623.82 AC

Escuela Superior Politécnica del Litoral Facultad de Ingeniería Marítima v Ciencias del Mar

Diseño preliminar de una Embarcación tipo Catamarán para servicios Turísticos en las Islas Galápagos

Previa a la obtención del Título de INGENIERO NAVAL

Presentado por: **Javier Nicanor Cáceres Toledo**

Guayaquil - Ecuador

2002

AGRADECIMIENTO

.

Al Dr. José R. Marín L., por su gran paciencia y colaboración, sin cuya ayuda este trabajo no hubiese llegado a su fin.

Al Personal Docente, Administrativo, y trabajadores de la FIMCM, Compañeros de clase, por la invalorable ayuda brindada.

A todas aquellas personas que me brindaron su apoyo, paciencia y amistad, durante la elaboración de esta tesis.

DEDICATORIA

A DIOS, mis PADRES, LIDIA, HERMANOS, y a la persona más importante en mi vida ELENA.

DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta tesis, corresponden exclusivamente a su autor, y el patrimonio intelectual de la Tesis de Grado corresponderá a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL".

(Reglamento de Exámenes y Títulos Profesionales de la ESPOL)

Javier Nicanor Cáceres Toledo

D

CIB

Ing. Cristópal Mariscal Díaz Mierroro Principal

Ing. Behrar vaca Romo Presidente del Tribunal

Dr. José Marín López Director de Tesis

CU ESPOL

RESUMEN

Se ha diseñado a nivel preliminar una embarcación tipo Catamarán de servicio turístico, para servir en las Islas Galápagos, pensando en evitar los problemas de estabilidad y en lograr una reducción de costos por consumo de combustible. Se establecieron requerimientos operacionales básicos, como tipos de recorridos a realizar, autonomía, y, también se incluyeron requerimientos de ingeniería como velocidad de hasta 12 nudos y calado máximo de 2.0 m. Se aplicó la espiral de diseño, en los dos primeros niveles Conceptual y Preliminar. En el Diseño Conceptual a partir del número de pasajeros y con los Requerimientos de Área de Cubierta se determinaron las Dimensiones Principales. Luego se continuó con la Distribución General, Estimación de Potencia de Propulsión, utilizando la regla de Caterpillar, y una Estimación de Pesos por componentes. El análisis de los resultados obtenidos hasta ese momento estableció la necesidad de realizar ajustes en las dimensiones principales en un porcentaje que permitiría llegar a valores consistentes entre desplazamiento y peso total del Catamarán. La primera fase del Diseño Preliminar empezó con la Generación Automática de Formas, Cálculos Hidrostáticos, Distribución General, Cálculo estructural de los semicascos, empleando las reglas de ABS para embarcaciones menores, y Esquematización de ciertos Sistemas Auxiliares CIB ESPOL Posteriormente en la segunda fase del Diseño Preliminar se desarrollaron Cálculos de Resistencia y Propulsión estimando la resistencia de cada semicasco, empleando la serie de Taylor, debido a la elevada relación Eslora/Manga del semicasco, y

considerando posteriormente, la Interferencia entre ellos. Luego se desarrolló un análisis de la Estructura de Unión Transversal empleando el método de Elementos Finitos, aplicando el método de Disenbacher para la estimación de las cargas sobre la estructura. El comportamiento del buque en olas de proa se estimó a través de la aceleración vertical, en dos puntos extremos de la superestructura. Finalmente se preparó una Estimación de costos de construcción, y se realizó una comparación del Catamarán con una embarcación monocasco construida recientemente en el medio, y, con otro Catamarán que está en construcción. Se confirmó la ventaja del catamarán frente a la embarcación monocasco en lo referente a la potencia requerida, como resultado del ahorro en desplazamiento; respecto del otro catamarán, existe similitud en proporciones lo que confirma la bondad del proceso de diseño desarrollado en este trabajo.

