

7 678.52 9148 ez

ESCUELA SUPERIOR POLITECNICA DEL LITORAL Facultad de Ingeniería en Mecánica

"SELECCION DE UNA CENTRAL OLEOHIDRAULICA"
PARA REEMPLAZAR METODO MANUAL EN LA
FABRICACION DE ACCESORIOS DE CAUCHO"

INFORME TECNICO

Previa a la Obtención del Titulo de

INGENIERO EN MECANICA

Presentado por:

ANGEL EDUARDO GALAN MIRANDA

Guayaquil

AÑO

Ecuador

1992

AGRADECIMIENTO

Al Ing. ERNESTO MARTINEZ G.

Director de éste Informe

Técnico, por su ayuda,

colaboración y abnegada

preocupación para que éste

trabajo concluya.

DEDICATORIA

A MIS PADRES
Y A MI ESPOSA

DECLARACION EXPRESA

Declaro que:

- "Este informe Técnico corresponde a la resolución de un problema práctico relacionado con el perfil profesional de la Ingeniería Mecánica".
- (Reglamento de Graduación mediante la elaboración de Informes Técnicos).

ANGEL DUARDO GALAN MIRANDA

Ing Jorge Duque R.
DECANO FIM

Ing.Ernesto Martinez L.
DIRECTOR DE INFORME

Ing.Manuel Helguero G. MIEMBRO DEL TRIBUNAL

RESUMEN

procedimientos empleados en la selección de una Central elechidráulica para accionar seis actuadores lineales simultáneamente, los mismos que son usados para la fabricación de accesorios de caucho utilizados en la industria automotriz.

En el antécedente presento los argumentos que justifican la aplicación de la Central Oleohidráulica.

En el Capitulo I describo de manera simple los procesos elementales de obtención de la materia prima y las fases de preparación del caucho así como los parámetros que gobiernan la fabricación de accesorios.

El Capitulo II analizo en detalle el proceso manual de fabricación junto con el tiempo por ciclo empleados y los rendimientos obtenidos por los productos. Adicionalmente se presentan las ventajas de usar accionamiento oleohidráhulico con control eléctrico hasta su automatización.

En el Capitulo III presento un breve resumen de los fundamentos básicos para el diseño, cálculo de una Central oleohidráulica y alternativas para el ahorro energético.

En el Capitulo IV presento los parámetros que definen el tamaño de la unidad, formas de control y detalles del funcionamiento del circuito.

determinar la capacidad y posterior selección de cada uno de los componentes del sistema oleohidráulico, construcción del reservorio de aceite, finalmente el montaje de la unidad.

Previo a la entrega de la Central procedo a realizar las pruebas de funcionamiento correspondientes, utilizando para ello un actuador oleohidráulico construído por la industria cauchos industriales, obteniendose buenos resultados.

Esta Central, como se mencionó al inicio, esta diseñada para mover seis actuadores, al finalizar este informe esta trabajando con uno, debido a que se estan construyendo los otros cinco.

INDICE GENERAL

INDICE GENERAL INDICE DE FIGURAS INDICE DE TABLAS SIMBOLOGIA ANTECEDENTES CAPITULO I I.- APLICACION DEL CAUCHO 1.1 Obtención y fases de preparación del 1.2 Cilindros mezcladores 1.3 La vulcanización 1.4 Tipos de productos CAPITULO II II.- MAQUINARIAS Y CICLOS DE PRENSADOS 2.1 Prensas de tornillo

2.2 Evaluación del tiempo por ciclo

2.3 Ventajas del Sistema Oleohidráulico

Pág.

CAPITULO III III.- PRINCIPIOS DE POTENCIA OLEOHIDRAULICA 3.1 Introducción 3.2 Presión y caudal 3.3 Componentes de los circuitos Oleohidráulicos CAPITULO IV IV .- DEFINICION DEL DISERO 4.1 Fuerza y velocidad 4.2 Consideraciones para el levantamiento del circuito oleohidráulico 4.3 Descripción y funcionamiento de la Central Oleohidráulica CAPITULO V V .- INGENIERIA APLICADA 5.1 Cálculos y selección de los componentes ... 5.2 Determinación del reservorio de aceite 5.3 Montaje de la unidad 5.4 Evaluación de costos CONCLUSIONES Y RECOMENDACIONES BIBLIOGRAFIA

INDICE DE FIGURAS

		Pag
1	Calandradora tipo manual	
2	Mezclador de rodillos	
3	Paca de caucho natural	
4	Prensa de tornillo típica	
5,-	Prensa en plena operación	
6	Típicos moldes sin carga y cargado	
7	Transmisión de potencia hidráulica	
8	Indice de viscosidad (IV) Vs Temperatura	
9	Presión de una columna de aceite	
10	Desplazamiento positivo de una bomba	
11	Parámetros y ecuaciones básicas para el	
	cálculo de un sistema hidráulico	
12	Sistema oleohidráulico con bomba simple	
13	Sistema oleohidráulico simple con venteo	v
14	Sistema simple con válvula direccional tandem	
15	Sistema simple con válvula accionada	
	mecánicamente de descarga	
16	Sistema con bomba variable	
17	Sistema con bomba doble	
18	Ciclo de trabajo de cada actuador hidráulico	
19	Válvula reductora de presión	
20	Válvula reguladora de caudal no compensada	

21 Electro-válvula direccional, cuatro vías,
tres posiciones
22 Válvula antiretorno pilotada
23 Levantamiento del circuito oleohidráulico
para accionar un actuador
24 Plano oleohidráulico general
25 Cilindro oleohidráulico
26 Superficie de montaje ISO 4401 - 05
27.1Bloque modular (manifold)
27.2Bloque modular
28.1Reservorio de aceite
28.2Reservorio de aceite
29.1Visor de nivel y temperatura instalado
29.2Filtro de aire instalado
30 Grupo motor-bomba
31 Linea de succión embridada
32 Manifold instalado
33 Válvula de descarga instalada
34 Manguera de alto caudal # 1 y check instalado .
35 Válvula de alivio y conección de manifold
36 Vista del filtro de retorno
37 Vista del enfriador de aceite
38 Vista de válvula modulares y electroválvula
direccional

INDICE DE TABLAS

Pag.

I.A	Tipos de productos que se fabrican
I.B	Tipos de productos que se fabrican
II	Tiempo en segundos por cada vuelta en cinco
	prensas distintas
III	Espacio recorrido para diez moldes
IV	Tiempo de avance manual (T.AV.M)
V	Indices de viscosidad de aceites hiráulicos
	Norma ISO segun la temperatura
VI	Criterios para seleccionar el tipo de bomba
	oleohidraulica
VII	Guia para detección de fallas
VIII	Mantenimiento preventivo recomendado

.

SIMBOLOGIA

Tt.c.m : Tiempo total del ciclo manual

T.av.m : Tiempo de avance manual

Tc : Tiempo de cura

Tr.m : Tiempo de retorno manual

Tp : Tiempo de preparación

PSI : Libras por pulgada cuadrada

SUS : Segundos universales Saybolt

•C : Grados farenheit

∘F : Grados centigrados

gr/cm³ : Gramos por centimetro cúbico

lb/pie³ : Libras por pie cúbico

Kg/cm² : Kilogramos por centimetro cuadrado

PSIA : Libras por pulgada cuadrada absoluta

mm : Milimetros

pies/seg: Pies lineales por segundo

Pt : Presión de trabajo

Qb : Caudal real de bomba

Nt : Eficiencia total

Lbs : Libras

pulg² . : Pulgadas cuadradas

Kg : Kilogramo

Ton : Tonelada

Tt.c.o : Tiempo total del ciclo oleohidráulivo

Tc.a : Tiempo del ciclo del actuador oleohidráulico

Tav.o : Tiempo de avance oleohidráulico

Tr.o : Tiempo de retorno oleohidráulico

min : Minuto

seq : Segundos

Fmáx : Fuerza máxima de cierre

Pmáx : Presión oleohidráulica del fabricante de bombas

Ac : Area interior del cilindro o actuador

øc : Diámetro interior del cilindro

Av : Area del vástago

Vav.o : Velocidad lineal del actuador oleohidráulico

Qt : Caudal total de la bomba

N : Número de cilindros

GPM : Galones por minuto

pulg³ : Pulgadas cúbicas

RPM : Revoluciones por minuto

HP : Caballos de potencia

Mª : Metros cúbicos

pulg/min: Pulgadas por minuto

C : Carrera

4/3 : Cuatro vias, tres posiciones

4/2 : Cuatro vias, dos posiciones

SAE : Sociedad de Ingenieros Automotrices

FPM : Pies por minuto

ANTECEDENTES

Cauchos Industriales es una empresa ubicada en la ciudad de Guayaquil, dedicada a la fabricación de accesorios de cauchos para la Industria Automotriz; comenzó sus operaciones en el año de 1981 siendo entonces una planta de tipo artesanal logró en poco tiempo cubrir una parte de las necesidades locales y para lo cual contaba con ocho prensas manuales tipo tornillo, para el proceso final de producción.

Esta empresa vió incrementada la demanda de sus productos, por lo cual debió aumentar su producción, así como modernizar su maquinaria y mejorar la calidad de los artículos.

Debido a que no se podía cubrir la demanda, procedo a rediseñar la instalación sin incrementar el número de personas que laboran, esto es semiautomatizar el proceso.

Dentro del reacondicionamiento y puesta en servicios del grupo de prensas para esta planta, la Compañía Hydraquip Del Ecuador S.A. E.M.A. a más de ser proveedora de los

respectivos equipos hidráulicos, es una empresa especializada en el cálculo, diseño, montaje y puesta en funcionamiento de la Central requerida.

Hydraquip del Ecuador me encarga este trabajo, el mismo que se lo proyecto para un tiempo no mayor a sesenta días para su puesta en marcha; mi intervención comprende:

- 1.- Diseñar un sistema capaz de ejercer la fuerza requerida por la aplicación.
- 2.- Ajustarme a un régimen de producción solicitado
- 3.- El control debe de ser eléctrico
- 4.- Seleccionar los componentes hidráulicos necesarios.
- 5.- Dirección del montaje de la unidad.
- 6.- Puesta en funcionamiento.
- El proyecto que se presenta a Cauchos Industriales es basado en las experiencias de diez años de fabricación de los productos antes mencionados, información tecnológica de países de mayor desarrollo en este campo, y evaluación de los parámetros básicos del proceso. Con los siguientes beneficios.

Disminuir el tiempo por ciclo de fabricación

- Aumento del rendimiento del material procesado
- Asegurar la aplicación uniforme de la presión requerida
- Posibilidad de lograr la total automatización del ciclo en el futuro
- Menor desgaste físico del operador
- Disminución de accidentes del personal

CAPITULO I

APLICACION DEL CAUCHO

1.1 OBTENCION Y FASES DE PREPARACION DEL CAUCHO

OBTENCION .- Se conoce como el caucho al producto natural (latex) obtenido de ciertas plantas tropicales que exudan una sustancia blanca, lechosa, cuando se hace incisiones en la corteza; los tipos de cauchos silvestre de acuerdo a su procedencia difieren en pureza, peso molecular de su hidrocarburo y otras propiedades químicas y físicas, sin embargo la elasticidad e impermeabilidad son comunes a todos.

La mayoría de tipos de cauchos utilizados por la industria en la actualidad provienen de la "Hevea Brasiliensis" planta originaria de la Región Amazónica.

El caucho es un número grande de dobles enlaces, uno de cada residuo C5 H6, propiedad que determina su reaccionabilidad con diferentes productos químicos

(obtención de derivados), especialmente con azufre y cloruro de azufre (vulcanización).

PREPARACION. – El latex contiene 33% de materia cauchifera con 5-7% de otras sustancias, siendo el remanente agua. Es por esto que el caucho rara vez se aplica directamente en sus múltiples usos. Luego del proceso de obtención el latex es tratado física y químicamente con el objeto de eliminar parte de los componentes extraños, además para obtener un material más plástico, pegagoso y más soluble con disolventes orgánicos, incorporandolos con mayor facilidad.

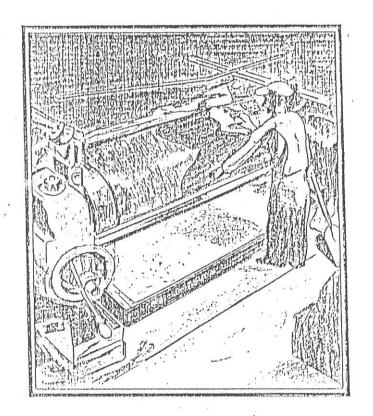
El caucho así preparado, se le adiciona pigmentos, ablandadores y agentes vulcanizantes igualmente aplicado en los mezcladores.

Los primeros lo dotan de propiedades especiales y los vulcanizantes (Azufre y otras) son indispensables para efectos del curado.

Casi todos los objetos de caucho producidos para uso industrial están vulcanizados o combinados con azufre en mayor o menor proporción. Es la forma vulcanizada, más que la bruta, la que reconoce el vulgo como caucho.

CARACTERISTICAS DEL PROCESO.- La poca aplicación directa del caucho en estado natural a su múltiples usos se debe básicamente:

- 1.- A que no tiene extraordinarias propiedades físicas
- 2.- A que no es liso u homógeno
- 3.- A que se reblandece y descompone si se somete de modo constante a la acción del calor
- 4.- A que lo atacan fácilmente los disolventes


Así pues, el caucho en estado natural, solo tiene pocas aplicaciones comerciales.

A parte de todo esto, el caucho tiene que ser sometido a un proceso de fabricación que consiste en:

- a) Romper el nervio o masticarlo para hacerlo elástico, esto se verífica en un molino de rodillos.
- b) Añadirle los ingredientes de mezcla para efectuar
 la vulcanización y proporcionarle las condiciones

que debe adquirir a este proceso se lo llama de mezcla.

c) Calandrado, esta operación tiene por objeto preparar el material en láminas haciendolo pasar por un par de cilindros. (Figura 1).

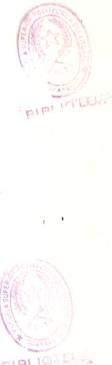


Fig. 1.- Calandradera Tipo Industrial

- d) Cortar las láminas a los tamaños y formas adecuadas para proceder a su transformación.
- e) Moldeado y Vulcanización, que consiste en someterlo a la presión, temperatura y tiempo conveniente para obtener un curado perfecto.

En el apéndice A, se aprecia el diagrama de las operaciones del proceso aplicado en la fabricación de artículos de caucho.

1.2. CILINDROS MEZCLADORES

Las tres primeras fases del proceso visto anteriormente se las realiza casi simultáneamente. Donde la operación de mezcla es una de las más importantes fases por la que debe pasar las composiciones de caucho. Las fases del proceso subsiguiente a la mezcla dependen de que esta sea suficiente y uniforme, y la calidad del producto final esta directamente influída por la clase de mezcla realizada.

Para realizar estas operaciones se tiene un molino de 30 pulgadas de longitud y el diámetro de los dos rodillos de 10 pulgadas cada uno (figura 2).

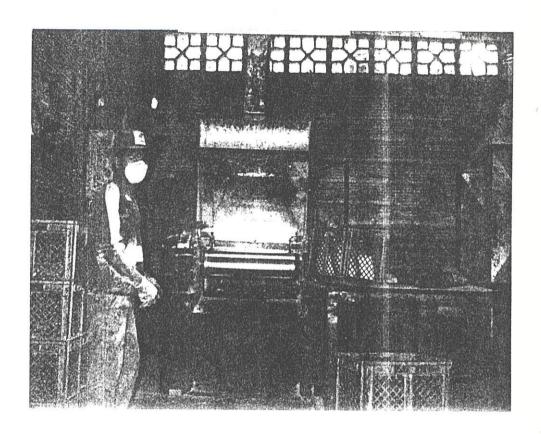


Fig. 2.- Mezclador de rodillos

Cada paca de caucho que llega a fábrica trae un peso de 34 Kg (75 lbs.) (figura 3).

Debido al tamaño del molino cada paca es seleccionada en 8 (ocho) piezas. Cada una con un peso de 4.35 kg (9.7 lbs) para ser usada en cada carga de la experiencia practicada, esta empresa estima una composición óptima (mezcla) según las siguientes proporciones.

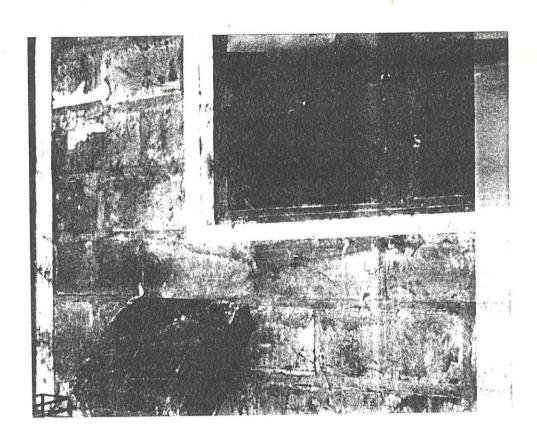


Fig. 3.- Paca de Caucho natural

Láminas ahumadas (previament	te plasticadas	15	minutos
en el molino frio).			100
Negro de humo			50
Oxido de cinc			5
Acido esteárico			1.5
Ablandador de petróleo			5
MBT (Acelerador)			0.7
Antióxidantes			1.0
azufre			3.0
Por lo tanto cada carga serí	a:		Libras

Caucho natural

9.7

Negro de humo	4.85
Oxido de cinc	0.485
Acido esteárico	0.1455
Ablandador de petróleo	0.485
MBT	0.0679
Antióxidantes	0.09
Azufre	0.291

SECUENCIA DE MEZCLADO

- 1.- Se amazan previamente y en forma mecánica los 34 kgs. de caucho natural.
- 2.- Se mezcla del 40 al 60% del caucho con la carga dosificada de negro de humo que ya contenga incorporadas las proporciones de ablandador y ácido esteárico, esto requiere de unos 11 minutos.
- 3.- Se mezclan las cargas dosificadas de óxido de cinc y del acelerador, lo que se hace en apróximadamente 8 minutos.
- 4.- Se obtiene la mezcla final, del resto de caucho, de la carga de humo negro y de la carga mezclada de óxido de cinc y acelerador y de los

antióxidantes.

Se adiciona la carga de azufre al mezclador dos minutos antes de que se descarge.

5.- Los rodillos previamente ajustados a 1/8"
convierte en una lámina de este espesor a toda la
carga; quedando lista para los siguientes
procesos.

1.3. LA VULCANIZACION

Desde un punto de vista práctico la vulcanización son los procedimientos por medio de los cuales, algunos materiales de composición variables y malos conductores de la energía calorífica, se someten a un tratamiento que tiene por finalidad producir un material uniforme que posea cualidades físicas mejoradas.

Dos etapas son básicas para obtener un proceso óptimo

A.- Cálidad y uniformidad de las materias primas y la incorporación uniforme del azufre y de los otros ingredientes.

B.- Control de los tiempos, presiones y temperaturas que se utilizan durante las operaciones.

Es la etapa B la de interés fundamental para mi trabajo y dentro de esta etapa determinar los rangos de presiones requeridas en este proceso. Sin embargo tambien los otros dos parámetros son de interés.

TEMPERATURA

El intervalo de temperatura usados para la cura de los productos aquí fabricados van desde 160 grados centigrados hasta 180 grados centigrados dentro de la cual todos los productos de caucho son vulcanizados.

TTEMPO

Dependiendo de la concentración de los acelerantes aplicados al caucho, forma y tamaño de los productos, el rango de tiempo requerido pará que el centro del objeto alcance la temperatura deseada va de 8 a 15 minutos.

PRESION SOBRE EL MOLDE

En la fabricación de estos artículos de caucho, la

presión juega un papel importante por las siguientes razones.

- Proveer el cierre perfecto de las placas superior e inferior del molde.
- Moldear el artículo a fabricar.
- Evitar el derrame excesivo de material.
- Mantenimiento de la presión por un período mínimo de cura ya que de otra manera los productos pueden resultar porosos o "hincharse".

1.4. TIPOS DE PRODUCTOS

A continuación se lista toda la variedad de productos que se estan fabricando, en la misma se hallan la forma, aplicación, peso del producto terminado y código comercial. Tablas $I \cdot A$ y $I \cdot B$

TABLA I.A

TIPOS DE PRODUCTOS

					· · · ·									
AQUE	Edding Sp	TIPO.	eu an	DA POLVO	TIPO BO	CIN P	AQUETE Y SUSPENS	T	TIPO:TE	MPLA	DOR (+)	TPOS	A. B. A.	The Asia and
	DESCRIPCION	REFERENCIA		DESCRIPCION	REFERENCIA		DESCRIPCION	1	REFERENCIA	D	ESCRIPCION	REFERENC	IA	DESCRIPCION
	PAQUETE DATSUM 120Y MAZDA 1300 929 808 323 DEL.	N° 227 G/P. CIL. FORD 350		GUARDA POLVO PARA CILINDRO AUXILIAR FURD 350	N* 24 DA-1111 Code 84818-08700		BUSPENSION DATSUN 1300 1800 72 ON CON BOCIN		Codigio		TEMPLADOR DATSUN 1800 1800 180J NISSAN AUT. VARIOS	Nº 11	Foot (pms) 12.00	DE BUJIA -
Stations II III	PAQUETE DATEUN 1207 MAZDA 928 DELANTENO	N° 229 Q.P. CIL. TOY Colleg 1726132		QUARDA POLVO PARA CILINDRO HUEDA DE TOYOTA 1000	N*49 P8-2016 Codise 90388-14019		SUSP. TOYOTA 1000 AUSTIN MINI MONRIS SIN BOCIN		HT ID CTTASH-203AA		TEMPLADOR FORD 380 ANTERIOR .	N° BB TAPA DISTRIB,	ME(I)	TAPA DISTRIBUIÇO TOGO TIPO
	PAQUETE DATBUN 1800 1800 MODERNO	N* 14 CI-0681		GUANDA POLVO MAZDA Y TOYOTA CIL, NUEDA POSTERION	N* 114 (2-4)	(1)	BOCIN PARA SUSPENSION MAZDA 1000 E200 KIAMASTER		N° 27 DH-38		TEMPLADOR CHEY, LUY, ISUZU ANTERIOR	N° 99 TAPA BOBINA		TAPA PARA BOBINA TIPO UNIVERSAL
and annual state of	PAQUETE ANDING POSTERIOR			GUARDA POLYG RUEDA FORD DODGE FARGO	N° 131 84812-11000		BUSPENSION PONY COLY LANCER BIN BOCIN		DII. 2011	Denut	TEMPLADOR CHEV.LUV IBUZU MODERNO	N° 122 31272-CH	(31.4/Lm)	TAPA ACEITE CHEV, LUV ISUIU TROOPER SAH REMO CONDOR
MINIMA KIN	PAQUETE ANDINO DELANTERO	N° 37 FC-4741-BAB	3.	GUARDA POLYO RUEDA DELANTERA MERCEDEZ BENZ OTROS	N° 146 193348-20		BOCIN PLATO SUSPENSION MAZDA 1600 Y FORD COURIER		N* 47 QM 89822737 246		TEMPLADOR CONDOR (HEMBRA) TAMBIEN AMTO.	Nº 180 TAPA ACEIT TOYOTA	50.00	TAPA ACEITE TOYOTA 1000 1800 2000 OTROS YARIO
EIV	PAQUETE TOYOTA CORONA MARK 2 CRECIDA CELICA CARINA	N° 30 FC-10678		GUARDA POLVO CIL. RUEDA FORO 350 600 DELANTERO	N* 119 34341-6401-P		BOCIN PARA SUSPENSION NISSAN JUNION 2000 ANTERIOR		'N' 116 QM-89922737 -246		TEMPLADOR CONDOR (MACHO) TAMBIEN AMTQ.	N* 289 V-TAPA AC	CITE TOTAL	MAZDA 1200
	PAQUETE CHEV. LUV. ISUZU TROOPER S DELANTERO	N° 110 19114	20.04	GUARDA POLVO CILINDRO JCDA 1-1/2- OTROS VARIOS	N°30 DA-4184 C4Hgs 86048-20400	V .: . 1	BOCIN PAGE DE RESORTE DATEUN 1300 1800 DELANTERO		H*81 \$N-2023 Codigo B4478-H1001	and the same of th	TEMPLADOR DATBUN 120Y 140J 1200	L-1810	'III'	TAPA DEPOSITO LIQUIDO FRENOI TOYDTA 1000 1500 1400
a. (1)	PAGUETEION DATSUN 1300 1500	N° 240 SC-8080	110.00	GUARDA POLVO PARA DATSUN 1800	N° 84 MAZDA 1300		BOCIN PARA SUSPENSION MAZDA 1300		0.219		TEMPLADOR MAZDA 1600 AUTO	N* 169 T-1500	OFFITS !	TAPA PARA DEPOSITO LIQUIDO DE FRENOS TOYOTA 2000
	PAQUETE DATSUN 1300 1500 DEL COLGANTE	N° 241 8C-30094	9	GUARDA POLVO PARA TOYOTA 1500 AUTO	P++		BOCIN PARA SUSPENSION MINE MORRIS AUSTIN OTROS		11-13 E		TEMPLADOR MAIDA 1300 AUTO	H* 187 FK-38189	8-6	LOUD TRO EDJ
	PADUETE ODEL NUSTAD NASSIN DOBL NOINUL	N° 143 940-24891 4670	(tame)	QUANDA POLVO - CHEV, LUV ISUZU OTNOS VARIOS	3)e-28	ELL'AL	SUSPENSION MINI MORRIS AUSTIN SIN BOCIN		H* 117 EOTA-38203-AA		TEMPLADOR FORD 380 MODELO 80 (MACHO)	H* 204 3989347		TAPA VALVULA CHEVAOLET AMERICANO
	PAQUETE CHEVROLET NOVA 77 ON	Nº 147 FC-14492 -BAB	9	GUARDA POLVO CILINDRO FRENO FORD 350	Nº 333 1 84806-89800		BOCIN DE BUSPENSION NISSAN JUNIOR MODERNO		N° 148 H3B-203-AA	7 22 2 (great)	TEMPLADOR FORD 350 (HEMBRA)	N° 219 VALV. TOY 1800		TAPA VALVUL TOYOTA 1600 OTROS
(10	PAQUETE FORD CHEVROLET AMER.AUTOS	H* 181 172-8760		QUANDA POLVO CILINDRO FRENO TOYOTA HILUX 1800	N° 200 B§:2702		OCIN USPENSION UPERIOR FIAT 124 ADA OTROS		K, 118	50.00	TEMPLADOR FORD 350 MODERNO (HEMBRA)	N* 183 GM-8967-8		TAPA VALVULA CHEV LUV ISUZU I TROOPER
	PAQUETE FORD CHEVROLET CAMIONETA	N- 184 847616		GUARDA POLVO CILINDRO NISSAN	DA-1800		BOCIN PARA SUSPENSION DATSUN 1500		N* 126 425332		TEMPLADOR FIAT SEAT LADA HIVA			
	PAQUETE MAIDA 1600 Y FORD COURIER	N° 192 QP-33888 ~	JES PA	UARDA POLVO ALANCA CAMBIOS DYOTA HILUX 1600	N° 282 340418402-M		BOCIN DE EUSPENSION DATSUN 1.800 MODERNO		H* 127 4283		TEMPLADOR FIAT BEAT LADA NIVA			

