Transformador		
	Estabilidad de tension	No][Numero de operaciones	Norfmalmente restringida de 2 a 4 veces por dia	
	Consumo de potencia reactiva	Depende de a tension		Efectos de maniobra	Ic/In: 3 a 5 (Ic: corriente de insercion)	
Tareas	Amort de las oscilaciones	No][Proteccion	La proteccion estandar de un transformador	
Taitas	Amort de las oscilaciones sincronicas	No		Perdidas	Aprox: 0.2 - 1.0%	
	Influencia en el flujo de potencia	Sobre el flujo de la pot react			Aire acondicionado	no
	Mejoramiento de la estabilidad	Indirecta al sobreexcitarse los generadores		Factores ambientales	Requerimientos de espacio	bajo
	Compensacion del efecto flicker	No			Requerimientos de enfriamiento	ONAN/ONAF
	Correcion de desbalance de fase	No		Disponibilidad	99.00%	
Sistema de control	Mediante un interruptor se conecta a los requerimientos			Mantenimiento	Minimo	

Tabla 3: Caracteristicas de los reactores Shunt

1.1.6 Banco de Capacitores

Son útiles para cuando en la red se tiene un bajo factor de potencia, ubicándolos en zonas estratégicas beneficiarían al sistema en:

- 41. Liberar capacidad KVAR del sistema eléctrico
- 42. Mejorar la regulación de voltaje
- 43. Reducir las pérdidas en el sistema
- 44. Proporcionar energía reactiva demandada por las cargas inductivas

Una de las principales desventajas de este tipo de equipos es que la potencia reactiva depende del cuadrado de su tensión, si está cayendo proveen el mínimo soporte de la tensión cuando su aporte es más necesario.

A continuación se presentan caracteristicas relevantes en los condensadores shunt.

Capacitor Shunt						
	*		Π	Tiempo de respuesta	El transitorio de conexión dura alrededo	r de 100ms
circuito			[Conexión al sistema	Directamente a la barra de carga o atravez de un trafo	
	⊥_ I		Ιſ		Valores nominales Vn, Qn	
					Rango de tension	
Tipo	Elementos estaticos conformados por vari	ias unidades conectadas en	11		Requerimientos de reactivos en la barra de conexión en	
	paralelo/serie		- [•]	Criterio de diseño	condiciones normales y de conting	encia
Alternativas	Papel o aislante sini	tetico	11		Valor fijo de capacitancia	
					Incremento de las solicitaciones de tension por armonicos	
Caracteristicas V - I					Cambios de tension debido a transitorios de maniobra	
			11	Criterios de comportamiento		
				Reaccion		
Valores Nominales	Vn, Qn		H	Capacidad de sobrecarga		
	Control de tension en estado estacionario	Si	IL	Variacion de la pot reactiva	La pot reactiva depende del cuadro de la tension	
	Control transitorio de tension	No		Transformador		
	Estabilidad de tension] [Numero de operaciones	Norfmalmente restringida de 2 a 4 vec	es por dia
	Suministro de potencia reactiva	Depende de la tension		Efectos de maniobra		
	Amort de las oscilaciones	No		Proteccion	Desbalance, sobrecorriente y sobretension	
Tareas	Amort de las oscilaciones sincronicas	No	11	Perdidas	Aprox: 0.2 - 0.06%	
	Influencia en el flujo de potencia	Sobre el flujo de pot reactiva	Factores ambientales	Aire acondicionado	no	
	Mejoramiento de la estabilidad	Muy limitado		Requerimientos de espacio	Si	
	Compensacion del efecto flicker	No	11		Requerimientos de enfriamiento	No
	Correcion de desbalance de fase	No	11	Dispensibilidad	00.50%	
	Reduccion de armonicos	Si	Disponibilidad		99.50%	
Sistema de control	Mediante un interruptor se conecta de acue flujo de potenci	erdo a los requerimientos del a	[Mantenimiento	Reemplazo de unidades en el caso d	le fallas

Tabla 4: Caracteristicas de los Capacitores Shunt

1.1.7 Interruptores

Los interruptores que se usaban antiguamente en los circuitos eléctricos, eran generalmente de accionamiento manual y del tipo seccionador (cuchilla). Con el aumento de las intensidades y de las tensiones requeridas en el sector industrial, resultó que el arco que se formaba al abrir el interruptor dañaba o destruía los contactos, entonces se construyeron interruptores que abrían o

cortaban rápidamente los circuitos por medio de un resorte o por la acción de la gravedad, reduciendo así la duración del arco y la magnitud del deterioro del interruptor.

Colocando el interruptor en posición vertical, con ruptura horizontal, la corriente de aire por convección, debida al calor del arco, tiende a extender el arco hacia arriba, alejándolo del interruptor; así mismo, la acción magnética de la espira formada por el interruptor y el arco, tiende a aumentar la longitud del arco extinguiéndolo.

Definiéndolo de manera más simple, podemos decir que es un aparato de poder de corte destinado a efectuar la apertura y/o cierre de un circuito eléctrico.

45. A mayor tensión el interruptor debe ser más confiable.

1.1.8 Pararrayos

Un pararrayos es un instrumento cuyo objetivo es atraer un rayo, ionizando el aire para llamar y conducir la descarga hacia tierra, de tal modo que no cause daños a construcciones o personas.

Se dividen en dos tipos: los pararrayos ionizantes y los pararrayos des-ionizantes pasivos.

- 46. Pararrayos ionizantes.- Son pararrayos que ionizan el aire y captan la descarga del rayo (atrae-rayos); se destacan por ser electrodos acabados en una o varias puntas, están instalados en la parte más alta de la instalación y conectados a tierra. Se dividen en:
 - o lonizantes pasivos

- o Semi-activos
- 47. Pararrayos des-ionizantes pasivos.- Estos se destacan por ser de forma esférica, están ubicados en la parte más alta de la instalación y conectados a tierra. Durante el proceso de la carga electroestática del fenómeno del rayo, la transferencia de su energía a tierra, se transforma en una corriente de fuga a tierra, el valor máximo de lectura en plena tormenta no supera los 250 mA y es proporcional a la carga eléctrico-atmosférica.

CAPITULO 2

2. TRANSITORIOS ELECTROMAGNETICOS EN SISTEMAS DE POTENCIA

Un proceso transitorio en un sistema eléctrico de potencia, se origina como consecuencia de un cambio en las condiciones normales de operación o en la configuración del sistema, causado por maniobras dentro del sistema eléctrico, por fallas o por descargas atmosféricas sobre un determinado elemento

En ese corto intervalo de tiempo, en el que se produce un cambio de estado, el sistema eléctrico de potencia, puede ser sometido a grandes esfuerzos eléctricos y mecánicos, es decir dependiendo de la magnitud de corriente y voltaje que se produzcan, podría ocasionar la salida de servicio (parcial o permanente) de un equipo, una línea, una subestación e incluso dependiendo del lugar de la falla, podría dejar sin servicio a todo un país.

Hoy en día se sabe que un transitorio no es un acontecimiento que pasa desapercibido, sino que hay que considerarlo como uno de los principales estudios en un sistema eléctrico de potencia, es

más, tiene la misma importancia que la operación en estado estable; por tal motivo es necesario prevenir, controlar y de ser necesario, realizar correctivos en áreas que lo requieran.

2.1 PRINCIPIOS DURANTE LOS TRANSITORIOS

Durante los transitorios se cumple que:

- 48. La corriente de un inductor no puede cambiar bruscamente, en tiempo que tiende a cero.
- 49. El voltaje en un capacitor no puede cambiar bruscamente, en tiempo que tiende a cero.
- 50. La energía debe conservarse en el circuito.

La velocidad de suministro de energía es igual a la velocidad de almacenamiento de energía más la velocidad de consumo de energía.

$$E_{su\min istrada} = E_{almacenada} + E_{consumida}$$
(2.1)

2.2 TRANSITORIOS EN CIRCUITOS ELÉCTRICOS ELEMENTALES

2.2.1 Circuito serie RC

Para tener claro el comportamiento transitorio veamos el caso de un circuito serie RC que es alimentado por una fuente de corriente continua V, se cierra el switch S, para cargar el capacitor C, a través de una resistencia R

Figura 5. Circuito RC

La ecuación en función de la corriente es:

$$V = RI(t) + \frac{1}{C} \int I(t)dt \qquad (2.2)$$

La ecuación en función del voltaje Vc (t) es:

$$V = RC \frac{\partial Vc(t)}{\partial t} + Vc(t)$$
(2.3)

Separando las variables Vcyt

$$\frac{\partial Vc}{V - Vc} = \frac{\partial t}{RC}$$
(2.4)
$$Vc = V - Ae^{-\frac{t}{RC}}$$
A = Constante a definir de C.I.

La solución analítica es:

$$Vc(t) = V - [V - Vc(0)]e^{-\frac{t}{RC}}$$
 (2.5)

Vc (0): Condición inicial del capacitor

Solución Grafica

Figura 6. Solución grafica del circuito RC

- 51. La condición inicial del capacitor es Vc (0).
- 52. Se aprecia que la variación del voltaje del capacitor es suave, no instantáneo, no brusco.
- 53. Se produce un transitorio de voltaje, entre los estados estables inicial y final.
- 54. A cierto plazo, luego del transitorio, el voltaje del capacitor alcanza el voltaje estable de la fuente.
- 55. El transitorio tiene una forma característica, exponencial decreciente, $e^{-\overline{RC}}$

Análisis de la solución

$$Vc(t) = V - [V - Vc(0)]e^{-\frac{t}{RC}}$$

La solución del circuito RC muestra 2 partes:

56. La primera parte del voltaje del capacitor representa el estado estable del voltaje Vc (t).

(Este componente es debido a la fuente de energía, V).

- 57. La segunda parte del voltaje del capacitor representa la condición transitoria del voltaje Vc
 - (t).
- Este componente es debido a la transición suave entre la condición inicial, Vc (0),
 y el estado estable final V, además es consistente con la característica del capacitor.
- La forma de este componente transitorio depende de los parámetros propios del circuito, R y C
- La magnitud de este componente transitorio depende de la condición inicial del voltaje y la energía
- 58. El transitorio de forma exponencial decreciente $e^{\frac{1}{RC}}$, se presenta independientemente de la fuente de energía.

2.2.2 Circuito serie RL

El Circuito serie RL es alimentado por una fuente de corriente continua V, en el instante que se cierra el switch se alimenta el inductor L, a través de una resistencia R

Figura 7. Circuito RL

Solución de I (t) en un circuito RL

$$V = RI + L \frac{\partial i}{\partial t} \quad \text{Aplicando Laplace} \quad (2.6)$$

$$\frac{V}{s} = RI(s) + LsI(s) - LI(0)$$
(2.7)

$$\frac{V}{Ls} + I(0) = I(s)\left(s + \frac{R}{L}\right)$$
(2.8)

$$I(s) = \frac{V}{Ls\left(s + \frac{R}{L}\right)} + \frac{I(0)}{\left(s + \frac{R}{L}\right)}$$
(2.9)

Asumiendo que I (0)=0 se cumple que:

$$I(s) = \frac{V}{Ls\left(s + \frac{R}{L}\right)}$$
(2.10)

Aplicando un artificio matemático

$$I(s) = \frac{V}{L \frac{R}{L} \left(\frac{1}{s} - \frac{1}{\left(s + \frac{R}{L}\right)} \right)}$$
(2.11)

Ahora utilizamos la transformada inversa para encontrar la solución general cuando I(0)=0

$$I(t) = \frac{V}{R\left(1 - e^{-\frac{R}{L}t}\right)}$$
(2.12)

Análisis de la solución

- 59. La corriente inicial es I(0)=0
 - o La corriente inicial no puede mostrar una discontinuidad
 - o La derivada de corriente inicial es finita

60. La corriente de estado estable tiende a V/R

o La fuente, V, es de corriente directa

Si resolvemos el circuito para cuando I (0) ≠0

De la ecuación

$$I(s) = \frac{V}{Ls\left(s + \frac{R}{L}\right)} + \frac{I(0)}{\left(s + \frac{R}{L}\right)}$$
$$I(s) = \frac{V}{R\left(\frac{1}{s} - \frac{1}{\left(s + \frac{R}{L}\right)}\right)} + \frac{I(0)}{\left(s + \frac{R}{L}\right)}$$
(2.13)

Utilizando la inversa de Laplace hallamos la solución operacional

$$I(t) = \frac{V}{R\left(1 - e^{-\frac{R}{L}t}\right)} + I(0)e^{-\frac{R}{L}t}$$
(2.14)

Análisis de la solución

- 61. La corriente inicial es $I(0) \neq 0$
 - o La corriente inicial no puede mostrar una discontinuidad

o La derivada de corriente inicial es finita

62. La corriente de estado estable tiende a V/R

- o La fuente, V, es de corriente directa
- La transición a cualquier estímulo o cambio en el circuito solo puede ser de la forma característica e-Rt/L

Grafica de I∟ (t) en un circuito RL

Figura 8. Grafica de IL (t) en un circuito RL

- 63. Se muestra el efecto una mayor constante de tiempo L/R, en un circuito RL
- 64. Con mayor L/R toma más tiempo en alcanzar un % dado del valor de estado estable, V/R

2.2.3 Circuito serie LC

Sea el circuito serie LC, alimentado por una fuente de corriente continua V, se cierra el switch S, para alimentar el capacitor C, a través de un inductor L.

65. En este circuito la frecuencia natural de oscilación es (1/LC)½

 Esta oscilación es la única forma en que se desarrollan las repuestas de este circuito a cualquier estímulo.

Figura 9. Circuito LC

Características de los Circuitos LC

En los circuitos RC y RL, un solo elemento almacena energía. La característica de ambos circuitos es un simple exponencial decreciente, e-t/RC y e-Rt/L. En cambio en este tipo de circuitos 2 elementos almacenan energía (L y C)

66. La característica de este circuito es un doble exponencial, e+junt ± e-junt

Dependiendo del circuito los exponentes pueden ser:

- 67. Reales, imaginarios y complejos conjugados.
- 68. Cuando son imaginarios o complejos conjugados se combinan para dar funciones sinusoidales.
- 69. Las respuestas son oscilatorias a frecuencia natural, 1/(LC) ½

La energía eléctrica oscila entre la inductancia y la capacitancia del circuito

Solución de I (t) en un circuito LC

$$V = L \frac{\partial i}{\partial t} + V_c$$
(2.15)
$$V = L \frac{\partial i}{\partial t} + \frac{1}{C} \int I dt$$
(2.16)
$$0 = L \frac{\partial^2 i}{\partial t^2} + \frac{1}{C} I$$
(2.17)

Transformando

$$0 = s^{2}LI(s) - sLI(0) - LI'(0) + \frac{1}{C}I(s)$$
(2.18)

$$I(s)\left(s^{2}L + \frac{1}{C}\right) = sLI(0) + LI'(0)$$
(2.19)

$$I(s)\left(s^{2} + \frac{1}{LC}\right) = sI(0) + \frac{I'(0)}{L}$$
(2.20)

$$I'(0) = V - V_{c}(0)$$
(2.21)

$$I(s)\left(s^{2} + \frac{1}{LC}\right) = sI(0) + \frac{V - V_{c}(0)}{L}$$
(2.22)

$$I(s) = \frac{sI(0)}{\left(s^{2} + \frac{1}{LC}\right)} + \frac{V - V_{c}(0)}{L\left(s^{2} + \frac{1}{LC}\right)}$$
(2.23)

Si I (0) y Vc (0) son cero

$$I(s) = \frac{V}{L\left(s^2 + \frac{1}{LC}\right)}$$
(2.24)

Se sabe que:

$$\omega_n = \left(\frac{1}{LC}\right)^{\frac{1}{2}}$$
 (2.25)

Reemplazando wn

$$I(s) = \frac{V}{(LC)^{\frac{1}{2}}} \frac{\omega_n}{L(s^2 + \omega_n^2)}$$
(2.26)

Utilizando la inversa hallamos la solución en términos de I(t)

$$I(t) = \frac{V}{(LC)^{\frac{1}{2}}} \operatorname{sen} \omega_n t$$
(2.27)

Análisis de la solución

$$I(t) = \frac{V}{(LC)^{\frac{1}{2}}} sen \left(\frac{1}{LC}\right)^{\frac{1}{2}} t$$
 (2.28)

70. La corriente es oscilatoria, alterna de forma sinusoidal a la frecuencia natural

- 71. La relación magnitudes de voltaje V(t) y corriente I(t) es igual a (L/C) 1/2
- 72. El término (L/C) $\frac{1}{2}$ se denomina Impedancia Transitoria o "Surge Impedance", ZO 73. ZO = (L/C) $\frac{1}{2}$

Solución del circuito LC en términos de Vc (t)

$$V = L \frac{\partial i}{\partial t} + V_c$$

$$V = LC \frac{\partial V_c}{\partial t^2} + V_c$$
 (2.29)

$$\omega_n^2 V = \frac{\partial^2 V_c}{\partial t^2} + \omega_n^2 V_c$$
(2.30)

Transformamos

$$\omega_n^2 \frac{V}{s} = s^2 V_c(s) - s V_c(0) - V_c(0) + \omega_n^2 V_c(s)$$
(2.31)

$$\omega_n^2 \frac{V}{s} + sV_c(0) + V_c(0) = V_c(s)(s^2 + \omega_n^2)$$
(2.32)

Sí I (0)=0 y Vc^{*} (0)=0

$$V_{c}(s) = \omega_{n}^{2} \frac{V}{s(s^{2} + \omega_{n}^{2})} + \frac{sV_{c}(0)}{(s^{2} + \omega_{n}^{2})}$$
(2.33)

Vc(s), sepuede descomponer en fracciones

$$V_{c}(s) = \frac{V}{s} - \frac{sV}{(s^{2} + \omega_{n}^{2})} + \frac{sV_{c}(0)}{(s^{2} + \omega_{n}^{2})}$$
(2.34)

La inversa de $V_c(s)$ es:

$$V_c(t) = V(1 - \cos \omega_n t) + V_c(0) \cos \omega_n t \qquad (2.35)$$

$$V_{c}(t) = V - (V - V_{c}(0))\cos\omega_{n}t$$
 (2.36)

Gráfica de Vc (t) en un circuito LC

$$V_c(t) = V - (V - V_c(0)) \cos \omega_n t$$

Figura 10. Gráfica de Vc (t) en un circuito LC

Análisis de la solución de Vc (t)

$$V_c(t) = V - (V - V_c(0)) \cos \omega_n t$$

- 74. El voltaje Vc(t) del capacitor oscila arriba y abajo del valor de la fuente, V, con una amplitud igual a la diferencia V-Vc(0)
 - o Entre menor es Vc(0) con relación a V de la fuente, mayor es la oscilación
 - Para cuando Vc (0) = -V, la oscilación alcanza 3V
- 75. En un circuito real, con resistencia las oscilaciones se amortiguan al pasar un tiempo
 - o El voltaje Vc (t) = V, se estabiliza en un valor igual a la fuente, V
 - La corriente en estado estable se interrumpe I(t) = 0

Análisis de las soluciones Vc (t) e lc (t)

$$V_{c}(t) = V - (V - V_{c}(0))\cos \omega_{n} t$$
$$I(t) = \frac{V}{(LC)^{\frac{1}{2}}} \operatorname{sen} \omega_{n} t$$

- 76. Cuando el capacitor alcanza un valor de voltaje igual al de la fuente, la corriente alcanza su valor máximo
 - o En consecuencia la corriente continua circulando, forzada por la inductancia
 - El voltaje del capacitor continua creciendo más allá que el valor de la fuente Vc >
 V, pero no puede hacerse cero bruscamente debido a su comportamiento natural
 - Un cuarto de ciclo después la corriente se hace cero, el voltaje del capacitor es máximo y el capacitor comienza a descargarse

Gráfica de Vc (t) e Ic (t) en un circuito LC

Figura 11. Gráfica de Vc (t) e lc (t) en un circuito LC

- 77. En el punto rojo Vc(t) = V, de la fuente, pero Vc(t) continua creciendo, hasta que I(t) se hace cero, un ¼ de ciclo después, punto amarillo
- 78. En el punto negro, el voltaje del capacitor oscila y comienza a descargarse
- 2.2.4 Circuito Serie RLC

Para tener mucho más en claro el comportamiento transitorio resolveremos un caso real, el cual fácilmente seria representado por una fuente CA, una línea de transmisión y cargas. La siguiente figura es una representación equivalente de lo expuesto

Figura 12. Circuito Serie RLC

Aplicando ley de Kirchhoff se tiene que:

$$V_m sen(\omega t + \varphi) = Ri(t) + L\frac{\partial i(t)}{\partial t} + \frac{1}{C}\int i(t)\partial t \qquad (2.37)$$

Para obtener respuestas transitorias es necesario resolver la ecuación diferencial homogénea

$$0 = \frac{R}{L} \frac{\partial i(t)}{\partial t} + \frac{\partial^2 i(t)}{\partial t^2} + \frac{1}{LC} i(t)$$
 (2.38)

La solución general de la ecuación diferencial homogénea es:

$$i_h(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$
 (2.39)

Donde λ_1 y λ_2 son las bases de la ecuación característica

$$0 = \lambda^2 + \frac{R}{L} + \frac{1}{LC}$$

$$\lambda_{1,2} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}} \qquad (2.40)$$

Las funciones exponenciales de la ecuación general serán cero para grandes valores de t, por lo tanto la solución particular se escribirá:

$$i_{p}(t) = Asen(\omega t + \varphi) + B\cos(\omega t + \varphi)$$
(2.41)

A y B son 2 constantes que se pueden determinar sustituyendo la ecua en la ecua, obteniendo como resultado la ecuación particular

$$i_{p}(t) = \frac{V_{\max}}{\sqrt{R^{2} + \left(\frac{1}{\omega C} - \omega L\right)^{2}}} sen\left[\omega t + \varphi + \tan^{-1}\left(\frac{\frac{1}{\omega C} - \omega L}{R}\right)\right]$$
(2.42)

Sumando ambos soluciones, la homogénea y la particular se tiene:

$$i(t) = i_{h}(t) + i_{p}(t)$$
(2.43)
$$i(t) = C_{1}e^{\lambda_{1}t} + C_{2}e^{\lambda_{2}t} + \frac{V_{\max}}{\sqrt{R^{2} + \left(\frac{1}{\omega C} - \omega L\right)^{2}}} sen\left[\omega t + \varphi + \tan^{-1}\left(\frac{\frac{1}{\omega C} - \omega L}{R}\right)\right]$$
(2.44)

Debemos considerar las situaciones de amortiguamiento:

Si $\left(\frac{R}{2L}\right)^2 > \frac{1}{LC}$, la oscilación transitoria es sobre-amortiguada y la expresión de corriente es:

$$i(t) = \left(C_1 e^{\beta t} + C_2 e^{-\beta t}\right) e^{\alpha t} + \frac{V_{\max}}{\sqrt{R^2 + \left(\frac{1}{\omega C} - \omega L\right)^2}} sen \left[\omega t + \varphi + \tan^{-1} \left(\frac{\frac{1}{\omega C} - \omega L}{R}\right)\right]$$

$$(2.45)$$

$$on \qquad \alpha = -\frac{R}{2} \qquad \forall \qquad \beta = \left[\left(\frac{R}{\omega C}\right)^2 - \frac{1}{2}\right]^{\frac{1}{2}}$$

Con
$$\alpha = -\frac{R}{2L}$$
 y $\beta = \left\lfloor \left(\frac{R}{2L}\right)^2 - \frac{1}{LC} \right\rfloor^2$ (2.46)

Si $\left(\frac{R}{2L}\right)^2 = \frac{1}{LC}$, las bases de la ecuación característica son iguales y reales entonces la oscilación transitoria es críticamente amortiguada y la expresión de corriente es:

$$i(t) = (C_1 + C_2)e^{\alpha t} + \frac{V_{\max}}{\sqrt{R^2 + \left(\frac{1}{\omega C} - \omega L\right)^2}} \operatorname{sen}\left[\omega t + \varphi + \tan^{-1}\left(\frac{1}{\omega C} - \omega L\right)\right]$$
(2.47)

Con $\alpha = -\frac{R}{2L}$ (2.48) Si $\left(\frac{R}{2L}\right)^2 < \frac{1}{LC}$, los valores λ_1 y λ_2 en la solución general son números complejos $\lambda_1 = \alpha + j\beta$ y $\lambda_2 = \alpha - j\beta$

$$\alpha = -\frac{R}{2L} \quad \mathbf{y} \quad \beta = \left[\left(\frac{R}{2L} \right)^2 - \frac{1}{LC} \right]^{\frac{1}{2}}$$
(2.49)

Por lo tanto la solución particular es una oscilación transitoria es sub-amortiguada

$$i_h(t) = C_1 e^{\alpha + j\beta t} + C_2 e^{\alpha - j\beta t}$$
 (2.50)

Con $C_1 = C_2$ y aplicando la propiedad de los números complejos que:

 $Z + Z^* = 2 \operatorname{Re}(Z)$ y utilizando la notación de euler, la ecuación particular se escribiría como:

$$i_h(t) = 2e^{\alpha t} \operatorname{Re}(C_1 e^{j\beta t})$$
 (2.51)

Siendo $C_1 = \operatorname{Re}(C_1) + j \operatorname{Im}(C_1)$

La solución completa de corriente oscilante es:

$$i(t) = \left(k_1 \cos(\beta t) + k_2 sen(\beta t)\right)e^{\alpha t} + \frac{V_{\max}}{\sqrt{R^2 + \left(\frac{1}{\omega C} - \omega L\right)^2}} sen\left[\omega t + \varphi + \tan^{-1}\left(\frac{\frac{1}{\omega C} - \omega L}{R}\right)\right]$$
(2.52)
Con $\alpha = -\frac{R}{2L}$ y $\beta = \left[\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}\right]^{\frac{1}{2}}$ (2.53)

Para los tres casos presentados, podemos observar que la solución particular es la misma pero la solución general es diferente. En la Figura 13 se presenta I(t) para diferentes casos de amortiguamiento

Figura 13. Gráfica I(t) para diferentes casos de amortiguamiento

2.2.5 Caracteristicas de los Circuitos Elementales

Los circuitos elementales que se muestran en la Figura 14 me permiten entender, como se comportaran los circuitos ante diferentes cambios de estado, es decir que cada circuito responderá de acuerdo a su naturaleza ante la presencia de perturbaciones.

Figura 14. Circuitos elementales

El objetivo de conocer y entender el comportamiento de los circuitos simples, es que facilitaran el entendimiento de circuitos más complejos (combinados) como los que existen en un sistema eléctrico de potencia

2.3 DESCRIPCIÓN DE LOS TIPOS DE SOBREVOLTAJES

2.3.1 Voltaje de frecuencia Industrial Permanente

Son tensiones que se originan bajo condiciones normales de operación, por lo tanto, su frecuencia es igual o próxima a la frecuencia de operación del sistema (50 o 60 Hz)

Bajo propósitos de diseño y coordinación de aislamiento el voltaje de frecuencia industrial podrá ser considerado como constante e igual que el voltaje más alto del sistema.

2.3.2 Sobrevoltajes Temporales

Las sobretensiones temporales se caracterizan por tener una duración relativamente larga (no permanente), frecuencias cercanas a la fundamental, por lo tanto se consideran como de frecuencia industrial, además poseen amplitudes inferiores a las de otros tipos de sobretensión. Este tipo de sobrevoltaje también es conocido como sobrevoltaje sostenido, y generalmente persisten en el sistema hasta que sea modificado o se elimine la causa que lo origino.

