697.93 LALU C.2

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"El uso de las unidades paquetes enfriadas por agua para el diseño de un edificio en la Ciudad de Guayaquil"

Tosis de Grado

Previa a la obtención del Título de:

INGENIERO MECANICO

Presentada por:

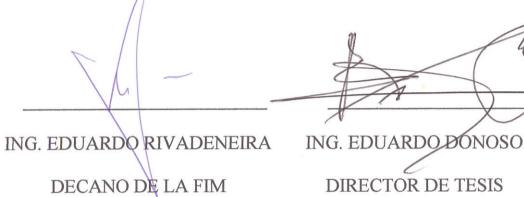
HECTOR ALFREDO LALAMA NAPOLITANO

Guayaquil - Ecuador

AGRADECIMIENTO

Biblioteca Central

Al Ing. Eduardo Donoso Pérez, Director de Tesis, por su generoso asesoramiento.


DEDICATORIA

A mis Padres

Biblioteca Central

TRIBUNAL DE GRADUACION

DIRECTOR DE TESIS

Biblioteca Central

Maal Poleen ____

ING. MARIO PATIÑO

ING. JORGE DUQUE

VOCAL

VOCAL

DECLARACION EXPRESA

Biblioteca Central

"La responsabilidad del contenido de esta tesis, me corresponden exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL".

(Reglamento de Graduación de la ESPOL).

alfrido falama

Héctor Alfredo Lalama Napolitano

RESUMEN

Biblioteca Central

El presente trabajo tiene por objeto presentar un análisis comparativo entre los diferentes sistemas y equipos de aire acondicionado con el fin de demostrar que las Unidades Paquetes enfriadas por agua; es la selección de equipos más adecuada para edificaciones de propiedad horizontal en la ciudad.

Para esta demostración se realizara él calculo de la carga térmica de un edificio de propiedad horizontal que sé esta construyendo en la ciudad. El presente calculo se lo realizara sobre la base de las disposiciones arquitectónicas de la obra, no sin antes mencionar las debidas recomendaciones para la disminución de la carga térmica y consecuentemente ahorro energético en beneficio de la obra.

Una vez obtenida la carga térmica y tomando en consideración las necesidades y actividades que realizaran los ocupantes, se evaluara la

eficiencia de diferentes equipos de enfriamiento, desde chillers, unidades paquetes enfriadas por agua, y equipos de aire acondicionado de expansión directa. Este análisis se realizara tomando en cuenta diversos factores, tales como carga pico, eficiencia, uso continuo y uso coincidente.

Luego se realizara el análisis entre enfriadores de circuito cerrado vs. torres de enfriamiento para evaluar el sistema más eficiente y adecuado para satisfacer las necesidades de confort de los ocupantes,

Diseñaremos el sistema de bombeo y tuberías, y el de tratamiento de aguas para completar el sistema de climatización que satisfaga los requerimientos al menor costo operacional, y de mantenimiento del edificio.

Para terminar este trabajo se presentara el listado de equipos y presupuestos estimativos de instalación para poner en conocimiento a las

personas de la envergadura de un adecuado y eficiente sistema de climatización.

INDICE GENERAL

	Pág.
TITULO	i
AGRADECIMIENTOS	ii
DEDICATORIA	iii
DECLARACION EXPRESA	iv
RESUMEN	v
INDICE GENERAL	vi
INDICE DE FIGURAS	viii
INDICE DE TABLAS	ix
NOMENCLATURAS	х
INTRODUCCION	1
CAPITULO 1	
DESCRIPCION ARQUITECTONICA DEL	
PROYECTO	5
1.1 Generalidades	5
1.2 Características de funcionamiento	6
1.3 Requerimientos del contratista	8
1.4 Limitaciones y alcance del proyecto	10
CAPITULO 2	

CALCULO DE LA CARGA TERMICA	14
2.1 Consideraciones térmicas de diseño	15
2.2 Características ocupacionales en el edificio	24
2.3 Tabulación de datos	26
2.4 Análisis de resultados para la selección de equipos	31
CAPITULO 3	
JUSTIFICACION DEL USO DE UNIDADES PAQUETES	
ENFRIADAS POR AGUA EN EDIFICIOS DE PROPIEDAD	
HORIZONTAL	35
3.1 Análisis entre Chillers, Upeas y equipos de expansión	
directa	36
3.2 Comparación entre el uso de enfriadores de circuito cerrado y torres de	
enfriamiento	44
3.3 Requerimientos técnicos de instalación	49
3.4 Condiciones de funcionamiento unidades paquetes enfriadas por	50
agua	
3.5 Selección de las torres de enfriamientos	53
3.6 Selección del sistema de tratamiento de agua	57
CAPITULO 4	
DISEÑO DE LOS SISTEMAS DE DISTRIBUCION DE AGUA DE	60
ENFRIAMIENTO Y AIRE ACONDICIONADO	
4.1 Diseño de tuberías para el sistema de agua de enfriamiento	60

4.2 Selección del sistema de bombeo	63	
4.3 Diseño del sistema de ductaje	65	
4.4 Aislamiento térmico en ductos de transportación de aire	68	
4.5 Condiciones de diseño y selección para rejillas y difusores	69	
CAPITULO 5		
PRESUPUESTO ESTIMATIVO	70	
5.1 Obras locales y equipos a importarse	70 '	
5.2 Análisis de costos	88	
CONCLUSIONES Y RECOMENDACIONES	89	
ANEXOS	92	
BIBLIOGRAFIA	107	

:

•

NOMENCLATURA

HR	Humedad Relativa
m ²	metros cuadrados
ft ²	pies cuadrados
°F	Grados Fahrenheit (temperatura)
°C	Grados Centígrados (temperatura)
Kwh	Kilovatios por hora
TR	Toneladas de refrigeración
W	Vatios (potencia)
FPM	Pies por minuto (velocidad)
CFM	Pies cúbicos por minuto (caudal)
GPM	Galones por minuto (caudal)
in. w. g.	pulgadas de agua (caída de presión)
Kw/TR	Kilovatios por Tonelada de refrigeración
RPM	Revoluciones por minuto
ASHRAE	Sociedad Americana de ingenieros en refrigeración, calefacción
	y acondicionamiento de aire
SMACNA	Asociación de Contratistas de Lámina de Metal y

Acondicionamiento de Aire

Q	Cantidad de calor transferido o de ganancia térmica
U	Coeficiente Global de transferencia de calor
ΔT	Diferencia media logarítmica de temperaturas
lb/ ft ²	Libras por pie cuadrado (densidad superficial)
BHP	Caballos de potencia al freno
HP	Caballos de potencia
SC	Coeficiente de Sombreado
NC	Criterio de Ruido
US\$	Dólares de los Estados Unidos de América
BTU	Unidad térmica británica (Energía)
FTw.	Pies de caída de presión

INDICE DE FIGURAS

N°.		Pag.
3.1	Unidad paquete enfriada por agua	43
3.2	Diagrama de funcionamiento de torre de enfriamiento	45

INDICE DE TABLAS

N°.		Pag.
2-1	Condiciones externas de diseño para la ciudad de Guayaquil	20
2-2	Valores de Ocupancia	26
2-3	Carga de enfriamiento obtenida para edificio Torres Atlas -	
	Subsistema 1: Apartementos	28
2-4	Carga de enfriamiento obtenida para edificio Torres Atlas -	
	Subsistema 2: Oficinas	29
2-5	Carga de enfriamiento obtenida para edificio Torres Atlas -	
	Subsistema 3: Bancos y locales comerciales	30
2-6	Parámetros de verificación de cálculo de carga de enfriamiento	
	en caso de estudio	32
3-1	Resumen del análisis entre chillers, upeas, y equipos de	
	expansión directa	40
3-2	Desempeño de unidad UPEA, marca Trane, modelo	
	WPVE061	52
3-3	Caudales recomendados de agua para circuitos de enfriamiento.	54
3-4	Torres de enfriamiento seleccionadas para caso de estudio	56

N°.		Pag.
4-1	Pérdida de fricción para tubería de agua de acero cédula 40 en	61
	sistema cerrado	
4-2	Pérdida de cabezal subsistema 2 (torres de oficinas)	64
4-3	Calibres de láminas galvanizas para ductos de baja presión	67

4 ⁺

.

INTRODUCCION

En esta última década la ciudad de Guayaquil ha experimentado un importante empuje en la industria de la construcción, más aún en el desarrollo de importantes edificaciones en el sector norte de la ciudad.

Todas estas edificaciones contaran con los más modernos sistemas de infraestructura. Entre los proyectos que se están desarrollando en la ciudad podemos anotar como un ejemplo de lo expuestos los siguientes:

- World Trade Center
- Centro Empresarial Las Cámaras
- Hotel y Torres Hilton Colón
- Edificio Banco del Progreso
- Edificio Torres del Norte
- Edificio Torres Atlas
- El Centrum

Es por ello que, en estos momentos es muy importante para el desarrollo del cálculo de carga y evaluación energética de los mismos, se cuenten con los suficientes análisis de los diferentes sistemas de climatización, ya que el consumo eléctrico de los equipos de refrigeración es por lo menos 50% del total del consumo eléctrico del edificio.

El enfoque de esta tesis es revisar la eficacia de los diferentes sistemas de enfriamiento para requerimientos mayores a 150 toneladas de refrigeración.

Para ello se ha elegido al Edificio Torres Atlas, ya que en este proyecto se presentan diseños independientes para cada sector del edificio, bancario, residencial y de oficinas.

Una vez se haya realizado la presentación del proyecto, sus distribuciones, condiciones de funcionamiento, se procederá a realizar la carga térmica del edificio

Esto último se cumplió con la utilización del software TRACE 600, desarrollado por, The Trane Company. El cual es uno de los programas de más alto nivel disponible en el mercado para estudios de análisis energético.

Luego de obtener la carga térmica del edificio se realizaran comparaciones de inversión de los tres sistemas mas utilizados en nuestro medio para realizar la climatización de Las Torres Atlas. Siendo esta la parte central del proyecto, en base a la cual se definirá que las Unidades Paquetes Enfriadas por agua son los equipos que logran satisfacer de manera más conveniente las necesidades de confort que se presentan en

un proyecto de propiedad horizontal. Luego de haber seleccionado las UPEAs, se analizará el sistema de enfriamiento de los condensadores; ya sea estos Torres de Enfriamiento o Enfriadores de Circuito Cerrado. Se desarrollara el análisis del sistema de tuberías, de bombeo y de tratamiento de agua, además de las condiciones necesarias para el diseño de los conductos de distribución de aire.

Realizando el diseño sobre la base de las especificaciones y recomendaciones técnicas de:

- ASHRAE (American Society of Heating Refrigerantion and Air Aconditioning Enginiers) '
- SMACNA (Sheet Metal Air Conditioning Contractors National Association, Inc).
- NFPA (National Fire Proteccion Association)

Para concluir se presentara el listado de equipos a importarse y de obras locales con sus costos para poder tener una idea de la magnitud de un proyecto de climatización.

CAPITULO I

DESCRIPCIÓN ARQUITECTONICA DEL PROYECTO

1.1 GENERALIDADES

El Edificio "Torres Atlas" es un proyecto que actualmente se encuentra en proceso de construcción. El tiempo de ejecución del mismo está previsto en realizarse en un plazo no mayor de 12 meses. "Torres Atlas" está conformado por una planta baja y mezzanine destinados a locales comerciales y bancarios. A partir de esta planta base nacen dos torres, la primera será una torre de departamentos, y la segunda una torre de oficinas.

El edificio está ubicado en la ciudadela Kennedy Norte junto a World Trade Center, por lo que promete estar ubicado en el nuevo centro comercial y bancario de la ciudad. El presente trabajo está enfocado en seleccionar el sistema de climatización más eficaz para la obra de acuerdo a los requerimientos de los promotores y bajo las normas que rigen el diseño e instalación de éstos equipos. En base a los requerimientos se analizará que la propuesta de unidades enfriadas por agua es la selección más eficiente en cuanto a costos inicial, operacional y mantenimiento.

1.2 CARACTERÍSTICAS DE FUNCIONAMIENTO

La planta baja y el mezzanine del edificio "Torres Atlas" esta destinado a la zona comercial y bancaria, 3 pisos de parqueos y 12 pisos para departamentos y oficinas distribuidos en dos torres; y la terraza destinada a la colocación de equipos. La torre de departamentos parte desde el piso 4 en el cual existe 1 departamento; del piso 5 al piso 11 la torre de departamentos contiene dos por piso, pero las distribuciones de espacios interiores difieren del 7 al piso 11; luego en esta torre existen dos penthouse de dos niveles. La torre de oficinas que también empieza en el piso 4 consta de 7 oficinas para este piso; del piso 5 al 7 existen 8 oficinas, del piso 8 al 13 se han establecido 5 oficinas. La zona comercial contiene 3 locales comerciales y dos lobby.

En total el proyecto consta de: 3 locales comerciales; dos locales bancarios, 61 oficinas, 15 departamentos de un nivel y dos departamentos de dos niveles. El edificio está diseñado para que en la terraza del mismo se coloquen todos los equipos para la climatización del edificio. Cada departamento contiene sala comedor, cocina, dormitorio principal y baños. Los departamentos tienen desde 180 metros. Cuadrados hasta 240 metros cuadrados aproximadamente. Es de mencionar que el edificio contará con todos los servicios básicos de infraestructura (electricidad, telefonía, agua potable, canalización de aguas servidas y aguas lluvias). Los tres pisos de parqueo proveerán un área total de 700 metros cuadrados para vehículos. Se contará además con ascensores, escaleras de emergencia, vigilancia, entre otros servicios de apoyo y seguridad.

Además los promotores exigen que cada zona de las torres tenga un servicio independiente de climatización. Esto es un sistema para la zona bancaria, otra para oficinas y oro para la zona de departamentos.

1.3 REQUERIMIENTOS DEL CONTRATISTA

Las condiciones para el diseño del sistema de climatización de un edificio con las características de esta obra exigen que se ejecuten varias funciones simultáneas, tales como acondicionar el aire, transportarlo e introducirlo a los espacios a servir, controlar y mantener la temperatura, humedad, movimiento, pureza, nivel de

ruido y presión diferencial de aire, todo esto en un espacio con límites predeterminados por el confort y salud de los ocupantes.

Nuestro problema es, en primer lugar, determinar la carga de enfriamiento de cada espacio a ser ocupado. La carga de enfriamiento permitirá la selección de los equipos de climatización que efectuarán la tarea de retirar la energía del espacio. Es necesario mencionar que la selección de los equipos para el edificio se efectuará considerando su eficiencia energética así como los costos iniciales y de operación de los mismos; se realizara una tabla comparativa para evaluar la eficacia de un sistema frente a otro. En base a los equipos especificados se diseñará el sistema de distribución de aire, poniendo énfasis en obtener un sistema eficiente energéticamente y que a su vez esto no signifique olvidar la meta impuesta por el diseño que es asegurar confort para los ocupantes de cada espacio.

Para lograr satisfacer éstos objetivos, se deberá contar con los espacios necesarios para la colocación de equipos, tanto en los sitios

a climatizar como en la cubierta, se deberá contar con pozos para poder instalar bajantes de tuberías y espacios definidos dentro del tumbado para los conductos de distribución de aire. Además de un adecuado suministro eléctrico para garantizar el adecuado funcionamiento de los equipos.

1.4 LIMITACIONES Y ALCANCE DEL PROYECTO

EL diseño para un edificio de propiedad horizontal tiene el gran limitante de no saber con exactitud el servicio y la utilización de cada propiedad. Es por ello que las consideraciones hechas para el servicio del mismo en un momento dado pueden no ser validas; por ejemplo si alguno de los copropietarios en su oficina desea instalar equipos de transmisión de frecuencias, va a tener la necesidad de incrementar su carga de enfriamiento para poder estar climatizada dentro de los rangos de confort deseados.

Además los promotores exigen que cada zona de las torres ofrezca un servicio independiente de climatización. Esto es un sistema para la

zona bancaria, otra para oficinas y otro para la zona de departamentos, esta exigencia esta dada por poder tener alicatas de mantenimiento y consumo eléctrico de los equipos generales que vayan de acuerdo a las horas útiles de los mismos.

Es por ello que se ha dividido el sistema de refrigeracion en 3 subsistemas completamente independientes, asignados de la siguiente manera.