INDICE GENERAL

RESUMEN	vi	CiB · E
INDICE GENERAL	viii	
INDICE DE FIGURAS	x	
INDICE DE TABLAS	xii	¢SPC
SIMBOLOS Y ABREVIATURAS	xiv	CB · E
INTRODUCCION	xvii	
1. CONSIDERACIONES PRELIMINARES	18	SPI
1.1. Algemen del provente	18	
1.2 Requerimientos hésicos nara el diseño	20	BI
1.2 Requerimentos basicos para el diseño 1.3 Restricciones del diseño	23	
2. DISEÑO CONCEPTUAL	25	Q.C.
2.1 Requerimientos de área de Cubierta y Dimensiones Principales	25	ے<
2.2 Distribución General	31	100 A
2.3 Estimación Conceptual de Potencia de Propulsion	33	CIE
2.4 Estimación de Pesos	35	
2.5 Análisis de los Resultados obtenidos en el Diseño Conceptual	38	
3. DISEÑO PRELIMINAR	40	¢SPC
3.1. Desarrollo de Líneas de formas y cálculos hidrostáticos	40	K.B
3.2 Distribución General	47	CIB ES
3 3 Cálculo Estructural	49	•
3.4 Esquematización de los Sistemas Auxiliares	54	
4. SEGUNDA FASE DEL DISEÑO PRELIMINAR	59	
4.1 Calculo de Resistencia y Propulsion	59	\$SPO
4.2 Análisis y Diseño de la Estructura de unión Transversal	66	國湖
4.3 Análisis del Comportamiento del buque en olas de proa	88	CIB · ES.
4.4 Estimación de Costos	98	-
4.5 Comparación del Catamarán con una embarcación monocasco	100	

C.B.-E

	CONCLUSIONES Y RECOMENDACIONES	102
	APÉNDICE A	107
	APÉNDICE B	110
	APÉNDICE C	113
	APÉNDICE D	118
	BIBLIOGRAFIA	130
~ .		

.

INDICE DE FIGURAS

FIG	TÍTULO	PÁG
1	Espiral de diseño	18
2	Zonas de Recorridos	21
3	Área de Cubierta vs Eslora	26
4	Variación de la manga máxima y de cada Semicasco ys Eslora	28
5	Variación de la razón B/T vs Eslora	28
6	Variación del Desplazamiento vs Eslora	29
7	Variación de los Coeficientes de Formas ys Eslora	29
8	Dimensiones Principales v área total de Cubierta	31
9	Distribución General del Catamarán	32
10	SHP vs Velocidad	33
11	Diámetro de la Hélice vs Velocidad	34
12	P/D vs Velocidad	34
13	Peso del Casco vs Eslora	36
14	Distribución de Pesos	37
15	Centro de gravedad del Catamarán y de sus componentes	38
16	Planos de Líneas de Formas de cada casco de la Embarcación	42
17	Curva de Desplazamiento (ton) vs Calado (m)	44
18	Curva de Coeficientes de Formas cs Calado (m)	44
19	Variación del KMT y KML (m) vs Calado (m)	45
20	Variación del LCF y LCB (m) vs Calados (m)	45
21	Superficie Mojada (m ²) vs Calados (m)	46
22	Plano de Distribución General de la Embarcación	48
23	Cuaderna maestra de la Embarcación	52
24	Factor de Interferencia en función del # de Froude	61
25	FI vs # de Froude del Semicasco	62
26	Resistencia al Avance del Catamarán	65
27	Eficiencia Propulsiva del Catamarán	65
28	Potencia al eje del Catamarán	66
29	Distribución General de la Estructura de Unión Transversal del	68
	Catamarán	
30	Fuerzas sobre la embarcación cuando recibe las olas de costado	70
31	Fuerzas internas sobre el casco	71
32	Modelizacion de los mamparos transversales	73
33	Discretizacion de cargas sobre la estructura de Unión Transversal	75
34	Restricciones del movimiento	75
35	Esfuerzos máximos producidos en Condición de Carga Nº1	76
36	Deformaciones extremas máximas producidos en un segmento de	79
	la estructura analizada, Condición de Carga Nº1	
37	Fuerzas sobre la embarcación cuando se recibe olas oblicuas	81
38	Fuerzas Torsionales sobre el Casco	82

