

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"PRIORIZACIÓN DE TRAMOS DE CARRETERAS CON ALTA SINIESTRALIDAD EN LA RED VIAL ESTATAL DE LA REGIONAL 5"

PROYECTO DE GRADO

Previa a la obtención del Título de:

Ingeniero Civil

Presentado por:

DANIEL MICHEL TORRES CALDERÓN

GUAYAQUIL-ECUADOR 2017-2018

DEDICATORIA

Este trabajo se lo dedico especialmente a Dios por siempre fortalecer mi espíritu, a mi familia por su apoyo incondicional a lo largo de mi formación profesional y a mi mejor amigo quien perdió a sus padres a temprana edad por causa de un accidente de tránsito.

Daniel Michel Torres Calderón.

AGRADECIMIENTO

Especialmente a Dios y mi familia por permitirme cumplir una de mis principales metas en de mi formación académica.

A la Msc. Carola Gordillo por haberme enseñado el maravilloso campo de la Ingeniería Vial, por su excelente función como tutora y por el seguimiento técnico-académico a lo largo del presente trabajo.

Al Ing. Pindo por su apoyo técnico en el procesamiento de los datos.

Al Ing. Jorge Badillo por haberme apoyado en el aspecto moral y académico en los tiempos más difíciles que tuve a lo largo de la carrera.

Daniel Michel Torres Calderón.

TRIBUNAL DEL PROYECTO

PhD. Hugo Egüez Álava PRESIDENTE DEL TRIBUNAL

PhD. Miguel Ángel Chávez Moncayo DIRECTOR DE MATERIA INTEGRADORA

> Msc. Ing. Carola Gordillo MIEMBRO EVALUADOR

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, nos corresponde exclusivamente; y el patrimonio intelectual de la misma, a la Escuela Superior Politécnica del Litoral"

(Reglamento de Exámenes y Títulos Profesionales de la ESPOL)

Daniel Michel Torres Calderón

RESUMEN

Uno de los principales alcances que se plantea al momento de diseñar una vía es que esta sea segura para el tránsito de los vehículos, debido a que los conductores no son infalibles, se cometen errores inducidos por deficiencia en seguridad vial, y esto se da porque no se toma en consideración variables de tránsito, compatibilidad ambiental y espacial.

Actualmente en Ecuador se tiene un índice alto de siniestros en algunos tramos de la red vial estatal de la regional 5, este trabajo se enfoca en hacer un análisis de priorización acotado solo a la regional 5 que comprende 4 provincias en la región costa, tomando como referencia una auditoria de seguridad vial ya realizada por parte del Ministerio de Transporte y Obras Públicas.

El principal enfoque de este trabajo es priorizar los puntos negros más críticos en cuanto a siniestros contenidos en la red vial y de acuerdo con eso, adjuntar una solución cuantitativa y descriptiva por medio de lo propuesto por la auditoria antes mencionada.

El fin del trabajo es que pueda servir de solución a las deficiencias en seguridad vial que presenta la red vial de la regional 5, así mismo se espera

que sirva como guía para las futuras priorizaciones que se tengan que hacer en las demás regionales del Ecuador.

Palabras clave:

Seguridad vial

Siniestros

Red vial

Priorizaciones

ÍNDICE GENERAL

DEDICATORIA II
AGRADECIMIENTO III
TRIBUNAL DEL PROYECTOIV
DECLARACIÓN EXPRESAV
RESUMENVI
ÍNDICE GENERALVIII
ABREVIATURASXI
SIMBOLOGÍAXV
ÍNDICE DE FIGURASXVI
INDICE DE TABLASXXII
CAPITULO 1
INTRODUCCIÓN
1.1. Preámbulo 26
1.2. Planteamiento del problema 27
1.3. Hipótesis27
1.4. Objetivos
1.4.1. Objetivo General 28
1.4.2. Objetivos específicos 28
1.5. Metodología de estudio 29
CAPITULO 2
DESCRIPCIÓN DEL ÁREA DE ESTUDIO

CAPITULO 3		6
METODOLO	GÍA	6
1.6. Fas	se inicial	7
1.6.1.	Paso 1: Selección de datos para el análisis de priorización 3	7
1.6.2.	Paso 2: Selección de las provincias pertenecientes a la	
regiona	l 5 4	3
1.7. FA	SE PRELIMINAR5	1
1.7.1.	Paso 3: Factor Clima5	1
1.7.2.	Paso 4: Factor Geometría7	2
1.7.3.	Paso 5: Factor Infraestructura8	5
1.7.4.	Paso 6: Perfil de susceptibilidad 10	1
1.7.5.	Paso 7: Factor de accidentes 10	6
1.7.6.	Paso 8: Superposición del perfil de susceptibilidad con los	
puntos	negros preliminares de accidentes de tránsito rural	0
1.8. FA	SE DEFINITIVA 14	2
1.8.1.	Paso 9: Selección definitiva de puntos negros 142	2
1.8.2.	Paso 10: Priorización de siniestros contenidos en los puntos	
negros	definitivos de acuerdo con su severidad16	3
1.8.3.	Paso 11: Extracción de los tramos de vías contenidos en los	
puntos	negros definitivos16	5
1.8.4.	Paso 12: Obtención de listas de mejoras a partir de los tramos	;
contenie	dos en los puntos negros definitivos 172	2
1.8.5.	Paso 13: Identificación de las actuaciones y costos de	
inversió	n para los puntos negros definitivos 173	3
CAPITULO 4		5
ANÁLISIS DE	E RESULTADOS	5
CAPITULO 5		4
CONCLUSIO	NES Y RECOMENDACIONES	4

CONCLUSIONES	195
RECOMENDACIONES	197

ANEXOS

BIBLIOGRAFIA

ABREVIATURAS

GIS	Sistema de información geográfica
МТОР	Ministerio de Transporte y Obras Públicas
LANAMME	Laboratorio Nacional de Materiales y Modelos Estructurales
GEOPLADES	Geografía, Planificación y Desarrollo
GIS	Geografic Information System
CTE	Comisión de Transito del Ecuador
PPNN	Policía Nacional
INAMHI	Instituto Nacional de Meteorología e Hidrología
Pdf	Portable Document Format
UCR	Universidad de Costa Rica

IDW	Distancia inversa ponderada
DLL	Días Iluvia
COD	Código
DEM	Modelos digitales de elevación
GPS	Global Positioning System
GPX	Formato de Intercambio GPS
RV5	Red Vial 5
TIN	Una superficie de red irregular de triángulos
WGS	World Geodetic System
CN	Curvas de nivel
PAEK	El método Aproximación polinomial con núcleo

exponencial

BEZIER	Método para construir curvas suavizadas
LONG	Longitud
MAX	Máximo
SHP	Shapefile
GN	Grip number
xls	Extensión para los archivos de hoja de cálculo
LB	Línea borde
DC	Línea de división de carriles.
DS	Línea de división de sentido de circulación.
RF	Retro reflectividad

ASV	Auditoria de seguridad vial
INEN	Instituto Ecuatoriano de Normalización
AASHTO	Asociación Americana de Oficiales de Carreteras Estatales y Transportes
DOT	Departamento de Transporte de Estados Unidos
PSU	Perfil de susceptibilidad
ACC/KM	Accidentes de tránsito en un kilómetro cuadrado
TCA	Tramos de concentración de accidentes
N. A	Nivel de accidentalidad
E.N.A	Equivalente en número de accidente
CONASET	Comisión nacional de Seguridad de Tránsito
RTE.	Reglamentos técnicos del INEN

SIMBOLOGÍA

Km	Kilometro lineal
Km ²	Kilómetro cuadrado
M.C.D	Mega candela
Lux	Luxes
M ²	Metro cuadrado

ÍNDICE DE FIGURAS

Figura 1.1 Metodología preliminar	29
Figura 1.2 Metodología definitiva.	30
Figura 2.1 Área de estudio, provincias que conforman la regional 5	34
Figura 3.1 Capas del espacio de trabajo	44
Figura 3.2 Plano territorial del Ecuador	45
Figura 3.3 Inicio de la edición de la capa "Provincias"	45
Figura 3.4 Apertura de la tabla de atributos	46
Figura 3.5 Tabla de atributos.	46
Figura 3.6 Selección de las provincias pertenecientes a la regional 5	47
Figura 3.7 Ejecución de la selección	48
Figura 3.8 Eliminación de provincias ajenas a la regional 5	48
Figura 3.9 Aplicación del switch selection	49
Figura 3.10 Eliminación de registros mediante tabla de atributos	49
Figura 3.11 Datos dentro de los campos de las provincias pertenecientes a la reg	ional
5	50
Figura 3.12 Provincias de la regional 5.	50
Figura 3.13 Carga de puntos al espacio de trabajo	52
Figura 3.14 Generación de Isoyeta.	53
Figura 3.15 Resultados de la isoyeta.	54
Figura 3.16 Tramos de vías en función de las regiones.	55

Figura 3.17 Descripción pendiente	. 56
Figura 3.18 Generación de zonas "buffer"	. 57
Figura 3.19 Descripción pendiente	. 59
Figura 3.20 Uso de la herramienta geoprocesamiento, "selección por localidad"	. 60
Figura 3.21 Esquema de la isoyeta	. 61
Figura 3.22 Isoyeta días de lluvia serie 1981-2010.	. 64
Figura 3.23 Datos de precipitación multianual	. 65
Figura 3.24 Datos de precipitación multianual de las provincias de la regional 5	. 65
Figura 3.25 Isoyeta de partición por cada clase	. 66
Figura 3.26 Isoyeta de precipitación con sus 5 clases	. 67
Figura 3.27 Isoyetas de precipitación media multianual serie 1981-2010	. 71
Figura 3.28 Tipo de terreno	. 72
Figura 3.29 Cotas de terreno	. 73
Figura 3.30 Carga de puntos a ARCGIS.	. 74
Figura 3.31 Carga de datos en formato GPX	. 75
Figura 3.32 Visualización de datos cargados	. 76
Figura 3.33 Red de triángulos irregulares.	. 76
Figura 3.34 Descripción por definir	. 77
Figura 3.35 Creación de curvas de nivel del terreno.	. 78
Figura 3.36 Suavización de las curvas de nivel	. 79
Figura 3.37 Configuración del terreno de la regional 5	. 81
Figura 3.38 Curvas por kilómetro en tramo de carretera.	. 82
Figura 3.39 Alineamiento vial, regional 5	. 85
Figura 3. 40 Construcción de mapa de fricción existente.	. 86

Figura 3.41 Valores de fricción para la regional 5
Figura 3.42 Fricción Red Vial Estatal, regional 590
Figura 3.43 Carga de la capa Horizontal9
Figura 3.44 Exportación de campos a hoja de Excel
Figura 3.45 Reflectividad en señalización horizontal, red vial regional 5 100
Figura 3.46 Carga de la red vial, tramos y subtramos 103
Figura 3.47 Habilitar edición de capa 103
Figura 3.48 Adición de campo PESOS_PSU 104
Figura 3.49 Datos de Excel al campo PESOS_PSU 104
Figura 3.50 Perfil de susceptibilidad red vial, regional 5 109
Figura 3.51 Carga de capas de accidentes y red vial estatal 10
Figura 3.52 Accidentes solo en carretera (2012-2016) 10
Figura 3.53 Herramienta de geoprocesamiento CLIP 108
Figura 3.54 Ingreso de la red vial y ubicación del recorte en las provincias de la
regional 5 100
Figura 3.55 Red vial de la regional 5 109
Figura 3.56 Valores ingresados a la función CLIP 109
Figura 3.57 Accidentes rurales y urbanos 2016 en regional 5 110
Figura 3.58 Accidentes 2016 solo en red vial rural 110
Figura 3.59 Selección de capa de accidentes para realización de filtro 11
Figura 3.60 Selección por localidad 112
Figura 3.61 Accidentes en carretera rural 113
Figura 3.62 Accidentes 2012-2016 en red estatal 113
Figura 3.63 Selección por atributos 114

Figura 3.64 Selección de cantones por lista de atributos 11	5
Figura 3.65 Eliminación de cantones en lista de atributos 118	5
Figura 3.66 Exclusión del cantón Guayaquil, Duran y Samborondón 116	6
Figura 3.67 Aplicación de la herramienta MERGE	7
Figura 3.68 Campos de la función MERGE 118	8
Figura 3.69 Ilustración de los accidentes 2012 al 2016 119	9
Figura 3.70 Campos de la función Selección por atributos 12	1
Figura 3.71 Datos ingresados a la función selección por localidad 122	2
Figura 3.72 Selección de accidentes para una vía en particular 122	2
Figura 3.73 Función de geoprocesamiento Point Density 128	8
Figura 3.74 Resultados de la aplicación del Point Density 129	9
Figura 3.75 Optimización de resultados para la función Point Density	0
Figura 3.76 Propiedades del raster creado a partir de Point Density 13	1
Figura 3.77 Zonas de alta concentración de accidentes, análisis preliminar 132	2
Figura 3.78 Punto negro preliminar 1 133	3
Figura 3.79 Punto negro preliminar 2 134	4
Figura 3.80 Punto negro preliminar 3 134	4
Figura 3.81 Punto negro preliminar 4 135	5
Figura 3.82 Punto negro preliminar 5 135	5
Figura 3.83 Punto negro preliminar 6 136	6
Figura 3.84 Punto negro preliminar 7 136	6
Figura 3.85 Punto negro preliminar 8 13	7
Figura 3.86 Punto negro preliminar 9 13	7
Figura 3.87 Punto negro preliminar 10 138	8

Figura 3.88 Punto negro preliminar 11	138
Figura 3.89 Punto negro preliminar 12	139
Figura 3.90 Punto negro preliminar 13	139
Figura 3.91 Punto negro preliminar 14	140
Figura 3.92 Zonas de alto riesgo y concentración de accidentes de tránsito	141
Figura 3.93 Concentración máxima de accidentes para celdas de 750x750 km2.	144
Figura 3.94 Densidad de accidentes en celda de 750x750 km ²	144
Figura 3.95 Concentración máxima de accidentes para celdas de 500x500 km2.	146
Figura 3.96 Densidad de accidentes en celda de 500x500 km2	146
Figura 3.97 Concentración máxima de accidentes para celdas de 250x250 km2.	148
Figura 3.98 Densidad de accidentes en celda de 250x250 km2	148
Figura 3.99 Concentración máxima de accidentes para celdas de 100x100 km2.	149
Figura 3.100 Densidad de accidentes en celda de 100x100 km2	150
Figura 3.101 Concentración máxima de accidentes para celdas de 1 km2	151
Figura 3.102 Densidad de accidentes en celda de 1 km2.	152
Figura 3.103 Ilustración detallada de concentración de accidentes en 1 km2	152
Figura 3.104 Puntos negros definitivos en la preliminar 1	154
Figura 3.105 Punto negro definitivo en la preliminar 2	154
Figura 3.106 Punto negro definitivo en la preliminar 3	155
Figura 3.107 Puntos negros definitivos en la preliminar 4	155
Figura 3.108 Punto negro definitivo en la preliminar 5	156
Figura 3.109 Punto negro definitivo en la preliminar 5	157
Figura 3.110 Puntos negros definitivos en la preliminar 7	158
Figura 3.111 Puntos negros definitivos en la preliminar 8.	159

Figura 3.112 Punto negro definitivo en la preliminar 9
Figura 3.113 Puntos negros definitivos en la preliminar 10 16
Figura 3.114 Puntos negros definitivos en la preliminar 11
Figura 3.115 Puntos negros definitivos en la preliminar 12
Figura 3.116 Punto negro definitivo en la preliminar 13 16
Figura 3.117 Puntos negros definitivos en la preliminar 14
Figura 3.118 Selección por localidad para zonas de alta concentración de accidente
Figura 3.119 Costos de inversión para toda la regional 5 17
Figura 3.120 Actuaciones contenidas en las vías seleccionadas para los punto
negros definitivos17
Figura 3.121 Aplicación de "selección por localidad" para la selección de listas d
mejoras17
Figura 3.122 Aplicación de "selección por localidad" para la selección de listas d
mejoras17
Figura 4.1 Priorización de los puntos negros obtenidos en la regional 5
Figura 4.2 Vista en planta de la zona de mayor prioridad en Milagro E25 18
Figura 4.3 Vista en 3D de la zona de mayor prioridad en Milagro E25 18

INDICE DE TABLAS

	Pág.
Tabla I: Descripción del dato facilitado por entidad pública.	38
Tabla II: Valores ingresados por campo.	53
Tabla III. Valores ingresados por campo.	57
Tabla IV: Valores ingresados por campo en la herramienta geoprocesamiento.	60
Tabla V: Clasificación de condiciones de lluvia, y su peso de acuerdo al LANA	MME.
	62
Tabla VI: Peso por días de lluvia	62
Tabla VII: Descripción pendiente	63
Tabla VIII: Valores ingresados por campo por cada selección de clase.	67
Tabla IX: Valores ingresaos por campo	69
Tabla X: Tabla de precipitaciones por vía y peso por precipitación máxima	70
Tabla XI: Clasificación de pesos por rango de precipitaciones anuales	71
Tabla XII: Valores ingresados por campo	75
Tabla XIII: Valores ingresados por campo para creación de TIN	77
Tabla XIV: Datos ingresados por campo.	79
Tabla XV: Peso promedio por vía	80
Tabla XVI: Peso LANAMME por tipo de terreno	80
Tabla XVII: Color por peso LANAMME según tipo de curva	83
Tabla XVIII: Clasificación de las vías por tipo de terreno por curvas/km	83

Tabla XIX: Valores ingresados por campo para valores de fricción de las provincias
de la regional 5
Tabla XX: Clasificación internacional de numero de fricción para pavimento. 88
Tabla XXI: Peso GN por vía. 88
Tabla XXII: Depuración de datos en la hoja de Excel. 92
Tabla XXIII: Porcentaje del estado aparente de señalización horizontal
Tabla XXIV: Porcentaje del estado aparente de señalización horizontal. 95
Tabla XXV: Porcentaje del estado aparente de señalización horizontal. 96
Tabla XXVI: Porcentaje del estado aparente de señalización horizontal. 97
Tabla XXVII: Porcentaje del estado aparente de señalización horizontal. 98
Tabla XXVIII: Umbrales de cumplimiento de estándares de señalización horizontal.
Tabla XXIX: Pintura blanca 99
Tabla XXIX: Pintura blanca
Tabla XXIX: Pintura blanca99Tabla XXX: Pintura Amarilla.100Tabla XXXI: Suma de los pesos según la geometría, clima e infraestructura.101
Tabla XXIX: Pintura blanca99Tabla XXX: Pintura Amarilla.100Tabla XXXI: Suma de los pesos según la geometría, clima e infraestructura.101Tabla XXXII: Valores ingresados por campo.118
Tabla XXIX: Pintura blanca99Tabla XXX: Pintura Amarilla.100Tabla XXXI: Suma de los pesos según la geometría, clima e infraestructura.101Tabla XXXII: Valores ingresados por campo.118Tabla XXXIII: Vías pertenecientes a la regional 5.120
Tabla XXIX: Pintura blanca99Tabla XXX: Pintura Amarilla.100Tabla XXXI: Suma de los pesos según la geometría, clima e infraestructura.101Tabla XXXII: Valores ingresados por campo.118Tabla XXXIII: Vías pertenecientes a la regional 5.120Tabla XXXIV: Accidentes por kilómetro registrados en las vías de la regional 5.123
Tabla XXIX: Pintura blanca99Tabla XXX: Pintura Amarilla.100Tabla XXXI: Suma de los pesos según la geometría, clima e infraestructura.101Tabla XXXII: Valores ingresados por campo.118Tabla XXXIII: Válores ingresados por campo.118Tabla XXXIII: Vías pertenecientes a la regional 5.120Tabla XXXIV: Accidentes por kilómetro registrados en las vías de la regional 5.123Tabla XXXV: Equivalente en número de accidente según severidad125
Tabla XXIX: Pintura blanca99Tabla XXX: Pintura Amarilla.100Tabla XXXI: Suma de los pesos según la geometría, clima e infraestructura.101Tabla XXXII: Valores ingresados por campo.118Tabla XXXIII: Vías pertenecientes a la regional 5.120Tabla XXXIV: Accidentes por kilómetro registrados en las vías de la regional 5.123Tabla XXXV: Equivalente en número de accidente según severidad125Tabla XXXVI: Vías de la regional 5 con TCA.126
Tabla XXIX: Pintura blanca99Tabla XXX: Pintura Amarilla.100Tabla XXXI: Suma de los pesos según la geometría, clima e infraestructura.101Tabla XXXII: Valores ingresados por campo.118Tabla XXXIII: Vías pertenecientes a la regional 5.120Tabla XXXIV: Accidentes por kilómetro registrados en las vías de la regional 5.123Tabla XXXV: Equivalente en número de accidente según severidad125Tabla XXXVI: Vías de la regional 5 con TCA.126Tabla XXXVII: Uso de la función Point Density para celdas de 750x750 km²143
Tabla XXIX: Pintura blanca99Tabla XXX: Pintura Amarilla.100Tabla XXXI: Suma de los pesos según la geometría, clima e infraestructura.101Tabla XXXII: Valores ingresados por campo.118Tabla XXXII: Vías pertenecientes a la regional 5.120Tabla XXXIV: Accidentes por kilómetro registrados en las vías de la regional 5.123Tabla XXXV: Equivalente en número de accidente según severidad125Tabla XXXVI: Vías de la regional 5 con TCA.126Tabla XXXVII: Uso de la función Point Density para celdas de 750x750 km².143Tabla XXXVIII: Uso de la función Point Density para celdas de 500x500 km².145
Tabla XXIX: Pintura blanca99Tabla XXX: Pintura Amarilla.100Tabla XXXI: Suma de los pesos según la geometría, clima e infraestructura.101Tabla XXXII: Valores ingresados por campo.118Tabla XXXIII: Vás pertenecientes a la regional 5.120Tabla XXXIV: Accidentes por kilómetro registrados en las vías de la regional 5.123Tabla XXXV: Equivalente en número de accidente según severidad125Tabla XXXVI: Vías de la regional 5 con TCA.126Tabla XXXVII: Uso de la función Point Density para celdas de 750x750 km².143Tabla XXXIII: Uso de la función Point Density para celdas de 500x500 km².145Tabla XXXIX: Uso de la función Point Density para celdas de 250x250 km².147

Tabla XLI: Uso de la función Point Density para celdas de 1 km ² . 151
Tabla XLII: Nivel de accidentalidad en puntos negros definitivos. 164
Tabla XLIII: Datos ingresados a la función Select by location. 167
Tabla XLIV: Tramos y subtramos contenidos en los puntos negros definitivos 167
Tabla XLV: Listas de mejoras de acuerdo con códigos de vías
Tabla XLVI: Costo de inversión de las listas de mejoras para toda la regional 5 174
Tabla XLVII: Valores usados en la función Select by location. 178
Tabla XLVIII: Actuaciones para todos los puntos negros definitivos
Tabla XLIX: Costos de solución para todos los puntos negros definitivos. 182
Tabla L: Costos de solución para todos los puntos negros preliminares. 183
Tabla LI: Costos de las actuaciones contenidas en los puntos negros definitivos. 188
Tabla LII: Puntos negros sin actuaciones por parte de la ASV. 190

CAPITULO 1 INTRODUCCIÓN

1.1. Preámbulo

El presente proyecto nace a partir de la necesidad que tuvo el Ministerio de Transporte y Obras Publicas en proyectos previos al presente, en donde se hizo una auditoria de seguridad vial en toda la red vial de la regional 5, esta dio como producto un inventario de señalización e infraestructura vial y también dejó varias listas de mejoras para los problemas identificados en varias partes de la red vial mencionada.