- Sistema de las torres de departamentos : Subsistema 1 (S1)
- Sistema de las torres de oficinas: Subsistema 2 (S2)
- Sistema de los locales comerciales y bancarios: Subsistema 3 (S3)

La carga pico de enfriamiento es calculada por el programa considerando especialmente la incidencia de la radiación solar a lo largo del año. De esta manera el diseñador especifica el suministro requerido de aire para cada espacio a fin de vencer la carga térmica y se procede a seleccionar la máquina que satisfaga los requerimientos de enfriamiento y transporte de aire hacia el espacio. Se toman en cuenta consideraciones de filtración de aire, niveles de ruido, velocidades de transporte en ductos, selección de rejillas, entre otros aspectos.

En este proyecto se presenta el caso de plantas arquitectónicas iguales; denominadas <u>plantas tipo</u> y en base a una de ellas se realiza el cálculo de carga, facilitándose el ingreso de datos y los cálculos a efectuarse.

Además, se requiere el cálculo de carga de enfriamiento de todo el edificio, conocida también como carga de bloque. Esta carga total del edificio no necesariamente es igual a la suma de las cargas de todos los cuartos dentro del mismo. Esto se debe especialmente a la orientación del edificio, ya que a una misma hora del día diferentes exposiciones de pared no tienen igual ganancia de calor. Otro factor que incide es la infiltración por aberturas en el edificio. A una misma hora del día la dirección de viento promueve infiltración en algún sector del edificio mientras que en otro sector es posible encontrar

cuartos con exfiltración (presurización que evita el ingreso del aire exterior).

La carga pico de bloque es importante para dimensionar correctamente la planta de refrigeración central. En sistemas que trabajan con enfriadores de agua estos se seleccionan para manejar la carga máxima del edificio. Las torres de enfriamiento, condensadores evaporativos, o enfriadores secos se seleccionan igualmente para manejar la carga pico del edificio.

Caso contrario, de utilizarse la carga total de los cuartos en el edificio, se obtendría un [']sistema sobredimensionado y que incurriría en costos de operación (energía) y de mantenimiento mayores, y un mayor costo inicial de instalación y compra de equipos.

CAPITULO II

CALCULO DE CARGA TERMICA

Para una correcta selección de equipos es necesario realizar un adecuado cálculo de la carga de enfriamiento Este capítulo expone las principales condiciones y consideraciones técnicas para el diseño del sistema de enfriamiento del edificio "Torres Atlas". Se han utilizado parámetros recomendados por asociaciones de profesionales, tales como ASHRAE (Sociedad Americana de Ingenieros en Refrigeración, Calefacción y Acondicionamiento de Aire), y la SMACNA (Asociación de Contratistas de Lámina de Metal y Acondicionamiento de Aire), así como también las recomendaciones de la NFPA (Asociación para la Protección contra Incendios), todas ellas de los Estados Unidos de América.

2.1 CONSIDERACIONES TERMICAS DE DISEÑO

Para poder realizar el cálculo de la carga térmica del edificio tenemos que analizar de que manera vamos a proceder a realizarlo. Este calculo se lo hizo en un programa de computadora para realizar análisis térmicos y energéticos en edificios.

El software de cálculo és el Trace 600, desarrollado por The Trane Company, y utilizado en este trabajo previa autorización de Comercial Systems Group. Como requisitos el programa necesita una computadora personal 386 o superior, 640K RAM, versión de DOS 3.1 o superior y coprocesador matemático. Las principales aplicaciones que ejecuta este programa, entre otras, son:

- Cálculo de cargas y diseños de sistemas de aire acondicionado, calefacción y ventilación.
- Cálculo de la demanda y consumo energéticos anual del sistema mediante la simulación del comportamiento térmico del edificio para las 24 horas de un día tipo de cada mes del año.

La metodología de cálculo de carga de enfriamiento del programa se basa en el método de las funciones de transferencia introducido por Mitalas y Stephenson en 1967. El método utiliza una transformación matemática de las ecuaciones de transferencia de calor a fin de determinar el comportamiento térmico transciente de un edificio. Su ventaja sobre los métodos numéricos de diferencias finitas son los pocos cálculos e iteraciones que debe efectuar, proporcionando resultados altamente confiables, y es actualmente el método recomendado por ASHRAE para este tipo de evaluaciones. El método en su primera etapa mantiene la temperatura interior del espacio como constante, por consiguiente una uniformidad en las condiciones de funcionamiento de cargas y equipos, en su segunda etapa la temperatura interior varía de acuerdo a los cálculos que se van realizando cada hora del día, es decir que realiza un sistema interactivo entre las cargas y los sistemas para diferentes horas en un día tipo de cada mes (CIEMAT).

El programa TRACE 600 está conformado por 53 pantallas para ingreso de datos tanto del edificio como de los sistemas a evaluarse. Adicionalmente, existen otros programas utilitarios para procesar datos climáticos; librería de propiedades térmicas de paredes, techos, particiones y vidrios; diseño de ductos, y librería de equipos de refrigeración y transferencia de calor.

Por medio de este programa podemos obtener un excelente estimado para la carga de enfriamiento a ser retirada de cada zona del edificio, tomando en cuenta tanto las cargas internas y externas de los espacio En términos generales, se determinan las cargas de enfriamiento pico (o máxima) individualmente para los diferentes espacios o cuartos en el edificio. La carga pico de enfriamiento es calculada por el programa considerando especialmente la incidencia de la radiación solar a lo largo del año. De esta manera el diseñador especifica el suministro requerido de aire para cada espacio a fin de vencer la carga térmica y se procede a seleccionar la máquina que satisfaga los requerimientos de enfriamiento y transporte de aire hacia el espacio.

Se toman en cuenta consideraciones de filtración de aire, niveles de ruido, velocidades de transporte en ductos, selección de rejillas, entre otros aspectos.

Una de las ventajas de este programa es la versatilidad que ofrece para análisis de alternativas en elementos arquitectónicos de un edificio, dado que podémos simular diversas variables como la orientación del edificio, las características constructivas, tipos de materiales, etc. Con estas herramientas es posible efectuar estudios comparativos de costos versus inversión a mediano y largo plazo.

Otra ventaja del programa es que se puede dividir por zonas al proyecto, lo cual en nuestro caso esto es muy ventajoso, ya que como

se expuso anteriormente el promotor exige que cada zona del edificio tenga climatización independiente.

Para la utilización de este programa es necesario crear una carta térmica para el punto geográfico donde se efectúa el cálculo. Para ello se requiere la posición de la ciudad.

La ciudad de Guayaquil, se encuentra ubicada en latitud 2° 10' Sur y longitud 79° 53' Oeste y una altura sobre el nivel del mar de 6 metros en promedio. Posee temperaturas mayores a los 30 grados centígrados. Las condiciones exteriores de temperatura de diseño para Guayaquil han sido tomadas del ASHRAE Handbook of Fundamentals (1993) Tabla 3, Capítulo24 (Tabla 2.1):

TABLA 2.1

CONDICIONES EXTERNAS DE DISEÑO

PARA LA CIUDAD DE GUAYAQUIL

Temperatura de bulbo seco:	92 °F (33.3 °C)
Temperatura de bulbo húmedo:	80 °F (26.7 °C)
Rango Diario de variación de temperatura:	20 °F

La temperatura de bulbo seco presentada es el límite superado durante el 1% de 2,928 horas comprendidas entre los meses de diciembre a marzo para la ciudad de Guayaquil. Esto es, las observaciones meteorológicas recopiladas por ASHRAE indican que durante 29 horas la temperatura bulbo seco fue igual o superó a los 92 °F citados. En cambio, la temperatura de bulbo húmedo reportada es el valor promedio de todas estas temperaturas registradas en el lapso de tiempo mencionado (1%, es decir, 29 horas). Es necesario aclarar que dicha temperatura de bulbo húmedo no es la coincidente con la temperatura de bulbo seco reportada. Como dato adicional, las propiedades del aire húmedo a nivel del mar con las temperaturas de diseño mencionadas tiene un 60% de humedad relativa. Este dato es en realidad una aproximación debido a que las dos temperaturas (seca y húmeda) no son coincidentes, es decir, no fueron registradas simultáneamente.

En cuanto a las condiciones interiores de diseño, esto es, temperatura y humedad relativa a mantenerse en un edificio de apartamentos, ha sido práctica común utilizar rangos entre 74 a 80 °F para temperatura y entre 45 a 50% de humedad relativa, para aplicaciones generales (oficinas, apartamentos, hoteles, etc.) y han sido tomados de ASHRAE Handbook of Applications (1987).

Para cumplir con las exigencias de confort en este proyecto se realizará el análisis con los siguientes valores de temperatura y humedad en interiores para el diseño del sistema de climatización:

Temperatura de bulbo seco:75 °F (23.9 °C)Humedad Relativa:50 %

La carga pico de enfriamiento es calculada por el programa considerando especialmente la incidencia de la radiación solar a lo largo del año. De esta manera el diseñador especifica el suministro requerido de aire para cada espacio a fin de vencer la carga térmica y se procede a seleccionar la máquina que satisfaga los requerimientos de enfriamiento y transporte de aire hacia el espacio. Se toman en cuenta consideraciones de filtración de aire, niveles de ruido, velocidades de transporte en ductos, selección de rejillas, entre otros aspectos.

En este proyecto se presenta el caso de plantas arquitectónicas iguales; denominadas plantas tipo y en base a una de ellas se realiza el cálculo de carga, facilitándose el ingreso de datos y los cálculos a efectuarse.

Finalmente, algunos sistemas de climatización requieren el cálculo de carga de enfriamiento de todo el edificio, conocida también como carga de bloque. Esta carga total del edificio no necesariamente es igual a la suma de las cargas de todos los cuartos dentro del mismo.

Esto se debe especialmente a la orientación del edificio, ya que a una misma hora del día diferentes exposiciones de pared no tienen igual ganancia de calor. Otro factor que incide es la infiltración por aberturas en el edificio. A una misma hora del día la dirección de viento promueve infiltración en algún sector del edificio mientras que en otro sector es posible encontrar cuartos con exfiltración (presurización que evita el ingreso del aire exterior).

La carga pico de bloque es importante para dimensionar correctamente la planta de refrigeración central. En sistemas que trabajan con enfriadores de agua estos se seleccionan para manejar la del edificio. máxima carga Las torres de enfriamiento. condensadores evaporativos, o enfriadores secos se seleccionan igualmente para manejar la carga pico del edificio. Caso contrario, de utilizarse la carga total de los cuartos en el edificio, se obtendría un sistema sobredimensionado y que incurriría en costos de operación (energía) y de mantenimiento mayores, y un mayor costo inicial de instalación y compra de equipos.

2.2 CARACTERISTICAS OCUPACIONALES EN EL EDIFICIO

En el diseño de sistemas de climatización para edificios se deben tener consideraciones específicas acerca de las distribuciones de zonas y espacios a los cuales se suministrará aire acondicionado, ya que las cargas térmicas varían de acuerdo al uso del espacio (oficina, local comercial o departamento), por ende varían también los requerimientos de diseño para lograr las condiciones de confort.

La principal característica de ocupancia en edificios de apartamentos es la ocupación 24 horas al día, 7 días a la semana, aunque no necesariamente ocupadó en todas las ocasiones. Por lo tanto, nuestro sistema de climatización debe poseer la suficiente flexibilidad para ser encendido y apagado a voluntad del usuario. En segundo lugar debemos mencionar que los niveles de iluminación y de densidad poblacional por área son bajos. Las actividades desarrolladas por los individuos son básicamente sedentarias o ligeras. Ocasionalmente existirá alta ocupancia de personas. Además es necesario contar con las actividades de cocina, alimentación y de recreación (ASHRAE Handbook of Applications).

El caso del sector bancario y de oficinas la ocupancia se realiza en un rango de 18 horas aproximadamente, debiendo hacer énfasis en que la mayor cantidad de personas concurre en horas de inicio de la tarde. Además la actividad de las personas es de actividad media o elevada. Para los cuartos donde existe atención al publico hay que considerar la densidad poblacional mas elevada.

En base a esto los valores de ocupancia estimados para este proyecto son los siguientes (Tabla 2.2):

TABLA 2.2

VALORES DE OCUPANCIA

Para departamentos	130 Sq. Ft/Person		
Para oficinas	110 Sq. Ft/Person		
Para sector bancario:	80 Sq. Ft/Person		

(Cooling and Heating Load Calculation Manual) A 1.8

Las cargas por luces y por equipos eléctricos en estos casos son elevadas y cada ano aumenta mas por que cada vez se utilizan equipos más potentes (computadores, impresoras faximiles, ups, etc.)

Y esta carga de equipos y luces también se la estima por los metros cuadrados. Siendo los valores mas elevados los del sector bancario y comercial.

2.3 TABULACION DE DATOS

Como se mencionó en capítulos previos, el cálculo de carga de enfriamiento se efectuó utilizando el programa de computadora TRACE 600 (The Trane Company). Se utilizaron como datos de entrada las características arquitectónicas del edificio Torres Atlas, los parámetros térmicos de los componentes estructurales, así como estimado de las diferentes cargas un internas (ocupantes, iluminación, artefactos) dentro del edificio. No forma parte de esta tesis entrar en mayor detalle en cuanto al programa, sin embargo, ya que el enfoque principal de esta trabajo está centrado en la discusión de los equipos que brinden el mayor beneficio a los ocupantes.

A continuación, en las Tablas 2-3, 2-4, y, 2-5, se muestran los resultados de la carga de enfriamiento para los tres subsistemas de climatización aplicados al edifico Torres Atlas.

TABLA 2-3

CARGA DE ENFRIMIENTO OBTENIDA PARA EDIFICIO TORRES ATLAS - SUBSISTEMA 1: APARTAMENTOS

1 Coloritation (Coloritation) (Coloritation) (Coloritation)	Den Arten Besten Bille Brite Arten en het en kan het atten bereiten der Ansteinen Arten er ber	CARGA ENFRIAMIENTO MAXIMA						
CUARTO	DESCRIPCION	MES	HORA	TOTAL	CUARTO	BTUh/m^2	AREA PISO	
				MBtuh	MBtuh		m^2	
1	P4 DP1	7	16	143.51	137.15	604	238	
2	P4 SOC	12	18	54.52	48.44	646	84	
3	P567 DP1	5	15	128.75	120.65	551	234	
4	P567 DP2	12	16	114.78	108.37	624	184	
5	P891011 DP1	5	15	147.77	139.67	544	272	
6	P891011 DP2	12	16	110.50	104.09	614	180	
7	PHB DP1	5	15	105.96	97.86	589	180	
8	PHB DP2	12	15	99.32	92.86	828	120	
9	PHA DP1	5	15	83.20	75.10	582	143	
10	PHA DP2	12	16	107.32	100.92	895	120	

TABLA 2-4

CARGA DE ENFRIMIENTO OBTENIDA PARA EDIFICIO

TORRES ATLAS - SUBSISTEMA 2: OFICINAS

production of the state of the	nangangan an-agundanan tan ngan ngan ngan ngan ngan ngan n	CARGA ENFRIAMIENTO MAXIMA					NETRO CONTRACTOR NUMBER OF STREET
CUARTO	DESCRIPCION	MES	HORA	TOTAL	CUARTO	BTUh/m^2	AREA
				MBtuh	MBtuh		m^2
11	P4 OF1	12	18	46.70	40.62	742	63
12	P4 OF2	12	19	104.30	98.45	818	128
13	P4 OF3	4	17	32.14	24.47	536	60
14	P4 OF4	4	18	41.32	33.85	492	84
15	P4 OF5	7	18	108.92	102.86	640	170
16	P4 OF6	5	18	51.77	44.05	529	98
17	P4 OF7	5	15	101.49	93.39	854	119
18	P4 CRDR	5	17	24.66	16.74	412	60
19	P567 OF1	12	17	32.09	25.81	917	105
20	P567 OF2	12	18	73.52	67.44	491	450
21	P567 OF3	4	16	34.80	26,99	387	270
22	P567 OF4	4	16	35.46	27.65	423	252
23	P567 OF5	5	17	93.38	85.46	531	528
24	P567 OF6	5	17	47.44	39.51	485	294
25	P567 OF7	5	15	78.56	70.46	802	294
26	P567 OF8	12	17	50.16	43.88	448	336
27	P567 CDR	5	15	29.30	21.64	327	270
28	P891011 OF1	12	17	58.98	52.70	615	384
29	P891011 OF2	12	17	93.64	87.36	480	780
30	P891011 OF3	5	17	128.27	120.35	446	1,152
31	P891011 OF4	5	16	107.55	99.52	549	784
32	P891011 OF5	12	17	61.66	55.38	384	644
33	P12 PHB OF1	12	17	58.98	52.70	615	96
34	P12 PHB OF2	12	19	84.96	79.10	709	120
35	P12 PHB OF3	5	17	123.78	115.86	590	210
36	P12 PHB OF4	5	16	108.94	100.91	649	168
37	P12 PHB OF5	12	17	55.09	48.81	415	133
38	P12B CRDR	5	15	22.08	14.43	369	60
39	P12 PHA OF1	12	17	63.50	57.22	611	104
40	P12 PHA OF2	12	17	65.34	59.06	629	104
41	P12 PHA OF3	5	17	95.70	87.78	581	165
42	P12 PHA OF4	5	16	99.31	91.28	645	154
43	P12 PHA OF5	12	17	54.83	48.55	461	119
44	P12A CRDR	5	15	23.89	16.03	399	60

TABLA 2-5

CARGA DE ENFRIMIENTO OBTENIDA PARA EDIFICIO TORRES ATLAS - SUBSISTEMA 3: BANCOS Y LOCALES COMERCIALES PLANTA BAJA

ye waa dagaa da	n de landen men herter her nien an deret is bezondere	CARGA ENFRIAMIENTO MAXIMA						
CUARTO	DESCRIPCION	MES	HORA	TOTAL	CUARTO	BTUh/m ²	AREA	
				MBtuh	MBtuh		m^2	
45	Lobby1	4	14	34.67	25.30	483	71.78	
46	Lobby2	4	15	87.80	69.50	628	139.81	
47	LC 1	4	15	103.98	78.40	534	194.72	
48	LC 2	5	15	187.55	139.80	536	349.91	
49	LC 3	5	17	95.72	70.39	499	191.82	
50	Of. Piso1	5	15	12.95	8.20	361	35.87	
51	Bco. 1	5	15	456.68	235.17	815	560.34	
52	Bco. 2	5	16	267.36	147.94	881	303.47	
53	Bco 1M	4	16	261.33	169.28	555	470.86	
54	Bco 2M	5	17	301.09	201.44	599	502.65	

2.4 ANALISIS DE RESULTADOS PARA LA SELECCION DE EQUIPOS

Las cargas de enfriamiento obtenidas nos permitirán efectuar la selección de los equipos de climatización, así como también dimensionar los sistemas de rechazo de calor (torre de enfriamiento, enfriadores de circuito cerrado, etc.) con sus respectivos equipos de bombeo de fluido de trabajo.