39	Discretizacion de las cargas sobre la estructura de Unión Transversal	83
40	Esfuerzos máximos producidos en Condición de Carga N°2	85
41	Deformaciones extremas máximas producidos en Condición de Carga N°2	87
42	Levantamiento y Cabeceo del Catamarán en Olas	88
43	Amplitudes en Levantamiento al 100% y 25% de Carga a 10 nudos	89
44	Amplitudes en Levantamiento al 100% y 25% de Carga a 12 nudos	90
45	Amplitudes en Cabeceo al 100% y 25% de Carga a 10 nudos	90
46	Amplitudes en Cabeceo al 100% y 25% de Carga a 12 nudos	91
47	Amplitudes del movimiento vertical combinado al 100% de carga y en las posiciones A (proa) y B (popa) y a 10 nudos	93
48	Amplitudes del movimiento vertical combinado al 100% de carga y en las posiciones A (proa) y B (popa) y a 12 nudos	94
49	Aceleración Vertical al 100% de carga y en las posiciones A y B y a 10 nudos	94
50	Aceleración Vertical al 100% de carga y en las posiciones A y B y a 12 nudos	95
51	Amplitudes del movimiento vertical combinado al 25% de carga y en las posiciones A (proa) y B (popa) y a 10 nudos	95
52	Amplitudes del movimiento vertical combinado al 25% de carga y en las posiciones A (proa) y B (popa) y a 12 nudos	96
53	Aceleración Vertical al 25% de carga y en las posiciones A y B y a 10 nudos	96
54	Aceleración Vertical al 25% de carga y en las posiciones A y B y a 12 nudos	97
B 1	Dimensiones del elemento plancha-refuerzo	111
B2	Dimensiones del elemento plancha-alma-ala	112

INDICE DE TABLAS

TABLA	TÍTULO	PÁG
1	Recorrido N°1	20
2	Recorrido N°2	21
3	Condiciones Climatologicas de las Potenciales áreas de operación	22
4	Áreas de Fondeo en las principales Islas	23
5	Distancia al área de fondeo en otras Islas	24
6	Área requerida de Cubierta	25
7	Dimensiones principales de Catamaranes construidos	27
8	Dimensiones principales de la embarcación	30
9	Características Principales de propulsión	33
10	Resultados para la velocidad del Catamarán	35
11	Peso total del Catamarán	36
12	Determinación de la posición del Centro de gravedad del	37
12	Catamaran Compose sión de los Dimensiones Deineinelos	40
13	Comparación de las Dimensiones Principales	40
14	Resultados de las Características Principales del Catamarán	47
15	Modulos Seccionales y espesores de los estructurales de cada	50
16	Comparación de módulos seccionales	51
10	Peso total de un Casco	53
18	Peso total de Superestructura	53
19	Peso total del Catamarán	53
20	Comparación de pesos y centro de gravedad del Catamarán	54
21	Calculo de la potencia de la bomba	55
22	Calculo de EHP utilizando la Serie de Taylor	60
22	FI en función del # de Froude del Semicasco	61
24	EHP por interferencia entre semicasco	62
25	EHP total requeridos	62
26	Resistencia al Avance	63
27	Selección del propulsor recomendado	63
28	Características principales del propulsor	64
29	Fuerzas y Momentos en la conexión estructura transversal-	72
	semicasco	
30	Resumen de cargas resultantes	73
31	Máximos esfuerzos producidos en los planchajes	77
32	Máximos esfuerzos en los mamparos	77
33	Máximos esfuerzos producidos en los refuerzos	78
34	Deformaciones producidas en condición de carga Nº1	80
35	Torque máximo en la conexión estructura transversal-semicasco	82