TABLA I.B

TIPOS DE PRODUCTOS

				1 100000 1100
O TOPE PROPERTY	THE DESTABILITY OF		TIPO AMORTIGUADOR ()	TIPOS TAPON ** ***
RENCIA DESCRIPCION	REFERENCIA DESCRIPCION	REFERENCIA DESCRIPCION	REFERENCIA DESCRIPCION	REFERENCIA DESCRIPCION
TOPE CAPOT DATSUN 120- 1207 1601 0 TROB VARIO	A9-82 CHEV. LUV ISUZU	MA-2027 Codige 028943-028 Person tames 28 66 Person tames 28 66 Person tames 28 66	M* 50 LR-1 Proc. (a-s) 25 00	TAPON N° 18 TAPON PARA BOMBA DE AGUA TIPO UNIVERSAL
SUSP. TOPE DE SUSPENSION PLANS AN JUNIO	H - N-7 BARRA ESTAB. CHEVROLET - AMER. C.10 C.20	N-72 8N-2012 PED-1200 -0-Mgs -48531-19001 Piss-14-01	M* 107 AMORTIGUADOR Y TEMPI TIPO UNIVERBAL	B-842091174-0 TAFON BOMBA DE AGUA CHEV
Caup. TOPE DE SUSPENSION CHEVROLET C-30	HT B BARNA ESTAB, CHEVROLET AMER. SERIE 30	PEDAL CHEY. CHEY, LUY Page 19-64 A 6-64 PEDAL CHEY. LUV. ISUZU OTROS VARIOS	N° 124 428383-7 1 1990 1 1990 1 1990 1 1990 1 1990	N° 208 TAPON PARA PISO TAPON PISO DE 1-3:4° PARA 1-3:4° Pess Igms! VARIOS VEHICULOS
SUSP. TOPE DE SUSPENSION DATSUN 1000 1200 120Y 190	48818-20010 Par Ismal LANCER	H* 188 D472-4800-E FRENCY FRE	N° 128 STAT LADA NIYA 423383-8E STAT LADA NIYA AMORT, FORD OTROS	N* 209 TAPON PARA TAPON PARA PISO 10 1.1/2* PARA VARIOS PISO 1.1/2 30 00 VEHICULOS
CAPOT CAPOT MAZDA CAPOT MAZDA 1800 Y FORD COURIER	NR-3091 BARRA RSTAG. DATSUN ISOO Codings \$4617-21002 Filtered LAUREL OF	Pass famed DATSUM 160-J	H* 138 PB-2030 C4-dige 48817-10010 Page Ignal 18 90 AMONTIGUADOR Y TEMP/ TOYOTA 1000 OIROS VARIOS	N° 210 TAPON PARA PISO 1" PISO DE 1" PARA VARIOS VENICULOS
SUSP. TOPE PARA SUSPENSION NISSAN CON PERNO	N° 40 FA BARRA ESTAS, FORD GRANADA THE STAND OF THE STAND	N* 188 CT-2107 Conge TOYOTA HILUX 1000	M° 141 947-A Political Services AMORTIQUADOR LAND ROVER FORD OTROS VARIOS	TAPON PISO PARA PISO DE 1-3.4* 1-3/4* TAPON PISO PARA PISO DE 1-3.4* VARIOS
CAPOT TOPE PARA CAPOT 10YOT 1000 1600 0TROS VARIO	HOC-B JA-1 JSO MODERNO	N° 195 C7TZ-2457-A PED PEDAL FOND PRINCE Lenal 199-06	N° 172 OR S CUADOR Codige DOBLE TIPO 9-51631-026-0 Part Ismal JAPONES	H 218 TAPON PLATO TAPON PLATO FRENO Pose Issue JAPONESES JAPONESES
CAPOT TOPE PARA CAPOT DATSUN 1800 OTROS VARIOS VARIOS	N'BB CIAD ESTAB.	N* 108 PEDAL PARA MAZDA Y FORD COURIER	REFERENCIA DESCRIPCION	REFERENCIA DESCRIPCION
CAPOT CAPOT TOPE DE CAPOT TIPO UNIVERSAL	N-80 ML-2046(N-19) Cdille 070234-186 Fig. 2-40 COURIER	DA:2130 Codge 40431-041000 Foreign=11 FOREIg	DS-201-R CARDAN PARA FORD 380 800 TAMBIEN CHEVROLET AMER. 139.00	N° 108 AZZA ESPINAL MAZDA 1500 Y FOND COURIER
TOPE PARA GUAHDA CHOQU TOYOTA OTROS VARIOS	N'80 BANRA ESTAB.	PEDAL PARA POID 350 A. PATE 2487-A FOID 350 A. PATE 2487-A FOID 350 A.	DS-401-R CARDAN PARA FOND SOO TSO Y BOO ESPECIAL	118-80-19 ALZA DE ESPIRAL MAZOA 1600 Y FOND COUNIEM
SUSP. TOPE PARA SUSPENSION CON PERNO PARA CHEV. C-30	N*88 TP-2262 Codigo 48818-30040 Press terms 1500 AUT	M*201 COROLLA COROLLA COROLLA SPRINTER OTROS VARIOS	N° 180 CARDAN PARA 37520-77200 CARDAN PARA NISSAN JUNIOR 210-06	Nº 178 ALIA DE ESPIRAL TIPO UNIVERSAL
TOPE DE CAPOT PARA VEHICILO JAPONESES	N°80 46 BANNA ESTAB.	R*218 LC:2018 Cadge 1321-61010 Fill field	Nº 186 CARDAN PARA FOND 600	Nº 178 ALZA DE ESPIRA GRANDE TIPO UNIVERSAL 119-90
SUSP. TOPE PARA SUSPENSION FORD	N° 108 BARRA ESTAB. FIAT 124 SEAT LADA NIVA	N° 228 TC.2004 Codige 31221-14010 PEDAL PARA TOYOTA 1500 1800 2000	N° 211 CARDAN MERCEDEZ BENZ Page 1991 MERCEDEZ BENZ 350 00	N° 180 150-97-33 ALIA ESPIRAL CHEVROLET C.3C C.35 OTROS VARIOS AMER
HOOFE PARA CAPOT INCOLER	Nº 120 SANAT STATE	N° 24: AB-2487-A FOND 150 Part 15-0	CARDAN PARA MIRCEDEX MIRCEDEX PINE 1911 BLNZ CARDAN PARA MIRCEDEX BLNZ CAMION	Nº 181 ALIA DE ESPIRAL TIPO UNIVERSAL 190 00
Change .	THE PARTY OF THE P	1	r	N° 182 143-100-13 ALZA DE ESPIRAL TIPO UNIVERSAL
	1	· ·		1' ! ! !

CAPITULO II

MAQUINAS Y CICLOS DE PRENSADO

Una breve descripción de los detalles destacados del tipo y característica de las prensas manuales usadas por esta empresa.

Todas las prensas evaluadas corresponden a similares características constructivas, así como su montaje, es por ello que describo a una sola de las ocho prensas existentes.

2.1. PRENSAS DE TORNILLO

Incorpora los siguientes componentes:

a) Estructura tipo pórtico ensamblado con placas de acero 3 1/2 pulg. * 6 pulg. (88,9 mm * 152,4 mm), de sección y platinas de hierro 3/16 pulg. * 2 pulg. (4,76 mm * 50,8 mm), utilizan perno de tipo Allen Ø 1/2 pulg. (12,7 mm), pasantes ajustados con tuercas.

- b) Bancada de hierro fundido anclada al piso.
- c) Placa superior porta molde de acero que a la vez sirve para alojar la placa térmica de resistencias eléctricas.
- d) Tornillo para la transmisión de fuerza y potencia, tipo rosca cuadrada simple de acero con las siguientes dimensiones.

Diámetro exterior: 2 1/2 pulg. (63,50 mm)

Largo total: 28 pulg. (711,20 mm)

Paso: 4 hilos/pulgadas

Avance: 0,250 pulg/vuelta (6,35

mm/vuelta)

e) Barra de acero el cual sirve para transmitir manualmente la fuerza de giro sobre el tornillo.

Diametro: 1.5 pulg. (38,10 mm)

Largo: 48 pulg. (1219,20 mm)

f) Accesorios para sujetar el molde. Las ilustraciones siguientes muestran prensa en la fase previa y durante la operación (fig. 4 y 5).

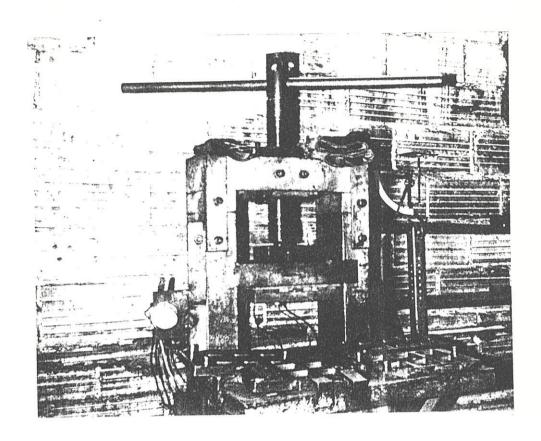


Fig. 4 .- Prensa de tornillo manual típica

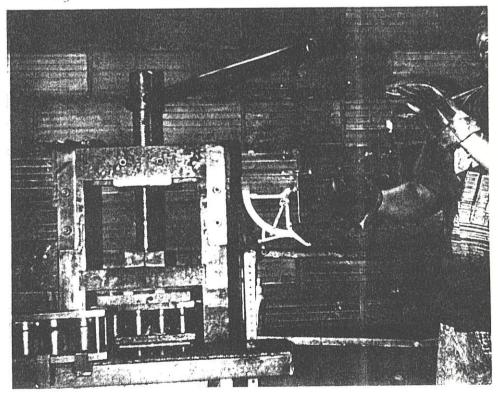


Fig. 5 .- Prensa en plena operación

SECUENCIA DE CADA APLICACION

- 1.- Precalentamiento de la placa térmica, hasta una temperatura próxima a la de vulçanización
- 2.- Montaje del molde previamente cargado con material (fig. 6), directamente debajo de la placa térmica.

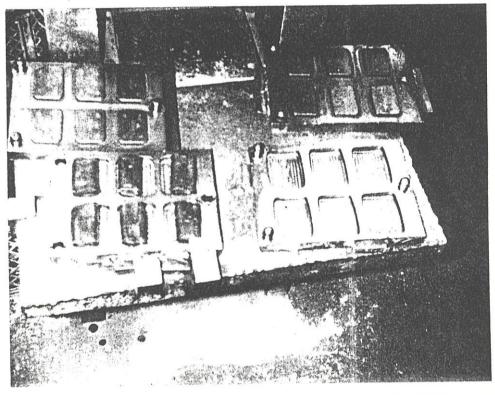


Fig. 6 .- Típicos Moldes sin carga y cargado

3.- Desplazamiento del tornillo para que la placa superior móvil tome contacto físico con el molde y por conducción se produzca la transferencia del calor.

- 4.- Aplicación de la fuerza necesaria para que haya el cierre hermético de las caras del molde una vez que el termómetro indica que se ha llegado a la temperatura ideal.
- 5.- Mantenimiento de la presión y temperatura de curado, esto último se obtiene con la ayuda de un termostato que conecta las resistencias eléctricas de acuerdo a la temperatura.
- 6.- Pasado el tiempo de Mantenimiento previamente seleccionado se desconecta la placa de calentamiento. En este momento los moldes de artículos pequeños son retirados de la prensa para dar paso al siguiente molde, no así los moldes de artículos grandes los cuales son retirados pasado un tiempo adicional.
- 7.- Antes de extraer los artículos del molde se deja enfriar un lapso de 10 minutos para evitar porosidades a alta temperatura:

2.2. EVALUACION DEL TIEMPO POR CICLO

En el Apéndice B, se aprecia un diagrama de análisis del ciclo total de obtención de artículos de caucho. desde el pesaje de la materia prima hasta el almacenamiento del producto terminado, sin embargo el

interés de informe se basa en evaluar el tiempo previo, durante y luego el prensado.

En primer lugar recordemos que el tornillo para desplazarse una pulgada lineal debe dar cuatro vueltas luego, según se aprecia en la figura 5, el operador puede dar media vuelta al tornillo, y extraer la palanca para continuar la siguiente media vuelta.

El tiempo de esta operación fue evaluada y registrada para cada prensa y operador, según tabla II.

TABLA II

TIEMPO EN SEGUNDOS POR CADA VUELTA EN CINCO PRENSAS

DISTINTAS

N= PRENSA/G1RO	180°	360≃	TIEMPO TOTAL VUELTA
1	4	6	10
2	. 6	8	14
3	5 -	7	12
4	6.5	7	13.5
5	6	7	1.4

Promedio 12.7 seg./vuelta.

En un muestreo de 10 tipos de productos diferentes en una prensa se evaluó el recorrido del tornillo hasta obtener aplicación de la presión requerida para el cierre del Molde.

ESPACIO RECORRIDO PARA DIEZ MOLDES

TABLA III

MOLDE	RECORRIDO pulg.(mm)		
1	2.0 (50,80)		
3	3.2 (81,28) 2.6 (66,04)		
4	2.5 (63,50)		
5	3.4 (86,36)		
6	2.8 (71.,12)		
7	2.3 (58,42)		
8	2.1 (53,34)		
9	3.5 (88,90)		
10	2.9 (73,66)		

En la tabla IV, se puede apreciar el tiempo de avance manual empleado en cada prensa para los diez productos distintos.

TIEMPOS DE AVANCE MANUAL (T.AV.M)

TABLA IV

MOLDE	T . AV . M (seg)	
: 1	101.60	
2 .	162.56	
3	132.08	
4	127.00	
5	172.72	
6	142.24	
7	116.84	
8	106.68	
9	177.80	
10	147.32	

Tiempo Minimo:

101.60 Seg.

Tiempo Máximo:

177.80 Seg.

De esta evaluación experimental se deduce que en promedio el tiempo de avance para el sistema manual es 139.70 segundos.

Para completar el ciclo en la etapa de moldeado se evalúo dos etapas más.

- 1.- TIEMPO DE CURA .- El mismo que en promedio se haya en 10 minutos este período no varía para efectos de que el prensado sea manual oleohidráulico.
- 2.- PREPARACION E INSTALACION DEL MOLDE.- Este período comprende el cargado de los moldes con la materia prima, acople y alineamiento del molde en la prensa, y luego el desmontaje. Todo ello se evalúo con cinco operadores distintos en iguales cantidad de prensa, arrojando un tiempo promedio de 30 segundos.

Sumando todos los tiempos evaluados se obtiene el ciclo total del prensado.

Tt.c.m = Tav.m + Tc + Tr.m + Tp

Tt.c.m = 2.33 + 10 + 2.33 + 0.5

Tt.c.m = 15.16 min.

2.3. VENTAJAS DEL SISTEMA OLEOHIDRAULICO

Entre las principales razones que fueron cosideradas para el uso de la fuerza hidráulica para reemplazar la operación mecánica, estan las siguientes:

a) FLEXIBILIDAD

No hay nada tan flexible como un liquido para transformar y transmitir fuerza, actuando a pesar de su flexibilidad como podría hacerlo una barra de acero maciza.

b) REVERSIBILIDAD

Pocos accionadores primarios (Motores eléctricos, y/o combustion interna), son reversibles, los que reversibles generalmente deben desacelerarse hasta una parada completa antes de invertirlos

Un actuador oleohidráulico puede invertirse, instantaneamente, en pleno movimento, sin problemas

c) PROTECCION CONTRA LAS SOBRECARGAS

La válvula limitadora de presión de un sistema

hidráulico lo protege contra sobrecargas, cuando la carga es superior al taraje de la válvula el caudal de la bomba se dirige al deposito limitando el par o la fuerza de salida. La válvula limitadora de presión tambien proporciona el medio de ajustar una máquina para un par de fuerza predeterminada, como en una operación de bloqueo.

d) PUEDEN BLOQUEARSE

El bloqueo de un motor eléctrico causa daños o funde el fusible.

Igualmente, las máquinas no pueden bloquearse bruscamente e invertirse su sentido sin necesidad de arrancar de nuevo. Un actuador hidráulico, sin embargo, puede quedar bloqueado sin que se produzcan daños, al estar sobrecargado, arrancará inmediatamente en cuanto disminuya la carga. Durante el bloqueo, la válvula de seguridad simplemente dirige el caudal de la bomba depósito. La única pérdida es la potencia disipada inútilmente.

e) ECONOMIA

Es la consecuencia natural de la simplicidad y compacidad de los sistemas oleohidráulicos.

También las pérdidas de potencia por fricción son comparativamente menores.

CAPITULO III

PRINCIPIOS DE POTENCIA OLEOHIDRAULICA

3.1 INTRODUCCION

La transmisión de potencia oleohidráulica puede definirse como un medio de transmitir energía empujando un líquido confinado, donde el componente de entrada del sistema se llama bomba, el de salida se denomina actuador.

El sistema oleohidráulico como tal no es una fuente de potencia. La fuente de potencia es un accionador primario, un motor eléctrico u otro tipo de motor que accione la bomba (figura 7).

FLUIDO DE TRABAJO. – La tecnología moderna hace uso del aceite procedente del petróleo para la transmisión oleohidráulica por dos razones básicas:

a.- El aceite transmite energía fácilmente debido a su poca compresibilidad apróximadamente 0.5% a una presión de 1000 PSI.

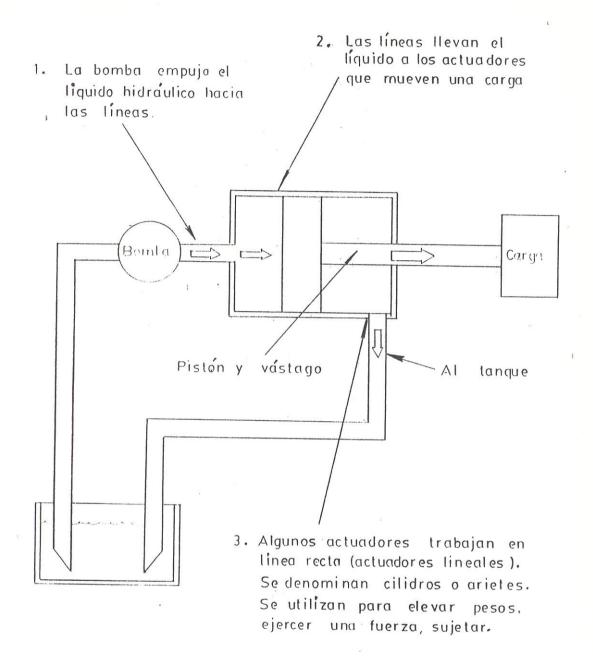
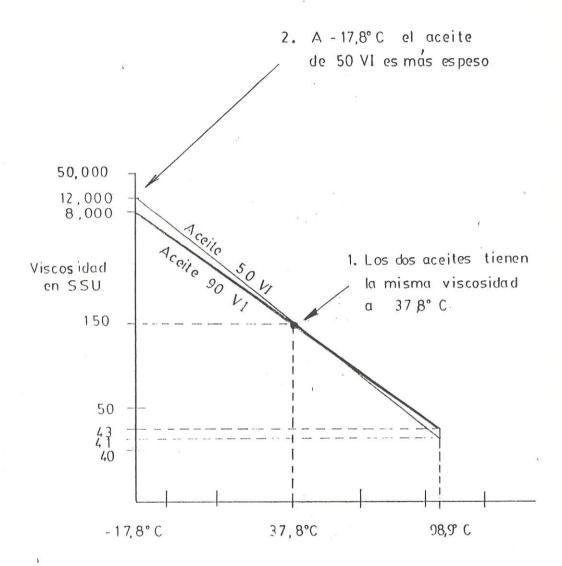


Figura 7. <u>Transmisión de potencia hidráulica</u>.

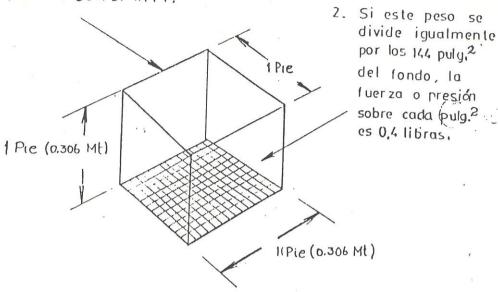
b.- Alta capacidad lubricante, que beneficia a las piezas móviles de los componentes.


Para aplicaciones industriales, la viscocidad del aceite acostumbra ser del orden de 150 SUS a 100°F (37.8°C). En la tabla V se encuentra los valores IV para el fluido recomendado.

INDICES DE VISCOSIDAD DE ACEITES HIDRAULICOS NORMA ISO, SEGUN LA TEMPERATURA

INDICE DE	0 °F	100 °F	210 °F
VISCOSIDAD	-17,8 oC	37.8 oC	98.9 oC
50	1200 SUS	150 SUS	41 SUS
90	8000 SUS	150 SUS	43 SUS

El comportamiento de la viscocidad respecto a la temperatura en el rango de viscocidad (figura 8).


PRESION EN UNA COLUMNA DE FLUIDO.— La mayoría de los aceites hidráulicos poseen un peso específico que varía de 0.88 a 0.93 GR./CM² (56 a 59 lb/pie²). Lo anterior significa que cada metro de columna de aceite origina una presión de 0.09 kg/cm² (1.31 PSI), Figura 9. Estas característica son fundamentalmente para determinar las condiciones de succión de la bomba cuando esta está funcionando.

3. A 98,9°C el aceite 50 VI es más ligero.

Figura 8. Indice de viscos i dad (IV) vs temperatura

1. Un pie cubico de accite pesa de 56 a 57 libre,

3. Una columna de Un metro ejerse una presion en el fondo , de 0.09 KG/CM2 (1.31 PSI)

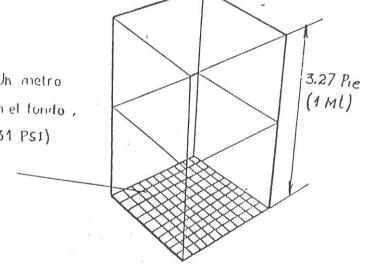
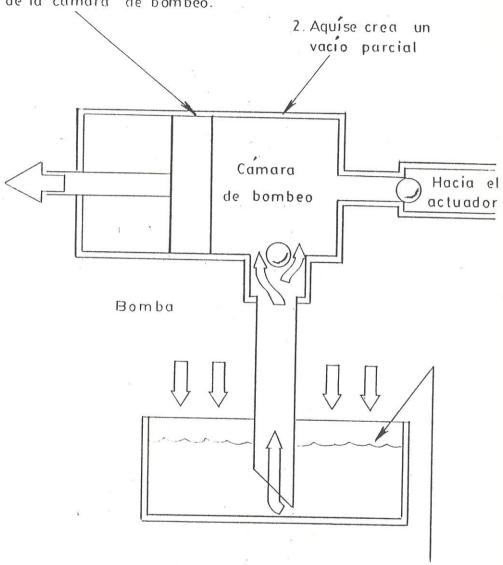



Figura 9. Presión de una columna de aceite

LA PRESION ATMOSFERICA CARGA LA BOMBA.— Normalmente la entrada de una bomba está cargada con aceite, debido a la diferencia de presiones entre el depósito y la entrada de la bomba. Generalmente la presión en el depósito es la atmosférica. (1.03 kg/cm² (14,7 PSI)) Es pues, necesario tener un vacio parcial o una presión reducida a la entrada de la bomba, para que esta pueda aspirar aceite (figura 10). Es necesario un adecuado tratamiento de las condiciones de succión de la bomba por las siguientes razones:

- a.- Los líquidos se evaporan en vacío. Esto introduce burbujas de gas en el aceite. Las burbujas son arrastradas a través de la bomba lo cual ocasiona graves daños a ésta cuando son expuesta a la presión de salida.
- b.- Una presión en la línea de entrada demasiado baja (Alto Vacio) permite que se evapore el aire disuelto en el aceite, cavitación al llegar a espacios de alta presión.
- c.- Si la bomba funciona a velocidad demasiado alta, aumenta la velocidad en la linea de entrada y también en la condición de baja presión, lo que incrementa la posibilidad de cavitación.

1 En su carrera de salida, el pistón aumenta el volumén de la cámara de bombeo.

3. La presion atmosférica empuja el aceite hacia la cámara de bombeo para llenar el vacío

Figura 10. Desplazamiento positivo de una bomba

d.- Un falso aprete de la linea succión permite aire exterior que al llegar a la bomba provoca ruido, y al ser arrastrado al resto del sistema provoca un funcionamiento errático de las válvulas y actuadores.

La mayoría de los fabricantes de bombas recomiendan un vacio que no exceda de 127 mm. de mercurio (5 pulg. de mercurio) equivalente a una presión absoluta a 0.83 kg/cm² (12.2 PSIA) en la entrada de la bomba. Por otro lado debe evitarse una elevación excesiva de la línea de entrada hacia la bomba, así como permitir que el aceite circule con un mínimo de resistencia.

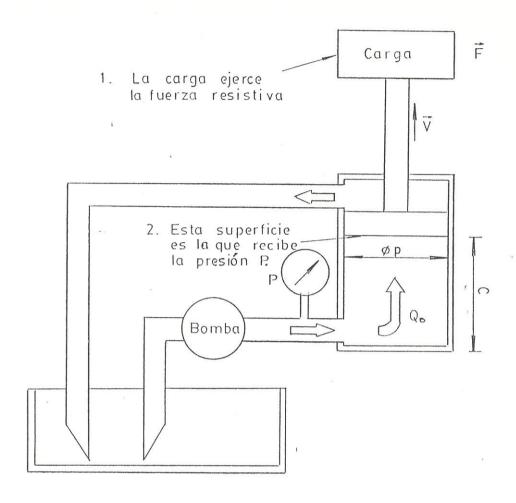
3.2. PRESION Y CAUDAL

Los sistemas hidráulicos emplean para su funcionamiento bombas que son las encargadas de convertir la fuerza mecánica en fuerza oleohidráulica.

Todas las bombas utilizadas en los sistemas hidráulicos se clasifican como de desplazamiento positivo, esto significa que, el puerto de entrada esta aislado del puerto de salida de forma que

cualquier cosa que entre se ve forzada a escapar por el orificio de descarga.

Su misión no solamente es producir caudal de líquido, sino que también son capaces de sostenerlo contra la resistencia opuesta a su circulación. Por eso se llaman de desplazamiento positivo, de allí que es de capital importancia tener claro que el único objeto de una bomba es dar CAUDAL, La PRESION es originada por la resistencia al caudal.


FORMULAS BASICAS PARA EL CALCULO:

La figura 11, nos ayuda a desarrollar el cálculo de un sistema oleohidráulico simple con un actuador lineal.

POTENCIA MECANICA CONSUMIDA (P.M.C)

Para determinar la capacidad del motor que moverá la bomba se necesita saber la presión máxima de trabajo, el caudal real de descarga la bomba y además las pérdidas del sistema.

Se ha comprobado que en estos sistemas que operan a elevadas presiones las pérdidas por fricción en las válvulas , tuberías y filtros son menores al 5%,

Donde:

PRESION:

 $P = \frac{4F}{\pi \phi \rho^2}$

Presión manométrica (PSI)

F: Fuerza (Ib)

Øp: Diámetro pistón (pulg.)

C: Carrera (pulg.)

CAUDAL :

 $Q_{B} = \frac{\pi \phi p^{2}C}{4 t_{AV}} = \frac{\pi \phi p^{2}V}{4}$

tav: Tiempo de avance (seg.)

Caudal de bomba (pulg³/seg) Q B.

V : Velocidad lineal (pylg/seg)

Figura 11. Parametros y ecuaciones básicas el cálculo de un sistema oleohidraulico

siempre y cuando las velocidades del fluído sean mantenida dentro de los siguientes rangos:

Las pérdidas de consideración se producen en la bomba debido a:

- 1) Fugas internas (eficiencia volumétrica)
- Fricción Mecánica de las piezas móviles (eficiencia Mecánica).

Estas dos pérdidas se engloban en una pérdida de la transmisión Mecánica-oleohidráulica (eficiencia total).

P. M. C.= P.t * Q.b / Nt

3.3. COMPONENTES DE LOS CIRCUITOS OLEOHIDRAULICOS

En todo circuito oleohidraulico es importante reconocer las tres partes elementales que lo componen para de acuerdo a la aplicación seleccionar los componentes requeridos para su montaje y posterior funcionamiento.

I.- GRUPO DE GENERACION:

- a.- Tanque
- b.- Filtros
 - Succión
 - Retorno
 - Presión
- c.- Motores
 - Eléctricos
 - Combustión interna
- d.- Bombas
- e.- Acumuladores
- f.- Accesorios
 - Filtro de Aire
 - Visor de nivel y temperatura
 - Manómetros
 - Mangueras
 - Acople

- Soportes
- Bridas

II. - GRUPOS DE CONTROL:

- a.- Válvulas reguladoras de caudal
- b.- Válvulas direccionales
- c.- Válvulas reguladoras de presión

III. - GRUPO DE APLICACION:

- a.- Actuadores
 - Lineales (cilindros)
 - Rotativos (Motores hidráulicos)

La selección y arreglo de los componentes dentro de un circuíto oleohidráulico de acuerdo a la aplicación, permite obtener un cálculo económico y funcional del sistema, así es posible establecer comparaciones desde el punto de vista energético con algunas ventajas de los arreglos:

1) Sistema con bomba simple fija.

La potencia absorbida es el producto de la presión trabajo por el caudal total de la bomba consumiendo la potencia nominal durante la

operación, descargando a tanque cuando la presión rebasa la presión de trabajo de válvula de seguridad, en la figura 12, se observa la representación simbolica (Apéndice C).

2) Venteo a la válvula de seguridad.

La potencia requerida por el sistema es consumida en las etapas en que está bloqueada una válvula direccional que pilotea a la válvula de alivio mientras que cuando se desbloquea, el sistema no consume potencia (figura 13).

3) Válvula direccional en Taden

La potencia nominal está disponible para el sistema cuando la válvula direccional es accionada, pero en la posición neutra no hay consumo de energía (figura 14).

Válvula mecánica de descarga al final de un trabajo.

Una leva al final de la carrera de un actuador permite descargar la bomba a tanque, reduciendo la energía consumida (figura 15).