El mes y la hora reportados junto a cada cuarto corresponden a la carga pico del serpentín de enfriamiento a instalarse en cada espacio. Esto se debé a que si bien cada cuarto o espacio experimenta una carga pico a una determinada hora, el serpentín que sirve a dicho cuarto presentará la carga pico a diferente hora que la del espacio, hecho explicado principalmente por las condiciones ambientales exteriores (incidencia solar sobre orientaciones del edificio, temperatura y nivel de humedad), así como también a factores internos de ocupación del edificio.

A continuación se presenta un resumen de parámetros que le son útiles al ingeniero de climatización a fin de verificar los cálculos efectuados. Los parámetros se presentan según las tres zonas en que se dividió el edificio:

TABLA 2-6

PARAMETROS DE VERIFICACION DE CALCULO DE CARGA DE ENFRIAMIENTO EN CASO DE ESTUDIO

	SUBSISTEMA 1:	SUBSISTEMA 2:	SUBSISTEMA 3:
PARAMETRO	APARTAMENTOS	OFICINAS	BANCOS Y
	1		LOCALES
% Aire Exterior	, 1.76	3.69	17.9
CFM / ft ²	2.68	1.91	1.54
CFM / TR	579.9	474	311.3
ft ² / TR	216.2	247.9	201.6
BTUh / ft ²	55.51	48.41	59.52
Area Total ft ²	42,469	48.41	30,395
Carga Pico Edificio			
(TR)	183.7	345.8	148.9
Carga Total Edificio			
(TR)	196.5	382.7	150.8

Destacamos algunas observaciones a partir de esta tabla de revisión:

1) El porcentaje de aire exterior es mayor en la zona de bancos, debido a que el caudal a introducirse de aire exterior ha sido estimado sobre la base del número de personas esperados en esos espacios. De allí que dicho porcentaje es mucho mayor con respecto a los caudales utilizados en el sector de apartamentos, por ejemplo.

2) La densidad de carga de enfriamiento por unidad de área es también mayor para el caso de los bancos, debido a la densidad de personas esperadas en los espacios, en conjunto con equipo de computación presente en esta aplicación.

3) Los factores de caudal de aire suministrado por unidad de área, o por tonelada de refrigeración, no sirven de mucho en este cálculo, debido a que el caudal de aire de suministro es calculado por el programa para cada subsistema, contemplando el uso de una sola unidad de ventilación. Esto nos hace ver que en zonas como la 3,

CAPITULO III

JUSTIFICACION DEL USO DE UNIDADES PAQUETES ENFRIADAS POR AGUA EN EDIFICIOS DE PROPIEDAD HORIZONTAL

En este capítulo se presentará el proceso de diseño del sistema de climatización para un edificio de propiedad horizontal. Se efectuarán los justificativos necesarios para la alternativa seleccionada. Se ha planteado desde un principio utilizar aquel sistema que cumpla con los requerimientos de enfriamiento y deshumidificación en ambientes, calculados con programa de computadora, y que ese sistema posea un costo razonable, tanto inicial como de operación. Implícito está en que la eficiencia energética del sistema está reflejada en los costos de operación

del mismo. El sistema a seleccionarse deberá ser el más idóneo para uso en edificios de propiedad horizontal.

3.1 ANALISIS ENTRE CHILLERS, UPEAS Y EQUIPOS DE EXPANSION DIRECTA

La selección de nuestro sistema se basará en consideraciones energéticas y económicas de los principales sistemas de refrigeración usados en nuestro medio. Básicamente se utilizan tres sistemas: enfriamiento de agua helada, unidades paquete enfriadas por agua (equipo unitario), y, equipo de expansión directa.

En la elección de cualquiera de estos tres sistemas intervienen los factores mencionados al principio: costos, disponibilidad de equipos, tiempo de instalación, vida útil del sistema, entre otros.

A continuación presentaremos el análisis de conveniencia para justificar nuestro sistema en el edificio escogido como caso de

estudio, Torres Atlas. Los resultados de la carga de enfriamiento del edificio fueron presentados en el capítulo 2 y nos servirán en nuestra evaluación a seguir. Por efectos de simplificación de los cálculos, la comparación se efectuó únicamente para el Subsistema 3 (bancos y locales comerciales) del edificio Atlas. Los costos de adquisición de equipos fueron consultados a varios proveedores locales de sistemas de climatización. En cambio, el consumo de energía fue estimado sobre la base de 10% de horas anuales trabajando el sistema a plena carga, esto es, 876 horas. Esta estimación es de carácter preliminar, y no se la puede considerar definitiva, porque se debe tener en cuenta numerosos factores que influyen en la carga de enfriamiento a lo largo del año, y por ende, afectan el consumo de energía de la instalación (diversidad de ocupación, operación de equipos a carga parcial, etc.). En nuestro cálculo no consideraremos los costos energéticos de transportar el aire (sistema de ductos) debido a que los equipos para los espacios poseerán características similares, esto es, un soplador y un ductaje similar en las tres alternativas. El costo de producir refrigeración será el factor influyente en esta comparación.

Sistema de Agua Helada.- requerimos escoger una unidad enfriadora de agua, con compresor centrífugo, alta eficiencia (0.7 Kw/TR), y con condensador enfriado por agua. Se requiere además seleccionar los equipos de bombeo de agua, y un sistema de rechazo de calor para el ciclo de refrigeración efectuado por el enfriador. Además se necesitarían manejadoras de agua helada de las capacidades convenientes en cada sitio asignado en el diseño. Estos equipos tienen un costo de 0.015 US\$ / BTUh. Para efectos de comparación, utilizaremos una torre de enfriamiento en este último caso. Los principales equipos son: enfriador centrífugo de 105 KW de potencia de compresor, 2 bombas de agua helada (20 hp, 360 GPM, 150 ft.), 2 bombas de agua de enfriámiento (10 hp, 450 GPM, 60 ft.), Una torre de enfriamiento (10 hp).

<u>Sistema de Paquetes Enfriados por Agua (UPEA)</u>. - basándonos en la carga total del subsistema 3, el factor típico de consumo de energía para unidades UPEA es de 1.04 Kw/TR (EER = 11.5), factor que toma en cuenta el suministro de agua de enfriamiento desde una torre húmeda. Se consideró que el enfriamiento es proporcionado por agua

proveniente de la torre, con potencia de 10 hp, mientras que la circulación del agua es efectuada por bombas de 20 hp. El costo de las unidades de bombeo y de torre de enfriamiento, en total, es aproximadamente de 26,000 US\$, mientras que el costo de las diversas unidades UPEA necesarias en el edificio se estimó a un costo aproximado de 0.06 US\$ / BTUh. Otra característica del sistema de los paquetes es su flexibilidad de instalación, a la vez que posee unos costos de mantenimiento menores que los sistemas de agua helada.

<u>Sistema Unitario de Expansión Directa</u>.- el costo inicial de estos equipos es aproximadamente de 0.03 US\$ / BTUh, en cambio, su eficiencia energética es la menor de entre los tres sistemas comparados, EER = 10, equivalente a 1.2 Kw/TR. En sistemas unitarios de expansión directa no es requerido el uso de equipos adicionales, tales como bombas, enfriadores, etc. Sin embargo, la eficiencia energética aquí presentada para los equipos de expansión directa, 1.2 Kw/TR, pensamos que es optimista, dado que la instalación de tubería de cobre entre evaporadores y sus respectivos condensadores será demasiado larga, y esto producirá una importante caída de presión en la descarga del compresor.

En la Tabla 3-1 presentamos un resumen de todas las características mencionadas para las tres alternativas. Especial atención se ha otorgado a los costos iniciales y de operación.

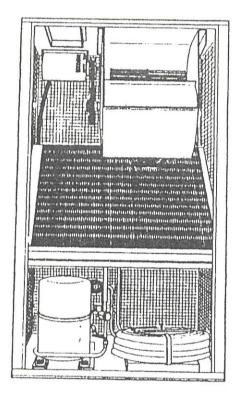
TABLA 3-1

RESUMEN DEL ANALISIS ENTRE CHILLERS, UPEAS Y EQUIPOS DE EXPANSION DIRECTA

Sistema de Climatización	Costo Inicial	Costo de Operación
	(US\$)	(US\$)
Sistema Enfriador de Agua	162,000	35,450
Sistema Paquetes enfriados por agua	134,000	46,780
Sistema Unitario de expansión directa	54,000	52,300

Nota: Costo de operación evaluado a 876 horas anuales de carga máxima de enfriamiento.

Observamos que el costo del sistema de enfriador centrífugo, más su costo de operación puede ser ventajoso para esta instalación. El sistema de UPEA tiene un costo estimado similar al anterior sistema.


Sin embargo, son limitaciones de carácter funcional las que hacen prevalecer la elección de unidades UPEA, especialmente en edificios de propiedad horizontal. Básicamente, cada propietario depende de su unidad de climatización. Los equipos de bombeo y de rechazo de calor (torre de enfriamiento) serían los únicos elementos comunes a todos los usuarios del edificio. En cambio, en un sistema de agua helada, es necesario adquirir una unidad de respaldo, que opere mientras la unidad principal está en mantenimiento o reparación. En estos casos, proveer climatización al edificio se vuelve un problema para el administrador.

En cuanto a los equipos unitarios de expansión directa (sistema Split), diremos que su instalación no es un hecho común en edificios mayores a 10 pisos de altura, debido a la pérdida por fricción que se obtiene en los tramos elevados a la salida del evaporador, principalmente. En este proceso, el compresor deberá impulsar el gas refrigerante hasta una presión adecuada para permitir la condensación, consumiendo mayor energía en este proceso con respecto a la que consumiría en una instalación más adecuada (3 a 4 pisos de altura). Además, el costo de la tubería de cobre necesaria para interconectar las unidades condensadora y evaporadora sería muy oneroso comparada con la utilización de tubería de hierro negro en el sistema de UPEAs.

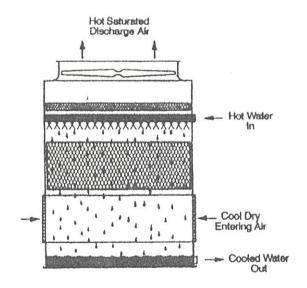
Todas estas consideraciones de costos, así como de funcionalidad de la climatización en un edificio, nos hacen inclinar por el uso del sistema de paquetes enfriados por agua. Figura 3.1

FIGURA 3.1

UNIDAD PAQUETE ENFRIADA POR AGUA

3.2 COMPARACION ENTRE EL USO DE ENFRIADORES DE CIRCUITO CERRADO Y TORRES DE ENFRIAMIENTO

Un aspecto importante en el diseño del sistema de climatización es seleccionar el componente adecuado para rechazo de calor del ciclo de refrigeración. Esta selección, así mismo, está basada en aspectos de eficiencia energética y en costos de los equipos requeridos.


Existen tres equipos disponibles en el mercado que pueden efectuar este trabajo: torre de enfriamiento, enfriador de agua tipo seco, y, enfriador de agua del tipo húmedo. A continuación discutiremos algunas ventajas y desventajas de estos equipos.

Torre de enfriamiento - mediante transferencia de calor y de masa, el calor es retirado del agua de proceso por una corriente de aire a contraflujo. La temperatura de bulbo húmedo del aire impone el límite para el enfriamiento del agua. El principal aspecto de mantenimiento es el control de algas y bacteria. Las pérdidas por

evaporación y fugas, así también como por purgas del fondo de la bandeja de la torre, son un aspecto que influye en la selección de estos equipos, principalmente en sitios donde el suministro de agua no es regular o costoso.

FIGURA 3.2

DIAGRAMA DE FUNCIONAMIENTO DE TORRE DE ENFRIAMENTO

Enfriador de Agua tipo Seco.- esta unidad transfiere calor sensible del agua hacia el aire ambiente. El flujo de aire es creado por ventiladores del tipo axial. En estas unidades, el agua de proceso puede ser enfriada como máximo hasta un límite igual a la temperatura de bulbo seco del aire. No hay pérdidas de agua, por lo tanto no se requiere reposición continua del fluido, y el principal problema consiste en controlar la corrosión al interior del sistema de tuberías.

Enfriador de Agua tipo Húmedo.- el mecanismo de transferencia de calor en esta unidad es mediante sensible y latente (masa) obtenido en la caída o rociado del agua sobre un serpentín donde circula el agua de proceso (fluido a ser enfriado). Al igual que en las torres de enfriamiento, el límite de enfriamiento del agua de proceso está dado por la temperatura de bulbo húmedo del aire. Las pérdidas por evaporación de agua son mínimas, comparadas con la torre de enfriamiento, aunque sí es necesario la reposición ocasional de líquido en la bandeja colectora. Se presentan problemas de control de algas y bacteria (mínimas con respecto a la torre húmeda), incrustaciones en los tubos del serpentín, además de controlar la corrosión al interior del sistema de tuberías.

En este trabajo de tesis nos enfocaremos en la influencia que tiene el proceso de rechazo de calor sobre la eficiencia global del sistema de climatización. Para este análisis planteamos los siguientes puntos:

La temperatura del agua de enfriamiento a la entrada de las unidades <u>UPEA</u>.- un medio a menor temperatura producirá una menor presión de condensación, y por lo tanto, una mejor eficiencia del equipo compresor de la unidad UPEA.

Estimación de la temperatura de salida del agua desde equipo de rechazo de calor.- esta será igual a la temperatura del agua a ingresar a las UPEA, y dependerá del equipo que se esté utilizando.

Debemos seleccionar equipos típicos de enfriamiento de agua. La selección detallada se mostrará en la sección 3.5 de esta tesis, sin embargo diremos que está basada, para el Subsistema 3 del edificio,

en una carga de enfriamiento de 150 TR, un caudal de 2.88 GPM/TR, un rango (diferencia de temperatura en que se enfría el agua de proceso) de 10 °F, y un acercamiento (diferencia entre temperatura de salida de la torre y la temperatura de bulbo húmedo ambiental) igual a 12.5 °F. Consideramos también la diversidad de carga de enfriamiento en el edificio, que para este caso es igual a 1, es decir, a las condiciones más exigentes de climatización, prácticamente toda la capacidad instalada de refrigeración se encuentra en operación. Los cálculos indican que la torre de enfriamiento, a las condiciones indicadas, entregará el agua hacia las unidades UPEA a una temperatura de 92.5 °F.