36	Cargas Cortantes en cada sección de mamparos	84
37	Esfuerzos máximos producidos en cada sector en dirección X	86
38	Deformaciones extremas en la Condición de carga Nº2	86
39	Estimación de costos principales del Catamarán	99
40	Comparación del diseño con alternativas	100
B1	Dimensiones del elemento plancha-refuerzo para los refuerzos longitudinales, del fondo, costados y esloras	110
B2	Dimensiones del elemento plancha-alma-ala de las cuadernas transversales	112
D1	Amplitudes y Fases en Levantamiento y Cabeceo para una carga del 100% y a 10 nudos	119
D2	Amplitudes y Fases en Levantamiento y Cabeceo para una carga del 25% y a 10 nudos	121
D3	Amplitudes del Movimiento Vertical y Aceleración Vertical para una carga del 100% a 10 nudos y en la posición A	123
D4	Amplitudes del Movimiento Vertical y Aceleración Vertical para una carga del 100% a 10 nudos y en la posición B	125
D5	Amplitudes del Movimiento Vertical y Aceleración Vertical para una carga del 25% a 10 nudos y en la posición A	127
D6	Amplitudes del Movimiento Vertical y Aceleración Vertical para una carga del 25% a 10 nudos y en la posición B	129

SIMBOLOS ABREVIATURAS Y

- Densidad ρ
- V Volumen de carena
- Δ Desplazamiento en toneladas
- Función posición, velocidad o aceleración del buque en un instante η
- Amplitud de la ola
- ζ Aceleración vertical del centro de gravedad longitudinal
- Función de la respuesta en levantamiento η_3
- Función de la respuesta en cabeceo η5
- Frecuencia de encuentro ωe
- Frecuencia natural ωo
- Desplazamiento instantáneo $\Delta/2$
- AMP Amplitud de ola
- Apf Área de plano de flotación
- Área proyectada de la pala AR
- Manga del semicasco Β
- BHP Potencia al freno
- BML Distancia entre el metacentro y centro de boyantez longitudinal
- BMT Distancia entre el metacentro y centro de boyantez transversal
- Cb Coeficiente de bloque
- Cf Coeficiente friccional
- CG Centro de gravedad
- CLo Coeficiente de sustentación sin astilla muerta
- Coeficiente prismático Cp
- $\dot{C_w}$ Coeficiente de plano de agua
- Coeficiente de sección media Cx
- Coefficiente total Ct
- D Puntal
- DESP Desplazamiento
 - Número de Froude Fn
 - ft Pies (feet)
 - Aceleración de la gravedad g
 - Galones gal
 - Altura metacéntrica GM
 - Hora h
 - Η Calado
 - Fuerza horizontal hidrostática sobre los Costados H_L
 - Fuerza horizontal hidrostática sobre el lado interior H_R
- Humedad Hum

- IF Factor de Interferencia
- IOA Instituto Oceanográfico de la Armada
- I Inercia total
- KB Posición vertical del centro de boyantez
- KG Posición vertical del centro de gravedad
- KML Altura del metacentro longitudinal
- KMT Altura del metacentro transversal
- kn Nudos (knots)
- KW Kilovatios
- L Eslora
- LAD Línea de agua de diseño
- lb Libras
- LCB Posición longitudinal del centro de boyantez
- LCF Posición longitudinal del centro de flotación
- LCG Posición del centro de gravedad longitudinal
- L_{pp} Eslora entre perpendiculares
- L_w Eslora en pies
- m Metros
- m/s Metros sobre segundo
- mm Milímetros
- M_Q Fuerza cortante máxima
- M(S/2) Momento desde la unión del Casco con la estructura de unión
 - MS Módulo seccional (SM)
- MT1 Momento para variar el asiento una pulgada
- OMI Organización Marítima Internacional
- P Carga axial Transversal
- P/D Paso / Diámetro
- Pluv Pluviosidad
- Q Fuerza Cortante máxima
- q_i Flujo de Corte
- r Localización transversal de $\Delta/2$
- Re Numero de Reynolds
- RPM Revoluciones por minutos
- R_{wp} Resistencia por formación de olas de todo el Catamarán
- R_{wpd} Resistencia por formación de olas de cada semicasco
- s Ancho de la estructura de unión transversal
- SHP Potencia al eje
- SM Superficie mojada
- T Calado
- t Espesor del estructural
- TCB Posición transversal del centro de boyantez
- Ton Toneladas
- TP1 Peso para variar el asiento una pulgada