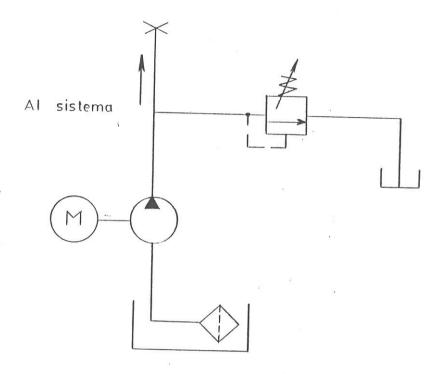


Figura 12. Sistema oleohidraulico con bomba simple

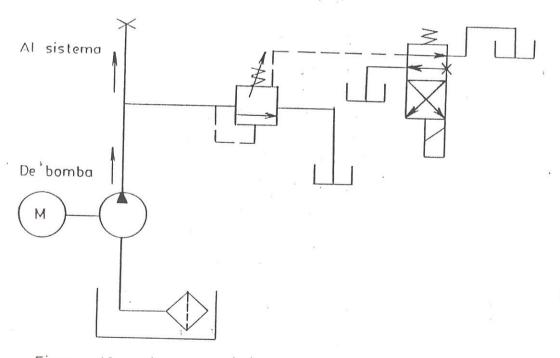


Figura 13. Sistema oleohidraulico simple con venteo

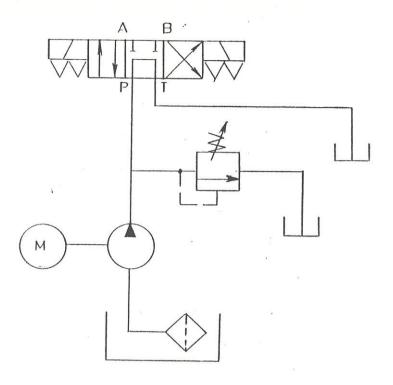


Figura 14. Sistema simple con válvula direccional de centro tanden

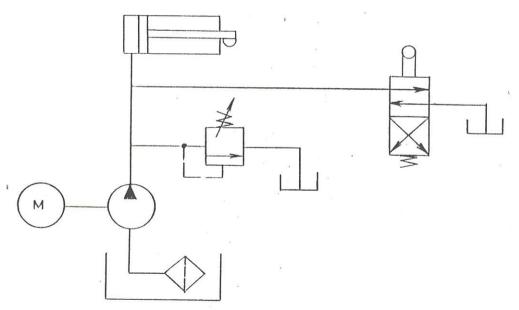
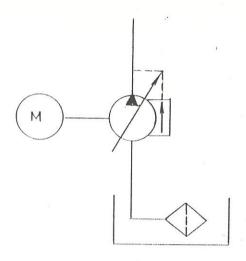


Figura 15. Sistema simple con válvula accionada mecanicamente de descarga

5) Bomba variable con compensador

Este tipo de bomba incorpora un regulador mecánico que ajusta la presión deseada por el sistema y una vez rebasada esta, automáticamente reduce el caudal de salida de bomba (figura 16).

6) Sistema de Alta y Baja.


En este arreglo el trabajo es desarrollado en dos etapas:

a) Alto caudal y baja presión

Cuando el cilindro se extiende se le proporciona caudal con ambas bombas a baja presión.

b) Bajo caudal y alta presión

Cuando el cilindro encuentra una resistencia mayor, la bomba de alto caudal automáticamente se descarga a tanque a presión reducida mientras que el trabajo se termina con la bomba de bajo caudal a alta presión (figura 17).

Figura, 16. Sistema con bomba variable compensada

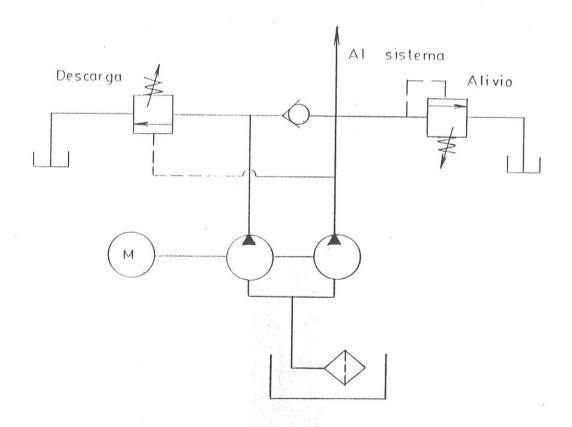


Figura 17. Sistema con bomba doble (alta y baja)

CAPITULO IV

DEFINICION DEL DISERO

Planteados los objetivos y fundamentos de este diseño corresponde definir los parámetros físicos para calcular la capacidad de la Central, así como el circuíto oleohidráulico más apropiado para esta aplicación.

4.1. FUERZA Y VELOCIDAD

La fabricación de esta clase de productos requiere una presion de vulcanización que varia fundamentalmente según el tipo y tamaño del producto, es así como se evalua la fuerza máxima necesaria para satisfacer la aplicación. Los artículos técnicos publicados en esta rama indican que para la fabricación de accesorios de caucho para uso mecánico se debe aplicar una presión de cierre del molde de 75 Kg/cm² (1100 psi).

El tamaño de los moldes empleados en esta empresa es de 10 * 10 pulg., y es practicamente uniforme para

casí todos los artículos que se fabrican.

Se calcula la fuerza requerida que cada actuador deberá desarrollar.

FUERZA REQUERIDA = PRESION DE CIERRE * AREA DE MOLDE

FUERZA REQUERIDA = 1100 (PSI) * 100 (PULG2)

FUERZA REQUERIDA = 110.000 LBS * $\frac{1 \text{ KG}}{2.205 \text{ LBS}}$ * $\frac{1 \text{ TON}}{1000 \text{ KG}}$

FUERZA REQUERIDA = 49.88 TON.

Por tanto nuestro cálculo se basará en desarrollar una fuerza máxima de 50 toneladas por cada actuador.

El segundo parámetro a definir es la velocidad lineal de avance de cada actuador.

La definición de este valor depende de los siguientes factores:

- 1.- Tiempo de ciclo de trabajo estimado
- 2.- Carrera minima del actuador
- 3.- Condiciones de operación

1.- TIEMPO DEL CICLO DE TRABAJO ESTIMADO

En el capítulo II se evalúo el tiempo total del ciclo para el sistema manual, el cual es 15.16 minutos, por otro lado la carrera promedio de las prensas manuales para los diferentes moldes es 2.73 pulg. (69,34 mm).

Con estos antecedentes y basados también en la solicitud del propietario de la empresa de reducir al menos un 30 % el tiempo del ciclo total de prensado con la aplicación del sistema oleohidráulico, se estimó el ciclo:

Tt.c.o = 0.7 Tt.c.m

Tt.c.o = 0.7 (15.16) min.

Tt.c.o = 10.612 min.

Tanto el tiempo de cura (tc) y el tiempo de preparación (Tp), se mantienen, por lo tanto el ciclo de trabajo de la prensa oleohidráulica será

Tc.a = Tav.o + Tr.o

Tt.c.o = Tav.o + Tc + Tr.o + Tp

Tt.c.o = Tc.a + Tc + Tp

Tc.a = Tt.c.o - (Tc + Tp)

Tc.a = 10.62 - (10 + 0.5) min

Tc.a = 0.112 min = 6.72 seq.

Este tiempo del ciclo del actuador está calculado para la carrera promedio de 2.73 pulg.(69,34 mm).

2.- CARRERA MINIMA DEL ACTUADOR

La carrera es definida por las características constructivas de la prensa y de los moldes, debe considerarse dentro de estos el espesor de placas porta moldes, parte móvil del molde y holgura necesaria para permitir el montaje y/o desmontajes de moldes. Así se tiene que una carrera mínima de 5 pulg. (127 mm), necesaria.

3.- CONDICIONES DE OPERACION

Al iniciar el avance del actuador, la única carga a vencer será el roce estático y luego dinámico de la empaquetadura esto ocurre hasta antes de completar la carrera, después la carga será la fuerza de cierre necesaria del molde para

el curado. En la figura # 18, se observa el comportamiento aproximado de la presión y velocidad durante la carrera. Por lo tanto se considera el 100 % del tiempo para completar la carrera de avance, por cuanto la presión de cierre de molde se logra de forma instantánea.

4.2. CONSIDERACIONES PARA EL LEVANTAMIENTO DEL CIRCUITO OLEOHIDRAULICO.

Tal como se indica en los antecedentes, la central oleohidráulica debe ser capáz de controlar tanto la fuerza, velocidad y accionamiento de cada actuador.

CONTROL DE FUERZA APLICADA

Este parámetro es posible controlar usando una válvula reductora de presión conectada a cada actuador.

Las válvulas reductoras de presión son controles oleohidráulicos normalmente abiertos, usados para mantener presiones reducidas en ciertas partes de un circuito, estas válvulas son pilotadas por la presión a la salida que tiende a cerrarlas cuando llega al taraje de la válvula evitandose así un aumento no deseado y por lo tanto se tiene un control de la

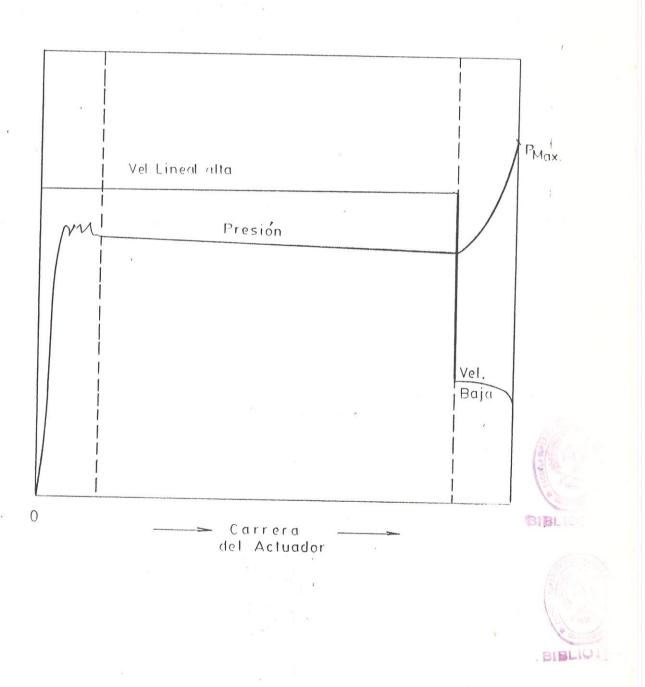
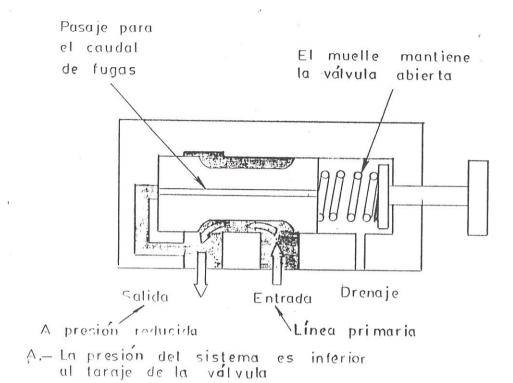
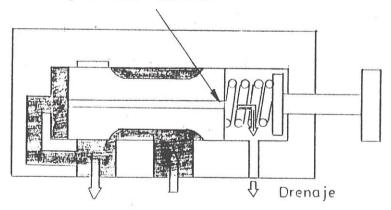


Figura 18 Ciclo de trabajo de cada actuador hidráulico

fuerza del actuador. La figura 19 muestra el trabajo de una reductora simple.


CONTROL DE LA VELOCIDAD

La velocidad de desplazamiento del actuador es directamente proporcional al caudal que le llega, por lo tanto una válvula reguladora de caudal se utiliza para regular la velocidad.


Para el presente proyecto es más práctico utilizar una bomba de desplazamiento fijo como más adelante se verá, por lo cual se utilizará válvulas reguladoras de caudal.

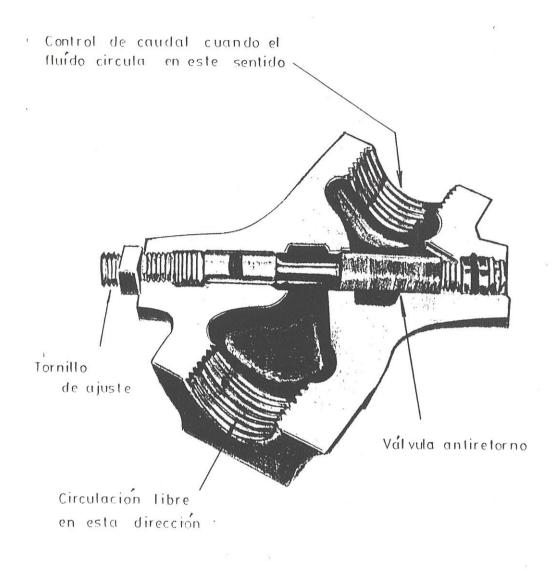
La ubicación de la válvula en el circuíto estará entre la bomba y el actuador para conseguir control del actuador en el avance.

El ajuste será aplicado manualmente girando un tornillo que permite estrangular total o parcialmente el flujo procedente de la bomba; al hacerlo parcialmente el excedente de flujo escapará por la válvula de alivio. Un antiretorno incorporado a esta válvula permitirá flujo libre cuando el flujo circule

El caudal de fugas mantiene la válvula ligeramente abierta

B La presión del sistema es superior al taraje de la válvula

Figura 19. <u>Válvula reductora</u> de presión


en sentido contrario permitiendo el retorno del actuador con velocidad no controlada en la figura 20 se muestra una válvula reguladora de flujo.

CONTROL DEL ACCIONAMIENTO DEL ACTUADOR

La dirección de desplazamiento de cada actuador será gobernado por una válvula oleohidráulica direccional de comando eléctrico.

Se eligió esta alternativa para responder a la necesidad futura de esta fábrica, la cual es la automatización y control instantáneo de la operación de prensado.

Esta válvula es denominada de cuatro vías, tres posiciones (4/3), trae incorporada dos bobinas dispuestas lateralmente y un cuerpo de válvula en el cual opera una pieza cilíndrica llamada carrete, la misma que recibe el impulso proveniente de la excitación de una de cada bobina para así permitir desviar el flujo hacía el cilíndro y lograr su movimiento. La figura 21, muestra este tipo de válvula.

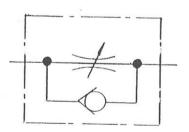
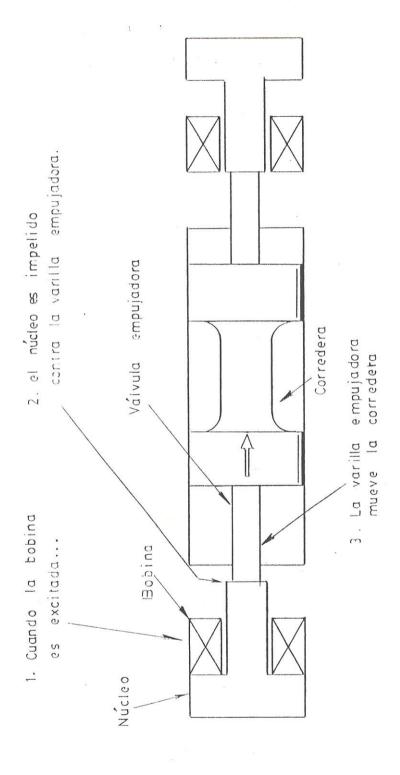



Figura 20 Válvulo reguladora de caudal no compensada

direccional, cuatro vias, tres posiciones Electro - válvula 21. Figura

<u>OPERACION</u> <u>SEGURA</u> <u>DEL CILINDRO DURANTE LA</u> VULCANIZACION

El proceso de fabricación requiere que durante un período de tiempo que fluctúa entre 8 y 15 min., según el producto a fabricar, el actuador mantenga bajo presión constante los moldes mientras dura el curado para lo cual se colocará una válvula antiretorno pilotada que permita un mantenimiento seguro del piston en posición de trabajo; y solamente retorne cuando ejerza una presión mayor que abra el antiretorno. La figura 22, muestra una válvula antiretorno pilotada.

GENERACION DE POTENCIA OLEOHIDRULICA

De acuerdo a lo explicado en el capítulo III, sección 3, sobre las alternativas de arreglos posibles para circuitos, se va a definir el grupo de generación oleohidráulico, el mismo que será uno que se adapte a la aplicación presente y por otro lado que sea económico.

Un sistema de alta y de baja se adapta perfectamente a nuestro diseño, según se explicó en la sección 1 del presente capítulo. Por lo tanto una bomba tipo

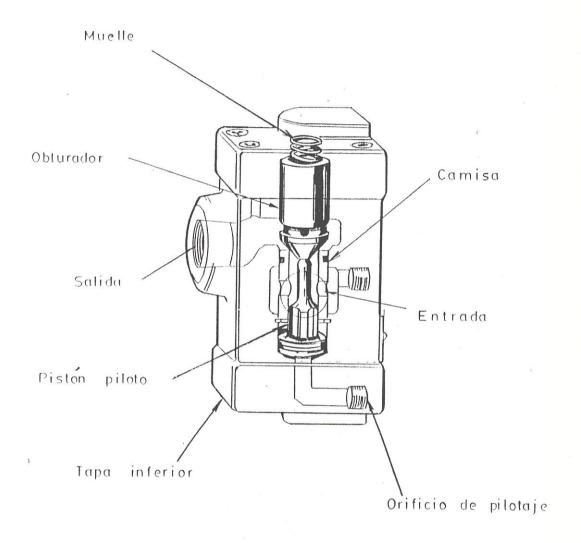


Figura 22. Válvula antiretorno pilotada

doble se usará. Tal como sugiere el arreglo, se debe incorporar tres componentes que realicen el trabajo de control ellos son: una válvula de alivio, válvula de descarga y una antiretorno.

El diseño permite además utilizar el venteo para la válvula de alivio con esto se logra reducir el consumo de energía.

En la figura 23, se presenta el levantamiento del circuito oleohidráulico accionando un actuador tipo, según el diseño planteado.

El diseño oleohidráulico presentado, para su mejor explicación se lo divide en tres partes:

- I.- El grupo de generación oleohidráulico compuesto por el motor eléctrico y la bomba doble permite transformar la energía mecánica del motor en energía oleohidráulica en la bomba para accionar un actuador lineal que va a moldear los artículos de caucho.
- II.- El grupo de control compuesto por una válvula de presión calibrada a baja presión, una válvulá antiretorno (check), que separa el lado de baja con el lado de alta cuando el sistema ha

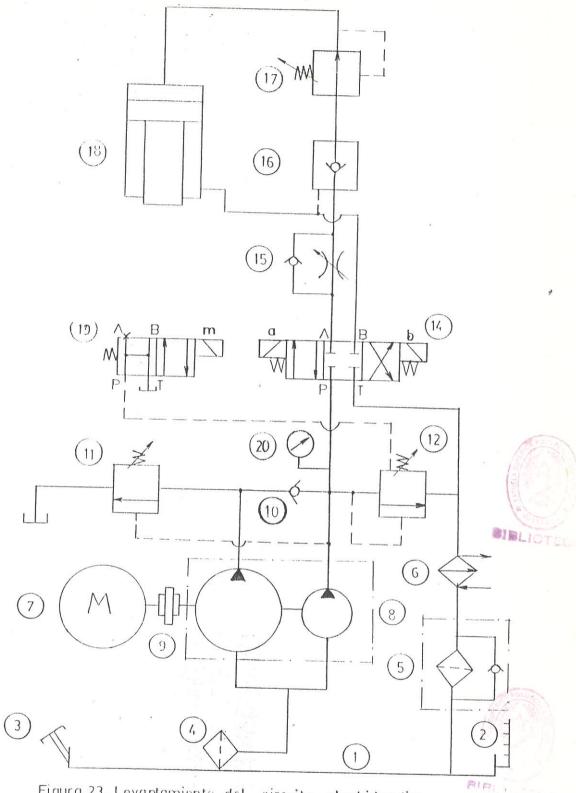


Figura 23, Levantamiento del circuito oleohidraulico para accionar un actuador

rebasado el nivel de baja presión, una válvula de presión (alivio), calibrada a alta presión la misma que es pilotada por una electroválvula direccional 4/2 que estando desenergizada la bobina, la válvula de alivio desbloquea, quedando el grupo de generación sin consumir energía, al energizarse la bobina queda en condiciones de efectuar trabajo.

Para accionar el actuador se requiere energizar la bobina de la electroválvula direccional 4/3, provocando el avance del cilindro hasta su punto muerto inferior, en ese momento la electroválvula 4/3 es desernegizada a la posición central la misma que es del tipo puertos bloqueados que asegura mantenimiento de la presión requerida sobre el molde.

La necesidad de instalar un regulador de caudal es ajusta el flujo requerido por el actuador por cuando el grupo de generación será calculado para mover seis actuadores por tanto sí se desea accionar solo uno, todo el caudal de la bomba sería descargada sobre el actuador ocasionando una velocidad muy alta. Por otro lado la check pilotada permite en todo momento asegurar

mantenimiento de la presión en la dirección del avance siendo pilotada oleohidráulicamente desde la línea de retorno.

El nivel de fuerza requerido por la prensa será limitado por una válvula reductora de presión como se mencionó anteriormente.

Al energizar la bobina de la electroválvula 4/3 el actuador retornará hacia su punto muerto superior para ello requiere vencer el antiretorno pilotado en este caso ni la reductora de presión ni la reguladora de caudal influyen en el trabajo.

El ciclo de trabajo debe ser cubierto en 6.72 seg., para una carrera promedio de 2.73 pulg. (69,34 mm).

III.-Accesorios.- Esto comprende los elementos básicos de toda central oleohidráulica ellos son:

Visor de nivel, filtro de succión, filtro de aire, filtro de retorno, acople motor-bomba, manómetro, reservorio de aceite.

4.3. DESCRIPCION Y FUNCIONAMIENTO DE LA CENTRAL OLEOHIDRAULICA

En la figura 24, se aprecia el plano oleohidráulico general que accionará seis actuadores lineales, siguiendo el diseño básico explicado en la sección precedente.

DESCRIPCION DE LOS COMPONENTES

- 1. Tanque de aceite
- 2. Visor de nivel
- 3. Filtro de aire
- 4. Filtro de succión
- 5. Filtro de retorno
- 6. Enfriador de aceite
- 7. Motor eléctrico
- 8. Bomba hidráulica fija doble
- 9. Acople motor bomba
- 10. Válvula de retención

- 11. Válvula de descarga
- 12. Válvula de alivio
 - 13. Manifold de seis estaciones
 - 14. Electroválvula direccional tres posiciones, cuatro vías
 - 15. Reguladora de caudal
 - 16. Válvula de retención pilotada
 - 17. Válvula reductora de presión
 - 18. Actuador lineal
 - 19. Electro válvula dos posiciones, cuatro vías

FUNCIONAMIENTO

La representación simbólica de los componentes en el circuíto se lo hace en la pocisión neutra o muerta del sistema.

ARRANGUE

Al accionar el motor eléctrico (7) la bomba (8), crea caudal de aceite a presión reducida (atmosférica).
Esto es asegurado por la electroválvula (19) la misma

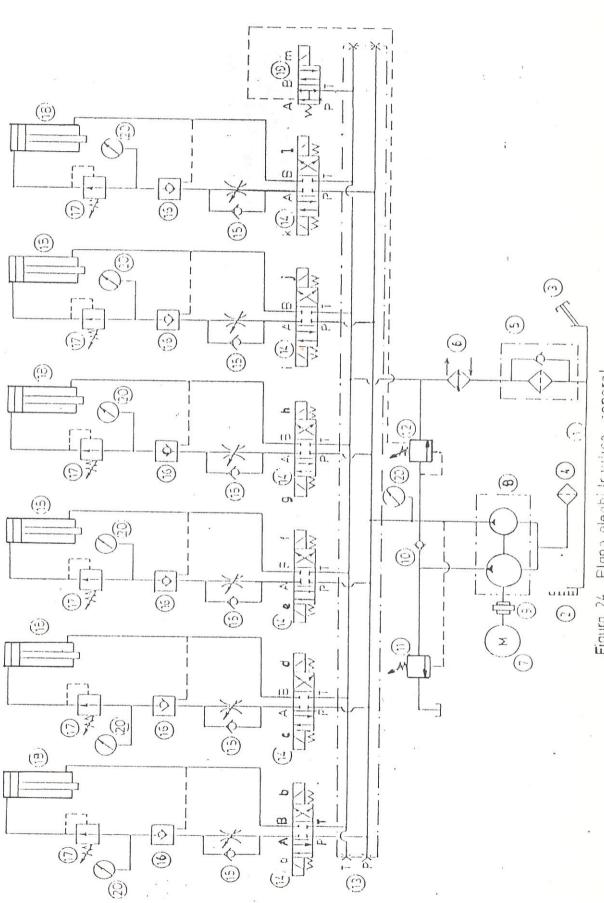


Figura 24 Plano oleohidrudico jeneral

que en la posición neutra pilotea a la válvula de alivio descargando al tanque el caudal generado por la bomba. Al energizar la bobina (M) el sistema esta listo para entregar potencia hidráulica al actuador (18) de cualquiera de las prensas o de todas a la vez.

Esta forma de control permite reducir el consumo de energía en tiempos muertos, el mismo que se produce durante el proceso de curado.

OPERACION

Cada electroválvula direccional (14) dirige el flujo hacia los actuadores, para ello son excitadas las bobinas (a), (c), (e), (g), (i) y (k) para ejercer trabajo sobre cada molde, esta operación puede ser hecha en forma simultánea.

El retorno del vástago de los cilindros ocurre al excitar las bobinas (b), (d), (f), (h), (j) y (l).

CONTROL DE LA PRESION Y VELOCIDAD EN CADA CILINDRO

En cada cilindro es posible mantener un nivel de presión deseado con la ayuda de una válvula reductora (17). La cual en posición normal es de paso libre al

flujo, hasta que la presión supere el taraje de la válvula y corte el flujo.

El control de la velocidad del piston se lo realiza con una reguladora de caudal (15) la cual es del tipo no compensada y regula el caudal que va a entrar al cilindro en la dirección de avance, más no lo regula en la dirección contraria.

Una válvula de retención pilotada en la línea de trabajo, asegura el mantenimiento de la presión sobre el molde durante la etapa del curado. El retorno del pistón requiere que una presión piloto no menor a 30 psi, y abra el antiretorno de ésta válvula para así permitir que el flujo se comunique a tanque a travéz de (14).

CONTROL DE LA PRESION DEL SISTEMA

La bomba de alto caudal genera caudal para el sistema hasta que la presión ha rebasado el taraje de la válvula de descarga (11) la cual nunca es mayor al 20 % de la presión de trabajo del sistema, por otro lado la bomba de bajo caudal también está generando flujo para el sistema uniendo al caudal del lado de alto, una válvula de retención (10) bloquea el lado

de bajo, del lado de alto caudal cuando la presión rebasa la presión de ajuste de la válvula de descarga, de tal forma que la única opción del sistema de alcanzar la presión de trabajo es con la bomba de bajo caudal. Una válvula de alivio (12) se encarga de limitar la presión máxima para el cual ha sido calculado del sistema. Descargando a tanque cuando ésta ha sido rebasada.

DISIPACION DE CALOR

Un enfriador tubular (6) se requiere con el objeto de mantener una temperatura no mayor a 60 C. Mientras el sistema funciona, de no usarlo, seria necesario un tanque de gran capacidad y por otro lado pone en riesgo que se forme vapor en el aceite lo cual dañaría rápidamente la bomba y otros componentes funcionarían en forma errática.

CAPITULO V

INGENIERIA APLICADA

5.1. CALCULOS Y SELECCION DE LOS COMPONENTES

A.- CILINDROS HIDRAULICOS

Trabajo a hacer: Cierre de Moldes

Fuerza máxima de cierre : 50 Toneladas.

Carrera: 5 pulg. (127 mm).

El cálculo se lo basará a una presión máxima que el fabricante de bombas oleohidráulicas las porporciona, la cual es es 3000 psi.

El diámetro interior del cilindro se lo obtiene a partir de:

Ac = F máx / Pmáx.

 $Ac = 36.75 \text{ pulg}^2$

$$(Ac) = \frac{3.14}{4} \emptyset c^{2}$$

$$\emptyset c^2 = 1.27 \text{ Ac} = 1,27 (36,75) \text{ pulg}^2$$

$$\emptyset c = 6.82 \text{ pulq.}$$
 (173,23 mm)

En el Apéndice D, se encuentran los dimensiones normalizadas para la fabricación de cilindros.

El diámetro interior nos pone en un valor intermedio de los normalizados, se escoge el inmediato superior, o sea 8 pulg. (203,20 mm), porqué además el nivel de presión de trabajo se reduce.

La presión de trabajo del sistema será:

Pt =
$$\frac{\text{Fcierre}}{\text{Ac}} = \frac{50000 \text{Kg} * 2.205 \text{ lb}}{\text{n/4} * (8)^2 * \text{kg} * \text{pulg}^2}$$

Pt = 2194.46 Psi

La empresa cauchos indrustriales asume la construcción de los cilindros según los siguientes datos técnicos:

Presión de Diseño : 3000 psi

Diámetro interior del cilindro : 8 pulg.

Carrera minima : 5 pulg.

Tipo doble efecto de amortiguación

Diámetro del vástago: 4 1/2 pulg.

(Observar figura # 25)

B.- GRUPO DE GENERACION

1) BOMBA

Mediante el siguiente cuadro comparativo se determina el tipo de bomba a seleccionar.