En cambio, para la selección de un enfriador de circuito cerrado, consideramos que la temperatura máxima a que puede enfriarse el agua dentro del serpentín de esta unidad, será de aproximadamente 8 °F por encima de la temperatura de bulbo seco del aire. Para las condiciones de diseño, entonces, esperamos que la temperatura de salida del agua desde el enfriador (igual a la temperatura de ingreso a las UPEA) será de 100 °F.

El siguiente paso en esta comparación, es obtener la eficiencia energética de las unidades UPEA trabajando a diferentes condiciones de temperatura de entrada de agua de enfriamiento. Se utilizó los datos del fabricante Trane para sus equipos modelo WPVE, con capacidades entre 5, 4 y 3 TR. Para el caso de la torre de enfriamiento, la EER es igual a 10.0 (1.20 Kw/TR) para todos los modelos evaluados, en cambio, utilizando un enfriador de circuito cerrado seco, la EER disminuye a 8.8 (1.36 Kw/TR), debido al efecto de la más alta temperatura del sumidero de calor rechazado por las UPEA. Concluimos que existirá un consumo de energía en refrigeración 1.13 veces mayor para el caso de utilizar enfriador de circuito cerrado.

3.3 REQUERIMIENTOS TECNICOS DE INSTALACION

Para realizar exitosamente un proyecto de esta naturaleza se debe suministrar todos los planos de obra necesarios para la instalación de los sistemas completos, para poder establecer las necesidades de montaje, instalación eléctrica y de seguridad que los mismos necesiten.

Los siguientes trabajos que son ejecutados y diseñados para satisfacer los requerimientos de los equipos:

Alimentación eléctrica a las unidades de aire acondicionado y ventilación.

Líneas de suministro de agua para el sistema de aire acondicionado y de drenajes para las unidades de aire acondicionado.

Cualquier trabajo de albañilería, instalación eléctrica, carpintería, pintura o de decoración.

3.4 CONDICIONES DE FUNCIONAMIENTO DE UNIDADES PAQUETES ENFRIADAS POR AGUA

Hemos descrito en la sección anterior la influencia que tiene la temperatura de sumidero en el funcionamiento de las unidades UPEA en particular, y de equipos de refrigeración en general. A continuación efectuaremos la selección de las unidades climatizadoras en base a los parámetros definitivos de operación previstos para nuestro caso de estudio, Torres Atlas.

La selección se efectuó sobre la base de la carga de enfriamiento de cada espacio, al caudal de agua de entrada (se utilizó 2.88 GP/TR), la temperatura del agua de entrada al condensador (92.5 °F), un caudal de aire de suministro de 400 CFM / TR, y, la temperatura estimada de bulbo húmedo del aire de retorno (62.6 °F).

Como se indicó anteriormente el efecto de la temperatura de entrada al condensador, 92.5 °F, produce una eficiencia en promedio de 1.2 Kw/TR en las unidades ÚPEA. Los resultados de esta selección se presentan en el Anexo. A continuación mostramos las condiciones de selección para una unidad climatizadora de 60,000 BTUh (5 TR), en la tabla 3.2

TABLA 3-2

DESEMPEÑO DE UNIDAD UPEA, MARCA TRANE, MODELO WPVE061

Entering		Cooling	Sensible	Heat of	Power	Leaving	
Water Temp.ºF	GPM	(Mbtuh)	(MBtuh)	Rejection	Input	Water	EER
				(Mbtuh)	(Kw)	Temp [®] F	
70	15.3	60.75	47.28	75.98	4.47	80	13.6
70	19.8	62.56	48.00	77.11	4.27	78	14.7
85	7.4	55.24	45.07	73.50	5.35	105	10.3
85	10.9	56.58	45.60	74.26	5.18	99	10.9
85	15.3	58.29	46.29	75.22	4.96	95	11.7
85	19.8	60.02	46.99	76.19	4.74	93	12.7
105	7.4	45.28	41.04	65.98	6.07	123	7.5
105	10.9	46.38	41.49	66.42	5.87	117	8.5
105	15.3	47.78	42.06	66.97	5.62	114	9.2

Adaptado del Catálogo WSHP-DS-1, Septiembre 1994, The Trane Company

3.5 SELECCION DE LAS TORRES DE ENFRIAMIENTO

Las torres de enfriamiento del proyecto se seleccionaron de acuerdo al procedimiento descrito por The Trane Company en su manual para ingenieros Water Source Heat Pump System Design.

Como se mencionó anteriormente, el caudal de agua será 2.88 GPM / TR, valor recomendado para una temperatura de bulbo húmedo ambiente de 80 °F y para un factor de diversidad en el edificio de 0.8. El factor de diversidad es la razón entre la carga pico o de bloque del edificio dividido para la capacidad total instalada. A continuación listamos los caudales rec^omendados para los circuitos de UPEAs.

TABLA 3-3

CAUDALES RECOMENDADOS DE AGUA PARA CIRCUITOS DE ENFRIAMIENTO

nan kanan	COMMENTER INTERNETING COMMENTER COMMENTER	Rango (°F) para	galangen med met zool men med anne anne anne anne anne anne anne an	Temperatura
TBH exterior	GPM / TR	0.8 diversidad	Acercamiento	salida de la
(°F)			(°F)	torre (°F)
78	2.67	10.8	13.5	91.5
79	2.77	10.4	13.0	92.0
80	2.88	10.0	12.5	92.5
81	3.0	9.6	12.0	93.0

Adaptado de The Trane Company: Water Source Heat Pump System Design, 1994

Desarrollaremos un ejemplo de cálculo que ilustra el procedimiento seguido en los tres subsistemas del edificio Atlas. Para el subsistema 2, el factor de diversidad es de 345.8 / 382.7 = 0.9. El caudal requerido es 2.88 GPM / TR multiplicado por la carga de enfriamiento del edificio, 345.8 TR, obteniéndose un caudal global de 996 GPM. La temperatura de mezcla se define como la proveniente

desde todo el sistema de unidades UPEA, y toma en cuenta aquellas unidades a plena carga así como aquellas que se encuentren operando a condiciones distintas a la de diseño. Para nuestro caso esta temperatura de mezcla es:

$$0.9*[92.5 + 12.5] + 0.1*[92.5] = 103.75$$
°F

El rango debe ser modificado para contar con esta temperatura de mezcla (recordemos que el rango está definido para 0.8 de diversidad). El rango para seleccionar la torre de enfriamiento será 103.75 - 92.5 = 11.25 °F. La carga total de refrigeración que debe retirar la torre será igual a:

$$Q = mCp\Delta T = 500*GPM*Rango = 500 * 996 * 11.25 / 15,000 =$$

 $Q = 373.5$ toneladas

Con los datos de rango, acercamiento, caudal y carga total seleccionamos del catálogo de un fabricante (EVAPCO Inc.) un

modelo de equipo que reúna estas condiciones. El fabricante indica que su modelo AT 8-312B es el más adecuado para el subsistema 2.

A continuación listamos en la Tabla 3-4 los modelos seleccionados para torre de enfriamiento de los tres subsistemas.

TABLA 3-4

TORRES DE ENFRIAMIENTO SELECCIONADAS PARA CASO DE ESTUDIO

PARAMETROS	Subsistema 1	Subsistema 2	Subsistema 3
Potencia Ventilador (hp)	, 7½	15	7½
Caudal de Agua (GPM)	529	996	432
Rango (°F)	11.75	11.25	12.5
Carga Térmica (TR)	180.0	373.5	207.2
Fabricante	EVAPCO	EVAPCO	EVAPCO
Modelo	AT 8-56B	AT 8-312B	AT 8-56B

3.6 SELECCION DEL SISTEMA DE TRATAMIENTO DE AGUA

Usualmente el agua de reposición será alta en contenidos minerales por lo que una purga normal no impedirá la formación de incrustaciones. El tratamiento de agua será un aspecto necesario y deberá consultarse una compañía conocedora de las condiciones locales del agua.

Cualquier tratamiento químico a emplearse debe ser compatible con la construcción galvanizada de las torres de enfriamiento. Si se emplea ácido para el tratamiento, éste debe ser medido en forma precisa y debe controlarse adecuadamente su concentración. El pH del agua debe mantenerse entre 6.5 y 9.0. La alimentación química en lote no se recomienda, puesto que no proporciona el grado adecuado de control de la química del agua. Si se requiere limpieza con ácido debe observarse una precaución externa. Solamente se recomienda ácidos inhibidores para el uso con construcciones galvanizadas. La calidad del agua debe inspeccionarse en forma regular en cuanto a la contaminación biológica. Si se detecta, deberán emprenderse un tratamiento de agua y un programa de limpieza mecánica más intensivos. El programa de tratamiento del agua debe llevarse a cabo conjuntamente con una compañía calificada en el tratamiento de agua. Es importante que todas las superficies internas se conserven limpias de suciedad y lodos acumulados. Además, los eliminadores de gotas de la torre deben mantenerse en buenas condiciones operativas.

Es recomendable instalar en el cuarto de maquinas principal un equipo de tratamiento de agua por cada torre de enfriamiento. Este equipo esta compuesto de:

 Un controlador que se encargará de gobernar las bombas de alimentación de productos químicos, medir la conductividad del agua y si esta excede el punto de calibración accionará la válvula solenoide de drenaje.

- Un temporizador que controlará la alimentación del bioácido.
- Dos bombas de químicos.
- Dispositivo de inyección.
- Válvula solenoide para el drenaje (bleed off).

,

• Monitor de corrosión.

Además se requiere que los operadores del sistema posean un paquete estándar para pruebas en campo, con el que se puede obtener: alcalinidad, dureza, pH, cloro, etc.

CAPITULO IV

DISEÑO DE LOS SISTEMAS DE DISTRIBUCION DE AGUA DE ENFRIAMIENTO Y AIRE ACONDICIONADO

4.1 DISEÑO DE TUBERIAS PARA EL SISTEMA DE AGUA DE ENFRIAMIENTO

En el diseño de tuberías, se empleo para la selección de los calibres en los recorridos la tabla 4.1, (perdida de fricción para tubería de agua de acero célula 40 en sistema cerrado), en la cual se aprecia la relación entre los caudales (gpm) vs. pérdida de fricción (pies de agua por 100 pies), lo que nos arroja el diámetro de la tubería a

TABLA 4-1

PERDIDA DE FRICCION PARA TUBERIA DE AGUA DE

ACERO CELULA-40 EN SISTEMA-CERRADO

Schedule 40 Pipe

medida que voy determinando el galonaje a suministrar UPEAs de cada nivel del edificio.

El galonaje necesario en cada nivel lo determinamos por medio de la suma de los galonajes que maneja cada unidad paquete enfriada por agua los cuales son suministrados por los catálogos de los equipos a instalar, considerando para esto la capacidad en Btuh y la temperatura a la que deseamos estar. La tasa de bombeo para las UPEAS es de 3 a 4 GPM / TR. Se debe considerar para el diseño una máxima velocidad en la línea principal de 8 FPS.

Máxima perdida por fricción de 10 Ft agua/100 Ft.

En lo que respecta al sistema de distribución de agua, pese a que representa recorrido mayor en tubería se decidió utilizar el de retorno invertido, puesto que una vez instalado presenta menos inconvenientes en balancear, debido a que las unidades paquetes tiene en el retorno y suministro iguales recorridos de tuberías.

4.2 SELECCION DEL SISTEMA DE BOMBEO

El sistema de bombeo que se instalara consta de nueve unidades de bombeo de tipo centrifugo las cuales suministraran agua a las entradas de las torres de enfriamiento. Cada torre de enfriamiento manejara dos bombas, realmente se utilizara solo una bomba, pues la otro servirá de auxiliar en el momento en que la principal por algún motivo deje de estar en funcionamiento.

La selección de las bombas se lo realizo mediante el programa proporcionado por la compañía TACO, ingresando el valor del cabezal el tipo de bomba que se deseaba utilizar en este caso endsuction, las revoluciones por minuto y el galonaje a manejar. A continuación se presenta la tabla 4.2 en la cual de desglosa él calculo de la pérdida de cabezal para dimensionar la bomba de suministro de agua para las UPEAs del subsistema 3.

TABLA 4.2

PERDIDA DE CABEZAL

SUBSISTEMA 2 (TORRES DE OFICINAS)

Tramo	GPM	Diámetro tubería Pul``	Longitud equivalente (Pies)	Perdida / 100Ft Ftw/100Ft	Perdida total en tramo (Ftw)
A	1136	8	408	0.018	7.3
B	1022	8	50	0.018	0.9
C	908	6	50	0.014	0.7
D	774	6	50	0.038	1.9
E	640	6	40	0.027	1.1
F	506	6	40	0.018	0.7
G	381	5	48	0.026	1.2
H	256	4	31	0.031	1.0
I	131	3 1/2	43	0.018	0.8
J	92	3	35	0.02	0.7
K	80.5	3	25	0.018	0.5
L	28.8	2	90	0.02	1.8
M	14.4	1 1/4	99	0.038	3.8
TOTAL		j			22.3
INVERTI DO	1136	8	120	0.018	2.2
UPEA 60	14.4				22.7

PERDIDA TOTAL DE RECORRIDO (A-M) x 2 + TRAMO INVERTIDO + UPEA 69.5

Usamos una perdida total de: 75 Ftw

$B HP = \underline{1136 \text{ GPM x } 75 \text{ Ft H2O}}$

3960 x (0.7)

_B HP = 30.73 HP

HP motor = BHP / 0.9 = 34.1444

Se selecciona una bomba con un motor de 35 HP

El motor y el cuerpo de la bomba conectados mediante acople flexible. Los motores serán de 1750 RPM, 208-230 Voltios, 3 fases, 60 Hz; a prueba de goteo con ventilación interna y rodamientos de bolas.

4.3 DISEÑO DEL SISTEMA DE DUCTAJE

Los ductos han sido diseñados para resistir presiones de hasta 1 pulgada de agua, es decir, son ductos de baja presión. La velocidad utilizada para el transporte de aire fue de 1,000 FPM en ductos principales, esto a fin de minimizar el ruido y la vibración durante la operación del sistema. Se utilizó el método de fricción constante para el dimensionamiento de los ductos. Medidas de atenuación de ruido especiales, tales como aislamiento acústico, paneles absorbentes, no fueron considerados debido a que se trata de un sistema residencial y a que las velocidades utilizadas garantizan niveles sonoros adecuados para esta aplicación.) Las curvas NC (Noise Criteria) son el método más común de proveer información del espectro de un ruido en sus diferentes octavos de banda, expresándolo como un simple número.

En general, niveles de ruido por debajo de un NC igual a 30 son silenciosos mientras que niveles sobre un NC de 50 se consideran ruidosos. ASHRAE recomienda utilizar en el diseño de apartamentos y hoteles un NC entre 30 a 35.

Los ductos se construirán con lámina de acero galvanizado ASTM 525 Lockforming Quality".

Los espesores de las láminas y los métodos que deben emplearse para las costuras longitudinales y transversales, deberán ajustarse a los indicados en la norma SMACNA que están dados en "gauges" los cuales tienen una tolerancia según la misma norma. Fig 4.2

TABLA 4-3

Calibres de lámina galvanizada

para ductos de baja presión

Tamaño	Gauge	Tolerancias	de	planchas
ducto		galvanizadas	según SMACN	
		en mm.		
		Nominal	Mínimo	Máxim
				0
0 a 18"	26	0.5512	0.4750	0.6312
19" a 30"	24	0.7010	0.6010	0.8010
31" a 84"	22	0.8534	0.7534	0.9534
85" y más	20	1.0058	0.9060	1.1060

4.4 AISLAMIENTO TERMICO EN DUCTOS DE TRANSPORTACION DE AIRE

Se aislarán térmicamente todos los ductos de aire acondicionado; aplicando en la superfície exterior de los mismos lana de vidrio de l ¹/₂" pulgada de espesor, 0.75 lb/pie3 de densidad y con barrera de vapor (conocida como duct wrap)

La barrera de vapor constara de una malla de fibra de vidrio con 2 laminas, una interna de papel kraft y otra externa de aluminio.

El aislamiento se fijára debidamente mediante el uso de un pegamento adecuado para este tipo de material en los traspases o juntas y ellas se recubrirán con cinta adhesiva adecuada para servir como sello impermeable al vapor. Para los ductos mayores a 30" se deberá colocar en la parte central unos clavos de sujeción del aislamiento para evitar que se cuelgue el aislamiento.

4.5 CONDICIONES DE DISEÑO Y SELECCION PARA REJILLAS Y DIFUSORES

Las rejillas, difusores y registros deberán ser dimensionadas para entregar la cantidad de aire requerido en el ambiente a climatizar, seleccionados en base a la información proveniente de Ashrae.

Las rejillas de suministro de aire se las seleccionará en base a una velocidad de 700 FPM, mientras que las rejillas de retorno se escogerán en base a velocidad de 500 FPM.