- USD Dólar norteamericano
- V Velocidad
- VCB Posición vertical del centro de boyantez
- W Peso del Catamarán
- W_c Peso de la estructura de Unión Transversal
- X Distancia desde sección media hasta el punto donde se quiere realizar el análisis
- x/8 Octavos de nubes
- Z Posición del centro de gravedad vertical

INTRODUCCIÓN

La industria turística de Galápagos está buscando alternativas en el diseño de sus embarcaciones, para reducir costos de operación (combustible), y aminorar problemas de estabilidad, y, una de las opciones para lograr estos objetivos es la de emplear catamaranes. Además de las ventajas mencionadas, la utilidad de este tipo de embarcaciones es que tiene más área de cubierta para la misma eslora. Dado que a nivel nacional no hay muchas experiencias previas sobre este tipo de embarcaciones, el objetivo principal de esta tesis es diseñar en forma preliminar una embarcación tipo catamarán para proveer servicio turístico en las Islas Galápagos. Esto significa que considerando la espiral de diseño, se van a desarrollar dos niveles: Conceptual y Preliminar. Se pondrá especial énfasis en la estimación de la Resistencia y Calculo Propulsivo, análisis de la Estructura de unión transversal, y respuesta del buque en olas de proa. Finalmente se desarrollará una comparación con una embarcación monocasco, que transporta el mismo número de pasajeros, y que acaba de ser diseñada y construida localmente, y con un catamarán en construcción con 16 pasajeros.

CAPITULO 1

CONSIDERACIONES PRELIMINARES

1.1 ALCANCE DEL PROYECTO

En el diseño de embarcaciones tipo catamarán no hay muchas experiencias previas en el medio, por lo que el proceso de planear las secuencias de trabajo será fundamental. Para este estudio se va aplicar la espiral de diseño convencional, tal como se describe en "Ship Design and Construcción", [1], pág. 2.

Figura 1.- Espiral de diseño

En este trabajo se desarrollarán las fases de diseño conceptual y preliminar siguiendo la espiral de diseño, en las cuales se incluirán los siguientes aspectos:

Fase conceptual: Determinación de las dimensiones principales, preparación de una distribución general inicial, estimación de pesos y de propulsión, y para concluir esta fase se hará un análisis de los resultados obtenidos y se determinarán los cambios a realizarse en la siguiente fase.

Primera fase del diseño preliminar: Se obtendrán las formas de la embarcación y se desarrollarán los cálculos hidrostáticos, luego se incluirá una mejora en la distribución general respecto del diseño conceptual, se desarrollaran también los cálculos estructurales , y por ultimo se esquematizarán los diferentes sistemas auxiliares del buque.

Segunda fase de diseño preliminar: Se calculara la resistencia al avance y propulsión, se desarrollara un análisis detallado tanto del comportamiento del buque en la mar con olas de proa como de la estructura de unión transversal del Catamarán; también se estimará el costo de casco. Para terminar el trabajo se desarrollará una comparación entre el catamarán diseñado y una embarcación monocasco construida localmente, y de un segundo catamarán en construcción.

1.2 REQUERIMIENTOS BÁSICOS PARA EL DISEÑO

Zonas de Recorridos .-

El catamarán operará en la zona del mar territorial de las Islas Galápagos, y realizará dos tipos de recorridos independientes:

1. Para Turismo que se lo hará en seis días:

RECORRIDO	DISTANCIA millas
Baltra – Santiago	27.5
Santiago – Fernandina	95
Fernandina – Isabela	85
Isabela – Santa María	35
Santa María – Española	62.5
Española – San Cristóbal	27.5
San Cristóbal – Santa Fe	35
Santa Fe – Santa Cruz	20
Santa Cruz - Baltra	35
Total Recorrido	422.5

Tabla 1.- Recorrido Nº1

La autonomía requerida para este recorrido será entonces de 422.5 millas náuticas.