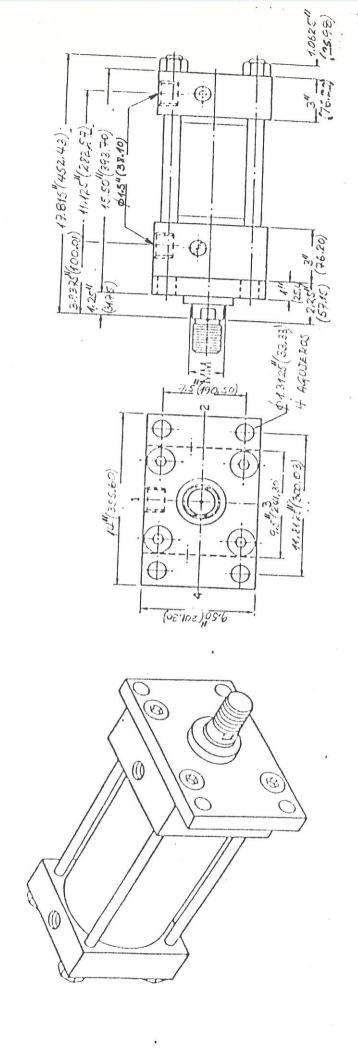


Fig. 25. Cilindro Okohidrau'ico

TABLA VI

CRITERIOS PARA SELECCIONAR EL TIPO DE BOMBA HIDRAULICA

CRITERIO/TIPO /BOMBA	ENGRANAJES	PALETAS	PISTONES
CAPACIDADES CONSTRUCCION	TODAS SIMPLES	TODAS MEDIA COMPLEJA	TODAS COMPLEJA
NIVEL DE RUIDO	ALTO	BAJO	MEDIO
VERSATILIDAD	NINGUNA	ALTA	MEDIA
VIDA UTIL	BAJA	MEDIA	ALTA
RENDIMIENTO	BAJO	MEDIO	ALTO
COSTO	BAJO	WEDIO	ALTO

Dada la aplicación se considera tres factores primordiales para decidir: Versatilidad, rendimiento y costo, en las cuales las bombas de paletas es la de mejor calificación.

Dentro de la gama de modelos de bombas de paletas balanceadas, se encuentra un grupo que son fabricadas de acuerdo a la combinación de alto y bajo caudal sugerida en el anterior capítulo; en el Apéndice E-I se observa la constitución de la bomba doble.

CAPACIDAD

Durante el avance los seis cilindros recorren cada uno un máximo de 5 pulg.

Fácilmente se deduce que existe una relación entre los tiempos de avance y retorno y las áreas de sección del pistón del cilindro la cual es:

$$Tav.o = \frac{Ac}{Ac - Av} Tr.o$$

$$Tav.o = \frac{\phi_{C^{=}}}{\phi_{C^{=}} - \phi_{V^{=}}} Tr.o$$

Tav.o =
$$\frac{(8)^{\pm}}{(8)^{\pm} - (4.5)^{\pm}}$$
 Tr.o

Tav.o = 1.46 Tr.o

Tc.a = Tav.o + Tr.o

Tav. + Tr.o = 6.72 seg.

1.46 Tret + Tret = 6.72

Tr.o = 2.73 seg.

Tav.o = 3.99 seg.

El tiempo de avance calculado aquí es desarrollado por una carrera promedio de 2.73 pulg. (69,34 mm), y por tanto para una carrera de 5 pulg. (127 mm), de nuestros cilindros el nuevo tiempo de avance es 7.3 seg.

Por tanto la velocidad de avance de cada uno de los actuadores será.

$$V = \frac{5 \text{ pulg}}{7.3 \text{ seg}} * \frac{60 \text{ seg}}{\text{min}} = 41 \text{ pulg/min}$$

El caudal total de la bomba será:

Qt = Vav * Ac * N

$$Qt = \frac{41 \text{ pulg}}{\text{Min}} * 50.24 \text{ pulg}^{2} * \frac{\text{Galon}}{231 \text{ pulg}^{2}} * 6$$

Qt= 53.5 GPM

Este caudal es el requerido por el sistema durante el avance, etapa en la cual según

En los apéndices E-2, se hallan las especificaciones de bombas doble de paletas a seleccionar de donde se escoge la combinación requerida.

Se escoge la siguiente combinación:

Lado de alto Caudal: 21 GPM a 1200 RPM y

Lado de bajo Caudal: **12 G**PM a 1200 RPM y

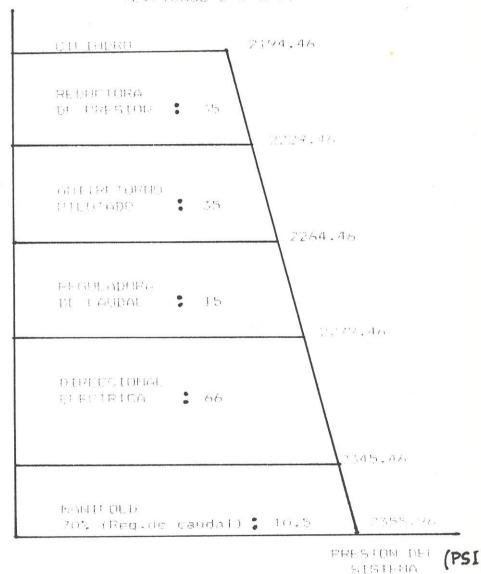
Lonocido que la mayoria de motores eléctricos que se encuentran en el mercado con mayor facilidad trabajan a 1800 RPM. Se ajustamos la descarga de la bomba a ésta velocidad mediante la relación proporcional.

Alto Caudal:
$$21 * \frac{1800}{1200} = 31.5 \text{ GPM}$$

Bajo Caudal : 12 *
$$\frac{1800}{1200}$$
 = 18 GPM

..

Caudal (otal : (31.5 + 18) GPM


Caudal Iotal: 49.5 GPM.

Laborcontinas con es un 73 % de la esperada 15% NA NAMA

For lo tanto ésta será la combinación cocaudales seleccionados, en los apéndice to
-EA 2 55, se aprecian las curvas de
rendimiento para ésta homba de las cualco
se puede cilcular la descaroa segun el
nivel de presión así como la potencia

equando el contema haya rebasado una presión de masor a 200 PSI (baja presión). Desando a lado bajo caudal sostener la presión requerida por el sistema. La misma que esta contenta de la presión de trabajo entes de presión de trabajo entes de presión en válvulas oleobidoánticas, con a continuación se detalllan:

COMPONENTE OLEOGIDROULICO • CAIDA DE PRESION (FIST) (Eveluado a 3 GPM)

Por lo tanto la presión mássima del sistema en a 2055,96 PSI.

2) MOTOR ELECTRICO

De las curvas de rendimiento para la bombo.

se delectrico.

- I Etapa (Caudal Total): 49.5 GPM a 300 PSI
- Lado alto: 31.5 GPM a 300 PSI : 6 HP
- Lado bajo: 18 GPM a 300 PSI : 3.5 HP

En ésta etapa habrá un consumo de 9.5 HP.

II Etapa (bajo caudal) según se aprecia en el Apéndice E-4 la descarga de la bomba a 2355.96 PSI es 18 GPM y el consumo de potencia es 27.78 HP.

Por lo tanto el sistema necesita un motor de 27.78 HP para su operación.

En el mercado existen motores eléctricos de 25 y 30 HP, por tanto se seleccionará un motor trabajando a 1800 RPM a 220 voltios. trifásico.

3.- RESERVORIO DE ACEITE

En los sistemas Hidraúlicos industriales acostumbran emplear un depósito cuya capacidad sea de dos a tres veces la capacidad total de la bomba en galones, por tanto el tamaño de éste será:

Capacidad Reservorio = 2.5 * 49.5 gal.

Capacidad Reservorio = 123.75 gal.

Luego se dimensionará un tanque para que almacene un total de 124 galones de aceite hidraúlicos, más adelante se amplian los detalles para el diseño y construcción.

4.- TUBERIAS Y MANGUERAS

SUCCION DE BOMBA

Con ayuda de la carta de selección de diámetros interiores (Apéndice F), para tuberías, se dimensiona la línea de succión según la descripción de la bomba tanto el lado de alta son alimentados por una misma línea, por tanto el caudal a considerar será la suma de ambos: 49.5 GPM, el otro parámetro es la velocidad del fluído recomendado, el cual es 4 pies/seg (FPS).

El diámetro nominal seleccionado para la tubería es 2 pulg., de hierro negro, pared standard.

SALIDA DE BOMBA #1 (ALTO CAUDAL)

Esta linea maneja 31.5 GPM a 300 PSI máximo, la velocidad recomendada es : 15-20 pies/seg.

El diámetro interior según la carta es 7/8 pulg., (0.875 pulg.), se utiliza mangueras flexible para este caso por facilidad de instalación y desmontaje.

La norma industrial SAE, para seleccionar mangueras de baja presión recomienda, un factor de seguridad 8/1 para la resistencia a la rotura de la manguera o sea 2400 PSI. Del apéndice G-1 se selecciona la manguera requerida.

SALIDA #2 DE BOMBA (BAJO CAUDAL)

Esta línea manejará un caudal máximo de 49.5 GPM a baja presión y de 18.0 GPM a alta presión se selecciona el tamaño de manguera igual a la anterior ,es decir diámetro interior 7/8 pulg., sin afectar la recomendación de velocidad del flujo de 15 a 20 pies/seg.

La norma industrial SAE para alta presión recomienda un factor de seguridad de 4/1 para la resistencia a la rotura o sea 8776 PSI, en el Apéndice G-2, se selecciona la manguera a usar.

LINEAS DE RETORNO

La línea de retorno conduce el fluído de cualquier componente hacia el tanque por lo tanto esta línea opera a presión reducida (atmosférica).

La velocidad del fluído recomendada es 1015 FPM en la carta de selección se encuentra:

A 49.5 GPM y 12 FPM, el Diámetro Interior = 1 1/4 Pulg. (6,35 mm).

A 18 GPM y 12 FPM, el Diámetro Interior = 3/4 Pulg. (19,05 mm).

Dado que el sistema operará en dos etapas de caudal se selecciona el diámetro promedio de 1 pulg. (25,4 mm).

En el Apéndice G-3, dá el tipo de manguera a usar.

5.- FILTROS

- SUCCION

Para seleccionar este elemento se requiere conocer tres aspectos:

- Capacidad en GPM
- Grado de filtración (según el tipo de bomba).
- Forma de instalación

En el apendice H-1, se encuentra la referencia técnica de estos filtros, siendo estos:

Capacidad minima de fluido: 49.5 GPM.

Para bombas de paletas el fabricante exige una eficacia de filtrado no mayor a 150 micras.

Un filtro económico resulta el que va sumergido en el tanque.

El filtro que se selecciona trae una capacidad de hasta 80 GPM y diámetro de 2 pulgadas NPT y 60 mallas/pulgadas sin Bypass.

- RETORNO

, Recibe el fluido que viene de los actuadores y válvulas antes de llegar al tanque ayudando al filtro de succión en la labor de retener suciedad.

Capacidad minima: 49.5 GPM

Grado de filtrado nominal: 10 micras

En el Apéndice H-2, se encuentra las especificaciones del filtro de retorno a seleccionar.

Traen una válvula Bypass interna que permite flujo libre en casos que el elemento de filtrado se ha tapado.

Los elementos filtrante son de recambio

En virtud que la unidad oleohidráulica va a operar por lo menos ocho horas continuas de trabajo por día el uso de un enfriador oc necesario, bajo las siguientes características:

- a) Enfriador de accite tipo aqua
- b) Válvula de control de temperatura

Naciendo uso de las recomendaciones para la selección del enfriador de aceite, del Opéndice i-1, para ello se necesita conocer los siguientes parámetros:

Energia calórica a remover, la cual será de 26 MP con un flujo de 18 GPM.

Adicionalmente la temperatura del agua a la entrada. La misma que es $30 \, ^{\circ}\text{C}$ (87.5 $^{\circ}\text{F}$), por tanto se requiere corregir el valor de la energia a remover, $27.78 \, / \, 0.9 = 30.87 \, \text{HP}$.

En la curva HP 75 GPM, se encuentra el tamaño del enfriador, el mismo que es de dos pasos de aqua, requeriendo un caudal de aqua iqual a la mitad del flujo de aceite, es decir 9 GPM.

La válvula de control de temperatura, contiene un termostato de bulbo que sensa la temperatura del aceite en el tanque, en una posición donde es más sensible el cambio de temperatura (Apéndice I-2).

El aumento de la temperatura respecto a la prefijada permite actuar una válvula de paso instalada en la linea de entrada del agua manteniendo una temperatura uniforme del aceite.

7.- ACEITE HIDRAULICO

Los aceites hidráulicos existentes en el mercado nacional se escogen según la norma ISO recomendada de acuerdo al nivel de presión al que trabajará el sistema oleohidráulico.

La MOBIL, fabricante de aceites industriales, sugiere el siguiente criterio para la selección del aceite hidraúlico.

Sistemas hasta 2000 PSI usar ISO -46

Sistemas a más de 2000 PSI usar ISO-68

del aceite usado para el sistema es fellus
68 de Shell.

8.- / ACCESORIUS

- a) Un acopte Flexible para la transmisión Motor Romba para 30 HP (Apéndice J-1).
- hi Un seperte acero para bomba según forma
 y dimensiones contenidas en el Apéndice
 J-2.
- c) Una bridas para el puerto de entrada y dos bridas de salida para la bomba son seleccionadas, según el número de serie de la misma (Apóndice J-3, J-3.1).
- d) Un visor de nivel y temperatura del aceite en el tanque.
- o) Seis manometros de 0 3000 PSI
- Raçorería para conección de mangueras hidráulicas.

C.- GRUPO DE CONTROL

1) VALVULA DE DESCARGA

Los parámetros para su selección son:

Razón de flujo: 31.5 GPM

Rango de ajuste de presión: 125 a 500 PSI

Tipo de conección: Puertos Roscados NPT

La referencia técnica se la encuentra en el Apéndice K-1, K.2 y K-3.

Esta válvula va instalada a la salidad #1 de la bomba (alto caudal) y recibe señal piloto oleohidráulico de la línea del lado A bajo caudal.

2) VALVULA DE ALIVIO

Para su selección se tiene los siguientes datos.

Razón de flujo: 18 GPM

Rango de ajuste de la presión: 1500 a 3000 PSI.

Tipo de conección: puertos roscados NPT

La válvula que se elige es del tipo balanceada hidráulicamente. En el Apéndice L-1, L-2 y L-3, se encuentra la forma funcional así como la hoja técnica y curvas de rendimiento.

Esta válvula va instalada a la salida #2 de la bomba (bajo caudal) y recibe señal piloto desde una válvula de control direccional para "ventear" según un mando eléctrico, en la sección de válvulas direccionales se encuentra su selección.

3) VALVULA ANTIRETORNO

Este es un tipo de válvula direccional de una vía, pues permite flujo libre en una sola dirección y es bloqueado en la dirección contraria.

Las características para seleccionar son:

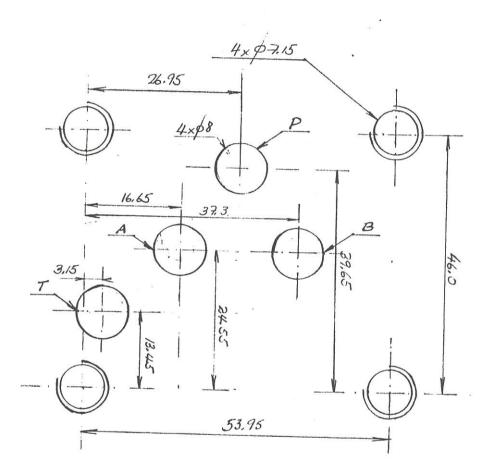
- Caudal : 31.5 GPM
- Tipo de conección: puertos roscados NPT

Se instala, permitiendo flujo libre de la línea de alto caudal hacia la línea que alimenta a los actuadores, y es bloqueada cuando la válvula de descarga se desbloquea, en el Apéndice M aparece la referencia técnica para seleccionar esta válvula.

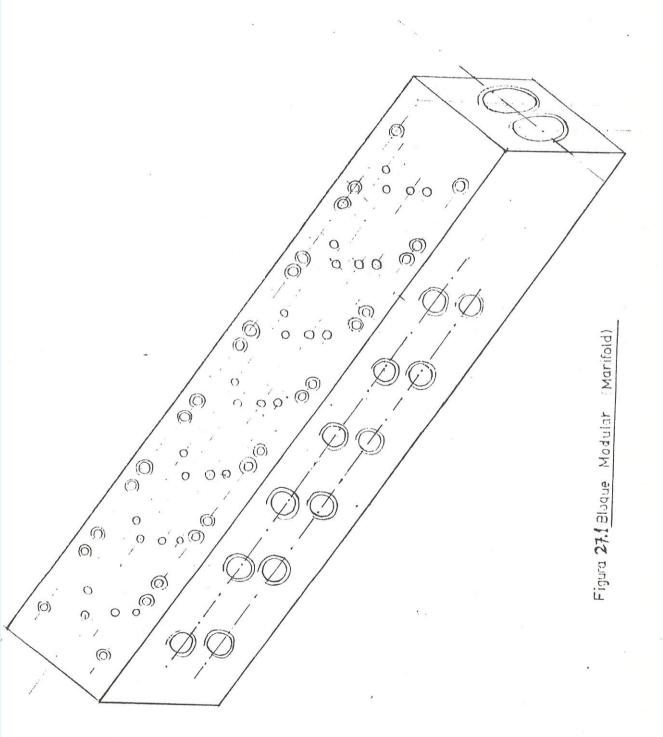
4) BLOQUE MODULAR O MANIFOLD

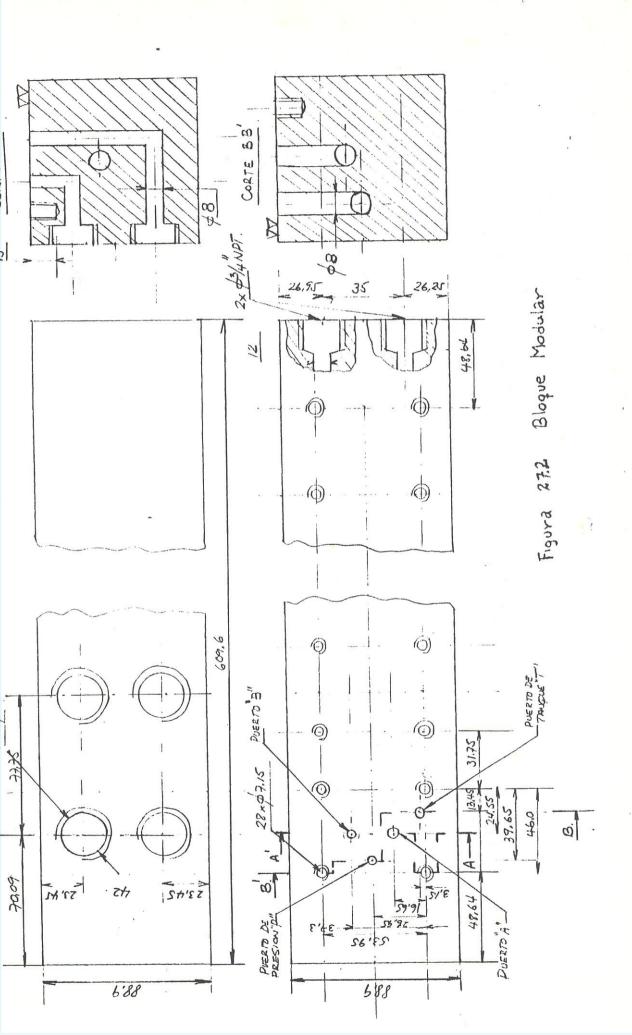
CARACTERISTICAS

- a) Distribuidor múltiple de siete estaciones
- b) Tanto la línea de servicio como la de retorno será ϕ 3/4 con roscas hembras NPT.
- c) El material para su construcción será un acero estructural A36 láminado en caliente.
- d) La superficie de montaje irá rectificada con arreglo de puertos para cada torre según norma ISO 4401-05 (Apéndice 1),


figura 26.

- e) Para presión continua hasta de 3000 PSI
- f) El diseño y detalles de construcción se encuentran en la figura 27.1 y 27.2.


5) ELECTROVALVULA PARA VENTEO


Actuará como piloto de la válvula de alivio e irá montada sobre el bloque modular, es seleccionada de acuerdo a las siguientes características.

- a) Operando como piloto, el caudal a circular por ella es memor a 1 GPM.
- b) Debe estar diseñada para operar sin error hasta 2500 PSI.
- c) La superficie de montaje debe corresponder a la norma ISO 4401-05.
- d) De dos posiciones definidas y cuatro puertos activos.
- e) Operada por solenoide eléctrico a 110 voltios y 60 hertz.
- f) De corredera deslizante y retorno por muelle.

Figüra 26 Süperficie de Montaje ISO 4401-05

muelle.

u) La referencia técnica para su selección
y puesta en servicio aparece en en
Apéndice N.1.

6) 'ELECTROVALVULAS DE TRABAJO

Se selecciona seis unidades, una por cada actuador a controlar, de acuerdo a las siguientes características:

- a) Según cálculo de la unidad oleohidráulica cada actuador recibirá un máximo de 8.25 GPM en la etapa de alto caudal, por tanto este sorá un parámetro de selección.
- b) Debe estar diseñada para trabajo sin error hasta 2500 PSI.
- c) De tres posiciones definidas y cuatro puertos activos, donde la posición neutra debe hloquear todos los puertos y las posiciones extremas los debe desbloquear
- d) Operada por solenoides eléctricos a 110
 voltios 60 hertz.
- e) De corredera deslizante y centrada por muelle.

La referencia técnica se puede observar en los Apéndices N-2, N-3, y N-4, para este tipo de válvulas con las características arriba mencionada la superficie de montaje corresponde a la norma ISO 4401 -05, por tal motivo todos los componentes a seleccionar debe corresponder a esta para poder realizar el montaje.

7) VALVULAS REDUCTORAS DE PRESION

Se selecciona seis unidades de idénticas características, una por cada actuador. según los siguientes parámetros:

- a) El caudal nominal será de 8.25 GPM
- b) El rango de ajuste de la presión va de 300 hasta 2100 PSI.
- c) Normalmente desbloqueada
- d) Taraje por medio de un tornillo y contratuerca.
- e) De drenaje interno
- f) De doble superficie de montaje según

norma ISO 4401-05 en el Apéndice O-1, O-2 y O3, se observa la referencia técnica de la válvula seleccionada y las curvas de funcionamiento.

8) VALVULAS REGULADORAS DE CAUDAL

Se selecciona seis unidades, con las siguientes características:

- a) El caudal de trabajo para cada una es 8.25 GPM
- b) La presión de trabajo es 2200 PSI
- c) Para regular solo en un sentido sin compensacion.
- d) Taraje por medio de un tornillo y contratuerca
- e) De doble superficie de montaje según norma ISO 4401-50

Dentro de las recomendaciones del fabricante de este módulo, es la relacionado a la posición dentro de la torre de válvulas.

La reguladora de caudal se instala entre el actuador y una válvula antiretorno pilotada con el objeto de que esta última no vibre.

En el Apéndice P-1, P-2 y P-3, aparecen las referencias técnica, descripción y curvas de funcionamiento de este módulo.

9) VALVULAS ANTIRETORNO PILOTADA

Igualmente se seleccionan seis módulos, con las características siquientes:

- a) Caudal de trabajo nominal 8.25 GPM
- b) Presión de trabajo 2200 PSI
- c) Para abertura en un solo sentido y para abertura por piloto oleohidráulico en el otro sentido.
- d) La presión de apertura no debe ser mayor a 30 PSI.
- e) Doble superficie de montaje según norma ISO 4401-05.

En los Apéndice Q-1, Q-2 y Q-3, aparecen

las, referencias lécnica, descripción y curvas de funcionamiento de este módulo.

5.2. DETERMINACION DEL RESERVORIO DE ACEITE

Tal vez sea el más simple de todos los componentes basta aquí seleccionados, sin embargo un diseño incorrecto de este podría ocasionar un funcionamiento errático del sistema y por tanto un daño prématuro de los grupos de generación y control oleohidráulico.

Cuatro aspectos se tomarán en cuenta para dimensionarlo:

- a) Proveer el espacio de aire para impulsar el aceite a la entrada de la bomba.
- b) Facilitar la disipación de calor.
- c) Facilitar el mantenimiento.
- d) Disponer el espacio necesario para el montaje de los componentes, manteniendo, y el criterio de presentación y calidad.

Se considera un 5 % más de la cantidad de aceite calculado anteriormente, así se cumple el literal a),

(0.59 m3).

Para considerar el literal d) se evaluó el tamaño físico de los componentes contra una distribución lógica, es así que se determinó una superficie de 48 pulg. x 24 pulg.

De ahí se calcula la altura del tanque.

$$H = \frac{130 \text{ gal } * 231 \text{ pulg}^{2}}{48 \times 24 \text{ pulg}^{2} * \text{ gal.}}$$

H = 26.06 pulg.

Se usa una dimensión exacta, 26 pulg. (660,40 mm), de altura

Una placa desviadora por el centro del tanque es instalada para separar el lado de succión y el de retorno.

Con el objeto de facilitar el mantenimiento se dispone de: una tapa lateral empernada, un tapón en el fondo para drenar el aceite, un fondo ligeramente inclinado, pedestales para el montaje de los componentes, en la figura 28.1 y 28.2, se observan las partes y dimensiones del tanque.

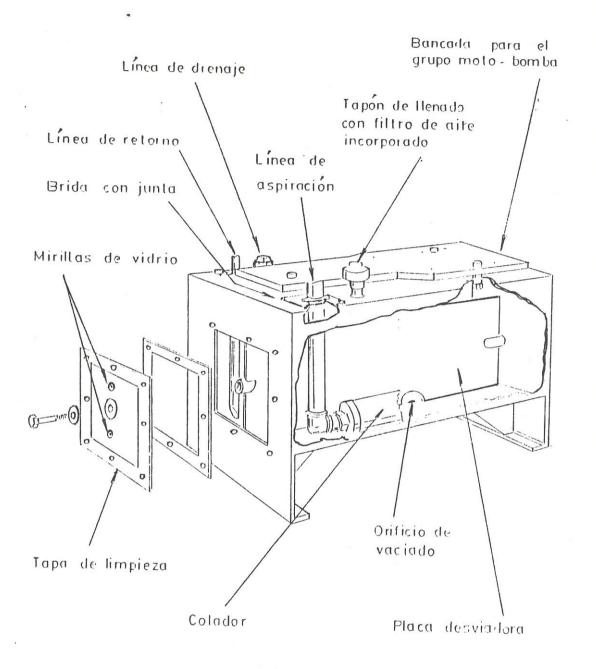
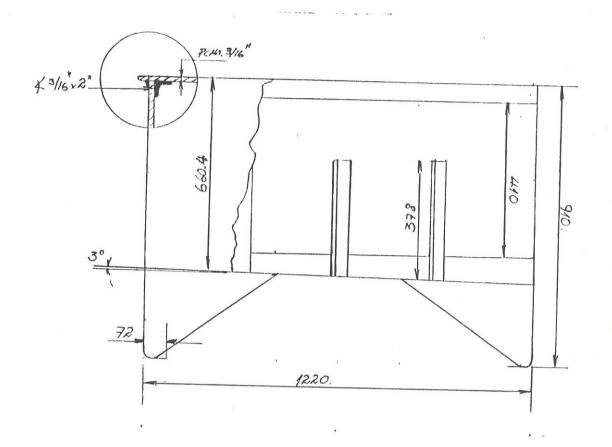



Figura 2**8.1** Reservorio de aceite

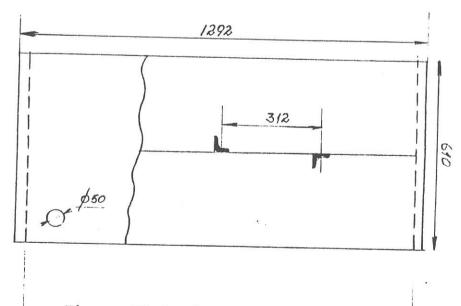


Figura 28.2 Reservorio de aceite

5.3. MONTAJE DE LA UNIDAD

- El siguiente orden se siguió para el montaje de los componentes seleccionados una vez construído el tanque.
- a) Anclaje sobre tapa y pared lateral del filtro de aire y visor de nivel respectivamente, según se observa en la figura 29.1 y 29.2.
- b) Trazado a tiza la ubicación física de los componentes
- c) Dimensionamiento y corte del material para los pedestales del grupo motor bomba y bloque modular (Manifold).
- d) Perforación de agujeros en los pedestales para anclaje de los componentes mencionados en el literal c.
- e) Montaje de motor eléctrico y pedestal, luego soldar este último sobre el tanque.
- f) Acople de matrimonio mecánico al grupo motor-bomba
- g) Montaje de bomba sobre soporte y pedestal, alineamiento de matrimonio.
- h) Alineamiento de grupo motor-bomba; remate de

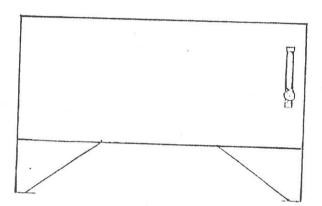


Figura 29,1 Visor de nivel y temperatur i Instalado

Figura **29**.2 Filtro de aire instalado.

soldadura de pedestales (fig. 30).