CAPITULO V

PRESUPUESTO ESTIMATIVO

5.1 OBRAS LOCALES Y EQUIPOS A IMPORTARSE

,		S	SIMILAR	P.UNIT	TOTAL
DESCRIPCION	CANT	MARCA	MODELO	US. \$	US. S
SUBSISTEMA 1 (DEPARTAMENTOS)					
ENFRIADORES DE CIRCUITO CERRADO CE:1: 1440 MRII/450GPM/(1) 30HP (1)5HP	1	EVAPCO	LWA-P91B	55,200	55,200
BOMBA DE CIRCULACION SISTEMA		TLOO	FF 2010	55,200	55,200
BS-1: 450 GPM / 90 Fts. / 15 Hp	2	TACO	FE-3010	3,225	6,450
FILTRO DESAIREADOR FD-1: 450 GPM / 5" DIAM.	1	TACO	AC5F	1,830	1,830
UNIDADES PAQUETES ENFRIADAS POR					
UPEA-60: 60000 BTUh / 2000 CFM / 15.6 GPM	9	TRANE	FCG-060B-E-G	2,955	26,596
UPEA-48: 48000 BTUh / 1600 CFM / 12 GPM			FCG-048B-E-G	2,599	44,190
UPEA-42: 42000 BTUh / 1400 CFM / 10.5 GPM	7	TRANE	FCG-042B-E-G	2,302	16,117

	· · · · · · · · · · · · · · · · · · ·				
GPM UPEA-36: 36000 BTUh / 1200 CFM / 9 GPM		1 TRANE	FCG-036B-E-G	2,302	16,117
UPEA-30: 30000 BTUh / 1000 CFM / 7.5		5 TRANE	FCG-030B-E-G	2,220	2,226
GPM INCLUYEN FLEX HOSE Y TERMOSTATOS				2,031	10,155
VENTILADORES DE EXTRACCION EB-3: GABINETE/100 CFM/0.25"SP/79 W	19	PENN	Z511 (RA)		
EB-5: GABINETE/300 CFM/0.25"SP/132 W		2 PENN	Z8H (TDA)	188	3,563
(INCLUYEN AISLADORES DE VIBRACION TIPO HANGER) VE-21: HONGO/700 CFM/0.375"SP/ 1/2 HP		PENN	DX7B	218	
(INCLUYE ROOF CURB)				945	945
TERMOMETROS (0-120°F)	4	WEKSLER	AA511-9	68	273
MANOMETROS (0-100PS1)	3	WEKSLER	VA13C	53	160
PARA LAS BOMBAS BS-1: BASE INERCIAL (500LBS/ 6"espesor)	2	VMC	WPF-TIPO C	98	197
125 Lbs. / 1" DEFLEX	8	VMC	ADCB-50	83	666
PARA_EL ENFRIADOR DE CIRCUITO CERRADO 3650 l.bs. / 2" DEFLEX	6	VMC	AWR-2-552	181	1,085
DIFUSORES DE SUMINISTRO / DL 60"x 2" Slots	69	METALAIRE	SM60"x2" 2EC-PCD-SAB-BPI-	166	11,437
DL 48"x 2" Slots	80	METALAIRE	SM48"x2" 2EC-PCD-SAB-BPI-	134	10,734
DA 24"x24"	4	METALAIRE	8" 7300-6		
DA 16"x16"	37	METALAIRE	7300-6	16	65
REJILLAS DE RETORNO RR 60"x 2"	8	METALAIRE	6100T.12-SM60"x2"-	15	543
RR 48"x 2"	66	METALAIRE		113	906
RR 36"x16"	28	METALAIRE	2EC-SAB RH-FL 36"x16"	62	4,106
R 36"x12"	3	METALAIRE	RHID-FL 36"x12"	5.3	1,489
R 24"x24"	4	METALAIRE	CC5-TB 24"x24"	53	160
RR 16"x16"	21	METALAIRE	CC5-TB 16"x16"	38	153
RP 12"x 6"	2	METALAIRE	. M ^{ana} l Saman Barrar Barrar and Antonia (1976) and a particular rate of the same state	31	648
RP 12"x 6"	2	METALAIRE	DGDF 12"x 6"	31	

				31	6
REJILLAS DE DESCARGA RD: 12" x 6"	4	METALAIRE	HD-RH	46	18
DUCTOS FLEXIBLES AISLADOS × 10"	1	OMNIAIR	1000		
× 8"	40	OMNIAIR	1000	32	3
× 6"	1	OMNIAIR	1000	25	1,00
TUBERIA Y ACCESORIOS DEL SISTEMA DE ENFRIAMIENTO:				25	2
SUCTION DIFFUSER 6"-4"	2	TACO	SIX060040	188	37.
VALVULAS DE PASO (COMPUERTA) « 6"	7				57
× 4"	4			826	5,78
× 1-1/4"	26			420	1,680
< 1"	72			27	714
< 1/4"	6			26	1,83
/ALVULAS DE GLOBO : 6"	2			2,189	99 4,378
/ALVULAS CHEQUE 6" ,	2			812	1,62
EES 6"	10				
4"	6			45	447
3"	4			24	144
2"	20			17	68
1½"	10			7	132
11/4"	20			4	39
1."	20			4	78
ODOS				4	78
6"	40				1 200
2"	10			3.5	1,300
11/2"	10			5	46
1%"	140			3	27
1	1	1		2	284

×]"	80)	1	10
REDUCCIONES × 6" - 4"	8			10
× 6" - 3"	2		19	14
× 4" - 3"	2		18	3
× 4" - 2"	7		9	11
× 3" - 2"	4		10	7
× 2" - 1½"	20		6	2:
< 2" - 1¼"	20		4	8
< 2" - 1"	2		4	8
· 1½" - 1¼"	30		4	9
· 1¼" - 1"	30		2	63
1¼" - 3/4"	40		2	74
1" - 3/4"	50		2	84
			2	105
6"	30			
4 "	12		31	916
3*	2		17	208
			16	32
JNTAS FLEXIBLES	,			
6*	4		233	933
4"	4		190	759
UBERIA NEGRA				157
6"	180		11	1.021
3"	20			1,931
21/2"	20		4	75 65
2"	40			65 99
11/2"	10		2	15
11/4"	160		2	245
1"	30		1	35
1/4"	10		1	12
NIONES UNIVERSALES			1	12
12"	62			1.4.5
1"	24		 23	1,442

				16	37
NEPLOS × 1¼"	34				
× "				13	43
	53			14	75
SOPORTES DE PARED (STRUT CLAMP)		MICHIGAN	#RIGD		
× 6"	40	HANGER CO.		2	9
× 4"	20				2
× 3"	16				
× 21/2"	30				1
× 2"	25				3
× 1½"	20				2
× 1¼"	40			1	I
× 1"	15			1	2
	1]		1	1
SUBSISTEMA 2 (OFICINAS) AIRE ACONDICIONADO Y VENTILACION:					- 144-944 (F. 1999) (F. 19
BOMBA DE ENFRIAMIENTO					
3E-2: 1410 GPM / 60 Fts. / 25 Hp	1	TACO	FE-5010	109,200	109,200
BOMBA DE CIRCULACION SISTEMA					105,200
3S-2: 1410 GPM /90 Fts. / 50 Hp	2	TACO	FE-5013	1.740	0.10
TLTRO DESAIREADOR				4,740	9,48(
FD-2: 1410 GPM / 8" DIAM.	1	TACO	AC8F	2.174	
JNIDADES PAQUETES ENFRIADAS POR				2,475	2,475
AGUA JPEA-60: 60000 BTUh / 2000 CFM / 15.6	50				
IPM IPM IPEA-48: 48000 BTUh / 1600 CFM / 12 GPM	50	TRANE	FCG-060B-E-G	2,955	147,758
	35	TRANE	FCG-048B-E-G	2,599	90,980
JPEA-48H: 48000 BTUh / 1600 CFM / 12 JPM	3	TRANE	CCG-048-C-GS	2,543	7,628
JPEA-42: 42000 BTUh / 1400 CFM / 10.5 JPM	3	TRANE	FCG-042B-E-G	2,302	6,907
JPEA-36: 36000 BTUh / 1200 CFM / 9 GPM	10	TRANE	FCG-036B-E-G	2,226	22,262
JPEA-36H: 36000 BTUh / 1200 CFM / 9.4 JPM	7	TRANE	CCG-036-C-GS		
				2,214	15,497
NCLUYEN FLEX HOSE Y ERMOSTATOS					
ENTILADORES DE EXTRACCION					
B-4: GABINETE/160 CFM/0.25"SP/79 W	73	PENN	Z8S (TDA)	195	14,235
NCLUYE AISLADORES DE VIBRACION IPO HANGER)					
/E-3: HONGO PARED/700 CFM/0.5"SP/ 1/4	3	PENN	WAQ10		

HP VE-4: HONGO PARED/500 CFM/0.375"SP/		1 PENN	WAT35	55	5 1,60
1/6 HP (INCLUYEN WALL CURB)				48	48
VENTILADORES DE SUMINISTRO VS-3: TIPO MAKE-UP/2500 CFM/0.375"SP/		3 PENN			
1 HP VS-4: TIPO MAKE-UP/2100 CFM/0.375"SP/	1		MU4012	878	2,63
1/2 HIP		I PENN	MU4012	780	78
VS-5: MAKE-UP/3600 CFM/0.5"SP/1 HP		2 PENN	MU4015	968	
(INCLUYEN ROOF CURB)					
TERMOMETROS (0-120°F)		WEKSLER	AA511-9		
MANOMETROS				68	27
(0-100PSI)	:	WEKSLER	VA-13C	53	160
PARA LAS BOMBAS BS-2: BASE INERCIAL (1000lbs/6"espesor)					100
250 Lbs. / 2.0" DEFLEX			WPF-TIPO C	166	332
150 LOS. 7 2.0 DEPLEX	8	VMC	ADCB-51	83	666
PARA EL ENFRIADOR DE CIRCUITO					
CERRADO 5000 Lbs. / 2.0" DEFLEX	10	VMC	AWR-4-532		
DIFUSORES DE SUMINISTRO				181	1,808
DA 24"x24"	435	METALAIRE	7300-6		
				16	7,040
REJILLAS DE RETORNO RR 24"x24" ,	81	METALAIRE	CC5-TB 24"x24"		
R 20"x20"	14	METALAIRE	CC5-TB 20"x20"	38	3,108
R 36"x12"	4	METALAIRE	RH	32	450
				53	213
EJILLAS DE EXTRACCION E 8"x8"	146	METALAIRE	CC5D		
				17	2,433
OMPUERTAS C: 10"x6"	75	RUSKIN	CD 35		
				83	6,216
UCTOS FLEXIBLES AISLADOS 10"	20	OMNIAIR	1000		
8"	60	OMNIAIR		32	639
M 	60	OWINIAIR	1000	25	1,510
UBERIA Y ACCESORIOS DEL SISTEMA E ENFRIAMIENTO:					
UCTION DIFFUSER ' - 6"	2	TACO	S1X080060		
	2			188	375

VALVULAS DE PASO (COMPUER) × 8"	TA)			Ī
x 4"		7	 826	5,78
× 1¼"		4	420	1,680
	11		27	3,023
× 1"	5	90	26	2,298
× 1/4"		6	17	2,270
VALVULAS DE GLOBO				
× 8"		2	2,189	4,378
VALVULAS CHEQUE × 8"				4,070
* 8		2	812	1,625
TEES				1,025
× 8"	1	4	84	1,170
× 6"		5	84	501
× 4"		3	24	
× 3"	22	2		192
× 2½"	30		17	375
× 2"	35		16	476
× 1½"	40		7	2.32
< 1¼"	60		4	155
CODOS	,		4	233
« 8"	30			
3"	20		60	1,805
2½"	5		8	161
2"	50		6	28
11/2"	30		5	230
11/4"	240		3	80
1"	200		2	486
			1	252
REDUCCIONES 8" - 6"	2			
8" - 3"	8		25	50
8" - 5"	2		23	181
8" - 4" 6" - 4"	4			
6" - 3"	7		19	37
4" - 3"	3		 41	289

× 3" - 2½"		3	 9	
× 3" - 1½"			 6	1
× 3" - 1"			10	13
× 2½" - 2"	24		10	1
× 2½" - 1½"			7	17
< 21/2" - 1"	28		9	25
< 2" - 11/2"	20		14	27
2" - 1¼"	6		4	2
2" - 1"	12		4	5
11/2" - 11/4"	62		4	4
1½" - 1"	8		2	13
1¼" - 1"	44		2	2
1¼" - 3/4"	100		2	9
1" - 3/4"	90		2	21
	~		2	18
RIDAS 8"	28			
6"	20		31	85:
4"	8		31	6
			17	139
JNTAS FLEXIBLES 8"	4			
4"	4		233	93.
			190	759
UBERIA NEGRA 8"	130			
6"	30		17	2,163
4"	10		17	495
3*	100		6	55
21/2"	100		4	374
2"	190		3	326
1½"	320		2	470
1¼"	150		2	490
1"	120		2	230
1/4"	5		1	140
and a state of the			1	6

TERMOSTATOS		T	[1	Г — — — — — — — — — — — — — — — — — — —
VENTILADORES DE EXTRACCION EB-1: GABINETE/140 CFM/0.25"SP/ 83 W	1	PENN	Z6H (TDA)		
EB-2: GABINETE/400 CFM/0.25"SP/243 W	2	PENN	Z108 (TDA)	188	188
EB-3: GABINETE/100 CFM/0.375"SP/ 79 W	2		Z6H (RA)	233	465
EB-4: GABINETE/160 CFM/0.25"SP/79 W	5	PENN	Z8S (TDA)	188	375
(INCLUYEN AISLADORES DE VIBRACION TIPO HANGER)				195	975
VENTILADORES DE SUMINISTRO VS-1: GABINETE/300 CFM/0.25"SP/ 132 W	5	PENN	Z8H (TIDA)		
VS-2: GABINETE/800 CFM/0.25"SP/132 W	1	PENN	Z12S (TDA)	195	975
(INCLUYEN AISLADORES DE VIBRACION TIPO HANGER) (NOTA: VS-2 TRABAJA A 2 VELOCIDADES)				870	870
TERMOMETROS (0-120°F)	4	WEKSLER	AA511-9	68	273
MANOMETROS (0-100PSI)	3	WEKSLER	VA-13C	53	160
PARA LAS BOMBAS BS-3: BASE INERCIAL (500LBS/ 6" espesor)	2	WMB	WPF-TYPE C		
125 BLS / 2" deflexion	8	VMC	ADCB-5D	98 83	197 666
PARA EL ENFRIADOR DE CIRCUITO, CERRADO 2750 LBS/ 2.0" DEFLEX	6	VMC	AWR-2-532	166	995
DIFUSORES DE SUMINISTRO DA 24"x24"	92	METALAIRE	7300-6	16	1,489
REJILLAS DE RETORNO RR 24*x24"		METALAIRE	CC5-TB 24"x24"	38	1,305
RR 20"x20"		METALAIRE	CC5-TB 20"x20"	32	32
RR 12"x12"	2	METALAIRE	CC5-TB 12"x12"	31	62
REJILLAS DE EXTRACCION RE 8"x8"	2	METALAIRE	CC5		~
RE 10"x10"	14	METALAIRE	CC5	32 38	63 528
REJILLAS DE DESCARGA RD 12"x 6"	5	METALAIRE	HD-RH	53	264
LOUVERS					