La tabla 5 muestra las causas y características de los sobrevoltajes temporales

Causas	Ejemplo				
Maniobras Rechazo de carga					
Fallas eléctricas cortocircuito monofás					
Fenómenos no lineales Ferro-resonancia					
Caracteristicas					
Su amplitud es inferior a 1,5 pu					
Su frecuencia de oscilación puede ser menor, igual o mayor que la frecuencia fundamental					
Su tiempo de duración total es superior a decenas de milisegundos					

Tabla 5: Causas y Caracteristicas de los sobrevoltajes temporales

2.3.3 Sobrevoltajes Transitorios

Este tipo de sobrevoltajes se caracterizan por ser de corta duración, de algunos milisegundos o menos, pueden ser oscilatorios o no oscilatorios, generalmente son muy amortiguados. Los sobrevoltajes transitorios pueden venir acompañados de sobrevoltajes temporales pero cabe recalcar que son escenarios independientes. Los sobrevoltajes transitorios se dividen en:

- 79. Sobrevoltajes de frente lento
- 80. Sobrevoltajes de frente rápido
- 81. Sobrevoltajes de frente muy rápido

2.3.3.1 <u>Sobrevoltajes Transitorios de frente lento</u>

Las sobretensiones de frente lento se originan ante la operación de equipos de maniobra o súbitas modificaciones en la topología de la red eléctrica, tales como:

- 82. Energización y re-cierre de una línea
- 83. Inicio y despeje de fallas
- 84. Rechazos de carga
- 85. Establecimiento o interrupción de corrientes capacitivas o inductivas.

Este tipo de sobrevoltajes se caracterizan por ser generalmente oscilatorios y unidireccionales,

con un tiempo de subida hasta el valor de cresta comprendido entre 20 µs (0,0012 ciclos) < Tp <

5000 μ s (0,3ciclos) y con un tiempo de cola que oscila entre T2 < 20000 μ s (1,2 ciclos).

2.3.3.2 <u>Sobrevoltajes Transitorios de frente rápido</u>

Las sobretensiones de frente rápido se originan a partir de descargas atmosféricas y operaciones de maniobra, cada una de ellas posee un mayor grado de importancia dependiendo del nivel de tensión que maneje sistema.

Este tipo de sobrevoltajes se caracterizan por ser unidireccionales, con un tiempo de subida hasta el valor de cresta comprendido entre 0,1 μ s (0,000006ciclos) < Tp < 20 μ s (0,0012ciclos) y con un tiempo de cola que oscila entre T2 < 300 μ s (0,018 ciclos).

2.3.3.3 <u>Sobrevoltajes Transitorios de frente muy rápido</u>

También conocidas como sobretensiones de frente extra rápido, se originan principalmente por operaciones de maniobra o fallas en subestaciones aisladas en gas (GIS), así como en transformadores de subestaciones de media tensión con conexiones cortas con los equipos de maniobra.

En GIS las sobretensiones de frente muy rápido se generan debido a la propagación no amortiguada de la onda de sobretensión dentro de la subestación. Cuando la sobretensión abandona la GIS, su amplitud se amortigua rápidamente y además el tiempo de frente de onda aumenta hasta corresponder al de una sobretensión de frente rápido.

Los transitorios de frente muy rápido se caracteriza por un rápido incremento en su amplitud y por ser oscilatorios, poseen un tiempo de subida hasta el valor de cresta comprendido entre Tf < 0,1

 μ s (0,000006 ciclos), una duración total menor a los 3000 μ s (0,18 ciclos) y con oscilaciones superpuestas de frecuencias comprendidas entre 30 KHz < f < 100 MHz.

2.3.4 Sobrevoltaje Combinado

Los sobrevoltajes combinados como su nombre lo indica, corresponde a la intervención de 2 0 mas sobrevoltajes con diferentes características, por lo general en los sobrevoltajes combinados intervienen los sobrevoltajes temporales y sobrevoltajes transitorios, los cuales clasificaremos según la componente de mayor valor de cresta.

2.3.5 Resumen de Sobrevoltajes

El grafico 19 y las tablas 6 y 7 presentan un breve resumen de sobrevoltajes, donde se describen los tipos de sobrevoltajes y sus características, formas de onda etc.

Tipo de sobretensión (causa)	Amplitud de la sobretensión (pu) MT-AT	Duración	Amortiguamiento
A frec. Industrial (defecto aislamiento)	≤√3	Larga > 1s	Débil
De maniobra (interrupción de cortocircuito)	1,5 a 4	Corta 1ms	Medio
Atmosférica (caída directa del rayo)	Aprox 2 a 6	Muy corta 1 a 10 μs	Fuerte

Tabla 6: Clasificación de Sobretensiones según su origen

Figura 18. Representación grafica de las sobretensiones de un sistema de extra alta tensión

Clase de	Baja fre	cuencia	Transitoria				
sobretensión	Permanente	Temporal	De frente lento	De frente rápido	De frente muy rápido		
Forma							
Gama de formas (frecuencia, frente de subida, duración)	f = 50 Hz ó 60 Hz T _t ≥ 3600 s	10 Hz < f < 500 Hz 3600 s ≥ Tt ≥ 0,03 s	5000 μs > T _p > 20μs T ₂ ≤ 20 ms	20 μ s \ge T ₁ > 0,1 μ s T ₂ \le 300 μ s	$\begin{array}{l} 100 \text{ ns} \geq T_{f} > 3 \text{ ns} \\ 0,3 \text{ MHz} < f_{1} < 100 \text{ MHz} \\ 30 \text{ kHz} < f_{2} < 300 \text{ kHz}. \\ T_{t} \leq 3 \text{ ns} \end{array}$		
Forma normalizada	f = 50 ó 60 Hz T _t (*)	$48 \le f \le 62 Hz$ T _t = 60 s	T _P = 250 μs T ₂ = 2500 μs	T ₁ = 1,2 μs T ₂ = 50 μs	(*)		
Ensayo de tensión soportada normalizada	(*)	Ensayo a frecuencia industrial de corta duración	Ensayo de impulso tipo maniobra	Ensayo de impulso tipo rayo	(*)		
(*) a especificar por el comité del producto considerado.							

Tabla 7: Clases, formas de onda y tiempos característicos de las sobretensiones

2.4 CAUSAS DE SOBREVOLTAJES TEMPORALES O DE FRECUENCIA INDUSTRIAL

Los sobrevoltajes temporales, generalmente son de larga duración, cuyo rango transitorio se encuentra entre los 20 milisegundos hasta varios segundos, se caracterizan por su amplitud, forma de onda y duración.

Ejemplos de sobretensiones temporales son las debidas a un cortocircuito entre fase y tierra, rechazo de carga, ferro-resonancia y efecto ferranti. A continuación se define cada uno de los ejemplos mencionados

2.4.1 Fallas a Tierra

Las fallas en un sistema eléctrico de potencia, son eventos indeseables que interfieren con el flujo normal de la corriente. Evitar al 100% las fallas es prácticamente imposible, debido a que diseñar y construir una línea de transmisión con ese tipo de caracteristicas, representaría enormes gastos económicos, además el envejecimiento natural de los componentes contribuye a la aparición de las mismas.

Los factores climáticos que suelen causar fallas de cortocircuito son: rayos, acumulación de nieve o hielo, lluvia, vientos fuertes o tormentas, la contaminación de sal, esta se acumula en los aisladores de las líneas aéreas y en las subestaciones, las inundaciones y los incendios adyacentes a los aparatos eléctricos etc., pero la mayoría de las fallas en líneas de transmisión mayor a 115KV, se originan por descargas atmosféricas y que a su vez dan como resultado el flameo de los aisladores. La alta tensión entre un conductor y la torre origina la ionización que provee una trayectoria a tierra para la carga inducida por la descarga atmosférica. Una vez que se produce una trayectoria ionizada a tierra, la baja impedancia a tierra resultante permite el flujo de corriente desde el conductor hasta la tierra y, atraves de la tierra, al neutro aterrizado de un transformador o generador, de esta manera se completa el circuito, en ese preciso momento opera el sistema de protección, realizando operaciones ultrarrápidas de reconexión para despejar la falla, de no ser así se aísla la parte justamente necesaria de la línea, a este tipo de casos se los conoce como fallas permanentes. La figura 19 muestra el circuito completo de una falla de fase a tierra

Figura 19. Representación de una falla monofásica producida por un rayo o por el contacto físico entre una torre y un conductor

La experiencia ha mostrado que entre el 70 y 80% de las fallas en líneas de transmisión son fallas de una fase a tierra, que se originan en el flameo de una línea a la torre y a tierra.

2.4.1.1 <u>Fallas monofásicas de línea a tierra</u>

Cuando ocurre una falla monofásica se produce una elevación de tensión en las fases no falladas con respecto a tierra, cuyo valor de tensión depende principalmente del grado de puesta a tierra del sistema en el punto en cuestión. La condición de puesta a tierra se expresa a través de un factor de falla para tierra FFT.

86. FFT es la relación entre el valor máximo eficaz de tensión fase-tierra a frecuencia industrial de una fase no afectada durante la falla y el valor de tensión fase-tierra a frecuencia industrial en el mismo punto, con la falla removida.

El factor de falla a tierra se puede determinar en función de las impedancias de secuencia positiva y cero, considerando la resistencia de falla Rf. La Figura20 muestra valores de k en función de las relaciones de X0/X1 y R0/X1 asumiendo que R1 << X1, y que por lo tanto R1/X1 \approx 0. También se asume que la resistencia de falla a tierra es muy pequeña, esto es Rf \approx 0.

Figura 20. Factor de falla a tierra (k) en función de X0/X1 y R0/X1 =Rf =0

Como se puede apreciar en la Figura 20 existen 3 zonas en las que el FFT está en función de los valores de la relación X0/X1

- 87. La zona 1, donde se encuentran los valores altos de X0/X1, positivos o negativos, se aplica para sistemas con conexión a tierra resonante o con neutro aislado.
- La zona 2, donde se encuentran los valores positivos y bajos de X0/X1, es válido para sistemas con el neutro conectado a tierra
- 89. La zona 3, donde se encuentran los valores negativos y bajos de X0/X1, corresponde a la parte sombreada de la figura, no es conveniente para aplicaciones prácticas debido a condiciones resonantes

El FFT es un buen indicador para saber donde y cuando se debe aterrizar un sistema. Existen dos formas diferentes para realizar la puesta a tierra en un sistema eléctrico, las cuales son:

- 90. Sistemas eléctricos de potencia efectivamente puestos a tierra
- 91. Sistemas eléctricos de potencia no-efectivamente puestos a tierra.

La siguiente tabla presenta las caracteristicas entre estos sistemas:

Sistemas Electricos	Efectivamente puestos a tierra	Bajo condiciones de falla		
		voltaje de fase sana-tierra menor que el 80% del voltaje línea-línea sin Falla		
	No efectivamente puestos a tierra	voltajes fase-tierra sobre el 80% pero usualmente bajo el 100% del voltaje entre fases		

Tabla 8: Caracteristicas de los sistemas efectivamente y No efectivamente puestos a tierra

Como se explico, una falla a tierra ocasiona elevadas tensiones en las fases sanas, por tal motivo la siguiente figura muestra los valores máximos de sobrevoltajes temporales en los cuales el factor de falla juega un papel muy importante.

Figura 21. Máximo valores de Sobrevoltajes debido a ocurrencias de fallas en función de la resistencia del sistema

El modelo de falla de una fase a tierra se muestra a continuación

Figura 22. Diagrama de una falla de línea a tierra

Las condiciones en la barra fallada son las siguientes:

$$I_{fb} = I_{fc} = 0 \quad (2.54) \qquad V_a = I_{fa} Z_f \quad (2.55)$$

$$\begin{bmatrix} I_{fa(0)} \\ I_{fa(1)} \\ I_{fa(2)} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} I_{fa} \\ 0 \\ 0 \end{bmatrix} \quad (2.56)$$

Efectuando las respectivas multiplicaciones se llega a

$$I_{fa(0)} = I_{fa(1)} = I_{fa(2)} = \frac{I_{fa}}{3}$$
$$I_{fa} = 3I_{fa(0)} \qquad (2.57)$$

Figura 23. Circuito equivalente de secuencia positiva, negativa y cero, que representa la falla de una fase a tierra

Del circuito equivalente se obtienen las siguientes ecuaciones:

$$V_{a(0)} = -Z_{(0)}I_{fa(0)}$$
(2.58)
$$V_{a(1)} = V_f - Z_{(1)}I_{fa(0)}$$
(2.59)

$$V_{a(2)} = -Z_{(2)}I_{fa(0)}$$
(2.60)

Si se suman las ecuaciones se obtiene que:

$$V_{a} = V_{a(0)} + V_{a(1)} + V_{a(2)}$$
(2.61)
$$V_{a} = V_{f} - (Z_{(0)} + Z_{(1)} + Z_{(2)})I_{fa(0)}$$
(2.62)

Por lo tanto

$$I_{fa(0)} = I_{fa(1)} = I_{fa(2)} = \frac{V_f}{\left(Z_{(0)} + Z_{(1)} + Z_{(2)}\right) + 3Z_f}$$
(2.63)

2.4.2 Rechazo de Carga

El rechazo de carga o pérdida súbita de carga, se produce cuando existe una mala operación en un determinado disyuntor. El rechazo de carga origina una elevación de tensión en todo el sistema debido a la disminución del flujo de corriente, el cual provoca que se incremente el efecto capacitivo de las líneas (q no es otra cosa que la inyección de reactivos al sistema) y que la caída de tensión en la impedancia se reduzca. Las sobretensiones temporales debidas al rechazo de carga es función de:

- 92. La carga rechazada
- 93. La disposición del sistema después de la desconexión
- 94. Las características de las centrales de generación involucradas

Estas últimas tratan de llevar al sistema a condiciones normales de operación. La siguiente figura muestra el circuito Π de una línea de transmisión en la cual se produce una perdida súbita de carga.

Figura 24. Elevación de tensión por rechazo de carga. (a) Rechazo de carga en un sistema radial. (b) Diagrama fasorial antes del rechazo de carga. (c) Diagrama fasorial después del rechazo de carga.

2.4.3 Efecto Ferranti

El efecto ferranti es el aumento de tensión en el extremo receptor de una línea de transmisión, la cual se produce por el efecto capacitivo que tienen las líneas cuando trabajan en vacio o alimentado a pequeñas cargas. Estas desde el punto de vista eléctrico son equivalentes a las armaduras de un condensador y cuando están a potenciales distintos, toman una carga eléctrica

dependiente de los valores de dichos potenciales entre sí y respecto de tierra. Al variar estos potenciales constantemente originan una corriente transversal que se suma a la corriente de la línea aumentando los valores de tensión en el extremo receptor.

La Figura 25 muestra el equivalente ⊓ de una línea de transmisión, en la que se produce una sobretensión en el extremo receptor debido a la operación en vacio o con pequeñas cargas

Figura 25. Línea de transmisión operando en vacio o con pequeñas cargas

2.4.4 Resonancia y Ferro-resonancia

Ferro-resonancia es una resonancia en la que intervienen parámetros no lineales, es decir reactancias variables o saturables.

El aparecimiento o no de ferro-resonancia depende del valor de sobretensión causada por algún disturbio en el sistema y del valor del flujo en el momento de la falla, no ocurriendo necesariamente en todos los casos.

El efecto de ferro-resonancia generalmente ocurre en sistemas aislados que tienen la posibilidad de operar en forma desbalanceada. En los siguientes casos se producen fenómenos de resonancia y ferro-resonancia:

Resonancia

- 95. Ocurre entre líneas de elevada capacitancia y reactores limitadores de corriente
- 96. Ocurre entre la inductancia lineal y la capacitancia de un sistema constituido por una línea levemente cargada.

Ferro-resonancia

- 97. Ocurre entre la reactancia de los transformadores de potencia y la capacitancia entre los enrollamientos de un transformador de distribución.
- 98. Ocurre en sistemas que contienen elementos saturables y filtros de armónicos.

Las sobretensiones temporales debido a fenómenos de la resonancia y ferro-resonancia pueden alcanzar valores muy elevados. Sin embargo debido a que en un sistema de potencia debe prevenir y limitar las sobretensiones de esta naturaleza, éstas no se consideran para la selección de pararrayos ni para el diseño del aislamiento.

2.5 CAUSAS DE SOBREVOLTAJES DE FRENTE RÁPIDO O POR DESCARGAS ATMOSFÉRICAS

Las sobretensiones de frente rápido se originan a partir de descargas atmosféricas y operaciones de maniobra, siendo estas últimas de mayor importancia cuando el sistema opera a niveles de extra y ultra alta tensión. En una línea, las típicas sobretensiones se pueden producir en:

99. En la torre o cables de guarda (flameo inverso)

- 100. Los conductores de fase (falla de apantallamiento)
- 101. En el suelo (sobretensiones inducidas en los conductores de fase)

Las ondas de corriente de una descarga atmosférica presentan tiempos de frente entre 0,1 y 20 µs y tiempos de cola menores a 300 µs. La onda normalizada es de 1,2/50 µs.

Por razones de seguridad, confiabilidad y economía es necesario conocer la peligrosidad del fenómeno en espacio-tiempo, para brindar seguridad humana y obtener un correcto funcionamiento en los sistemas de protección.

2.5.1 Descargas Atmosféricas

Los sobrevoltajes producidos por descargas atmosféricas son de origen externo y pueden definirse, como la ruptura del aislamiento en el aire entre dos superficies cargadas eléctricamente con polaridades opuestas.

Los elementos a tener en cuenta para el diseño de una línea de transmisión desde el punto de vista de descargas atmosféricas son:

- 102. Espaciamiento eléctrico
- 103. Cantidad de aisladores
- 104. Ángulo de apantallamiento
- 105. Sistema de puesta a tierra de las estructuras

Estos elementos deben ser ajustados de modo que ofrezcan una tasa de salidas preestablecida según los criterios básicos del proyecto.

2.5.1.1 Descargas atmosféricas producidas en la torre o hilo de guarda

Cuando una descarga atmosférica cae sobre el hilo de guarda, la corriente debida a la descarga fluye en ambos sentidos a través de su impedancia. La corriente y la tensión se propagan hasta llegar a la torre, bajando por esta, donde se encuentran con una resistencia de puesta a tierra que disipa la energía asociada con la descarga atmosférica. Lo mismo ocurre cuando la descarga atmosférica cae directamente en la torre. (Ver Figura 26)

Figura 26. Impacto del rayo sobre la torre o el hilo de guarda

Donde:

- 106. Zcg: Impedancia característica del cable de guarda
- 107. e: Tensión sobre los cables de guarda
- 108. Kc: Coeficiente de acoplamiento
- 109. Zt: Impedancia característica de la torre
- 110. R: Resistencia de puesta a tierra de la torre

Como se puede apreciar en la Figura 26, cuando la descarga atmosférica cae en el cable de guarda, se induce una pequeña fracción de su potencial en los conductores de fase, debido al acoplamiento capacitivo que existe entre ellos. Este problema es relativamente bajo comparado con el back flashover.

El back flashover se presenta cuando la descarga atmosférica cae en el cable de guarda o directamente en la torre, la energía al llegar a la base de la torre(suelo), se encuentra con una alta resistencia (resistencia de puesta a tierra de la estructura) y esta energía no encuentra el medio propicio para esparcirse de manera eficiente, lo que ocasiona que la torre alcance un alto potencial eléctrico, aumentando súbitamente la tensión entre el brazo de la torre y el conductor de fase, hasta el punto que se supera el aislamiento proporcionado por el aire exterior a la cadena de aisladores y se presenta un flameo entre el brazo de la torre (que se encuentra a un alto potencial) y el conductor de fase.

Se puede acotar que la presencia de sobrevoltajes por flameo inverso en sistemas de extra alto voltaje (EHV) son menos probables que en sistemas con voltajes nominales inferiores a 230KV, debido a que la resistencia de aislamiento para estos sistemas suelen ser mayor que la diferencia de potencial generado.

2.5.1.2 <u>Descargas atmosféricas producidas en los conductores de fase</u>

Cuando se produce una descarga atmosférica directamente sobre cualquiera de los conductores de fase, la sobretensión debido a este fenómeno puede dar lugar a un gran número de salidas de línea de transmisión, a este evento se lo denomina falla de blindaje.

El sobrevoltaje que aparece en el conductor debido a la descarga, esta dado por el producto de la mitad de la impedancia de la línea y la corriente del rayo (2.64)

$$V_o = \frac{Z}{2} I_o \quad [KV] \tag{2.64}$$

Donde:

- V_a Sobrevoltaje producido por el impacto
- Z Impedancia de la onda del conductor alcanzado

I_o Corriente del rayo

La magnitud de la corriente del rayo I_o es una variable aleatoria, por lo que se representa por medio de una distribución probabilística

Este tipo de descargas producen altos sobrevoltajes, ya que, a partir del punto de incidencia del rayo dos ondas viajeras de sobrevoltaje se propagan en sentidos contrarios, la onda viajera en su

trayectoria no encuentra discontinuidades a lo largo de la línea de transmisión haciendo que la única variación presente sea un amortiguamiento debido a la parte resistiva de la línea de transmisión. La figura muestra la descarga producida en uno de sus conductores de fase

Figura 27. Impacto del rayo en uno de sus conductores de fase

2.5.1.3 <u>Descargas atmosféricas producidas en las cercanías de la línea de transmisión</u>
 Se refiere al impacto de un rayo con respecto al suelo, en las cercanías de una línea, lo que genera sobretensiones inducidas en ella. La Figura 28 ilustra este evento.

Las tensiones inducidas alcanzan valores de hasta alrededor de 500KV. Este tipo de descargas no afectan a sistemas de alta tensión (tensiones mayores a 69KV), es mas no se consideran.

Figura 28. Impacto de un rayo en la cercanía de una Línea de Transmisión

2.6 CONTROL DE SOBRETENSIONES

Que sucedan sobretensiones en un sistema de potencia es inevitable, el problema esta, cuando no son prevenidas ni controladas a tiempo. Todos los elementos y equipos de un sistema eléctrico deben ser elegidos económicamente, dimensionándolos para que puedan responder con eficiencia ante este tipo de acontecimientos. Los equipos de protección deben cumplir con las siguientes funciones:

- 111. Comportarse como un aislador mientras la tensión aplicada no supere un valor determinado, (superior a la tensión máxima del sistema).
- 112. Comportarse como un conductor para descargar a tierra la corriente producida por la sobretensión.
- 113. Interrumpir la conducción de la corriente a tierra una vez que la sobretensión ha desaparecido del sistema y se ha restablecido la tensión nominal.

114. No debe operar con sobretensiones temporales a frecuencia industrial.

Es importante acotar, que cada tipo de sobretensión depende de las caracteristicas de los equipos en uso, de la configuración del sistema y de sus criterios operativos. La tabla 9 muestra las diferentes maneras de controlar un sobrevoltaje producido por maniobra, además analizaremos las técnicas más comunes empleadas en sistemas de alta tensión.

- Resistencia de apertura
- Re-enganche o cierre monofásico
- Amortiguamiento de las oscilaciones de tensión con ayuda de resistencia óhmicas

3.- Amortiguamiento de las oscilaciones de las sobretensiones de maniobra

- Inserción de la resistencia de cierre en una sola etapa
- Inserción de resistencias en serie en varias etapas
- Resistencia de cierre en línea entre el interruptor del circuito y la resistencia shunt

Tabla 9: Técnicas para limitar las sobretensiones por maniobra

2.6.1 Utilización de Pararrayos

Un pararrayos (descargador) es un equipo capaz de reducir las sobretensiones que se originan en el sistema, sean estas, las producidas por maniobra o por descargas atmosféricas. Como se

menciono, los transitorios por maniobras en sistemas de extra alta tensión son los que provocan mayor esfuerzo.

Generalmente el pararrayos se conecta en paralelo con el equipo a proteger, para así, disipar la sobrecorriente llevándola a tierra. En la Figura 29 se muestran las diferentes sobretensiones que se pueden presentar en un sistema con sus respectivos rangos de duración y amplitud en p.u y la relación que debe existir entre ellas con las tensiones limitadas por el pararrayos y las tensiones soportadas por el aislamiento del equipo.

Figura 29. Magnitud de tensiones y sobretensiones en función de su duración, tensiones soportadas por el aislamiento del equipo y tensiones limitadas por el pararrayos

2.6.2 Utilización de Resistencias de pre-inserción

El uso de resistencias de pre-inserción es uno de los métodos más utilizados para el control de sobretensiones, ya que su desempeño es confiable y favorable en la reducción de tensión. Estas

resistencias se conectan en paralelo a los contactos principales del disyuntor, la Figura 30 muestra las diferentes formas de conexión de la resistencia

Figura 30. Disposición de equipos para maniobras utilizando resistencias de pre-inserción

La medida más común para reducir transitorios de energización, consiste en aplicar un voltaje a la línea a través de una resistencia R en la primera etapa (cierre del disyuntor 1) y cortocircuitarla luego de un breve retardo (cierre del disyuntor 2). La impedancia de la fuente es pequeña comparada a R, y puede ser despreciada.

Cada una de las etapas produce un determinado sobrevoltaje, que dependerá de la característica de la resistencia. El valor de la resistencia es ideal para cada etapa, ya que en la primera, se desea un valor elevado de R para controlar la sobretensión, en cambio en la segunda etapa,

mientras mayor sea R mayor será el sobrevoltaje provocado por el cortocircuito, por tal motivo el valor optimo de la resistencia debe ajustarse para que funcione correctamente en ambas etapas. Generalmente el valor óptimo de la resistencia es similar a la impedancia característica de la línea y sus tiempos de inserción utilizados normalmente se encuentran en el orden de 6 a 15 milisegundos

La inserción de resistencias permite la reducción del valor de sobrevoltaje al energizar una línea de transmisión, pero, también cumplen con la misma función al ocurrir un re-cierre de la línea de transmisión o al existir la apertura de un disyuntor. Al ocurrir un re-cierre el sistema se comporta de forma análoga como si se tratara de una energización, la diferencia radica en que al ocurrir un re-cierre el valor del sobrevoltaje resultante es mucho mayor debido a la presencia de carga atrapada que se encuentra en la línea y con la utilización de resistencias de pre-inserción, el sobrevoltaje resultante es bastante atenuado, lo cual, se lo puede apreciar mejor en la Figura 31

Figura 31. Comparación entre cierre y re-cierre de una línea de transmisión con diferentes valores de resistencias de preinserción

2.6.3 Disyuntores Sincronizados

La apertura, cierre o re-cierre sincronizado de disyuntores, es otro método que ayuda a controlar las sobretensiones producidas a lo largo de una línea de transmisión. La técnica para reducir sobrevoltajes por maniobra, consiste en controlar el ángulo de operación del disyuntor, es decir, su operación debe hacerse cuando la diferencia de potencial entre los contactos del disyuntor tienda a cero.

En un sistema trifásico existen dos formas de controlar las sobretensiones a través de los disyuntores:

- 115. Cerrar las tres fases simultáneamente, cuando la tensión en una de ellas esté pasando por cero
- 116. Cerrar consecutivamente las tres fases cuando la tensión de cada una de ellas pase por cero

Cabe recalcar que la operación del disyuntor para cierre y re-cierre debe hacerse cuando la tensión de la fuente de alimentación pasa por cero, en cambio para la apertura del disyuntor se da cuando la corriente de corto circuito pasa por cero

Para realizar este tipo de maniobras es necesario que el sistema posea disyuntores de alta velocidad, su mala operación podría originar elevadas tensiones, que se pueden contrarrestar con la pre-inserción de resistencias, el problema aquí, es que se tendría un sistema mucho más

robusto y económicamente no aconsejable. Aunque para sistemas con tensiones mayores a 300Kv y líneas largas se debe de hacer este conjunto de técnicas, todo depende de la configuración de la red.