- i) Instalación de la línea y filtro de succión, la misma que es montada con una brida empernada sobre la tapa del reservorio, para facilitar un posterior desmontaje (fig. 31).
- j) Montaje de bloque modular y pedestal, alinear y rematar con soldadura la base (fig. 32).
- k) Acople brida y racor macho soldado a la salida #1 de bomba (lado de alto caudal)
- Instalación de válvula de descarga, según se observa en la fig. 33
- m) Conección de manguera flexible de descarga # 1
 junto con válvula check (antiretorno), en el lado
 de alto caudal, según se observa fig. 34.
- n) Acople de brida y racor macho soldado a la salida # 2 de bomba (lado de bajo caudal)
- o) Conección de manguera flexible a la salida # 2, fig. 34.
- p) Instalación de válvulas de alivio, según se observa en la fig. 35.
- q) Conección de manifold, utilizando tubería Ø 3/4 pulg., tanto la línea de trabajo como la de

Matrimonio-

Motor electrico -

Bomba doble

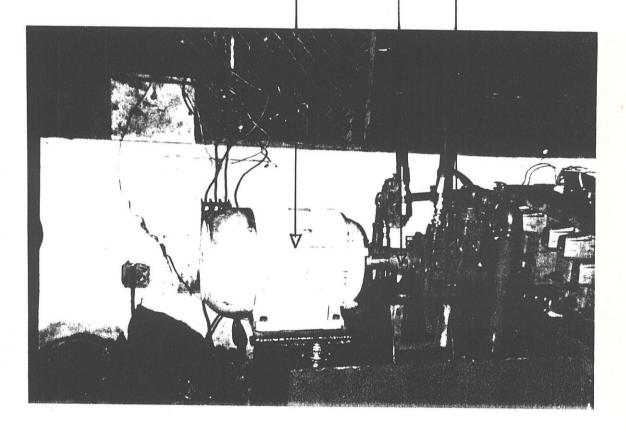


Fig. 30 .- Grupo motor - bomba

-Linea de succión

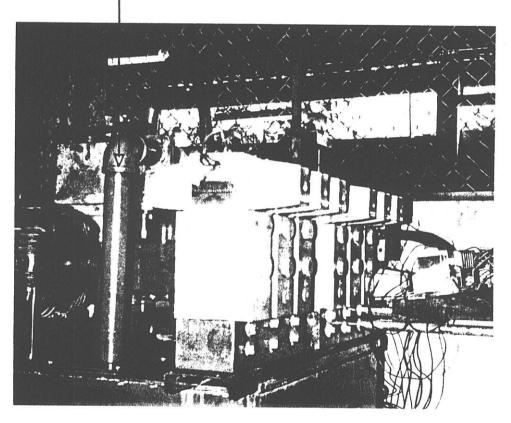


Fig. 31 .- Linea de succión embridada

_Bloque modular (Manifold)

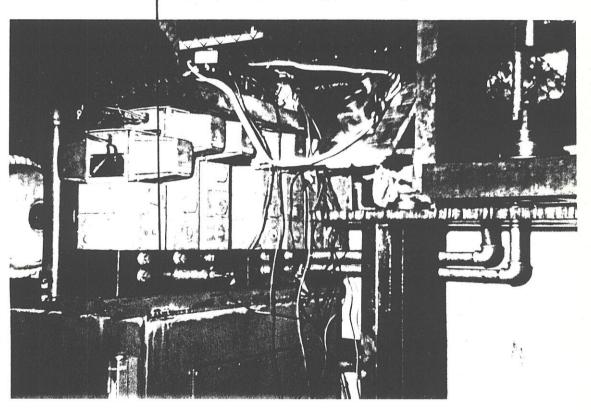


Fig. 32 -- Manifold instalado

Válvula de descarga

Fig. 33 .- Válvula de descarga instalada

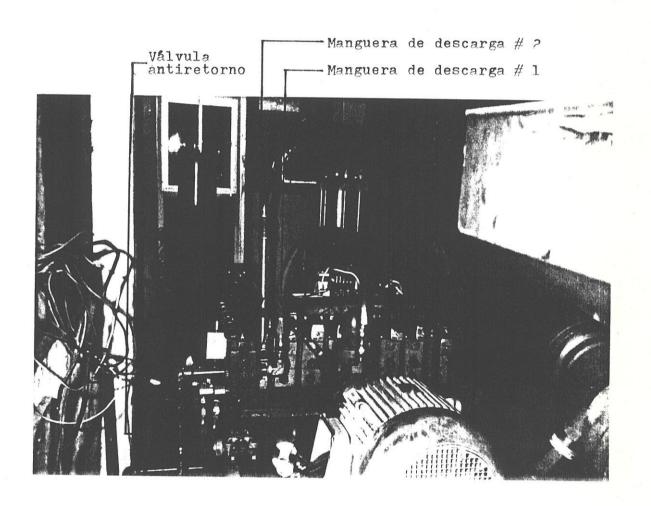


Fig. 34 .- Manguera de alto caudal # 1 y antiretor no instalada

Válvula de alivio—
Conección de manifold—

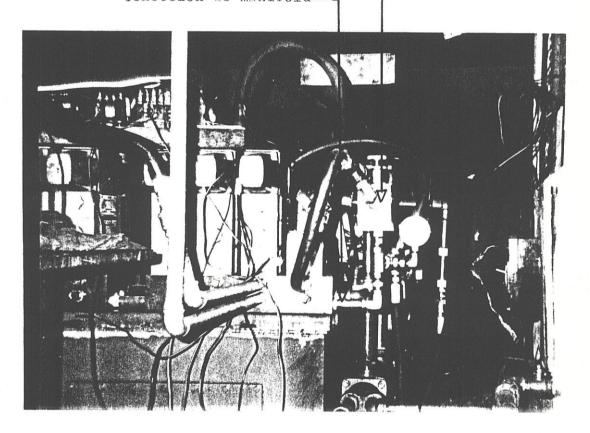


Fig. 35 .- Valvula de alivio y conección de manifold

retorno a tanque, según fig. 35.

- r) Instalación del filtro de retorno, entre la línea de descarga del manifold y el tanque (fig. 36).
- s) Instalación del enfriador de aceite con su puerto de entrada recibiendo el fluído procedente de la descarga del manifold y su línea de salida conectada al filtro de retorno (fig. 37).
- t) Instalación de grupo de válvulas modulares para el control del sistema, según como sique:
 - t.1.- Anclaje de electroválvula de venteo en el manifold, conectando la línea piloto de la válvula de alivio al puerto manifold usando tubo roscado Ø 3/8 pulg. NPT.
 - t.2.- Anclaje de las torres de válvulas según la siguiente secuencia:
 - La válvula reductora de presión se atornilla directamente sobre la superficie del manifold.
 - La válvula reguladora de caudal se monta sobre el módulo de reducción de la presión.
 - Luego se monta la válvula antiretorno

-Filtro de retorno

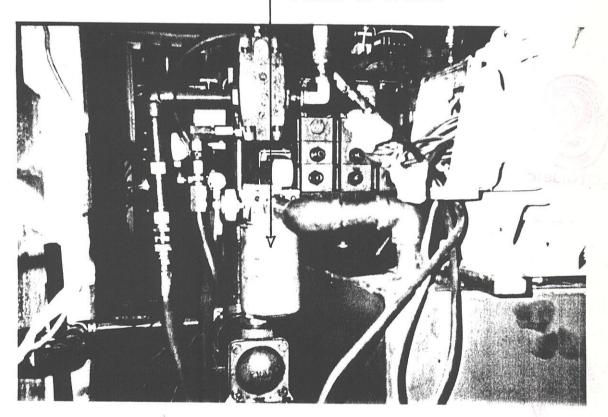


Fig. 36 .- Vista del filtro de retorno

Fig. 37 .- Vista del enfriador de aceite

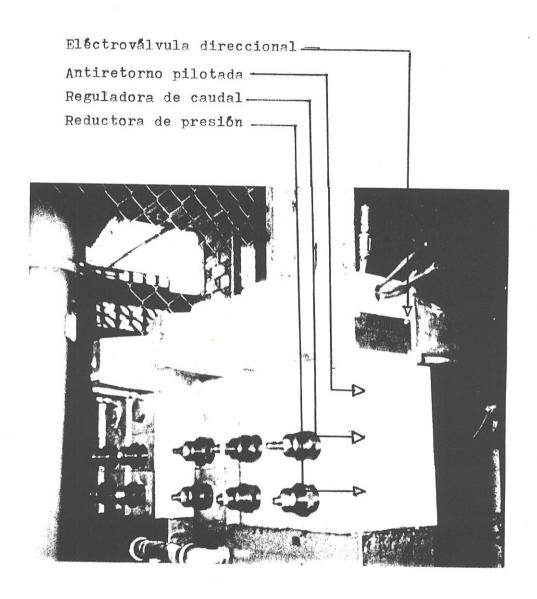


Fig. 38 .- Vista de válvulas modulares y eléctroválvula direccional

pilotada. Y

- Finalmente la electroválvula direccional, según se observa fig. 38.

5.4 EVALUACION DE COSTOS

A continuación se presenta el presupuesto económico para la Central Hidráulica, el mismo que fué calculado en sucres a fecha: Marzo de 1991.

ITEMS	CANT	DESCRIPCION	VALOR	(SUCRES)
1	1	Tanque de aceite 12 29	204.	000,00
2	1	Visor de nivel y temperatura	139.	680,00
3	1	Filtro de Aceite SP113	29.	406,00
4	1	Filtro de succión OF316	82.	105,00
5	1	Filtro de RETORNO OFRS-60	99.	246,00
6	1	Enfriador de aceite OCW-3	634.	686,00
7	1	Motor eléctrico 30 HP/1800 RPM	1'200.	000,00
8	1	Bomba hidráulica fija doble 2520 VQ	1'453.	162,00
9	1	Brida entrada bomba	45.	335,00
10	1	Brida salida # 1 bomba	37.	990,00
11	1	Brida salida # 2 bomba	30.	631,00
12	1	Soporte de bomba	53.	912,00

13	1	Acople motor - bomba	50.322,00
14	1	Válvula de retencion DT8P:	58.812,00
15	1	Válvula de descarga RC-06	443,545,00
16	1	Válvula de alivio CT-06	205.844,00
17	2	Manómetro 0-3000 PSI	223.000,00
18	1	Manifold de siete estaciones	400.000,00,
19	6	Electroválvulas direccionales 4/3 11 0V	2'131.960,00
20	6	Módulos reguladores de caudal DGMFN	852.783,00
21	6	Módulos de retención pilotada DGMPC	1'073.330,00
22	6	Módulos reductores de presión DGMX2	1'345.340,00
23	1	Electroválvula 4/2 110V - DG454	220.550,00
24		Tuberías y mangueras flexibles	150.000,00
25		Mano obra de montaje	200.000,00
26		Ingeniería de Proyecto	3'000,000,00
27		Imprevistos	600.000,00
		TOTAL	14'965.639,00

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

1.- La aplicación del sistema oleohidráulico para accionar prensas de vulcanizado causa un ahorro significativo del tiempo por ciclo total de prensado y vulcanizado comparado al sistema manual tal como se demuestra a continuación.

En primer lugar se recalculará el ciclo oleohidráulico utilizando el caudal total de la bomba seleccionada es decir 49.5 GPM a baja presión.

Vav.o = 37.93 pulg/min.

Tav.o = 4.31 seg

Tav.o = 1.46 Tr.o

$$Tr.o = \frac{4.31 \text{ seg}}{1.46}$$

Tr.o = 2.95 seg

Tc.a = 4.31 + 2.95

Tc.a = 7.26 seg

Tt.c.o = Tc.a + Tc + Tp

Tt.c.o = (0.121 + 10 + 0.5) min

Tt.c.o = 10.621 min

AHORRO = 29.94 %

Esta reducción del ciclo de operación de vulcanizado

aumenta el rendimiento de la producción es decir se logra mayor número de unidades fabricadas en las misma jornada de trabajo por día. Si consideramos que normalmente esta empresa trabaja 48 horas semanalmente en producción, para fabricar por ejemplo el producto tipo pedal Nº 72 modelo SN 2012, el mismo que se fabrica en un molde de seis cavidades, con el sistema manual se logra fabricar 1173 unidades por prensa en una semana.

Para efectos de comparar el sistema oleohidráulico se fabricó el mismo producto en un día normal de ocho horas y esto se lo proyectó para cuarenta y ocho horas.

CARRERA ACT (pulg)	Tc.a (seg)	Tc.c.o (min)	UNDS FCDAS EN 8 HRS	UNDS FCDAS EN 48 HRS	% INCREMENTO
2.5	6.64	10.611	271	1626	38,62

2) Durante el proceso de fabricación de los elementos de cauchos, se considera por experiencia un porcentaje en exceso de materia prima, con el objeto de tener un cierre del molde uniforme y hermético, dado que esta presión de cierre es calculado por cada operador a su criterio. Este exceso en el sistema manual llega a ser del 14 %

del peso del producto ya terminado.

Para comprobarlo, se realizó una prueba con la prensa de tornillo para fabricar el tipo paquete Nº 4 Modelo BB-2088 1/2 pulg., cada cavidad del molde es llenado con 37.0 gramos de caucho, pasada la operación, y extraído el producto se observó un buen acabado, pero una rebaba notoria que fué desbastada con cuchilla, pesado el producto acabado este fué 32 gramos.

Se fabricó el mismo producto, ahora con la prensa oleohidráulica, luego de algunas pruebas se determinó, que requería cargar el molde con un exceso no mayor a 2.5 gramos por cavidad para obtener un producto aceptable, esto implica que se requiere un 7.80 % de material en exceso. Se reduce un 50 % de material que no se desperdicia; puedo decir entonces que el rendimiento de la materia prima se incrementa al 92.8 %, esto permitirá a la Fábrica reducir sus gastos por concepto de materia prima.

3) Dentro del diseño y selección de la central y componentes oleohidráulicos, cabe resaltar tres aspectos:

- a) El diseño presentado aquí, logra un ahorro de consumo de energía en tiempos muertos, ya que cuando la vulcanización está en la etapa de curado se utiliza un sistema de venteo en la válvula de alivio.
- b) El empleo en el sistema de una bomba doble (alta y baja) reduce el tamaño del motor eléctrico si lo comparamos con un sistema que usa bomba simple, si bien es cierto se reduce a la mitad el ciclo neto del actuador (avance más retorno), sin embargo dentro del ciclo total de vulcanizado no tiene significado.

Mientras con un sistema con bomba simple se requiere un motor eléctrico de 80 HP; el sistema de alta y baja absorve 27.78 HP; esto implica una inversión menor así mismo un menor gasto por consumo de energía eléctrica.

c) El empleo de válvulas modulares tipo torre reduce el espacio a ocupar en la central, reduce el costo por cuanto se elimina todas las tuberías de interconección entre válvulas y todas las conecciones propensas a fugas, por otro lado el costo de instalación es inferior que cuando se utilizan válvulas para montar en

tubería o sobre placa base, son versátiles y fácil de montar.

4) La construcción del tanque, manifold y montaje de la central oleohidráulica fué realizada integramente por técnicos nacionales, a continuación se desglosa el personal por obra y el tiempo empleado:

CANT	PERSONAL	DESCRIPCION DE OBRA	TIEMPO (HR)
1	Soldador Cortador Ayte Sold.	-Construcción tanque -Fabricación pedestales -Alineamiento y anclaje de pedestales	24 8 4
1	Operario	-Pintar tanque	8
1	Taller Mec - Ind	-Construcción manifold de siete estaciones	26
1	-Técnico Industrial -Ayudante	*Instalación de: -filtro de aire y visor -línea de succión -y alineamiento de motor-bomba -válvulas de alivio descarga, antiretorno, mangueras -manifold y tuberías -válvulas modulares -filtro de retorno -enfriador de aceite	3 2 4 4 2 5 1 2
	2	TOTAL	93

Dentro de la secuencia de obras presentado se considera el tiempo empleado en la construcción del manifold como obra paralela al resto, por tanto el tiempo neto empleado para concluir la obra fué de 67 horas equivalente a 9 días de jornada normales (ocho por día), a esto agreguemos el tiempo que demoró la importación de los componentes oleohidráulicos lo cual fué 45 días, lo que suma 54 días, así fué posible entregar el trabajo dentro de los sesenta días estipulados.

RECOMENDACIONES

1.- La selección de las válvulas direccionales electrohidráulicas permite en el futuro automatizar la operación de la central, con el empleo de switchs de finales de carrera y reguladores de tiempo (timers).

Adicionalmente al tener una alta capacidad de presión la Central, es posible desarrollar moldes para productos de mucho mayor tamaño a los actuales, requiriendo para los cilindros de mayor tamaño en su diámetro

interior con el objeto de disponer de más tonelare para el cierre del nuevo molde.

2. El cilindro olechidraulico fabricado por la Empresa Cauchos Industriales, fué puesto a prueba de funcionamiento por el lapso de un ciclo total de trabajo, donde le fué aplicado 2500 PSI, manteniendo la constante durante todo el período de cura, co comprobó buena estanqueidad de la empaquetadura dol piston, lo qual se comprobó abriendo el puerto nue está comunicando al tanque, notandose minguna funa do aceite.

El costo de fabricación de este cilindro fué evaluado en no más de S7. 650.000.00 Sucres, en tanto, que cotizado este mismo equipo a un fabricante de Colombia, el costo dado fué de 1.550.000.00 Sucres.

Como se puede apreciar el aborro por cilindro es de más del 130 % es por ello que actualmente se están terminando de construir los otros cinco cilindros.

3.- A la entrega de la Central Oleohidráulica, se realizó
la calibración y pruebas de presiones, velocidad y
control de las válvulas oleohidráulicas y
electrohidráulicas, con el siquiente procedimiento:

- a) Dar giro contra horario tanto a las válvulas de descarga y de alívio antes de accionar la bomba, con el objeto de que esta se descargue al tanque y asegurar un arranque en vacío, el consumo del motor fué de 12 Amperios.
- b) Para ajustar la presión del lado alto caudal, se va ajustando la válvula de alivio hasta cuando el manómetro bordee 350 PSI, luego ajustamos la válvula de descarga, sin rebasar la presión anterior. Luego se continua aumentando la presión del lado de bajo caudal, lo cual se hizo hasta un 5 % más de la presión de trabajo del sistema es decir 2473 PSI, en ese instante el consumo del motor fué de 63 Amperios.
- c) La prueba de venteo fué hecho instalando un mando que energize la bobina de la válvula de dirección 4/2 de tal forma que al arrancar el motor la válvula de alivio está venteada (posición normal de la válvula direccional), luego al energizar esta electroválvula el sistema está listo para empujar caudal en los actuadores.
- 4.- Así como se han destacado las ventajas y beneficios del sistema oleohidráulico diseñado, es conveniente

hacer sugerencias para detección de fallas y para el mantenimiento preventivo.

TABLA VII

MANTENIMIENTO PREVENTIVO RECOMENDADO

	1		,	
CHEQUEAR	150 HORAS	500 HORAS	2000 HBRAS	4000 HORAS
Realizar cambio de aceite	X			
Revisar y lavar filtro de succión	X			
Mantener la temperatura del aceite a un máximo de 60 °C	, X	×		
Reajustar tuberias y pernos de anclaje		Х	s	
Completar nivel de aceite		X		
Chequiar apperaje de motor electrico		Х		
Cambiar accite hidráulico y Javar tarque			χ	
Cambiar filtro de succión			Х	
Cambiar elemento de filtro de retorno			X	
Realizar overhaul de bomba doble				٠ ٨
Nivelar accele de motor - bomba		e e		Х

TABLA VIII

GUIA PARA DETECCION DE FALLAS

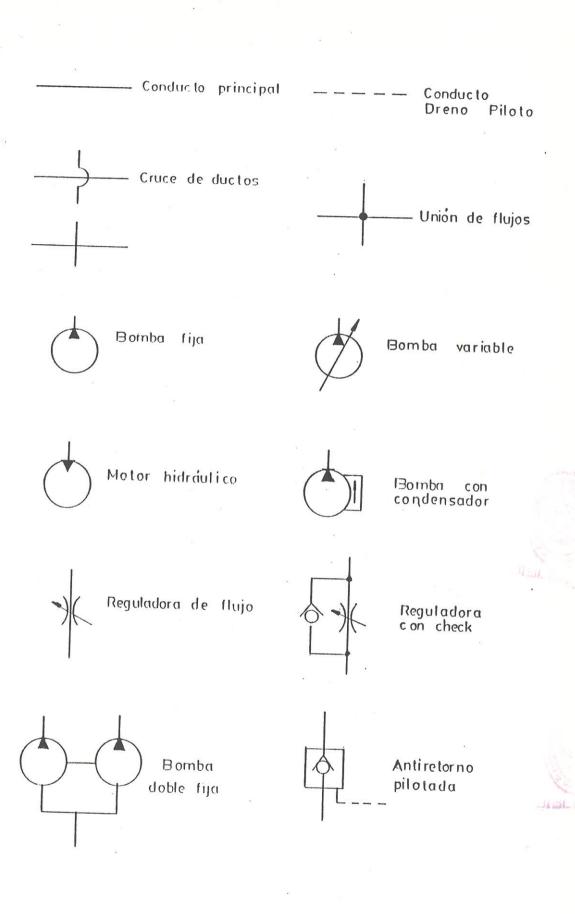
			-	L	•
RUMBA RUIDOSA	FRESION BAJA O EFRATICA	' NO HAY FRESION	ACTUADOR NO SE HUEVE	OPERACION LENTA O ERRATICA	SORRECALENTAMIENTO DEL SISTEMA
equear y/o limpiar nea y filtro de cción por si hay strucción scosidad de aceite y alta operatura muy baja	Válvula de alivió negada o desgastada Ajuste de presión nuy hajo .	Giro invertido de bomba o no funciona- miento Eje de bomba roto	Válvula direccional no opera por: + falla eléctrica	Bajo nivel de aceite Viscosidad de aceite myy bajo Fugas , internas ,a tra/és de yálvulas	falta aqua de enfriamiento o e intercambiador est tapado. Sino exist enfriador entonce se debe instala
	Antáretorno pilotado	Válvula de alivio	501800106	o actuadores	uno
<u>EREACION</u> jo nivel de aceite	desgastado	peg∍da abierta Reductora de presión	+ Fuga interna de aceite a tanque	Romoa desgastada	Operación continu a nivel máxima d
pería de succión pja o dañada		cerrada Retenes del actuador		Velocidad de giro baja	presión
llos de eje dañado pastado				Regulador de caudal	Fuças excesivas e actuadores a
neas de retorno al nque sobre el vel de aceite		1	Sistema de venteo no opera		frenar bajo carga Viscosidad muy baj
<u>RAS CAUSAS</u> etas desgastadas egadas	,		ž v	e.	
llo de apoyo de etas desgastado		92 *	*	, * as	
alineamiento del	8			8 8	,
entos desgastados añados	,				

5.- Se conoce muchos trabajos de diseños, construcción y/o reconstrucción de centrales oleohidráulicos para diferentes aplicaciones industriales en nuestro medio hecho por técnicos nacionales, pero pocos por no decir ninguno se ha desarrollado con un criterio profesional y/o algún respaldo técnico que garantiza la operación y montaje de los componentes.

El presente trabajo llevado adelante por una empresa transnacional con mano de obra nacional pretende aportar en algo para profesionalizar a nuestros técnicos.

APENDICE A

DIAGRAMA DE LAS OPERACIONES DEL PROCESO


	(1)	Corte de la Materia Prima
Azulre Acelerantes	2	Mezcla de la Materia Prima
	3	Mezcla del Azufre y Acelerantes
	4	Corte de láminas de acuerdo a las dimensiones de los moldes.
	卩	Inspección de las láminas cortadas
	(5)	Ubicación de las láminas en los moldes
	6	Ubicación del molde en la Prensa
	7	Vulcanización
	8	Retiro del Producto Terminado
	2	Inspección del acabado
	3	Control de calidad
	\triangle	Almacenamiento

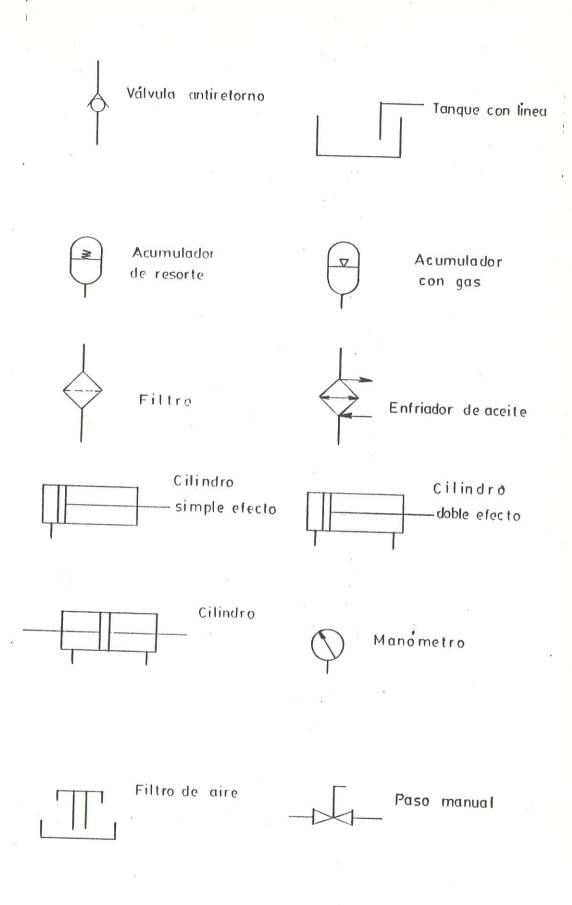
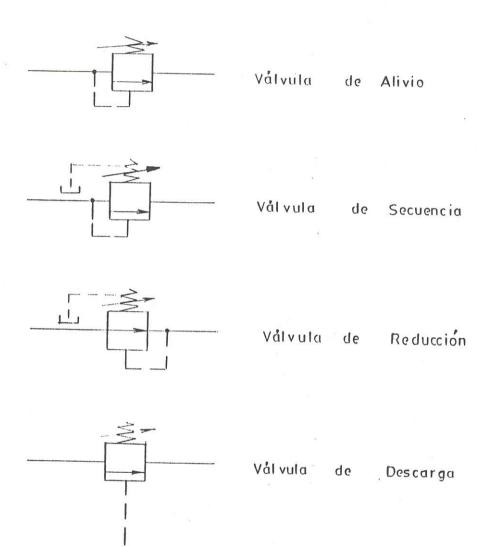

APENDICE B

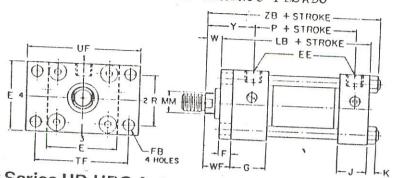
DIAGRAMA DE ANALISIS DEL PROCESO

	1	
ESTUDIO Nº	RESUM	EN
OPERADOR:	ACTIVIDAD	ACT. PROP. ECON
ING. DE PLANTA:	OPERACION	
LUGAR:	INSPECCION	
FECHA:	TRANSPORTE	
	DEMORA	
	ALMACENAMIENTO	
METODO:	DISTANCIA (m.)	
PROPUESTO	TIEMPO (seg.)	
DESCRIPCION DEL PROCESO	SIMBOLOS	
		OBSERVACIONES
asaje de la Materia Prima		P
orte de la Materia Prima		En la Balanza
ezcla de la Materia Prima	fi I I I	Cizalia
eposo de las láminas obtenidas		Molino Mezclador
ezcla y adición de Azufre y Acelerante		Aprox 12 horas
orte de láminas (de acuerdo al molde)		Molino Mezclador
spección de las láminas cortadas	\ 	Cizalia
s láminas se colocan en los moldes		
coloca el molde en la prensa		Para vulcanizar
lcanización		Prensa hidráulica
liro del Producto Terminado		A 200°C/8 minutos
pección del acabado	1	Del molde
ntrol de calidad		
nacenanimiento		Del producto terminado

APENDICE C
SIMBOLOS GRAFICOS OLEOHIDRAULICOS



COMANDOS DE VALVULAS


4.4.4				
\\\\	Resorte			
		VALVULAS	DIRECCI	ONALES
	Manual		3 Posic	iones
N N		(B)		
2	Palança		2 F	osiciones
Æ	Pedal .	CEN	TRO VA	LVULAS
~/_	Detente	T_ †		
	Leva	LI	L <u>T</u>	
7	Solenoide	þ	· T	

Piloto /Solenoide

VALVULAS CONTROL DE PRESION

DIMENSIONES DE CILINDROS DE TRABAJO PESADO

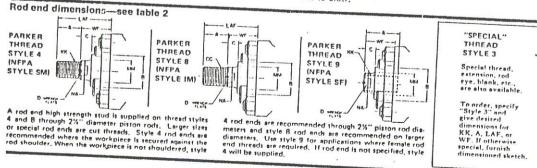
Parker Series HD-HDC Automotive Heavy Duty Hydraulic Cylinders

January 1979

rectangular flange and head mountings 11/2" to 8" bore sizes

Table 1—Envelope and mounting dimensions

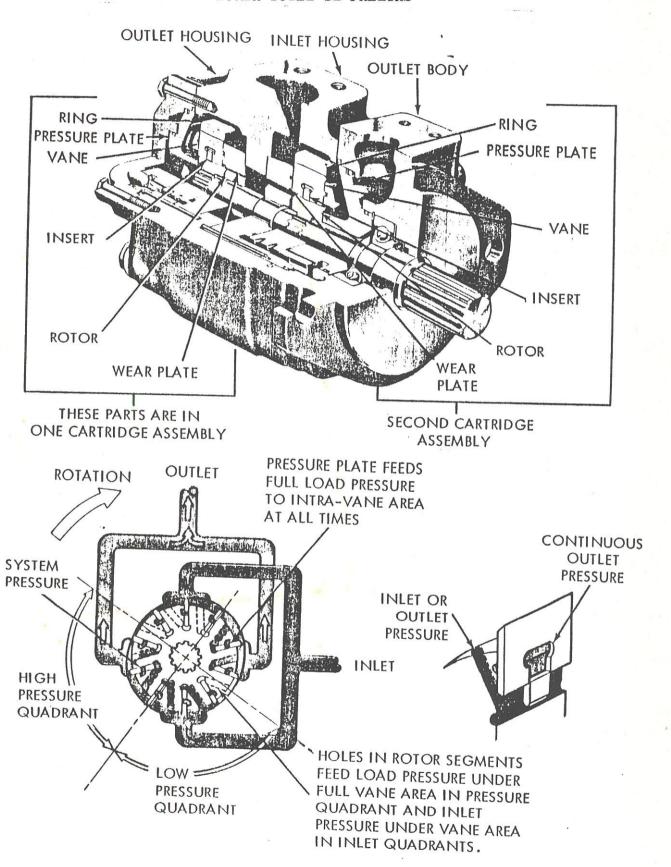
BORE	R	NPTF #	SAFO	p	FR	0		K			T	AI	DD STRO	
11/25	21/2	1/2	10	3/9	2/14	11/	-	-	R	77	UF	LD	12	P
25	3	1/2	10	3/0	-	11/4	11/2	3/6	1.63	37/16	41/4	1 5	41/0	27
21/2	31/2	1/2	10	3/0	1/16	13/4	11/2	1/14	2.05	41/0	51/0	31/4	42%	21/
31/4	11/2	34	12	-	%16	13/4	11/2	314	7.55	11/4	53/0	51/0	41/4	
4	9	3/4		3/4	11/16	2	13/4	2/14	3.75	57/0	11/0	81/0		1 3
5	81/2	-	12	1/4	13/16	2	13/4	%10	3.82	6 1/0	73/0	51/0	51/2	31/2
		3/4	12	%	13/16	1	13/4	17/16	1.95	8354		-	53%	11/4
6	11/2	1	16	1	11/16	21/4	11/4	1/0			91/4	11/0	61/4	4 1/4
8	91/2	11/2	24	1	13/16	1	1		5.73	97/16	111/4	8 1/0	71/0	47/0
U'TF po	rte mili	be furnish	THE REAL PROPERTY.				J	11/16	7.50	111344	14	101/2	91%	61/8


^{*} NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

© SAE straight thread ports are indicated by port number.