UNIONES UNIVERSALES	Τ	Τ			1
x 1¼"	70				1.000
x] ⁿ	45			23	
NEPLOS				16	709
× 1¼"	60				
× 1"	55			13	765
SOPORTES DE PARED (STRUT CLAMP)				14	784
× 8"	15	MICHIGAN	#RIGD		
× 6"	25			4	59
× 4"	15			2	56
× 3"	16			1	20
× 2½"	90			1	16
× 2*	25			1	89
				1	21
SUBSISTEMA 3 (BANCO Y LOCALES COMERCIALES) AIRE ACONDICIONADO Y VENTILACION:					
ENFRIADORES DE CIRCUITO CERRADO CE-3: 1360MBH/ 425GPM/(1)25HP; (1) 5HP	1	EVAPCO	LSWA-P91A	52,800	52,800
BOMBA DE CIRCULACION SISTEMA 38-3: 425 GPM / 120 Fts. / 20 Hp ,	2	ТАСО	FE-2513	4,740	9,480
ILTRO DESAIREADOR 'D-3: 425 gpm / ×5"	ī	ТАСО	AC5F	1,830	1,830
UNIDADES PAQUETES ENFRIADAS POR				×	
JPEA-214: 214000 BTUh / 7200 CFM / 55.3 BPM	1	TRANE	LGP-20D-M-L		
JPEA-180: 180000 BTUh / 6000 CFM / 46.0	3	TRANE	LGP-15D-M-L	10,971	10,971
JPM JPEA-120: 116000 BTUh / 4200 CFM / 30.0	3	TRANE	LGP-12D-M-L	8,734	26,201
JPM JPEA-108: 107800 BTUh / 3600 CFM / 27.6	2	TRANE	LGP-10D-M-L	6,559	19,677
IPEA-84: 84000 BTUh / 2800 CFM / 21.0	1	TRANE	LGP-84D-M-L	6,112	12,224
JPEA-70: 70000 BTUh / 2600 CFM / 18.2	3	TRANE	LGP-0.70M-L	5,597	5,597
PPM IPEA-60: 60000 BTUh / 2000 CFM / 15.6	1	TRANE	FCG-060B-E-G	5,597	16,791
РМ IPEA-42: 42000 BTUh / 1400 CFM / 10.7	1	TRANE	FCG-042B-M-L	2,955	2,955
РРМ IPEA-24: 24000 ВТUh / 800 СFM / 6 2 GPM	1	TRANE	FCG-024B-M-L	2,302	2,302
				1,946	1,946
NCLUYEN FLEX HOSE Y		I			

L: 20"x12"	10	RUSKIN	ELF-375	1	2 70-
L: 60"x12"	1	RUSKIN	ELF-375	279	2,789
				338	338
FILTROS DE AIRE F: 20"x12"	5	FARR	ТҮРЕ 44/ГҮРЕ8		
				53	266
F: 60"x12"		FARR	ТҮРЕ 44/ГҮРЕ8	144	144
COMPUERTAS					
C: 20"x12"	1	RUSKIN	CD35OB	177	170
C: 12"x6"	5	RUSKIN	CD35OB	173	173
C: 10"x6"	4	RUSKIN	CD35OB	144	719
				119	475
DUCTOS FLEXIBLES AISLADOS × 12"	5	OMNIAIR	1000		
× 10"				43	217
	20	OMNIAIR	1000	32	639
× 8"	2	OMNIAIR	1000	25	50
TUBERIA Y ACCESORIOS DEL SISTEMA DE ENFRIAMIENTO:					50
SUCTION DIFFUSER		TACO	SD06004D		
6" - 4"	2			188	375
				100	373
VALVULAS DE PASO (COMPUERTA) × 6"	7				
× 4"	4			826	5,785
× 1-1/4"	12			420	1,680
× 1"	26			27	330
× 3/4"	2			26	664
< 1/4"	6			17	33
	0			17	99
VALVULAS DE GLOBO					
< 6"	2			2,189	4,378
VALVULAS CHEQUE				2,107	4,576
(6)"	2				
				812	1,625
TEES « 6"	8				
				45	357
< 4*	2			24	48
< 3"	8			17	136
< 2½"	6			7	40
< 2*	20				

× 1½"					4 7
	4				4 1
CODOS					
× 6"	40				1.20
× 4 [#]	4			3	
× 3"	8			3	
× 2½"	10			1	
× 2"	10				
× 1½"	10				5 40
× 1¼"	180			3	2
×]"	100			2	365
				1	126
REDUCCIONES × 6" - 4"					
× 4" - 3"	8			19	149
× 4" - 21/2"	5			10	52
< 3" - 2½"	2			10	20
	6			9	
< 3" - 2" < 3" - 1¼"	2			6	13
	2			6	12
< 21/2" - 2"	6			5	32
21/2" - 11/4"	, 4			4	17
2" - 1½"	10				
: 2" - 1¼"	28			4	44
11/2" - 11/4"	4			4	122
11/2" - 1"	2			4	17
1¼" - 1"	4			4	9
1" - 3/4"	2		45 -	2	10
				2	4
BRIDAS 6"	28				
4"	12			31	855
				17	208
UNTAS FLEXIBLES 6"	4	ас.			
4"				233	933
	4			- 190	759
UBERIA NEGRA					
6"	60				A REAL PROPERTY AND A REAL PROPERTY.

		7	T		
× 4"	10)		11	644
× 3"	5(h		6	59
× 2½"	70			4	187
× 2"	7(3	228
× 1½"	20			2	173
× 1¼"	40			2	31
× 3/4"	30			2	61
× 1/4"	5			1	35
	5			1	6
UNIONES UNIVERSALES × 1/4"	30				
×]"	15			23	698
				16	236
NEPLOS × 1¼"	20				
× ["	12			13	255
				14	171
SOPORTES DE PARED (STRUT CLAMP) × 6"	8	MICHIGAN HANGER	#RIGD		
× 4"	5	CO.		2	18
× 3"	16			1	7
× 2½"	10			1	16
(1	10
SUBSISTEMA 4 (SUBSUELO Y ESCALERAS) VENTILACION MECANICA:					
UNIDADES DE VENTILACION (PRESURIZACION DE ESCALERAS) VS-6: CENTRIFUGO/7000 CFM/2 00°SP/ 5					
IP VS-7: CENTRIFUGO/9000 CFM/2.00*SP/ 7	1	PENN	D20	1,800	1,800
1/2 HP	1	PENN	1)20	2,175	2,175
VENTILADORES DE EXTRACCION (PARQUEADEROS)					
VE-1: CENTRIFUGO/27200 CFM/2.O"SP/25 IP	1	PENN	D36	4,275	4,275
REJILLAS DE SUMINISTRO RS 24"x8"	30	METALAIRE	VHD		
				53	1,595
REJILLAS DE EXTRACCION RE 24"x10"	4	METALAIRE	114002R		
RE 10"x24"	40	METALAIRE	114002R	53	211
		••••		53	2,112

FOTAL C&F US.\$					1,040,427
					94,584
FLETE APROX.					945,843
VALOR FOB US.\$			L		I
DAMPER DE ALIVIO DA: 24"x24"	2	RUSKIN	CD35	130	260
DAMPER DE ALIVIO		i contra	1.1.1 - 57 5	780	780
LOUVER DE DESCARGA	1	RUSKIN	ELF-375		
LA: 84"x60"	2	RUSKIN	ELF-375	718	1,436
LOUVER DE TOMA DE AIRE			[l	·

			P.UNI	TOTAL
DESCRIPCION	CANT.	UND.	T SUCR	SUCRES
			ES	
SUBSISTEMA I (DEPARTAMENTOS)				
ENFRIADORES DE CIRCUITO CERRADO CE:1: 1440 MRII/450GPM/(1) 30HP (1)5HP	I	Un	800,00	800,000
BOMBA DE CIRCULACION SISTEMA BS-1: 450 GPM / 90 Fts. / 15 Hp	2	Un	200,00	400.000
			200,00	400,000
FILTRO DESAIREADOR FD-1: 450 GPM / 5" DIAM.	1	Un	200.00	
			200,00	200,000
UNIDADES PAQUETES ENFRIADAS POR AGUA		Un		
UPEA-60: 60000 BTUh / 2000 CFM / 15.6 GPM	9		100,00	900,000
UPEA-48: 48000 BTUh / 1600 CFM / 12 GPM	17		0	
UPEA-42: 42000 BTUh / 1400 CFM / 10.5 GPM	7		100,00	1,700,000
UPEA-36: 36000 BTUh / 1200 CFM / 9 GPM			100,00 0	700,000
j			100,00	100,000
UPEA-30: 30000 BTUh / 1000 CFM / 7.5 GPM	5		0	500,000
INCLUYEN FLEX HOSE Y TERMOSTATOS			0	200,000
VENTILADORES DE EXTRACCION EB-3: GABINETF/100 CFM/0.25"SP/79 W	. 19			
EB-5: GABINETE/300 CFM/0.25"SP/132 W	2		100,00 0	1,900,000
(INCLUYEN AISLADORES DE VIBRACION			120,00 0	240,000
TIPO HANGER) VE-21: HONGO/700 CFM/0.375"SP/ 1/2 HP	1			
			300,00	. 300,000
(INCLUYE ROOF CURB)				
DUCTO RIGIDO AISLADO CON LANA DE VIDRIO	20000	Kgs.	8,500	170,000,00 0
DUCTO RIGIDO SIN AISLAR	1800	Kgs.	8,000	14,400,000

ESTIMATIVO OBRAS LOCALES

SUBSISTEMA 2 (OFICINAS)				
AIRE ACONDICIONADO Y VENTILACION:				
BOMBA DE ENFRIAMIENTO BE-2: 1410 GPM / 60 Fts. / 25 Hp	1	Un		
			200,00 0	200,00
BOMBA DE CIRCULACION SISTEMA BS-2: 1410 GPM /90 Fts. / 50 Hp	2	Un	200,00	400,00
FILTRO DESAIREADOR		Un	0	400,00
FD-2: 1410 GPM / 8* DIAM.	1	· · · ·	200,00	200,000
UNIDADES PAQUETES ENFRIADAS POR AGUA		Un	Ŭ	
UPEA-60: 60000 BTUh / 2000 CFM / 15.6 GPM	50		100,00	5,000,000
UPEA-48: 48000 BTUh / 1600 CFM / 12 GPM	35		0	3,500,000
UPEA-48H: 48000 BTUh / 1600 CFM / 12 GPM	. 3		0	300,000
UPEA-42: 42000 BTUh / 1400 CFM / 10.5 GPM	3		0	300,000
UPEA-36: 36000 BTUh / 1200 CFM / 9 GPM	10		0	1,000,000
UPEA-36H: 36000 BTUh / 1200 CFM / 9.4 GPM	7		0	700,000
, INCLUYEN FLEX HOSE Y TERMOSTATOS			0	
VENTILADORES DE EXTRACCION EB-4: GABINETE/160 CFM/0.25°SP/79 W	73		100,00	7,300,000
(INCLUYE AISLADORES DE VIBRACION TIPO HANGER)			0	7,500,000
VE-3: HONGO PARED/700 CFM/0.5"SP/ 1/4 HP	3		300,00	900,000
VE-4: HONGO PARED/500 CFM/0.375"SP/ 1/6 HP	L		0	250,000
(INCLUYEN WALL CURB)			0	
VENTILADORES DE SUMINISTRO VS-3: TIPO MAKE-UP/2500 CFM/0.375*SP/ 1 HP	3		600,00	1,800,000
VS-4: TIPO MAKE-UP/2100 CFM/0 375"SP/ 1/2 HP	1		600,00	600,000
VS-5; MAKE-UP/3600 CFM/0.5"SP/1 HP	2		0	
(INCLUYEN ROOF CURB)			()	1,400,000

DUCTO RIGIDO AISLADO CON LANA DE VIDRIO	10000	Kgs.	8,500	85,000,00
DUCTO RIGIDO SIN AISLAR	2600	Kgs.	8,000	20,800,00
SUBSISTEMA 3 (BANCO Y LOCALES	·	T		
COMERCIALES) AIRE ACONDICIONADO Y VENTILACION:				
ENFRIADORES DE CIRCUITO CERRADO CE-3: 1360MB11/425GPM/(1)25HP; (1) 5HP	1	Un		
			800,00 0	800,00
BOMBA DE CIRCULACION SISTEMA BS-3: 425 GPM / 120 Fts. / 20 Hp	2	Un		
			200,00	400,00
FILTRO DESAIREADOR FD-3: 425 GPM / ×5"	1	Un		
			200,00	200,00
UNIDADES PAQUETES ENFRIADAS POR AGUA		Un		
UPEA-214: 214000 BTUh / 7200 CFM / 55.3 GPM	1		200,00	200,00
UPEA-180: 180000 BTUh / 6000 CFM / 46.0 GPM	3		0 200,00	600,00
UPEA-120: 116000 BTUh / 4200 CFM / 30.0 GPM	3		0	600,00
UPEA-108: 107800 BTUh / 3600 CFM / 27 6 GPM	2		0	400,00
UPEA-84: 84000 BTUh / 2800 CFM / 21.0 GPM	1		0	
UPEA-70: 70000 BTUh / 2600 CFM / 18.2 GPM	3		200,00	200,00
			200,00	600,00
UPEA-60: 60000 BTUh / 2000 CFM / 15.6 GPM	1		100,00	100,00
UPEA-42: 42000 BTUh / 1400 CFM / 10.7 GPM	1		100,00	100,00
UPEA-24: 24000 BTUh / 800 CFM / 6.2 GPM	1		0	100,000
INCLUYEN FLEX HOSE Y TERMOSTATOS			0	100,000
VENTILADORES DE EXTRACCION				
EB-1: GABINETE/140 CFM/0.25"SP/ 83 W	1		200,00	200,000
EB-2: GABINETE/400 CFM/0.25"SP/243 W	2		200,00	400,00
EB-3: GABINETE/100 CFM/0 375*SP/ 79 W	2		200,00	Millio (Million) - Annas - Analas Angel

EB-4: GABINETE/160 CFM/0.25"SP/79 W	5		0	
LD-4. OADIALTISTOU CT WO.25 31/17 W	2		200,00	1,000,00
(INCLUYEN AISLADORES DE VIBRACION TIPO HANGER)			0	
VENTILADORES DE SUMINISTRO VS-1: GABINETE/300 CFM/0.25"SP/ 132 W	5			
VS-2: GABINETE/800 CFM/0.25"SP/132 W	1		200,00	1,000,00
			300,00	300,00
(INCLUYEN AISLADORES DE VIBRACION TIPO HANGER) (NOTA: VS-2 TRABAJA A 2 VELOCIDADES)				
DUCTO RIGIDO AISLADO CON LANA DE VIDRIO	7000	Kgs.	8,500	59,500,00
DUCTO RIGIDO SIN AISLAR	2000	Kgs.	8,000	16,000,00
SUBSISTEMA 4 (SUBSUELO Y ESCALERAS) VENTILACION MECANICA:				
UNIDADES DE VENTILACION		Un		
(PRESURIZACION DE ESCALERAS) VS-6: CENTRIFUGO/7000 CFM/2.00"SP/ 5 HP	1		700,00	700,00
VS-7: CENTRIFUGO/9000 CFM/2.00"SP/ 7 1/2 HP	1		0 800,00	800,00
			0	
VENTILADORES DE EXTRACCION (PARQUEADEROS)		Un		
VE-1: ČENTRIFUGO/27200 CFM/2.O*SP/25 HP	1		1,200,0 00	1,200,00
DUCTO RIGIDO SIN AISLAR DE MEDIA PRESION (PARQUEADEROS)	16000	Kgs.	8,500	136,000,00
INSTALACION DE TUBERIA Y				
ACCESORIOS PARA TODO EL PROYECTO	31000	Kgs.		
DIRECCION TECNICA (10%)			3,200	99,200,00
				64,279,00
VALOR S/.				707,069,00
+10% IVA S/.				70,706,90
GRAN TOTAL S/.				777,775,90

5.2 ANALISIS DE COSTO

Como se pude observar el costo total de los equipos y materiales a importarse asciende a la suma de U.S.\$ 1'040.427 ; siendo además el costo total de instalación de S/. 777'779.900 sucres que al tipo de cambio de S/. 4.400 sucres por dólar nos da un total de U.S.\$ 176.769 dólares . El costo total de la obra asciende a \$ U.S.\$ 1'217.196 dólares.

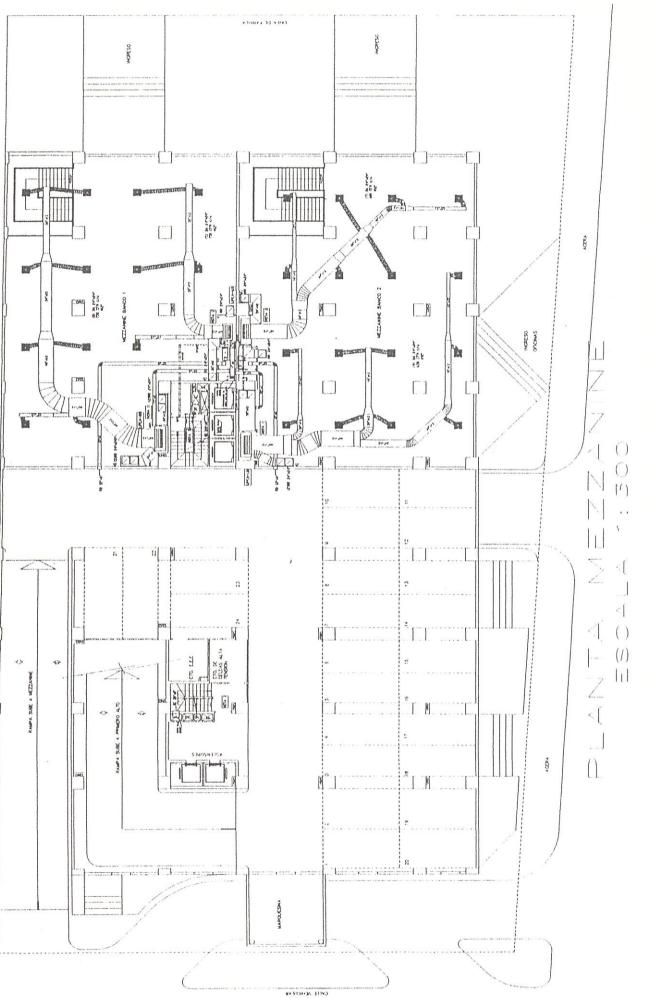
Haciendo una relación para el total de la carga que entre los 3 subsistemas suma 730 TR nos da un costo de inversión de la obra de \$ 1667 por cada TR instalada.