Una vez conocidos los costos referenciales en el producto mencionado, lo que se tenía eran las actuaciones, pero hacía falta saber específicamente de acuerdo al costo, en donde se las tenía que empezar aplicar y de acuerdo a que parámetro se debían usarlas, entonces a partir de ese requerimiento se origina el alcance del presente trabajo, donde se propuso encontrar las zonas o puntos negros más críticos en siniestralidad, para esto se tomaron registros de accidentes de tránsito en vías rurales desde el 2012 al 2016, donde se tomaron en cuenta factores importantes y se los integró de manera globalizada para obtener las zonas de alta vulnerabilidad en las vías de la regional 5, alcanzando así el objetivo deseado.

1.2. Planteamiento del problema

Actualmente se tienen deficiencias de seguridad vial en la red vial de la regional 5 del Ecuador, una vez propuesto el inventario por parte del MTOP a través de la auditoría de seguridad vial realizada en la zona 5, esta dio un alto costo de inversión, por ende, se dio la necesidad de realizar una priorización de puntos negros en área aproximada a un kilómetro cuadrado y averiguar donde se puede empezar a aplicar las actuaciones propuestas por la auditoria de seguridad vial realizada en el 2016.

1.3. Hipótesis

Se asume que el costo estimado para solventar los problemas de seguridad vial de cada punto negro priorizado es alcanzable con respecto a la planificación que maneja el departamento de Estudios del Ministerio de Transporte y Obras Públicas.

Se asume que la mayoría de siniestros ocurren en intersecciones de vías urbanas.

1.4. Objetivos

1.4.1. Objetivo General

Realizar una priorización de severidad-susceptibilidad en los puntos negros existentes en la red vial estatal de la regional 5.

1.4.2. Objetivos específicos

- Identificar un criterio de priorización de las soluciones relacionadas al componente de infraestructura vial, propuestas en los proyectos de auditoría en seguridad vial, contratados por Ministerio de Transporte y Obras Publicas y desarrollados en 2016.
- Priorizar las vías con mayor número de accidentes en un kilómetro de carretera rural.
- Priorizar los puntos negros más críticos en siniestros que existen en la regional 5.
- Dar a conocer las soluciones y los costos que se necesitan para solucionar los problemas de seguridad vial en los puntos negros escogidos.

 Brindar a los directores provinciales una herramienta para la programación de las soluciones de infraestructura vial, vinculada con el criterio de reducción de siniestros.

1.5. Metodología de estudio

La metodología que se siguió para alcanzar el producto deseado fue basada en las investigaciones realizadas por el Laboratorio Nacional de Materiales y Modelos Estructurales LANAMME de Costa Rica.

Figura 1.1 Metodología preliminar. Fuente: Torres, D., 2017.

Figura 1.2 Metodología definitiva. Fuente: Torres, D., 2017.

Tal como se visualiza en el gráfico, la metodología que se usó para llegar

al producto objetivo siguió dos fases, una preliminar y otra definitiva.

Fase preliminar:

Básicamente se obtuvieron 5 factores, entre ellos, la condición climática, el estado de la infraestructura vial, la configuración del terreno, la densidad de los accidentes registrados en celdas muy grandes y las vías con mayor número de accidentes en un kilómetro lineal registrados desde el 2012 al 2016 a nivel de toda la regional 5.

Una vez obtenido los factores antes mencionados, se usaron los factores de clima, geometría e infraestructura para construir el perfil de susceptibilidad, este perfil luego fue superpuesto con la densidad de accidentes a nivel macro y así se obtuvo de forma preliminar las zonas más críticas en cuanto a condiciones de susceptibilidad y siniestros.

Fase definitiva:

Con la necesidad de encontrar los puntos negros definitivos en un área aproximada de un kilómetro cuadrado, se tuvo que hacer el mismo análisis espacial realizado en la fase preliminar para el factor de accidentes, pero este fue afinado haciendo iteraciones y reduciendo el tamaño de celda que daba a conocer la densidad de accidentes registrados en los 4 años mencionados.

Una vez hecho el proceso de análisis espacial, se identificaron varios puntos negros en las zonas antes obtenidas y en nuevas también, luego se procedió a extraer los tramos de vías contenidos en dichos puntos para con eso identificar las respectivas listas de mejoras que correspondían para cada uno.

Identificadas las listas de mejoras, en las mismas se conoce las correcciones de seguridad vial con su respectivo costo de inversión, con esto se pudo cuantificar el costo de solución para cada punto negro con su respectivo tramo y subtramo de red vial.

Adicional a ofrecer la cuantificación de las soluciones y costos, se ofreció una priorización de los puntos negros definitivos en los cuales se debía aplicar dichas actuaciones.

CAPITULO 2 DESCRIPCIÓN DEL ÁREA DE ESTUDIO

A partir de la auditoria de seguridad vial que realizó la consultora GEOPLADES a través de los fondos otorgados por el MTOP de la regional 2 a la regional 7 exceptuando la 4, se hace énfasis en la número 5, la cual abarca cuatro provincias. Entre estas están las provincias del Guayas, Los Ríos, Santa Elena y Bolívar. Cabe mencionar que se omite del análisis a la ciudad de Guayaquil, Durán y Samborondón debido a que estas ciudades no le competen a la Comisión de Transito del Ecuador, por ende, se excluyen los siniestros de tránsito en dichas ciudades.

Figura 2.1 Área de estudio, provincias que conforman la regional 5. **Fuente:** Torres, D., 2017.

Si bien se tiene una gran área de estudio, este trabajo hará énfasis en los tramos de mayor índice de siniestros, y aquellos que sean más susceptibles a tener accidentes de tránsito, para lo cual en los próximos capítulos se mostrará el respectivo procedimiento que se siguió para llegar a obtener dichos resultados.

CAPITULO 3 METODOLOGÍA
3.1. Fase inicial

Debido a que la zona de trabajo es la red vial estatal de la regional 5, los puntos que se describen a continuación solo se limitaron a dicha zona:

3.1.1. Paso 1: Selección de datos para el análisis de priorización

Los datos para el procesamiento en ArcGIS fueron facilitados por varias entidades públicas entre ellas se destacan:

- MTOP (Ministerio de Transporte y Obras Publicas)
- CTE (Comisión de tránsito del Ecuador)
- PPNN (Policía Nacional)
- INAMHI (Instituto Nacional de Meteorología e Hidrología)

A continuación, se presentan la descripción de las capas facilitados por cada una de las entidades antes mencionadas:

Entidad pública	Descripción del dato facilitado
Ministerio de Transporte y Obras Públicas	 Cartografía base Auditoría de seguridad vial en regional 5 (Geodatabase) Inventario vial (Geodatabase) Productos inventario geo- referenciado: Temático
Comisión de tránsito del Ecuador	– Accidentes 2012-2016
Policía Nacional Instituto Nacional de Meteorología e Hidrología	 Accidentes 2015-2016 de la provincia de Bolívar y Los Ríos Estaciones meteorológicas 1981-2010 Isoyeta de precipitación media multianual serie 1981-2010
- Harologia	– Datos de pluviosidad registrados 1981-2010
	Fuente: Torres, D., 2017.

Tabla I: Descripción del dato facilitado por entidad pública.

Bases de datos facilitadas por el Ministerio de Transporte y

Obras Públicas MTOP:

Cartografía base

Esta base de datos contiene 25 capas de las cuales solo se usaron las siguientes:

- Batimetría
- Cantones
- Mar territorial
- Perfil Ecuador

- Poblados
- Provincias
- Zonas urbanas

Todas estas capas están en formato shapefile, y fueron de gran utilidad para lograr hacer la ubicación de los accidentes dentro de la regional 5.

Auditoría de seguridad vial en regional 5 (Geodatabase)

Esta base de datos contiene solo dos capas entre ellas se tiene:

- Poblaciones contenidas en la regional 5
- Provincias contenidas en la regional 5
- Lista de mejoras

Gracias a los dos primeros datos, se evitó realizar los respectivos recortes con la herramienta de geoprocesamiento CLIP con las capas fuente desde la base de datos "Cartografía base".

La lista de mejoras no fue dada en formato shapefile, pero sí en formato pdf, en puntos posteriores se detallará la metodología que se siguió para estos datos cargarlos al espacio de trabajo y poder averiguar cuáles eran las actuaciones en cada tramo de red vial 5.

Inventario vial (Geodatabase)

Esta base de datos contiene 3 capas que son las siguientes:

- Señales viales
- Guardavías
- Señalización horizontal

Estas fueron de mucha utilidad para la obtención del estado de retro reflectividad de las vías de la regional 5.

Producto inventario georreferenciado

Esta base de datos contiene 44 capas de las cuales solo fueron útiles las siguientes:

- Abscisado
- Peraltes
- Infraestructura vial por clase de vía
- Infraestructura vial por tipo de material
- Red vial tramos-subtramos
- Zona urbana

<u>Temático</u>

Esta base de datos contiene 5 capas de las cuales solo se usaron las siguientes:

• Temático por fricción en pavimentos

Bases de datos facilitadas por la comisión de tránsito del Ecuador CTE:

Accidentes de tránsito

Esta base de datos contiene 11 capas, pero solo fueron usadas las siguientes:

- TOTAL_2012
- TOTAL_2013
- TOTAL_2014
- TOTAL_2015
- TOTAL_2016

Con estas se logra en puntos posteriores reunir una sola capa que contenga los accidentes del año 2012 al 2016, cabe mencionar que en estas no se abarcan los siniestros registrados para las provincias de Los Ríos y Bolívar.

Un campo muy valioso dentro de las capas antes descritas es la severidad del accidente, que ayuda al análisis de resultados en capítulos posteriores.

Bases de datos facilitadas por la policía nacional PPNN:

Accidentes 2015-2016

Estas capas complementan las facilitadas por el MTOP, y específicamente en las provincias de Los Ríos y Bolívar, se tuvo que mantener este margen debido a que las delegaciones encargadas se encuentran distribuidas por sectores y se tuvo que buscar en diferentes entidades los datos para el análisis.

Bases de datos facilitadas por el Instituto Nacional de Meteorología e Hidrología INAMHI:

Esta entidad facilitó 3 datos muy valiosos entre ellas se tiene:

Estaciones meteorológicas 1981-2010

Capa en formato shapefile que dio a conocer las posiciones georreferenciadas de las estaciones que tomaron los datos meteorológicos desde 1981 al 2010

Isoyeta de precipitación media multianual serie 1981-2010

Raster suavizado con valores de precipitación media ya establecidos para una muestra de 30 años.

Datos de pluviosidad registrados 1981-2010

Datos de pluviosidad en formato texto que fueron procesados de manera muy rigurosa para lograr construir la isoyeta de días de precipitación media multianual de serie 1981 al 2010.

3.1.2. Paso 2: Selección de las provincias pertenecientes a la regional 5.

Con ayuda del programa ArcGIS, se usaron un grupo de capas específicas para lograr acotar la regional 5 de todas las provincias del país. La capa fuente usada fue "Cartografía base" facilitada por el Ministerio de Transporte y Obras Públicas.

A continuación, se muestran capturas de pantalla usando el software de manejo de información geográfica ArcGIS.

Para lograr acotar la nube de datos, de nivel global a local, se usó la herramienta CLIP de geoprocesamiento dentro del software, esta nos da como producto un recorte específico de los datos en todo el Ecuador hacia una zona en específico, en este caso la perteneciente a la regional 5.

Cartografía base

De esta base de datos se extrajeron varias capas y se eliminaron las provincias ajenas a la regional 5. Con esto se logró obtener solo las Provincias de la regional 5, esta última fue importante obtenerla para lograr hacer los recortes con las demás capas con las que se pretende trabajar. Primero se agregó las capas llamadas "Provincias", "Limite internacional" y "Batimetría" al espacio de trabajo del programa. Luego se procedió habilitar el editado de la capa Provincias.

ook in: Cartografía	_Base_ORIGINAL.mdb ~		
Batimetria Cabecera_cantonal Cabecera_parroquial Cantones Capital_provincial Limite_cantonal Limite_inter_40k Limite_internacional Limite_provincial	Mar_territorial Paradas_Ferroc Parroquias Perfil_Ecuador Perfil_Ecuador_linea Poblados Provincias Provincias_Buffer Recintos Regiones	 Ríos_dobles Ruta_Ferroca Territorios_priorizados Vias_general Zonas_urbanas 	
Name:			Add

Fuente: Torres, D., 2017.

Figura 3.2 Plano territorial del Ecuador Fuente: Torres, D., 2017.

Fuente: Torres, D., 2017.

Figura 3.4 Apertura de la tabla de atributos Fuente: Torres, D., 2017.

Luego, se abrió la tabla de atributos

1949-499-6×												
C MARRIER AND AND	•	Shape *	OBJECTID	DPA_PROVIN	DPA_DESPRO	DPA_VALOR	DPA_ANIO	REI_CODIGO	REN_CODIGO	PEE_CODIGO	Shape_Leng	REGION
B MANNELSON BURNELSON	-	Polygon	1	01	AZUAY	0	2011	05	01	593	679651.580798	REGIÓN 8
Section and the section of the secti		Polygon	2	02	BOLIVAR	0	2011	02	01	593	453073.177662	REGIÓN 5
All March College	1.0	Polygon	3	03	CAÑAR	0	2011	05	01	593	402082.800425	REGIÓN 6
Stor Ted Heat	4	Polygon	4	04	CARCH	Ó	2011	04	01	593	475697.163145	REGIÓN 1
errys Meter	5	Polygon	5	05	COTOPAXI	0	2011	02	01	593	443356.357764	REGIÓN 3
States Debut Debut Colors	6	Polygon	6	06	CHIMBORAZO	0	2011	02	01	593	520746.985181	REGIÓN 3
Insulties.	7	Polygon	7	07	EL ORO	0	2011	03	02	593	1033963.01777	REGIÓN 7
Brow Man	8	Polygon	8	08	ESMERALDAS	0	2011	04	02	593	2013129.34099	REGIÓN 1
All Articles of	9	Polygon	9	09	GUAYAS	ő	2011	03	02	593	3737498 979	REGIÓN 5
a second second	10	Polygon	10	10	IMBABURA	ō	2011	04	01	593	492169 405253	REGIÓN 1
	11	Polygon	11	11	LOJA	0	2011	05	01	593	819830 25706	REGIÓN 7
inet.	12	Polynon	12	12	LOS BIOS	0	2011	03	02	593	872379 96847	REGIÓN 5
Agent an	13	Polygon	13	13	MANARI	0	2011	03	02	593	1200349 44975	REGIÓN 4
	14	Polygon	14	14	MORONA SANTIAGO	0	2011	05	03	593	1011502 59819	REGIÓN 8
	15	Polygon	15	15	NAPO	ŏ	2011	04	03	593	917231 117981	REGIÓN 2
	16	Polygon	16	16	PASTAZA	ő	2011	02	03	593	1068557 40489	REGIÓN 3
	17	Polygon	17	17	PICHINCHA	ő	2011	04	01	503	722044 248544	REGIÓN 2
	18	Polynon	18	18	TUNGURAHUA	0	2011	02	01	593	337318 525925	REGIÓN 3
	19	Polynon	19	19	ZAMORA CHINCHIPE	0	2011	05	03	593	665769 945531	REGIÓN 7
	20	Polygon	21	22	ORFILANA	0	2011	04	03	593	1281418 60117	REGIÓN 2
	21	Polygon	22	23	SANTO DOMINGO DE LOS TSACHILAS	0	2011	04	01	593	416220 647849	REGIÓN 4
	22	Polygon	23	24	SANTA ELENA	ň	2011	03	02	593	402878 733188	REGIÓN 5
-	23	Polygon	24	90	ZONA NO DELIMITADA	0	2011	90	05	593	356897 89242	ZONA NO DELIMITADA
	24	Polynon	25	20	CALAPAGOS	0	2011	03	04	593	1782706 27988	RECIÓN 5
	26	Dolynon	1177	21	SUCIMPIOS	0	2011	04	03	500	1202603 13565	REGIÓN 1
	2.0	1 oilfou			0000000		2011	01	00	300	1202000.10000	NEORON 1
	****	ent.										
				_								

Se procedió a seleccionar las provincias pertenecientes a la regional 5, haciendo una selección por atributo por medio del siguiente código:

[DPA_DESPRO]= 'BOLIVAR' OR [DPA_DESPRO]= 'GUAYAS' OR [DPA_DESPRO]= 'LOS RIOS' OR [DPA_DESPRO]= 'SANTA ELENA'

Figura 3.6 Selección de las provincias pertenecientes a la regional 5. Fuente: Torres, D., 2017.

Y una vez ingresado el código para la selección por atributo, se

ejecutó la selección y se obtuvieron los siguientes resultados:

Luego, se hizo un cambio de selección para lograr eliminar las

provincias ajenas a las de la regional 5

0 K R											* 100 0 + 0 5 5 0 1 + 0
CLIP POBLACIONES INER CLIP POBLACIONES INER	2010		^								The low that will be a set
- CLIP ABSCISADO											0 10 100 Nov 0 8460 0 10 100 849 6 wear
- CLIP RED VIAL IGM 250	00										0 10 200 200 10 40
* CLIP RED VIAL TRAM	12 12 13 17 10 ×										
CLIP INFRAESTRUCT	OBJECTID_1 *	Shape *	OBJECTID DPA_PROVIN	DPA_DESPRO	DPA_VALOR	DPA_ANIO	REI_CODIGO	REN_CODIGO	PEE_CODIGO	Shape Leng	REGION
- 1		Polygon	1 01	AZUAY	0	2011	05	01	593	679651.580798	REGIÓN 6
- CLIP Zonas urbanas F		2 Polygon	2 02	BOLIVAR	0	2011	02	01	593	453073.177662	REGION 5
CAONEDRINE ESPOILING		3 Polygon	3 03	CANAR	0	2011	05	01	593	402082 800425	REGION 6
- KILONEDRIVE ESPOLI		Polygon	4 04	CARCHI	0	2011	04	01	503	470697 163140	REGION 1
* KILOMETRAJE_RED_V		Release	6.06	CHMPORATO		2011	02	01	503	520740 085181	REGION 3
		Polyago	7.07	FLORO	0	2011	03	02	593	1033983.01777	REGION 7
•		Polygon	8 08	ESMERALDAS	ő	2011	04	02	593	2013129.34099	REGIÓN 1
CAONEDRIVE-ESPOLA		Polygon	9 09	GUAYAS	Ó	2011	03	02	593	3737498.979	REGIÓN 5
2016 DDNN	10	D Polygon	10 10	IMBABURA	0	2011	04	01	593	492169 405253	REGIÓN 1
CLONED DAY FEDOLU	11	1 Polygon	11 11	LOJA	0	2011	06	01	593	819830.25706	REGIÓN 7
C.(UNEDIGVE-ESPOLIC	13	2 Polygon	12 12	LOS RIOS	0	2011	03	02	593	872379.96847	REGION 5
~ 2015_PPNN	1	S Polygon	13 13	MANABI	0	2011	03	02	593	1200349.44975	REGION 4
C:\ONEDRIVE-ESPOL\0	1	Polygon	15 15	MORONA SANTHIOU	š	2011	00	03	593	917231 117981	REGION 8
- TOTAL 2014	16	S Polygon	16 16	PASTAZA	ŏ	2011	02	03	593	1068557 20480	REGIÓN 3
CAONEDRIVE-ESPOLA	1	Polygon	17 17	PICHINCHA	ő	2011	04	01	593	722044 248544	REGION 2
	18	8 Polygon	18 18	TUNGURAHUA	0	2011	02	01	593	337318.525925	REGION 3
10174_2015	15	9 Polygon	19 19	ZAMORA CHINCHIPE	0	2011	05	03	593	665769.945531	REGIÓN 7
C:(ONEDRIVE-ESPOL(C	20	Polygon	21 22	ORELLANA	0	2011	04	03	593	1281418.60117	REGION 2
TOTAL_2012	21	Polygon	22 23	SANTO DOMINGO DE LOS TSACHILAS	0	2011	04	01	593	416220.647849	REGION 4
C:\ONEDRIVE-ESPOL\C		Polygon	25 24	ZONIA NO DEL INITADA	0	2011	00	02	5/83	402010 733100	TONA NO DELIMIT
= POBLADOS NACION	2	Polygon	25 20	GALAPAGOS	0	2011	03	04	593	1782705 27988	REGION 5
C30NEDRIVE-ESPOLV	2	Polyago	1177 21	SUCUMBIOS	0	2011	04	03	593	1282693 13585	REGION 1
Contrat annial											
Cabecere cantonal Provincias Base Co/ONEDRIVE-ESPOLIC Base Provincias_R5	ter (a st 🖉 🖛 passes	'ented									
 C:\Users\dammi\Documer KernelD.shp1 <value></value> 0 - 16.25575409 16.2557541 - 32.511508 	its\ArcGIS\Default	gdb	~								

Figura 3.7 Ejecución de la selección Fuente: Torres, D., 2017.

Y entonces se eliminaron dichos registros mediante la tabla de

atributos:

Figura 3.8 Eliminación de provincias ajenas a la regional 5. **Fuente:** Torres, D., 2017.

Figura 3.9 Aplicación del switch selection Fuente: Torres, D., 2017.

Figura 3.10 Eliminación de registros mediante tabla de atributos. Fuente: Torres, D., 2017.

Finalmente se logró obtener los datos dentro de los campos para

las provincias pertenecientes a la regional 5 como se puede ver

en la siguiente figura:

Figura 3.11 Datos dentro de los campos de las provincias pertenecientes a la regional 5. Fuente: Torres, D., 2017.