Table 2—Rod dimensions

Table 3-Envelope and


BORE	ROD NO.	ROD DIA.	TH	READ			RO	DEXTE	NSIONS	AND			mount	ing dir	nension
	HO.	ММ	CC Style 8	KK Style 4 & 9	A	+ .000 B - 002	c	D	LA	NA NA	v	w			STROP
11/2	1 (Std.)	1/0	1/2-20	1/16-20	7/4	1,124	7/0	-	-				WF	Y	ZB
	1	1	7/0-14	1/4-16	170	1,199	1/2	1/2	11/0	9/16	1/4	1/0	1	7	6
2	1 (Std.)	1	7/0-14	1/4-16	11/0	1,499	1/2	7/0	21/0	13/10	1/1	1	170	21/0	61/0
	1	13/0	11/4-12	1-14	13/0	1.939	1/0	7/0	17/0	15/10	1/4	3/4	17/0	23/0	67/10
21/2	1 (Std.)	1	7/a-14	3/4-16	17,	1.499	1/2	170	21/0	15/14	1/0	1	13/8	25/2	511/16
	,	13/0	11/4-12	1-14	15/0	1,999	3/0	7/0	17/0	15/10	1/4	1/4	17/0	27/0	67/16
31/4	1 (Std.)	11/0	11/4-12	1-14	17.	1 999	7e %	11/0	240	17/16	3/0	1	170	21/0	617/10
	J .	11/4	11/1-12	17/4-12	1	2,374	7/4	11/2	21/1	13/10	1/4	7/0	13/0	21/4	7"/10
4	1 (Std.)	11/4	11/2-12	11/4-12	2	2.374	1/4	11/2	31/0	111/14	3/8	11/0	17/0	3	715/16
	- 1	2	13/4-12	11/2-12	274	2.674	7/0	111/14		1'7/16	1/4	1	17/0	3	87/16
5	1 (Std.)	2	174-12	11/2-12	71/4	2.824	7/0	1''/14	11/0	11716	1/4	11/4	2	31/0	87/16
-	3	21/2	14-12	17/0-12	3	3.174	1	21/16	11/0	117/16	1/4	11/0	1	31/0	91/14
6	1 (Std.)	21/2	21/4-12	17/0-12	3	3.124		21/14	43/0	21/0	1/0	17/0	21/4	37/8	97/14
	1 (5)	11/2	31/4-12	21/2-12	11/2	4.749	1	3	47/4	7 1/e	1/4	11/4	21/4	31/2	101/2
8 -	1 (51d.)	31/2	31/4-17	21/2-12	31/2	4.249	1	3	47/4	31/0	1/4	17.	71/4	31/2	101/2
· -	1	51/2	51/4-12	4-12	51/2	6.249		4 1/4	67/4	31/0	1/0	11/4	21/4	315/10	1217/10
75.			37/4-12	3-12	4	4,749	1	***		31/0	1/4	11/4	21/4	313/10	1217/16
TE: S	haded are	es indic	ate non-s	landard roc	Lairea	41-1	-	-	-	3 /0	1/4	11/4	21/4	319/10	1217/10

Head end cushions (only) are non-adjustable in 135 and 2 bore cylinders with No. 2 rods.

BOMBA DOBLE DE PALETAS

ESPECIFICACIONES TECNICAS DE BOMBA DOBLE DE PALETAS

Double Pump Specifications

		SI	IAFT E	ND PU	MP	- 21		C	VER E	ND PU	MP :	Ŋi.	in State
MODEL SERIES	DELIVERY GPM AT 1200 RPM 100 PSI	DISPL. Cu. in./rev.	MAX. RPM	MAX. PSI	TYPICAL DEL, GPM AT MAX. SPEED & PRESSURE	TYPICAL INPUT, HP AT MAX, SPEED & PRESSURE	DELIVERY GPM AT 1200 RPM 100 PSI	DISPL. CU. IN./REV.	MAX RPM	MAX.	TYPICAL DEL, GPM AT MAX, SPEED & PRESSURE	TYPICAL INPUTA HP AT MAX MAX SPEED & 3 PRESSURE	WEIGH LBS.
2520VQ	12 14 17 21	2.45 2.76 3.37 4.12	2700 2700 2500 2500	3000	23 27• 31 38	66 62.5 69.5 83	5 8 11 12 14	1.10 1.67 2.22 2.41 2.80	2700	3000 3000 3000 2800 2800	11 17 23 25.5 30	24 36 47.5 38 39	45
3520VQ	25 30 35 38	4.98 5.96 6.88 7.42	2500 2500 2400 2400	3000	45 55 60 65	101 117.5 132 140	5 8 11 1 12 14	1.10 1.67 2.22 2.41 2.80	2500	3000 3000 3000 2300 2000	10 16 21 23.5 27.5	22 X 3 32 5 8 44 3 35 4 8	41/2 25
3525VO	25 30 35 38	4.98 5.96 6.88 7.42	2500 2500 2400 2400	3000	45 55 60 65	101 117.5 132 140	12 14 17 21	2.45 2.76 3.37 4.12	2500	3000	21 24 31 38	51 154 58 69 83	17 HAVE
4520V O	42 50 60	8.46 9.90 11.80	2200	2500	66.5 79 96	122.5 141 170	5 8 11 12 14	1.10 1.67 2.22 2.41 2.80	2200	3000 3000 3000 2300 2000	8.5 13.5 18 20.5 24	19.5 11 28.5 12 38.5 31 31 4	94
4525VQ	42 50 60	8.46 9.90 11.80	2200	2500	66.5 79 96	122.5 141 170	12 14 17 21	2.45 2.76 3.37 4.12	2200	3000	18 21 26.5 33		
4535VQ	42 50 60	8.46 9.90 11.80	2200	2500	66.5 79 96	122.5 141 170	25 30 35 38	4.98 5.96 6.88 7.42	2200	3000	38.5 47 55 59	89 104 120 130	111

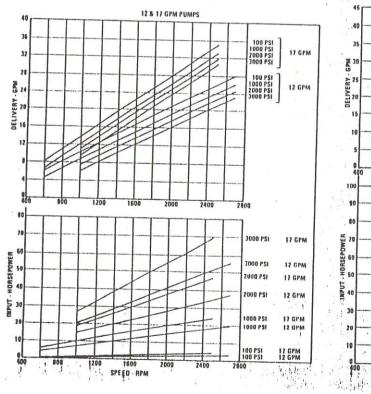
Performance Constants: SAE 10W Iluid @ 180° F.

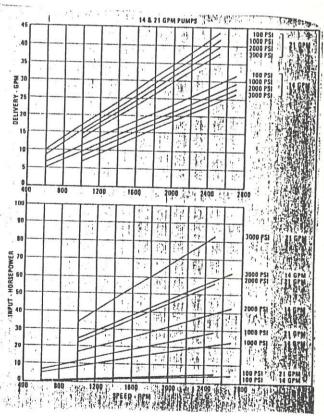
Pump inlet @ O PSIG (14.7 PSIA)

Note: Outlet pressure must always be higher than inlet pressure.

MAXIMUM SHAFT TORQUE RATING BASED ON TORSIONAL FATIGUE ALONE

MODEL	TORQUE (LB. IN) FOR SHAFT TYPE
SERIES	STRAIGHT KEYED	SPLINED
2520VQ*	NO. 1 2800	NO. 11 - 2800
3520VQ		. 1 1 4 -1
3525VQ	NO. 1 - 3600	NO. 11 & NO. 19 : 5100
4520VQ		2)
4525VQ	NO. 1 - 5600	NO. 11 - 7200
4535VQ		1 1 1 T T T 1 1 1 1 1 1 1 1 1 1 1 1 1 1

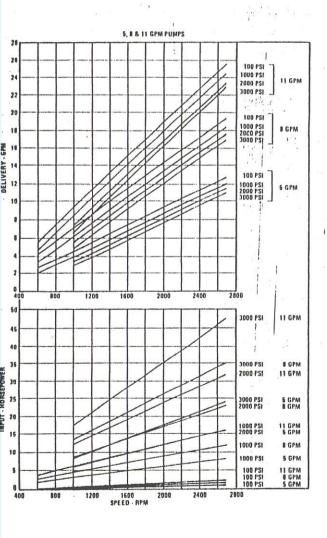

^{*}SHAFTS AVAILABLE IN 2520VQ SERIES FOR 3560 LB. IN. CAPABILITY.

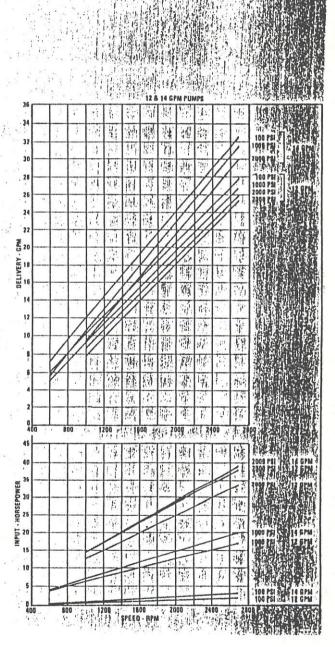

CURVAS DE RENDIMIENTO DE BOMBA DOBLE, LADO DE ALTO CAUDAL

Shaft-end Pumps
Performance Constants:

SAE 10W fluid @ 180°F. Pump inlet @ 0 PSIG (14.7 PSIA) Typical Performance

2520VQ Double Pumps

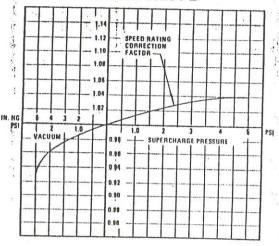



CURVAS DE RENDIMIENTO DE BOMBA DOBLE, LADO DE BAJO CAUDAL

Typical Performance (cont.)

Cover-end Pumps

2520VQ Double Pumps

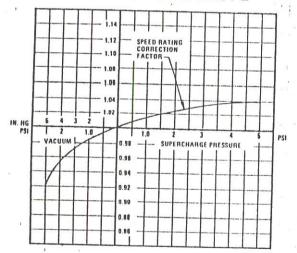


Performance Constants: 18 SAE 10W fluid @ 1809F

CURVAS DE CORRECCION DE LA PRESION DE ENTRADA A LA BOMBA

Speed Correction Curves

SERIES 2520VQ


MAXIMUM OPERATING SPEEDS SHOWN ON PERFORMANCE CURVES ARE FOR PUMPS OPERATING AT 0 PSI INLET CONDITION TO COMPUTE MAXIMUM OPERATING SPEEDS AT OTHER INLET CONDITIONS USE THE APPROPRIATE SPEED RATING CORRECTION FACTOR SHOWN IN THE CURVE ABOVE.

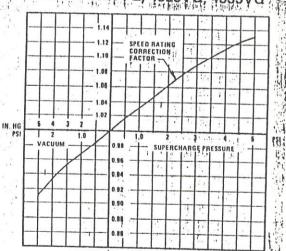
EXAMPLE: MAX. SPEED @ 0 PSI INLET CORRECTION FACTOR @ 5 IN, HG, MAX. SPEED @ 5 IN, HG, INLET

2700 RPM ж .93 2611 прм

PUMP INLET SUCTION SHOULD NOT EXCEED 5 IN. HG. VACUUM, POSITIVE PRESSURE ON INLET SHOULD NOT EXCEED 20 PSI.

SERIES 3520VQ & 3525VQ

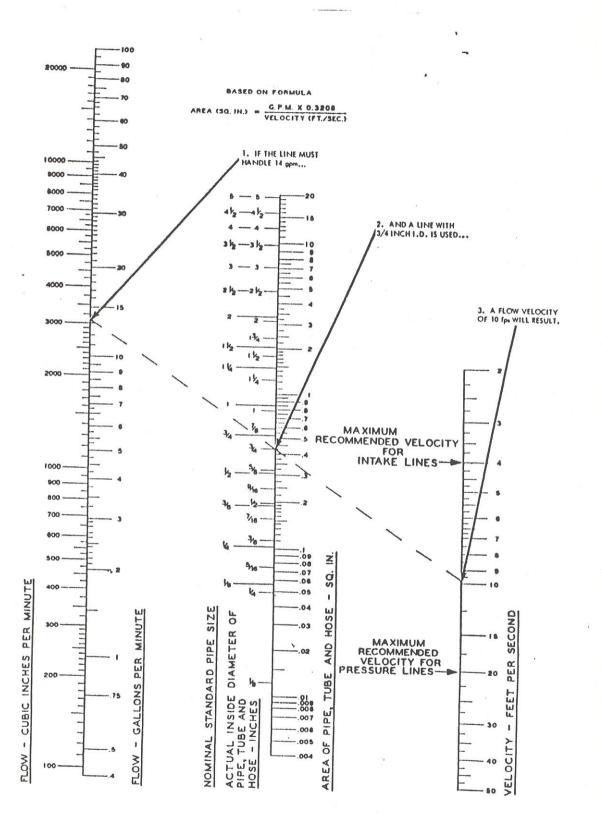
MAXIMUM OPERATING SPEEDS SHOWN ON PERFORMANCE CURVES ARE FOR PUMPS OPERATING AT 0 PSI INLET CONDITION TO COMPUTE MAXIMUM OPERATING SPEEDS AT OTHER INLET CONDITIONS USE THE APPRIOPRIATE SPEED RATING CORRECTION FACTOR SHOWN IN THE CURVE ABOVE.


EXAMPLE: MAX, SPEED & 0 PSI INLET CORRECTION FACTOR & 5 IN, HG, MAX, SPEED & 5 IN, HG, INLET

2500 RPM

PUMP INLET SUCTION SHOULD NOT EXCEED 6 IN. HG. VACUUM. POSITIVE PRESSURE ON INLET SHOULD NOT EXCEED 20 PSI.

MAXIMUM OPERATING SPEED CORRECTION BASED ON PUMP INLET CONDIT


SERIES 4520VO, 4525VO,

大学

APENDICE F

TABLA DE SELECCION DEL DIAMETRO INTERIOR DE UNA TUBERIA

TABLA PARA SELECCIONAR MANGUERAS DE MEDIANA PRESION

1503 SAE 100 RE y J1402 Tipo D. Clase 1

Construcción: Tubo interior de caucho sintético, trenza textil interior, refuerzo de una trenza de alambre y cubierta de trenze textil impregnada con caucho aintético.

Usos: Para líquidos hidráulicos, aire, gasolina, aceites crudos, combustibles y fubricantes.

Goma de temperaturas: Iguala o excede los requerimientos de las especificaciones SAE100R5 y J1402. Sirve para muchas instalaciones entre — 40°C a + 121°C (- 40°F a + 250°F)

Aprobada por el Estado de Pennsylvania, E.U.A.

Nota: Una combinación de alta temperatura y alta presión reducirá materialmente la vida de servicio del ensamble de la manguera. Consulta a su Distribuidor Aeroquip sobre las recomendaciones para altas temperaturas específicas.

Conexiones: Páginas 27 a 31.

Numero de Parte	Tamaño Manguera	D I Manguera	D E Manguera	Presión para Trabajar	Presion Minute a Reventar	Radio Minerio a Doblar	Servicio a Vacio	Pesa poi
1503-4	-4	4,8	13,2 .52	211 3000	844 12000	76,2 3.00	711 28	0,208
1503-6	~6	6,4 .25	14,7 .58	211 3000	703 10000	86,7 3.38	711 28	0,263
1503-6	-6	7,9	17.0 .67	158 2250	633 9000	101,8	711 28	0,313
1503-8	-8	10.4	19,6 .77	141 2000	662 8000	117,3 4.62	711 28	0,372
1503-10	- 10	12,7 .50	23,4 .92	123 1750	492 7000	139,7 5.50	711 28	0,536
1503-12	12	15,8 .62	27,4 1.08	106 1600	422 6000	165,1 8.50	711 28	0,670
1503-16	- 16 .	22,4 .88	31,2 1.23	56 800	225 3200	187,3 7,38	508 + 20 +	0,580
1503-20	20	28,5 1.12	38,1 1.50	44 625	176 2500	228,6 9.00	508 + 20 +	0,804
1603-24	-24	36,1 1.38	44,6 1.75	35 500	141 2000	266,7 10.50	381+	0,997
1603-32	- 32	46,0 1.81	56,4 2.22	25 350	98 1400	336,6 13.26	279 + 11 +	1,400
1503-40	40	60,5 2.38	73,2 2.88	26 350	98 1400	809,6 24.00	279+	2,039

 El vacio máximo apuntado para medidas de la -- 16 en adelante se aplica a mangueras no dañadas externamente ni demasiado dobtadas. Si se necesita más vacio consulte a su Distribuidor Aeroquip.

1540 SAEJ61, Tipo B

Construcción: Tubo interior de caucho sintético, refuerzo de una trenza de alambre, cubierta de trenza textil color rojo para identificación.

Usos: Pura conductr Froon 12.

Gama de Temperaturas: -26°C a + 121°C I-15°F a + 250°F).

Iguela o excede SAEd51, Tipo B

Conexiones: Páginas 27 a 31

NOTA: No se recomienda para Freón 22 o R502

1540-4	-4	4,8 .19	12,7 .50	25 350	176 2500	76,2 3.00	711° 28°	0,178
15-10-6	-6	7,9 .31	17,0 .67	26 360	176 2500	101,6	711° 28°	0,268
1540 8	8	10,4	19,1 .76	26 350	176 2600	117,3 4,62	7110	0,342
1540-10	-10	12,7 .50	23,4 .92	26 350	176 2600	139,7 5.50	711°	0,476
1640-12	12	15,8 ,62	26,9 1.06	26 350	176 2600	165,1 6.50	7110	0.600
1540-16	- 16	22,4	31,2 1.23	25 350	176 2500	187,3 7.38	711*	0,670
1540-20	- 20	28,5 1.12	38,1 1.60	26 360	176 2600	228,6 9.00	711°	0,848
1640-24	-24	36,1 1.38	44.5 1.76	25 350	141 2000	266,7 10.50	711° 28°	1,026

Todos los tamaños de la 1540 pueden resistir el vaclo indicado para propósitos de carga o por un corto período de tiempo en otras aplicaciones.

Cliras en tipo negro = Dimensiones en mm, presiones en kg/cm² y mm de mercurio. Cliras en tipo claro = Dimensiones en pulgadas, presiones en lpc y en pulgadas de mercurio.

TABLA PARA SELECCIONAR MANGUERAS DE ALTA PRESION

MANGUERAS PARA ALTA PRESION

FC195

278

	Numero de Parte	Tamaño Manguera	D,1 Manguera	D.E Manguera	Prosion para Trabajar	Presión Minima a Reventar	Radio Minimo 4 Dobtar	Servicio a Vacio	Paso por mt (kg)
FC195sae 100 RZA	FC195-04	04	6,4 .25	17,5 .69	362 6000	1406 20000	101,6		0,491
ONSTRUCCION: Tubo Interior de elastómero OP, refuerzo de dos trenzas de alambre y cubierta	FC 196-06	08	9,7 .38	21,3 .84	281 4000	1125 16000	127,0		0,669
ne hule sintético.	FC196-08	-08	12,7 .50	24.6 .97	248 3500	984 14000	117,8 7,00		0,833
LICACION: Líneas hidráulicas para elte presión iduciendo fluidos a base de petróleo y todo tipo fluidos resistentes al incendio, gasolina, crudo	FC196-10	10	15,8 .62	27,7 1.09	183 2750	773 11000	203,2		0,992
aceites lubricantes y otros fluidos industriales.	FC195-12	-12	19,1 .76	31,8 1.25	168 2250	633 9000	241,3	•	1,190
AMA DE TEMPERATURA: -40°C a 160°C -40°F a 300°F)	FC196-16	16	25,4 1.00	39,6 1.56	141 2000	582 8000	304,8		1,577
Para aplicaciones a — 48°C (— 55°F) consulte a su distribuídor Aeroquip. CONEXIONES: Reutilizables estándar.	FC195-20	-20	31,8 1.25	50,8 2.00	114 1625	457 6500	419,1 16.60		2,574
excede SAE 100R2A	FC196-24	24	38,1 1.50	57,2 2.25	88 1250	362 5000	508,0 20.00		3,060
	FC195-32	-32	50,8 2.00	69,8 2.76	79 1125	316 4500	635,0 26.00		4,018

2781HI-IMPULSE SAE100RZA	2781-4	-4	6,4 .25	17.5	404 6750	1408 20000	101,6	0.491
Construcción: Tubo interior de caucho sintético, refuerzo de 2 trenzas de alambre, cubierta de caucho sintético.	2781-6	-6	9,7 .38	21,3 .84	362 5000	1125 16000	127,0	0,670
Jsos: Para sistemas hidráulicos sujetos a fuertos	2781-8	-8	12,7 .50	24,6 .97	299 4260	984 14000	177,8 7.00	0.833
aumentos intermitentes de presión.	2781-10	- 10	15,8 .62	27.7 1.09	228 3260	773 11000	203,2 8.00	0.922
3erna de Temperaturas: —40°C a +93°C —40°F a +200°F). Excede SAE100R2A	2781-12 ->	- 12	19,1 .75	31,8 1.25	211 3000	633 9000	241,3 9.60	1,190
Conexiones: Páginas 35 a 37.	2781-16 →	16	26,4 1.00	39,6 1.56	176 2500	562 8000	304,8 12.00	1,577
	2781-20	20	31,8 1.25	50,8 2.00	158 2260	467 6500	419,1 16,50	2.574
	2781-24	24	38,1 1.50	57,2 2.26	123 1750	362 6000	508,0 20.00	3,060
	2781-32	- 32	50,8 2.00	69,9 2.75	106° 1500°	316 4600	635,0 26.00	4,020

^{*88} kg/cm² (1260 lpc) cµando se usan conexiones reutilizables.

TABLA PARA SELECCIONAR MANGUERAS DE BAJA PRESION

1/(20)

MANGUERAS PARA BAJA PRESION

EC 200

EC 202

1525

2556

	-
1525 Construcción: Tubo co, refuerzo de una trenza textil resistente	interior de caucho sintéti- trenza textil, cubierta de a aceites y moho.
Usos: para gasolina, bles y lubricantes, aire	aceites crudos, combusti-

Gama de Temperatures: -40°C a +33°C (-40°F a +200°F) excepto con sire +71°C . (+160°F) méximo.

Conexiones: SOCKETLESS, Página 21.

	1					acun	30	
Númere de Parte	Tamahe Manguera	D.I. Manguera	D.E. Manguera	Presión para Trabajar	Preside Minime e Reventar	Radio Minimo a Doblar	Servicie 8 Vacio	Poss pos mt(kg)
1525 4	4	6,4 .25	12.7 .50	18 250	70 1000	76.2 3.00	711 28	0,104
1625 - 6	6	9,7 .38	15,8 .62	18 260	70 1000	76,2 3.00	711	0,134
1626 - 8	0	12,7 .50	19,1 .76	18 260	70 1000	127.0 6.00	711 28	0,179
1525 10	-10	15,8 .62	23,1 .91	18 250	70 1000	152,4	457 18	0,238
1626 12	12	19,1 .75	28,2 1.03	18 250	70 1000	177,8 7.00	457 18	0,268

interior de caucho sinté trenza textil, cubierta d

Usos: Para gasolina, aceites crudos, combustibles y lubricantes, aire y agus.

Gama de Temperaturas: -40°C a +93°C (-40°F a +200°F) excepto con aire +71°C (+160°F) máximo.

Conexiones: SOCKETLESS,* Página 21.

-4	6,4 .25	12.7 .60	18 250	1000	76,2 3.00	711	0,111
6	9,7 .38	16,8 .62	18 250	70 1000	76,2 3.00	711	0.164
-8	12,7 .60	19,1 .75	18 260	70	127,0	711	0,238
- 10	15,8 .62	23,1 .91	18 250	70 1000	152,4	711	0,297
-12	19,1 .75	26,2 1.03	18 250	70 1000	177,8 7.00	457 18	0,342
	-8 -10	-6 9,7 .38 -8 12,7 .50 -10 15,8 -62	-6 9.7 16.8 .62 19.160757510629112 19.126.2	-6 9,7 16,8 18 .38 .62 260 -8 12,7 19,1 18 .60 .75 260 -10 15,8 23,1 18 .62 .91 250 -12 19,1 26,2 18	-6 9,7 15,8 18 70 1000 -8 12,7 19,1 18 70 1000 -8 .60 .75 260 1000 -10 15,8 23,1 18 70 1000 -11 19,1 26,2 18 70	-6 9,7 16,8 18 70 78,2 38 .62 260 1000 3.00 -8 12,7 19,1 18 70 127,0 .60 .75 260 1000 5.00 -10 16,8 23,1 18 70 162,4 .62 .91 260 1000 6.00 -12 19,1 26,2 18 70 177,8	-6 9,7 15,8 18 70 76,2 711 -8 12,7 19,1 18 70 127,0 711 -6 .60 .75 250 1000 5.00 28 -10 15,8 23,1 18 70 152,4 711 -12 19,1 26,2 18 70 177,8 457

EC200/EC202

Construcción: Tubo Interior de caucho sintético, refuerzo textil y cubierta color amerillo de caucho simético.

Usos: Servicio general en lineas de sire a baja presión.

Gama de Temperaturas: -40°C a +93°C (-40°F a +200°D) excepto con sire +71°C (+160°F) máximo.

Conexiones: SOCKETLESS,* Página 21.

EC 200-04	04	6,4 .25	12,7 .50	14 200	56 800	76,2 3.00	711 28	0,104
EC 200-06	-06	16,8 .38	14 .62	56 200	76,2 900	3.00	711	0.144
EC 200-08	08	12,7 .60	19,1 .76	14 200	56 800	127,0 6.0	711	0,178
EC 202-12	-12	19,1 .75	30 1.18	28 400	1·12 1600	190	467 18	0,534

NOTA Manguera EC202, está reforzada con 2 tranzas, rayón y algodón, para trabajo a 400 LPC.

Cifras en tipo negro - Dimensiones en mm, presiones en kg/cm² y mm de mercurio. Cifras en tipo claro - Dimensiones en pulgadas, presiones en ipo y pulgadas de mercurio.