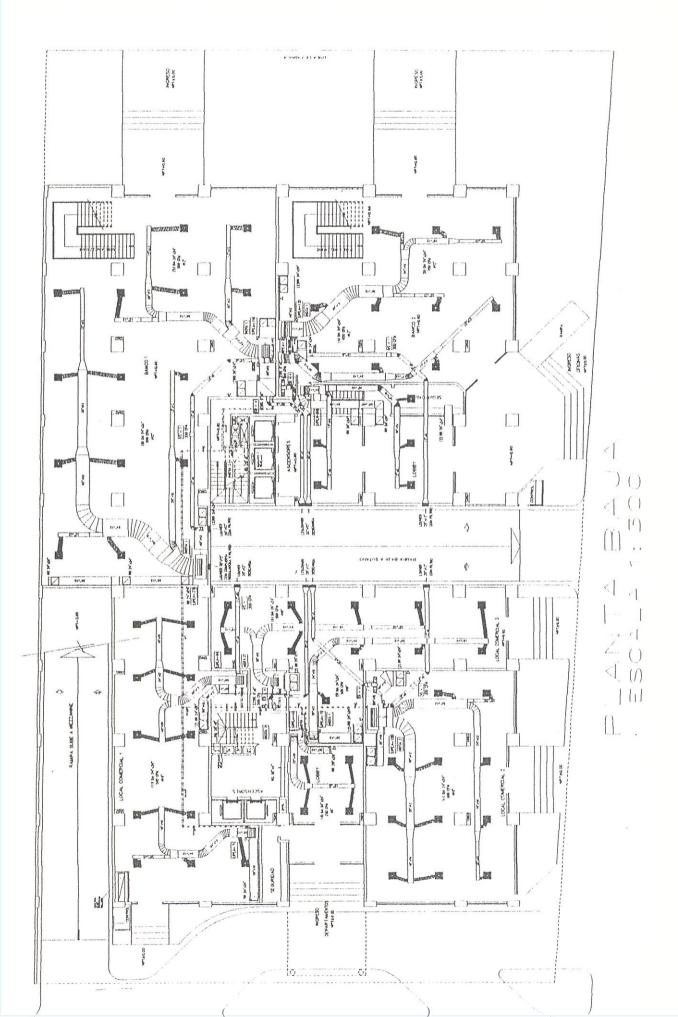
CONCLUSIONES Y RECOMENDACIONES

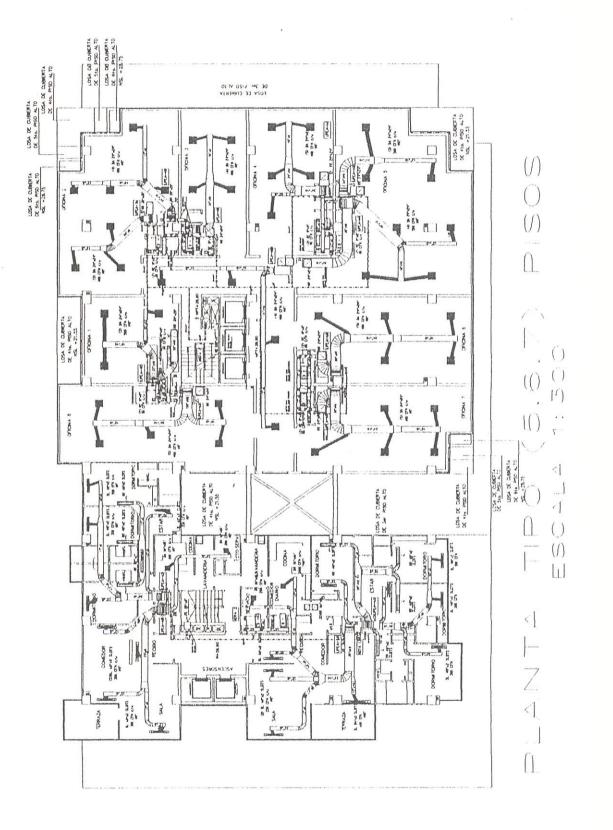
Las instalaciones de los equipos de acondicionamiento de aire en los edificios deben ser diseñados realizando un calculo de carga en horas pico, para cada zona y en bloque para no sobredimensionar las capacidades de las torres de enfriamiento y de los sistemas de bombeo.

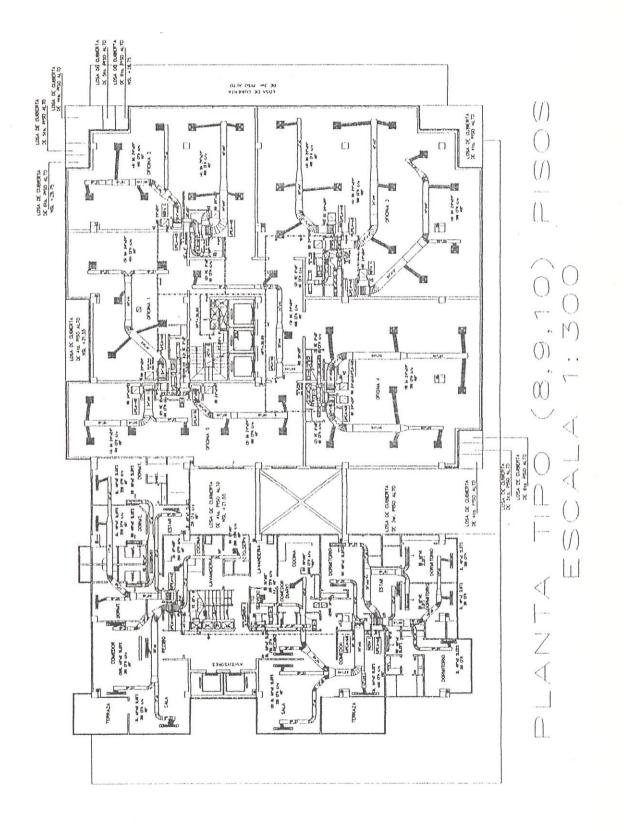
Ser requiere hacer una carta térmica para la ciudad para tener un adecuado análisis de carga externa.

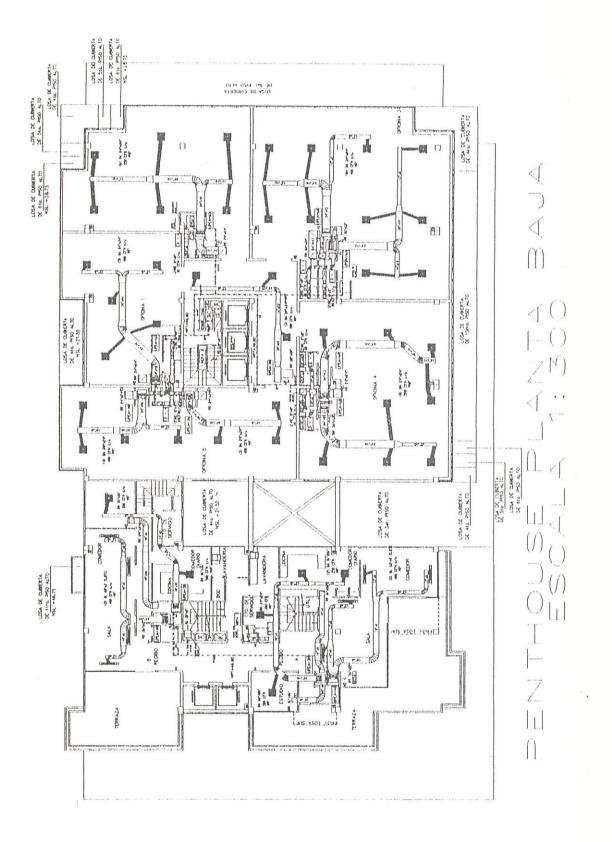
Para un edificio de propiedad horizontal los costos iniciales son menores que la instalación de un sistema de enfriamiento central de agua (CHILLERS); pero tiene un costo más elevado de funcionamiento, pero su utilización se justifica porque la recuperación de la inversión no es proporcional a una sola persona, sino a todos los copropietarios, sin poder tener un control de consumo eléctrico por cada copropietario en el caso de los Chillers, pero en las UPEAS por lo menos el 90% del consumo eléctrico del sistema de climatización va al medidor del consumidor.

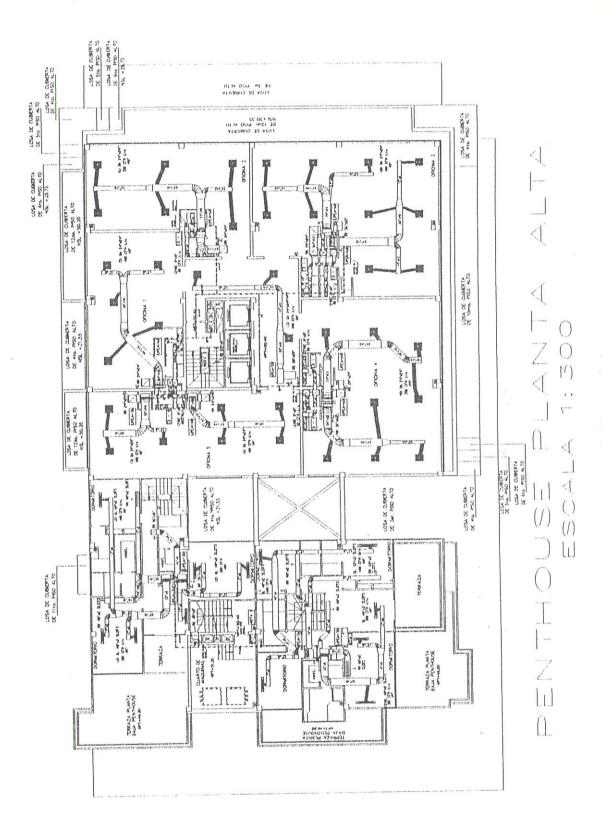

Es muy complicada la instalación de equipos de expansión directa y las eficiencias de los mismos cambian de piso en piso, más la cantidad excesiva de tubería que llevaría el proyecto no lo hace ni funcional ni económico.

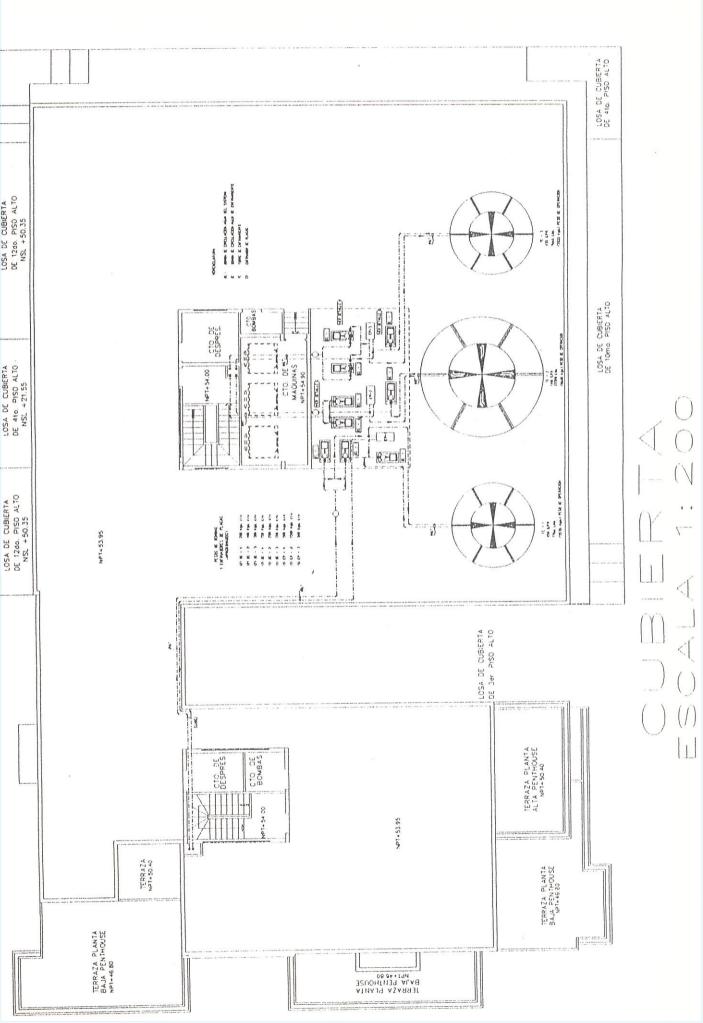

La eficiencia de una UPEA es considerablemente mayor cuando se utiliza torres de enfriamiento, en vez de enfriadores de circuito cerrado; es por ello que se las recomienda siempre, cuando exista disponibilidad de agua en el edificio. Se observa que la instalación de tuberías de agua se las debe realizar utilizando tiro invertido, para balancear el flujo de agua, sin que esta inversión constituya un aumento significativo en la capacidad de la bomba de agua.


Finalmente, podemos recomendar la utilización de UPEAS para edificaciones de gran envergadura para poder lograr una disminución del consumo eléctrico; ya que en el medio es una regla general analizar únicamente el costo de inversión, mas no el de operación y luego de entregado el proyecto es que surgen las quejas de los propietarios.