CAPITULO 3

3. ESTUDIO DE FALLAS MONOFASICAS EN LINEAS DE TRANSMISION MEDIANTE EL USO DE EL ATPDRAW V5.6

La necesidad de implementar líneas de extra alto voltaje al sistema nacional, es con el propósito de transportar toda la energía eléctrica que proporcionaran las unidades de generación, que serán incorporadas al sistema nacional, para de esta manera suplir toda la demanda energética que el país requiera, bajo diferentes condiciones de carga.

Actualmente el país no cuenta con suficientes unidades generadoras que puedan contrarrestar dicha demanda, es más, posee centrales termoeléctricas deficientes, que le representa al estado elevadas pérdidas económicas, por ello el estado ecuatoriano se ve en la obligación de recurrir a países que están en capacidad de proveer energía eléctrica

Existe un sinnúmero de proyectos que han sido aprobados y otros que aun se encuentran bajo proceso de estudio, estos proyectos tienen que ver con la implementación de centrales hidroeléctricas, centrales térmicas eficientes de corto y mediano plazo, fuentes de energía renovables, que permitan en conjunto, garantizar el abastecimiento de la demanda futura con una reducción en las tarifas, creando un bienestar económico y generado progreso para la nación

El país apuesta por uno de los proyectos hidroeléctricos más grandes e importantes a construirse, su nombre, Coca Codo Sinclair. Este proyecto está considerado como prioritario y de alto interés nacional, el área del proyecto está constituida por la cuenca del río Coca hasta el sitio Salado (sitio de presa), que cubre una superficie de 3600 km². La cuenca está bordeada por la Cordillera Central con elevaciones como el Cayambe, el Antisana y otras elevaciones menores.

El caudal promedio del río Coca en el sitio Salado (sitio de ubicación de las obras de captación) es de 292 m³/s, lo que corresponde a una contribución específica superior a 80 l/s/km². El caudal diario con una garantía del 90% del tiempo es de 127 m³/s.

La central de generación hidroeléctrica Coca Codo Sinclair, dispondrá de 8 unidades generadoras, cada una de ellas posee una potencia nominal de 187.5 MW. Con la operación de las 8 unidades, se tendrá una potencia disponible de 1500MW, esta potencia se mantendrá durante las horas de mayor demanda (4h al día), el resto de horas mantendrá una potencia base de 600 MW, la cual aumentara o disminuirá, dependiendo de la demanda energética que se tenga que satisfacer. La línea de transmisión a ser estudiada posee las siguientes caracteristicas:

Línea de	No.	Voltaje	Longitud	Conductor
Transmisión	Circuitos	(KV)	(Km)	conductor
Coca Codo Sinclair - El Inga C1	1	500	125	4x750ACAR
Coca Codo Sinclair - El Inga C2	1	500	125	4x750ACAR

Tabla 10: Caracteristicas de la Línea de Transmisión Coca Codo Sinclair – El Inga a 500KV

Las caracteristicas de los conductores para este tramo de línea serán de 4 por fase (reducirá el efecto corona y la radio interferencia), además se considerara la conexión de bancos de reactores en los extremos de la líneas, con el objetivo de disminuir los sobrevoltajes por efecto Ferranti derivados de las maniobras operativas de la red. La potencia reactiva de cada banco de reactores se muestra en la siguiente tabla:

Línea de Transmisión	MVAR en cada extremo de la línea	TOTAL MVAR
Coca Codo Sinclair - El Inga C1	28	56
Coca Codo Sinclair - El Inga C2	28	56

Tabla 11: Banco de reactores en la línea de transmisión de 500KV

Todos los estudios se simularan y analizaran mediante una potente herramienta computacional, denominada Alternative Transient Program o ATP, por lo tanto para un correcto desempeño del software es muy importante que en la simulación de fallas a tierra, se seleccione un modelo que realmente represente al sistema físico y que los intervalos de tiempo de actuación de los interruptores sean adecuados.

3.1 DETALLES DE LA PROPUESTA

En este trabajo, se va a realizar el estudio de los sobrevoltajes transitorios producidos por fallas monofásicas a lo largo de la línea de transmisión Coca Codo Sinclair - El Inga. Para estudiar este tipo de sobrevoltajes, hemos recurrido a la utilización del software de simulación ATPDraw v5.6 (Alternative Transient Program) el cual nos permitirá obtener información, sobre cuán elevada es la corriente de falla y el nivel de tensión que se alcance en las diferentes fases.

El ATPDraw es un software de fácil manejo, que permite modelar sistemas tan sencillos como complejos se quiera. La dificultad de simular sistemas de gran magnitud, es que podrían no converger o el usuario podría fácilmente cometer errores debido a la cantidad de elementos y parámetros que hay que utilizar, además el grado de dificultad incrementara, dependiendo del tipo de estudio que se realice. Por lo tanto para garantizar convergencia en los resultados, se efectuaran pruebas de cortocircuito en la subestación El Inga a 230KV, dichas pruebas permitirán conseguir un equivalente de red y por ende un modelo mucho más simple de evaluar.

El programa de simulación DIgSILENT Power Factory v13.2 será el medio propicio para obtener las reactancias de secuencia positiva negativa y cero que requiere el equivalente de red. Una vez establecido el circuito a ser simulado, se procederá a analizar cada caso, para cuando el sistema de generación este operando a una Potencia base (4 generadoras), potencia media (6 generadoras) y plena carga (8 generadoras)

3.1.1 Temas de Estudio

Como se menciono en la sección anterior, se efectuara el mismo análisis a diferentes niveles de generación, es decir que para cada potencia generadora puesta en servicio, se realizaran diferentes simulaciones de fallas monofásicas a lo largo de la línea de transmisión Coca Codo Sinclair – El Inga.

De todas las simulaciones realizadas, se analizaran las fallas que influyan de manera significativa en la operación del sistema, dichas simulaciones se analizaran bajo contingencia (operando con una sola línea de transmisión) y con diferentes resistencias de falla. A continuación se presentan los diferentes puntos de evaluación del sistema

FALLA MONOFASICA (2 CIRCUITO)				
Ubicación de la falla	Nivel de	Tipo de Re-	RF (ohm)	Total de
	Generacion	cierre	(- <i>1</i>	Simulaciones
	4	Tripolar	0; 20	2
		Monopolar	0; 20	2
10% do lo $5%$ E El lago o 500 K/	6	Tripolar	0; 20	2
10% de la 3%E El lliga a 500KV		Monopolar	0; 20	2
	8	Tripolar	0; 20	2
		Monopolar	0; 20	2
	4	Tripolar	0; 20	2
		Monopolar	0; 20	2
10% do lo 5% E CCS o 500K)/	6	Tripolar	0; 20	2
10% de la 5%E CCS a 500KV		Monopolar	0; 20	2
	8	Tripolar	0; 20	2
		Monopolar	0; 20	2
50% de la Linea de Transmision CCS - El Inga a 500KV	4	Tripolar	0; 20	2
		Monopolar	0; 20	2
	6	Tripolar	0; 20	2
		Monopolar	0; 20	2
	8	Tripolar	0; 20	2
		Monopolar	0; 20	2

Tabla 12: Total de simulaciones monofásicas a diferentes niveles de generación y 2 circuitos en operación

FALLA MONOFASICA (1 CIRCUITO)				
Ubicación de la falla	Nivel de Generacion	Tipo de Re- cierre	RF (ohm)	Total de Simulaciones
	Λ	Tripolar	0; 20	2
	4	Monopolar	0; 20	2
10% do lo 5% E El logo o 500KV	6	Tripolar	0; 20	2
10% de la 3%E El lliga a 500KV		Monopolar	0; 20	2
	8	Tripolar	0; 20	2
		Monopolar	0; 20	2
	4	Tripolar	0; 20	2
		Monopolar	0; 20	2
	6	Tripolar	0; 20	2
10% de la S%E CCS a 500KV		Monopolar	0; 20	2
	8	Tripolar	0; 20	2
		Monopolar	0; 20	2
50% de la Linea de Transmision CCS - El Inga a 500KV	4	Tripolar	0; 20	2
		Monopolar	0; 20	2
	6	Tripolar	0; 20	2
		Monopolar	0; 20	2
	8	Tripolar	0; 20	2
		Monopolar	0; 20	2

Tabla 13: Total de simulaciones monofásicas a diferentes niveles de generación y 1 circuito en operación

La tabla 14 muestra la cantidad de simulaciones que se realizaran, cuando se produce una falla monofásica en la línea de transmisión CCS – El Inga a 500 KV

FALLA MONOFASICA			
TOTAL DE SIMULACIONES (CIRCUITO 1)	TOTAL DE SIMULACIONES (CIRCUITO 2)	TOTAL	
36	36	72	

Tabla 14: Total de simulaciones producidas por una falla de fase a tierra, en diferentes puntos de la línea de transmisión CCS – El Inga

3.2 MODELADO DE LÍNEAS DE TRANSMISIÓN PARA EL ANÁLISIS DE TRANSITORIOS ELECTROMAGNETICOS

3.2.1 Pi Nominal

El modelo PI nominal es bastante exacto y es el modelo para usar en simulaciones de estado estacionario de líneas cortas, a la frecuencia de la red, no condicionan el paso de tiempo de cálculo y la solución en estado estacionario es exacta. Este modelo es la base para el estudio del modelo de línea de circuitos PI nominales en cascada; como defecto, no se pueden representar líneas con parámetros dependientes de la frecuencia y deben aceptarse oscilaciones espurias provocadas por los elementos concentrados, dichas oscilaciones pueden amortiguarse mediante resistencias en paralelo con las ramas R-L. En la siguiente figura se muestra el diagrama esquemático del circuito equivalente PI para una línea de transmisión.

Figura 32. Circuito equivalente Π

La solución de las ecuaciones en términos de V_s e I_s se presenta a continuación:

 $V_{s} = V_{R} \cosh jw (LC)^{\frac{1}{2}} + I_{R} Z_{C} senhjw (LC)^{\frac{1}{2}}$ (3.1)

$$I_{s} = I_{R} \cosh jw(LC)^{\frac{1}{2}} + \frac{V_{R}}{Z_{C}} \operatorname{senhjw}(LC)^{\frac{1}{2}}$$
(3.2)

Donde:

117. Los subíndices representan los voltajes en las terminales de envió y recepción

- 118. Z_c es la impedancia característica de la línea
- 119. *L* inductancia total de la línea
- 120. *C* capacitancia total de la línea
- 121. En este caso la resistencia no es considerada

Para una línea real

122. La impedancia de circuito abierto se la obtiene con $I_R = 0$ a una frecuencia ω

$$Z_{0C} = \frac{V_R \cosh jw(LC)^{\frac{1}{2}}}{\frac{V_R}{Z_0} senhjw(LC)^{\frac{1}{2}}} = Z_0 = \coth jw(LC)^{\frac{1}{2}}$$
(3.3)

123. La impedancia de cortocircuito se la obtiene con $V_R = 0$

$$Z_{SC} = \frac{I_R Z_0 senhjw(LC)^{\frac{1}{2}}}{I_R \cosh jw(LC)^{\frac{1}{2}}} = Z_0 = \tanh jw(LC)^{\frac{1}{2}}$$
(3.4)

La cantidad de secciones PI nominales en cascada para la correcta representación de la línea, depende principalmente de la frecuencia del fenómeno transitorio a estudiar, la conexión en cascada de circuitos PI puede ser útil para líneas no transpuestas puesto que no es necesario considerar aproximaciones a la matriz de transformación fase-modo.

El modelo de línea de circuitos PI nominales en cascada no es muy exacto para fenómenos basados en ondas viajeras (sobre voltajes por maniobra y por descargas atmosféricas), ni muy

eficiente debido a la cantidad de secciones de circuitos PI nominales utilizadas en el momento de representar este tipo de fenómenos; por lo tanto, para un mejor modelado de operaciones de maniobra y descargas atmosféricas, los modelos basados en la propagación de las ondas viajeras son la mejor opción ya que son más rápidos y usualmente más precisos.

3.2.2 Parámetros Distribuidos Constantes

Este método está basado en la división de una línea de transmisión en pequeñas secciones, mientras mayor cantidad de secciones exista, se tendrá una mejor aproximación a la solución. Cada sección de línea estará representada por parámetros distribuidos constantes, los cuales se presentan en la siguiente figura

Figura 33. Sección incremental de una Línea de Transmisión

Aplicando las leyes de Kirchhoff se obtienen las soluciones del circuito en términos de voltaje y corriente
$$V = \left(V + \frac{dV}{dx}dx\right) + RdxI + Ldx\frac{dI}{dx}$$
(3.5)

$$I = \left(I + \frac{dI}{dx}dx\right) + Gdx\left(V + \frac{dV}{dx}dx\right) + Cdx\frac{d}{dt}\left(V + \frac{dV}{dx}dx\right)$$
(3.6)

Dividiendo para dx, derivando y aplicando artificios matemáticos, se pueden obtener las ecuaciones de onda y la impedancia característica de la línea

124. Z_c Impedancia característica de la línea

125. v Tiene unidades metro por segundo y representa la velocidad de propagación de la onda de voltaje y de corriente a través del tiempo

126. *L* y *C* inductancia y capacitancia de la línea respectivamente

El modelo de parámetros distribuidos constantes procede calculando la propagación de diferentes componentes de modo, siendo estos modos desacoplados.

La principal causa de error se produce al suponer constantes los parámetros con la frecuencia, la mayor variación se produce para el modo de tierra, es decir, para transitorios en los que aparecen componentes homopolares de tensión y de corriente, otro error aparece cuando el paso de cálculo no es un submúltiplo del tiempo de propagación de la línea. El ATP efectúa una interpolación lineal, pero para picos muy agudos pueden obtenerse valores muy diferentes para distintos pasos de cálculo; para líneas o cables cortos se requiere emplear un paso de tiempo menor que el de tránsito, necesitando por tanto mayor tiempo de cálculo. Con sus limitaciones, este modelo mejora substancialmente los resultados con respecto a los modelos formados por elementos PI.

3.2.3 Semlyen

Este modelo aproxima la impedancia característica y la constante de propagación de cada nodo mediante dos exponenciales, si bien no fue el primer modelo de parámetros variables con la frecuencia, es el más antiguo que todavía subsiste en el ATP.

La sencillez de las ecuaciones hace que aun cuando los parámetros de la línea no presenten discontinuidades, la aproximación sea insuficiente por lo que este modelo está cayendo en desuso y es posible que se descontinué su inclusión en el ATP, como ha sucedido con WEIGHTING y HAUER SETUP.

3.2.4 J. Martí

Se parte de la consideración que debido a la naturaleza distribuida de las perdidas y a la dependencia en frecuencia de los parámetros, es más conveniente desarrollar las ecuaciones de

línea en el dominio de la frecuencia. Este modelo aproxima la impedancia característica y la constante de propagación por funciones racionales.

Es el modelo de parámetros variables que más se utiliza; una de sus limitaciones es que utiliza una matriz de transformación constante para convertir valores de modo a fase, lo cual es poco notable para líneas aéreas, pero para cables su influencia es muy importante, conduciendo a resultados inservibles; otra limitación es su comportamiento inestable para frecuencias muy bajas y para secciones de línea muy cortas, debido a las imprecisiones presentes para los cálculos en el dominio del tiempo, como es el caso de la carga atrapada.

3.2.5 Takú Noda

Este modelo difiere de los anteriores en que el cálculo se hace directamente en componentes de fase (o más precisamente, de conductor), obviándose el inconveniente de la matriz de transformación, la admitancia característica y los coeficientes de deformación se ajustan mediante funciones racionales.

Debido a que en el modelo desarrollado por Takú Noda se aproxima la admitancia característica y la matriz de propagación por medio de la transformada, el modelo depende del paso de tiempo (Delta T= 1/10*fmax) y no se puede aplicar directamente un paso de tiempo arbitrario.

Generalmente es más complicado obtener un modelo adecuado para una línea determinada, pero tiene la ventaja de que permite definir un paso de cálculo

independiente del tiempo de tránsito, pero esto exige emplear este paso de tiempo para la simulación, de ser necesario emplear otro paso, deberá recalcular el modelo.

La creación de un modelo requiere de dos pasos: a partir de los datos de la línea, se crea un archivo auxiliar mediante el ATP con un programa de ajuste ARMAFIT, luego se procesa este archivo auxiliar para obtener mediante el ajuste por funciones racionales el archivo que modelara la línea en la simulación.

3.3 MODELO A UTILIZAR

Para analizar el comportamiento del nuevo sistema eléctrico que se implementara a 500KV y que trabajara en conjunto con el sistema actual, es necesario recurrir a un modelo matemático que se ajuste a los requerimientos que presente la línea a ser simulada. El software de simulación ATPDraw v5.6 permite estudiar la respuesta frecuencial de un determinado modelo de línea, dichos modelos se mencionaron en la sección 3.1.2

La línea de transmisión Coca Codo Sinclair – El Inga presenta las siguientes caracteristicas:

- 127. Posee una longitud de 125Km
- 128. Operara con elementos saturables
- 129. Línea transpuesta

La línea a ser simulada se encuentra ubicada dentro del rango de líneas medias, por ello no es factible utilizar el modelo pi (nominal y cascada), ya que este método tiene mayor precisión, cuando se lo aplica a líneas cortas con características lineales en sus componentes.

Las soluciones mejoran substancialmente cuando se emplea el método de Bergerón, pero su principal causa de error se produce al suponer constantes los parámetros con la frecuencia; un ejemplo claro de la no utilización de este método, es que generalmente, las líneas de transmisión presentan fenómenos como el efecto piel, y el efecto de retorno a tierra conforme incrementa la frecuencia, por lo tanto es necesario considerar la dependencia en frecuencia de los parámetros.

El modelo que más se ajusta a los requerimientos de la línea a ser simulada, es el modelo de J Martí. Este método de evaluación, es una innovación del modelo de Bergerón y sus predecesores, ya que utiliza los mismos conceptos de ondas viajeras, pero lo útil, es que incluye a la frecuencia como un parámetro altamente dependiente; ya que transforma las ecuaciones del dominio del tiempo al dominio de la frecuencia, permitiendo resolver ecuaciones que presentaban un alto grado de dificultad. Otro punto importante es que no presenta restricciones en cuando a la longitud y caracteristicas de la línea de transmisión (simétrica o asimétrica), por ello y lo antes mencionado se elegirá al modelo J Martí para realizar las respectivas simulaciones

3.4 JUSTIFICACION DEL TRABAJO

La incorporación del nuevo sistema de transmisión a 500KV al Sistema Nacional Interconectado, traerá nuevas interrogantes sobre el comportamiento del mismo, para cuando en él se produzcan fallas de una fase a tierra, estas interrogantes tendrán un grado de solución aceptable cuando se analicen las respectivas simulaciones y podrán ser resueltas en su totalidad cuando el sistema entre en operación.

La propuesta de realizar el análisis de sobrevoltajes transitorios producidos por fallas monofásicas con diferentes tipos de impedancia, se justifica como un importante aporte para futuros estudios, donde se pueda refinar los parámetros del sistema de aislamiento, de las torres del sistema de transmisión y de los equipos de protección del mismo.

CAPITULO 4

4. PARAMETROS DE LOS ELEMENTOS DEL SISTEMA DE POTENCIA

Para tener ideas claras y reales sobre lo que se desea realizar, hemos recurrido a diferentes fuentes, entre ellas, las obras que se realizaran en la construcción del nuevo sistema de transmisión a 500KV, el programa que se utilizara para realizar las respectivas simulaciones y estudios previos a la ejecución del proyecto etc.

Las obras consideradas en este proyecto, son:

Líneas de Transmisión:

- Línea de transmisión El Inga (Quito) Los Lojas (Guayaquil), 500 KV, 300 km, un circuito, conductor 4x750 ACAR.
- 131. Línea de transmisión El Inga Coca Codo Sinclair, 500 KV, 125 km, dos líneas de un circuito cada una, conductor 4x750 ACAR.
- Línea de transmisión Los Lojas Sopladora, 500 KV, 180 km, un circuito, conductor 4x750 ACAR.

- Línea de transmisión Molino Sopladora, 230 KV, 12 km, doble circuito, conductor ACAR 1200.
- Línea de transmisión Sopladora enlace Riobamba y Totoras, 230 KV, 12 km, doble circuito, conductor ACAR 1200.

Los elementos que conformaran estas dos nuevas subestaciones son los siguientes:

Subestación El Inga, 500/230 KV:

- 135. Tres bancos de transformadores monofásicos de 450 MVA, 500/230 KV.
- 136. Un transformador monofásico de 150 MVA, 500/230 KV, de reserva.
- 137. Tres bahías de línea de 500 KV.
- 138. Tres bahías de transformador de 500 KV.
- 139. Una bahía de acoplamiento de 500 KV.
- 140. Una bahía de reactor de línea de 500 KV (4x28 MVAR).
- 141. Un reactor de línea de 500 KV (4x28 MVAR).
- 142. Dos bahías de reactor de línea de 500 KV (1x28 MVAR).
- 143. Dos reactores de línea de 500 KV (1x28 MVAR).
- 144. Módulo común de 500 KV (protecciones, SS.AA., control, etc.).
- 145. Tres bahías de transformador de 230 KV.
- 146. Una bahía de reactor de barra de 230 KV.
- 147. Un reactor de barra de 230 KV (60 MVAR).

Subestación Coca Codo Sinclair, 500/230 KV:

- 148. Cuatro bancos de transformadores monofásicos de 450 MVA, 500/230 KV.
- 149. Un transformador monofásico de 150 MVA, 500/230 KV, de reserva.
- 150. Dos bahías de línea de 500 KV.
- 151. Cuatro bahías de transformador de 500 KV.
- 152. Una bahía de acoplamiento de 500 KV.
- 153. Dos bahías de reactor de línea de 500 KV (1x28 MVAR).
- 154. Dos reactores de línea de 500 KV (1x28 MVAR).
- 155. Módulo común de 500 KV (protecciones, SS.AA., control, etc.).
- 156. Una bahía de línea de 230 KV (para línea a Nueva Loja).
- 157. Cuatro bahías de transformador de 230 KV.
- 158. Ocho bahías de transformador de 230 KV (unidades de generación).
- 159. Una bahía de acoplamiento de 230 KV.

4.1 PARÁMETROS UTILIZADOS EN LAS UNIDADES DE GENERCIÓN CCS

Los parámetros de las unidades de generación que serán empleados en la ejecución de las simulaciones pre-escritas, fueron proporcionados por CELEC EP TRANSELECTRIC, los cuales se detallan a continuación

	UNIDADES DE GENERACION						
N⁰	Parametros utilizados	CCS					
1	Potencia aparente	230 MVA					
2	Tension nominal	13.8 KV					
3	Factor de potencia	0.9					
4	Conexión	YN					
5	Reactancia de eje directo	1.0467 pu					
6	Reactancia de eje de cuadratura	0.6894 pu					
7	Limite minimo de potencia reactiva	-0.18					
8	Limite maximo de potencia reactiva	0.4 pu					
9	Reactancia Xo	0.06894 pu					
10	Resistencia Ro	0 pu					
11	Reactancia X2	0.1723 pu					
12	Resistencia R2	0 pu					
13	Inercia constante de tiempo de aceleracion	11.4948 s					
14	Amortiguamiento mecanico	0					
15	Reactancia del estator xl	0.1					
16	Constante de tiempo transitorio	1.962					
17	Reactancia transitoria xd'	0.2643					
18	Constante de tiempo subtransitorio Td"	0.0448514					
19	Constante de tiempo subtransitorio Tq"	0.081072					
20	Reactancia subtransitoria xd"	0.1723					
21	Reactancia subtransitoria xq"	0.1723					

Tabla 15: Parámetros utilizados en las unidades de generación de CCS

4.2 PARÁMETROS UTILIZADOS EN LAS UNIDADES DE TRANSFORMACION CCS Y EL INGA

Las caracteristicas técnicas de las unidades de transformación tanto en Coca Codo Sinclair como en El Inga fueron proporcionadas por CELEC EP TRANSELECTRIC, dichos parámetros se presentan a continuación

	Transformador de 500/34.5/230KV							
1	Potencia Nominal HV	450 MVA						
2	Potencia Nominal MV	450 MVA						
3	Frecuencia Nominal	60 Hz						
4	Voltaje del lado de alta	500 KV						
5	Voltaje del lado de media	230 KV						
6	Voltaje del lado de baja	34.5 KV						
7	Voltaje de cortocircuito	12.99%						
8	Grupo vectorial HV	YN						
9	Grupo vectorial MV	D						
10	Grupo vectorial LV	YN						
11	Angulo de desfase	1*30 deg						
12	Tension de cortocircuito secuencia positiva HV - MV	11.69%						
13	Tension de cortocircuito secuencia positiva MV - LV	9.01%						
14	Tension de cortocircuito secuencia positiva LV - HV	13.68%						
15	Tension de cortocircuito secuencia cero HV - MV	11.69%						
16	Tension de cortocircuito secuencia cero HV - MV	9.01%						
17	Tension de cortocircuito secuencia cero LV - HV	13.68%						
	TAP LADO DE MEDIA TENSION							
18	Tension adicional por tap	2.5%						
19	Posicion Nominal	3						
20	Min posicion	1						
21	Max posicion	5						

Tabla 16: Parámetros utilizados en las unidades de transformación CCS y EL INGA

Es necesario recalcar que el sistema aun se encuentra bajo proceso de estudio y que determinados parámetros se desconocen o pueden ir variando con el refinamiento del mismo. El actual plan de expansión de generación no consta Termo-oriente para abastecer a la provincia de Sucumbíos, por tal motivo será necesario construir una línea de transmisión entre Quito (El Inga) y Nueva Loja a nivel de 230 KV, para luego tener una línea Coca Codo Sinclair – Nueva Loja

En caso de que los cálculos requieran datos del sistema que aún no estén definidos por el área de planificación de CELEC EP TRANSELECTRIC, se asumirán valores típicos con criterio técnico, o valores de otros sistemas de características similares que se encuentren en funcionamiento. Para

este caso se asumirán los parámetros de las unidades de transformación Pascuales 1, los cuales se especifican en la siguiente tabla

	Transformador de 13.8/138/230KV	
1	Potencia Nominal OA	225 MVA
2	Potencia Nominal FA	300 MVA
3	Potencia Nominal FOA	375 MVA
4	Frecuencia Nominal	60 Hz
5	Voltaje del lado de alta	230 KV
6	Voltaje del lado de media	138 KV
8	Voltaje del lado de baja	13.8 KV
9	Grupo vectorial HV	YN
10	Grupo vectorial MV	D
11	Grupo vectorial LV	YN
12	Angulo de desfase	1*30 deg
13	Tension de cortocircuito secuencia positiva HV - MV	7.16%
14	Tension de cortocircuito secuencia positiva MV - LV	8.92%
15	Tension de cortocircuito secuencia positiva LV - HV	11.37%
16	Tension de cortocircuito secuencia cero HV - MV	7.16%
17	Tension de cortocircuito secuencia cero HV - MV	8.92%
18	Tension de cortocircuito secuencia cero LV - HV	11.37%
	TAP LADO DE MEDIA TENSION	
19	Tension adicional por tap	2.5%
20	Posicion Nominal	3
21	Min posicion	1
22	Max posicion	5

Tabla 17: Parámetros utilizados en las unidades de transformación CCS

4.3 PARÁMETROS UTILIZADOS EN LA LÍNEA DE TRANSMISIÓN CCS – EL INGA

En línea de transmisión a ser instaladas utilizaran como conductor principal el 750 ACAR que presentan los siguientes parámetros:

Secuencia	R(ohm/km)	X(ohm/km)
Positiva(+) y Negativa(-)	0.0223	0.3324
Cero(0)	0.1261	0.8135

Tabla 18: Parámetros de la Línea de Transmisión CCS – El Inga, obtenidos atraves del ATP

Línes de	Longitud	R(Ω)	X(Ω)	
Linea de Transmisión	Longitua (km)	Secu	encia			
11 anshriston	(KIII)	(+) y (-)	0	(+) y (-)	0	
Coca Codo Sinclair - El Inga	125	2.7878	15.759	41.546	101.69	
Coca Codo Sinclair - El Inga	125	2.7878	15.759	41.546	101.69	

Tabla 19: Parámetros de secuencia (+), (-) y (0) expresados es ohmios

4.3.1 Caracteristicas de los conductores

La característica de los conductores utilizados en la implementación de la línea de transmisión a un nivel de tensión de 500KV son del tipo, 750 Kcmil ACAR, además cuenta con dos hilos de guarda, uno de acero galvanizado de 7 hilos y de 3/8" de diámetro global y otro de fibra óptica llamado OPGW, compuesto de hilos de fibra óptica en su interior y recubiertos por cable de acero galvanizado

Тіро	Unidad	Valor
Calibre	КСМ	750
Sección	mm ²	380
Numero de alambres	c/u	30/7
H19	mm	3.617
Diámetro aleación de Aluminio 6201 - T81	mm	3.617
Diámetro interior del conductor	mm	10.851
Diámetro exterior del conductor	mm	25.31
Peso aproximado del conductor	Kg/km	1047
Carga a la rotura	Kg	7056
Resistencia eléctrica máxima DC a 20°C	ohm/km	0.0777

Tabla 20: Característica del conductor ACAR 750 (500 KV)

Tipo	Unidad	Valor
Calibre	КСМ	3/8"
Sección transversal	mm ²	51.14
Numero de alambres de acero galvanizado	c/u	7
Diámetro nominal	mm	9.52
conductor	Kg/m	0.497
rotura	Kgf	4900
Resistencia eléctrica máxima DC a 20°C	ohm/km	0.05

Tabla 21: Característica del cable de guarda de acero galvanizado

Тіро	Unidad	Valor
Nº de fibras ópticas	c/u	24
Diámetro exterior del conductor	mm	17
Sección total	mm ²	140
Sección aluminio	mm ²	105
sección acero	mm ²	35
Resistencia eléctrica máxima DC a 20°C	ohm/km	0.29
Atenuación Max. 1310 nm, 20°C	dB/km	0.4
Atenuación Max. 1550 nm, 20°C	dB/km	0.25

Tabla 22: Característica del cable de guarda tipo OPGW

4.3.2 Caracteristicas de las Torres

Existe un sinnúmero de torres empleadas en las líneas de transmisión de 500KV, pero una de ellas debe poseer las caracteristicas apropiadas para ajustarse a la topología del terreno, las condiciones climáticas, el peso de los herrajes y demás consideraciones.