Figura 3.12 Provincias de la regional 5. Fuente: Torres, D., 2017.

3.2. FASE PRELIMINAR

De acuerdo con investigaciones realizadas por el Laboratorio Nacional de Materiales y Modelos Estructurales LANAMME UCR ubicado en Costa Rica, se siguió un modelo de metodología para obtener las zonas más susceptibles hacia accidentes de tránsito superponiendo estos con un perfil de susceptibilidad.

Para obtener este perfil, se tomó en cuenta tres factores, entre estos el clima de a la región, la geometría de las carreteras y la infraestructura vial.

De acuerdo con estos criterios de seguridad vial se dará pesos a los mismos tomados en consideración y finalmente se obtendrá los tramos de red vial más susceptibles frente accidentes de tránsito.

3.2.1. Paso 3: Factor Clima

El factor de clima toma en cuenta dos parámetros, el primero referente a los días lluvia por la muestra anual y el segundo que es la pluviosidad en el mismo intervalo de tiempo. Para la generación de los raster se usaron registro en la muestra de 30 años, por medio de los datos que facilitó el Instituto Nacional de Meteorología e Hidrología.

Paso 3.1: Días lluvia promedio multianuales

Como se mencionó anteriormente, para generar el mapa de los días lluvia promedio en las provincias de la regional 5, se usó una muestra de 30 años de registro.

El primer paso fue cargar los puntos al espacio de trabajo del programa, estos fueron cargados desde el archivo procesado rigurosamente de los datos de pluviosidad del INAMHI.

Figura 3.13 Carga de puntos al espacio de trabajo. Fuente: Torres, D., 2017.

Una vez cargados los puntos que representan las estaciones meteorológicas, se procedió a generar la isoyeta por medio de una interpolación de tipo IDW, esta fue realizada con ayuda del programa ArcGIS a través de sus herramientas de análisis espacial.

Figura 3.14 Generación de Isoyeta. Fuente: Torres, D., 2017.

Tabla II:	Valores	ingresados	por	campo

Campo	Descripción	Valores Ingresados
Input point features	Ingresa la capa que contiene los datos de pluviosidad de cada estación	Se ingresó la capa que fue procesada desde los datos facilitados por el INAMHI
Z value field Output raster	Se ingresa el campo que contiene los datos de días lluvia promedio Nombre del raster de salida	Se ingresó el campo que contiene los datos de días lluvia promedio multianual Se llamó a la capa de salida DLL 1km2 324P
Output cell size	Tamaño de la celda	Se ingresaron 1000 metros
Power (optional)	2	Valor que usa la función por defecto
Search radius	Radio contenido dentro de la celda	Se ingresó una búsqueda de radio variable

Number of points	Estaciones vecinas que ayudan a la interpolación	Se ingresaron las 324 estaciones contenidas en todo el Ecuador
Maximun distance Input barrier	Distancia máxima	Campo vacío
polyline features	Poli línea de entrada	Campo vacío

Fuente: Torres, D., 2017.

El resultado de la función antes descrita se presenta a continuación

Figura 3.15 Resultados de la isoyeta. Fuente: Torres, D., 2017.

Debido a la necesidad de obtener los tramos de vías en función de las regiones contenidas dentro de la isoyeta, se creó una conversión del raster isoyeta hacia un raster de puntos, tal como se muestra en la siguiente figura.

Figura 3.16 Tramos de vías en función de las regiones. Fuente: Torres, D., 2017.

Para crearlo se tuvo que seguir el siguiente orden:

Conversion tools>From raster>Raster to point

El raster de puntos creado fue llamado "R2Point_DLL_324P", luego se procedió a crear nuevas capas que permitan visualizar los datos de la isoyeta de acuerdo con las clases con las que se generaron, en este caso se las generó con 5 clases, por lo cual se tuvieron que generar 5 capas llamadas DLL_Z1, DLL_Z2, DLL_Z3, DLL_Z4 y DDL_Z5.

Cabe mencionar que la creación de estas capas fue gracias a la herramienta de geoprocesamiento "Selección por localidad" en donde una vez escogida la zona, se creó la respectiva capa de puntos.

Las clases mencionadas fueron en los siguientes intervalos:

- Primera clase: 11.40 58.62
- Segunda clase: 58.62 117.25
- Tercera clase: 117.25 175.87
- Cuarta clase: 175.87 234.49
- Quinta clase: 234.49 293.11

Por lo tanto, para la regional 5, a lo mucho se tenían un promedio multianual de 294 días de lluvia al año.

Figura 3.17 Descripción pendiente Fuente: Torres, D., 2017.

Debido a que no era posible obtener los tramos de vías que pasaran específicamente por las capas creadas en el paso anterior, se generaron zonas "buffer" en dichos puntos, esto con el fin de crear polígonos de forma circular que permitan por medio de una selección por localidad extraer la información de tramos y subtramos de la red vial 5 que pasen por las capas buffer previamente creadas.

Para crear lo que se ilustra en el gráfico de abajo, se abrió la herramienta de geoprocesamiento BUFFER y se ingresaron los siguientes valores:

Figura 3.18 Generación de zonas "buffer". Fuente: Torres, D., 2017.

Campo	Descripción	Valores Ingresados
Input features	Indica la capa fuente con la que la función toma para arrojar los resultados	Se ingresaron por individual las capas llamadas DLL_Z1, DLL_Z2, DLL_Z3, DLL_Z4 y DLL_Z5, por lo tanto, se crearon 5 capas de tipo buffer
Output features class	Indica cómo se va a llamar la capa resultado	Las capas resultado fueron llamadas DLL_Z1_Buffer, DLL_Z2_Buffer, DLL_Z3_Buffer, DLL_Z4_Buffer y DLL_Z5_Buffer
Distance	Indica la distancia que hace el buffer desde la capa de origen	Se usó una distancia lineal de 200 metros
Field	Indica el campo de la capa fuente desde	Se dejó vacío el campo

 Tabla III. Valores ingresados por campo.

Campo	Descripción	Valores Ingresados			
	donde se puede hacer el				
	butter				
	Indica el lado nacia				
Sido tuno	donde se hana el buller,	Se usó el que viene por defecto			
Side type	izquierdo central o	(FULL)			
	derecho				
	Indica la geometría del				
	buffer esta puede ser de	Se usó el que viene por defecto			
End type	forma circular o en	(ROUND)			
	cuadrados				
	Puede escoger entre	Se usó el que viene por defecto			
Vethod	método planar o	(PLANAR)			
	geodesico Indica la disolución on				
Dissolve	caso de que se presente	Se usó el que viene por defecto			
	traslape de geometrías	(NONE)			
71	tipo buffer	()			
	Indica los campos de la				
Dissolve	capa de ingreso que	No se ingresaron valores			
fields	podrían ser resueltas en				
	caso de traslapes	D 0047			
Fuente: Torres, D., 2017.					

Ingresados los valores a la función, se tiene lo siguiente:

Figura 3.19 Descripción pendiente. Fuente: Torres, D., 2017.

Una vez generadas las capas, que salieron a partir de la herramienta de geoprocesamiento tipo buffer, se procedió a extraer la información respectiva de tramos y subtramos en cada zona dentro de la isoyeta días lluvia creada en el inicio.

Para conseguir dicha información, se usó la herramienta de geoprocesamiento "selección por localidad".

Figura 3.20 Uso de la herramienta geoprocesamiento, "selección por localidad". Fuente: Torres, D., 2017.

Campo	Descripción	Valores Ingresados
Selection method	Elige el método de selección	Se usó "Select features from"
Target layers	Da una lista de las capas que contienen el dato a seleccionar	Se escogió siempre la capa llamada CLIP RED VIAL TRAMOS SUBTRAMOS
Source layer	Se escoge la capa base donde se acota la selección	Se escogieron las capas llamadas DLL_Z1_Buffer, DLL_Z2_Buffer, DLL_Z3_Buffer, DLL_Z4_Buffer y DLL_Z5_Buffer, en total se realizaron 5 selecciones
Spatial selection method for target layer features	Da a elegir el método de selección espacial, existen 15 métodos	Se usó la opción "Intersect the source layer feature
Apply a search distance	Indica una distancia de búsqueda de selección	No se habilito la opción

geoprocesamiento.

Fuente: Torres, D., 2017.

Una vez escogida la información por medio de selección espacial, esta se guardó en diferentes capas, que fueron llamadas RV_DLL_Z1, RV_DLL_Z2, RV_DLL_Z3, RV_DLL_Z4 y RV_DLL_Z5.

Luego para una correcta presentación de la isoyeta, se tuvo que recortar el raster convertido a buffer para llevar los datos desde contorno global hacia local, consiguiendo así el siguiente esquema:

Figura 3.21 Esquema de la isoyeta Fuente: Torres, D., 2017.

Una vez obtenidas las capas RV_DLL_Z1, RV_DLL_Z2, RV_DLL_Z3, RV_DLL_Z4 y RV_DLL_Z5, se extrajeron los

campos y se asignaron pesos a todas las 22 vías contenidas en la regional 5.

Los pesos fueron asignados de acuerdo con el criterio del Laboratorio de Materiales y Modelos Estructurales LANAMME como se visualiza en la siguiente tabla:

Tabla V: Clasificación de condiciones de lluvia, y su peso de acuerdo al LANAMME.

Clasificación	Condición	Descripción (Días Lluvia/Año)	Peso
1	Muy baja	80-20%	0
2	Baja	20-40%	1
3	Regular	40-60%	2
4	Alta	60-80%	3
5	Muy alta	80-100%	3
	Fuente	Torres D 2017	

Fuente:	Torres,	D.,	2017.
---------	---------	-----	-------

Tabla VI: Peso por días de lluvia			
Días Lluvia Min	Días Lluvia Max	Peso Lanamme	
11.4	58.62	0	
58.62	117.25	1	
117.25	175.87	2	
175.87	234.49	3	
234.49	293.11	3	
Evente: Terres D 2017			

Fuente: Torres, D., 2017.

Con los procedimientos antes descritos, se construye la siguiente tabla:

	D / D	5/ 5		
Vía	Dias De	Dias De	Valor	Ре
	Lluvia Min	Lluvia Max	Medio	SO
Alausí - El Triunfo	175.87	234.49	205.18	3
Aurora - T De Salitre	117.25	175.87	146.56	2
Babahoyo - Ambato	146.56	205.18	175.87	2
Balbanera - T Del Triunfo	195.41	254.03	224.72	3
Durán - Km. 27	105.52	164.15	134.84	1.5
Guaranda - Cemento Chimborazo	131.91	190.53	161.22	2
Guayaquil - El Empalme	67.41	126.04	96.73	1
La Puntilla - Guayaquil	58.62	117.25	87.94	1
La Troncal - Puerto Inca	117.25	175.87	146.56	2
Milagro - Bucay	117.25	175.87	146.56	2
Montecristi - Nobol	58.62	117.25	87.94	1
Palestina - San Juan	78.16	136.79	107.48	1.5
Progreso - Posorja	87.94	146.56	117.25	1.5
Progreso - Posorja (Alterna)	58.62	117.25	87.94	1
Puerto Inca - Cuenca	117.25	175.87	146.56	2
T De Baba - Daule	92.12	150.75	121.44	1.5
T De Milagro - Durán	97.71	156.33	127.02	1.5
Transversal Austral	67.49	123.42	95.46	1.5
Transversal Central	141.68	200.30	170.99	2.5
Transversal Central (Alterna)	117.25	175.87	146.56	2
Troncal De La Costa	114.90	173.53	144.21	2
Vía Del Pacífico (Ruta Del Spondylus)	52.65	107.48	80.06	0.5

Tabla VII: Descripción pendiente.

Fuente: Torres, D., 2017.

Finalmente, como producto parcial se obtiene el mapa que representa los valores de días lluvia promedio multianual y también los respectivos pesos que aportarán en pasos siguientes a construir el perfil de susceptibilidad de la regional 5.

Figura 3.22 Isoyeta días de lluvia serie 1981-2010. Fuente: Torres, D., 2017.

Paso 3.2: Precipitación media multianual

Para generar el mapa de precipitación multianual fue necesario solicitar las coordenadas de las estaciones meteorológicas y las isoyetas multianuales con 30 años de muestra. Esta solicitud se la realizó en línea por medio del portal de solicitudes públicas.

Una vez recibidos estos datos, se cargaron al espacio de trabajo del programa ArcGIS tal como se muestra en las capturas siguientes:

Figura 3.23 Datos de precipitación multianual. Fuente: Torres, D., 2017.

Figura 3.24 Datos de precipitación multianual de las provincias de la regional 5. Fuente: Torres, D., 2017.

Luego, se crearon nuevas capas por cada intervalo de las clases contenidas en las isoyetas que facilitó el INAMHI.

La metodología para crear las capas se describe a continuación:

Primero se realizó una selección por atributo para la isoyeta de precipitación por cada clase contenida en el mismo.

Figura 3.25 Isoyeta de partición por cada clase. Fuente: Torres, D., 2017.

Por cada selección de clase, se ingresaron los valores a la función

de la siguiente manera:

Campo	Descripción	Valores Ingresados	
	Indica la capa fuente de	Se ingresó como dato el	
Layer	donde se toman los	raster de isoyeta de	
	valores para la selección	precipitación multianual	
Method	Indica el método de selección que se desea aplicar, existen 4	Se usó el método de nueva selección	
	•	Se ingresó el siguiente código	
Select*from -	Indica el código que se	por cada clase:	
Feature name-	va aplicar para obtener la	Value_Max >=A AND	
Where	selección espacial	Value_Max <=B, donde se	
Where	deseada	entiende que el intervalo de la	
		clase es de A hasta B.	

 Tabla VIII: Valores ingresados por campo por cada selección de clase.

Fuente: Torres, D., 2017.

Una vez obtenida la selección, se creó una capa por cada una, en este caso se crearon 5 capas de acuerdo con las 5 clases que presentaba la isoyeta de precipitación.

Figura 3.26 Isoyeta de precipitación con sus 5 clases. Fuente: Torres, D., 2017.

Una vez creadas estas capas de tipo raster, estas fueron Ilamadas Z1, Z2, Z3, Z4 y Z5. Cabe mencionar que a diferencia del proceso que se llevó para generar el mapa de días Lluvia promedio multianual, para este caso se ahorró mucho trabajo debido a que no se construyeron las isoyetas y estas fueron facilitadas en formato raster con campos de polígonos, lo que agilizo el procedimiento para construir las capas por cada clase contenida en la isoyeta, recordando que estas clases fueron 5 en unidades de mm anuales y se las describe a continuación:

- Primera clase: 542 1161 mm
- Segunda clase: 1161 1780 mm
- Tercera clase: 1780 2399 mm
- Cuarta clase: 2399 3018 mm
- Quinta clase: 3018 3637 mm

Luego, se procedió a extraer información de tramos y subtramos de vías que estén contenidas en las capas creadas anteriormente.

Esta extracción se dio gracias a la herramienta de geoprocesamiento de "selección por localidad".

Campo	Descripción	Valores Ingresados
Selection method	Elige el método de selección	Se usó "Select features from"
Target layers	Da una lista de las capas que contienen el dato a seleccionar	Se escogió siempre la capa llamada CLIP RED VIAL TRAMOS SUBTRAMOS Se escogieron las capas
Source layer	Se escoge la capa base donde se acota la selección	anteriormente creadas Z1, Z2, Z3, Z4 y Z5, en total se realizaron 5 selecciones de tramos de red vial
Spatial selection method for target layer features	Da a elegir el método de selección espacial, existen 15 métodos	Se usó la opción "Intersect the source layer feature
Apply a search distance	Indica una distancia de búsqueda de selección	No se habilito la opción
	Fuente: Torres	D 2017

Tabla IX: Valores ingresaos por campo.

Fuente: Forres, D., 2017.

Con esto se logró obtener los valores de precipitación para cada tramo y subtramo de carretera dentro de la red estatal y posterior a eso se pudo asociar un peso que sirvió de aporte para construir el perfil susceptible de la red vial 5.

Precip Min 1780 1161 1581 1471 1161	Precip Max 2399 1780 2200 2090	Peso Precip Max 1.00 0.00 1.00
<u>Min</u> 1780 1161 1581 1471 1161	Max 2399 1780 2200 2090	Max 1.00 0.00 1.00
1780 1161 1581 1471 1161	2399 1780 2200 2090	1.00 0.00 1.00
1161 1581 1471 1161	1780 2200 2090	0.00 1.00
1581 1471 1161	2200 2090	1.00
1471 1161	2090	
1161		1.00
	1780	0.00
1006	1625	0.00
1285	1904	0.00
1161	1780	0.00
1161	1780	0.00
1471	2090	1.00
1161	1780	0.00
1058	1677	0.00
542	1161	0.00
542	1161	0.00
1161	1780	0.00
1200	1819	0.00
1161	1780	0.00
900	1519	0.00
2605	3224	2.00
2399	3018	2.00
1673	2292	1.00
542	1161	0.00
	161 006 285 161 161 471 161 058 542 542 161 200 161 900 2605 2399 673 542	471 2090 161 1780 006 1625 285 1904 161 1780 161 1780 161 1780 161 1780 161 1780 058 1677 542 1161 161 1780 200 1819 161 1780 900 1519 2605 3224 2399 3018 673 2292 542 1161

Tabla X: Tabla de precipitaciones por vía y peso por precipitación máxima.

Fuente: Torres, D., 2017.

Cabe mencionar que dichos pesos fueron dados de acuerdo con el criterio establecido por el Laboratorio de Materiales y Modelos Estructurales LANAMME como se muestra en la siguiente tabla:

Clasificación	Descripción (Mm/Año)	Peso
1	<2000	0
2	2000-3000	1
3	3000-4000	2
4	>4000	3
Fuente: Torres, D., 2017.		

 Tabla XI: Clasificación de pesos por rango de precipitaciones anuales.

Finalmente, se obtiene como producto parcial, una isoyeta de precipitación media multianual para 30 años en toda la red vial de la regional 5.

Figura 3.27 Isoyetas de precipitación media multianual serie 1981-2010 Fuente: Torres, D., 2017.

3.2.2. Paso 4: Factor Geometría

Paso 4.1: Tipo de terreno.

Para poder generar el mapa de tipo de terreno fue necesario usar el software Google Earth para obtener las curvas de nivel y conocer la configuración del terreno existente en la regional 5. Para esto, primero se cargó el programa y se localizó la regional 5 en el mapa virtual.

Figura 3.28 Tipo de terreno. Fuente: Torres, D., 2017.

Luego se ubicaron de manera aleatoria los puntos que se necesitaban extraer del Google Earth, para así obtener las respectivas cotas del terreno.

Figura 3.29 Cotas de terreno Fuente: Torres, D., 2017.

Una vez ubicado los puntos en la zona objetivo, se guardó la función como formato kmz, al hacer esto lo que se tiene es un archivo DEM (Digital Elevation Model), pero debido a la necesidad de cargar los puntos al programa ARCGIS, por medio del portal web http://www.gpsvisualizer.com/elevation, se hizo una conversión de puntos DEM a puntos GPS.

Figura 3.30 Carga de puntos a ARCGIS. Fuente: Torres, D., 2017.

Como paso siguiente se abrió el programa ArcGIS y se cargaron los puntos ya convertidos a formato GPX, para cargarlos se usó el siguiente orden en la barra de herramientas de geoprocesamiento

Toolboxes>System toolboxes>Conversion tools>From GPS>GPX To Features.

Figura 3.31 Carga de datos en formato GPX Fuente: Torres, D., 2017.

Tabla XII: Valores ingresados por campo.					
Campo	Descripción	Valores Ingresados			
Input GPX file	Campo donde se debe ingresar el archivo GPX	Se ingresó el archivo convertido en el portal antes mostrado			
Output feature class	Campo que indica el nombramiento del archivo que será resultado de la conversión	Se nombró la capa resultado como "COTAS_RV5"			
Fuente: Torres, D., 2017.					

Una vez cargados los puntos al programa se visualiza lo

siguiente:

Figura 3.32 Visualización de datos cargados. Fuente: Torres, D., 2017.

Como paso siguiente se creó un TIN (Red de triángulos irregulares)

siguiendo las siguientes ordenes en la barra de herramientas

System toolboxes>3D Analyst Tools>TIN>Create TIN

Figura 3.33 Red de triángulos irregulares. Fuente: Torres, D., 2017.

Campo	Descripción	Valores Ingresados
Output TIN	Campo donde se nombre el resultado de la función	Se llamó a la capa de salida como "COTAS_RV5_TIN"
Coordinate System (Optional)	Campo donde se indica el sistema georeferencial a usar	Se usó el Sistema UTM WGS 1984 para la Zona 17 Sur
Input Feature Class	Campo donde se ingresa los datos de la función	Se ingresa la capa que contiene las cotas del terreno, en este caso la capa llamada COTAS_RV5
		•

Tabla XIII: Valores ingresados por campo para creación de TIN.

Fuente: Torres, D., 2017.

Figura 3.34 Descripción por definir. Fuente: Torres, D., 2017.

Como paso siguiente se crean las respectivas curvas de nivel del terreno, siguiendo el siguiente orden en la barra de herramientas

System Toolboxes>3D Analyst Tools>Triangulated Surface>Surface contour

Figura 3.35 Creación de curvas de nivel del terreno. Fuente: Torres, D., 2017.

Donde se ingresa como dato de la función el TIN generado previamente y se usó como intervalo de curvas un valor de 50. Al resultado de la función se lo llamo "COTAS_RV5_TIN_CN50". Debido a que el resultado reflejaba curvas no suavizadas, se las procedió a suavizar con el siguiente orden en la barra de herramientas.

System Toolboxes>Cartography tools>Generalization>Smooth line

Figura 3.36 Suavización de las curvas de nivel. Fuente: Torres, D., 2017.

Tabla XIV: Datos ingresados por campo.
Fuente: Torres, D., 2017.

Campo	Descripción	Valores Ingresados
	Campo donde se	Se ingresó la capa de curvas de
Input features	ingresan las curvas de	nivel Ilamada
_	nivel a suavizar	COTAS_RV5_TIN_CN50
Output Features Class	Campo donde se da la dirección de la capa resultado	Se llamó a la función resultado "Cotas_RV5_TIN_CN50_SM"
Smoothing Algorithm	Se puede escoger dos tipos, PAEK o BEZIER INTERPOLATION	Se usó el método PAEK
Smoothing tolerance	Se ingresa la magnitud de suavizado que se le quiere dar a las curvas de nivel	Se usó un valor de 5000 en unidades de metros
Preserve endpoint for closed lines (optional)	Se puede dar habilitado o no habilitado	Se dio habilitado

Finalmente, con todos los pasos anteriores y extrayendo los valores de cotas para cada tramo de vías, se obtienen los siguientes datos

Tabla XV: Peso promedio por vía.