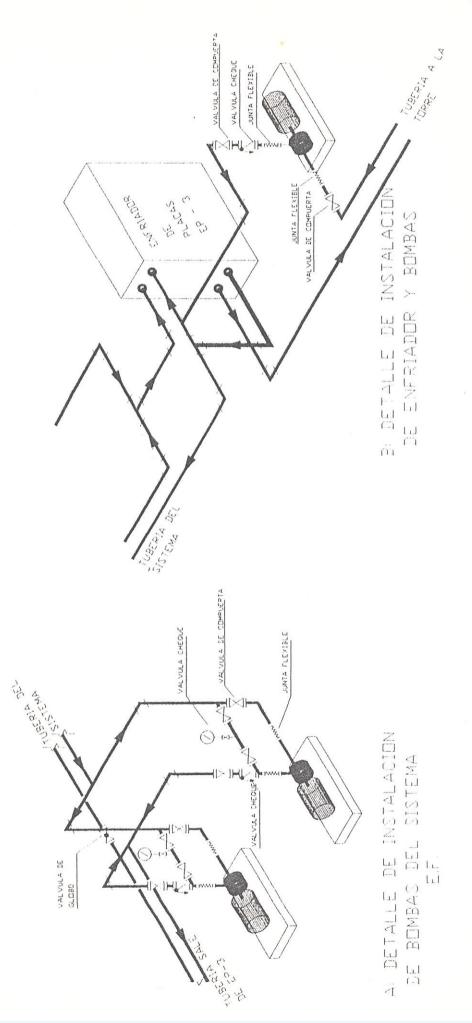

ANEXOS

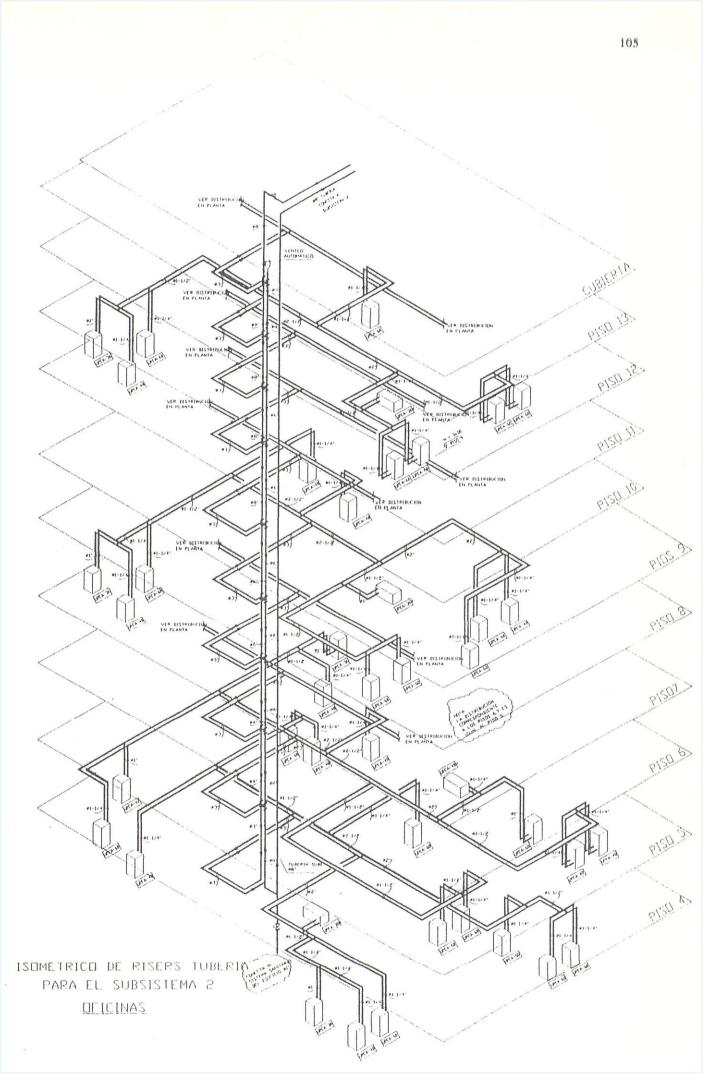

į

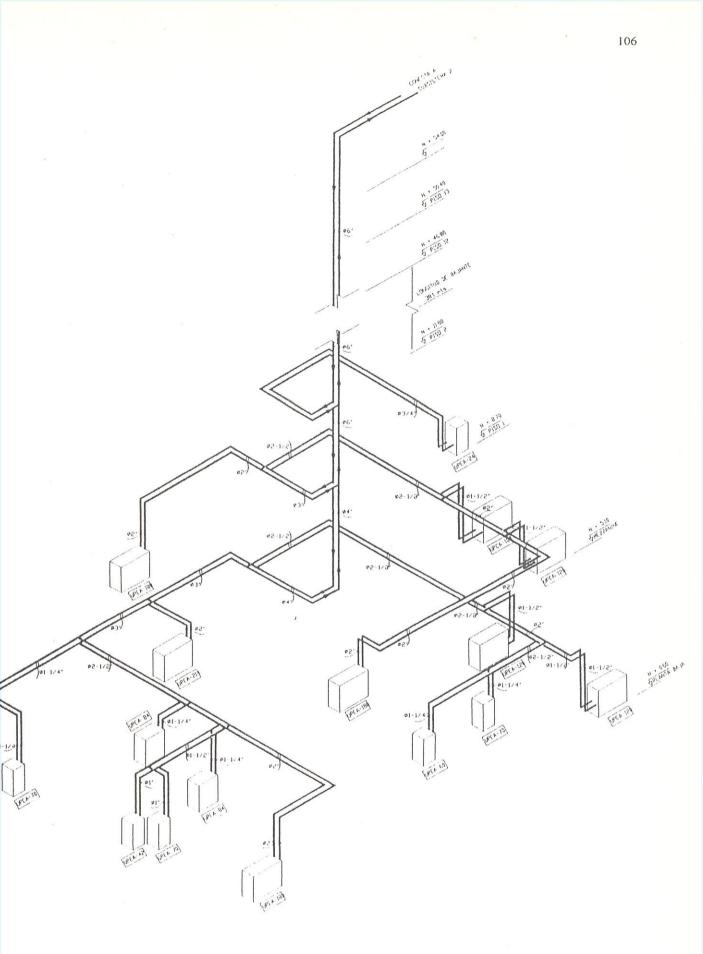




UNIDADES PAQUETES ENFRIADAS POR AGUA


·	La mandra de la manera		SUBSISTEMA	ITEMA 1		
DESIGNACIDN		UPEA-30	UPEA-36	UPEA-42	UPEA-48	UPEA-60
CANTIDAD SERVICID	S	5 DEPARTAMENTOS	I DEPARTAMENTOS	7 DEPARTAMENTOS	17 DEPARTAMENTOS	9 DEPARTAMENTOS
CARACTERISTICAS GENERALES						
TIPD CAPACIDAD CAPACIDAD SERVICID ELECTRICD AMPERAJE A PLENA CARGA CAUBAL DE ÁGUA CONECCIDNEC DE ÁGUA DRENAJE PESD DIMENSIONES DEL FILTRD		VERTICAL 30,000 298-230,60/1 8 37.4 37.4 191 25'×20'	VERTICAL 36,000 26,000 23,4 37,4 37,4 37,4 37,4 30,×24	VERTICAL 42,000 208-230/60/1 30 374 374 374 374 374 374 374 374 374 30*24	VERTICAL 48,000 208-230/60/1 31 12 3/4 1 29/6 290 (2)16*25	VERTICAL 60.000 60.000 41 15 15 374 374 323 (2)27*x19*
VENTILADGR						
TIPD NUMERD DE MOTORES POTENCIA CAUDAL DE AIRE	n a. L. T. O	CENTRIFUGD 172 11000	CENTRIFUGD 1/2 1,200	CENTRIFUGD 173 1,400	CENTRIFUGD 1 3/4 1.600	CENTRIFUGD 3/4 2,100
SERPENTIN						
CARGA DEL REFRIGERANTE AREA EFECTIVA DEL SERPENTIN FILAS DEL SERPENTIN CAIDA DE PRESIDN CAIDA DE PRESIDN TEMP. DE ENTRADA DEL AGUA TEMP. DE ENTRADA DEL AGUA	0 5 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00000000000000000000000000000000000000	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 4 10 L 10 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9558 8573 9771	80 35.5 85.7 100 100
ACCESURIDS						
	* 1		UNIONES JUEGO TERMOS AISLADO	UNIONES FLEXIBLES JUEGO DE VALVULAS TERMOSTATOS Y AISLADORES DE VIBRACION	z	
CIMILAR						
FABRICANTE MODELO	1 1	MCJUAY FCG-030B-E-G	MCQUAY FCG-0362-5-6	MCQUAY FCG-042S-M+L	MCQUAY FCG-048B-E-G	FCG-060B-E-G


AGUA
POR NOR
FRIADAS
PAQUETES
UNIDADES


	L			SUBSISTEMA	с л		
BESIGNACION		UPEA-36	UPEA-36	UPEA-42	UPEA-48	UPEA-48	UPEA-60
CANTIDAD CERVICID	5	DFICINAS	10 DFICINAS	3 DFICINAS	3 DFICINAS	35 GFICINAS	50 DFICINAS
CARACTERISTICAS GENERALES							
TIPD CAPACIBAD CAPACIBAD CAPACIDE A PLENA CARGA AMPERAJE A PLENA CARGA CAUDAL DE AGUA CAUDAL DE AGUA CONECCIONES DE AGUA PESO PESO	BTUN AMELA AMELA Claw Claw Claw Claw Claw Claw	HDRIZONTAL 36.000 26.000 25 37.4 37.4 37.4 (1)17-378*x34*	VERTICAL 36,000 26,000 24 37.4 37.4 37.4 37.4 (1)30*22*	VERTICAL 42,000 206-230,60/1 374 374 374 374 374 374 (1)30'x24'	HDRIZDNTAL 48.000 208-230/60/1 25.2 12 37.4 37.4 37.4 37.4 37.4 19 578*×22	VERTICAL 48.000 208-230/60/1 31 12 3/4 3/4 3/4 3/4 (2)16'x25'	VERTICAL 50.000 208-230/60/1 41 16 1 3/4 3/4 323 (2)27/419
VENTILADOR							
TIPO NUMERO DE MOTORES Potencia Caudai de Aire	I U LL Z Z	CENTRIFUGD 172 1.200	CENTRIFUGU 1/2 1,200	CENTRIFUGD 173 1,400	CENTRIFUGD ' 3/4 1,600	CENTRIFUGD 1 374 1,600	CENTRIFUGD 3/4 2.100
CERPENTIN							
CARGA DEL PEFRIGERANTE AREA EFECTIVA DEL SERPENTIN FILAS DEL SERPENTIN FILAS DEL RERPENTIN CANDA DE PRESIDN EANDA DE PRESIDN TEMP DE ENTRADA DEL AGUA TEMP. DE SALIDA DEL AGUA	о Стоди С С С С С С С С С С С С С С С С С С С	885 3 4 7 85 7 1 100	33 33 8577 100 100	8 4 8 8 4 8 8 7 9 8 7 7 100 11 100	109 55,3 95,71 100	നന്ന മെഗനങ 85/⊴1 100	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
÷CCESQRIDS							
			AISLADC JUEGG AISLADC	UNIONES FLEXIBLES JUEGO DE VALVULAS TERMOSTATOS Y AISLADGRES DE VIBRACION	z		
CIMILAR							
FABRICANTE MODELC	1 1	MCQUAY CCG-036C-GS	MCQUAY FCG-036B-E-G	MCOUAY FCG-042B-M-L	MCQUAY CCG-048-C-G3	McQUAY FCG-048B-E-G	MCOUAY FCC-060B-E-G

INIDADES PAQUETES ENFRIADAS POR AGUA

			Logno	SUBSISTEMA 3						
DESIGNACION		UPEA-214	UPEA-180	5	UPEA-107	0PE2-52	UPEA-72	UPEA-60	UPEA-42	10 10 10 10 10 10 10 10 10 10 10 10 10 1
CANTIDAD	5		10	63	01		6	-	-	
SERVICIO		BANCD Y LOCALESBANCD COMERCIALES COMER	SBANCD Y LDCALESBANCD Y COMERCIALES COMERC	3BANCD Y LDCALES COMERCIALES	LDCALESBANCD Y LDCALESBANCD MALES COMERCIALES COMER	Y LOCALE CIALES	SBANCD Y	LDCALE\$BANCD Y LDCALE\$BANCD ALES COMERCIALES COMER	SBANCD Y LDCALE CDMERCIALES	I SBANCD Y LOCALES COMERCIALES
CARACTEPISTICAS GENERALES										
TIPO CAPACIDAD CERVICID ELECTRICO AMPERAUE A PLENA CARGA CANDAL DE AGUA CONDAL DE AGUA CONCONES DE AGUA DRENAUE PESO DIMENSIGNES DEL FILTRO		VEPTICAL 214.000 214.000 67 55 1-17.4 1.7.6 1-17.6 1.7.6 (6)20'x 25'	VERTICAL 180,000 208-230,60,3 63 46 1-1/4 1-1/4 1-1/4 (6)20'255	VE3TICAL 120,000 208-230,6623 20 30 11/4 11/4 585 (4315',425'	VERTICAL 107.800 208-220/60/3 38 29 29 1-1/4 653 (4216*255	VERTICAL 84.000 209-230/50/3 28 29 29 1-1/4 655 (4)15',425	VERTICAL VERTICAL 208-72.000 208-72.000 228-230/60/1 17 1-1/4 603 (4)16'~25'	VERTICAL 60.000 208-230/60/1 15 3/4 3/4 3/3 3/3 2/3 2/2/*19	vE9T1CAL vE9T1CAL 206-230/63/1 204 30 11 37.4 262 130*24*	VERTICAL 24,000 208-230/66/1 15 37.4 37.4 180 196/200
VENTILADOR										
TIPO NUMERO DE MOTORES POTENCIA CAUDAL DE ÀIRE	- HR R	CENTPIFUGU 3 7.200	CENTRIFUGC 1/2 6.060	CENTRIFUGD	CENTRIFUGD 1-1/2 3.600	CENTRIFUGC 1-1/2 3.600	CENTRIFUGD 1-1/2 2.600	CENTRIFUGD 374 2.100	CENTPIFUGD 1/3 1/3	CENTRIFUGD INS 800
SERPENTEN										
CARGA DEL REFRIGERANTE AREA EFECTIVA DEL DERPENTIN FILAS DEL CERPENTIN CAIDA DE PRECION CAIDA DE PRECION TEMP DE ENTRADA DEL AGUA TEMP. DE SALIDA DEL AGUA	م م ملح (۲۰۰۵ م م	1000 1000 1000 1000 1000 1000 1000 100	966/10 867/1 90011	85.7 4 1.15 85.7 10.09 10.00	55.5 5 55.7 56.6 56.6 56.6 5 56.6 5 56.6 5 56.6 5 56.6 5 56.6 5 56.6 5 56.6 5 56.6 5 56.6 5 56.6 5 56.6 57.6 57	880 <u>8</u> 89 8	10 25/71 20 90 100	88.771 88.771 100	85.6 85.6 190 190	865 5 0 0 3 3 86 2 1 0 0 3 3 10 0 0 1 1 0 0 1 3 3
ACCESERIGS										
				UNIDVE UUEGO TERMOS AISLAD	UNICHES FLEXIBLES UNEGO DE VALVULAS FERMOSTATOS Y AICLADORES DE VIBRACION	2				
SIMILAR										
F A BRICANTE MODELO	1 1	MC0UAY LGP-200-M-L	MCOUAY LGP-15D-M-L	- 150-4-1 MCOUAY	MCGUAY LGP-10D-M-L	MCOUAY LGP-10D-M-L	MCCUAY LGP-07D-M-L	MCOUAY FCG-060B-E-C	McOUAY FCG-0428-M-1	HTDMMAM HTDMMAM

ISHMETRICH DE RISERS TUBERIA PARA EL SUBSISTEMA 3 ZUNA BANCARIA Y CUMERCIAL

BIBLIOGRAFIA

- ASHRAE, <u>ASHRAE / IES STANDAR 90.1-1989 User's Manual</u>, Atlanta, Georgia, USA, 1989.
- ASHRAE, ANSI / <u>ASHRAE STANDAR 62-1989 Ventilation for</u> <u>Acceptable Indoor Air Quality</u>, Atlanta, Georgia, USA, 1990.
- ASHRAE, <u>ASHRAE Handbook of Fundamentals 1993</u>, Atlanta,
 Georgia, USA.
- ASHRAE, <u>ASHRAE Handbook of Systems and Applications 1987</u>, Atlanta, Georgia, USA.
- 5. ASHRAE, <u>ASHRAE Handbook of Equipment 1988</u>, Atlanta, Georgia, USA.
- ASHRAE, Procedures for determining heating and cooling loads for computerizing energy calculations. Algorithms for building heat transfer subroutines., Atlanta, Georgia, USA. 1976.
- ASHRAE, <u>Simplified Energy Analysis Using the Modified Bin</u> <u>Method</u>, Atlanta, Georgia, USA, 1983.
- Carrier Corporation, <u>Handbook of Air Conditioning System Design</u>.
 (Carrier Corporation, Syracuse, New York, 1965)

- 9. Escuela Superior Politécnica del Litoral Departamento de Ingeniería Mecánica, <u>Fundamentos de Aire Acondicionado</u>, Guayaquil, Ecuador, 1982.- Ing. Eduardo Donoso Pérez.
- 10.<u>Handbook of Energy Conservation for Mechanical Systems in</u> <u>Buildings</u>, Editado por Robert W. Roose, Van Nostrand Reinhold Company, 1978.
- Irwin & Graff, <u>Industrial Noise and Vibration Control</u>. Prentice Hall, 1979.
- 12.McQuiston F., Parker G., <u>Heating, Ventilating and Air Conditioning</u>.(2da. Edición: New York, John Wiley and Sons, 1982)
- 13.Siebe Environmental Controls, Catálogo <u>Network 8000</u>
 <u>Environmental Controls</u>. (Siebe Environmental Controls, 1354
 Clifford Avenue, Loves Park, Illinois, USA, 1994)
- 14.Siebe Environmental Controls, Building Automation Fundamentals / Mandatory Precourse Material. (Siebe Environmental Controls, 1354 Clifford Avenue, Loves Park, Illinois, USA, 1992)
- 15.Stoecker, W. <u>Design of Thermal Systems</u> (3ra. Edición; New York: McGraw-Hill, 1989), pp. 111-113.

- 16.The Trane Company. <u>TRACE 600</u>: <u>User's Manual</u>. (The Trane Company, 3600 Pammel Creek Road, La Crosse, Wisconsin, USA, 1992)
- 17.The Trane Company. <u>Applications engineering manual: Water-Source Heat Pump System Design</u>. (The Trane Company, 3600 Pammel Creek Road, La Crosse, Wisconsin, USA, 1994)
- 18. The Trane Company. <u>Catalog Water Source Heat Pumps</u>. (The Trane Company, 3600 Pammel Creek Road, La Crosse, Wisconsin, USA, 1992)

Biblioteca Central