La Figura 34 muestra las características técnicas de la torre que se utilizara para evaluar al sistema bajo condiciones de falla.

Figura 34. Modelo de Torre para líneas de transmisión a 500 KV

4.4 OBTENCION DE DATOS

Para la obtención de los datos que serán ingresados en el software de simulación, es necesario analizar cada uno de los elementos. Dichos elementos se presentan a continuación

4.4.1 Fuente Generadora, CCS a 13.8KV

Para el ingreso de los datos en el software de simulación a emplear, se consideraran las caracteristicas técnicas de las unidades de generación Coca Codo Sinclair (ver tabla 15). Los respectivos cálculos se muestran a continuación

Bases

230*MVA* 13.8*KV* $X_0 = 0.06894 pu$ X = 0.1723 pu

$$X_{B} = \frac{KV^{2}}{MVA} = \frac{13.8^{2}}{230} = 0.828[\Omega]$$

$$X_0 = (0.828)0.06894[\Omega] \qquad X = (0.828)0.1723[\Omega] X = 0.057082[\Omega] \qquad X = 0.142664[\Omega]$$

4.4.2 Fuente Equivalente, El Inga a 230KV

Cabe destacar que es posible realizar todos los cálculos, solo con el uso del software de simulación ATP, lo problemático estará, en que el programa tendrá que realizar muchas simulaciones e iteraciones, y en ocasiones, este no podría converger, y si lo hace tardara mucho; por tal motivo hemos recurrido a la utilización del DIgSILENT.

El DIgSILENT me permite obtener un equivalente de red en la barra que se desee. Para la obtención del circuito equivalente, es necesario realizar pruebas de cortocircuito 3Φ y 1Φ con el propósito de obtener las impedancias de secuencia (+), (-) y (0) que junto a sus respectivas potencias y corrientes de cortocircuito son necesarias para representarlo.

Una vez que obtenido el equivalente de red, se procederá a efectuar las respectivas simulaciones. La simplificación del sistema no afectara de ninguna manera los cálculos, más bien ofrecerá prontitud en los resultados Las respectivas pruebas de cortocircuito 3Φ y 1Φ serán aplicadas al diagrama unifilar del Sistema Nacional Interconectado 2020 desarrollado por CELEC EP TRANSELECTRIC

Bases

450*MVA* 230*KV*

$$I_{B} = \frac{KVA}{KV\sqrt{3}} = \frac{450000}{230\sqrt{3}} = 1129.598[A]$$
$$Z_{B} = \frac{KV^{2}}{MVA} = \frac{230^{2}}{450} = 117.55[\Omega]$$

4.4.2.1 MAXIMAS CORRINTES DE CORTOCIRCUITO

Todos los cálculos que se desarrollen en esta sección se evaluaran para cuando el sistema se encuentre bajo condiciones críticas.

Las máximas corrientes de cortocircuito determinan:

- 160. El poder de corte de los interruptores automáticos
- 161. El poder de cierre de los dispositivos de maniobra
- 162. La solicitación electromagnética de conductores y componentes

A continuación se detalla el proceso de obtención del equivalente de red en la barra de El Inga a

230KV para cuando el sistema este operando con 4, 6 y 8 unidades respectivamente

Cortocircuito trifásico en la barra de El Inga a 230KV con 4 unidades en operación

Figura 35. Ingreso de datos previo a la obtención de la máxima corriente de cortocircuito 3Φ en la barra de El Inga a 230KV

Figura 36. Resultados de la prueba de cortocircuito trifásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2

$$S_{3\phi} = 8539.85[MVA]$$

$$I_{f-3\phi} = 22.41 \angle -86.32^{\circ}[KA]$$

$$f_{p} = \cos\theta = \cos\left(\arctan \frac{1}{R_{X}}\right)$$

$$\theta = \arctan \frac{1}{R_{X}} \Rightarrow tg\theta = \frac{1}{R_{X}}$$

$$R_{X}' = \frac{1}{tg\theta}$$

$$R_X = 0,064317$$

$$I_{f-3\phi[pu]} = \frac{KA*1000}{I_B} = \frac{22.41*1000}{1129.598} = 19.839 \angle -86.32^{\circ} [pu]$$

$$I_{f-3\phi[pu]} = \frac{V_{pf}}{Z_{[pu]}} \Longrightarrow Z_{[pu]} = \frac{1,0\angle 0^{\circ}}{19.839\angle -86.32^{\circ}} = 5.0406 * 10^{-2}\angle 86.32^{\circ} [pu]$$

$$Z_{[pu]} = 3.2353 * 10^{-3} + j5.0302 * 10^{-2} [pu]$$

 $Z_{[\text{Re}al]} = Z_B Z_{pu} = 117.55 * 5.0406 * 10^{-2} \angle 86.32^{\circ} [\Omega]$ $Z_{[\text{Re}al]} = 5.925225 \angle 86.32^{\circ} [\Omega]$ $Z_{[\text{Re}al]} = 0.380304 + j5.913008 [\Omega]$

Cortocircuito monofásico en la barra de El Inga a 230KV con 4 unidades en operación

Figura 37. Ingreso de datos previo a la obtención de la máxima corriente de cortocircuito 1Φ en la barra de El Inga a 230KV

Figura 38. Resultados de la prueba de cortocircuito monofásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2

$$S_{1\phi} = 3198.29[MVA]$$

 $I_{f-1\phi} = 25.18 \angle -86.14^{\circ}[KA]$

$$R_X = 0,067472$$

$$I_{f-1\phi[pu]} = \frac{25.18*1000}{1129.598} = 22.2911\angle -86.14^{\circ}[pu]$$

 $Z = Z_1 = Z_2$

$$I_{f-1\phi[pu]} = 3* \frac{V_{pf}}{Z_1 + Z_2 + Z_0} \Rightarrow Z_0 = 3* \frac{V_{pf}}{I_{f-1\phi[pu]}} - 2Z$$

$$Z_0 = 3* \frac{1.0}{22.2911} - 2*5.0406^{-2} = 0.033771$$

$$Z_0 = 0.033771 \angle 86.14^{\circ} [pu]$$

$$Z_0 = 2.2734*10^{-3} + j3.3694*10^{-2} [pu]$$

$$Z_{[\text{Re }al0]} = Z_B Z_0 = 117.55*0.033771 \angle 86.14^{\circ} [\Omega]$$

$$Z_{[\text{Re }al0]} = 3.969781 \angle 86.14^{\circ} [\Omega]$$

$$Z_{[\text{Re }al0]} = 0.267241 + j3.960776 [\Omega]$$

Cortocircuito trifásico en la barra de El Inga a 230KV con 6 unidades en operación

Figura 39. Ingreso de datos previo a la obtención de la máxima corriente de cortocircuito 3Φ en la barra de El Inga a 230KV

Figura 40. Resultados de la prueba de cortocircuito trifásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2

$$S_{3\phi} = 9053.72[MVA]$$

 $I_{f-3\phi} = 23.76 \angle -86.44^{\circ}[KA]$

$$R_X = 0,062214$$

$$I_{f-3\phi[pu]} = \frac{23.76*1000}{1129.598} = 21.034\angle -86.44^{\circ}[pu]$$

$$Z_{[pu]} = \frac{1,0 \angle 0^{\circ}}{21.034 \angle -86.44^{\circ}} = 4.7542 * 10^{-2} \angle 86.44^{\circ} [pu]$$
$$Z_{[pu]} = 2.9521 * 10^{-3} + j4.7445 * 10^{-2} [pu]$$
$$Z_{[Real]} = Z_B Z_{pu} = 117.55 * 4.7542 * 10^{-2} \angle 86.44^{\circ} [\Omega]$$
$$Z_{[Real]} = 5.588562 \angle 86.44^{\circ} [\Omega]$$
$$Z_{[Real]} = 0.347015 + j5.577778 [\Omega]$$

Cortocircuito monofásico en la barra de El Inga a 230KV con 6 unidades en operación

[shc/ec/spgl/	nav/ag/al/acc	Center
Método	teoin EC	-
Tipo de Falle	Coto Ceculto Monofésico 💌	Carte
Calcular	Máxis: Comentes Coto Caculto 💌	
Sistema de Baj	a Tensiónumás, tolerancia de tel 6 💌 %	
Impedancia d	le Falls Duración del Corto Caculto	
Resistencia.	RI 0. Ohm Tiempo del Interruptor 0.1 s	
Reactancia.	0 0 0hm Tiempo Despeia Fala (hh) 1. r	
e		
i⊋ On		
Comando	udio/2020/2020 L_MAX/UDutput of Results	
Mostar	Localz, falla con almentadores	
Localización	de la Falla	
En	Selección Uzuario 👻	
Selección de	(Unamo + + 5N 20105, VB ING 230	

Figura 41. Ingreso de datos previo a la obtención de la máxima corriente de cortocircuito 1 Φ en la barra de El Inga a 230KV

Figura 42. Resultados de la prueba de cortocircuito monofásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2

$$S_{1\phi} = 3330.61[MVA]$$

$$I_{f-1\phi} = 26.30 \angle -86.21^{\circ}[KA]$$

$$R / X = 0,066245$$

$$I_{f-1\phi[pu]} = \frac{26.30 * 1000}{1129.598} = 23.2826 \angle -86.21^{\circ}[pu]$$

$$Z = Z_1 = Z_2$$

$$Z_0 = 3*\frac{1.0}{23.2826} - 2*4.7542^{-2} = 0.033768$$

$$Z_{0} = 0.033768 \angle 86.21^{\circ} [pu]$$

$$Z_{0} = 2.2320 * 10^{-3} + j3.3694 * 10^{-2} [pu]$$

$$Z_{[Real0]} = Z_{B}Z_{0} = 117.55 * 0.033768 \angle 86.21^{\circ} [\Omega]$$

$$Z_{[Real0]} = 3.969380 \angle 86.21^{\circ} [\Omega]$$

$$Z_{[Real0]} = 0.262375 + j3.960699 [\Omega]$$

Cortocircuito trifásico en la barra de El Inga a 230KV con 8 unidades en operación

Figura 43. Ingreso de datos previo a la obtención de la máxima corriente de cortocircuito 3Φ en la barra de El Inga a 230KV

Localiz, falla co Cálculo de Corto	n alimenta Circuito s	dores egún IEC	;			c	Corto Cin	rcuito Trifás	ico / Má	xs. Corri	entes Cor	to Circ	ا ند
Motores Asíncrono siempre consid Componente DC Usar Método	s erados	в	I 	dentifi autom 'emperat Defin	.cación de la F Mática cura del Conduc Mida por el usu	ed tor ario No		Duración de Tiempo de Tiempo De Factor de Te Definido	l Corto el Inter espeje F ensión c por el	Circuito ruptor 'alla (Ith usuario)	0.10 s 1.00 s No	
i 			i 					i					
Red: SNI 2010	Escenar	io del S	istema:	2020_L	MAX				Ane	xo:	/ 1		
 	Vnom. [kV]	Vol [kV]	taje [deg]	c- Factor	Sk" [MVA/MVA]	I [kA/kA]	k" [deg]	ip [kA/kA]	Ib [kA]	Sb [MVA]	Ik [kA]	Ith [kA]	I I
 B ING 230	220.00	0.00	0.00	1.10	9427.38 MVA	24.74 kA	-86.52	63.66 kA	24.64	9389.67	24.74	25.25	1

Figura 44. Resultados de la prueba de cortocircuito trifásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2

$$S_{3\phi} = 9427.38[MVA]$$

 $I_{f-3\phi} = 24.74 \angle -86.52^{\circ}[KA]$
 $R/_X = \frac{1}{tg(86.52^{\circ})}$
 $R/_X = 0.060812$

$$I_{f-3\phi[pu]} = \frac{24.74*1000}{1129.598} = 21.90\angle -86.52^{\circ}[pu]$$

$$Z_{[pu]} = \frac{1,0\angle 0^{\circ}}{21.90\angle -86.25^{\circ}} = 4.5658 * 10^{-2} \angle 86.52^{\circ} [pu]$$

$$Z_{[pu]} = 2.7714 * 10^{-3} + j4.5574 * 10^{-2} [pu]$$

$$Z_{[\text{Re}al]} = Z_B Z_{pu} = 117.55 * 4.5658 * 10^{-2} \angle 86.52^{\circ} [\Omega]$$

$$Z_{[\text{Re}al]} = 5.3671 \angle 86.52^{\circ} [\Omega]$$
$$Z_{[\text{Re}al]} = 0.325788 + j5.357291 [\Omega]$$

Cortocircuito monofásico en la barra de El Inga a 230KV con 8 unidades en operación

Figura 45. Ingreso de datos previo a la obtención de la máxima corriente de cortocircuito 1Φ en la barra de El Inga a 230KV

Figura 46. Resultados de la prueba de cortocircuito monofásico en la barra de El Inga a 230KV obtenidos atraves del software de simulación DIgSILENT Power Factory v 13.2

$$S_{1\phi} = 3441.03[MVA]$$

 $I_{f-1\phi} = 27.09 \angle -86.25^{\circ}[KA]$

$$R/X = 0,065543$$

$$I_{f-1\phi[pu]} = \frac{27.09 * 1000}{1129.598} = 23.98 \angle -86.25^{\circ}[pu]$$

$$Z = Z_1 = Z_2$$

$$Z_0 = 3*\frac{1,0}{23.98} - 2*4.5658*10^{-2} = 0.033788$$

$$Z_0 = 0.033788 \angle 86.25^{\circ} [pu]$$
$$Z_0 = 7.6539 * 10^{-4} + j1.0299 * 10^{-2} [pu]$$

$$Z_{[\text{Re}al0]} = Z_B Z_0 = 117.55 * 0,033788 \angle 86.25^{\circ} [\Omega]$$

$$Z_{[\text{Re}al0]} = 3.971779 \angle 86.25^{\circ} [\Omega]$$
$$Z_{[\text{Re}al0]} = 0.259767 + j3.963275 [\Omega]$$

4.4.2.2 RESULTADO DE LAS PRUEBAS DE CORTOCIRCUITO

Los resultados que muestran las tablas 23, 24 y 25 son de gran importancia porque contribuyen a la simplificación del sistema. Como se menciono en la sección 4.4.2, simular un sistema mucho más simple, traerá menos complicaciones en la obtención de soluciones. A continuación se

muestran los resultados, para cuando se tienen 4, 6 y 8 unidades generadoras puestas en servicio

EQUIVALENTE DE RED DEL SIN 2020 MAXIMAS CORRIENTES DE CORTOCIRCUITO EL INGA 230KV (4 generadoras)									
CALCULO 3Φ CALCULO 1Φ									
DEN	VALOR	UNID		DEN	VALOR	UNID			
Skk	8,539.85	MVA		SKK	3198.28	MVA			
Ikk	22.41<-86.32	КА		Ikk	25.18<-86.14	KA			
R	0.380304	Ohm		R1=R2=R	0.380304	Ohm			
х	5.913008	Ohm		X1=X2=X	5.913008	Ohm			
R/X	0.064317			RO	0.267241	Ohm			
				X0	3.960776	Ohm			
				R0/X0	0.067472				

Tabla 23: Datos del equivalente de red a partir de la corriente de cortocircuito máxima en la barra de El Inga a 230KV (4 unidades de generación)

	EQUIVALENTE DE RED DEL SIN 2020 MAXIMAS CORRIENTES DE CORTOCIRCUITO									
	EL INGA 230KV (6 generadoras)									
CALCULO 3Φ CALCULO 1Φ										
DEN VALOR UNID DEN VALOR UNI										
Skk	9,053.72	MVA		SKK	3340.61	MVA				
Ikk	23.76<-86.44	KA		Ikk	26.30<-86.21	KA				
R	0.347015	Ohm		R1=R2=R	0.347015	Ohm				
х	5.577778	Ohm		X1=X2=X	5.577778	Ohm				
R/X	0.062214			RO	0.262375	Ohm				
				XO	3.960699	Ohm				
				R0/X0	0.062446					

Tabla 24: Datos del equivalente de red a partir de la corriente de cortocircuito máxima en la barra de El Inga a 230KV (6 unidades de generación)

EQUIVALENTE DE RED DEL SIN 2020 MAXIMAS CORRIENTES DE CORTOCIRCUITO EL INGA 230KV (8 generadoras)									
CALCULO 3Φ CALCULO 1Φ									
DEN	VALOR	UNID		DEN	VALOR	UNID			
Skk	9,427.38	MVA		SKK	3441.03	MVA			
Ikk	24.74<-86.52	KA		Ikk	27.09<-86.25	KA			
R	0.325788	Ohm		R1=R2=R	0.325788	Ohm			
х	5.357291	Ohm		X1=X2=X	5.357291	Ohm			
R/X	0.060812			RO	0.259767	Ohm			
			-	X0	3.963275	Ohm			
				R0/X0	0.065543				

Tabla 25: Datos del equivalente de red a partir de la corriente de cortocircuito máxima en la barra de El Inga a 230KV (8 unidades de generación)

4.4.3 Transformadores, CCS y EL INGA a 230/34.5/500KV

Los respectivos cálculos se efectúan en base a los parámetros proporcionados por CELEC EP

TRANSELECTRIC, dichos cálculos se detallan a continuación

Bases

230/34.5/500*KV* 450*MVA*

$$X_{H} = \frac{1}{2} (X_{HM} + X_{HL} - X_{ML}) pu$$

$$X_{H} = \frac{1}{2} (0.1169 + 0.1368 - 0.0901) pu$$

$$X_{H} = 0.0818 pu$$

$$X_{M} = \frac{1}{2} (X_{HM} + X_{ML} - X_{HL}) pu$$
$$X_{M} = \frac{1}{2} (0.1169 + 0.0901 - 0.1368) pu$$
$$X_{M} = 0.0351 pu$$

$$X_{L} = \frac{1}{2} (X_{HL} + X_{ML} - X_{HM}) pu$$
$$X_{L} = \frac{1}{2} (0.1368 + 0.0901 - 0.1169) pu$$
$$X_{L} = 0.0550 pu$$

$$X_{BH} = \frac{500^2}{450} = 555.56[\Omega] \qquad X_{BM} = \frac{230^2}{450} = 117.55[\Omega] \qquad X_{BL} = \frac{34.5^2}{450} = 2.645[\Omega]$$
$$X_{H} = (555.56)0.0818[\Omega] \qquad X_{M} = (117.55)0.0351[\Omega] \qquad X_{L} = (2.645)0.055[\Omega]$$
$$X_{H} = 45.445[\Omega] \qquad X_{M} = 4.126[\Omega] \qquad X_{L} = 0.146[\Omega]$$

4.4.4 Transformadores, CCS a 13.8/138/230KV

Los resultados que presenten los cálculos, serán utilizados para el ingreso de las caracteristicas técnicas que requiera el elemento en cuestión, dichos cálculos se muestran a continuación

Bases

13.8/138/230*KV* 230*MVA*

$$X_{H} = \frac{1}{2} (X_{HM} + X_{HL} - X_{ML}) pu$$

$$X_{H} = \frac{1}{2} (0.0716 + 0.1137 - 0.0892) pu$$

$$X_{H} = 0.0481 pu$$

$$X_{M} = \frac{1}{2} (X_{HM} + X_{ML} - X_{HL}) pu$$

$$X_{M} = \frac{1}{2} (0.0716 + 0.0892 - 0.1137) pu$$

$$X_{M} = 0.0236 pu$$

$$X_{L} = \frac{1}{2} (X_{HL} + X_{ML} - X_{HM}) pu$$
$$X_{L} = \frac{1}{2} (0.1137 + 0.0892 - 0.0716) pu$$
$$X_{L} = 0.0657 \, pu$$

$$X_{BH} = \frac{230^2}{230} = 230[\Omega] \qquad X_{BM} = \frac{138^2}{230} = 82.8[\Omega] \qquad X_{BL} = \frac{13.8^2}{230} = 0.828[\Omega]$$
$$X_{H} = (230)0.0481[\Omega] \qquad X_{H} = (82.8)0.0236[\Omega] \qquad X_{L} = (0.828)0.0657[\Omega]$$
$$X_{H} = 11.063[\Omega] \qquad X_{H} = 1.954[\Omega] \qquad X_{L} = 0.054[\Omega]$$

4.4.5 Reactores

Los reactores en derivación ubicados en los extremos de la línea Coca Codo Sinclair –El Inga de 28 MVAR cada uno, han sido modelados como elementos lineales, sin considerar la saturación.

$$X = \frac{KV^2}{MVAR} = \frac{500^2}{28} = 8928,5714[\Omega]$$
$$L = \frac{X}{2\pi f} = 23,6838[mH]$$

4.4.6 Interruptores

Existe un sinnúmero de interruptores que pone a disposición el programa, como por ejemplo: circuit breakers, load breakers, dc circuit breakers entre otros; cada uno de ellos con un fin específico. El interruptor que desempeña un comportamiento adecuado para desarrollar el estudio de cortocircuito y operaciones de maniobra, es el switch controlado por tiempo con opción de re-cierre (Time - Controlled switch with reclose option).

Este tipo de interruptor tiene la habilidad de abrir cuando la corriente de cortocircuito pasa por el cero natural de la onda (detecta un cambio de signo) o el usuario puede establecer un margen de corriente según convenga; y cierra en el tiempo que se haya sido designado, en esta parte, el operario debe simular diferentes tiempos de cierre con el objetivo de encontrar el tiempo que le genere menor sobretensión

Es importante destacar que las anormalidades que podría presentar el sistema ante una perturbación son de naturaleza probabilística, es decir para un mismo caso pueden obtenerse diferentes valores en un determinado punto; esa es una de las desventajas del interruptor a emplear.