Fuente: Torres, D., 2017.

Tomando como referencia los pesos establecidos por el

Laboratorio de Materiales y Modelos Estructurales LANAMME.

Clasificación	Tipo de Terreno	Peso Lanamme
1	Llano	0
2	Ondulado Suave	1
3	Ondulado Duro	2
4	Montañoso	3
	Fuente: Torres, D., 20	17.

Tabla XVI: Peso LANAMME por tipo de terreno.

De acuerdo con dichos pesos fueron asignados para cada vía y con pequeños detalles, se logró construir el mapa de la configuración del terreno para toda la regional 5.

Figura 3.37 Configuración del terreno de la regional 5. **Fuente:** Torres, D., 2017.

Paso 4.2: Curvas por kilómetro en tramo de carretera.

El primer paso para lograr obtener el número de curvas por kilómetro en la red vial estatal de la regional 5 fue tomar los puntos de la capa Peraltes existentes en el inventario georreferenciado que facilito la CTE.

Figura 3.38 Curvas por kilómetro en tramo de carretera. Fuente: Torres, D., 2017.

Según los datos que facilitó el Ministerio de Transporte y Obras Públicas, la capa Peraltes es de tipo puntos y en cada uno se conoce que existe una curva en la red vial de la regional 5, entonces a partir de ese detalle se extrajo los puntos de la capa Peraltes y se hizo una cuantificación de puntos peraltes existentes en cada vía de la red. Se obtuvieron 22 vías y por cada una se pudo obtener el número de curvas.

El segundo paso fue obtener la longitud que tenían cada una de las vías existentes en la capa Red Vial Tramos Subtramos que facilito el MTOP, para esto se cargó la capa mencionada y se cuantificó la longitud de vía por cada una de las 22 existentes en la red. Una vez obtenida la longitud y el número de curvas, se hizo un cociente entre ambos parámetros y se obtuvo el número de curvas por kilómetro en cada tramo de vía.

Por consiguiente, a esa etapa, se procedió a otorgar pesos de acuerdo con la metodología que propone el Laboratorio Nacional de Materiales y Modelos Estructurales ubicado en Costa Rica, LANAMME UCR.

Tabla XVII: Color por peso LANAMME según tipo de curva.

Clasificación	Descripción	Curvas/km	Peso LANAMME
1	Muy sinuoso	>15	3
2	Curvas frecuentes	10 a 15	3
3	Poco sinuoso	5 a 10	2
4	Algunas curvas	2 a 5	1
5	Duro con curvas suaves	0 a 2	0

Tabla XVIII:	Clasificación	de las v	vías por ti	po de terreno	por curvas/km
--------------	---------------	----------	-------------	---------------	---------------

Nombre Vía	Cod_ Via1	Núm. Curvas	Long. (m)	Long. (km)	Curva /km	Pe so
Vía Del Pacífico (Ruta Del Spondylus)	1	91	84342	84	1.08	0
Troncal De La Costa	2	183	32092 7	321	0.57	0
Transversal Central	8	91	80298	80	1.13	0
Transversal Austral	9	168	22940 0	229	0.73	0
Montecristi - Nobol	11	13	44551	45	0.29	0
Progreso - Posorja	14	64	55578	56	1.15	0

Nombre Vía	Cod_ Via1	Núm. Curvas	Long. (m)	Long. (km)	Curva /km	Pe so
Guayaquil - El Empalme	17	101	14564 4	146	0.69	0
Aurora - T De Salitre	19	5	21915	22	0.23	0
T De Milagro - Durán	21	7	25268	25	0.28	0
La Troncal - Puerto Inca	22	3	25012	25	0.12	0
Babahoyo - Ambato	23	448	19986 7	200	2.24	1
Balbanera - T Del Triunfo	24	14	79139	79	0.18	0
Palestina - San Juan	44	49	63689	64	0.77	0
Guaranda - Cemento Chimborazo	45	357	25361	25	14.08	3
T De Baba - Daule	46	50	63215	63	0.79	0
Milagro - Bucay	48	45	59243	59	0.76	0
La Puntilla - Guayaquil	49	1	1407	1	0.71	0
Durán - Km. 27	50	4	26235	26	0.15	0
Alausí - El Triunfo	51	1	2395	2	0.42	0
Puerto Inca - Cuenca	52	11	12735	13	0.86	0
Transversal Central (Alterna)	82	4	2270	2	1.76	0
Progreso - Posorja (Alterna)	92	7	7824	8	0.89	0
			M CURV	AX AS/KM	14.08	

Fuente: Torres, D., 2017.

Una vez otorgados los pesos se cargaron los campos en formato Excel al programa ArcGIS y mediante una conversión de formato xls a shp, finalmente se plotearon en el mapa.

Los resultados se visualizan como se muestra en el siguiente grafico

Figura 3.39 Alineamiento vial, regional 5. Fuente: Torres, D., 2017.

3.2.3. Paso 5: Factor Infraestructura

Paso 5.1: Fricción (GN)

Para poder construir el mapa de valores de fricción existentes en el pavimento de la red vial de la regional 5, se cargó al espacio de trabajo del programa la capa llamada "Temático fricción", capa que fue facilitada por el Ministerio de Transporte y Obras Públicas.

Figura 3. 40 Construcción de mapa de fricción existente. Fuente: Torres, D., 2017.

Una vez cargada dicha capa, se tuvo que recortar los datos a las provincias contenidas en la regional 5, esto debido a que los valores de fricción se dieron para toda la red vial estatal. Para hacer el recorte se usó la herramienta de geoprocesamiento CLIP de ArcGIS.

Figura 3.41 Valores de fricción para la regional 5. **Fuente:** Torres, D., 2017

Tabla XIX: Valores ingresados por campo para valores de fricción de las	3
provincias de la regional 5.	

		0
Campo	Descripción	Valores Ingresados
Input features	Campo donde se ingresa la capa que va de base en el recorte	Se ingresó la capa llamada TEMATICO_FRICCION
Features Class	Campo donde se ingresa la capa que va de molde al recorte	Se ingresó la capa llamada Provincias_RG5
Output Feature Class	Dirección y nombre de la capa resultado	Se llamó a la capa resultado como CLIP_TEM_FRICCION
XY Tolerance	Tolerancia en metros del recorte	No se ingresaron valores

Fuente: Torres, D., 2017.

Consiguiente a los pasos antes descritos, se exporto los valores de la capa llamada CLIP_TEM_FRICCION hacia formato xls y se procedió a extraer el número de Índice de fricción por todas las 22 vías existente en la regional 5.

Una vez asignados el número de fricción en cada vía se procedió asignar los pesos respectivos de acuerdo con la metodología ejemplo que se tomó del artículo publicado desde el Laboratorio Nacional de Materiales y Modelos Estructurales de Costa Rica.

Tabla XX: Clasificación internacional de numero de fricción para pavimento.

	International Classification of Pavement by Grip Number					
Grip number	Condición	Slippery	Hazardness	Riesgo promedio de accidente	Categoría	Peso
<0.50	Mala	Very slippery	Muy peligrosa	>20	4	8
0.50- 0.60	Regular	Slippery	Peligrosa	16-20	3	6
0.60- 0.78	Buena	Little slippery	Moderada	10-16	2	4
>0.78	Muy buena	Non slippery	Segura	<10	1	2
		F		047		

Fuente: Torres, D., 2017.

Con la tabla guía mostrada anteriormente, se obtiene la siguiente

tabla de resultado parcial:

Carretera	Cod_via1	Fricción	Fricción PESO GN
Alausí - El Triunfo	51	0.39	8
Aurora - T de Salitre	19	0.25	8
Babahoyo - Ambato	23	0.54	6
Balbanera - T del Triunfo	24	0.56	6
Durán - Km. 27	50	0.31	8
Guaranda - Cemento Chimborazo	45	0.59	6
Guayaquil - El Empalme	17	0.33	8
La Puntilla - Guayaquil	49	0.35	8
La Troncal - Puerto Inca	22	0.41	8
Milagro - Bucay	48	0.57	6
Montecristi - Nobol	11	0.34	8
Palestina - San Juan	44	0.37	8
Progreso - Posorja	14	0.44	8
Progreso - Posorja (Alterna)	92	0.36	8

Tabla XXI: Peso GN por vía.

Carretera	Cod_via1	Fricción	Fricción PESO GN			
Puerto Inca - Cuenca	52	0.74	4			
T De Baba - Daule	46	0.49	8			
T De Milagro - Durán	21	0.35	8			
Transversal Austral	9	0.40	8			
Transversal Central	8	0.47	8			
Transversal Central (Alterna)	82	0.37	8			
Troncal de La Costa	2	0.42	8			
Vía del Pacífico (Ruta Del Spondylus)	1	0.43	8			
Fuente: Torres, D., 2017.						

Una vez lista la tabla de pesos asignados, se cargaron los campos en formato Excel al programa ArcGIS, mediante una conversión de formato xls a shp, y finalmente se plotearon al espacio de trabajo.

Con muchos detalles pequeños, estos procesos antes descritos se los cuadra como resultados y se los visualiza en el siguiente mapa.

Figura 3.42 Fricción Red Vial Estatal, regional 5. Fuente: Torres, D., 2017.

Paso 5.2: Reflectividad

Para generar el mapa de la reflectividad en la red vial de la regional 5, primero se cargó al espacio de trabajo la capa llamada "Horizontal" facilitada por la auditoria de seguridad vial realizada en una fase previa a la que actualmente se plantea.

Figura 3.43 Carga de la capa Horizontal. Fuente: Torres, D., 2017.

Una vez cargados los datos se procedió a exportar los campos hacia una hoja de cálculo xls, esto se hizo dando clic derecho a la capa "Horizontal", buscando la opción "Data" y luego dando en la subopción "Export data"

Figura 3.44 Exportación de campos a hoja de Excel. Fuente: Torres, D., 2017.

Consiguiente a este paso, se tenían varios campos en la hoja de Excel por parte de la capa Horizontal y debido a que de todos los campos solo se necesitaban 8, se tuvieron que separar y detallar como se presenta a continuación:

Nombre del campo	Тіро	Longitud del campo	Descripción del Campo	Opciones del campo
LB_ESTAD	Texto	80	Estado aparente de la línea de borde.	1) Bueno, (La pintura no presenta defectos aparentes); 2) Regular, (La pintura presenta defectos o dificultades para su visualización); 3) Malo, (La línea está evidentemente despintada y es difícilmente visible).
LB_RF_APAR	Texto	80	Retro reflectividad aparente de la línea de borde.	 Adecuada, (La línea presenta un nivel de retro reflectividad apreciada durante el recorrido nocturno); 2) Inadecuada (No se aprecia retro reflectividad en el recorrido nocturno) Bueno (La pintura po
DC_ESTAD	Texto	80	Estado aparente de la línea de división de carriles.	presenta defectos aparentes); 2) Regular, (La pintura presenta defectos o dificultades para su visualización); 3) Malo, (La línea está evidentemente despintada y es difícilmente visible)
DC_RF_APAR	Texto	80	Retro reflectividad aparente de la línea de división de carriles.	 Adecuada (La línea presenta un nivel de retro reflectividad apreciada durante el recorrido nocturno); 2) Inadecuada (No se aprecia retro reflectividad en el recorrido nocturno).
DS_ESTAD	Texto	80	Estado aparente de la línea de	1) Bueno (La pintura no presenta defectos aparentes); 2) Regular (La

 Tabla XXII: Depuración de datos en la hoja de Excel.

			tachas.	
IN_TACHAS	Texto	80	colocación y/o	0%; 25%;50%; 75%; 100%
			tramo que	
			repintado. Porcentaje del	
IN_REPINT	Texto	80	Porcentaje del tramo que requiere ser	0%; 25%;50%; 75%; 100%
DS_RF_APAR	Texto	80	Retro reflectividad aparente de la línea de división de sentido de circulación.	 Inea esta evidentemente despintada y es difícilmente visible). 1) Adecuada (La línea presenta un nivel de retro reflectividad apreciada durante el recorrido nocturno); 2) Inadecuada (No se aprecia retro reflectividad en el recorrido nocturno).
			división de sentido de circulación.	pintura presenta defectos o dificultades para su visualización); 3) Malo (La

Fuente: Torres, D., 2017.

Referencia: Metadato para señalización horizontal- ASV MTOP

Una vez identificados y separados los campos, se extraen valores de reflectividad de cada uno de estos de acuerdo con las 22 vías existentes en la red vial y se las clasifica de acuerdo con el tipo.

A continuación, se presentan en resumen las tablas con respecto a los porcentajes adecuados en reflectividad, pintura, tachado y estado aparente de la señalización horizontal de la red vial 5.

Carretera	%Adecuadas	%Adecuadas	%Adecuadas
	Lb_Rt_Apar	Dc_Rf_Apar	Ds_Rt_Apar
Alausí - El Triunfo	100%	0%	0%
Aurora - T de Salitre	33%	33%	33%
Babahoyo - Ambato	18%	0%	18%
Babahoyo - Ambato	18%	0%	18%
Balbanera - T del Triunfo	40%	0%	60%
Durán - Km. 27	33%	50%	83%
Guaranda - Cemento Chimborazo	0%	0%	0%
Guayaquil - El Empalme	64%	36%	82%
La Puntilla - Guayaquil	100%	100%	100%
La Troncal - Puerto Inca	100%	100%	100%
Milagro - Bucay	13%	0%	75%
Montecristi - Nobol	86%	29%	100%
Palestina - San Juan	50%	0%	75%
Progreso - Posorja	38%	38%	38%
Puerto Inca - Cuenca	100%	0%	100%
T De Baba - Daule	20%	0%	50%
T De Milagro - Durán	0%	75%	75%
Transversal Austral	69%	69%	61%
Transversal Central	0%	8%	0%
Transversal Central (Alterna)	0%	0%	0%
Troncal De La Costa	61%	29%	67%
Vía Del Pacífico (Ruta Del Spondylus)	70%	50%	70%

Tabla XXIII: Porcentaje del estado aparente de señalización horizontal.

		Lb_Estad	
Carretera	%Estado	%Estado	%Estado
	Bueno	Regular	Malo
	Lb_Estad	Lb_Estad	Lb_Estad
Alausí - El Triunfo	100%	0%	0%
Aurora - T de Salitre	33%	67%	0%
Babahoyo - Ambato	18%	77%	5%
Babahoyo - Ambato	18%	77%	5%
Balbanera - T del Triunfo	40%	60%	0%
Durán - Km. 27	33%	67%	0%
Guaranda - Cemento Chimborazo	0%	0%	100%
Guayaquil - El Empalme	64%	36%	0%
La Puntilla - Guayaquil	100%	0%	0%
La Troncal - Puerto Inca	100%	0%	0%
Milagro - Bucay	13%	88%	0%
Montecristi - Nobol	86%	14%	0%
Palestina - San Juan	50%	50%	0%
Progreso - Posorja	38%	50%	13%
Puerto Inca - Cuenca	100%	0%	0%
T De Baba - Daule	20%	70%	10%
T De Milagro - Durán	0%	100%	0%
Transversal Austral	58%	39%	0%
Transversal Central	0%	83%	8%
Transversal Central (Alterna)	0%	100%	0%
Troncal de la Costa	61%	37%	2%
Vía Del Pacífico (Ruta del Spondylus)	70%	30%	0%

Tabla XXIV: Porcentaje del estado aparente de señalización horizontal.

		Dc Estad	
Carretera	%Estado Bueno De Estad	%Estado Regular	%Estado Malo Do Estad
	0%	0%	0%
Aurora - 1 de Salitre	33%	0%	0%
Babahoyo - Ambato	0%	5%	0%
Babahoyo - Ambato	0%	5%	0%
Balbanera - T del Triunfo	0%	0%	0%
Durán - Km. 27	50%	17%	0%
Guaranda - Cemento Chimborazo	0%	0%	0%
Guayaquil - El Empalme	36%	18%	0%
La Puntilla - Guayaquil	100%	0%	0%
La Troncal - Puerto Inca	100%	0%	0%
Milagro - Bucay	0%	38%	0%
Montecristi - Nobol	29%	14%	0%
Palestina - San Juan	0%	0%	0%
Progreso - Posorja	38%	25%	0%
Puerto Inca - Cuenca	0%	0%	0%
T De Baba - Daule	0%	0%	0%
T De Milagro - Durán	75%	25%	0%
Transversal Austral	69%	11%	8%
Transversal Central	8%	33%	0%
Transversal Central (Alterna)	0%	100%	0%
Troncal de La Costa	29%	8%	4%
Vía Del Pacífico (Ruta Del Spondylus)	50%	20%	0%

Tabla XXV: Porcentaje del estado aparente de señalización horizontal.

		Ds Estad	
Carretera	%Estado Bueno	%Estado Regular	%Estado Malo
		DS_EStau	
Alausi - El Triunto	0%	0%	0%
Aurora - T de Salitre	33%	67%	0%
Babahoyo - Ambato	18%	77%	5%
Babahoyo - Ambato	18%	77%	5%
Balbanera - T del Triunfo	60%	40%	0%
Durán - Km. 27	83%	17%	0%
Guaranda - Cemento Chimborazo	0%	50%	50%
Guayaquil - El Empalme	82%	18%	0%
La Puntilla - Guayaquil	100%	0%	0%
La Troncal - Puerto Inca	100%	0%	0%
Milagro - Bucay	75%	25%	0%
Montecristi - Nobol	100%	0%	0%
Palestina - San Juan	75%	25%	0%
Progreso - Posorja	38%	50%	13%
Puerto Inca - Cuenca	100%	0%	0%
T de Baba - Daule	50%	20%	30%
T de Milagro - Durán	75%	25%	0%
Transversal Austral	61%	11%	0%
Transversal Central	0%	83%	8%
Transversal Central (Alterna)	0%	100%	0%
Troncal de la Costa	65%	27%	2%
Vía Del Pacífico (Ruta del Spondylus)	70%	30%	0%

Tabla XXVI: Porcentaje del estado aparente de señalización horizontal.

Carretera	In_Repint	In_Tachas
Alausí - El Triunfo	No Existen Datos	100%
Aurora - T de Salitre	75%	No Existen Datos
Babahoyo - Ambato	74%	No Existen Datos
Babahoyo - Ambato	74%	No Existen Datos
Balbanera - T del Triunfo	67%	No Existen Datos
Durán - Km. 27	56%	No Existen Datos
Guaranda - Cemento Chimborazo	100%	100%
Guayaquil - El Empalme	52%	No Existen Datos
La Puntilla - Guayaquil	No Existen Datos	No Existen Datos
La Troncal - Puerto Inca	No Existen Datos	No Existen Datos
Milagro - Bucay	57%	No Existen Datos
Montecristi - Nobol	50%	100%
Palestina - San Juan	63%	100%
Progreso - Posorja	80%	No Existen Datos
Puerto Inca - Cuenca	No Existen Datos	100%
T De Baba - Daule	75%	100%
T De Milagro - Durán	56%	No Existen Datos
Transversal Austral	57%	100%
Transversal Central	77%	100%
Transversal Central (Alterna)	75%	No Existen Datos
Troncal de la Costa	68%	100%
Vía del Pacífico (Ruta del Spondylus)	75%	100%

 Tabla XXVII: Porcentaje del estado aparente de señalización horizontal.

Fuente: Torres, D., 2017.

Tal como se observa en las tablas, se han calificado la señalización horizontal de las vías, y dichas calificaciones fueron tomadas desde los rangos establecidos por el MTOP como se muestra a continuación:

Tabla XXVIII: Umbrales de cumplimiento de estándares de señalizaciónhorizontal.

UMBRALES DE CUMPLIMIENTO DE ESTÁNDARES DE SEÑALIZACIÓN HORIZONTAL						
ΤΙΡΟ ΕΤΑΡΑ		ESTADO	Retro reflectividad (mcd/lux/m2)		Estándar Retro reflectividad (mcd/lux/m2)	
			Blanco	Amarillo	Blanco	Amarillo
Pinturas base agua y base solvente	Inicial (Con base en norma INEN 1042)	Bueno	>250	>200	150	100
	Final (después de 180 días)	Regular	250-100	200-80	150	100
	,	Malo	<100	<80		
Pinturas termoplásticas extrusión o aerosol	Inicial (Con base en norma INEN 1042)	Bueno	400	325		
	(Con base en norma AASHTO 249-12)>>>	Regular	325	200	150	150
	Asignado por experiencia en DOT FLORIDA, USA >>>	Malo	150	150		
	Fuente:	Torres, I	D., 2017			

Tabla XXIX: Pintura blanca					
Estado Bueno > 250*					
Pintura Blanca:	Estado Regular	250 – 100			
	Estado Malo	< 100**			
Fuente: Torres, D., 2017.					

KXX: Pintura Amarilla.					
Estado Bueno	> 200*				
Estado Regular	200 – 80				
Estado Malo	< 80**				
	Estado Bueno Estado Regular Estado Malo				

* Comprende al valor Inicial

**Comprende al valor a 180 días

Fuente: Torres, D., 2017.

Una vez establecidas las tablas en formato xls, estas fueron llevadas al programa ArcGIS por medio de una importación de xls a shp, por consiguiente, se hizo una muestra por colores en el mapa y con esto se obtuvo el resultado parcial del estado de retro reflectividad en toda la regional 5.

Figura 3.45 Reflectividad en señalización horizontal, red vial regional 5. Fuente: Torres, D., 2017.

3.2.4. Paso 6: Perfil de susceptibilidad.

Una vez procesado y obtenidos los factores de clima, geometría e infraestructura vial, se procedió a tomar los pesos por cada parámetro y para todas las 22 vías existentes en la red vial de la regional 5, tal como se muestra en la siguiente tabla.