CARTA PARA SELECCION INSTALACION

DE FILTROS DE SUCCION fluids, including phosphate esters and water based fluids. affect capacity. viscosity should not materially with all commonly used hydraulic order that a change in oil Selection of size and number of elements may be made on basis chart. Ratings are conservative in of tabulated capacities listed on FLUIDS AND SEALS These strainers are compatible RATINGS

washing thoroughly in suitable solvents and blowing with air elements from oil reservoir, periodically by removing Cleaning should be done (from inside to outside). SERVICE INFORMATION

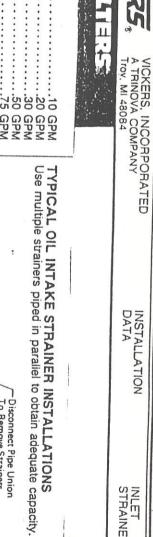
× 0000005	000000		• •		< o o = : :	" 50 - 12 ::	10 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J 4. "GH	Z # # # # # # # # # # # # # # # # # # #			D 5.7.1.0 m	= < 3< 010 ::	C " is to als		> 유리로리크 ' '	2 00 → 10	2 30474	5 "5584199 ::	나 열광교관회의 수 : .	A FORESCO A	C aga volle A no	- e3 e s 3 = 20 E 3	L SELPCIPI BY	A KERRUIT TO	元 で で で で ご ご ご ご ご ご ご ご ご ご ご ご ご ご ご	ת הייצובהסס מ	
בתוחווות ביי		WEIG WEIG OF3-1 OF3-2 OF3-2	WEIG OF3-0 OF3-1 OF3-2 OF3-2	₹ 000000	. 000000≤	ç π α Γ 2 000000 ≤	. ठे८ छं _{ड़ि}	in	G	The ships for the by-	mesh on the by-	enings for coass with .006 oth the by-	60 mesh openings for openings f	e 60 mesh openings for openings for openings for own, pass with 1,006 owith the by-	ve 60 mesh openings for openings for openings for openings for openings for openings with the by- openings wit	ave 60 mesh O cpenings for O e by-pass lesh with .006 o esh with the by-O esh with t	have 60 mesh 10 openings for on the by-pass on the by-pass of the by- dels with the by- GUIDANCE M	s have 60 mesh UITO openings for the by-pass mesh with .006 odels with the by-	tts have 60 mesh on 1.010 openings for on the by-pass on mesh with .006 on odels with the by-	ents have 60 mesh on the by-pass 100 mesh with .006 models with the by- on th	TION GUIDANCE WA	TION ements have 60 mesh on with .010 openings for ovithout the by-pass and 100 mesh with .006 or on models with the by- ture. ATION GUIDANCE M	ATION Welements have 60 mesh on without the by-pass and 100 mesh with .006 os and models with the by-oature.	3-24 RATION REPRESENTATION REPRESENTATION	ation TRATION Well elements have 60 mesh costs with 500 openings for older with 500 openings for older and 100 mesh with 500 or and 100 mesh with 500 onings on models with the bysis feature.	CF3-24 tration WETRATION CTRATION CHARTION CHARTION		FILTRATION FILTRATION Monel elements have 60 mesh or 70 models without the by-pass feature and 100 mesh with .006 openings on models with the by-pass feature. APPLICATION GUIDANCE MONE

MODEL OF3 - 08 - (3RV) -N CODE 1.8 w 4 10 3 ibs. SGI

Access Opening Should Be Provided So That Strainers May Be Removed For Cleaning Without Draining Oil From Tank

Pump Intake Connection
"A" NPTF Pipe Thd.—

Maximum Flow Capacity
OF3-08
OF3-10
OF3-12
OF3-12
OF3-16 See below .100 GPM


Pump Intake Connection

Pipe Joints Submerged

Oil Level-

Disconnect Pipe Union Thru Cover For Cleaning To Remove Strainers

.......

TYPICAL OIL INTAKE STRAINER INSTALLATIONS

INSTALLATION

STRAINERS NLET

design number 10 through 19. dimensions remain as shown for Subject to change, Installation Port Size (NPTF BOIGH MONTHOS Inlet Strainer DIMENSIONS Model Number OF3-16----10 OF3-12----10 OF3-10----10 OF3-08----10 Hated Capacity GPM 0 50 30 20 10 Min. Screen Area (Sq. In.) 340 340 160 110 B Dia. 1-1/2 1-1/4 3.38 N D 3.94 3.94 2.63 ϖ ±.125 9.78 9.85 6.85 5.35

	===	١.,
Design Number	t if not required).	by-rass reature
	70	

OF3-24----10 OF3-20----10

100

500 400

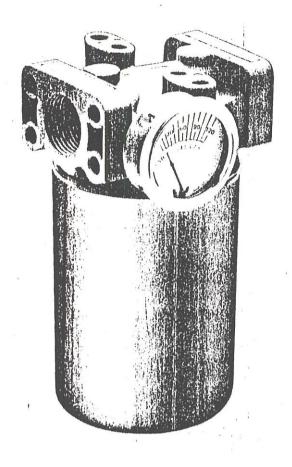
2-1/2 | 5.12 |

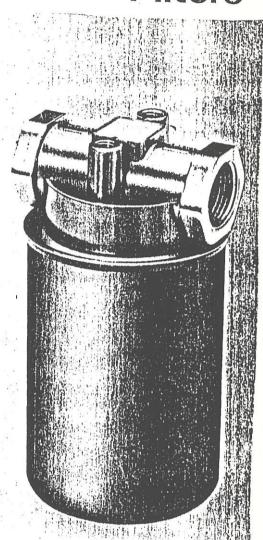
10.10

5.12

75

3RV - 3 PSI (On

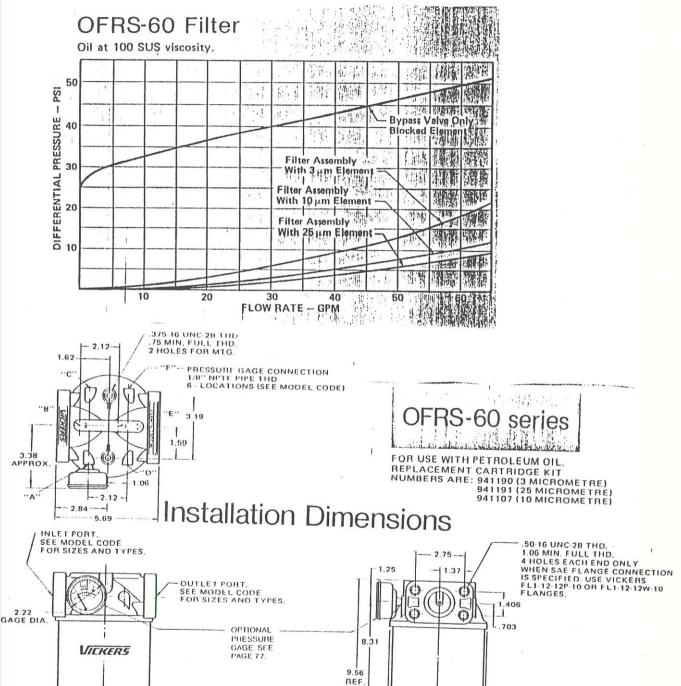

ω


08-1" 10-11%" 12-11%" 16-2" 20-21%"

[2]

ESPECIFICACIONES TECNICAS PARA SELECCIONAR E INSTALAR EL FILTRO DE RETORNO

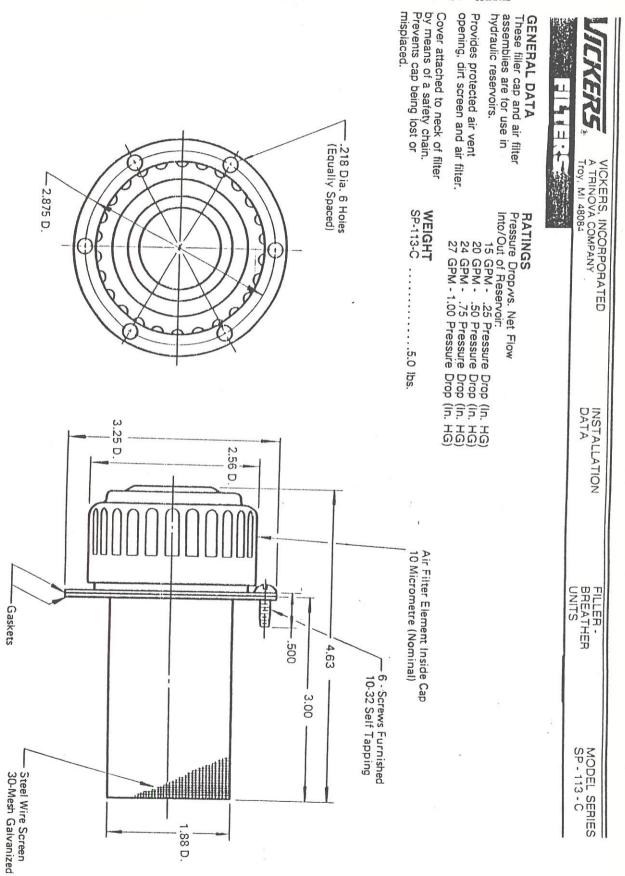
Filters


Specifications

MODEL SERIES	MAX. FLOW (GPM)	MAXIMUM FULL FILTERED FLOW (GPM)	MICRO- METRE RATING (NOMINAL)	BETA 10 RATIO (TIME WEIGHTED AVERAGE)	CON- TAMINANT CAPACITY (GRAMS AC FINE DUST)	BYPASS VALVE SETTING (PSI)	OPERATING TEMP.	MAX. INLET PRESS. (PSI)	APPROX DRY WEIGHT
OFRS-15	50	15	10	2.8	10	10 or 25	Charleton	- 1	N. A. A.
OFRS-25	50	25	10	2.8	10	1013.63	-40° TO	1,	2.0
OFRS-60	125	60	3	40	16	25	2250E	100 t	15 1 PA 194
			10	2.8	25		5. 机工作	144	44

†80 for OFRS-25 without bypass valve.

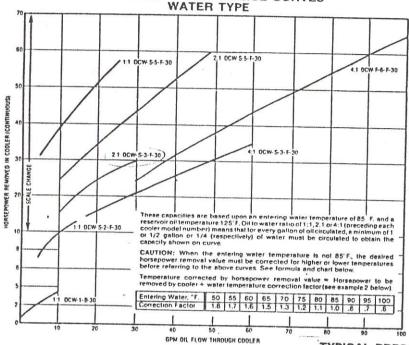
Typical Performance


1.31 CLEARANCE REQURED FOR REMOVAL OF CARTRIDGE

5.06 D.

5,38 D. -

CARTA PARA SELECCIONAR E INSTALAR EL FILTRO DE AIRE

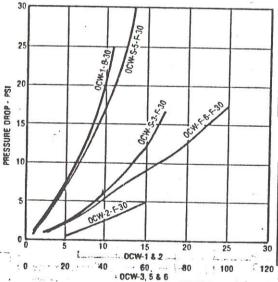

OIL COOLERS WATER TYPE

CURVAS PARA LA SELECCION DEL ENFRIADOR DE ACEITE TYPO AGUA

RATINGS

Maximum Operating	Pressure	
Maximum Operating	Temperature	nart.
Flows	TemperatureSee ch	50°F
	See performance cun	VPS

SIZING AND PERFORMANCE CURVES



APPLICATION GUIDANCE

Cooler Sizing
The size of the Vickers water type oil cooler required for a particular set of conditions can be selected from the curves shown above. When entering water temperature is other than 85°F the actual capacity of the cooler is greater or less than the curve values depending upon whether the water temperature is respectively lower or higher. (See 'caution" note on chart.)

When the required flow exceeds the maximum capacity of the largest cooler, two smaller coolers of equal size should be used in parallel.

TYPICAL PRESSURE DROP CURVES SHELL SIDE **VS. FLOW RATE**

OIL FLOW - GPM

Press	ure Correction	Factor (OCW	-30)
Viscosity (SSU)	Low Flow	Median Flow	Max. Flow
100	1.0	1.0	1.0
175	1.75	1.68	1.42
300	3.17	3.00	2.34
475	5.33	4.50	3.54

Pres	sure Correction	Factor (OCW-1-B	-30)
Viscosity (SSU)	Low Flow	Median Flow	Max. Flow
100	1.0	1.0	1.0
	1.24	1.14	1.04
300	1.97	1.49	1.09
475	2.48	1.73	1.36

MAXIMUM OPERATING PRESSURE

Model '	OCW-1	OCW-S-2/3/4/5	OCW-F-6
Shell Side	200 PSI	500 PSI	400 PSI
Tube Side	150 PSI	150 PSI	150 PSI

VICKERS, INCORPORATED
A TRINOVA COMPANY
Troy, MI 48084

INSTALLATION
DATA

OIL COOLERS -WATER TYPE

ACCESSORIES .

DIMENS IONES DEL ENFRIADOR ACEITE VALVULA Y DE CONTROL MAGNETICO DE PASQ DE

Oil Out — (Shell Side)

m

(Shell Side)

Ö

AGUA

exchanger, and the heat water-flow-through the heat

Since the valve controls the

exchangers cools the fluid

6.38

counterclockwise; to increase

turn clockwise.

control valve adjusting screw

temperature, turn the temperature

. Cal Screw-

-6.00 -3.00-

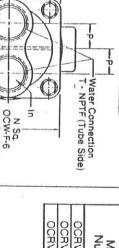
;

3.19

1

TEMPERATURE CONTROL VALVE - REVERSE ACTING

MODEL SERIES OCRY-1-0*-10


100

111

.62 D

Temperature Adjustment To decrease the hydraulic fluid

settings should therefore be made 1/2 turn at a time with an hour or so between changes. temperature. Changes in valve a change in reservoir oil valve and water flow to show as minutes for an adjustment of the probably require 30 to 60

Model	
Inlet & Outlet Npt Thd.	
Pressure Rating	—6' Flexible Armor Protected Capillary
Temp.	mor apillary

-3/4" NPT

-Outlet

inlet

7.19

4.00

OCRV-1-06-10 OCRV-1-08-10 OCRV-1-04-10 Double Union 3/4 (SSU) 125 0 afiner 145. 105. ö

WATER	STRAIN	IERS MC	DEL SER	WATER STRAINERS MODEL SERIES OCST-1-0*-10	1-010	
Model			Dimensions	ns		Wgt
lumber	D	œ	C	0	m	(Approx.)
ST-1-04-10	1/2	2.50	1.500	2.156	1/4	_
ST-1-06-10	3/4	3.50	2.187	3.125	1/2	2

Ü

TWO PASS

R - Slots 4 Places

0

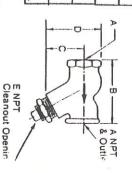
OCST-1-08-10

3.50

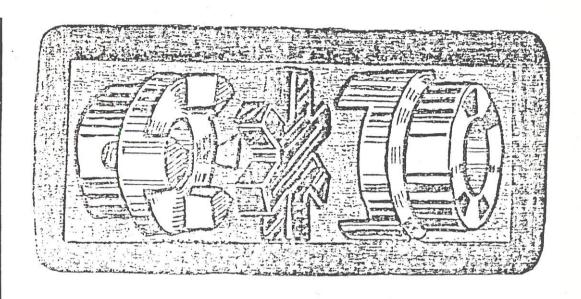
2.187

3.125

1/2

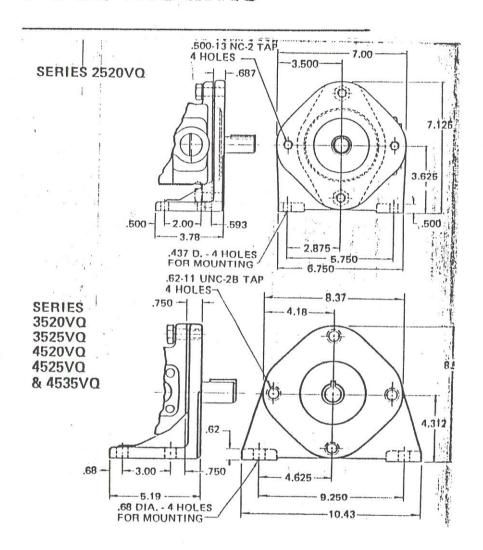

Ġ

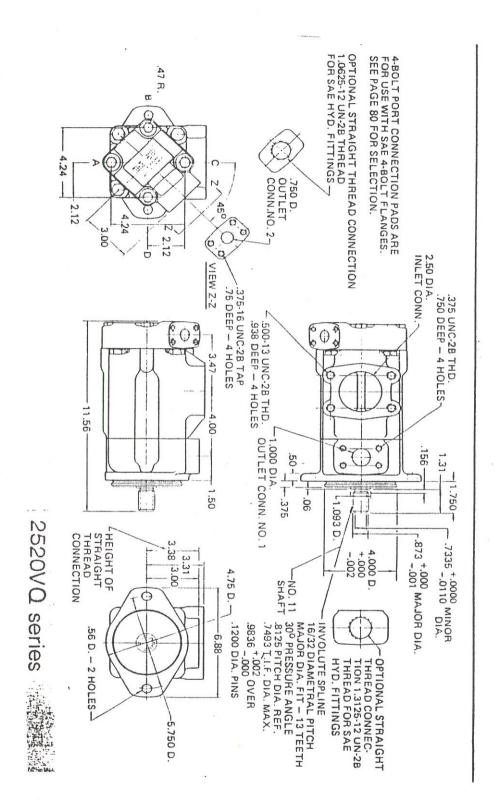
Ont Out


Has Round

Bonnet

	OCW-T-6-T-30	OCW-9-5-1-30	OCW-S-3-F-30		Model
		N			Passes
:	4:1	2:1 0			Oil To Water
CW-S	9.0	15.0	9.0	Þ	
100	12.0	18.0	12.0	σ	
at 1:1	15.5	15.0 18.0 20.75 2.88 20.7	9.0 12.0 14.75 2.88 14.7	0	
50	4.06	2.88	2.88	O	
•• OCW-S-6-F-30 at 1:1 oil to water ratio can be used in place of OCW-4-F-20 previously in OCW-5-6-F-30 at 1:1 oil to water ratio can be used in place of OCW-7-F-20 previously in the control occurrence of OCW-7-F-20 previously in the control occurrence	9.0 12.0 15.5 4.06 17.12 .81 2.0 4.0 3.5 6.75 4.0 3.25 6.5 D	20.7	14.7	m	
abo ca	.81	.0.	.01	n	
88	2.0	1.5	1.5	മ	
5 5 5	. 4.0	3.0	3.0	I	
place	မ	2.62	2.62	د	
88	6.75	4.53	4.53	<u>ر</u>	Dimer
N-4-F-	4.0	.01 1.5 3.0 2.62 4.53 2.25 1.91 3.82	.01 1.5 3.0 2.62 4.53 2.25 1.91 3.82		Dimensions
o prev	3.25	1.91	1.91	3	
Arsnor	6.5 D	3.82	3.82	z	-
marketed.		1.00	1.00	ס	
88	1.19 .44×1.0 .120	2 1.00 .44 × .75		20	
	.120		.104	S	
-	1.50-11.5 2" SAE NPTF 4 Bolt Fig	1.00-11.5 NPTF	1.00-11.5 NPTF	1	
	2" SAE 4 Bolt Fig.	1.625-12 UN	1.625-12 UN	<	


APENDICE J.1 TABLA DE SELECCION DE MATRIMONIO MECANICO


1	BIR OF THE PARTY O	COM PT. NCH.					***************************************	I. HOME		
H. P. A	TRA	NS H.	IT!R Y	' sus	CAR	ACTE	RIST	ICAS	EN n	n/m.
R. P. M.	Ref:	L75	L90	L95	L 99	L100	L125	L150	L190	L225
100	Н. Р.	0.1	0.3	0.4	0.5	0.8	1.0	1.5	2.5	4.0
600	11. P.	0.4	0.8	1.2	1.8	2.7	4.5	7.5	11.0	15.0
1 2 0 0	Н.Р.	0.7	1.4	2.2	3.5	5.0	8.5	15.0	22.0	30.0
1.300	Н.Р.	1.0	2.0	3.0	5.0	7.5	12.0	20.0	30.0	40.0
2.400	Н.Р.	1.3	2.7	4.0	5.4	9.5	15.0	24.0	37.0-	50.0
3.600	Н.Р.	2.0	4.0	5.4,	7.5	11.0	19.0	30.0	45.0	60.0
Máximo Or	ificio	3/4"	7/8"	. 1"	11/8"	11/4"	11/2"	1.5/3"	.2"	21/4"
Diámetro Ma	nzena	35	40	43	50	5 8	68	8.0	96	108
Diámetro c	uceta	45	53	53	63	63	78	94	110	125
Largo total A	Acople	53	60	53	70	82	94	108	125	135
Peso Aprox.	Kilos	.4	.6	.8	1.2.	1.5	2.5	4,	5.5	9

APENDICE J.2 DIMENSIONES DEL SOPORTE DE LA BOMBA DOBLE

Foot Mounts

APENDICE J.3 DIMENSIONES DE BOMBA DOBLE E INSTALACION DE BRIDAS

nstallation Dimensions

1	Г	1-	7-	C	AR	ľΑ	السا	E SI	1	ECCION DE BRIDAS DE CONECCIO	N
	EL1-10-10F-10			EL178-080-10		EL1-6-0EP-10		NPTF Pipe Threaded	trodel Number		
FL1-10-10W-10			FL1-8-08W-10					Pipe Welded		RATINGS Pipe Sizes THREAD THREAD F F F F F F F F F F F F F	
		1 525-12 (1-1/4 Tube)			1.3125-12 (1.0 Tube)		1.0625-12 (3/4 Tube)	SAE Straight Thread	1	M .	
1-1/4	1-1/4			1		3/4		NOTE, or Nominal Pipe Size).	C Screw Thd. 7 "C" Screw Thd. 7 "A" Thread. Nat Straight or	כוד
2.58		2.88	2.31	-numb	2.31		2.06	æ		TION Tion Tion Fia Fia Fia Fia Fia Fia Fia Fi	MODEL FL1-*-
7/16-14		7/16-14	3/8-16	-	3/5-16	-	3/8-16	O		ON Dia. Di	(10 0 00 100
3.12		3 10	2.75		2.75		2.56	Ö		See chart.	SERIES *** - 10
1.15	:	200	1.83	į	Ē	-	23	m		hart	*
2312		0 240	2.062	!	2062		1 875	П			
200		5	.52	÷	3	į	3	മ		- n	
1 100	1.188		1.032	1.032	200	.070	975	ı			8
	1		3		3	./2	4	د_		PIPE W	=
	1		: 333	1		1		Ж		WELD CONN "C" Screw Thd. "C" Dia. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 , .
	90		. 1			ż		r		50 mil in 1711	
	ı	250	2000	1		1		₹		Flange Mo	FLAN SAE 4
	1.8	1	2	1.3		1.25		z		ECTION Flange Mounting Surface, Must Be Flat And Smooth,	ANGES . E 4-BOL
			- 1		L			Maximum Pressure (PSI)		face.	FLANGES - SAE 4-BOLT SOLID

CARTA DE SELECCION DE LA VALVULA DE DESCARGA

Printed in U.S.A

PRESSURE CONTROLS

MODEL SERIES R(C)* - 03/06/10/12 30 DESIGN

SEQUENCE, UNLOADING. **BACK PRESSURE &** COUNTERBALANCE VALVES

GENERAL DATA

Vickers "hydrocushion" type pressure control valves are used to control the sequencing, unloading, back pressure and counterbalancing of oil flow in hydraulic systems. Control is initiated by a pressure rise which can be sensed either internally (directly) or remotely. Models are available with or without integral reverse free flow checks.

PRESSURE ADJUSTMENT

Pressure ranges (see model code) are maximum controllable. and each model selected should be well within the range given to afford fine increments of adjustment. Pressure setting must be 250 PSI lower than the system relief valve setting. Adjust pressure by loosening jam nut and turning adjusting screw. Clockwise rotation increases pressure; counterclockwise rotation decreases pressure.

INSTALLATION DATA

All R(C)T and R(C)S models have optional pressure inlets connected by a through passage. Hence, the valve may be mounted "in-line", or it may be teed to a line by using either pressure inlet and plugging the

The remote pressure control connection on type 3 and 4 valves must be connected to an external pilot pressure source sufficient to operate the valve at the desired pressure setting and flow conditions.

RATINGS		
†Rated Capacity:		
1100		CDAA
	3000	
† Rated capacities are based on using of 100 SUS.	oil having a specific gravity of .865 and a visc	cosity

MODEL CODE

10	200	101						
r3	H	(C)	*	na .	. R	P	1 - 3*	
		1 /		-	R.J		1 " 3"	

1 2 3 4 5 6 7 8 9

Special Seals

(Mounting interface - 'R(C)G' models only.) F3 - For synthetic fluids. Omit for

R(C)S and R(C)T models. 2

Pressure Control Valve

3 Reverse Free Flow Check

4 **Threaded Connections** G - Manifold or subplate.

S - Straight threads. T - Pipe threads.

5 Valve Size

03 - 3/8" pipe or .7500-16 UNF-2B straight thread (.500 tubing).

06 - 3/4" pipe or 1.0625-12 UN-2B straight thread (.750 tubing).

10 - 1-1/4" pipe or 1.6250-12 UN-2B straight thread (1.250 tubing).

12 - 1-1/2" pipe or 1.8750-12 UN-2B straight thread (1.500 tubing) - not available in RG or RCG models. Pressure Adjustment Range

X - 10 to 30 PSI Y - 20 to 60 PSI

Z - 35 to 125 PSI

A - 75 to 250 PSI B - 125 to 500 PSI

D - 250 to 1000 PSI

F - 500 to 2000 PSI

7 Auxiliary Remote Pressure Control Connection

Not available with "X", "Y" or 'Z" pressure adjustment ranges or in R(C)G-03 models. (Omit if not required.)

Valve Type

1 - Back pressure or counterbalance.

Internally operated sequence.

3 - Remotely controlled sequence.

4 - Remotely controlled unloading or counterbalance.

Design Number Subject to change. Installation dimensions remain as shown for design numbers 30 through 39.

VICKERS, INCORPORATED
Troy, MI 48084

INSTALLATION PRESSURE

MODEL SERIES CONTROLS R(C) - 03/06/10/12

CAIDAS DE PRESION EN LA VALVULA DE DESCARGA

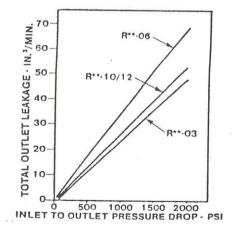
PRESSURE DROP

	Revers	se Free Flow	Pressure Dro	p - PSI
w 1 + 3.71 1	RC*-03	RC+-06	RC*-10	RC+-12
Flow - GPM	12	30	50	50
P - PSI	80	50	40	35

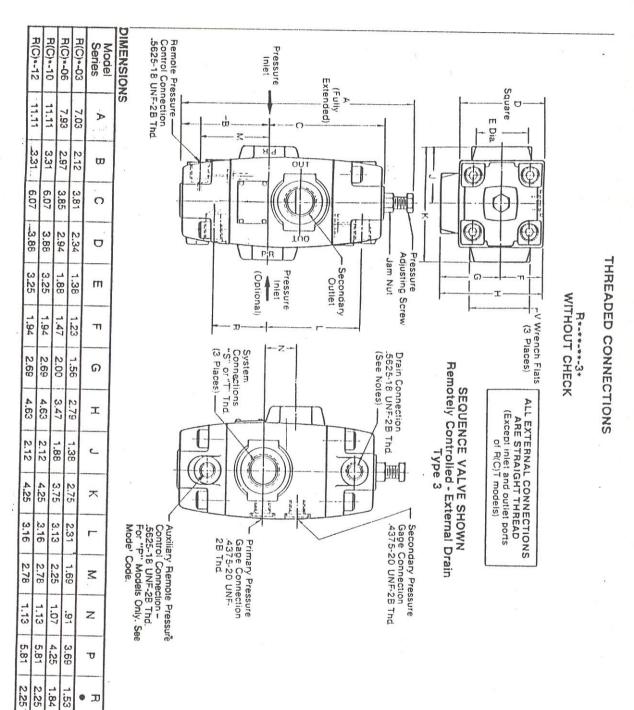
- Figures in the pressure drop chart give approximate pressure drops (△P) when passing flow of 100 SSU fluid(s) having .865 specific
- gravity.

 2. For any other flow rate (Q_1) , the pressure drop $(\triangle P_1)$ will be approximately: $\triangle P_1 = \triangle P(Q_1/Q)^2$ 3. For any other viscosity(s), the pressure drop $(\triangle P)$ will change as

	-						
Other Viscosity(s)	75	150	200	250	300	350	400
% of △P (Approx.)	93	111	119	126	132	137	141


4. For any other specific gravity (G₁) ■ the pressure drop (△P₁) will be approximately:

$$\triangle P_1 = \triangle P (G_1/G)$$


■ Specific gravity of fluid may be obtained from its producer. The value is higher for fire-resistant fluids than for oil.

MAXIMUM TOTAL LEAKAGE vs. PRESSURE DROP (100 SSU [21 cSt] Fluid Having .865 Specific Gravity)

NOTE: Leakage is approximately proportional to viscosity in centistokes.

APENDICE K.3 DIMENSIONES E INSTALACION DE LA VALVULA DE DESCARGA

CARTA DE SELECCION DE LA VALVULA DE ALIVIO

PRESSURE CONTROLS

MODEL SERIES C* - 03/06/10 50 DESIGN (03/06 SIZE) 30 DESIGN (10 SIZE)

RELIEF AND "Y" TYPE SEQUENCE VALVES

GENERAL DATA

Inlet and outlet pressure connections may be used interchangeably when the valve is mounted in the pressure line, or the valve may be teed off the pressure line with one of the inlet pressure connections plugged.

RELIEF VALVE

Includes applications requiring an adjustable pressure relief or regulating valve to limit the pressure in an oil circuit to the desired maximum. In addition to conventional relief valve operation, two other operational features are provided:

1. System pressure may be limited to the relatively low venting pressure by directing flow from the vent connection

to tank.