4.5 PROCEDIMIENTO EN EL ATP

4.5.1 Fuente Generadora y Equivalente de red

Las fuentes utilizadas para representar las unidades de generación y los equivalentes de red, son las ACSOURCE tipo 14 que se conectan en serie con una impedancia RL, acoplada simétricamente, en la cual se ingresan los datos de secuencia positiva y cero. Las especificaciones técnicas se muestran en las siguientes figuras

Component: /	ICSOURCE				8
Attributes			1000		
DAT	UNIT	VAL	NODE	PHASE	NAME
Aebuilian	Volt	(MESCO)	AC	AIC	UT
Frequency	Hz	60			
PhateAngleA	degrees	10			
Stat	100	1000			
Copy Pas	te entire data g	id Reset Or	der 1	Labet G1	
Cogment:					
Type of source	Numphases	Angle units	Amplitude	Giounding	-
OCurrent	OSingle	Degrees	O Peak L-G	Grounded	Hide
 Voltage 	3phase 31-phase	O Seconds	O RMS L-G	Olingiounded	
Edit definitions			OK	Cancel	Help

Figura 47. Especificaciones técnicas de una fuente Generadora de voltaje en CCS a 13.8KV, acsource tipo 14

componen	it: LINESY_3							
Atributes								
ATA	UNIT	VALUE	NODE	PHASE	NAME			
Ro	Ohm/m	3	IN1	ABC	UT			
Lo	Ohm/m	0.057082	OUT1	ABC	CCL1			
R+	Ohm/m	0						
	Ohm/m	0.14259				DATA	UNIT	VALU
						Bo	Ohm/m	0
								_
						Lo	Ohm/m	0.057
Copy Copy	Paste entre da	la grid Reset (Didec 0	Label 1		Lo R+	Ohm/m Ohm/m	0.05

Figura 48. Parámetros de secuencia positiva y cero de la fuente Generadora de voltaje en CCS a 13.8KV

Attributes								
PriA	UNIT	Van	NODE	PHASE	NAME			
AmplitudeA	Volt	2000	AC	ABC	EQ			
Frequency	Hz	60				DATA	UNIT	VALU
PhaseAngleA.	degrees							
Shark.	860	100				AmplitudeA	Volt	2300
						-		
						Frequency	Hz	60
						Frequency PhaseAngleA	Hz	60 5
Copy Pa	te entite data gri	d Reset Or	nder: 0	Label TH		Frequency PhaseAngleA	Hz degrees	60 5
Copy Pa Cogment	te erite data gi	d Reset Or	oder: 0	Label TH		Frequency PhaseAngleA StartA	Hz degrees sec	60 5 -1
Copy Per Cognent	ie) ertite data gri	d Reset O	nder: 0	Labet TH		Frequency PhaseAngleA StartA	Hz degrees sec	60 5 -1
Copy Par Cogment	Num phases	Angle units	der: 0	Label TH	Hide	Frequency PhaseAngleA StartA StopA	Hz degrees sec sec	60 5 -1 1000
Copy Par Cogment Type of source O Current	Num phases O Single O Schase	Argle units () Degrees	der: 0 Ansihule O Peak LG O RMS LG	Labet TH Grounding @ Grounded	Hide	Frequency PhaseAngleA StartA StopA	Hz degrees sec sec	60 5 -1 1000

Figura 49. Especificaciones técnicas de una fuente Generadora de voltaje en El Inga a 230KV, acsource tipo 14

Figura 50. Parámetros de secuencia positiva y cero de la fuente Equivalente de voltaje en El Inga a 230KV

4.5.2 Línea de Transmisión

Existen diferentes modelos que proporciona la opción LCC del software y cada uno de ellos ofrece variaciones en sus soluciones, debido a las suposiciones hechas por cada creador. El modelo J Martí, es el que se empleara para la ejecución y evaluación del sistema en estudio, por lo establecido en la sección 3.3

ine/Cable Data: CCSINGA11	- System type	tandard data
Model Data Lodes	Overhead Line 💙 #Ph: 3 🚔 R	<u>h</u> o [ohm*m] 100
System Sec Sourced deal Develop Line EP/r 2 Stranspoord Fing and BH2 Auto bunding English and English Segmented ground Segmented ground Red totund make English	✓ Transposed ✓ Auto bundling ✓ Skin effect Segmented ground ✓ Real transf. matrix	eg, init [Hz] 0.001 ength [km] 125] Set length in icon
Codel Data Figure Recades Pointu/Dec P Figure S Ones 5 S Ones (60 (60 Cesting Reg matic PL3 Fine S [ht] (60 Nods R) Use default thing R)	Model Data Type Decades Points/Dec P H 8 5 Ø Marit Freq. matrix [Hz] Freq. SS [H] Semiyen 5000 60	z]
Connent: Order: 0 Label Hide	Noda Use default fitting	

La configuración de los conductores y torres se presenta en la siguiente figura

Figura 51. Modelo y generalidades de la línea en estudio

Transposed: Indica si la línea esta transpuesta

Auto bunding: Indica si se trabaja por conductor o por fase

Skin effect: Indica si se tiene en cuenta el efecto pelicular

Segmented ground: Indica si los cables de guarda no son continuos

Real transf matrix: Indica si los elementos de la matriz transformación se modifican

Rho: Resistividad del suelo

Freq init: frecuencia a la que se calculan los parámetros constantes o frecuencia inferior para el

cálculo de los parámetros dependientes de la frecuencia

Lenght: Longitud de la línea

Decades: Numero de décadas de la escala logarítmica

Points/Dec: Numero de puntos de frecuencia por década

Freq matrix: Frecuencia a la cual se calcula la matriz de transformación

Freq SS: Frecuencia en estado estable

El ingreso de datos de la ubicación geométrica y de las caracteristicas de los conductores se lo

realiza en la pestaña data, cuyas especificaciones se muestran a continuación

Phro. P	Bout	Besis	Horiz	Viower	Veid	Separ	-	NB	T
[cm]	[cm]	[ohm/km DC]	int.	(m)	(m)	Icrel	Ideal		
0.54	25 1.265	0.0777	125	25	18	45.7	45	4	
2 0.54	25 1.285	0.0777	0	25	10	45.7	45	4	\
3 0.54	25 1.265	0.0777	12.5	25	10	45.7	45	4	
0 0	0.476	0.05	-125	35	29.5	0	0	0	
0 0	0.85	0.29	12.5	35	29.5	0	0		

	Ph.no.	Rin	Rout	Resis	Horiz	Vtower	Vmid	S
#		[cm]	[cm]	[ohm/km DC]	[m]	[m]	[m]	[0
1	1	0.5425	1.2655	0.0777	-12.5	25	18	4
2	2	0.5425	1.2655	0.0777	0	25	18	4
3	3	0.5425	1.2655	0.0777	12.5	25	18	4
4	0	0	0.476	0.05	-12.5	35	29.5	0
5	0	0	0.85	0.29	12.5	35	29.5	0
Figura 52. Parámetros geométricos de los conductores y torres

Ph.no.: Numero de fases del conductor, la numeración debe ser 1, 2, 3 para las fases y 0 para los

hilos de guarda

Rin: Radio interno del conductor

Rout: Radio externo del conductor

Resis: Cuando no se incluye el valor del efecto piel se debe colocar el valor de la resistencia CA, caso contrario se pondrá el valor de la resistencia CD del conductor

Horiz: Distancia horizontal entre los centros del conductor o del conjunto de conductores en haz, en una referencia especificada por el usuario, la misma referencia debe ser usada para todos los conductores del mismo caso

Vtower: Altura vertical del centro del conductor o del conjunto de conductores en haz medido desde la torre hasta el suelo

Vmid: Altura vertical del centro del conductor o del conjunto de conductores en haz medida desde el medio vano hasta el suelo

Si el usuario selecciona la opción Auto bunding: aparecen los siguientes términos

Separ: Distancia de separación entre los centros de dos conductores adyacentes de un conjunto de conductores en haz

Alpha: Posición angular del centro a uno de los conductores del conjunto de conductores en haz NB: Numero de conductores que forman parte del conjunto de cables en haz

4.5.3 Transformadores

El transformador adoptado para los estudios de sobrevoltajes transitorios originados por una falla monofásica temporal, es el de la rutina Satura, dicho transformador puede operar con 2 o 3 devanados y además emplear diferentes conexiones. La figura 53 muestra la ventana de dialogo, para el ingreso de datos de un transformador con 3 devanados y conexiones $Y/\Delta/Y$ aterrizado.

omponen	t: SATTR	иго				
Atributes	Charact	eristic				
100	Pin		Tert	NODE	PHASE	NAME
R [m]	0	0	0	Secondary	ABC	CCHH
L nH.ohn)	4.125	45.445	0.146	Starpoint	ABC	×0008
Cueing	Y	Y Y	v D	SecN	1	
Phase shift		0	- 30	Tertiary	ABC	>:0009
1(0)= 50 F(0)= 110	0	0	RMS	ing .		
				Order: 4	Labet 23	0/34.5/500
Cogment						
Output						Hide
0-1	No		~			

Figura 53. Modelo y especificaciones técnicas del transformador

Donde se tiene:

- U, Voltaje nominal del bobinado en KV.
- R, Resistencia del bobinado
- L, Inductancia del bobinado
- I(0), F(0), corriente y flujo usados para definir la inductancia lineal.

Rm, resistencia constante y lineal, esta resistencia toma en cuenta las pérdidas de excitación.

4.5.4 Reactores

Los bancos de reactores trifásicos que se encuentran ubicados en los extremos de cada circuito de la línea de transmisión Coca Codo Sinclair – El Inga, se los modela y representa de la siguiente manera

Figura 54. Modelo y especificaciones técnicas del reactor

- R_1; R_2; R_3: Resistencia en ohmios
- L_1; L_2; L_3: Inductancia en ohmios
- C_1; C_2; C_3: Capacitancia en ohmios

4.5.5 Interruptores

Como se menciono, el sistema a modelar empleara interruptores controlados por el tiempo con opción de recierre, en otras palabras, actuaran las veces que el usuario requiera realizar una nueva operación. Los datos técnicos se muestran en la siguiente figura

Figura 55. Especificaciones técnicas para interruptores con opción de re-cierre

CAPITULO 5

5. SIMULACION DE FALLAS MONOFASICAS UTLIZANDO EL SOFTWARE ATPDRAW V5.6

La línea de transmisión Coca Codo Sinclair - El Inga es una de las líneas de transmisión más importantes que dispondrá el sistema nacional, debido a que será el medio por el cual se transportaran grandes cantidades de energía, por tal motivo, esta línea debe garantizar total confiabilidad y operar de la mejor manera ante cualquier tipo de disturbio.

Es necesario establecer que, en las simulaciones que se efectuaran atraves del software, ATPDraw versión 5.6; no será posible observar los efectos ocasionados por la des-ionización del arco, que se manifiesta en la apertura del disyuntor, debido a que ningún interruptor del programa, posee ese tipo de caracteristicas. Las contantes actualizaciones del software, han permitido que el usuario con un conocimiento avanzado, sea capaz de programar y utilizar su propio elemento con propiedades reales.

El interruptor controlado por tiempo con opción de re-cierre, posee caracteristicas que se acercan a lo requerido en este estudio; por tal motivo no se considerara el tiempo que le toma extinguirse al arco eléctrico, simplemente, abrirá el interruptor en un determinado tiempo, operando según las caracteristicas antes mencionadas (sección 4.4.6)

Para realizar los respectivos análisis a la línea de transmisión Coca Codo Sinclair - El Inga, es necesario dar a conocer los tipos de disturbios a los que se someterá la línea en cuestión

5.1 PROCESO DEL DISTURBIO

Inicialmente el sistema de transmisión trabajara bajo condiciones normales, sin olvidar lo mencionado en la sección 3.1.1, en la cual se estableció el nivel de generación y ubicación de falla. Luego de un determinado tiempo la línea de transmisión sufrirá una anormalidad en su comportamiento, originada por una falla monofásica; a continuación se tratara de despejar la falla realizando los respectivos re-cierres, con el objetivo de alcanzar estabilidad en el sistema. En cada etapa del proceso se darán a conocer los máximos picos de tensión y corriente, obtenidos en diferentes puntos de la línea

Este proceso de análisis será el que se mantendrá para todos los casos, en el que se evalué a la línea de transmisión Coca Codo Sinclair – El Inga, poniendo a prueba tanto el circuito C1 como el circuito C2

5.1.1 Fallas

Las fallas son eventos "inesperados" que ocurren en los sistemas de potencia, este tipo de alteraciones, pueden llegar a ocasionar daños irreparables en los equipos del mismo. A medida que aumenta el nivel de tensión, el estudio de fallas, no tiene mayor repercusión, sin embargo las maniobras que se deben realizar para despejar la misma, influyen de gran manera, incluso son mucho más peligrosas que las que podrían ocasionar las descargas atmosféricas.

Las fallas monofásicas prevalecen en cuanto a probabilidad de ocurrencia, lo cual no significa que las demás tengan menos importancia. Las fallas de fase a tierra, ocasionan sobrevoltajes a frecuencia industrial, comúnmente conocidos como sobrevoltajes temporales, estos suelen ser de origen interno y de duración relativamente larga, que van desde los 20 milisegundos hasta varios segundos, pudiendo ser amortiguados o débilmente amortiguados, según el tipo de sistema sobre el cual actúe.

5.1.2 Recierre

Las fallas en un sistema eléctrico de potencia, siempre vendrán acompañadas de maniobras realizadas por el o los disyuntores, cuyo principal objetivo es aclarar la falla y normalizar el

sistema lo más pronto posible. Para niveles de alta y extra alta tensión, como es el caso del estudio de fallas producidas a lo largo de la línea de transmisión Coca Codo Sinclair – El Inga, se debe poner mucha atención a los re-cierres, porque una mala operación del sistema de protección, provocaría una pérdida de sincronismo en el sistema de generación, ya que la mayoría de unidades generadoras se encuentra a este nivel.

El re-cierre de alta velocidad en los sistemas de extra alto voltaje, mejora significativamente la estabilidad del sistema en líneas de un solo circuito. Para líneas de doble circuito que están expuestas a fallas de un solo circuito, la continuidad de servicio atraves del circuito sano, impide que los generadores se desfasen con gran rapidez. Mientras más rápido se cierran los interruptores, mayor será la potencia que pueda transmitirse sin que los generadores se desfasen, siempre y cuando no se vuelva a formar el arco.

5.1.3 Estabilidad Transitoria

Efectuar los análisis de estabilidad transitoria es uno de los puntos que hay que considerar, debido a que es parte importante en el proceso transitorio que sufre la línea en estudio. En sistemas de potencia existen dos tipos de estabilidad, las cuales son por ángulo y por voltaje

163. Estabilidad por ángulo, consiste en mantener los ángulos de los generadores en fase, es decir que no existan diferencias angulares entre ellos, manteniendo el sincronismo del sistema 164. Estabilidad de voltaje, consiste en mantener la magnitud del voltaje dentro de los rangos permisibles de transferencia de potencia en las barras del sistema, es decir, no sobrepasar los límites para que el sistema no colapse

5.2 ANÁLISIS TRANSITORIO ORIGINADO POR UNA FALLA TEMPORAL

Evaluar al sistema para cuando se produce una falla de una fase a tierra momentánea, cuyo restablecimiento operacional puede ser ejecutado mediante una re-conexión monopolar o tripolar, significa que la operación realizada por el o los disyuntores, ha sido exitosa. A continuación se presentan los casos de estudio

5.2.1 Fallas monofásicas producidas al 10% de la S/E El Inga a 500KV

Las figuras 56 y 57 muestran un equivalente de red, de la posible representación del sistema nacional interconectado 2020, en la cual se simula una falla de una fase a tierra producida al 10% de la S/E El Inga a 500KV, la misma que será despejada utilizando re-cierres tripolares y monopolares respectivamente.

<u>4 UNIDADES DE GENERACION</u>

Figura 56: Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar

Figura 57. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar

El sistema se encuentra operando a una potencia base, esta potencia se mantendrá la mayor parte del día, e irá incrementando dependiendo de las horas de mayor demanda. A continuación se presentan los tiempos de operación de los diferentes interruptores (los tiempos de actuación para los interruptores 3 y 4 son iguales en ambos tipos de re-cierre) y los resultados más relevantes obtenidos a lo largo de la simulación

	RE-CIERRE TRIPOLAR				RE-CIERRE MONOPOLAR			
	APERTURA	CIERRE	RE-CIERRE		APERTURA	CIERRE	RE-CIERRE	
	(S)	(S)	(S)		(S)	(S)	(S)	
INT 1	0.12	-1.00	0.25	INT 1A, 1B	1000.00	-1.00	XXXXX	
INT 2	0.10	-1.00	0.25	INT 1C	0.12	-1.00	0.25	
INT 3	1000.00	-1.00	XXXXX	INT 2A, 2B	1000.00	-1.00	XXXXX	
INT 4	1000.00	-1.00	XXXXX	INT 2C	0.10	-1.00	0.25	
INT F	0.15	0.05	XXXXX	INT F	0.15	0.05	XXXXX	

RE-CIERRE TRIPOLAR									
RF=0	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)					
	А	В	С	А	В	С			
DURANTE LA	438.64	433.46	250.78	451.88	443.36	100.14			
FALLA	1.07	1.06	0.61	1.11	1.09	0.25			
DURANTE EL	482.63	492.23	560.84	474.22	479.27	529.91			
DESPEJE	1.18	1.21	1.37	1.16	1.17	1.30			
POSTERIOR AL	514.24	570.85	668.39	518.5	562.95	673.42			
RECIERRE	1.26	1.40	1.64	1.27	1.38	1.65			
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR					
DURANTE LA	438.64	433.46	250.78	451.81	442.96	100.14			
FALLA	1.07	1.06	0.61	1.11	1.09	0.25			
DURANTE EL	509.75	508.74	586.19	496.4	505.44	553.98			
DESPEJE	1.25	1.25	1.44	1.22	1.24	1.36			
POSTERIOR AL	497.4	537.49	608.69	490.78	531.8	577.18			
RECIERRE	1.22	1.32	1.49	1.20	1.30	1.41			

Tabla 26: Tiempo de operación de los interruptores tripolares y monopolares

Tabla 27: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación (Falla al 10% de El Inga y RF=0)

Figura 58. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (4 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR								
RF=20	CCS 500KV (KV - PU)			EL IN	EL INGA 500KV (KV - PU)			
	А	В	С	А	В	С		
DURANTE LA	368.97	462.95	274.99	387.82	459.25	242.49		
FALLA	0.90	1.13	0.67	0.95	1.12	0.59		
DURANTE EL	433.28	473.07	527.01	435.91	471.17	507.79		
DESPEJE	1.06	1.16	1.29	1.07	1.15	1.24		
POSTERIOR AL	443.07	472.59	479.57	436.52	469.25	480.44		
RECIERRE	1.09	1.16	1.17	1.07	1.15	1.18		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	368.97	462.95	274.99	387.82	459.25	242.49		
FALLA	0.90	1.13	0.67	0.95	1.12	0.59		
DURANTE FL	438.61	434.15	491.7	438.61	452.36	457.06		
DESPEJE	1.07	1.06	1.20	1.07	1.11	1.12		
	446.18	489.33	522.56	436.72	484.28	506.6		
RECIERRE	1.09	1.20	1.28	1.07	1.19	1.24		

Tabla 28: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación (Falla al 10% de El Inga y RF=20)

Figura 59. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (4 unidades de generación y RF=20)

Los resultados obtenidos muestran diferentes puntos, en los que el voltaje alcanza una determinada magnitud, dependiendo del tipo de re-cierre y resistencia de falla que se haya empleado. Se puede apreciar que durante el proceso de falla de una fase a tierra para un tipo de impedancia dada, no existe ningún cambio en el comportamiento transitorio, tanto en la barra de Coca Codo Sinclair como en la de El Inga, es decir mantienen su forma de onda.

Debido a que la falla se produce al 10% de la S/E El Inga, la fase fallada (fase C) presenta la menor sobretensión, la misma que va incrementando conforme lo hace la resistencia de falla. La mayor sobretensión que se produce en esta etapa, se percibe en la fase B de la barra CCS a 500KV, alcanzando un valor de 1.13 pu, empleando un RF=20 ohm

Durante el despeje de la falla existen ciertas diferencias en los voltajes obtenidos, producto del tipo de operación que realiza el interruptor, en unos casos resulta más favorable una apertura en la que se involucre a las tres fases y en otras ocasiones es más conveniente una apertura monofásica.

Cuando se produce el re-cierre, tanto el interruptor 1 como el interruptor 2 cierran simultáneamente a t=0.25 segundos. La tensión más elevada, alcanza un valor de 1.65 pu y se produce cuando se realiza un re-cierre tripolar con un RF=0 ohm, conforme aumenta la resistencia, se logra un mejor control de sobretensión

Es importante acotar que en ambos casos de re-cierre se produce una sobretensión tolerable por el sistema, ya que se encuentran bajo un valor de 2 pu

La corriente de falla presenta la misma forma de onda y caracteristicas previo al despeje, producto de la no intervención de los interruptores. La intensidad de corriente de falla transitoria más

relevante, se origina en un tiempo de 0.05724 segundos empleando un RF=0 ohm, dicho valor es de 11.66 pu

<u>6 UNIDADES DE GENERACION</u>

Figura 60. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar

Figura 61. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar

RE-CIERRE TRIPOLAR									
RF=0	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)					
	А	В	С	А	В	С			
DURANTE LA	436.54	445.12	231.81	441.03	439.82	98.108			
FALLA	1.07	1.09	0.57	1.08	1.08	0.24			
DURANTE EL	457.22	480.26	518.57	467.42	474.04	496.56			
DESPEJE	1.12	1.18	1.27	1.14	1.16	1.22			
POSTERIOR AL	517.59	561.99	662.91	508.01	561.25	637.09			
RECIERRE	1.27	1.38	1.62	1.24	1.37	1.56			
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR					
DURANTE LA	436.47	445.24	234.5	441.1	439.84	96.062			
FALLA	1.07	1.09	0.57	1.08	1.08	0.24			
DURANTE EL	450.79	447.18	462.64	439.91	463.8	435.18			
DESPEJE	1.10	1.10	1.13	1.08	1.14	1.07			
POSTERIOR AL	485.74	529.57	572.79	481.55	520.44	558.68			
RECIERRE	1.19	1.30	1.40	1.18	1.27	1.37			

Tabla 29: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación (Falla al 10% de El Inga y RF=0)

Figura 62. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (6 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR									
RF=20	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)					
	А	В	С	Α	В	с			
DURANTE LA	381.87	458	299.03	390.52	452.99	250.78			
FALLA	0.94	1.12	0.73	0.96	1.11	0.61			
DURANTE EL	456.74	461.62	519.3	447.83	448.78	485.4			
DESPEJE	1.12	1.13	1.27	1.10	1.10	1.19			
POSTERIOR AL	481.32	442.58	503.12	477.38	440.19	489.97			
RECIERRE	1.18	1.08	1.23	1.17	1.08	1.20			
		RE-CIERR	Е МОНОРО	LAR					
DURANTE LA	381.87	458	299.03	390.53	452.99	250.77			
FALLA	0.94	1.12	0.73	0.96	1.11	0.61			
DURANTE FL	466.37	465.21	530.52	462.31	468.03	495.24			
DESPEJE	1.14	1.14	1.30	1.13	1.15	1.21			
POSTERIOR AL	450.3	473.23	487.55	447.68	469.32	480.22			
RECIERRE	1.10	1.16	1.19	1.10	1.15	1.18			

Tabla 30: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación (Falla al 10% de El Inga y RF=20)

Figura 63. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (6 unidades de generación y RF=20)

De los resultados obtenidos, con la inclusión de dos unidades generadoras, se puede observar claramente que los niveles de tensión que se consigue en las barras de CCS y El Inga, resultan mucho menores si se ejecuta una operación monopolar, independientemente del tipo de resistencia de falla que se emplee, además el aporte de los armónicos no tiene mayor influencia, lo antes mencionado puede ser constatado en la respuesta de la onda de tensión, para cuando se realiza el respectivo restablecimiento del sistema

La sobretensión transitoria producida por una falla monofásica en las cercanías de la S/E El Inga que más se destaca, ocurre en la fase C de la barra Coca Codo Sinclair, adquiriendo un nivel de tensión de 1.62 pu con un RF=0 ohm, en un tiempo de 0.26886 segundos, donde se efectúa una operación trifásica simultanea para brindar continuidad de servicio al sistema.

El aporte de 6 unidades de generación produjo una mayor cantidad de potencia transmitida en cada una de las líneas, lo cual se ve plasmado en el incremento de la magnitud de la corriente de falla transitoria, pese a ello la forma de onda es muy similar al caso anterior donde se valoró al sistema con 4 generadoras.

<u>8 UNIDADES DE GENERACION</u>

Figura 65. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar

	RE-CIERRE TRIPOLAR								
RF=0	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)					
	А	В	С	Α	В	с			
DURANTE LA	436.46	447.28	262.83	435.14	447.68	99.927			
FALLA	1.07	1.10	0.64	1.07	1.10	0.24			
DURANTE EL	469.36	440.39	458.49	464.99	448.52	465.26			
DESPEJE	1.15	1.08	1.12	1.14	1.10	1.14			
DURANTE FI	445.71	500.72	516.11	443.61	495.69	512.83			
RECIERRE	1.09	1.23	1.26	1.09	1.21	1.26			
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR					
DURANTE LA	436.46	447.28	263.05	436.47	447.25	99.93			
FALLA	1.07	1.10	0.64	1.07	1.10	0.24			
	472.20	471.84	494.63	472.25	471.93	494.63			
DESPEJE	1.16	1.16	1.21	1.16	1.16	1.21			
DURANTE FI	514.15	513.17	589.88	514.01	513.26	590.11			
RECIERRE	1.26	1.26	1.44	1.26	1.26	1.45			

Tabla 31: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación (Falla al 10% de El Inga y RF=0)

Figura 66. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (8 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR									
RF=20	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)					
	А	В	С	Α	В	с			
DURANTE LA	388.31	458.51	316.59	390.96	451.11	260.82			
FALLA	0.95	1.12	0.78	0.96	1.10	0.64			
DURANTE EL	466.85	438.28	495.62	466.22	439.41	470.06			
DESPEJE	1.14	1.07	1.21	1.14	1.08	1.15			
POSTERIOR AL	457.05	467.3	525.62	452.92	464.32	519.77			
RECIERRE	1.12	1.14	1.29	1.11	1.14	1.27			
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR					
DURANTE LA	388.56	458.53	316.59	390.96	451.11	260.82			
FALLA	0.95	1.12	0.78	0.96	1.10	0.64			
DURANTE FL	441.07	454.41	516.98	443.41	451.60	492.79			
DESPEJE	1.08	1.11	1.27	1.09	1.11	1.21			
POSTERIOR AL	473.35	479.06	509.68	470.07	475.35	507.04			
RECIERRE	1.16	1.17	1.25	1.15	1.16	1.24			

Tabla 32: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación (Falla al 10% de El Inga y RF=20)

Figura 67. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV (8 unidades de generación y RF=20)

Durante el proceso de falla, la tensión más elevada se obtiene en la fase B de la barra CCS cuando se utiliza una resistencia de falla de 20 ohm, dicho valor es de 1.12 pu y se consigue en un tiempo de 0.05634 segundos

Si se establece una comparación de los resultados obtenidos con 4, 6 unidades de generación en la central hidroeléctrica CCS, se puede verificar que la mayor sobretensión transitoria, siempre se presento con RF=0 ohm, mediante el empleo de un re-cierre tripolar, en cambio para este escenario de evaluación, la tensión más elevada se produce al ejecutar un re-cierre monopolar, alcanzando un valor de 1.45 pu en la fase C de la S/E El Inga, además la magnitud de sobrecorriente de falla transitoria, se obtiene durante el primer pico, el cual alcanza un valor de 13.13 pu, superando a los valores obtenidos con las anteriores simulaciones

5.2.2 Fallas monofásicas producidas al 10% de la S/E CCS a 500KV

<u>4 UNIDADES DE GENERACION</u>

Figura 69. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre monopolar

La siguiente tabla muestra los tiempos de operación de los interruptores, los cuales dependen del tipo de interrupción y re-conexión que se aplique

	RE-CIERRE TRIPOLAR				RE-CIERRE MONOPOLAR			
	APERTURA	CIERRE	RE-CIERRE		APERTURA	CIERRE	RE-CIERRE	
	(S)	(S)	(S)		(S)	(S)	(S)	
INT 1	0.10	-1.00	0.25	INT 1A, 1B	1000.00	-1.00	XXXXX	
INT 2	0.12	-1.00	0.25	INT 1C	0.10	-1.00	0.25	
INT 3	1000.00	-1.00	XXXXX	INT 2A, 2B	1000.00	-1.00	XXXXX	
INT 4	1000.00	-1.00	XXXXX	INT 2C	0.12	-1.00	0.25	
INT F	0.15	0.05	XXXXX	INT F	0.15	0.05	XXXXX	

Tabla 33: Tiempo de operación de los interruptores tripolares y monopolares

RE-CIERRE TRIPOLAR									
RF=0	ccs	500KV (KV -	PU)	EL INGA 500KV (KV - PU)					
	А	В	С	Α	В	С			
DURANTE LA	438.31	441.66	82.218	438.73	449.15	248.13			
FALLA	1.07	1.08	0.20	1.07	1.10	0.61			
DURANTE EL	480.72	460.39	515.73	458.87	438.74	494.15			
DESPEJE	1.18	1.13	1.26	1.12	1.07	1.21			
POSTERIOR AL	534.47	542.99	657.07	499.89	522.74	592.71			
RECIERRE	1.31	1.33	1.61	1.22	1.28	1.45			
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR					
	438.31	441.66	82.218	438.73	449.15	248.13			
FALLA	1.07	1.08	0.20	1.07	1.10	0.61			
DURANTE FL	460.98	472.8	480.27	452.01	459.05	475.74			
DESPEJE	1.13	1.16	1.18	1.11	1.12	1.17			
POSTERIOR AL	480.17	529.54	585.87	469.13	522.92	562.93			
RECIERRE	1.18	1.30	1.44	1.15	1.28	1.38			

Tabla 34: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación (Falla al 10% de CCS y RF=0)