Nombre Vía	Cod	Factor Geometría		Facto	or Clima	Factor Infraestructura		
	_Via 1	Peso N° Curvas	Peso Terr	Peso Días Lluvia	Peso Precipit. Máxima	Peso Fricció n	Total, Pesos	
Alausí - El Triunfo	51	0.0	0.0	3.0	1.0	8	12.0	
Aurora - T De Salitre	19	0.0	0.0	2.0	0.0	8	10.0	
Babahoyo - Ambato	23	1.0	1.4	2.0	1.0	6	11.4	
Balbanera - T Del Triunfo	24	0.0	0.0	3.0	1.0	6	10.0	
Durán - Km. 27	50	0.0	0.0	1.5	0.0	8	9.5	
Guaranda - Cemento Chimborazo	45	3.0	3.0	2.0	0.0	6	14.0	
Guayaquil - El Empalme	17	0.0	0.0	1.0	0.0	8	9.0	
La Puntilla - Guayaquil	49	0.0	0.0	1.0	0.0	8	9.0	
La Troncal - Puerto Inca	22	0.0	0.0	2.0	0.0	8	10.0	
Milagro - Bucay	48	0.0	0.0	2.0	1.0	6	9.0	
Montecristi - Nobol	11	0.0	0.0	1.0	0.0	8	9.0	
Palestina - San Juan	44	0.0	0.0	1.5	0.0	8	9.5	
Progreso - Posorja	14	0.0	0.0	1.5	0.0	8	9.5	
Progreso - Posorja (Alterna)	92	0.0	0.0	1.0	0.0	8	9.0	
Puerto Inca - Cuenca	52	0.0	0.0	2.0	0.0	4	6.0	
T De Baba - Daule	46	0.0	0.0	1.5	0.0	8	9.5	
T De Milagro - Durán	21	0.0	0.0	1.5	0.0	8	9.5	
Transversal Austral	9	0.0	0.0	1.5	0.0	8	9.5	
Transversal Central	8	0.0	0.0	2.5	2.0	8	12.5	

Tabla XXXI: Suma de los pesos según la geometría, clima e infraestructura.

Transversal Central (Alterna)	82	0.0	0.0	2.0	2.0	8	12.0
Troncal De La Costa	2	0.0	0.0	2.0	1.0	8	11.0
Vía Del Pacífico							
(Ruta Del	1	0.0	0.0	0.5	0.0	8	8.5
Spondvlus)							

Fuente: Torres, D., 2017.

Debido que los valores de reflectividad no tenían asignados pesos de acuerdo con la metodología guía que se sigue por parte del Laboratorio Nacional de Materiales y Modelos Estructurales LANAMME, el factor de retro reflectividad no se sumó junto con los demás factores, pero sí se los tomo en consideración para la superposición visual junto con el resto de factores que superpuestos todos daban a conocer el perfil de susceptibilidad para la regional 5.

Para construir la capa del perfil de susceptibilidad, se usó como base la capa de "Red vial tramos y subtramos" facilitada por el MTOP, esta fue modificada fuera del programa en formato xls para otorgar los pesos susceptibles de cada vía en todos los 120 registros existentes en la capa, luego para importar estos datos asignados en formato xls a los campos originales de la capa en el programa en formato shp, fue necesario seguir el siguiente procedimiento: Cargó la capa de Red vial tramos y subtramos al espacio de trabajo del programa.

Figura 3.46 Carga de la red vial, tramos y subtramos. Fuente: Torres, D., 2017.

2. Habilitar el editado de la capa

Figura 3.47 Habilitar edición de capa. Fuente: Torres, D., 2017.

 Añadir un nuevo campo a la capa Red vial tramos subtramos llamado PESOS_PSU

8 MAPA PSU (IS OK) - ArcMap			
File Edit View Rookmarks Insert Selection Ger	oprocessing Customize Windows Hel	5	
○ 通知会 生活品× (つ ○ ◆ - 1.1.517.347 ・			
4400 1110 ++ 0+ 0 × 0 / 0 11 A/	ADDE		
able Of Contents 9 ×	1000	ale w Switzer	ORELLANA .
E 9 O & 11			
- 0%			NAPO
- 1% - 20%	Table		DX m
- 21% - 50%	2 • 4 • 4 • • • • ×		~~
- 51% - 70%	A Find and Replace		*
- 71% - 100%	Select By Attributes	descripcio	-
E & LÍNEA EJE CENTRAL	III Claur Selection	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL E LE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	
RETROREFLECTIVIDAD %	H Switch Salartion	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL.	
- 0% - 8%	R. Colora M.	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	= ASTAZA
- 9% - 38%	G Seeci Al	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	
- 39% - 50%	Add Held	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	14
- 51% - 75%	E Turn All Fie Add Field	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL.	
- 78% - 100%	Show Field Adds a new field to	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	2
E E PINTADO-SEÑALIZACION HORIZONTA	Arrange Ta the table.	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	1
POR REPARAR	Bastova Data it Column Widths	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	
-0%	Bardow Data & Data Order	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL.	5
1% 57%	Residie Deladik Heid Groen	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA DED VIAL ESTATAL	
	Joins and Relates	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	
6 9% - 80%	Related Tables	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	
81% - 100%	du Croate Graph	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	
E E PERHL DE SUSCEPTIBILIDAD	Add Table to Layout	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	1460
PESOS	2 Beload Carbe	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL.	
6.00 - 9.00 / MUY BAIA	D Drives	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL.	
9.01 - 10.00 / BAJA	a run.	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	
10.01 - 11.00 / MEDIA	Reports	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	
11.01 - 12.00 / ALTA	Export	EJE CONTIENE LA CODIFICACIÓN DE LA TRAMIFICACIÓN Y SUBTRAMIFICACIÓN DE LA RED VIAL ESTATAL	
12.01 - 14.00 / MUY ALTA	Appearance	EJE CONTIENE LA CODIFICACION DE LA TRAMIFICACION Y SUBTRAMIFICACION DE LA RED VIAL ESTATAL	
E IT LINEA CIRCULACION RETRO	and the second se		
H C IN_TACHAS	1 + H 🗮 🖬 (0 out of 120	Selected)	
E C PUNTOS NEGROS PRELIMINARES A	PERFIL DE SUSCEPTIBILIDAD		and the second se
IE C PUNTOS NEGROS PRELIMENARES B		0.000	
	22000	EL UNU	
		582277	074 9665598.087 Motors

Adición de los datos de pesos susceptibles asignados en formato

xls al nuevo campo llamado PESOS_PSU

Month en delle of States	A									
Of Contracts	R. C. MAR	1000			BOENDE CAMPERIC	6		1		ORFLIAN
A A S				CT : 1994	- 117	6		1-		
- 0%		6 ⁴⁷⁷		5	a orango		OTOPAXI	~ ~ I	N	APO
- 196 - 2096	Table									ax m
200 - 2010	CLASSING STATES	di v								no de la compañía de
- 21% - 30%	1									100
- 51% - 70%	PERHL DE SUSCER	TIBILIDAD								*
- 71% - 100%	COD_SUB1	CODIGO	Shape_Leng	PESOS PSU	IN_REPINT	IN_TACHAS	LB_RF_APAR	DC_RF_APAR	DS_RF_APAR	A
R LÍNEA EJE CENTRAL	01	44-01-09-01	13889,225656	9,5	0,5	1	0,86	0,29	1	
DETRODED FOTBADAD N	21	08-10-05-21	6726,710641	12.5	0,77	1	0 00	0,08	0.04	
RETROBERLECTIVIDAD 50	- 02	50.01-24-02	2001,790142	9,0	0,57	1	0.09	0,09	0,01	A \$ 767 A
- 0% - 8%	44	01 20 24 44	21140 40492	9,0	0.07	1	0.4	0.5	0,0	AD IALA
- 9% 38%	16	02 07 12 16	12079 565729	11	0.68	1	0.61	0.29	0.67	
- 20% - 50%	05	23-02-02-05	33986 463866	11.4	0.74	0	0.18	0,15	0.18	
540 300	12	09-06-09-12	10332.844522	9.5	0.57	1	0.69	0.69	0.61	
- 51% - 75%	01	45-01-02-01	1738,923195	14	0.56	0	0.33	0,5	0,83	k.
- 76% - 100%	03	50-01-09-03	5801,112621	9,5	0,67	0	0.4	0	0,6	2
R PINTADO-SEÑALIZACIÓN HORIZONTA	01	52-01-09-01	12734,664591	6	0	1	1	0	1	1
000.000.000	11	23 03 02 11	6751,941371	11,4	0,74	0	0,18	0	0,18	Charles and the second
POR REPARAR	05	50-02-09-05	1656,630501	9,5	0,67	0	0.4	0	0,6	7
•• 0%	13	09-07-09-13	4856,705355	9.5	0.57	1	0.69	0,69	0,61	1 m
1% - 57%	18	09-10-09-18	8342,849291	9,5	0,57	1	0,69	0,69	0,61	22222
1000 0000	08	46-04-09-06	10354,736368	9,5	0,75	1	0,2	0	0,5	
38.6 * 66.6	07	10-01-09-07	700,392203	9,5	0,75	1	0.2	0	0,5	
e 69% - 80%	103	22-02-03-03	20051 100810	11.4	0.74	0	0.10	0	0.10	
81% - 100%	1.3	02.12.00.34	12073 660126		0.68	1	0.00	0.20	0.67	
PROFIL DE CUSCEDITION (DAD)	Hos	09.02.24.05	11208 688803	9.5	0.57	1	0.02	0.09	0.61	in the second
a reading of a second second second	02	45-01-02-02	23622 13771	14	0.56	ó	0.33	0.5	0.63	AGO
PESOS	10	09-05-09-10	12912.245086	9,5	0,57	1	0.69	0,69	0,61	12226-02
6.00 - 9.00 / MUY BAJA	09	17-01-09-09	2835,757368	9	1	1	0	0	0	
901-1000/RAIA	04	09 01 24 04	1736,125779	9,5	0,57	1	69,0	0,69	0,61	
10.01 11.00 (10701)	01	46-01-12-01	7269,866764	9,5	0,75	1	0.2	0	0,5	
10.01 - 11.00 / MEDIA	10	11-03-09-10	3534,325754	9	0,57	0	0,13	0	0,75	
11.01 - 12.00 / ALTA	33	02-11-09-33	15993,974681	.11	83,0	1	0,61	0,29	0,67	
12.01 - 14.00 / MUY ALTA	08	51-04-09-08	2394,948039	12	0	1	1	0	0	*
T LINEA CIRCULACION RETRO	٩.									
		I (0 out of 120 Sele	ected)							
PUNTOS NEGROS PRELIMINARES A	PEREIL DE SUSCE	PTIBILIDAD								
DUNTOS NECEDOS PRELIMINADES R		and the second sec		(m. 1						
PUNIOS NEGROS PRELIMINARES B				n oph			1			

Figura 3.49 Datos de Excel al campo PESOS_PSU. Fuente: Torres, D., 2017.

De manera similar se hizo el mismo procedimiento para los parámetros de retroreflectivad en línea central, retroreflectivad en línea borde y pintura horizontal, de esta forma se consiguió visualizar en un mapa el estado vulnerable de las vías de la regional 5 hacia accidentes de tránsito.

Figura 3.50 Perfil de susceptibilidad red vial, regional 5. Fuente: Torres, D., 2017.

3.2.5. Paso 7: Factor de accidentes.

Paso 7.1: Base de datos

Los datos de accidentes fueron facilitados por tres entidades públicas entre ellas, el MTOP, CTE y la Policía Nacional, pero para la creación de las zonas de calor referentes hacia accidentes de tránsito, solo se usaron los datos registrados por la CTE y MTOP, que según descrito en los datos del proyecto fueron para una muestra de cinco años (2012-2016).

Paso 7.2: Carga de datos de accidentes al espacio de trabajo en la regional 5.

Paso 7.3: Exclusión de accidentes registrados fuera de la regional 5.

Primero se cargaron las capas de accidentes y red vial estatal al espacio de trabajo.

Figura 3.51 Carga de capas de accidentes y red vial estatal. Fuente: Torres, D., 2017.

Figura 3.52 Accidentes solo en carretera (2012-2016). Fuente: Torres, D., 2017.

Luego de asegurar el espacio de trabajo se procedió hacer el

recorte de los accidentes 2016 solo para la regional 5.

Figura 3.53 Herramienta de geoprocesamiento CLIP. Fuente: Torres, D., 2017.

Se ingresa como dato de entrada la red vial estatal y se ubica el

recorte solo en las provincias pertenecientes a la regional 5.

Figura 3.54 Ingreso de la red vial y ubicación del recorte en las provincias de la regional 5. Fuente: Torres, D., 2017.

Se obtiene la red vial solo en el espacio de trabajo requerido:

Figura 3.55 Red vial de la regional 5. Fuente: Torres, D., 2017.

El mismo procedimiento se aplica para los accidentes, a continuación, se presenta el proceso para los accidentes del año 2016.

Figura 3.56 Valores ingresados a la función CLIP. Fuente: Torres, D., 2017.

Figura 3.57 Accidentes rurales y urbanos 2016 en regional 5. Fuente: Torres, D., 2017.

Este procedimiento se aplicó de manera similar para los accidentes de los demás años y se obtiene.

Finalmente se logra acotar la nube de accidentes desde toda la red estatal hacia la regional 5.

Figura 3.58 Accidentes 2016 solo en red vial rural. Fuente: Torres, D., 2017.

En vista que se requerían capas importantes como Infraestructura, población, abcisado y zonas urbanas, se tuvieron que hacer los respectivos recortes para facilidad del procesamiento de los datos.

Paso 7.4: Exclusión de accidentes no rurales

Una vez seleccionada la zona de trabajo, se procedió a descartar accidentes en zonas urbanas, esto debido a que el análisis solo se enfoca en los puntos negros ubicados en carreteras.

El procedimiento para escoger accidentes que solo estén en red vial fue a través de la herramienta de ArcGIS llamada selección por localidad.

Se selecciona la capa de accidentes en donde se hará el filtro.

Figura 3.59 Selección de capa de accidentes para realización de filtro. Fuente: Torres, D., 2017.

Ingresamos como dato de entrada el recorte de los accidentes

2016 y establecemos como capa guía el recorte de la red vial estatal.

Se ingresa una restricción, que limite a escoger solo los accidentes que se encuentren dentro de un derecho de vía de 25 metros.

Figura 3.60 Selección por localidad. Fuente: Torres, D., 2017.

Entonces se logra obtener solo los accidentes 2016 aledañas al

eje vial estatal.

Figura 3.61 Accidentes en carretera rural. Fuente: Torres, D., 2017.

Exactamente el mismo procedimiento se aplica para los recortes

de los accidentes de los demás años y se obtuvo lo siguiente:

Figura 3.62 Accidentes 2012-2016 en red estatal. Fuente: Torres, D., 2017.

Paso 7.5: Exclusión de accidentes registrados en Guayaquil, Durán y Samborondón. Una vez obtenida las provincias solo de la regional 5, se hicieron los respectivos recortes.

El fin de este paso es poder visualizar las concentraciones de accidentes solo para la regional 5 excluyendo los ocurridos en las provincias de Guayaquil, Duran y Samborondón.

A continuación, se presenta un ejemplo de recorte para los accidentes 2016.

La justificación de excluir los accidentes en estos cantones es debido a que los registros de siniestralidad competen a entidades ajenas a las que facilitaron los datos (CTE, MTOP y PPNN).

Para la exclusión se habilito el editado de capas, se abrió la tabla de atributos, se hizo una selección por atributos, escogió las ciudades antes mencionadas y se las eliminó.

Figura 3.63 Selección por atributos. Fuente: Torres, D., 2017.

Figura 3.64 Selección de cantones por lista de atributos. Fuente: Torres, D., 2017.

Figura 3.65 Eliminación de cantones en lista de atributos. Fuente: Torres, D., 2017.

Figura 3.66 Exclusión del cantón Guayaquil, Duran y Samborondón. Fuente: Torres, D., 2017.

Paso 7.6: Integración de todos los accidentes 2012 al 2016 en un solo shapefile (función MERGE)

Una vez cargados todas las capas de accidentes desde el 2012 al 2016 y después de haber excluido las provincias ajenas a las de la regional 5, se creó una nueva capa de accidentes que contenía todos los registros desde el 2012 al 2016 con campos muy importantes en común, entre estos por ejemplo Severidad de accidente, Coordenada de accidente, y carretera, tramo y subtramos donde ocurrió el accidente.

Para lograr llevar todos los accidentes hacia una sola capa se usó la herramienta de geoprocesamiento llamada MERGE.

Figura 3.67 Aplicación de la herramienta MERGE. Fuente: Torres, D., 2017.

Para integrar todos los accidentes hacia una sola capa fue necesario descartar los campos que no son comunes entre todas las capas que fueron ingresadas como dato.

Figura 3.68 Campos de la función MERGE. Fuente: Torres, D., 2017.

 Tabla XXXII: Valores ingresados por campo.

Campo	Descripción	Valores Ingresados
Input datasets	Se ingresan las capas de accidentes	Se ingresaron 6 capas que contenían accidentes registrados desde el 2012 al 2016
Output dataset	Es la dirección del shapefile de salida	Se lo nombro como ACCPART_NOPPNN_Merge
Field map	Son los campos de las capas que se van ingresando como input dataset	Se eliminaron aquellos campos que no son comunes para las 5 capas de accidentes 2012 al 2016
Ambiente: coordenadas de salida	Se refiere a la acotación en donde se pretende generar el raster resultado	Se ingresó la capa que contenía las provincias pertenecientes a la regional 5
Ambiente: Extensión de procesamiento	Se refiere a la acotación en donde se pretende generar el raster resultado	Se ingresó la capa que contenía las provincias pertenecientes a la regional 5

Fuente: Torres, D., 2017.

Finalmente se obtuvo la capa con todos los accidentes

registrados desde el 2012 al 2016 como se muestra en la figura.

Figura 3.69 Ilustración de los accidentes 2012 al 2016. Fuente: Torres, D., 2017.

Paso 7.7: Obtención de las vías más críticas en la red vial de la regional 5

Una vez listas las capas de accidentes excluidas de las zonas urbanas, se procedió a obtener las vías con mayores accidentes registrados en un kilómetro lineal de carretera, para esto fue necesario tener cargados al programa la capa integrada de accidentes del 2012 al 2016, la capa de red vial por tramos y subtramos y conocer la longitud de las vías en las cuales se iba hacer la selección espacial.

Para el proceso, se usaron las herramientas de geoprocesamiento del programa ArcGIS con el fin de obtener el registro de accidentes en cada vía contenida en la regional 5.

Existen 22 vías registradas en la regional 5, a continuación, se detallan las mismas con su respectiva longitud:

Nombre vía	Código MTOP	Longitud (km)
VÍA DEL PACÍFICO (RUTA DEL SPONDYLUS)	1	84.342
TRONCAL DE LA COSTA	2	321.000
TRANSVERSAL CENTRAL	8	80.298
TRANSVERSAL AUSTRAL	9	229.400
MONTECRISTI - NOBOL	11	44.551
PROGRESO - POSORJA	14	55.578
GUAYAQUIL - EL EMPALME	17	145.644
AURORA - T DE SALITRE	19	21.915
T DE MILAGRO - DURÁN	21	25.268
LA TRONCAL - PUERTO INCA	22	25.012
BABAHOYO - AMBATO	23	199.867
BALBANERA - T DEL TRIUNFO	24	79.139
PALESTINA - SAN JUAN	44	63.689
GUARANDA - CEMENTO CHIMBORAZO	45	25.361
T DE BABA - DAULE	46	63.215
MILAGRO - BUCAY	48	59.243
LA PUNTILLA - GUAYAQUIL	49	1.407
DURÁN - KM. 27	50	26.235
ALAUSÍ - EL TRIUNFO	51	2.395
PUERTO INCA - CUENCA	52	12.735
TRANSVERSAL CENTRAL (ALTERNA)	82	2.270
PROGRESO - POSORJA (ALTERNA)	92	7.824
TOTAL, EN RED VIAL REGIONAL 5	-	1.576
TOTAL, EN RED VIAL ESTATAL	-	8.900
Fuente: Torros D	2017	

 Tabla XXXIII: Vías pertenecientes a la regional 5.

Fuente: Torres, D., 2017.

Primero se realiza una selección por atributo:

Figura 3.70 Campos de la función Selección por atributos. Fuente: Torres, D., 2017.

Se escogió como dato de la función a la capa de red vial que contenga los tramos y subtramos, se usó como base el campo "Carretera" y este fue igualado a las 22 vías de acuerdo con su nombre, en total se realizaron 22 selecciones por atributo.

Una vez realizada la selección espacial por atributo, se realiza una selección por localidad

Es de importancia mencionar que la selección por atributo es prerrequisito para poder escoger justamente los accidentes aledaños a cada vía.

Figura 3.71 Datos ingresados a la función selección por localidad. Fuente: Torres, D., 2017.

Figura 3.72 Selección de accidentes para una vía en particular. Fuente: Torres, D., 2017.

Se escogió como dato de la función a los accidentes registrados desde el 2012 al 2016, se usó como base la capa de red vial y esta fue restringida hacia 25 metros como derecho de vía, con esto se escogieron los accidentes que estén dentro de ese rango y que estén contenidos en cada vía de la regional 5, en total se realizaron 22 selecciones por localidad.

Una vez escogidos los accidentes en cada vía, estos fueron registrados en una hoja de Excel fuera del programa, para con funciones avanzadas del mismo poder hacer un cuadro resumen de los accidentes por kilómetros contenidos en cada una de las 22 vías obtenidas.

A continuación, se presentan los cuadros resúmenes a los procesos antes descritos:

Nombre De Vía	Accidentes 2012- 2016	Longitud 3d (Km)	Accidentes/Km
Durán - Km. 27	349	26.235	13
T de Milagro - Durán	325	25.268	13
Transversal Central			
(Alterna)	28	2.270	12
Transversal Austral	2571	229.400	11
Guayaquil - El Empalme	1314	145.644	9
Troncal de la Costa	2878	321.000	9
Montecristi - Nobol	375	44.551	8
Milagro - Bucay	374	59.243	6
Aurora - T De Salitre	107	21.915	5
T De Baba - Daule	300	63.215	5
Transversal Central	395	80.298	5
Palestina - San Juan	162	63.689	3
Progreso - Posorja	188	55.578	3
Puerto Inca - Cuenca	32	12.735	3
Vía Del Pacífico (Ruta Del			
Spondylus)	213	84.342	3
Alausí - El Triunfo	5	2.395	2
Babahoyo - Ambato	464	199.867	2

Tabla XXXIV: Accidentes por kilómetro registrados en las vías de la regional5.

Balbanera - T Del Triunfo	101	79.139	1
La Troncal - Puerto Inca	18	25.012	1
Progreso - Posorja (Alterna) Guaranda - Cemento	7	7.824	1
Chimborazo	9	25.361	0
La Puntilla - Guayaquil	0	1.407	0
	Total de	Accidentes Arcgis	10215
	Total de Ac	cidentes Cte-Ppnn	10097
	Aco	cidentes Repetidos	118
		Máximo	
		Acc/Km	13
	ate. Torres D	0017	

Fuente: Torres, D., 2017.