2. System pressure may be remotely controlled by directing flow from the vent connection to a remote control pressure relief valve (C-175, installation drawing 510200 or CGR-02 drawing 510100).

The pressure setting of the relief valve selected should be approximately 150 to 200 PSI above the actual system working pressure. A higher setting may waste power and impose unnecessary loads on the pump and other system components.

PRESSURE ADJUSTMENTAS Pressure is adjusted by loosening the jam nut and turning the control knob. Clockwise rotation increases pressure: counterclockwise rotation decreases pressure.: :

RATINGS

Pressure (maximum) See "Specifications" chart.

SPECIFICATIONS

Model Number	Pressure Range bar (PSI)	L/Mir	ted Flow n. (USGPM)	
CC 02 D 5		Standard	"H" High-Flow	
CS-03-B*-5*	8.5-70 (125-1000)		<u> </u>	
CS-03-C+-5+	35-140 (500-2000)	170 (45)	200	
CS-03-F+-5+	105-210 (1500-3000)	(,0)		
C*-06-B*-5*	8.5-70 (125-1000)		340 (90)	
C*-06-C*-5*	35-140 (500-2000)	227 (60)		
C+-06-F+-5+	105-210 (1500-3000)	227 (00)		
C+-10-B+-3+	8.5-70 (125-1000)			
C*-10-C*-3*	35-140 (500-2000)	454 (120)	680 (180)	
C*-10-F*-3*	105-210 (1500-3000)	104 (120)		

MODEL CODE

*-H **-* Y - **

12345678

1 Relief or Sequence Valve

2 Threaded Connections

S - SAE straight thread T - NPTF thread

3 High Flow

("CS" models only) Omit for standard models. Not available in 03 size or "Y models.

4 Valve Size

03 - .8750-14 UNF-2B straight thread (.625 tubing)

- 1.0625-12 UN-2B straight thread (.750 tubing) or 3/4" pipe'
10 - 1.6250-12 UN-2B

straight thread (1.250 tubing) or 1-1/4" pipe

5 Pressure Range

B - 8.5 to 70 bar (125 to 1000 PSI)

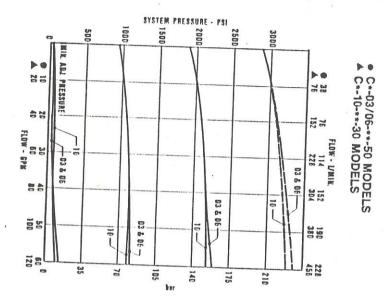
- 35 to 140 bar (500 to 2000 PSI)

F - 105 to 210 bar (1500 to 3000 PSI)

High Vent Spring (Required in high flow models.) Omit if not required.

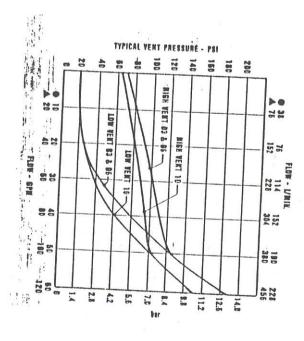
Sequence Feature Omit in relief valve models. Not available in 03 size.

Design Number 5* - For 03 and 06 size valve. 3. - For 10 size valve. Subject to change. Installation dimensions remain as shown for design numbers 50 through 59 for -03 and -06 valves, and 30 through 39 for -10 size valves.

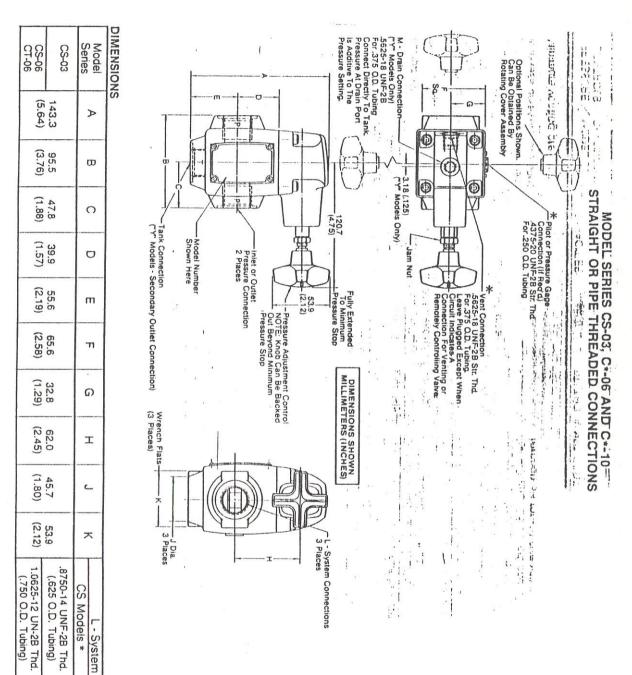

A TRINOVA COMPANY

DATA Troy, MI 48084

PRESSURE MODEL SERIES CONTROLS C. - 03/06/10



APENDICE L.2 CURVAS DE RENDIMIENTO DE LA VALVULA DE ALIVIO



TYPICAL PERFORMANCE CURVES NOMINAL OVERRIDE CHARACTERISTICS

APENDICE L.3

DIMENSIONES E INSTALACION DE LA VALVULA DE ALIVIO

Connections

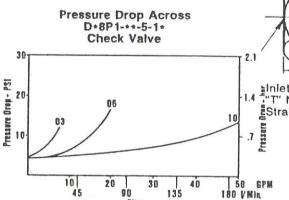
CT Models
Not Available
in '03' Size

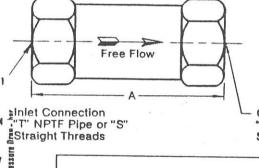
3/4 NPTF Thread

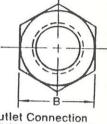
APENDICE M

CARTA DE SELECCION DE LA VALVULA ANTIRETORNO

CHECK VALVES


MODEL SERIES D*8P1-** 1* DESIGN


INLINE TYPE


GENERAL DATA

For use in fluid power systems using petroleum or fire-resistant fluids. Rated capacity based on using hydraulic oil having a viscosity rating of 150 SSU @ 100°F. No elastomer seals are used.

RATINGS

Outlet Connection "T" NPTF Pipe or "S" Straight Threads

CAUTION

DO NOT USE this valve to check a high velocity reverse flow resulting in shock conditions. (See typical applications, page 2.)

Where such conditions exist, Vickers C2-8** "right angle" check valve MUST BE USED.

SPECIFICATIONS

Number	"S" Straight Threads	"T" NPTF Pipe Thd.	Capacity 1/min. (USGPM)	Cracking Pressure bar (PSI) ●		neters hes) B	Weight Kg (Lbs.) (Approx.)	
DT8P1-02-5-10				.35 (5)	1			
DT8P1-02-30-10		1/4	12 (3.2)	2.11 (30)	57.2	22.4	.1 (1/2)	
DT8P1-02-65-10				4.57 (65)	(2.25)	(.88.)	., (1,/2)	
D*8P1-03-5-10	7500 10		The state of the s	.35 (5)	+	-		
D*8P1-03-30-10	.7500-16	.7500-16 UNF-2B	3/8	30 (8)	2.11 (30)	76.2	25.4	24 (2/4)
D*8P1-03-65-10	0141-28			4.57 (65)	(3.00)	(1.00)	.34 (3/4)	
D*8P1-06-5-11			11	.35 (5)				
D*8P1-06-30-11	1.0625-12 UNF-2B	3/4	76 (20)	2 11 (30)	98.6	38.1		
D*8P1-06-65-11	OIAL-58		, , , , , , , , , , , , , , , , , , , ,	4.57 (65)	* (3.88)	(1.50)	.68 (1-1/2)	

WICKERS, INCORPORATED INSTALLATION PCHECK SQ. Troy, MI 48084

DATA -VALVES: MODEL SERIES D*8P1 - ** 1 DESIGN

CARTA DE SELECCION DE LA ELECTROVALVULA DIRECCIONAL

Printed in U.S.A

DIRECTIONAL CONTROLS

MODEL SERIES DG4S*-01 50 DESIGN

TWO & FOUR-WAY DIRECTIONAL VALVES

GENERAL DATA

The primary function of these four-way directional valves in a hydraulic circuit is to direct fluid flow. This, in turn, would determine the direction of movement of a fluid cylinder, or the direction of rotation of a fluid motor.

APPLICATION GUIDANCE

Surges of oil in a common tank line serving these and other valves can be of sufficient magnitude to cause inadvertent shifting of these valves. This is particularly critical in the nospring detented type valves. Separate tank lines or a vented manifold with a continuous downward path to tank is necessary.

Any sliding spool valve, if held shifted under pressure for long periods of time, may stick and not spring return due to fluid residue formation and, therefore, should be cycled periodically to prevent this from happening.

When used as other than a normal 4-way valve, consult your Vickers representative.

Mounting Position

No-spring detented valves must be installed with the longitudinal axis horizontal for good machine reliability. Mounting position of spring-offset and spring-centered models is unrestricted.

RATINGS

7171111100	
Recommended Flow Capacity	See chart below.
Maximum Operating Pressure	3000 PSI
Maximum Tank Line Pressure	See chart page 4.
Mounting Pattern ISO	-4401-05/NFPA-D05 (formerly D02) and
	ANSI-B93.7

FLOW RATINGS

Valve Type	Spool Type	Recommended Flow Capacity liters/min (GPM)	Maximum Flow Without Malfunction▲ liters/min (GPM)		
No-Spring Detented 4-Way	0,2,6,7,33	38 (10)	76 (20)		
Spring Centered	0,2,3,6,7,33				
Spring Offset-4-Way	0,2,6				
Spring Centered	8	30.3 (8)	45.5 (12)		
Spring Centered	1	18.8 (5)	18.8 (5)		
No-Spring Detented 2-Way	2	11.3 (3)	, 11.3 (3)		
Spring Offset-2-Way		, .	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

A Maximum flow is dependent upon the valve type used and is subject to variation due to changes in operating pressure or tank line back pressure. If operating pressure and tank line back pressure simultaneously approach maximum, or if higher flow rates are desired, contact your Vickers representative.

VICKERS, INCORPORATED A TRINOVA COMPANY Troy, MI 48084

INSTALLATION DATA SOLENOID OPERATED (AIR GAP TYPE)

APENDICE N.2

DIMENSIONES E INSTALACION DE LA ELECTROVALVULA DIRECCIONAL

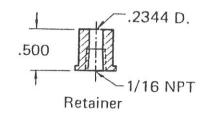
DOUBLE SOLENOID, NO-SPRING DETENTED & SPRING CENTERED MODELS Typical Model No: DG4S4-01*C-50 See Page 517401-3 For Single Solenoid Model

APENDICE N.3

CARACTERISTICAS TECNICAS DE LA ELECTROVALVULA DIRECCIONAL											
		DG4S4*-0133C-50	DG4S4*-018C-50	DG4S4*-017C-50	DG4S4*-016C-50	DG4S4*-013C-50	DG4S4*-012C-50	DG4S4*-011C-50	DG4S4*-010C-50	Spring Centered Spring Offset Energize to (FLOW RATINGS
	DG4S2*-012A-50				DG4S4*-016A-50		DG4S4 012A-50	DG4S4*-011A-50	DG4S4 010A-50	Spring Offset	AND GRAPH S
				DG4S4*-017F-50	DG4S4*-016F-50	DG4S4*-013F-50	DG4S4*-012F-50	ı	DG4S4*-010F-50	Energize to Center	SYMBOLS
	N	జ	ω	7	σ	ω	20	_	0	Spool Type	
	7 1 P D D D D D D D D D	"				سال ا		¬		Center	
	Closed Center Crossover	Closed Center Bleed A & B	Tandem Open Crossover	Open Center T Blocked	Closed Center P Only	Closed Center P & B	Closed Center All Ports	Open Center P & A	Open Center All Ports	Description	
	2.14 (31)	2.14 (31)	1.45 (21)	1.93 (28)	2.14 (31)	2.14 (31)	2.14 (31)	2.14 (31)	1.93 (28)	D I A	
	Blocked	2.28	1.65	2.28	1.65 (24)	2.41 (35)	2.41 (35)	2.41 (35)	1.65	97.85 II	
	2.14 (31)	2.14 (31)	1.45 (21)	1.93 (28)	2.14 (31)	2.14 (31)	2.14 (31)	2.14 (31)	1.93	itres/mi	
	Blocked	2.76 (40)	1.93 (28	2.76 (40)	2.28	2.28 (33)	2.76 (40)	2.56 (37)	2.28 (33)	Ire Drop bar (PSI) @ litres/min (10 GPM) P-B A-T P-	
			4.48 (65)						2.28	M) P-T Cent	
	3.45 (50) Drain Do Not Plug Tank Port	At Time Spool Shift Is Required 68 (1900) At Time Spool Shift Is Not Required 204 (3000) 3.45 (50) Drain Do Not Plun Tank Port								Maximum Tank Line Back Pressure bar (PSI)	

APENDICE N.4

CARACTERISTICAS DE LAS BOBINAS DE LA ELECTROVALVULA DIRECCIONAL


PORT ORIFICES DG4S4-01 INTERFACE

Orifices are available for insertion into the interface ports of the NFPA-DO2 size valves. These orifices are made from standard 1/16 NPT pipe plugs which are inserted into a retainer. The retainer and plugs are available from stock as follows:

000500	
222500	Retainer
62014	.031" D. Plug
66609	.040" D. Plug
237588	.060" D. Plug
82031	.094" D. Plug
81593	Blank Plug

The orifices must be ordered separate of the valve.

ELECTRICAL INFORMATION

Solenoids

Solenoids on models listed are for 15 Vac - 60 Hz service. Solenoids for other voltages and frequencies are available. Specify in model number if other than 115 Vac - 60 Hz service is desired. See model code.

Note

Solenoids are designed to function continuously at \pm 10 percent of the rated voltage.

Solenoid Current Approx. Maximum	Inrush amps	Holding amps	Holding	
 115 Vac - 60 Hz 230 Vac - 60 Hz 460 Vac - 60 Hz 	5.1 2.55 1.27	.61 .32 .16		
115 Vac - 50/60 Hz 6 Vdc • 12 Vdc	(50) 3.25 - (60) 4 97	(50) .56 - (60) .59 4.0 2.0		
• 24 Vdc		. 1.0	24	

Note

All solenoid coil wire insulation is Class "F". Standard solenoid coil lead wire has Class "A" insulation. "F3" solenoid coil lead wire is Class "F".

Solenoid Energizing

Spring centered and spring offset types will be spring positioned unless solenoid is energized continuously. No-spring detented valves may be energized momentarily, approximately 0.1 second; when solenoid is de-energized spool will remain in last position attained provided there is no shock, vibration, or unusual pressure transients.

* (Canadian Standards Association) Certification
Valves with solenoid voltages of 115 Vac 60, 230 Vac 60, 12 Vdc and
24 Vdc have Canadian standards certification. Identify by adding S324
suffix in the model code. This certification does not include models
with indicator lights (L) or plug-in devices (PA*/PB).

APENDICE O.1

CARACTERISTICAS GENERALES DE LA VALVULA REDUCTORA DE PRESION TIPO MODULAR

Válvulas reductoras/seguridad

Series DGMX2-5, diseño 30

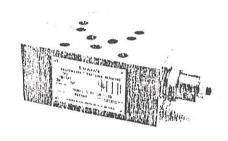
1. Descripción general

Estas válvulas de corredera de dos etapas, mantienen una presión reducida de salida con independencia de las variaciones de presión a la entrada superiores al taraje seleccionado de la válvula. Estas válvulas pueden actuar como válvulas de seguridad (al 50% del caudal máximo) para impedir que se cree una presión excesiva cuando un actuador está sometido a una carga reactiva. En este caso, el caudal de salida es dirigido al orificio "Tb". Por consiguiente, para que pueda realizarse la función de seguridad. todos los elementos componentes situados encima de este módulo DGMX2 deben llevar el orificio "Tb", lo mismo que la válvula direccional. El control del pilotaje puede efectuarse desde los orificios "P", "A" o "B". El drenaje puede ser interno a través del orificio "Ta" o externo, fuera del cuerpo de la válvula. El taraje de presión de la válvula es ajustable mediante un tornillo de ajuste que lleva internamente una contratuerca hexagonal, un botón manual, o un botón micrométrico con llave. Muelles distintos permiten cubrir un intervalo total de presiones desde 2 a 315 bar (30-4500 psi).

En este diseño, la corredera reguladora está siempre posicionada en la línea "P"

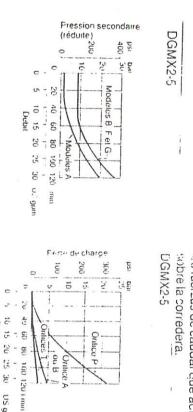
(ver los símbolos). La conexión de la línea de control piloto determina en que orificio puede obtenerse la presión reducida, es decir:

Pilotaje por "P"


para la presión reducida en "P",

Pilotaje por "A"

para la presión reducida en "A",


Pilotaje por "B"

para la presión reducida en "B". Los modelos pilotados por "A" y "B" suministran presión reducida cuando "P" se conecta a "A" o "B" respectivamente, y permiten el paso libre de caudal a través del orificio de servicio, cuando se conecta a "T" (todas las conexiones a una válvula direccional de cuatro vías).

APENDICE 0.2

CURVAS DE RENDIMIENTO DE LA VALVULA REDUCTORA DE PRESION TIPO MODULAR

Ordice P

OL B Ornice

Debit

20 25 30 US gpm

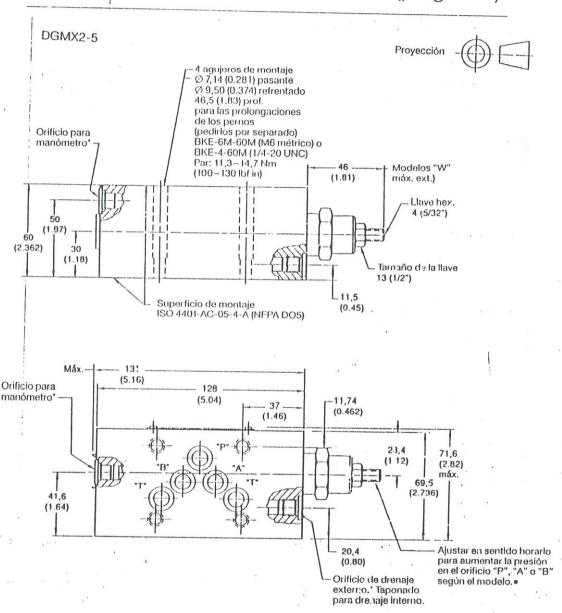
pletamente abierta dera de la válvula en la condición comen la válvula SystemStak. La pérdida carga tipica para cada via del caudal pondiente al caudal a través de la correde carga en el orificio "P" es la corres Presión máxima de funcionamiento y 315 bar (4500 psi) y 315 bar (4500 psi) Estas curvas muestran la pérdida de Perdida de carga Caudal máx. de fugas a 49° C (120° F) Caudal máx. de pilotaje a 49° C (120° F) Modelos "B", "F" y "G Modelos "A" 420 ml/min (26 in³/min) 315 bar (4500 psi) 200 ml/mir: (12 in '/min) 50 bar (725 psi) 70 bar (1000 psi) Presión reducida mínima (presion reducida) (presión de entrada)

sobre la corredera. El funcionamiento de la válvula por ciente del muelle para contrarrestar la misma debido a una fuerza insufioriginar un funcionamiento errático de la situerzas de caudal que actuan debajo de este ajuste minimo puede independencia de la presión de entrada minimo de la presión se aplica con mínimos de la presión reducida dispo-Estas curvas muestran los ajustes nibles para un caudal dado. El ajuste

Pression réduite 5000 1350 1000 4000-DGMX2-5 Fonction de sûreté | Fonction de réduction 1300 100 15 10 60 40 53 O 0 C ch 20 10 15 40 60 20 25 30 US gpm 80 100 12u Maxi. pour Maxi, pour A Maxi. pour B Maxi. pour

Margen de sobrepreción

Caudal máximo


120 I/min (32 USgpm)

en el orificio de la precion reducida una elevación excesiva de la presión la función de seguridad que impide se específica la sobrepresión tipica de presion a los tarajes máximos. También Estas curvas muestran sobrepresiones tipicas de los distintos intervalos de

APENDICE 0.3

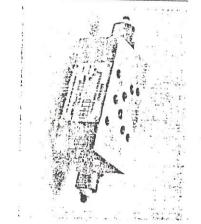
DIMENSIONES DE INSTALACION DE LA VALVULA REDUCTORA DE PRESION TIPO MODULAR

Dimensiones de instalación en mm. (pulgadas)

^{*} Tipo de rosca para el orificio de conexión externa: Modelos "S" – Orlficio SAE-4 juntas tóricas "O" (rosca 0.4375-20 UNF-2B) Modelos "B": G1/8" (1/8 BSPF)

La contrapresión en el drenaje es ad liva al ajuste de la válvula.

APENDICE P.1

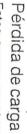

CARACTERISTICAS GENERALES DE LA VALVULA REGULADORA DE CAUDAL TIPO MODULAR

Series DGMFN-5, diseño 30

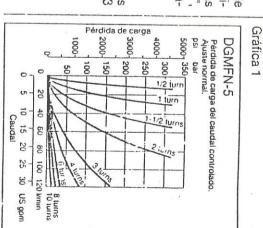
en "A", únicamente en "B" y los El control está disponible, únicamente orificios "A" y "B" com .: ipo "X" (regución libre del caudal en una dirección y regulación del mismo en la otra. caudal ajustables, no compensados. retorno en derivación para la circula-Llevan incorporada una válvula antir-Estas válvulas son reguladores de Descripción general

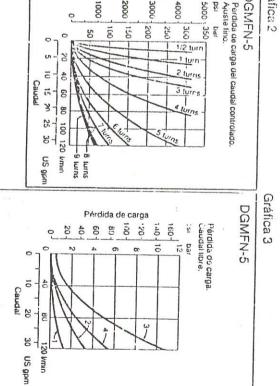
de pérdida de carga. y otra fina. Para más diferencias de botón micrométrico con llave. funcionamiento, consultar las curvas Hay disponibles una regulación normal gonal y llave, un botón manual o un mediante un tornillo con tuerca hexa-El caudal de la válvula se puede ajustar una válvula antirretorno. ción a la entrada) y no lleva incorporada disponible sólo en el tipo "X" (regulación a la salida). El orificio "P" está

/álvulas reguladores de cauda lación a la entrada) o tipo "Y" (regula-


	APENDICE P.2												
	CURVAS DE RENDIMIENTO DE LA VALVULA REGULADORA DE CAUDAL MODULAR												
* Igual al caudal mínimo controlado a la presión establecida	315 (4500)	200 (2900)	100 (1450)	50 (725)	Pérdida de carga bar (psi)	WCaudal mínimo controlado/fugas estáticas Las fugas internas pueden variar de una válvula a otra y con la pérdida de carga La través de la misma. Los niveles máximos son:			de temperatura y recomendaciones de filtración.	Caudal mínimo controlado	Presión máxima de funcionamiento	Caudal máximo	Datos de funcionamiento
viecida.	990 (60)	640 (38)	320 (19)	160 (9.5)	Fugas* cc/min (in³/min)	as estáticas válvula a otra y con la pérdida de carga os son:	fórico o sus combinaciones, agua glicol, emulsiones de agua en aceite y aceites minerales.	Las juntas de fluocarbono están normalizadas y son adecuadas para utilizarlas con fluidos tipo esterios-	Filtracion – ISO 4406 codigo 18/15 La femp. de funcionamiento: ob: 0° – 82° C (32 – 180° F) val Viscosidad del fluido: 8 – 51 cSt de (52 – 250 SUS)	Ver más abajo me	315 bar (4500 psi) du	120 I/min (32 USgpm) Es	niento Po

Gráfica 2


DGMFN-5


5000 ; 350

psi bar

de la gráfica 3. obtenerse de la gráfica 1 ó 2, más los La pérdida total en la válvula puede orificio regulador de caudal. se refieren a la pérdida de carga únicamente en el pasaje que contiene el duales del caudal. Las curvas tituladas valores adecuados de las líneas 1, 2 y 3 "pérdida de carga/caudal controlado", carga a través de los pasajes indivi-Estas curvas muestran la pérdida de

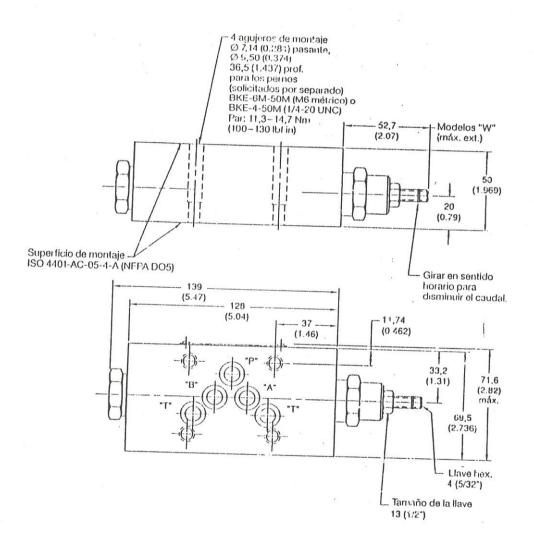
2000

150 200 250

1000

160

3000


4000

8 8 1/2 turn

APENDICE P.3

DIMENSIONES DE INSTALACION DE LA VALVULA REGULADORA DE CAUDAL TIPO MODULAR

Regulador de caudal simple DGMFN-5-X-A

APENDICE Q.1

CARACTERISTICAS GENERALES VALVULA ANTIRETORNO PILOTADA TIPO MODULAR

Series DGMPC-5, diseño 30 Válvulas antirretorno pilotadas

retorno o el otro, según cual sea el oripiloto que se desplaza hacia un antirse mueven hacia la posición abierta obturadores de la válvula antirretorno mediante una corredera de control los orificios "A" y "B" del cilindro. Los elementos idénticos en las lineas para dobles. Las unidades dobles llevan Estas válvulas pueden ser simples o ficio presurizado Descripción genera

presión de funcionamiento del circuito circuito de retorno se abre mediante la La válvula antirretorno situada en el

Hay disponibles presiones de abertura de 1 bar (15 psi), 2,5 bar (36 psi) y 5 bar sión y la válvula puede calcularse de la forma siguiente. para abrir el obturador de descomprecasos, la presión de pilotaje necesaria que trata de abrir la válvula). En tales presión se opone a la presión piloto en ciertas condiciones (esta contrapuede impedir que la válvula se abra la linea de salida del antirretorno cualquier contrapresión existente en (73 psi). Hay que tener en cuenta que

Presión a B₁ = Relación áreas la linea A: Para abrir la válvula o el obturador en PA + PC - PAI + + P

Presion a A₁ = Relación áreas $P_B + P_C - P_{B_1}$

entre la corredera piloto y el asiento

manece cerrada. La relación de áreas se comunica al tanque, la válvula per-

primario. Cuando la línea de pilotaje

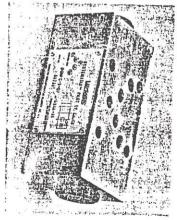
los con descompresion.

normalizados, y de 20:1 en los modedel obturador es de 3:1 en los modelos

 $P_{A_1} = Presion en A_1$ $P_B = Presion en B_1$ $P_{B_1} = Presion en B_1$

 $P_A = Presión en A$ $P_C = Presión$

de abertura


Donde:

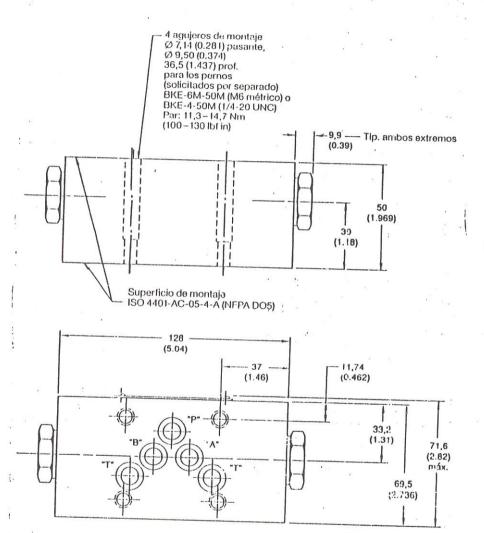
la línea B:

Para abrir la válvula o el obturador en

siguientes: relación de áreas por los valores sustituir la presión de abertura y la En los casos anteriores, hay que

(y posición B para la segunda función) Presion de abertura: 1, 2 ó 5, según posición 4

Válvula con descompresión: 20 Valvula normalizada: 3 Relación de áreas:


APENDICE Q.3

DIMENSIONES DE INSTALACION DE LA VALVULA ANTIRETORNO PILOTADA TIPO MODULAR

Dimensiones de instalación en mm. (pulgadas)

DGMPC-5

BIBLIOGRAFIA

- 1.- RAYMOND E. Kirk DONALD F. Othmer Enciclopedia de Tecnología Química Tomo III Bagaso Caucho
- 2.- NAUTON W. J. S, Ciencia y Tecnología del caucho
- 3.- VICKERS, Industrial Hydraulics Manual
- 4.- VICKERS, Manual 400, Selección de Componentes HIdráulicos.
- 5.- ESPOL, Dibujo Industrial
- 6.- AISC, Manual de Construcción en acero