Figura 70. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (4 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR								
RF=20	CCS 500KV (KV - PU)			EL IN	EL INGA 500KV (KV - PU)			
	А	В	С	А	В	с		
DURANTE LA	372.77	457.27	217.16	380.93	458.5	281.51		
FALLA	0.91	1.12	0.53	0.93	1.12	0.69		
DURANTE EL	455.45	486.85	499.64	438.01	459.03	490.14		
DESPEJE	1.12	1.19	1.22	1.07	1.12	1.20		
POSTERIOR AL	437.35	482.39	494.37	431.92	474.81	486.05		
RECIERRE	1.07	1.18	1.21	1.06	1.16	1.19		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	372.77	457.27	217.16	380.93	458.5	281.51		
FALLA	0.91	1.12	0.53	0.93	1.12	0.69		
DURANTE FL	470.32	474.93	523.24	460.1	461.86	533.32		
DESPEJE	1.15	1.16	1.28	1.13	1.13	1.31		
	437.58	482.74	507.19	430.15	477.97	492.07		
RECIERRE	1.07	1.18	1.24	1.05	1.17	1.21		

Tabla 35: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación (Falla al 10% de CCS y RF=20)

Figura 71. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (4 unidades de generación y RF=20)

Durante el proceso de falla, la barra que presenta el mayor decaimiento de tensión, es la fase C de Coca Codo Sinclair, la cual va incrementando conforme lo hace la resistencia de falla, por otra parte, el mayor voltaje se presenta en la fase B de las barras puestas bajo análisis, alcanzando un valor de 1.12 pu empleando un RF=20 ohm

La sobretensión transitoria más destacable es de 1.61 pu, obtenida en un tiempo de 0.2693 segundos mediante la utilización de un RF=0 ohm, dicho valor se adquiere al ejecutar un re-cierre tripolar, sin embargo el nivel de tensión que se alcanza es tolerable por el sistema y logra

estabilizarse luego de pocos milisegundos. En general las menores consideraciones de sobretensión, se consiguen cuando se aplica un re-conexión monopolar

En cuanto a la forma de onda producida por la corriente de falla, se puede decir que presenta rasgos característicos similares a los que se obtuvieron con los anteriores análisis (falla en las cercanías de El Inga), la diferencia radica en la magnitud de corriente transitoria. En posteriores análisis se entablara una comparación de la corriente de falla transitoria, cuando se valora al sistema en diferentes puntos de falla

6 UNIDADES DE GENERACION

Figura 72. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre tripolar

Figura 73. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre monopolar

RE-CIERRE TRIPOLAR									
RF=0	ccs	500KV (KV -	PU)	EL INGA 500KV (KV - PU)					
	А	В	С	А	В	С			
DURANTE LA	438.13	446.16	89.808	435.76	452.67	269.59			
FALLA	1.07	1.09	0.22	1.07	1.11	0.66			
DURANTE EL	439.86	465.26	492.55	446.07	462.02	483.06			
DESPEJE	1.08	1.14	1.21	1.09	1.13	1.18			
POSTERIOR AL	501.15	545.81	618.22	506.72	540.71	619.71			
RECIERRE	1.23	1.34	1.51	1.24	1.32	1.52			
		RE-CIERR	Е МОНОРО	LAR					
DURANTE LA	438.13	446.16	89.808	435.76	452.67	269.59			
FALLA	1.07	1.09	0.22	1.07	1.11	0.66			
DURANTE EL	469.09	469.7	467.55	448.63	447.01	441.33			
DESPEJE	1.15	1.15	1.15	1.10	1.09	1.08			
POSTERIOR AL	485.68	523.87	566.92	481.36	514.89	552.89			
RECIERRE	1.19	1.28	1.39	1.18	1.26	1.35			

Tabla 36: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación (Falla al 10% de CCS y RF=0)

Figura 74. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (6 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR						
RF=20	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)		
	А	В	С	А	В	с
DURANTE LA FALLA	380.32	460.85	237.05	385.04	460.96	304.83
	0.93	1.13	0.58	0.94	1.13	0.75
DURANTE EL DESPEJE	451.36	478.07	498.26	425.39	460.49	498.96
	1.11	1.17	1.22	1.04	1.13	1.22
POSTERIOR AL RECIERRE	456.97	467.82	503.11	453.75	462.06	494.55
	1.12	1.15	1.23	1.11	1.13	1.21
RE-CIERRE MONOPOLAR						
DURANTE LA FALLA	380.32	460.85	237.05	385.08	460.93	304.76
	0.93	1.13	0.58	0.94	1.13	0.75
DURANTE EL DESPEJE	452.56	459.54	474.28	450.97	446.6	472.59
	1.11	1.13	1.16	1.10	1.09	1.16
POSTERIOR AL RECIERRE	453.53	475.81	500.35	450.73	471.13	492.18
	1.11	1.17	1.23	1.10	1.15	1.21

Tabla 37: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación (Falla al 10% de CCS y RF=20)

Figura 75. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (6 unidades de generación y RF=20)

El pico de sobretensión que se destaca durante la falla, se produce en la fase B de ambas barras, mediante el uso de un RF=20 ohm, dicho valor es de 1.13 pu y se alcanza en un tiempo de 0.05624 segundos; por otro lado, la magnitud de corriente de falla transitoria más elevada que se consigue durante este periodo, se obtiene empleando una resistencia de falla de 0 ohm, dicho valor es de 11.76 pu

De los resultados expuestos, se puede decir que las tensiones transitorias que mayor repercusión tienen sobre el sistema, se presentan para cuando se emplea un RF=0 ohm al efectuar una reconexión tripolar, pero a medida que incrementa la resistencia de falla, la tensión transitoria que se obtiene en la barra de CCS reduce en 0.28 pu y la de El Inga lo hace en un 0.31 pu

<u>8 UNIDADES DE GENERACION</u>

Figura 77. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre monopolar
	-	RE-CIEF		AR	-	-
RF=0	ccs	500KV (KV -	PU)	EL INGA 500KV (KV - PU)		
	А	В	С	А	В	с
DURANTE LA	440.21	450.24	94.591	434.1	454.55	276.45
FALLA	1.08	1.10	0.23	1.06	1.11	0.68
DURANTE EL	449.32	437.91	469.6	443	429.05	455.33
DESPEJE	1.10	1.07	1.15	1.09	1.05	1.12
POSTERIOR AL	433.62	499.79	504.5	432.04	490.94	501.56
RECIERRE	1.06	1.22	1.24	1.06	1.20	1.23
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR		
DURANTE LA	440.21	450.29	94.641	434.10	454.59	276.45
FALLA	1.08	1.10	0.23	1.06	1.11	0.68
DURANTE EL	456.28	464.02	479.46	455.74	457.38	475.39
DESPEJE	1.12	1.14	1.17	1.12	1.12	1.16
POSTERIOR AL	508.68	507.54	583.50	504.87	501.26	578.44
RECIERRE	1.25	1.24	1.43	1.24	1.23	1.42

Tabla 38: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación (Falla al 10% de CCS y RF=0)

Figura 78. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (8 unidades de generación y RF=0)

	RE-CIERRE TRIPOLAR							
RF=20	ccs	500KV (KV -	PU)	EL INGA 500KV (KV - PU)				
	А	В	С	Α	В	С		
DURANTE LA	386.71	463.02	252.81	386.6	462.75	318		
FALLA	0.95	1.13	0.62	0.95	1.13	0.78		
DURANTE EL	463.54	467.24	492.05	459.71	451.68	502.04		
DESPEJE	1.14	1.14	1.21	1.13	1.11	1.23		
POSTERIOR AL	469.5	469	520.55	465.77	466.15	513.66		
RECIERRE	1.15	1.15	1.28	1.14	1.14	1.26		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
	386.71	463.02	252.81	386.75	462.87	318.00		
FALLA	0.95	1.13	0.62	0.95	1.13	0.78		
DURANTE FL	451.65	461.93	513.35	446.91	462.12	523.87		
DESPEJE	1.11	1.13	1.26	1.09	1.13	1.28		
POSTERIOR AL	473.09	480.17	507.16	470.22	476.56	504.52		
RECIERRE	1.16	1.18	1.24	1.15	1.17	1.24		

Tabla 39: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación (Falla al 10% de CCS y RF=20)

Figura 79. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV (8 unidades de generación y RF=20)

Se sabe que los mayores sobrevoltajes son producto de la re-conexión de la línea de transmisión cuando se emplea una resistencia de falla igual a cero; pero cuando se utilizan 8 generadoras en la central Hidroeléctrica, los sobrevoltajes transitorios son insignificantes si se establece una comparación con los resultados obtenidos con 4 y 6 unidades generadoras respectivamente. La siguiente tabla muestra los niveles de tensión transitoria, que se originan por una falla monofásica al 10% de la S/E El Inga y al 10% de la S/E CCS, posterior a una re-conexión tripolar.

		RE-CIER	RE TRIPOL	.AR			
	FALLA AL 10	0% DE LA S/	'E EL INGA (4 GENARAD	ORAS)		
RF=0	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)			
	Α	В	С	Α	В	С	
POSTERIOR AL	514.24	570.85	668.39	518.5	562.95	673.42	
RECIERRE	1.26	1.40	1.64	1.27	1.38	1.65	
	FALLA AL 10	0% DE LA S/	'E EL INGA (6 GENARAD	ORAS)		
POSTERIOR AL	517.59	561.99	662.91	508.01	561.25	637.09	
RECIERRE	1.27	1.38	1.62	1.24	1.37	1.56	
	FALLA AL 10	0% DE LA S/	'E EL INGA (8 GENARAD	ORAS)		
POSTERIOR AL	445.71	500.72	516.11	443.61	495.69	512.83	
RECIERRE	1.09	1.23	1.26	1.09	1.21	1.26	
RECIERRE 1.09 1.23 1.26 1.09 1.21 1.26							
RE-CIERRE TRIPOLAR							
	FALLA AL	RE-CIER	RE TRIPOL	.AR GENARADO	RAS)		
RF=0	FALLA AL	RE-CIER 10% DE LA 500KV (KV -	RE TRIPOL S/E CCS (4 (PU)	AR GENARADO EL ING	RAS) GA 500KV (KV	′ - PU)	
RF=0	FALLA AL CCS	RE-CIER 10% DE LA 500KV (KV - B	RE TRIPOL S/E CCS (4 (PU) C	AR GENARADO EL ING A	RAS) GA 500KV (KV B	7 - PU) C	
RF=0 POSTERIOR AL	FALLA AL CCS A 534.47	RE-CIER 10% DE LA 5500KV (KV - B 542.99	C C	AR GENARADO EL ING A 499.89	RAS) GA 500KV (KV <u>B</u> 522.74	<mark>с ри)</mark> С 592.71	
RF=0 POSTERIOR AL RECIERRE	FALLA AL CCS A 534.47 1.31	RE-CIER 10% DE LA 500KV (KV - B 542.99 1.33	RE TRIPOL S/E CCS (4 0 PU) C 657.07 1.61	AR GENARADO EL INO A 499.89 1.22	RAS) GA 500KV (KV B 522.74 1.28	c 592.71 1.45	
RF=0 POSTERIOR AL RECIERRE	FALLA AL CCC A 534.47 1.31 FALLA AL	RE-CIER 10% DE LA 500KV (KV - B 542.99 1.33 10% DE LA	C 657.07 1.61 S/E CCS (6 0)	AR GENARADO EL ING A 499.89 1.22 GENARADO	RAS) GA 500KV (KV B 522.74 1.28 RAS)	c 592.71 1.45	
RF=0 POSTERIOR AL RECIERRE POSTERIOR AL	FALLA AL CCS A 534.47 1.31 FALLA AL 501.15	RE-CIER 10% DE LA 500KV (KV - B 542.99 1.33 10% DE LA 545.81	C 657.07 1.61 5/E CCS (6 0)	AR GENARADO EL IN 499.89 1.22 GENARADO 506.72	RAS) GA 500KV (KV B 522.74 1.28 RAS) 540.71	C 592.71 1.45 619.71	
RF=0 POSTERIOR AL RECIERRE POSTERIOR AL RECIERRE	FALLA AL ccs A 534.47 1.31 FALLA AL 501.15 1.23	RE-CIER 10% DE LA 500KV (KV - 1 8 542.99 1.33 10% DE LA 545.81 1.34	C 657.07 1.61 S/E CCS (6 @ 618.22 1.51	AR GENARADO EL IN 499.89 1.22 GENARADO 506.72 1.24	RAS) GA 500KV (KV B 522.74 1.28 RAS) 540.71 1.32	c 592.71 1.45 619.71 1.52	
RF=0 POSTERIOR AL RECIERRE POSTERIOR AL RECIERRE	FALLA AL CCS A 534.47 1.31 FALLA AL 501.15 1.23 FALLA AL	RE-CIER 10% DE LA 500KV (KV - 8 542.99 1.33 10% DE LA 545.81 1.34 10% DE LA	C 657.07 1.61 S/E CCS (6 @ 618.22 1.51 S/E CCS (8 @	AR GENARADO EL ING A 499.89 1.22 GENARADO 506.72 1.24 GENARADO	RAS) GA 500KV (KV B 522.74 1.28 RAS) 540.71 1.32 RAS)	c 592.71 1.45 619.71 1.52	
RF=0 POSTERIOR AL RECIERRE POSTERIOR AL RECIERRE	FALLA AL CCS A 534.47 1.31 FALLA AL 501.15 1.23 FALLA AL 433.62	RE-CIER 10% DE LA 500KV (KV - 542.99 1.33 10% DE LA 545.81 1.34 10% DE LA 499.79	RE TRIPOI S/E CCS (4 0 PU) C 657.07 1.61 S/E CCS (6 0 618.22 1.51 S/E CCS (8 0 504.5	AR GENARADO EL ING A 499.89 1.22 GENARADO 506.72 1.24 GENARADO 432.04	RAS) GA 500KV (KV B 522.74 1.28 RAS) 540.71 1.32 RAS) 490.94	c 592.71 1.45 619.71 1.52 501.56	

Tabla 40: Comparación de las sobretensiones obtenidas posterior a una re-conexión tripolar, empleando un RF=0 ohm y diferentes niveles de generación Los resultados demuestran que, a pesar de que el punto de falla es diferente, los niveles de tensión no tienen mayor relevancia, si se comparan con los resultados que arroja el software al emplear 4 y 6 unidades de generación respectivamente.

Las mayores sobretensiones transitorias que se presentan en las barras puestas bajo análisis, se producen en la fase fallada producto de una re-conexión tripolar empleando 4 unidades de generación, cuyo máximo valor es de 1.65 pu y se consigue en la barra de El Inga

5.2.3 Fallas monofásicas producidas al 50% de la Línea de Transmisión Coca Codo Sinclair – El Inga a 500KV

<u>4 UNIDADES DE GENERACION</u>

Figura 80. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar

Figura 81. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar

La Tabla 45 muestra los diferentes tiempos de operación de los interruptores, para cuando se produce una falla monofásica al 50% de la línea de Transmisión CCS – El Inga a 500KV

	RE-CIERRE TRIPOLAR			RE	-CIERRE M	ONOPOLA	R
	APERTURA	CIERRE	RE-CIERRE		APERTURA	CIERRE	RE-CIERRE
	(S)	(S)	(S)		(S)	(S)	(S)
INT 1	0.10	-1.00	0.25	INT 1A, 1B	1000.00	-1.00	XXXXX
INT 2	0.13	-1.00	0.30	INT 1C	0.10	-1.00	0.25
INT 3	1000.00	-1.00	XXXXX	INT 2A, 2B	1000.00	-1.00	XXXXX
INT 4	1000.00	-1.00	XXXXX	INT 2C	0.13	-1.00	0.30
INT F	0.15	0.05	XXXXX	INT F	0.15	0.05	XXXXX

Tabla 41: Tiempo de operación de los interruptores tripolares y monopolares

		RE-CIEF		AR		
RF=0	ccs	500KV (KV -	PU)	EL INGA 500KV (KV - PU)		
	А	В	С	Α	В	с
DURANTE LA	433.64	446.29	195.52	437.39	446.91	212.15
FALLA	1.06	1.09	0.48	1.07	1.09	0.52
DURANTE EL	466.04	494.44	548.61	445.28	474.68	546.91
DESPEJE	1.14	1.21	1.34	1.09	1.16	1.34
POSTERIOR AL	476.57	466.2	500.01	490.2	502.74	613.35
RECIERRE	1.17	1.14	1.22	1.20	1.23	1.50
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR		
DURANTE LA	433.64	446.29	195.52	437.39	446.91	212.15
FALLA	1.06	1.09	0.48	1.07	1.09	0.52
DURANTE EL	466.29	466.19	527.75	454.29	456.46	532.51
DESPEJE	1.14	1.14	1.29	1.11	1.12	1.30
POSTERIOR AL	531.44	559.46	664.91	530.9	584.8	683.32
RECIERRE	1.30	1.37	1.63	1.30	1.43	1.67

Tabla 42: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=0)

Figura 82. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (4 unidades de generación y RF=0)

	RE-CIERRE TRIPOLAR							
RF=20	ccs	500KV (KV -	PU)	EL INGA 500KV (KV - PU)				
	А	В	С	А	В	С		
DURANTE LA	385.26	465.78	244.51	392.63	461.62	251.01		
FALLA	0.94	1.14	0.60	0.96	1.13	0.61		
DURANTE EL	464.78	491.74	540.09	445.21	470.1	536.89		
DESPEJE	1.14	1.20	1.32	1.09	1.15	1.32		
POSTERIOR AL	514.85	509.91	614.77	467.3	497.86	589.86		
RECIERRE	1.26	1.25	1.51	1.14	1.22	1.44		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	385.26	465.78	244.51	392.63	461.62	251.01		
FALLA	0.94	1.14	0.60	0.96	1.13	0.61		
DURANTE EL	468.43	467.6	512.66	456.5	462.7	522.97		
DESPEJE	1.15	1.15	1.26	1.12	1.13	1.28		
POSTERIOR AL	513.43	536.45	605.48	512.09	557.52	634.34		
RECIERRE	1.26	1.31	1.48	1.25	1.37	1.55		

Tabla 43: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=20)

Figura 83. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (4 unidades de generación y RF=20)

Se puede constatar, que la evaluación del sistema en un punto de falla diferente, ocasiona cambios transitorios en los niveles de tensión y corriente en las barras.

Todos los escenarios guardan una estrecha relación en cuanto a la forma de onda de la corriente de falla transitoria, la única diferencia radica en la magnitud de corriente que se obtiene en un determinado pico. La siguiente tabla muestra la intensidad de corriente de falla transitoria, que alcanza el sistema en diferentes etapas del disturbio, para cuando se simula con 4 unidades de generación y la falla se produce al 50% de la línea de transmisión

	RF	TIEMPO	I	F
	(OHM)	(S)	(A)	(PU)
DURANTE LA	0	0.05597	18460	8.88
FALLA	20	0.05544	10852	5.22
DURANTE EL	0	0.10592	10022	4.82
DESPEJE	20	0.10575	7160.2	3.44

Tabla 44: Comparación de la intensidad de corriente de falla, en diferentes etapas de operación, utilizando 4 unidades generadoras

Solo se considerara la operación tripolar de los interruptores, debido a que la forma de onda y puntos de sobrecorriente son idénticos. Se puede verificar, que con el incremento de la resistencia de falla se obtiene una menor sobrecorriente transitoria y que los menores picos de corriente son producto de la ejecución de una apertura del interruptor 1 en el lado de El Inga, la cual alcanza un valor de magnitud cero cuando opera el interruptor 2, lo antes mencionado puede ser constatado en la Figura 83

El nivel de tensión más elevado se produce en la barra de El Inga con un RF=0 ohm, al realizar una re-inserción monopolar de la fase fallada, este valor es de 1.67 pu, sin embargo la distorsión que presentan las fases debido a la introducción de armónicos originados por el disturbio, no tienen mayor relevancia, ya que las barras analizadas alcanzan una estabilidad de voltaje en un tiempo relativamente corto

6 UNIDADES DE GENERACION

Figura 84. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar

Figura 85. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar

	RE-CIERRE TRIPOLAR							
RF=0	ccs	500KV (KV -	PU)	EL INGA 500KV (KV - PU)				
	А	В	С	А	В	С		
DURANTE LA	440.46	437.69	229.53	443.86	438.54	238.33		
FALLA	1.08	1.07	0.56	1.09	1.07	0.58		
DURANTE EL	476.94	462	523.94	463.14	453.83	529.73		
DESPEJE	1.17	1.13	1.28	1.13	1.11	1.30		
POSTERIOR AL	528.88	482.85	575.71	521.76	472.24	602.83		
RECIERRE	1.30	1.18	1.41	1.28	1.16	1.48		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	440.46	437.69	229.53	443.86	438.54	238.33		
FALLA	1.08	1.07	0.56	1.09	1.07	0.58		
DURANTE FL	463.76	468.82	496.25	454.93	459.25	519		
DESPEJE	1.14	1.15	1.22	1.11	1.12	1.27		
POSTERIOR AL	509.76	563.18	664.98	518.89	581.25	717.98		
RECIERRE	1.25	1.38	1.63	1.27	1.42	1.76		

Tabla 45: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=0)

Figura 86. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (6 unidades de generación y RF=0)

	-	RE-CIEF		٨R	-	-
RF=20	ccs	CCS 500KV (KV - PU) EL INGA 500				/ - PU)
	А	В	С	Α	В	С
DURANTE LA	397.25	459.16	264.27	402.67	455.62	269.34
FALLA	0.97	1.12	0.65	0.99	1.12	0.66
DURANTE EL	481.86	450.64	521.22	468.34	448.55	532.8
DESPEJE	1.18	1.10	1.28	1.15	1.10	1.31
POSTERIOR AL	528.21	529.77	652.01	509.74	498.86	617.64
RECIERRE	1.29	1.30	1.60	1.25	1.22	1.51
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR		
DURANTE LA	397.25	459.16	264.27	402.67	455.62	269.34
FALLA	0.97	1.12	0.65	0.99	1.12	0.66
DURANTE EL	456.87	463.44	496.4	451.03	456.25	518.18
DESPEJE	1.12	1.14	1.22	1.10	1.12	1.27
POSTERIOR AL	494.18	543.62	602.32	495.79	555.94	665.28
RECIERRE	1.21	1.33	1.48	1.21	1.36	1.63

Tabla 46: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=20)

Figura 87. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (6 unidades de generación y RF=20)

Durante el proceso de falla, los sobrevoltajes no tienen mayor consideración e incidencia sobre las barras bajo análisis, sin embargo la fase que presenta un incremento de tensión es la fase B, dicho valor es de 1.12 pu y se consigue mediante la utilización de una resistencia de falla igual a 20 ohm

La mayor sobretensión se obtiene mediante la aplicación de un re-cierre monopolar con un RF=0 ohm, alcanzando un valor de 1.76 pu en un tiempo de 0.25144 segundos, pero se puede agregar

que la onda se restablece muy rápido y que las siguientes sobretensiones en la fase fallada alcanzan un valor cercano al de operación normal.

Adicionar dos unidades de generación en la central de generación Coca Codo Sinclair, implica que existe una mayor transferencia de potencia atraves de las líneas, lo cual se ve influenciado en la magnitud de la corriente de falla transitoria.

190.5L 8.33 3.8/138/230K FALLA MONOFASICA AL 50% DE LA L/T CCS - EL INGA A 500KV 3 416.717.646 11.361.8.98 ţ,Ŵ 230/34 5/50 11.36L8.987 190.116.069 416.11.6.765 < 11.36L8.987+ 151 714 565 × 62.5Km 11.36L8.987* 205.3L-34.3 Ż 11.36L8.9874 Equivalente de red 125Kr El Inga 230KV 11.3618 9874 230/34.5/50 El Inga 500KV 11 36(8 9874 Coca Codo 500 KV 11.36L8.9874 Coca Codo 230 KV

8 UNIDADES DE GENERACION

Figura 88. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar

Figura 89. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar

	RE-CIERRE TRIPOLAR							
RF=0	ccs	500KV (KV -	PU)	EL INGA 500KV (KV - PU)				
	А	В	С	А	В	С		
DURANTE LA	436.36	427.31	243.7	439.94	428.56	247.5		
FALLA	1.07	1.05	0.60	1.08	1.05	0.61		
DURANTE EL	451.34	472.14	505.82	444.77	464.76	529.82		
DESPEJE	1.11	1.16	1.24	1.09	1.14	1.30		
POSTERIOR AL	530.99	482.69	577.2	522.48	481.95	643.07		
RECIERRE	1.30	1.18	1.41	1.28	1.18	1.58		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	436.36	427.31	243.7	439.81	428.56	247.5		
FALLA	1.07	1.05	0.60	1.08	1.05	0.61		
	421.94	445.95	486.02	434.42	438.58	500.29		
DESPEJE	1.03	1.09	1.19	1.06	1.07	1.23		
POSTERIOR AL	507.21	548.09	634.51	523.57	543.33	726.97		
RECIERRE	1.24	1.34	1.55	1.28	1.33	1.78		

Tabla 47: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=0)

Figura 90. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (8 unidades de generación y RF=0)

	-	RE-CIEF		٨R	-	-
RF=20	ccs	CCS 500KV (KV - PU) EL INGA 500KV (KV - PU)				
	А	В	С	Α	В	С
DURANTE LA	400.81	450.66	273.54	404.95	448.82	277.24
FALLA	0.98	1.10	0.67	0.99	1.10	0.68
DURANTE EL	457.86	460.25	499.59	456.93	451.56	527.2
DESPEJE	1.12	1.13	1.22	1.12	1.11	1.29
POSTERIOR AL	513.66	486.63	630.07	514.64	490.62	640.27
RECIERRE	1.26	1.19	1.54	1.26	1.20	1.57
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR		
DURANTE LA	400.94	450.62	273.52	405.04	448.76	277.24
FALLA	0.98	1.10	0.67	0.99	1.10	0.68
DURANTE EL	435.65	451.09	494.82	447.18	445.78	513.24
DESPEJE	1.07	1.10	1.21	1.10	1.09	1.26
POSTERIOR AL	490.57	531.60	612.68	500.82	523.10	677.21
RECIERRE	1.20	1.30	1.50	1.23	1.28	1.66

Tabla 48: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=20)

Figura 91. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (8 unidades de generación y RF=20)

La mayor sobretensión se sigue presentando en la barra de El Inga al realizar una re-conexión monopolar empleando una resistencia de falla de 0 ohm, el valor de tensión transitorio que alcanza la fase fallada es de 1.78 pu en un tiempo de 0.25145 segundos.