Es de importancia mencionar que los accidentes escogidos fueron mayor en número que los accidentes registrados en las capas de accidentes dentro del programa ArcGIS, esto se dio ya que al escoger los accidentes, la selección se dobló para aquellos que estaban contenidos en las intersecciones, lo que hizo una suma mayor a la que de origen se debía, también cabe recalcar que para obtener el número de accidentes por cada kilómetro lineal de carretera, según la tabla anteriormente vista, se asume una distribución uniforme de los accidentes en cada kilómetro lineal de cada una de las 22 vías, esto en realidad no sucede si se navega por el mapa, pero por medidas prácticas y con el fin de conocer un valor promedio fue de provechosa ventaja usar la metodología.

En vista que ya se tenía el total de accidentes por cada una de las vías contenidas en la red vial de la regional 5, se tuvo que hacer más detalle, desglosando dicha cantidad de accidentes y clasificando esta por el grado de severidad.

El grado de severidad según el Ministerio de Transporte y obras públicas se divide en tres, fatal, grave y leve. La clasificación de los accidentes se la hizo por medio de funciones avanzadas de una hoja de cálculo, se preparó el nombre de cada vía y con una cuantificación muy cuidadosa se presenta lo siguiente:

 Tabla XXXV: Equivalente en número de accidente según severidad.-.

Severidad	Equivalente en Número de Accidentes (E.N.A)
Fatal	3
Grave	2
Leve	1

Fuente: Torres, D., 2017.

Vía	Acc	/Vía (2 2016)	012-		Acc/	′Km (20 2016)	12-		Tramo De Alta Concentración De Accidentes
	Fatal	Grave	Leve	Longitud 3d (Km)	Fatal	Gravel	_eve	Nivel Accidentalidad	N.A>15
Durán - Km. 27	26	190	133	26.235	1	7	5	23	Sí
Guayaquil - El Empalme	204	619	491	145.644	1	4	3	16	Sí
T de Milagro - Durán	48	145	132	25.268	2	6	5	22	Sí
Transversal Austral	185	1241	1145	229.400	1	5	5	18	Sí
Alausí - El Triunfo	2	2	1	2.395	1	1	0	5	No
Aurora - T de Salitre	10	66	31	21.915	0	3	1	9	No
Babahoyo - Ambato	22	192	84	199.867	0	1	0	3	No
Balbanera - T del Triunfo	24	54	22	79.139	0	1	0	3	No
Guaranda - Cemento	0	0	0	25.361	0	0	0	0	No
La Puntilla - Guavaguil	0	0	0	1.407	0	0	0	0	No
La Troncal - Puerto Inca	4	11	3	25.012	0	0	0	1	No
Milagro - Bucay	43	224	107	59.243	1	4	2	12	No
Montecristi - Nobol	47	194	134	44.551	1	4	3	15	No
Palestina - San Juan	28	94	37	63.689	0	1	1	5	No
Progreso - Posorja	8	95	85	55.578	0	2	2	5	No
Progreso - Posorja (Alterna)	0	3	4	7.824	0	0	1	1	No
Puerto Inca - Cuenca	5	12	15	12.735	0	1	1	4	No
T De Baba - Daule	42	191	67	63.215	1	3	1	9	No

Tabla XXXVI: Vías de la regional 5 con TCA.

Transversal Central	46	158	95	80.298	1	2	1		7	No
Transversal										
Central	0	1	1	2.270	0	0	0		1	No
(Alterna)										
Troncal De L	a ,	10 13	10 11	0/ 321 0	าก	1	Λ	٨	15	No
Costa	0		513 11	34 321.00	50	1	4	4	15	NO
Vía del Pacífi	со									
(Ruta del	2	25 9	9 8	89 84.34	2	0	1	1	4	No
Spondylus))									

Fuente: Torres, D., 2017.

Tal como se observa en la tabla XXXVII, se presenta de manera clasificada la severidad de accidentes para cada vía, el nivel de accidentalidad y si estas son consideradas o no como TCA.

Se realizó una priorización de acuerdo a la variable NA, con los resultados se puede verificar que, en este caso, las 4 primeras priorizaciones en las vías de la red vial de la regional 5 son las que tienen la más altas observaciones, esto nos quiere decir que, en dichas vías se tienen los mayores registros de siniestros para una muestra de 5 años desde el 2012 al 2016.

Paso 7.8: Selección preliminar de puntos negros.

Debido a que el análisis de la densidad de puntos se pensó de forma macro, en análisis posteriores se mostrara que una vez realizado el macro análisis, se concentrara en obtener los puntos negros por medio de un micro análisis. Para el macro análisis, se empezó a generar las zonas de concentración en diferentes tamaños de celda, la primera interacción empezó con una celda de 750x750 kilómetros cuadrados.

Para generar las zonas con densidad de accidentes se usó una herramienta de análisis espacial llamada Densidad por puntos:

Toolboxes>Systemtoolboxes>SpatialAnalystTools>Density>Point Density.

0			
SCHOYEDIG_ASV DIGITE 1	± 9/0/Mp	- r	
File File View Rookmarks.	inset Selection Geoprocessing Costantize Windows Help		
AND BUILD AND AND	a ta - n		
1484 121 T 4 21,508	v parassen v Editor to reference provider Arineton a B 30 Arieve Werkana v Barken a Barken and Arieve Warken av Arieve Warken a		
Table Of Contents	sauto Koulico De Lo Paceura a		• • •
NO WAIN			
TESIS AR ASV			
- THE TOP ALL PROFES	Attornary – J A		-
WAX DON IN DRIT	input point faithres		^
PARCENERT SPEND	2 FACTOR ACCORDING SATURACOUNT NORSAN Marine		
PS ACCEART I NOPPON	In any how have been and the second second		
** ACCIPTIN 13 JOK 1	PODUDI HOI PODUDI CONTRACTOR PODUDI CONTRACTOR PODUDI CONTRACTOR PODUDI CONTRACTOR P		
IN ACCEPTION GRARIE	NOR C	and there	
MUCIZ, MART JOSE	Darpartaker	(DK	
W WOCTS (WART (25th	C/(Lessyami)Deaments/JrcDS/Detaut.gdt//virtDs_HCP1		
Kr ACC14, PART (25m)	Uacout cell sae (paconel)	de the	
#* //CC15_//ART1_25m	51.1755/00/00	the	
 ACCI0_PART _25in 			
84 ACCIDENTES PARTZ	Negliterandi (pinolei)	D	
The ACCEMENT ROOMS	Die v		
Provide the second seco	and a team		
PS ACL 14 PART2 25th	1940a # 3781.462.076		
PS ACCTS PART2 2505		ig Tools.pyt	
PS ACC16(PAR12,250)	Unis Coal @Mec		
17P6P2W0C_99K12_300			
Consisting 100112,5100			
In Policies Contraction			
ADDREASE PROTECTION			
anDuinesCC DARTS 2441			
B3Dalastoc DADT1 300	Arca units (optical)		
RaDwinstoc DARTS 190	SCURE JELONETERS V		
B (Duine CO DARTE SOO			
RADINGSTON DARTS THE			
HAZON RAST MICEO DE			
HAZON PAST MICEO DA			
HACTIP RED VAL 10000			
HACTIR RED VAL STRUK			
HISCHERED VALUEAM	¢ >	4	
AT SPERIL SUCCE	2/ Oreal Industry of Helicity Industry		
AT 70N RAST MACRO RA	and annual management of the set		
47 ZON BAST MACEO PAR	71 Sectors Sectors	-	
ST CARTOGRAFIA	AZWAY AZWAY Programation and Co	ssification	
R*Dusining	-Moder Relation		~
84 interactional	BLOOP		
Reflationation	 Catalog Pseudo 		
			_

Figura 3.73 Función de geoprocesamiento Point Density. Fuente: Torres, D., 2017.

En el campo Input point o polyline, ingresamos la capa de los accidentes registrados desde el 2012 al 2016. El siguiente campo llamado Population field lo dejamos vacío.

El campo llamado Output raster es simplemente el nombre con la dirección donde se guardará el archivo raster. En el campo llamado Output cell size le ingresamos 750 kilómetros ya que la intención es buscar densidad de accidentes en celdas de 750x750 kilómetros cuadrado, luego ingresamos la misma cantidad donde dice radio de búsqueda o Search radius (optional).

Dejamos intactos los campos donde dice Area units y Output values

Y finalmente se obtiene este mapeo de colores.

Figura 3.74 Resultados de la aplicación del Point Density. Fuente: Torres, D., 2017.

Figura 3.75 Optimización de resultados para la función Point Density. Fuente: Torres, D., 2017.

La imagen adjunta muestra resultados de densidad de accidentes para tamaño de celda de 750x750 kilómetros cuadrados. Es importante mencionar que, al momento de generar este mapa, se tuvo que acotar el resultado al cuadrante que encierra las provincias pertenecientes a la regional 5, caso contrario los resultados iban a ser incoherentes a la densidad que se esperaba.

Si se modifican las propiedades del raster se puede lograr visualizar por un número particular de clases y esta a su vez por intervalos equitativos. Así se presenta la densidad de manera gradual en toda la regional 5.

Figura 3.76 Propiedades del raster creado a partir de Point Density. Fuente: Torres, D., 2017.

Una vez terminado de modificar el raster se logra visualizar las mayores concentraciones de accidentes dentro de las 4 provincias.

Figura 3.77 Zonas de alta concentración de accidentes, análisis preliminar. Fuente: Torres, D., 2017.

Tal como se muestra en la figura anterior, se identificaron 14 puntos negros preliminares o zonas de mayor concentración de accidentes de tránsito.

Cabe mencionar que en capítulos posteriores estos serán superpuestos junto con un perfil de susceptibilidad y con esto poder obtener aquellos puntos o zonas más críticos en cuanto a las dos variables antes mencionadas.

Empezando por el primer punto negro preliminar en la provincia de Sta. Elena se visualiza lo siguiente

Figura 3.78 Punto negro preliminar 1. Fuente: Torres, D., 2017.

Como se observa en la figura se tienen celdas de 750x750 kilómetros cuadrado, usando la herramienta identificación por celda se logra observar que, para esa celda de color naranja, se tiene una concentración de accidentes del 25.46% con respecto al total.

La siguiente zona de concentración resulto ser en el cantón de Playas.

Figura 3.79 Punto negro preliminar 2. Fuente: Torres, D., 2017.

La siguiente zona de concentración resulto ser en el cantón

de Pedro Carbo

Figura 3.80 Punto negro preliminar 3. Fuente: Torres, D., 2017.

La siguiente zona de concentración resulto ser en el cantón de Daule.

Figura 3.81 Punto negro preliminar 4. Fuente: Torres, D., 2017.

Figura 3.82 Punto negro preliminar 5. Fuente: Torres, D., 2017.

La siguiente zona de concentración resulto ser en el cantón de Naranjal.

Figura 3.83 Punto negro preliminar 6. Fuente: Torres, D., 2017.

La siguiente zona de concentración resulto ser en el cantón San

Jacinto de Yaguachi.

Figura 3.84 Punto negro preliminar 7. Fuente: Torres, D., 2017.

Figura 3.85 Punto negro preliminar 8. Fuente: Torres, D., 2017.

La siguiente zona de concentración resulto ser en el cantón de

Milagro

Figura 3.86 Punto negro preliminar 9. Fuente: Torres, D., 2017.

La siguiente zona de concentración resulto ser entre el cantón de

Babahoyo y Alfredo Baquerizo.

Figura 3.87 Punto negro preliminar 10. Fuente: Torres, D., 2017.

Figura 3.88 Punto negro preliminar 11. Fuente: Torres, D., 2017.

La siguiente zona de concentración resulto ser en el cantón

de Quevedo.

Figura 3.89 Punto negro preliminar 12. Fuente: Torres, D., 2017.

La siguiente zona de concentración resulto ser en el cantón del

Triunfo.

Figura 3.90 Punto negro preliminar 13. Fuente: Torres, D., 2017.

Y finalmente la última zona de concentración de accidentes cerca

del cantón Guayaquil y Durán.

Figura 3.91 Punto negro preliminar 14. Fuente: Torres, D., 2017.

Por lo que, de forma preliminar sin afinar el macro análisis, con ráster de celda 750x750, se obtienen 14 zonas dentro de la red vial estatal de la regional 5.

3.2.6. Paso 8: Superposición del perfil de susceptibilidad con los puntos negros preliminares de accidentes de tránsito rural.

Cargando al espacio de trabajo la capa del perfil de susceptibilidad y superponiendo la misma con los puntos negros preliminares antes obtenidos en una celda de área 750x750 kilómetros cuadrados, se obtuvieron cuatro zonas que reúnen las condiciones más críticas en cuanto a densidad de accidentes y vulnerabilidad hacia siniestros de tránsito, estas son:

Figura 3.92 Zonas de alto riesgo y concentración de accidentes de tránsito. Fuente: Torres, D., 2017.

A simple observación tomando en cuenta lo antes mencionado, se puede decir que de manera preliminar se podría poner más atención a los cantones de Quevedo, Babahoyo, Daule y San Jacinto de Yaguachi, ya que estos sobresalen ante los demás puntos negros preliminares restantes.

Haciendo una priorización preliminar, se puede decir que se tendría del más crítico al menos crítico el siguiente orden:

Daule, Quevedo, Babahoyo, y por último a San Jacinto de Yaguachi.

3.3. FASE DEFINITIVA

3.3.1. Paso 9: Selección definitiva de puntos negros

Debido a que en los pasos anteriores se pudo obtener de forma preliminar las zonas con mayor concentración en la densidad de accidentes, esta fue generada para una celda muy generalizada de 750x750 kilómetros cuadrados, por lo tanto, con el objetivo de afinar los resultados preliminares, se hicieron varias iteraciones en el análisis espacial para lograr obtener una densidad de accidentes en una celda de 1 km2.

Para realizar las iteraciones, nuevamente se usaron las herramientas de análisis espacial del programa ArcGIS, el primer paso fue ir a la caja de herramientas del sistema, luego se cargaron las herramientas de análisis espacial, luego se cargaron las herramientas para análisis de densidad y finalmente el botón de densidad de puntos.

System toolboxes>Spatial Analyst Tools>Density>Point density

Como ya se mencionó antes, los accidentes fueron datos que se facilitaron en forma de puntos, por lo tanto, se usó análisis por densidad de puntos y estos fueron usados para la generación de los diferentes tipos de raster hasta lograr obtener la densidad en el área deseada.

Paso 9.1: Análisis por densidad de puntos (Point density)

Para obtener los puntos negros preliminares se hizo el primer análisis por densidad de puntos con celda en raster de 750x750 kilómetros cuadrados.

Iteración 1 RASTER 750x750

Tabla XXXVII: Uso de la función Point Density para celdas de 750x750 km²

Campo	Descripción	Valores Ingresados
Input point features	Se ingresa accidentes tipo puntos	Se ingresaron los accidentes integrados desde el 2012 al 2016
Population field	No ingresa valores	Campo Vacío
Output raster	Nombre del raster de salida	PointACC_750X750
Output cell size	Tamaño de celda en el raster de salida	750
Neighborhood	Tipo de geometría donde se extraen los valores de la densidad de puntos	Circulo
Radio	Radio de búsqueda	750
Unidades	Están pueden ser tipo mapa o tipo celda	Tipo mapa
Unidades de área	Se refiere a las unidades de las celdas del raster resultado	Kilómetros cuadrados
Ambiente: coordenadas de salida	Se refiere a la acotación en donde se pretende generar el raster resultado	Se ingresó la capa que contenía las provincias pertenecientes a la regional 5
Ambiente: Extensión de procesamiento	Se refiere a la acotación en donde se pretende generar el raster resultado	Se ingresó la capa que contenía las provincias pertenecientes a la regional 5

Fuente: Torres, D., 2017.

Figura 3.93 Concentración máxima de accidentes para celdas de 750x750 km2. Fuente: Torres, D., 2017.

Figura 3.94 Densidad de accidentes en celda de 750x750 km². Fuente: Torres, D., 2017.
Una vez realizado la primera iteración que dio a conocer los resultados preliminares, se afinó el análisis con 4 iteraciones adicionales

Iteración 2 RASTER 500x500

Tabla XXXVIII: Uso de la función Point Density para celdas de 500x500 kr	m²
--	----

Campo	Descripción	Valores Ingresados
Input point features	Se ingresa accidentes tipo puntos	Se ingresaron los accidentes integrados desde el 2012 al 2016
Population field	No ingresa valores	Campo Vacío
Output raster	Nombre del raster de salida	PointACC_500X500
Output cell size	Tamaño de celda en el raster de salida	500
Neighborhood	Tipo de geometría donde se extraen los valores de la densidad de puntos	Circulo
Radio	Radio de búsqueda	500
Unidades	Estas pueden ser tipo mapa o tipo celda	Tipo mapa
Unidades de área	Se refiere a las unidades de las celdas del raster resultado	Kilómetros cuadrados
Ambiente:	Se refiere a la acotación en	Se ingresó la capa que contenía
coordenadas de salida	donde se pretende generar el raster resultado	las provincias pertenecientes a la regional 5
Amhiente: Extensión	Se refiere a la acotación en	Se ingresó la capa que contenía
de procesamiento	donde se pretende generar el raster resultado	las provincias pertenecientes a la regional 5

Figura 3.95 Concentración máxima de accidentes para celdas de 500x500 km2. Fuente: Torres, D., 2017.

Figura 3.96 Densidad de accidentes en celda de 500x500 km2. Fuente: Torres, D., 2017.

Iteración 3 RASTER 250x250

	Tabla XXXIX: Uso de la función Point Density para celdas de 250x250 km ²
--	---

Campo	Descripción	Valores Ingresados	
Input point features	Se ingresa accidentes tipo	Se ingresaron los accidentes	
	puntos	integrados desde el 2012 al 2016	
Population field	No ingresa valores	Campo Vacío	
Output raster	Nombre del raster de salida	PointACC_250X250	
Output cell size	Tamaño de celda en el raster de salida	250	
	Tipo de geometría donde se		
Neighborhood	extraen los valores de la	Circulo	
C C	densidad de puntos		
Radio	Radio de búsqueda	250	
Unidades	Estas pueden ser tipo mapa o tipo celda	Tipo mapa	
	Se refiere a las unidades de		
Unidades de área	las celdas del raster	Kilómetros cuadrados	
	resultado		
Ambiente:	Se refiere a la acotación en	Se ingresó la capa que contenía	
coordenadas de	donde se pretende generar	las provincias pertenecientes a la	
salida	el raster resultado	regional 5	
		C C	
Ambiente: Extensión de procesamiento	Se refiere a la acotación en donde se pretende generar el raster resultado	Se ingresó la capa que contenía las provincias pertenecientes a la regional 5	

Figura 3.97 Concentración máxima de accidentes para celdas de 250x250 km2. Fuente: Torres, D., 2017.

Figura 3.98 Densidad de accidentes en celda de 250x250 km2. Fuente: Torres, D., 2017.

Iteración 4 RASTER 100x100

Campo	Descripción	Valores Ingresados		
Input point features	Se ingresa accidentes tipo puntos	Se ingresaron los accidentes integrados desde el 2012 al 2016		
Population field	No ingresa valores	Campo Vacío		
Output raster	Nombre del raster de salida	PointACC_100X100		
Output cell size	Tamaño de celda en el raster de salida	100		
Neighborhood	Tipo de geometría donde se extraen los valores de la densidad de puntos	a Circulo		
Radio	Radio de búsqueda	100		
Unidades	Estas pueden ser tipo mapa o tipo celda	Tipo mapa		
Unidades de área	Se refiere a las unidades de las celdas del raster resultado	Kilómetros cuadrados		
Ambiente:	Se refiere a la acotación en	Se ingresó la capa que contenía las		
coordenadas de salida	donde se pretende generar el raster resultado	provincias pertenecientes a la regional 5		
Ambiente: Extensión	Se refiere a la acotación en	Se ingresó la capa que contenía las		
de procesamiento	donde se pretende generar	provincias pertenecientes a la		
	el raster resultado	regional 5		
salida Ambiente: Extensión de procesamiento	el raster resultado Se refiere a la acotación en donde se pretende generar el raster resultado	regional 5 Se ingresó la capa que contenía las provincias pertenecientes a la regional 5 2017		

100000, D., 2017

Figura 3.99 Concentración máxima de accidentes para celdas de 100x100 km2. Fuente: Torres, D., 2017.

Figura 3.100 Densidad de accidentes en celda de 100x100 km2. Fuente: Torres, D., 2017.

Iteración 5 RASTER 31.62x31.62 equivalente a 1 kilómetro cuadrado.

Campo	Descripción	Valores Ingresados			
Input point features	Se ingresa accidentes tipo	Se ingresaron los accidentes			
mparpointroataroo	puntos	integrados desde el 2012 al 2016			
Population field	No ingresa valores	Campo Vacío			
Output raster	Nombre del raster de salida	PointACC_3162X3162			
Output cell size	Tamaño de celda en el raster de salida	31.62			
Najabbarbaad	Tipo de geometría donde se	Circula			
Neighbornood	densidad de puntos	Circulo			
Radio	Radio de búsqueda	31.62			
Unidades	Estas pueden ser tipo mapa o tipo celda	Tipo mapa			
	Se refiere a las unidades de				
Unidades de área	las celdas del raster resultado	Kilómetros cuadrados			
Ambiente:	Se refiere a la acotación en	Se ingresó la capa que contenía las			
coordenadas de	donde se pretende generar	provincias pertenecientes a la			
salida	el raster resultado	regional 5			
Ambiente: Extensión	Se refiere a la acotación en	Se ingresó la capa que contenía las			
de procesamiento	donde se pretende generar	provincias pertenecientes a la			
	el raster resultado	regional 5			
Ambiente: Extensión de procesamiento	Se refiere a la acotación en donde se pretende generar el raster resultado	Se ingreso la capa que contenia las provincias pertenecientes a la regional 5			

 Tabla XLI: Uso de la función Point Density para celdas de 1 km².

Figura 3.101 Concentración máxima de accidentes para celdas de 1 km2 Fuente: Torres, D., 2017.

Figura 3.102 Densidad de accidentes en celda de 1 km2. Fuente: Torres, D., 2017.

Figura 3.103 Ilustración detallada de concentración de accidentes en 1 km2.. Fuente: Torres, D., 2017.

Finalmente, la última interacción nos da a conocer la densidad de

accidentes por un kilómetro cuadrado y se lo escoge como el

análisis final para el cual se escogerán los puntos negros definitivos.

La selección de puntos negros definitivos se hizo de forma visual muy cuidadosa enfocándose en las zonas que tengan mayor concentración de accidentes contenidos en los puntos negros preliminares obtenidos del análisis previo.

Para demarcar dichas zonas, se tuvo que construir polígonos en cada uno de los puntos negros definitivos, en total se hicieron 31 polígonos de área aproximada de 1km².

Para el primer punto negro preliminar, ubicado en la provincia de Santa Elena se obtuvieron dos puntos negros definitivos tal como se muestra en la siguiente figura.

Figura 3.104 Puntos negros definitivos en la preliminar 1. Fuente: Torres, D., 2017.

Para el segundo punto negro preliminar, en el cantón Playas se obtuvo un punto negro definitivo tal como se muestra en la siguiente figura.

Figura 3.105 Punto negro definitivo en la preliminar 2. Fuente: Torres, D., 2017.

Para el tercer punto negro preliminar, en el cantón Pedro Carbo se obtuvo un punto negro definitivo tal como se muestra en la siguiente figura.

Figura 3.106 Punto negro definitivo en la preliminar 3. Fuente: Torres, D., 2017.

Para el cuarto punto negro preliminar, en el cantón Daule, se obtuvieron dos puntos negros definitivos tal como se muestra en la siguiente figura.

Figura 3.107 Puntos negros definitivos en la preliminar 4. Fuente: Torres, D., 2017.

Para el quinto punto negro preliminar, en el cantón Daule, se obtuvo un punto negro definitivo tal como se muestra en la siguiente figura.

Figura 3.108 Punto negro definitivo en la preliminar 5. Fuente: Torres, D., 2017.

Para el sexto punto negro preliminar, en el cantón Naranjal, se obtuvieron dos puntos negros definitivos tal como se muestra en la siguiente figura.

Figura 3.109 Punto negro definitivo en la preliminar 5. Fuente: Torres, D., 2017.

Para el séptimo punto negro preliminar, en el cantón San Jacinto

de Yaguachi, se obtuvieron dos puntos negros definitivos tal como

se muestra en la siguiente figura.

Figura 3.110 Puntos negros definitivos en la preliminar 7. Fuente: Torres, D., 2017.

Para el octavo punto negro preliminar, en el cantón de Milagro, se obtuvieron ocho puntos negros definitivos tal como se muestra en la siguiente figura.

Figura 3.111 Puntos negros definitivos en la preliminar 8. Fuente: Torres, D., 2017.

Para el noveno punto negro preliminar, en el cantón San Jacinto de Yaguachi, se obtuvo un punto negro definitivo tal como se muestra en la siguiente figura.

Figura 3.112 Punto negro definitivo en la preliminar 9. Fuente: Torres, D., 2017.

Para el décimo punto negro preliminar, en el cantón Babahoyo, se obtuvieron tres puntos negros definitivos tal como se muestra en la siguiente figura.

Figura 3.113 Puntos negros definitivos en la preliminar 10. Fuente: Torres, D., 2017.

Para el décimo primer punto negro preliminar, en el cantón Babahoyo, se obtuvieron dos puntos negros definitivos tal como se muestra en la siguiente figura.

Figura 3.114 Puntos negros definitivos en la preliminar 11. Fuente: Torres, D., 2017.

Para el décimo segundo punto negro preliminar, en el cantón

Quevedo, se obtuvieron dos puntos negros definitivos tal como se

muestra en la siguiente figura.

Figura 3.115 Puntos negros definitivos en la preliminar 12. **Fuente:** Torres, D., 2017.

Para el décimo tercer punto negro preliminar, en el cantón el Triunfo, se obtuvo un punto negro definitivos tal como se muestra en la siguiente figura.

Figura 3.116 Punto negro definitivo en la preliminar 13. Fuente: Torres, D., 2017.

Y finalmente para el décimo cuarto punto negro preliminar, en el

cantón cercano a Guayaquil y Duran, se obtuvieron tres puntos

negros definitivos tal como se muestra en la siguiente figura.

Figura 3.117 Puntos negros definitivos en la preliminar 14. **Fuente:** Torres, D., 2017.

3.3.2. Paso 10: Priorización de siniestros contenidos en los puntos negros definitivos de acuerdo con su severidad

Para lograr extraer los datos de accidentes existentes en cada uno de los puntos negros definitivos, se usó nuevamente una selección por localidad, ingresando como dato fuente los accidentes integrados desde el 2012-2016 y como capa base cada uno de los polígonos pertenecientes a los puntos negros definitivos, en total se usaron como base 31 capas de tipo polígono.

Así entonces se pudo obtener el registro de siniestros en cada polígono creado para los puntos negros definitivos.

Una vez obtenidos los registros, se procedió a clasificar los mismos de acuerdo con su severidad, la severidad del accidente según los datos facilitados por el Ministerio de Transporte y Obras Públicas se desglosaron en Fatal, Grave y Leve.

		ę	SEVERID 2012-20	AD 16		SEV	ERIDAD 2012	-2016	3_2_1	PUNTO NEGRO
ZONA PRELIMINA	UNTO REGRO	FATA	LGRAVE	::VE	LONGITUE 3D (KM)	FATAL/KI	MGRAVE/KMI	_EVE/KM	N.A	N.A>15
8	3	1	6	9	0.031	32	194	291	775	SÍ
8	8	0	10	3	0.040	0	251	75	577	SÍ
8	5	0	5	0	0.032	0	154	0	309	SÍ
13	1	2	5	4	0.074	27	68	54	271	SÍ
5	1	2	10	6	0.122	16	82	49	263	SÍ
6	2	0	8	2	0.075	0	107	27	241	SÍ
1	2	0	6	5	0.072	0	83	69	236	SÍ
10	3	1	8	3	0.106	9	76	28	208	SÍ
8	4	2	6	3	0.111	18	54	27	190	SÍ
2	1	1	15	10	0.235	4	64	43	183	SÍ
8	7	0	10	6	0.146	0	69	41	178	SÍ
4	2	1	14	20	0.292	3	48	69	175	SÍ
6	1	1	7	3	0.115	9	61	26	174	SÍ
8	6	0	6	6	0.103	0	58	58	174	SÍ
8	1	2	3	2	0.082	25	37	25	172	SÍ
9	1	0	6	9	0.122	0	49	73	171	SÍ
4	1	3	12	7	0.245	12	49	29	163	SÍ
10	1	1	5	5	0.113	9	44	44	159	SÍ
8	2	0	15	5	0.223	0	67	22	157	SÍ
7	2	0	9	3	0.136	0	66	22	155	SÍ
10	2	1	5	3	0.131	8	38	23	123	SÍ
14	1	4	42	15	0.959	4	44	16	116	SÍ
14	3	15	107	112	3.270	5	33	34	113	SÍ
11	2	0	1	2	0.035	0	28	56	113	SÍ
3	1	1	9	2	0.226	4	40	9	102	SÍ
7	1	3	6	10	0.305	10	20	33	102	SÍ
1	1	1	7	9	0.266	4	26	34	98	SÍ
14	2	4	27	28	0.975	4	28	29	96	SÍ
11	1	1	1	2	0.084	12	12	24	84	SÍ

Tabla XLII: Nivel de accidentalidad en puntos negros definitivos.

12	1	0	6 3	0.209	0	29	14	72	SÍ
12	2	0	6 7	0.467	0	13	15	41	SÍ
			PROMEDIC	0.303					

Se realizó una priorización de acuerdo con el criterio 1-2-3 establecido por la CONASET de Chile, este multiplica un numero de accidentes equivalentes para obtener un nivel de accidentalidad y de acuerdo de acuerdo con eso verificar si cumple con ser o no un punto negó, para que un punto sea calificado como negro debe considerarse longitudes de via no mayores a 300 metros y que la suma ponderada sea mayor a 15, entonces, con los resultados mostrados en la tabla anterior, se puede verificar que, en este caso, todas las 31 zonas de alta siniestralidad son consideradas puntos negros definitivos.

3.3.3. Paso 11: Extracción de los tramos de vías contenidos en los puntos negros definitivos.

Con el fin de obtener los tramos contenidos en los puntos negros definitivos y en capítulos posteriores, ubicar las actuaciones de seguridad vial con su respectivo costo, se usaron herramientas de geoprocesamiento del programa ArcGIS, para hacer la selección por localidad en cada una de las zonas previamente mencionadas.

Figura 3.118 Selección por localidad para zonas de alta concentración de accidentes. Fuente: Torres, D., 2017.

Se ingresó dato de función la de red vial de tramos- subtramos y

se colocó como capa fuente las capas pertenecientes a los puntos

negros definitivos tal como se detalla a continuación:

Campo	Descripción	Valores Ingresados			
Selection method	Elige el método de selección	Se usó "Select features from"			
Target layers	Da una lista de las capas que contienen el dato a seleccionar	Se escogió la capa llamada CLI RED VIAL (COD_TRAMOS)			
Source layer	Se escoge la capa base donde se acota la selección	Se escogieron las capas tipo polígono creadas para identificar los puntos negros definitivos, en total se realizaron 31 selecciones			
Spatial selection method for target layer features	Da a elegir el método de selección espacial, existen 15 métodos	Se usó la opción "Intersect the source layer feature			
Apply a search distance	Indica una distancia de búsqueda de selección	No se habilito la opción			
Fuenday Tawaa D. 2017					

Tabla XLIII: Datos ingresados a la función Select by location.

Una vez realizadas las 31 identificaciones de tramos de vías, se hizo un registro para cada selección contenidos en los puntos negros mencionados previamente, los registros se los presenta a continuación:

Punto negro preliminar	Punto negro definitivo	Código de vía	Tramo	Subtramos
	1	E40	Salinas - Libertad - Santa Elena	La Libertad - La Libertad/Plaza La Libertad
1	0	E40	Salinas - Libertad - Santa Elena	La Libertad - La Libertad/Plaza La Libertad
	2	E40	Salinas - Libertad - Santa Elena	La Libertad/Plaza La Libertad - Santa Elena (Final By Pass)
2	1	E489	Playas - Posorja	General Villamil (Playas) - Posorja
3	1	E482	Límite Provincial Manabí/Guayas (La Cadena) - Narcisa de Jesús (Nobol)	Pedro Carbo - Sabanilla

Tabla XLIV: Tramos y subtramos contenidos en los puntos negros definitivos.

Punto negro preliminar	Punto negro definitivo	Código de vía	Tramo	Subtramos
	1	E40	Vía a Daule/Loop Nor Occidental - Perimetral de Guayaquil (Vía a Daule/La Aurora/Loop Norte Y Loop Oriental)/La Puntilla	Ingreso de Perimetral a Vía Guayaquil/Daule - Perimetral de Guayaquil (Vía a La Costa/Vía a Daule/Loop Noroccidental)
4	2	E40	Vía a Daule/Loop Nor Occidental - Perimetral De Guayaquil (Vía a Daule/La Aurora/Loop Norte y Loop Oriental)/La Puntilla	Ingreso de Perimetral a Vía Guayaquil/Daule - Perimetral de Guayaquil (Vía A La Costa/Vía a Daule/Loop Noroccidental)
5		E48	El Empalme - Narcisa de Jesús (Nobol) - Pascuales	Entronque Vía Palestina/Salitre - Entrada a Daule
	1	E48	El Empalme - Narcisa de Jesús (Nobol) - Pascuales	Salida de Daule - Entronque Vía Palestina/Salitre
		E485	Salitre - Daule	Entronque Vía A Laurel - Daule
	1	E25	Naranjal - Entrada Esperanza - Límite Provincial Guayas/Azuay	Naranjal - San Carlos
6	2	E25	Naranjal - Entrada Esperanza - Límite Provincial Guayas/Azuay	Naranjal - San Carlos
		E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	Intersección Milagro - Intersección Boliche/Babahoyo
7	1	E25/E40	Boliche - Redondel (Guayaquil, Milagro, Machala) (Km. 27) - Taura - Puerto Inca - Entronque Vía Naranjal	Intersección Boliche/Babahoyo - Redondel a (Guayaquil/Milagro/Machala)/ (Km 27)
		E49A	Intersección De Virgen De Fátima (Km. 26) - Boliche	Intersección De Virgen De Fátima (Km. 26) - Intersección Boliche/Babahoyo

Punto negro preliminar	Punto negro definitivo	Código de vía	Tramo Subtramos	
		E40	Durán (Puente Rma) - Boliche	Intersección (Durán/Boliche/Tambo)/Inter sección (Durán/Boliche/Yaguachi) - Intersección Boliche/Babahoyo
		E49A	Intersección de Virgen de Fátima (Km. 26) - Boliche	Intersección de Virgen de Fátima (Km. 26) - Intersección Boliche/Babahoyo
	2	E49A	Durán/Redondel (Guayaquil/Milagro/Macha la)/(Km. 27) - Virgen de Fátima (Km. 26)	Intersección de Virgen de Fátima (Km. 26) - Redondel A (Guayaquil/Milagro/Machala)/ (Km 27)
		E49A	Durán/Redondel (Guayaquil/Milagro/Macha la)/(Km. 27) - Virgen De Fátima (Km. 26)	T de Taura - Intersección de Virgen De Fátima (Km. 26)
	1	E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	Intersección Milagro - Intersección Boliche/Babahoyo
	2	E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	Intersección Milagro - Intersección Boliche/Babahoyo
	3	E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	Intersección Milagro - Intersección Boliche/Babahoyo
8		E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	Intersección Milagro - Intersección Boliche/Babahoyo
	4	E488	Milagro - Naranjito	Intersección Milagro - Naranjito
		E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	T de Milagro - Intersección Milagro
	5	E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	T de Milagro - Intersección Milagro

Punto negro preliminar	Punto negro definitivo	Código de vía	Tramo Subtramos	
	6	E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	T de Milagro - Intersección Milagro
	7	E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	T de Milagro - Intersección Milagro
	8	E488	Milagro - Naranjito	Intersección Milagro - Naranjito
		E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	T de Milagro - Intersección Milagro
9	1	E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	3 Postes - T De Milagro
		E49	Empate E25 - Yaguachi - Durán	T de Milagro - Yaguachi
	1	E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	Límite Provincial Guayas/Los Ríos (Jujan) - 3 Postes
10	2	E25	Límite Provincial Los Ríos/Guayas (Jujan) - T De Milagro - Milagro - Boliche	Límite Provincial Guayas/Los Ríos (Jujan) - 3 Postes
	3	E25	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	Límite Provincial Guayas/Los Ríos (Jujan) - 3 Postes
	1	E491	Límite Provincial Bolívar/Los Ríos (El Limón) - Montalvo - Babahoyo	Palmar/A Beldaco - Babahoyo
11	2	Límite Provincial Palmar/A Bolívar/Los Ríos (El Babal Limón) - Montalvo - Babal Babahoyo		Palmar/A Beldaco - Babahoyo

Punto negro preliminar	Punto negro definitivo	Código de vía	Tramo	Subtramos
	4	E25	Límite Provincial Santo Domingo de Los Tsáchilas/Los Ríos (Patricia Pilar) - Quevedo	Buena Fe - Universidad De Quevedo
12	1	E25	Límite Provincial Santo Domingo de Los Tsáchilas/Los Ríos (Patricia Pilar) - Quevedo	Universidad de Quevedo - Quevedo
	2	E25	Límite Provincial Santo Domingo de Los Tsáchilas/Los Ríos (Patricia Pilar) - Quevedo	Universidad de Quevedo - Quevedo
		E30A	Variante Quevedo	Variante Quevedo
13	1	E40	Boliche - Redondel (Guayaquil, Milagro, Machala) (Km. 27) - El Triunfo (Manuel J. Calle)	Intersección Vía a Naranjito - El Triunfo
	1	E40	Progreso - Guayaquil (Intercambiador Vía a la Costa)	Y A Playas/Salinas - Guayaquil (Intersección Perimetral/Vía La Costa)
	2	E40	Guayaquil (Intercambiador Vía A La Costa) - Vía A Daule/Loop Nor Occidental	Guayaquil (Intersección Perimetral/Vía La Costa) - Ingreso de Perimetral a Vía Guayaquil/Daule
14		E40	Durán (Puente Rma) - Boliche	Durán - Intersección Autopista Durán/Boliche, y Babahoyo Durán
	3	E40	Durán (Puente Rma) - Boliche	Intersección Autopista Durán/Boliche, y Babahoyo Durán - Intersección (Durán/Boliche/Tambo)/Inter sección (Durán/Boliche/Yaguachi)
		E49A	Durán/Redondel (Guayaquil/Milagro/Macha la)/(Km. 27) - Virgen de Fátima (Km. 26)	Intersección Autopista Durán/Boliche, y Babahoyo Durán - T de Brisas

3.3.4. Paso 12: Obtención de listas de mejoras a partir de los tramos contenidos en los puntos negros definitivos

Una vez identificados los tramos de red vial con su respectivo código y nombre, se procedió a identificar las listas de mejoras de acuerdo con el nombre y código de carretera, esto se hizo debido a que cada una las actuaciones o soluciones proporcionadas por la auditoria de seguridad vial fueron dadas en función del código y nombre del tramo escogido dentro de los puntos negros definitivos.

Código de Carretera	Nombre del Tramo	Identificación de Lista de Mejora
	Límite Provincial Los Ríos/Guayas (Jujan) - T de Milagro - Milagro - Boliche	G01
E25	Boliche - Redondel (Guayaquil, Milagro, Machala) (Km. 27) - Taura - Puerto Inca - Entronque Vía Naranjal	G02
	Naranjal - Entrada Esperanza - Límite Provincial Guayas/Azuay	G03
	Límite Provincial Santo Domingo de Los Tsáchilas/Los Ríos (Patricia Pilar) - Quevedo	R01
E30A	Variante De Quevedo	R06
E40	Vía A Daule/Loop Nor Occidental - Perimetral de Guayaquil (Vía a	G08

Tabla XLV: Listas de mejoras de acuerdo con códigos de vías.

	Daule/La Aurora/Loop Norte y Loop Oriental)/La Puntilla	
	Durán (Puente Rma) - Boliche	G10
	Boliche - Redondel (Guayaquil, Milagro, Machala) (Km. 27) - El Triunfo (Manuel J. Calle)	G11
	Salinas - Libertad - Santa Elena	S01
	Guayaquil (Intercambiador Vía a La Costa) - Vía a Daule/Loop Nor Occidental	G07
E48	El Empalme - Narcisa De Jesús (Nobol) - Pascuales	G13
E49	Empalme E25 - Yaguachi - Durán	G14
E482	Límite Provincial Manabí/Guayas (La Cadena) - Narcisa de Jesús (Nobol)	G18
E485	Salitre-Daule	G20
E488	Milagro-Naranjito	G24
E489	Playas-Posorja	G28
E491	Límite Provincial Bolívar/Los Ríos (El Limón) - Montalvo - Babahoyo	R11
	Fuente: Torres, D., 2017.	

3.3.5. Paso 13: Identificación de las actuaciones y costos de inversión para los puntos negros definitivos

Entonces teniendo identificadas las listas de mejoras en formato pdf para cada tramo obtenido del geoprocesamiento, se procedió a convertir los archivos hacia formato xls, esto con el fin de poder cargar las listas de mejoras al espacio de trabajo del programa ArcGIS y con eso poder visualizar que tipos de actuaciones caen en los polígonos que fueron identificados como puntos negros definitivos.

Una vez realizadas las conversiones y antes de cargar las listas de mejoras al programa, se cuantificó el costo de inversión que requiere toda la red vial de la regional 5, en la siguiente tabla se presenta el costo por cada lista de mejora.

 Tabla XLVI: Costo de inversión de las listas de mejoras para toda la regional

5.

Código De Carretera	Nombre Del Tramo	Identificación De Lista De Mejora	Costo De Inversión
	Límite Provincial Los Ríos/Guayas (Jujan) - T De Milagro - Milagro - Boliche Boliche - Redondel	G01	\$ 7,325,759
	(Guayaquil, Milagro, Machala) (Km. 27) - Taura - Puerto Inca - Entronque	G02	
E25	Vía Naranjal Naranjal - Entrada Esperanza - Límite Provincial Guayas/Azuay	G03	\$ 2,765,565 \$ 6,082,554
	Límite Provincial Santo Domingo De Los Tsáchilas/Los Ríos (Patricia Pilar) - Quevedo	R01	\$ 5,225,449
E30a	Variante De Quevedo	R06	\$ 1,266,172
	Vía A Daule/Loop Nor Occidental - Perimetral De Guayaquil (Vía A Daule/La Aurora/Loop Norte Y Loop	G08	\$ 1,200,112
E40	Oriental)/La Puntilla		\$ 3,088,273
	Durán (Puente Rma) - Boliche Baliaba Badandal	G10	\$ 2,122,033
	Guayaquil, Milagro,	G11	\$ 5,005,507

		Costo Total En Regional 5	\$ 106,289,943
E491	Límite Provincial Bolívar/Los Ríos (El Limón) - Montalvo - Babahoyo	R11	\$ 8,907,164
E489	Playas-Posorja	G28	\$ 2,166,008
E488	Milagro-Naranjito	G24	\$ 3,585,067
E485	Salitre-Daule	G20	\$ 3,642,622
E482	Límite Provincial Manabí/Guayas (La Cadena) - Narcisa De Jesús (Nobol)	G18	\$ 4,127,128
E49	Empalme E25 - Yaguachi - Durán	G14	\$ 9,352,396
E48	El Empalme - Narcisa De Jesús (Nobol) - Pascuales	G13	\$ 30,476,617
	Guayaquil (Intercambiador Vía A La Costa) - Vía A Daule/Loop Nor Occidental	G07	\$ 5.972.303
	Salinas - Libertad - Santa Elena	S01	\$ 5,179,326
	Machala) (Km. 27) - El Triunfo (Manuel J. Calle)		

Figura 3.119 Costos de inversión para toda la regional 5. Fuente: Torres, D., 2017.

Luego de conocer el costo que requiere toda la red vial de la regional 5, se importaron los datos de las listas de mejoras hacia el programa ArcGIS, para conseguirlo cada lista de mejora en formato xls se transformó en una capa shapefile de tipo punto.

A continuación, se presenta lo descrito anteriormente.

Figura 3.120 Actuaciones contenidas en las vías seleccionadas para los puntos negros definitivos. Fuente: Torres, D., 2017.

Una vez cargadas las soluciones al espacio de trabajo del programa, se procedió a extraer por medio de una selección por localidad las soluciones existentes en cada punto negro definitivo, cabe mencionar que cada punto solución tiene incluido su costo respectivo.

Figura 3.121 Aplicación de "selección por localidad" para la selección de listas de mejoras. Fuente: Torres, D., 2017.