La siguiente tabla muestra las sobretensiones que mayor repercusión tienen sobre el sistema, al ejecutar una operación de re-cierre

	-	RE-CIER	RE TRIPOI	AR		
RF=0	ccs	500KV (KV -	PU)	EL INGA 500KV (KV - PU)		
Nº GENER.	4	6	8	4	6	8
FASE	С	С	С	С	С	С
POSTERIOR AL	500.01	575.71	577.2	613.35	602.83	643.07
RECIERRE	1.22	1.41	1.41	1.50	1.48	1.58
		RE-CIERR	E MONOP	OLAR		
POSTERIOR AL	664.91	664.98	634.51	683.32	717.98	726.97
RECIERRE	1.63	1.63	1.55	1.67	1.76	1.78
RF-CIFRRE TRIPOLAR						
		RE-CIER	RE TRIPOI	AR		
RF=20	ccs	RE-CIER 500KV (KV -	RE TRIPOI		GA 500KV (KV	′ - PU)
RF=20 № GENER.	CC5	RE-CIER 5 500КV (КV - 1 6	RE TRIPOI	AR EL ING	GA 500KV (KV 6	7 - PU) 8
RF=20 № GENER. FASE	CCS 4 C	RE-CIER 5 500KV (KV - 6 C	RE TRIPOI	AR EL IN 4 C	GA 500KV (KV 6 С	7 - PU) 8 C
RF=20 Nº GENER. FASE POSTERIOR AL	CCS 4 C 614.77	RE-CIER 500KV (KV - 6 C 652.01	RE TRIPOI PU) 8 C 630.07	AR EL IN(4 C 589.86	GA 500KV (KV 6 С 617.64	7 - PU) 8 C 640.27
RF=20 Nº GENER. FASE POSTERIOR AL RECIERRE	CCS 4 C 614.77 1.51	RE-CIER 500KV (KV - 6 C 652.01 1.60	RE TRIPOI PU) 8 C 630.07 1.54	AR EL ING 4 C 589.86 1.44	GA 500KV (KV 6 C 617.64 1.51	8 C 640.27 1.57
RF=20 Nº GENER. FASE POSTERIOR AL RECIERRE	4 C 614.77 1.51	RE-CIER 500KV (KV - 6 C 652.01 1.60 RE-CIERR	RE TRIPOI PU) 8 C 630.07 1.54 E MONOP	AR EL IN0 4 C 589.86 1.44 OLAR	GA 500KV (KV 6 C 617.64 1.51	8 C 640.27 1.57
RF=20 Nº GENER. FASE POSTERIOR AL RECIERRE POSTERIOR AL	4 C 614.77 1.51 605.48	RE-CIER 500KV (KV - 6 C 652.01 1.60 RE-CIERR 602.32	RE TRIPOI PU) 8 C 630.07 1.54 E MONOP 612.68	AR EL IN(4 C 589.86 1.44 OLAR 634.34	GA 500KV (KV 6 С 617.64 1.51 665.28	8 C 640.27 1.57 677.21

Tabla 49: Comparación de los máximos valores en KV y PU, que se producen posterior al re-cierre de la Línea de Transmisión CCS – El Inga (2 circuitos operando)

Claramente se puede observar que los niveles de tensión transitorio se encuentran en un rango de 1.41 – 1.78 pu, excepto, el valor que se obtiene en la fase C de la barra CCS, cuando se emplean 4 unidades de generación y un RF=0 ohm, mediante la ejecución de una re-conexión tripolar

Los niveles de tensión de mayor consideración, se observan en la barra de El Inga, siendo el más destacable, 1.78 pu que se origina al ejecutar un re-cierre monopolar, mediante la utilización de un RF=0 ohm y a la máxima potencia de generación que puede transmitir la central hidroeléctrica CCS

5.2.4 Fallas monofásicas producidas al 10% de la S/E El Inga a 500KV operando con una sola línea de transmisión

<u>4 UNIDADES DE GENERACION</u>

Figura 92. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión

Figura 93. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión

A continuación se muestra los tiempos de operación de los interruptores, para cuando se produce una falla de una fase a tierra al 10% de la S/E El Inga

RE-CIERRE TRIPOLAR				RE-CIERRE MONOPOLAR			
	APERTURA	CIERRE	RE-CIERRE		APERTURA	CIERRE	RE-CIERRE
	(S)	(S)	(S)		(S)	(S)	(S)
INT 1	0.12	-1.00	0.25	INT 1A, 1B	1000.00	-1.00	XXXXX
INT 2	0.10	-1.00	0.25	INT 1C	0.12	-1.00	0.25
INT 3	1000.00	-1.00	XXXXX	INT 2A, 2B	1000.00	-1.00	XXXXX
INT 4	1000.00	-1.00	XXXXX	INT 2C	0.10	-1.00	0.25
INT F	0.15	0.05	XXXXX	INT F	0.15	0.05	XXXXX

Tabla 50: Tiempo de operación de los interruptores tripolares y monopolares

RE-CIERRE TRIPOLAR								
RF=0	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)				
	Α	В	С	А	В	С		
DURANTE LA	426.31	450.37	247.01	434.45	435.6	74.695		
FALLA	1.04	1.10	0.61	1.06	1.07	0.18		
DURANTE EL	631.39	702.48	564.76	571.44	424.99	592.64		
DESPEJE	1.55	1.72	1.38	1.40	1.04	1.45		
POSTERIOR AL	642.13	554	578.56	627.74	530.22	571.34		
RECIERRE	1.57	1.36	1.42	1.54	1.30	1.40		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	426.31	450.37	247.01	434.45	435.6	74.695		
FALLA	1.04	1.10	0.61	1.06	1.07	0.18		
DURANTE FL	445.14	432.76	407.32	418.69	424.83	576.72		
DESPEJE	1.09	1.06	1.00	1.03	1.04	1.41		
POSTERIOR AL	512	512.59	619.75	485.33	534.1	564.16		
RECIERRE	1.25	1.26	1.52	1.19	1.31	1.38		

Tabla 51: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación y una Línea de Transmisión (Falla al 10% de El Inga y RF=0)

Figura 94. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (4 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR								
RF=20	CCS 500KV (KV - PU)			EL IN	EL INGA 500KV (KV - PU)			
	А	В	С	А	В	с		
DURANTE LA	373.24	479.8	291.63	386.63	464.18	227.21		
FALLA	0.91	1.18	0.71	0.95	1.14	0.56		
DURANTE EL	624.09	411.96	613.95	512.08	578.42	735.65		
DESPEJE	1.53	1.01	1.50	1.25	1.42	1.80		
POSTERIOR AL	419.48	583.94	577.5	415.66	539.67	552.88		
RECIERRE	1.03	1.43	1.41	1.02	1.32	1.35		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	373.24	479.8	291.63	386.63	464.18	227.21		
FALLA	0.91	1.18	0.71	0.95	1.14	0.56		
DURANTE FL	433.49	430.06	443.3	421.79	434.33	635.47		
DESPEJE	1.06	1.05	1.09	1.03	1.06	1.56		
POSTERIOR AL	529.63	496.31	605.9	512.46	462.42	577.57		
RECIERRE	1.30	1.22	1.48	1.26	1.13	1.41		

Tabla 52: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación y una Línea de Transmisión (Falla al 10% de El Inga y RF=20)

Figura 95. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (4 unidades de generación y RF=20)

La potencia que se transmitía, cuando el sistema operaba con ambas líneas era dividida, ahora el circuito 1 debe ser capaz de soportar un significante flujo de energía, a causa de ello, las tensiones más elevadas, se producen durante la apertura de los interruptores tripolares.

El mayor nivel de tensión ocurre en la fase C de la barra de El Inga, durante el periodo de apertura, el cual alcanza un valor de 1.80 pu con RF=20 ohm

Cuando se emplea una resistencia de falla de 0 y 20 ohm, el sistema no detecta transitorios relevantes durante la re-conexión de la Línea de Transmisión, en otras palabras, el rango de tensiones transitorias mantiene cierta similitud, con los resultados obtenidos al 10% de la S/E El Inga y dos circuitos operando. Las mejores respuestas que percibe el sistema, se origina cuando se aplica un re-cierre monopolar, siendo 1.56 pu el valor que sobresale en este proceso de simulación, dicho valor se produce en la fase C de la barra de El Inga, mediante la utilización de un RF=20 ohm

6 UNIDADES DE GENERACION

Figura 96. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión

Figura 97. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión

RE-CIERRE TRIPOLAR								
RF=0	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)				
	А	В	С	А	В	с		
DURANTE LA	428.95	440.83	278.3	421.06	430.66	75.294		
FALLA	1.05	1.08	0.68	1.03	1.05	0.18		
DURANTE EL	616.65	532.18	614.18	411.44	426.06	880.75		
DESPEJE	1.51	1.30	1.50	1.01	1.04	2.16		
POSTERIOR AL	927.39	815.92	597.8	877.27	797.36	597.17		
RECIERRE	2.27	2.00	1.46	2.15	1.95	1.46		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	428.95	440.83	278.3	421.06	430.69	75.208		
FALLA	1.05	1.08	0.68	1.03	1.05	0.18		
DURANTE EL	451.56	416.13	516.28	421.59	426.06	896.68		
DESPEJE	1.11	1.02	1.26	1.03	1.04	2.20		
POSTERIOR AL	546.01	579.37	745.24	532.02	573.08	728.65		
RECIERRE	1.34	1.42	1.83	1.30	1.40	1.78		

Tabla 53: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación y una Línea de Transmisión (Falla al 10% de El Inga y RF=0)

Figura 98. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (6 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR								
RF=20	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)				
	Α	В	С	А	В	С		
DURANTE LA	385.53	471.13	318.95	383.69	458.84	243.22		
FALLA	0.94	1.15	0.78	0.94	1.12	0.60		
DURANTE EL	545.22	439.59	635.11	520.26	541.28	556.65		
DESPEJE	1.34	1.08	1.56	1.27	1.33	1.36		
POSTERIOR AL	431.1	588.93	572.67	427.84	563.07	547.55		
RECIERRE	1.06	1.44	1.40	1.05	1.38	1.34		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
	385.09	471.5	318.54	384.17	460.03	242.9		
FALLA	0.94	1.15	0.78	0.94	1.13	0.59		
DURANTE FL	445.77	437.94	426.76	421.64	432.6	556.63		
DESPEJE	1.09	1.07	1.05	1.03	1.06	1.36		
POSTERIOR AL	493.05	515.73	613.47	475.65	511.51	603.69		
RECIERRE	1.21	1.26	1.50	1.17	1.25	1.48		

Tabla 54: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación y una Línea de Transmisión (Falla al 10% de El Inga y RF=20)

Figura 99. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (6 unidades de generación y RF=20)

Durante el periodo de falla las sobretensiones no tienen mayor repercusión sobre las barras analizadas, pero la fase que presenta un nivel de tensión destacable, es la fase B de la barra CCS, dicha barra adquiere un valor de 1.15 pu empleando una resistencia de falla de 20 ohm.

Los resultados obtenidos atraves del software de simulación, muestran que los mayores niveles de tensión transitoria, son producto de la aplicación de un re-cierre tripolar con un RF=0 ohm, dichos valores se encuentran en un rango de 1.46 – 2.27 pu, este ultimo valor se origina en la fase A de la barra Coca Codo Sinclair en un tiempo de 0.27524 segundos

Cuando se aplica una apertura y cierre tripolar, momentáneamente gran parte del sistema queda des-energizado, producto de ello las fases involucradas se ven afectadas. Claramente se puede observar, que durante todo el proceso del disturbio, la ejecución de una operación monopolar brinda las menores sobretensiones transitorias conforme incrementa la resistencia de falla; además, el sistema alcanza una estabilidad de voltaje transitorio en un tiempo menor que la que se consigue con una re-conexión tripolar.

8 UNIDADES DE GENERACION

Figura 100. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión

Figura 101. Falla monofásica producida al 10% de la S/E El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión

RE-CIERRE TRIPOLAR								
RF=0	CCS 500KV (KV - PU)			EL IN	EL INGA 500KV (KV - PU)			
	А	В	С	Α	В	с		
DURANTE LA	430.36	434.88	283.1	417.9	427.52	76.426		
FALLA	1.05	1.07	0.69	1.02	1.05	0.19		
DURANTE EL	548.21	510.3	639.38	564.39	537.68	1120.2		
DESPEJE	1.34	1.25	1.57	1.38	1.32	2.74		
POSTERIOR AL	861.69	488.87	942.18	845.09	484.01	918.05		
RECIERRE	2.11	1.20	2.31	2.07	1.19	2.25		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	429.92	434.88	283.1	417.44	428.11	76.426		
FALLA	1.05	1.07	0.69	1.02	1.05	0.19		
DURANTE EL	451.43	429.12	478.92	445.66	436.48	895.31		
DESPEJE	1.11	1.05	1.17	1.09	1.07	2.19		
POSTERIOR AL	560.29	596.39	715.39	546.90	592.34	708.77		
RECIERRE	1.37	1.46	1.75	1.34	1.45	1.74		

Tabla 55: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación y una Línea de Transmisión (Falla al 10% de El Inga y RF=0)

Figura 102. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (8 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR								
RF=20	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)				
	А	В	С	А	В	С		
DURANTE LA	392.3	464.55	326.24	381.93	454.35	251.48		
FALLA	0.96	1.14	0.80	0.94	1.11	0.62		
DURANTE EL	579.32	557.08	441.97	570.7	506.58	605.36		
DESPEJE	1.42	1.36	1.08	1.40	1.24	1.48		
POSTERIOR AL	431.17	589.87	567.29	427.5	579.9	555.06		
RECIERRE	1.06	1.44	1.39	1.05	1.42	1.36		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	392.05	464.20	326.14	381.99	454.33	251.38		
FALLA	0.96	1.14	0.80	0.94	1.11	0.62		
DURANTE FL	443.84	438.19	507.46	418.99	429.65	624.28		
DESPEJE	1.09	1.07	1.24	1.03	1.05	1.53		
POSTERIOR AL	389.09	526.03	603.40	494.00	522.79	588.51		
RECIERRE	0.95	1.29	1.48	1.21	1.28	1.44		

Tabla 56: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación y una Línea de Transmisión (Falla al 10% de El Inga y RF=20)

Figura 103. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E El Inga a 500KV, operando con una Línea de Transmisión (8 unidades de generación y RF=20)

La operación de 8 unidades generadoras implica una mayor capacidad de flujo energético atraves de la línea, lo cual se ve reflejado en el incremento de la intensidad de corriente de falla, que se produce durante el primer pico, el cual alcanza un valor de 12.23 pu en un tiempo de 0.05707 segundos, donde se empleo la menor resistencia de falla.

Las sobretensiones que causan mayor problema en la operación del sistema, se producen cuando se emplea un RF=0 ohm mediante una re-conexión tripolar, la sobretensión más destacable, la adquiere la fase C de la barra Coca Codo Sinclair en un tiempo de 0.2512 segundos, cuyo valor es de 2.31 pu

El mayor sobrevoltaje transitorio, que se produce cuando se aplica una re-conexión monopolar, se detecta en la fase C de la barra Coca Codo Sinclair, empleando un RF=0 ohm, dicho valor es de 1.75 pu alcanzado en un tiempo de 0.25348 segundos. Si se establece una comparación con el valor que se obtuvo al ejecutar una re-conexión trifásica simultanea, se puede decir que la sobretensión originada por una re-conexión monopolar, origina un menor grado de afectación a los equipos del sistema
5.2.5 Fallas monofásicas producidas al 10% de la S/E CCS a 500KV operando con una sola línea de transmisión

<u>4 UNIDADES DE GENERACION</u>

Figura 104. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión

Figura 105. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión

Los tiempos de operación de los interruptores monopolares y tripolares, se muestran en la siguiente tabla

	RE-CIERRE TRIPOLAR			RE-CIERRE MONOPOLAR			
	APERTURA	CIERRE	RE-CIERRE		APERTURA	CIERRE	RE-CIERRE
	(S)	(S)	(S)		(S)	(S)	(S)
INT 1	0.10	-1.00	0.25	INT 1A, 1B	1000.00	-1.00	XXXXX
INT 2	0.12	-1.00	0.25	INT 1C	0.10	-1.00	0.25
INT 3	1000.00	-1.00	XXXXX	INT 2A, 2B	1000.00	-1.00	XXXXX
INT 4	1000.00	-1.00	XXXXX	INT 2C	0.12	-1.00	0.25
INT F	0.15	0.05	XXXXX	INT F	0.15	0.05	XXXXX

Tabla 57: Tiempo de operación de los interruptores tripolares y monopolares

RE-CIERRE TRIPOLAR								
RF=0	ccs	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)			
	А	В	С	А	В	С		
DURANTE LA	416.2	422.29	55.812	428.8	431.57	286.96		
FALLA	1.02	1.03	0.14	1.05	1.06	0.70		
DURANTE FI	540.42	659.19	857.06	613.49	553.32	611.02		
DESPEJE	1.32	1.61	2.10	1.50	1.36	1.50		
	478.37	671.23	748.82	465.47	611.46	686.31		
RECIERRE	1.17	1.64	1.83	1.14	1.50	1.68		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	416.2	422.29	55.812	428.8	431.57	286.96		
FALLA	1.02	1.03	0.14	1.05	1.06	0.70		
DURANTE EL	441.6	449.19	666.45	444.69	421.17	571.48		
DESPEJE	1.08	1.10	1.63	1.09	1.03	1.40		
POSTERIOR AL	593.73	544.97	711.46	565.51	505.79	686.64		
RECIERRE	1.45	1.33	1.74	1.39	1.24	1.68		

Tabla 58: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación y una Línea de Transmisión (Falla al 10% de CCS y RF=0)

Figura 106. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (4 unidades de generación y RF=0)

	RE-CIERRE TRIPOLAR								
RF=20	CCS 500KV (KV - PU)			EL IN	EL INGA 500KV (KV - PU)				
	А	В	С	Α	В	с			
DURANTE LA	362.62	459.08	199.61	386.39	456.39	298.72			
FALLA	0.89	1.12	0.49	0.95	1.12	0.73			
DURANTE FI	643.8	739.2	761.18	554.74	593.19	436.58			
DESPEJE	1.58	1.81	1.86	1.36	1.45	1.07			
	440.1	570.86	552.72	431.29	544.18	523.47			
RECIERRE	1.08	1.40	1.35	1.06	1.33	1.28			
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR					
DURANTE LA	362.62	459.08	199.61	386.39	456.39	298.72			
FALLA	0.89	1.12	0.49	0.95	1.12	0.73			
DURANTE EL	464.09	452.94	746.29	432.25	436.96	220.38			
DESPEJE	1.14	1.11	1.83	1.06	1.07	0.54			
POSTERIOR AL	522.44	478.98	592.99	505.14	464.85	564.88			
RECIERRE	1.28	1.17	1.45	1.24	1.14	1.38			

Tabla 59: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación y una Línea de Transmisión (Falla al 10% de CCS y RF=20)

Figura 107. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (4 unidades de generación y RF=20)

De los resultados expuestos, se puede decir que las menores sobretensiones se producen cuando se ejecuta una apertura y cierre monopolar para todos los casos puestos a evaluación, además de alcanzar estabilidad de voltaje alrededor de 0.7 segundos. Por otra parte, se mantienen elevados niveles de tensión durante el proceso de despeje, donde la mayor sobretensión se percibe en la fase C de la barra CCS aplicando un RF=0 ohm, alcanzando un valor de 2.10 pu en un tiempo de 0.11064 segundos.

La forma de onda de la corriente de falla transitoria es similar, independientemente del tipo de recierre que se utilice; la diferencia radica, en que conforme aumenta la impedancia de falla, disminuyen los picos de corriente en determinados puntos. La máxima intensidad de corriente es de 9.31 pu, con RF=0 ohm, dicho valor es alcanzado en un tiempo de 0.0571 segundos.

6 UNIDADES DE GENERACION

Figura 108. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión

Figura 109. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión

RE-CIERRE TRIPOLAR								
RF=0	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)				
	Α	В	С	Α	В	с		
DURANTE LA	417.09	420.92	63.719	423.18	427.55	290.72		
FALLA	1.02	1.03	0.16	1.04	1.05	0.71		
DURANTE FI	577.14	538.74	787.14	529.21	537.06	340.88		
DESPEJE	1.41	1.32	1.93	1.30	1.32	0.83		
	468.52	650.54	714.98	461.97	619.63	684.26		
RECIERRE	1.15	1.59	1.75	1.13	1.52	1.68		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	416.5	421.2	63.719	423.27	427.54	290.64		
FALLA	1.02	1.03	0.16	1.04	1.05	0.71		
DURANTE FL	437.77	443.19	787.14	444.52	437.12	426.4		
DESPEJE	1.07	1.09	1.93	1.09	1.07	1.04		
POSTERIOR AL	540.7	572.03	730.77	526.35	566.76	715.05		
RECIERRE	1.32	1.40	1.79	1.29	1.39	1.75		

Tabla 60: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación y una Línea de Transmisión (Falla al 10% de CCS y RF=0)

Figura 110. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (6 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR								
RF=20	CCS 500KV (KV - PU)			EL IN	EL INGA 500KV (KV - PU)			
	А	В	С	А	В	С		
DURANTE LA	367.78	457.64	220.86	386.78	454.01	309.56		
FALLA	0.90	1.12	0.54	0.95	1.11	0.76		
DURANTE EL	478.72	605.92	718.97	530.7	599.8	522.6		
DESPEJE	1.17	1.48	1.76	1.30	1.47	1.28		
POSTERIOR AL	440.83	576.93	549.2	437.36	556.85	533.57		
RECIERRE	1.08	1.41	1.35	1.07	1.36	1.31		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	368.38	458.19	222.07	386.8	454.18	309.27		
FALLA	0.90	1.12	0.54	0.95	1.11	0.76		
DURANTE EL	447.24	442.66	757.43	436.74	441.33	603.31		
DESPEJE	1.10	1.08	1.86	1.07	1.08	1.48		
POSTERIOR AL	473.74	509.69	603.13	476.16	506.38	594.22		
RECIERRE	1.16	1.25	1.48	1.17	1.24	1.46		

Tabla 61: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación y una Línea de Transmisión (Falla al 10% de CCS y RF=20)

Figura 111. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (6 unidades de generación y RF=20)

Durante el proceso de apertura y cierre de la línea de transmisión CCS – El Inga, es donde se originan los sobrevoltajes que ocasionan daños significativos a los equipos del sistema.

1.93 pu es la tensión más destacable obtenida en la fase C de la barra CCS durante el proceso de despeje, empleando un RF=0 ohm indistintamente del tipo de re-conexión que utilicen los interruptores, los cuales difieren en la afectación de las demás fases

El mejor comportamiento transitorio se produce cuando se realiza una operación monopolar empleando un RF=20 ohm, a pesar de que la barra CCS adquiere un valor de 1.86 pu; sin embargo ambas barras logran conseguir una estabilidad de voltaje alrededor de 0.7 segundos La magnitud de corriente transitoria incrementa, producto de la adición de 2 unidades generadoras en la central hidroeléctrica CCS, la misma que alcanza menores picos conforme incrementa la resistencia de falla.

8 UNIDADES DE GENERACION

Figura 112. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión

Figura 113. Falla monofásica producida al 10% de la S/E CCS a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión

RE-CIERRE TRIPOLAR								
RF=0	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)				
	А	В	с	Α	В	С		
DURANTE LA	417.56	419.01	69.69	418.29	422.40	287.74		
FALLA	1.02	1.03	0.17	1.02	1.03	0.70		
DURANTE FI	639.07	516.34	710.00	554.73	496.48	410.62		
DESPEJE	1.57	1.26	1.74	1.36	1.22	1.01		
	516.50	567.14	567.75	521.51	570.69	569.46		
RECIERRE	1.27	1.39	1.39	1.28	1.40	1.39		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
	417.64	418.02	69.71	418.29	422.40	287.74		
FALLA	1.02	1.02	0.17	1.02	1.03	0.70		
DURANTE FI	453.51	423.25	672.20	439.36	440.07	515.74		
DESPEJE	1.11	1.04	1.65	1.08	1.08	1.26		
POSTERIOR AL	558.58	594.60	714.07	544.33	589.83	704.87		
RECIERRE	1.37	1.46	1.75	1.33	1.44	1.73		

Tabla 62: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación y una Línea de Transmisión (Falla al 10% de CCS y RF=0)

Figura 114. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (8 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR								
RF=20	CCS 500KV (KV - PU)			EL IN	EL INGA 500KV (KV - PU)			
	А	В	С	А	В	С		
DURANTE LA	374.10	455.21	237.44	385.14	450.96	320.10		
FALLA	0.92	1.12	0.58	0.94	1.10	0.78		
DURANTE EL	447.82	589.70	846.63	545.42	592.69	461.73		
DESPEJE	1.10	1.44	2.07	1.34	1.45	1.13		
POSTERIOR AL	440.29	588.95	558.12	436.37	578.22	544.25		
RECIERRE	1.08	1.44	1.37	1.07	1.42	1.33		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	372.47	455.47	235.55	385.14	450.96	320.10		
FALLA	0.91	1.12	0.58	0.94	1.10	0.78		
	443.64	432.66	773.67	436.88	415.43	572.78		
DESPEJE	1.09	1.06	1.90	1.07	1.02	1.40		
POSTERIOR AL	501.77	523.60	598.90	486.78	520.40	584.05		
RECIERRE	1.23	1.28	1.47	1.19	1.27	1.43		

Tabla 63: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación y una Línea de Transmisión (Falla al 10% de CCS y RF=20)

Figura 115. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 10% de la S/E CCS a 500KV, operando con una Línea de Transmisión (8 unidades de generación y RF=20)

La particularidad que presenta este escenario de evaluación, es que las mayores sobretensiones no se producen con un RF=0 ohm durante el proceso de apertura, sino que se obtienen con una resistencia de falla de 20 ohm, en ambos tipos de re-cierre, pero la re-conexión que sobresale es la tripolar, alcanzando un valor de 2.07 pu en la fase C de la barra CCS.

El incremento de unidades generadoras en la central hidroeléctrica CCS, provoca que la corriente de falla transitoria también lo haga. A continuación se muestra la tabla donde, se resaltan los picos más elevados de la corriente la falla transitoria

RF	GENERACION	TIEMPO	IF	
(OHM)	(Nº)	(S)	(AMP)	(PU)
	4	0.0571	19358	9.31
0	6	0.05707	21926	10.55
	8	0.05692	23946	11.52

Tabla 64: Intensidad de corriente de falla transitoria empleando diferentes unidades de generación, cuando se produce una falla monofásica al 10% de la S/E CCS

5.2.6 Fallas monofásicas producidas al 50% de la Línea de Transmisión Coca Codo Sinclair – El Inga a 500KV operando con una sola línea de transmisión

<u>4 UNIDADES DE GENERACION</u>

Figura 116. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión

Figura 117. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión

Para las siguientes simulaciones, se empleara los tiempos de interrupción y cierre descritos en la Tabla 65, para cuando se produzca una falla monofásica al 50% de la línea de Transmisión CCS – El Inga a 500KV

	RE-CIERRE TRIPOLAR				RE-CIERRE MONOPOLAR			
	APERTURA	CIERRE	RE-CIERRE		APERTURA	CIERRE	RE-CIERRE	
	(S)	(S)	(S)		(S)	(S)	(S)	
INT 1	0.10	-1.00	0.25	INT 1A, 1B	1000.00	-1.00	xxxxx	
INT 2	0.13	-1.00	0.30	INT 1C	0.10	-1.00	0.25	
INT 3	1000.00	-1.00	xxxxx	INT 2A, 2B	1000.00	-1.00	XXXXX	
INT 4	1000.00	-1.00	xxxxx	INT 2C	0.13	-1.00	0.30	
INT F	0.15	0.05	xxxxx	INT F	0.15	0.05	XXXXX	

Tabla 65: Tiempo de operación de los interruptores tripolares y monopolares

RE-CIERRE TRIPOLAR								
RF=0	CCS 500KV (KV - PU)			EL IN	EL INGA 500KV (KV - PU)			
	А	В	С	А	В	с		
DURANTE LA	406.56	440.5	185.14	417.01	416.5	255.34		
FALLA	1.00	1.08	0.45	1.02	1.02	0.63		
DURANTE FI	766.36	697.61	523.15	553.53	619.11	443.06		
DESPEJE	1.88	1.71	1.28	1.36	1.52	1.09		
POSTERIOR AL	600.61	571.18	831.4	550.68	536.23	716.69		
RECIERRE	1.47	1.40	2.04	1.35	1.31	1.76		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	406.56	440.5	185.14	417.01	416.5	255.34		
FALLA	1.00	1.08	0.45	1.02	1.02	0.63		
DURANTE FL	438.07	425.15	489.33	419.37	428	770.25		
DESPEJE	1.07	1.04	1.20	1.03	1.05	1.89		
POSTERIOR AL	539.36	560.63	891.01	466.13	456.49	531.07		
RECIERRE	1.32	1.37	2.18	1.14	1.12	1.30		

Tabla 66: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación y una Línea de Transmisión (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=0)

Figura 118. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (4 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR								
RF=20	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)				
	Α	В	С	Α	В	С		
DURANTE LA	376.65	464.3	251.82	390.36	448.21	275.54		
FALLA	0.92	1.14	0.62	0.96	1.10	0.67		
DURANTE FI	521.64	711.13	468.05	539.77	454.9	509.86		
DESPEJE	1.28	1.74	1.15	1.32	1.11	1.25		
	586.8	572.09	808.15	542.56	523.38	705.93		
RECIERRE	1.44	1.40	1.98	1.33	1.28	1.73		
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR				
DURANTE LA	376.65	464.3	251.82	390.36	448.21	275.54		
FALLA	0.92	1.14	0.62	0.96	1.10	0.67		
DURANTE FL	431.03	426.55	603.18	417.67	423.85	423.18		
DESPEJE	1.06	1.04	1.48	1.02	1.04	1.04		
POSTERIOR AL	455.82	436.51	537.23	422.38	408.79	426.6		
RECIERRE	1.12	1.07	1.32	1.03	1.00	1.04		

Tabla 67: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 4 unidades de generación y una Línea de Transmisión (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=20)

Figura 119. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (4 unidades de generación y RF=20)

Las sobretensiones transitorias que se obtuvieron durante el periodo de falla, muestran que la fase C de la barra CCS y El Inga, no sufren mayor caída de tensión, cuando se aplica una resistencia de falla de 0 ohm, debido a que la ubicación de la falla se encuentra alejada de ambas barras, es decir el decremento de tensión es parejo

Las sobretensiones que mayor influencia tienen sobre el sistema, se originan a causa de la operación de los interruptores, donde la mayor de ellas se produce al realizar una operación monopolar, la cual alcanza un valor de 2.18 pu en un tiempo de 0.25199 segundos empleando un RF=0 ohm, sin embargo la estabilidad de voltaje que se alcanza, se origina en un tiempo aproximado de 0.5 segundos. Por otro lado se puede decir que los sobrevoltajes producidos por una re-conexión tripolar, no son los mayores, pero si alcanzan sobretensiones considerables en todas las fases, donde los más influyentes se detectan en la fase afectada, alcanzando valores de 2.04 y 1.76 pu de la barra CCS y El Inga respectivamente.

Las sobretensiones que tienen un comportamiento más tolerable por el sistema, se producen cuando se realiza una re-conexión monopolar, aplicando un RF=20 ohm, donde 1.48 pu es la mayor tensión originada durante el proceso de apertura

6 UNIDADES DE GENERACION

Figura 120. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión

Figura 121. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión

	RE-CIERRE TRIPOLAR								
RF=0	ССЅ 500КѴ (КѴ - РU)			EL INGA 500KV (KV - PU)					
	А	В	С	А	В	с			
DURANTE LA	412.25	434.71	217.64	421.14	415.65	245.73			
FALLA	1.01	1.06	0.53	1.03	1.02	0.60			
DURANTE EL	638.52	657.1	442.59	539.35	623.28	506.61			
DESPEJE	1.56	1.61	1.08	1.32	1.53	1.24			
	597.98	571.07	787.45	486.75	480.34	556.98			
RECIERRE	1.46	1.40	1.93	1.19	1.18	1.36			
		RE-CIERR	Ε ΜΟΝΟΡΟ	LAR					
DURANTE LA	412.25	434.71	217.64	421.14	415.65	245.73			
FALLA	1.01	1.06	0.53	1.03	1.02	0.60			
DURANTE EL	426.25	427.51	461.47	422.37	426.27	755.06			
DESPEJE	1.04	1.05	1.13	1.03	1.04	1.85			
POSTERIOR AI	547.89	529.76	849.89	492.75	482.76	557.55			
RECIERRE	1.34	1.30	2.08	1.21	1.18	1.37			

Tabla 68: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación y una Línea de Transmisión (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=0)

Figura 122. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (6 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR								
RF=20	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)				
	Α	В	С	Α	В	С		
DURANTE LA FALLA	381.98	455.97	263.93	393.49	447.51	282.26		
	0.94	1.12	0.65	0.96	1.10	0.69		
DURANTE EL DESPEJE	671.83	480.12	516.05	527.72	443.51	638.75		
	1.65	1.18	1.26	1.29	1.09	1.56		
POSTERIOR AL RECIERRE	561.61	510.57	676.44	508.27	492.45	610.95		
	1.38	1.25	1.66	1.24	1.21	1.50		
RE-CIERRE MONOPOLAR								
DURANTE LA FALLA	381.98	455.97	263.93	393.47	447.23	282.43		
	0.94	1.12	0.65	0.96	1.10	0.69		
DURANTE EL DESPEJE	421.12	425.28	539.01	419.88	422.93	732.43		
	1.03	1.04	1.32	1.03	1.04	1.79		
POSTERIOR AL RECIERRE	441.32	439.54	534.81	436.75	430.54	458.82		
	1.08	1.08	1.31	1.07	1.05	1.12		

Tabla 69: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 6 unidades de generación y una Línea de Transmisión (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=20)

Figura 123. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (6 unidades de generación y RF=20)

Durante el proceso de apertura, es donde los niveles de tensión transitoria se mantienen constantes y elevados, hasta que se ejecuta el respectivo re-cierre de la línea en estudio; por ello, se puede decir que un mejor comportamiento transitorio, a pesar de alcanzar una sobretensión de 1.79 pu en la fase C de la barra El Inga, se realiza al ejecutar una re-conexión monopolar empleando un RF=20 ohm

La máxima tensión alcanzada, se consigue al aplicar un re-cierre monopolar, cuyo valor es de 2.08 pu, utilizando una impedancia de falla de 0 ohm, dicho valor se obtiene en la fase C de CCS

Durante la falla, el pico de sobrecorriente más destacable, se observa en la Figura 122, el cual alcanza un valor de 9.48 pu, dicho valor decrece conforme aumenta la resistencia de falla.

8 UNIDADES DE GENERACION

Figura 124. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre tripolar operando con una línea de transmisión

Figura 125. Falla monofásica producida al 50% de la Línea de Transmisión CCS – El Inga a 500KV, cuyo despeje se realiza con re-cierre monopolar operando con una línea de transmisión

RE-CIERRE TRIPOLAR							
RF=0	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)			
	А	В	С	А	В	С	
DURANTE LA FALLA	414.28	425.51	231.43	421.40	412.94	231.17	
	1.01	1.04	0.57	1.03	1.01	0.57	
DURANTE EL DESPEJE	643.86	577.07	539.21	625.13	512.22	687.78	
	1.58	1.41	1.32	1.53	1.25	1.68	
POSTERIOR AL RECIERRE	549.74	525.88	660.62	496.57	492.92	586.05	
	1.35	1.29	1.62	1.22	1.21	1.44	
RE-CIERRE MONOPOLAR							
DURANTE LA FALLA	414.28	425.80	231.87	421.40	412.91	232.24	
	1.01	1.04	0.57	1.03	1.01	0.57	
DURANTE EL DESPEJE	422.65	421.72	578.08	423.24	425.86	503.46	
	1.04	1.03	1.42	1.04	1.04	1.23	
POSTERIOR AL	490.81	545.00	806.20	477.69	474.01	541.93	
RECIERRE	1.20	1.33	1.97	1.17	1.16	1.33	

Tabla 70: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación y una Línea de Transmisión (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=0)

Figura 126. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (8 unidades de generación y RF=0)

RE-CIERRE TRIPOLAR							
RF=20	CCS 500KV (KV - PU)			EL INGA 500KV (KV - PU)			
	А	В	С	Α	В	С	
DURANTE LA FALLA	383.15	446.65	272.22	394.11	443.80	281.85	
	0.94	1.09	0.67	0.97	1.09	0.69	
DURANTE EL DESPEJE	636.85	575.89	438.84	531.70	618.33	558.46	
	1.56	1.41	1.07	1.30	1.51	1.37	
POSTERIOR AL RECIERRE	532.13	462.46	503.23	484.61	505.74	587.03	
	1.30	1.13	1.23	1.19	1.24	1.44	
RE-CIERRE MONOPOLAR							
DURANTE LA FALLA	383.15	446.65	271.26	394.19	443.98	281.85	
	0.94	1.09	0.66	0.97	1.09	0.69	
DURANTE EL DESPEJE	416.38	418.86	473.04	419.33	421.64	608.96	
	1.02	1.03	1.16	1.03	1.03	1.49	
POSTERIOR AL RECIERRE	472.13	522.79	748.37	468.25	462.96	522.57	
	1.16	1.28	1.83	1.15	1.13	1.28	

Tabla 71: Resultado de los máximos valores en KV y PU durante el proceso del disturbio operando con 8 unidades de generación y una Línea de Transmisión (Falla al 50% de la Línea de Transmisión CCS – El Inga y RF=20)

Figura 127. Respuesta de las ondas de voltaje y corriente producida por una falla monofásica al 50% de la Línea de Transmisión CCS – El Inga a 500KV (8 unidades de generación y RF=20)

Durante el proceso de apertura tripolar, se presentan las menores sobretensiones, sin embargo existe una mayor cantidad de fases afectadas y el tiempo que se logra estabilizar el voltaje en las barras puestas bajo análisis, es relativamente superior que en una apertura monopolar

Los resultados demuestran que para ambos casos de evaluación, las mayores sobretensiones se producen en la fase C de la barra CCS, mediante una operación monopolar de los interruptores.

La de mayor afectación, se obtiene al emplear un RF=0 ohm en un tiempo de 0.25193, cuyo valor es de 1.97 pu

Al aplicar 8 unidades de generación existe una mayor corriente de falla transitoria, dicha corriente alcanza un valor de 9.97 pu durante el proceso de falla, superando los picos de corriente que se obtuvieron al emplear 4 y 6 unidades de generación respectivamente.

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

- El software de simulación ATPDraw versión 5.6 es una potente herramienta de trabajo, que brinda al usuario un sinnúmero de opciones para realizar cualquier tipo de estudio, donde se involucre procesos transitorios
- 2. De los resultados expuestos se puede concluir, que la operación ideal del interruptor con opción de re-cierre, no permite apreciar el fenómeno que se produce durante el proceso de apertura (arco eléctrico y medio de extinción), ya que su forma de operar, la realiza en un tiempo determinado por el usuario y siempre que la corriente pase por el cero natural, esta forma de operar da lugar a la producción de sobrevoltajes transitorios elevados en determinados puntos de la onda
- Los niveles de tensión transitoria producidos durante el proceso de falla, no tienen mayor relevancia si se los compara con los transitorios originados por la operación de los interruptores
- 4. Debido a que el disturbio se origina en la fase C, los mayores niveles de tensión transitoria se producen en la fase B durante la falla, lo pre-establecido se consigue para

todos los escenarios de evaluación en los que se empleo una resistencia de falla de 20 ohm. La sobretensión se encuentra en un rango de 1.09 – 1.18 pu, este último valor se obtiene en la barra de CCS con el mínimo número de unidades generadoras y la falla se produce al 10% de la S/E El Inga, operando bajo contingencia de una línea.

- 5. Dependiendo del tipo de operación que realice el interruptor para despejar la falla, el sistema alcanza un mayor o menor nivel de sobretensión y tiempo de estabilidad. Cuando se ejecuta una operación tripolar en la línea fallada, las tres fases sufren alteraciones transitorias que logran alcanzar la estabilidad en un tiempo relativamente largo, si se lo compara con la operación monopolar de los interruptores
- 6. De las graficas se puede concluir que, cuando se registra una falla de fase a tierra ubicada en la mitad de la línea en estudio, la estabilidad que alcanza el voltaje en las barras puestas bajo análisis, es relativamente más corta, si se compara con las fallas que se ubican al 10% de ambas barras
- 7. Cuando el sistema opera bajo condiciones normales (2 circuitos) y sufre una alteración transitoria originada por una falla monofásica, los mayores sobrevoltajes transitorios se obtienen en la fase C empleando un RF=0 ohm posterior al re-cierre de la línea fallada, independientemente del tipo de operación que ejecuten los interruptores. El mayor de ellos incrementa en un 78% y se produce en la barra de El Inga mediante una operación

monopolar, sin embargo, se puede destacar que el sistema alcanza una estabilidad transitoria acelerada.

- 8. Con respecto al punto anterior, se puede decir que los niveles de tensión transitoria disminuyen considerablemente con el incremento de la resistencia de falla, para cuando la falla se produce al 10% de ambas barras, siendo el mayor de ellos 1.29 pu; pero cuando la falla ocurre al 50% de la Línea de Transmisión CCS El Inga, la reducción que existe es mínima, ya que la fase C de la barra de El Inga incrementa en un 66%, coincidentemente el valor que se obtiene, aparece bajo las mismas circunstancias del punto anterior, con la diferencia de que para esta simulación se empleo un RF=20 ohm
- 9. Los niveles de tensión transitoria que tienen mayor afectación sobre los equipos, se producen cuando el sistema se encuentra operando con un solo circuito durante el despeje de la falla, indistintamente del tipo de apertura y resistencia de falla que se haya empleado; pero los que más se destacan se producen cuando se emplea un RF=0 ohm durante una apertura tripolar, ya que más de una fase mantiene una oscilación constante y elevada durante este periodo. El valor que supera cualquier otra sobretensión obtenida durante todos los escenarios de evaluación, se produce en la fase C de la S/E El Inga cuando el sistema opera a máxima generación con una falla de fase a tierra muy próxima a la misma subestación, dicho valor es de 2.74 pu

10. En general, una operación monopolar garantiza menores sobretensiones transitorias y la estabilidad del sistema mejora considerablemente, debido a que las fases sanas operan bajo condiciones normales, permitiendo de esta manera que los generadores no se desfasen con gran rapidez

Recomendaciones

- El ATPDraw v5.6 posee una amplia gama de elementos que cumplen una determinada función, por ello es necesario utilizar el elemento indicado para el circuito indicado; además es necesario tener un conocimiento básico de sus de sus funciones, ya que un incorrecto ingreso de datos, puede distorsionar la solución y en el peor de los casos, el programa no efectuaría las simulaciones
- Se recomienda diseñar circuitos simples, que posean lo estrictamente necesario para realizar los análisis
- Es indispensable elaborar interruptores que presenten caracteristicas reales y que posean diferentes medios de interrupción, para de esta manera evitar las sobretensiones que se registran en determinados puntos de la onda

ANEXOS
ANEXO A

"Manual de Alternative Transient Program"

MANUAL DEL ALTERNATIVE TRANSIENT PROGRAM

A.1 INTRODUCCIÓN

El Alternative Transient Program (ATP) es una potente herramienta de simulación, fue originalmente diseñado para el cálculo de procesos transitorios en sistemas eléctricos de potencia. Durante los últimos años se han desarrollado varios programas de apoyo con los que se puede diseñar un paquete de simulación muy flexible y potente, cuyas prestaciones son actualizadas regularmente.

Una simulación en el ATP se realiza generalmente en tres pasos, para cada uno de los cuales existen en la actualidad varios programas, o distintas versiones de un mismo programa, así se tiene:

ATPDraw, para creación y edición de archivos de entrada, es un preprocesador interactivo en entorno Windows que actúa como núcleo central del paquete completo, ya que los usuarios pueden controlar la ejecución de cualquier programa integrado en el paquete desde ATPDraw. Este preprocesador dispone de modelos para los principales componentes de una red de potencia, y permite que un usuario pueda añadir sus propios modelos desarrollados a partir de varias opciones disponibles en el paquete, como Data Base Module o el lenguaje de programación MODELS.

TPBIG, para simular redes eléctricas en el dominio del tiempo y de la frecuencia.

PCPLOT, TPPLOT, GTPPLOT o PLOTXY, para procesar los resultados de una simulación de forma gráfica permitiendo de esa forma al usuario observar el fenómeno que se encuentre analizando y facilitando su comprensión y manejo de resultados.

A.2 MODELOS UTILIZADOS

A2.1 FUENTES EQUIVALENTES

Las fuentes utilizadas para modelar los equivalentes de cortocircuito son las ACSOURCE tipo 14 en serie con una línea RL acoplada simétricamente en la cual se ingresan los datos de la inductancia y resistencia tanto de secuencia cero como de secuencia positiva, la figura A.1 y A.2 muestran estos dos elementos.

Fig. A.1. Rutina para el ingreso de una fuente de voltaje ACsource tipo 14.

Fig. A.2. Rutina para el ingreso de parámetros de secuencia de equivalentes de red

Luego de haber obtenido estos dos elementos se procede a realizar el estudio del siguiente elemento.

A.2.2 LÍNEAS DE TRANSMISIÓN

El Alternative Transient Program (ATP) nos brinda la opción de modelar las líneas de transmisión de diferentes maneras dependiendo del estudio que se quiera realizar, mediante la componente LCC se puede escoger un modelo de línea y automáticamente calcula sus parámetros a partir de la geometría de la línea y de las propiedades de los conductores que la conforman, los modelos con los que se cuenta son:

Circuito, el cual es una aproximación discreta a los parámetros distribuidos constantes, razón por la cual, no son generalmente el mejor modelo para estudios de transitorios ya que la solución por parámetros distribuidos es más rápida y usualmente más precisa. Parámetros distribuidos constantes, o de Bergerón procede calculando la propagación de diferentes componentes de modo, siendo estos modos desacoplados. En cada extremo de la línea se convierten los valores de modo a valores de fase mediante la matriz de transformación. La principal causa de error de este modelo es al suponer constantes los parámetros con la frecuencia.

Modelo de Semlyen, aproxima la impedancia característica y la constante de propagación de cada modo mediante dos exponenciales. La sencillez de las ecuaciones hace que aun cuando los parámetros de la línea no presenten discontinuidades, la aproximación sea insuficiente, por lo que este modelo este cayendo en desuso.

Modelo de José Martí, este modelo JMARTI SETUP, aproxima la impedancia característica y la constante de propagación por funciones racionales. Es el modelo de parámetros variables que más se utiliza

Modelo Takú Noda, difiere de los anteriores ya que el cálculo se hace directamente en componentes de fase obviándose el inconveniente de la matriz de transformación, generalmente es más dificultoso obtener un modelo adecuado para una línea determinada, el tiempo de paso de la simulación debe ser el mismo con el que se calculó el modelo, de ser necesario utilizar otro paso deberá recalcularse el modelo.

Fig. A.3. Cuadro de diálogo del modelo de línea de la rutina LCC

Donde se tiene:

Transposed: Indica si la línea esta transpuesta

Auto bunding: Indica si se trabaja por conductor o por fase

Skin effect: Indica si se tiene en cuenta el efecto pelicular

Segmented ground: Indica si los cables de guarda no son continuos

Real transf matrix: Indica si los elementos de la matriz transformación se modifican

Rho: Resistividad del suelo

Freq init: frecuencia a la que se calculan los parámetros constantes o frecuencia inferior para el

cálculo de los parámetros dependientes de la frecuencia

Lenght: Longitud de la línea

Decades: Numero de décadas de la escala logarítmica

Points/Dec: Numero de puntos de frecuencia por década

Freq matrix: Frecuencia a la cual se calcula la matriz de transformación

Freq SS: Frecuencia en estado estable

Para el caso de los datos de la ubicación geométrica y de las características de los conductores el ingreso se lo hace en la pestaña data y los campos a llenarse se los muestra en la fig. A.4.

	Ph.no.	Rin	Rout	Resis	Horiz	Vtower	Vmid	Separ	Alpha	NB
#		[cm]	[cm]	[ohm/km DC]	[m]	[m]	[m]	[cm]	[deg]	
1	1	0.5425	1.2655	0.0777	-12.5	25	18	45.7	45	4
2	2	0.5425	1.2655	0.0777	0	25	18	45.7	45	4
3	3	0.5425	1.2655	0.0777	12.5	25	18	45.7	45	4
4	0	0	0.476	0.05	-12.5	35	29.5	0	0	0
5	0	0	0.85	0.29	12.5	35	29.5	0	0	0
	LCC									

Figura A.4. Cuadro de diálogo de los parámetros geométricos de la rutina LCC.

Donde se tiene:

Ph.no.: Numero de fases del conductor, la numeración debe ser 1, 2, 3 para las fases y 0 para los

hilos de guarda

Rin: Radio interno del conductor

Rout: Radio externo del conductor

Resis: Cuando no se incluye el valor del efecto piel se debe colocar el valor de la resistencia CA,

caso contrario se pondrá el valor de la resistencia CD del conductor

Horiz: Distancia horizontal entre los centros del conductor o del conjunto de conductores en haz, en una referencia especificada por el usuario, la misma referencia debe ser usada para todos los conductores del mismo caso

Vtower: Altura vertical del centro del conductor o del conjunto de conductores en haz medido desde la torre hasta el suelo

Vmid: Altura vertical del centro del conductor o del conjunto de conductores en haz medida desde el medio vano hasta el suelo

Si el usuario selecciona la opción Auto bunding: aparecen los siguientes términos:

Separ: Distancia de separación entre los centros de dos conductores adyacentes de un conjunto de conductores en haz

Alpha: Posición angular del centro a uno de los conductores del conjunto de conductores en haz NB: Numero de conductores que forman parte del conjunto de cables en haz

A2.3 TRANSFORMADOR

El transformador adoptado para los estudios es el de la rutina Satura debido a que los datos que se tienen de los transformadores típicos para voltajes de 500 KV son los indicados para esta rutina, en la figura A.5 se muestra la ventana de dialogo para el ingreso de los valores.

Fig. A.5. Cuadro de diálogo para la rutina Satura

Donde se tiene:

- U, Voltaje nominal del bobinado en KV.
- R, Resistencia del bobinado
- L, Inductancia del bobinado
- I(0), F(0), corriente y flujo usados para definir la inductancia lineal.

Rm, resistencia constante y lineal, esta resistencia toma en cuenta las pérdidas de excitación.

A2.4 INTERRUPTORES

El ATP posee varios tipos de interruptores, de los cuales se ha utilizado uno, que puede destacarse como un interruptor monopolar o tripolar

Como se menciono, el sistema a modelar empleara interruptores controlados por el tiempo con opción de recierre, en otras palabras, actuaran las veces que el usuario requiera realizar una nueva operación. Los datos técnicos se muestran en la siguiente figura

DATA	UNIT	VALUE	Reclosing switch			
T-cl	8	-1				
Т∙ор	8	0.12	T-close [s]	T-open [s]		
Imar	Amps	10	0.25	1000		
3-ph	0/1	1				

Fig. A.6. Especificaciones técnicas para interruptores con opción de re-cierre

A2.5 REACTORES

Los reactores ubicados en los extremos de las líneas de transmisión a 500 KV, se los modela como elementos lineales, sin considerar su curva de saturación, en la figura A.7 se muestra el cuadro de dialogo del modelo utilizado.

DATA	UNIT	VALUE	
L1	Ohm	8928.5714	
C_1	μF	0	
R_2	Ohm	0	~
L_2	Ohm	8928.5714	
C_2	μF	0	1
R_3	Ohm	0	
L.3	Ohm	8928.5714	
C_3	μF	0	

Fig. 51: Modelo y especificaciones técnicas del reactor

- R_1; R_2; R_3: Resistencia en ohmios
- L_1; L_2; L_3: Inductancia en ohmios
- C_1; C_2; C_3: Capacitancia en ohmios

ANEXO B

"Sistema Nacional de Transmisión"

SISTEMA NACIONAL DE TRANSMISION 230 Y 138KV A AGOSTO 2008

SISTEMA NACIONAL DE TRANSMISION 230 Y 138KV AL AÑO 2012

SISTEMA DE TRANSMISION A 500KV - ALT. 1 (PLAN 2008 - 2017)

SISTEMA DE TRANSMISION A 500KV - ALT. 2 (PLAN 2008 - 2017)

SISTEMA DE TRANSMISION A 500KV - ALT. 3 (PLAN 2008 - 2017)

CONEXIÓN DEL PROYECTO HIDROELECTRICO CCS

INTERCONEXIONES INTERNACIONALES A LARGO PLAZO

ANEXO C

"Tabla de los principales niveles de aislamiento según la norma IEC 60071"

	TENSION MAXIMA PARA	NIVELES DE AISLAMIENTO					
TENSIONES NOMINALES		IMP	ULSO	BAJA FRECUENCIA			
DEL SISTEMA (KV)	EL EQUIPO (KV ef.)	PLENO (KV pico)	REDUCIDO (KV pico)	PLENO (KV ef.)	REDUCIDO (KV ef.)		
88 - 94	100	450	380	185	150		
110 - 115	123	550	450	230	185		
100 100	145	650	550	275	230		
132 - 138			450	275	185		
150 161	170	750	650	225	275		
120 - 101			550	525	230		
	245	1050	900	460	395		
220 - 230			825		360		
			750		325		
	300		1175		510		
275 - 287			1050		460		
			900		395		
			1300		570		
330 - 345	362		1175		510		
			1050		460		
			1675		740		
380 - 400	420		1550		680		
			1425		630		
			1300		570		
			1800		790		
500	525		1675		740		
			1550		680		
			1425		630		

NIVELES DE AISLAMIENTO SEGÚN LA NORMA IEC 60071

REFERENCIAS BIBLIOGRAFICAS

- CONELEC, "Plan Maestro de Electrificación 2009-2020" Ecuador, Agosto 2009
- CELEC EP TRANSELECTRIC, "Plan de Expansión de Transmisión 2010-2020" Ecuador, Octubre 2009
- TRANSELECTRIC S.A, "Sistema de Transmisión Red de 500KV" Ecuador, Octubre 2008
- CELEC EP TRANSELECTRIC, "Parámetros del Sistema Nacional Interconectado" Ecuador, 2008
- JOHN J. GRAINGER Y WILLIAM D. STEVENSON JR. "Análisis de Sistemas de Potencia", Edit. McGraw-Hill, 2007
- ING. JOSE LAYANA CHANCAY, "Problemas de Disturbios en sistemas Eléctricos de Potencia" Ecuador, Agosto 2007
- BENOIT DE METZ-NOBLAT, FREDERIC DUMES Y GEORGES THOMASSET, "Calculo de Corrientes de Cortocircuito" Cuaderno técnico Nº 158. Original Francés: Noviembre 1999. Versión Española: Septiembre del 2000

- ALTERNATIVE TRANSIENTS PROGRAM, "ATPDraw versión 5.6 for Windows 9x/NT/XP/Vista users' Manual, Noviembre 2009
- ELECTROMAGNETIC TRANSIENTS PROGRAM (EMTP), "THEORY BOOK", 1981
- J. A MARTINEZ VELASCO, "El Paquete de Simulación ATP. Nuevas Prestaciones" Revista Iberoamericana del ATP Vol. 2, Nº 3, Septiembre del 2000
- GANDI VINICIO MIER MIER, "Determinación de Sobrevoltajes Temporales y en Maniobras en el Anillo de 230KV del SIN" Previo a la obtención del título de ingeniero eléctrico en la especialidad de sistemas eléctricos de potencia. Ecuador, Febrero 2010