Tabla XLVII: Valores usados en la función Select by lo	ocation.
--	----------

Campo	Descripción	Valores Ingresados
Selection method	Elige el método de selección	Se usó "Select features from"
Target layers	Da una lista de las capas que contienen el dato a seleccionar	Se escogieron las listas de mejoras transformadas a capas tipo punto
Source layer	Se escoge la capa base donde se acota la selección	Se escogieron las capas tipo polígono creadas para identificar los puntos negros definitivos, en total se realizaron 17 selecciones
Spatial selection method for target layer features	Da a elegir el método de selección espacial, existen 15 métodos	Se usó la opción "Intersect the source layer feature
Apply a search distance	Indica una distancia de búsqueda de selección	No se habilito la opción

Figura 3.122 Aplicación de "selección por localidad" para la selección de listas de mejoras. Fuente: Torres, D., 2017.

Una vez escogidas las actuaciones en cada punto negro definitivo, estas fueron organizadas de manera cuidadosa y a continuación se las presenta en la siguiente tabla:

ZONA PRELIMINA R	PUNTO NEGRO	ACTUACIÓN	COSTE
8	3	Pavimentación de acceso	
8	3	Pintado de paso de peatones	\$ 28.00
8	8	Implantación o mejora de marcas viales y señalización vertical	\$ 68,000.00
8	8	Pintado de paso de peatones	\$ 28.00
8	5	NINGUNA SOLUCIÓN ESTUVO CONTENIDA EN EL DEL POLÍGONO	\$ -
13	1	NINGUNA SOLUCIÓN ESTUVO CONTENIDA EN EL DEL POLÍGONO	\$ -
5	1	Tratamiento del tránsito peatonal (aceras y pasos de peatones)	\$ 3,579.60
5	1	Instalación de paso de peatones sobre elevado	\$ 63,893.00
6	2	Instalación de señales para la transición de trazado	\$ 706.92
1	2	Repintado de marcas viales	\$ 5,908.49
1	2	Instalación de señal de "Límite máximo de velocidad"	\$ 260.00
10	3	Repintado de marcas viales	\$ 280.00

Tabla XLVIII: /	Actuaciones	para todos	los puntos	negros	definitivos.
-----------------	-------------	------------	------------	--------	--------------

\$ 28.00	Pintado de paso de peatones	0 3	10
\$ 68,000.00	Implantación o mejora de marcas viales y señalización vertical	0 3	10
پ 300,000.0 0	Construcción de carriles diferenciados para cada movimiento	0 3	10
\$ 280.00	Repintado de marcas viales	0 3	10
\$ 1,336.93	Control de velocidad en travesías y tratamiento del tránsito peatonal	8 4	8
\$ 2,386.40	Tratamiento del tránsito peatonal (aceras y pasos de peatones)	8 4	8
\$ -	NINGUNA SOLUCIÓN ESTUVO CONTENIDA EN EL DEL POLÍGONO	2 1	2
\$ 300,000.0 0	Construcción de carriles diferenciados para cada movimiento	8 7	8
\$ 68,000.00	Implantación o mejora de marcas viales y señalización vertical	3 7	8
\$ 28.00	Pintado de paso de peatones	3 7	8
\$ 124,625.6 4	Instalar barrera de hormigón a doble cara	2	4
\$ -	NINGUNA SOLUCIÓN ESTUVO CONTENIDA EN EL DEL POLÍGONO	6 1	6
\$ 28.00	Pintado de paso de peatones	6	8
\$ 280.00	Repintado de marcas viales	6	8
\$ 300,000.0 0	Construcción de carriles diferenciados para cada movimiento	6	8
\$ 68.000.00	Implantación o mejora de marcas viales y señalización vertical	6	8
\$ -	NINGUNA SOLUCIÓN ESTUVO CONTENIDA EN EL DEL POLÍGONO	8 1	8
\$ 6.308.84	Señalización y balizamiento de obras de acuerdo con el INEN) 1	9
\$ -	NINGUNA SOLUCIÓN ESTUVO CONTENIDA EN EL DEL POLÍGONO	+ 1	4
\$ 115.00	Instalación de señal de "Peatones en la vía"	0 1	10
\$ 14.00	Pintado de paso de peatones	8 2	8
\$ 14.00	Pintado de paso de peatones	3 2	8
\$ -	NINGUNA SOLUCIÓN ESTUVO CONTENIDA EN EL DEL POLÍGONO	2	7
\$ 335.00	Instalación de terminales a tierra de barrera metálica	0 2	10
\$ 335.00	Instalación de terminales a tierra de barrera metálica	0 2	10
\$ 335.00	Instalación de terminales a tierra de barrera metálica	0 2	10
\$ 335.00	Instalación de terminales a tierra de barrera metálica	0 2	10
\$ 335.00	Instalación de terminales a tierra de barrera metálica	0 2	10
\$ 335.00	Instalación de terminales a tierra de barrera metálica	0 2	10
\$ -	NO HAY SOLUCIONES CONTENIDAS DEBIDO A QUE NO SE TIENE UNA LISTA DE MEJORA PARA DICHA SECCIÓN	4 1	14
\$ 100.00	Adecuación de transición entre barandal y barrera	4 3	14
\$ 130.00	Instalación de señal de "Límite máximo de velocidad"	4 3	14
	Ponintado do marcas víalos	4 3	14
\$ 115.00	Instalación de señal de "Peatones en la vía"	3	14
---------------------------	--	---	----
\$ 115.00	Instalación de señal de "Incorporación"	3	14
\$ 14.00	Repintado de marcas viales	3	14
\$ 115.00	Instalación de señal de "Peatones en la vía"	3	14
\$ 706.92	Instalación de señales para la transición de trazado	3	14
\$ 80.00	Instalación de señal de "Parada de bus"	3	14
\$ 6,969.00	Construcción de aceras y pintado de pasos de peatones	3	14
\$ 1,800.00 \$	Sustitución de cartel de preaviso de destinos	3	14
300,000.0 0	Construcción de carriles diferenciados para cada movimiento	3	14
\$ 5,771.42	Instalar barrera metálica doble	3	14
\$ 3,785.02	Instalar barrera metálica doble	3	14
\$ 8,601.95 م	Instalar barrera metálica doble	3	14
پ 157,419.5 7	Reconstrucción de pavimento	3	14
\$ 61,400.52	Pavimentado de espaldón	3	14
\$ 1,764.34	Repintado de marcas viales	3	14
- \$ ¢	NINGUNA SOLUCIÓN ESTUVO CONTENIDA EN EL DEL POLÍGONO	2	11
⊕ 300,000.0 0	Construcción de carriles diferenciados para cada movimiento	1	3
\$ 335.00	Instalación de terminales a tierra de barrera metálica	1	7
\$ 21.00	Pintado de ceda el paso	1	7
\$ 6,059.57	Instalar barrera metálica doble	1	7
\$ 63,893.00	Instalación de paso de peatones sobre elevado	1	7
\$ 130.00	Instalación de señal de "Límite máximo de velocidad"	1	7
\$ 335.00	Instalación de terminales a tierra de barrera metálica	1	7
\$ 3 579 60	Tratamiento del tránsito peatonal (aceras y pasos de peatones)	1	7
s,or cres \$ -	NINGUNA SOLUCIÓN ESTUVO CONTENIDA EN EL DEL POLÍGONO	1	1
\$ 80.00	Instalación de señal de "Parada de bus"	2	14
\$	Prolongar barrera metálica	2	14
\$ 80.00	Instalación de señal de "Parada de bus"	2	14
\$	Instalar barrera metálica	2	14
4,480.00 \$ 80.00	Instalación de señal de "Parada de hus"	2	14
¢ 00.00 \$ 7.605.00	Saneo y reconstrucción localizada del firme	2	14
67 818 00	Instalar barrera metálica doble	2	14
2,289.61	Instalar barrera de hormigón	2	14
\$ 123,363.5 6	Instalar barrera metálica doble	2	14

\$ 13,560.05	Instalar barrera metálica doble	2	14
\$ 16,348.03	Instalar barrera metálica simple	2	14
\$ 64,853.83	Pavimentado de espaldón	2	14
\$ 6,921.60	Pavimentado de espaldón	2	14
\$ 20.860.48	Eliminación de cambios de desnivel entre el carril y el espaldón	2	14
\$ -	NINGUNA SOLUCIÓN ESTUVO CONTENIDA EN EL DEL POLÍGONO	1	11
\$ 63.893.00	Instalación de paso de peatones sobre elevado	1	12
\$ 14,000.00	Nuevo diseño de señalización en aproximación a redondel (según RTE. INEN 004)	1	12
\$ 115.00	Instalación de señal de "Peatones en la vía"	2	12
\$ 115.00	Instalación de señal de "Peatones en la vía"	2	12
\$ 93,922.99 \$	Repintado de marcas viales	2	12
300,000.0 0	Construcción de carriles diferenciados para cada movimiento	2	12
\$ 3,113,13 5.87	COSTO DE INVERSIÓN		

Fuente: Torres, D., 2017.

Tabla XLIX: Costos de solución para todos los

Zona/Punto Negro	Costo	
14/3	\$	549,168
12/2	\$	394,153
10/3	\$	368,588
8/6	\$	368,308
8/7	\$	368,028
14/2	\$	330,805
3/1	\$	300,000
4/2	\$	124,626
12/1	\$	77,893
7/1	\$	74,353
8/8	\$	68,028
5/1	\$	67,473
9/1	\$	6,309
1/2	\$	6,168
8/4	\$	3,723

puntos negros definitivos.

8/3		\$	2,653
10/2		\$	2,010
6/2		\$	707
10/1		\$	115
8/2		\$	28
1/1			-
2/1			-
4/1			-
6/1			-
7/2			-
8/1			-
8/5			-
11/1			-
11/2			-
13/1			-
14/1			-
		\$	3,113,136
	Eugente: Terres D	2017	

Fuente: Torres, D., 2017.

Obtenidos los costos puntuales para cada punto negro definitivo, se suman los costos para cada uno, y se obtienen los costos para las zonas de mayor densidad de accidentes, las cuales son:

|--|

Zona Preliminar	Costo	
14	\$ 879,973	3
8	\$ 810,768	3
12	\$ 472,046	3
10	\$ 370,713	3
3	\$ 300,000)
4	\$ 124,626	3
7	\$ 74,353	3
5	\$ 67,473	3
9	\$ 6,309	9
1	\$ 6,168	8
6	\$ 707	7

puntos negros preliminares.

2	2 9	; -		
1	1 \$; -		
1	3 \$; -		
	9	3,113,135.87		
Fuente: Torres, D., 2017.				

Tal como se observa en los resultados, el costo de inversión necesario para los puntos negros es de \$ 3,113,135.87 y el costo total para todas las actuaciones en la red vial de la regional 5 es de \$ 106,289,943, por lo tanto, el costo de inversión para las zonas de mayor siniestralidad en aproximadamente 1 km2 representa tan solo el 3% del costo total requerido en toda la regional mencionada.

CAPITULO 4 ANÁLISIS DE RESULTADOS

Una vez completado el análisis definitivo y obtenido los resultados, se presenta un mapa de información para el análisis de resultados

Figura 4.1 Priorización de los puntos negros obtenidos en la regional 5. Fuente: Torres, D., 2017.

Haciendo un análisis detallado para los resultados de la regional 5, se presentan las siguientes observaciones:

 De acuerdo con la figura 4.1 se puede observar que el punto negro con mayor nivel de accidentalidad es de la zona preliminar número 8, aplicando los criterios de priorización de la CONASET de Chile se encontró que 3 puntos de los 31 obtenidos en toda la regional 5 tienen el máximo nivel de accidentalidad. Los tramos y subtramos para el punto negro más crítico de todos los 31 obtenidos son:

• TRAMO:

E25: LÍMITE PROVINCIAL LOS RÍOS/GUAYAS

(JUJAN) - T DE MILAGRO - MILAGRO - BOLICHE

• SUBTRAMO:

INTERSECCIÓN MILAGRO – INTERSECCIÓN BOLICHE/BABAHOYO

Figura 4.2 Vista en planta de la zona de mayor prioridad en Milagro E25. Fuente: Torres, D., 2017.

Figura 4.3 Vista en 3D de la zona de mayor prioridad en Milagro E25. Fuente: Torres, D., 2017.

2. Las actuaciones para solucionar problemas de infraestructura vial en

los 31 puntos negros definitivos fueron:

 Tabla LI: Costos de las actuaciones contenidas en los puntos negros definitivos.

Actuación	Costo
Adecuación de transición entre barandal y	
barrera	\$ 100.00
Construcción de aceras y pintado de pasos	
de peatones	\$ 6,969.00
Construcción de carriles diferenciados para	
cada movimiento	\$ 1,800,000.00
Control de velocidad en travesías y	
tratamiento del tránsito peatonal	\$ 1,336.93
Eliminación de cambios de desnivel entre	
el carril y el espaldón	\$ 20,860.48
Implantación o mejora de marcas viales y	
señalización vertical	\$ 272,000.00
Instalación de paso de peatones sobre	
elevado	\$ 191,679.00
Instalación de señal de "Incorporación"	\$ 115.00

Instalación de señal de "Límite máximo de	ሱ	520.00				
	þ	520.00				
Instalación de senal de "Parada de bus" Instalación de señal de "Peatones en la	\$	320.00				
vía"	\$	575.00				
Instalación de señales para la transición de trazado	\$	1,413.84				
Instalación de terminales a tierra de barrera metálica	\$	2,680.00				
Instalar barrera de hormigón	\$	2.289.61				
Instalar barrera de hormigón a doble cara	\$	124,625,64				
Instalar barrera metálica	\$	4.480.00				
Instalar barrera metálica doble	\$	228.960.56				
Instalar barrera metálica simple	\$	16,348,03				
NINGUNA SOLUCIÓN ESTUVO	Ŷ	10,010100				
CONTENIDA EN EL DEL POLÍGONO	\$	-				
Nuevo diseño de señalización en						
aproximación a redondel (según RTE.						
INEN 004)	\$	14,000.00				
Pavimentación de acceso	\$	2,625.00				
Pavimentado de espaldón	\$	133,175.95				
Pintado de ceda el paso	\$	21.00				
Pintado de paso de peatones	\$	168.00				
Prolongar barrera metálica	\$	2,464.00				
Reconstrucción de pavimento	\$	157,419.57				
Repintado de marcas viales	\$	102,729.82				
Saneo y reconstrucción localizada del firme	\$	7,605.00				
Señalización y balizamiento de obras de						
acuerdo con el INEN	\$	6,308.84				
Sustitución de cartel de preaviso de						
destinos	\$	1,800.00				
I ratamiento del transito peatonal (aceras y	¢					
pasos de peatones)	\$	9,545.60				
Fuente: Torres, D., 2017.						

Estas actuaciones ofrecieron un costo de \$ 3,113,136 de un total de \$ 106,289,943 requeridos para solucionar los problemas de infraestructura y señalización vial en toda la red vial de la regional 5.

Los puntos negros definitivos sin soluciones de infraestructura vial:
 De la tabla LII se observa que en los puntos negros definitivos

1/1,2/1,4/1,6/1,7/2,8/1,8/5,11/1,11/2,13/1,14/1 no se tienen actuaciones por parte de la auditoria de seguridad vial, pero analizando la severidad de los mismos se identificó lo siguiente:

	Severidad del accidente						
Punto negro definitivo	Zona preliminar	Fatal	Grave	Leve	TOTAL	de siniestros en la regional 5	
1	1	1	7	9	17	2%	
2	1	1	15	10	26	4%	
4	1	3	12	7	22	3%	
6	1	1	7	3	11	1%	
7	2	0	9	3	12	2%	
8	1	2	3	2	7	1%	
8	5	0	5	0	5	1%	
11	1	1	1	2	4	1%	
11	2	0	1	2	3	0%	
13	1	2	5	4	11	1%	
14	1	4	42	15	61	8%	

Tabla LII: Puntos negros sin actuaciones por parte de la ASV.

Fuente: Torres, D., 2017.

Tal como se puede verificar en la tabla, la mayoría de puntos que no presentan actuaciones tienen entre un promedio de 2% con respecto al total de 734 accidentes registrados en todos los puntos negros de la regional 5, esto indica que, existe una muy alta desviación en la muestra de puntos definitivos que no tienen actuación por infraestructura vial, el punto 1 de la zona 14 presenta 8% y este sobresale ante el resto de los que se presentan en la tabla LV.

 Se observa que el punto 2 de la zona 11, con 3 accidentes es indiferente en comparación con el total de 734 registros registrados desde el 2012 al 2016, pero a pesar de presentar casi 0% con respecto al total, este no se puede descartar del análisis debido a que existe una alta desviación en la muestra.

- 5. De acuerdo con el presupuesto que maneja el Ministerio de Transporte y Obras Públicas para la reparación de vías y problemáticas de seguridad vial, el costo de solución que se obtuvo como resultado dio certeza a la hipótesis inicialmente planteada.
- Se puede observar según las figuras del paso 9.1 que no todos los siniestros se originan en intersecciones, a continuación, los siguientes ejemplos:

Para la zona 14, absolutamente todos los puntos negros se dan en carretera y estas a su vez no presentan malas condiciones topográficas, otro caso es la zona 8 que su orden de prioridad por severidad es la máxima, se verifica que 7 de los 8 puntos negros contenidos en la misma son en carretera lineal, para la zona 4 que ocupa el cuarto puesto en el orden de priorización antes analizado se observa que todos los puntos negros contenidos en el mismo no son en grandes intersecciones.

Haciendo una cuantificación según las figuras antes mencionadas, se obtuvo que de todos los 31 puntos negros 13 se originan en intersecciones urbanas-rurales, 13 en carretera lineal, uno en Y de carretera lineal y 4 en redondeles grandes. Por lo que también se puede dar certeza a la hipótesis planteada a inicios de este trabajo.

- 7. Como antes se mencionó, el punto negro de mayor prioridad es el 3 de la zona 8, haciendo un enfoque para dicha zona, las vías Troncal de la Costa y Milagro-Bucay están contenidas en el top ten de vías con mayores accidentes por kilómetro con valores de 9 y 6 accidentes/kilómetro respectivamente registrados desde el 2012 al 2016. Así mismo se menciona que la vía Duran Km27 y T Milagro-Duran son las dos que tienen el más alto índice de accidentes por km y estas a su vez están contenidas entre las diez priorizaciones más críticas con sexta y novena posición.
- 8. A pesar de que el punto 3 de la zona 8 es el más crítico, según el perfil de susceptibilidad dicho punto presenta un nivel entre medio y bajo riesgo hacia accidentes de tránsito, esto nos indica con claridad que el problema de accidentalidad se enfoca directamente hacia infraestructura vial.
- 9. Analizando las 4 zonas que fueron obtenidas de la superposición del perfil de susceptibilidad con la concentración máxima de accidentes, el 75% entran dentro de las diez priorizaciones más severas descritas en la figura 3.95, se puede observar que las zonas preliminares ubicadas en Daule, Quevedo, Babahoyo y San Jacinto

de Yaguachi ocupan las priorizaciones número 4,13,10 y 9 respectivamente.

CAPITULO 5 CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

El punto negro ubicada en la vía E25: LÍMITE PROVINCIAL LOS RÍOS/GUAYAS

(JUJAN) - T DE MILAGRO - MILAGRO – BOLICHE presentan el mayor nivel de accidentalidad, y en dicho tramo se tiene el mayor costo de inversión para toda la regional 5.

Las vías Duran-Km27, T de Milagro-Duran, Guayaquil El Empalme y la Transversal Austral fueron los 4 Tramos de concentración de accidentes que se encontraron en toda la red vial de la regional 5, siendo las dos primeras con el máximo de 13 accidentes/km.

Tres de las cuatro zonas con alta condición de susceptibilidad-nivel de accidentalidad entran entre las diez más críticas de acuerdo con la priorización realizada.

Once de treinta y uno zonas de alto nivel de accidentalidad no dispone de soluciones por parte de la auditoria de seguridad vial, esto debido a que la misma no cubrió toda la red vial de la regional 5.

Cerca de la mitad de todos los puntos negros obtenidos ocurren en carretera estatal y no en intersecciones.

El costo de inversión para los 31 puntos negros identificados representa de manera beneficiosa el 3% del costo total de actuaciones que se necesitan para toda la red vial de la regional 5.

RECOMENDACIONES

Optimizar el geoprocesamiento por medio de técnicas avanzadas de programación, con el fin de poder obtener de manera más rápida priorizaciones para regionales con mayor longitud de red vial.

Aplicar criterios de selección (como el de la CONASET) en los Departamento de Operación y Control de Tránsito (CTE y PN) para priorizar zonas con alto nivel de accidentalidad.

Siempre definir un nivel de frecuencia de accidentes y elegir un radio de búsqueda entre 100 y 300 metros.

Unificar bases de datos de accidentes de CTE y Policía Nacional con el fin de facilitar las metodologías de priorización.

Completar la auditoria de seguridad vial para los tramos de vías que no cuentan con actuaciones.

Concientizar y educar a la sociedad sobre la importancia de la seguridad vial en las carreteras.

ANEXOS

Anexo A

- 1. Mapa Clima DLL
- 2. Mapa Clima PRECIP
- 3. Mapa Geom CURVASxKM
- 4. Mapa Geom TIPO TERRENO
- 5. Mapa Infra FRICC
- 6. Mapa Infra REFLEC
- 7. Mapa Accidentes
- 8. Mapa Psu
- 9. Mapa Psu+Acc
- 10. Mapa Pnp PRIORI

BIBLIOGRAFÍA

Aparicio, F., & Arenas, B. (2017). An integrated methodology for the scientific research of road accidents. General overview Una metodología integrada de investigación científica de accidentes de tráfico. Planteamiento general. Securitas Vialis, 9(1-3), 57-67.

Barrantes-Jiménez, R., Sanabria-Sandino, J., Aguiar-Moya, J. P., & Loría-Salazar, L. G. (2013). METHODOLOGY FOR DETERMINING TRAFFIC ACCIDENT RISK ZONES.

Betancourt, A. (2007). Abordando la seguridad vial desde una visión integral en Chile (Internacional).

Gazmuri, P., Muñoz, J. C., Rizzi, L. I., Fresard, F., & Cumsille, S. (2006). Reducción de la mortalidad por accidentes del tránsito en Chile: 10 medidas prioritarias.

GEURTS, K., & WETS, G. (2003). Black spot analysis methods: Literature review.

Geurts, K. A. R. O. L. I. E. N., Wets, G. E. E. R. T., Brijs, T., & Vanhoof, K. O. E. N. (2004). Identifying and ranking dangerous accident locations:

Overview sensitivity analysis. In Forthcoming in Proceedings of 17th ICTCT Workshop in Tartu, Estonia.