2. Para Buceo, donde el recorrido durará cuatros días:

RECORRIDO	DISTANCIA millas
Baltra – Genovesa	50
Genovesa – Pinta	50
Pinta – Marchena	25
Marchena – Santiago	37
Santiago – Baltra	25
Total Recorrido	187

Tabla 2.- Recorrido N°2

La autonomía requerida será de 187 millas náuticas (346.324 Km)

El siguiente gráfico nos muestra los recorridos que se harán :

www.kulmbach.net/

Condiciones Ambientales.-

Las condiciones ambientales promedio que muestran las grandes áreas de operación del Catamarán a diseñarse, son las que se muestran en la tabla III.

	TEMPERATURA (°C)								
SECTOR	Máxima		Mínima		Hum	EST MAR	VIENTO	NUBES	Pluv
	Seco	Húm	Seco	Húm	%		m/seg	x/8	mm
Esmeraldas	35.0	29.2	16.0	22.6	84	2	2.7	6	160.2
Manta	35.5	28.7	13.5	21.6	77	3	3.0	6	71.6
Guayaquil	36.9	30.2	14.5	21.7	78	1	1.5	6	241.4
Baltra	33.3	27.6	16.5	21.8	76	3	6.3	4	23.1
Santa Cruz	38.6	26.6	13.3	21.1	85	3	2.1	5	83.6
San Cristóbal	36.0	27.6	12.7	21.1	80	3	2.6	5	109.3

Fuente: www.inocar.mil.ec

Tabla 3.- Condiciones Climatológicas de las Potenciales áreas de operación.

De la tabla anterior se deduce que las condiciones extremas en las cuales el Catamarán va a operar son: estado de mar 4 (mayor a las indicadas en la tabla), y, vientos alrededor de 12 nudos.

Requerimientos propios del Catamarán.-

- Por reglamentación: El diseño del catamarán se hará respetando los convenios de SOLAS, [23], en lo que respecta a la seguridad en el mar y control de averías.
- Se desarrollará el cálculo estructural para cada casco siguiendo las reglas de la ABS para Barcos de Acero menores de 90 m, [19].
- Por Habitabilidad: Transportará 20 pasajeros, 6 tripulantes, y el capitán.

Por autonomía: Considerando la zona de mar territorial de las islas, el catamarán requerirá por autonomía 3500 galones, [2], de combustible, que corresponden a 1400 millas náuticas, 2600 galones de agua, [2], y tendrá una velocidad de crucero máxima de 12 nudos [2].

Los requerimientos descritos corresponden a los del Yate TIP-TOP III, [2], cuyo contenido es descrito al final de este trabajo cuando se haga la comparación con el catamarán a ser diseñado en esta tesis.

1.3 RESTRICCIONES DEL DISEÑO

La restricción principal es la limitación del calado cerca de algunas islas porque no disponen de área de fondeo establecidas. Se presenta a continuación una tabla donde se indican las áreas de fondeo de las principales islas, obtenidas del conjunto Cartográfico insular, IOA 20 (Carta General del Archipiélago):

CARTA	DESCRIPCIÓN	ÁREA DE FONDEO
IOA 200	Isla San Cristóbal y Española	Dentro del Veril de 5.0 m
IOA 202	Isla Santa Cruz y San Salvador	Dentro del Veril de los 10.0 m
IOA 205	Isla Isabela y Fernandina	Dentro del Veril de los 10.0 m
IOA 206	Isla Isabela (sector sur)	Dentro del Veril de 5.0 m

Fuente Cartas publicadas por INOCAR.

Tabla 4.- Áreas de fondeo en las principales Islas

En las islas que no poseen área de fondeo establecidas, se determina la distancia de la costa hasta el veril¹ de los 5.0 m; la siguiente tabla nos muestra estas distancias:

CARTA	DESCRIPCIÓN	DISTANCIA (Millas)		
IOA 201	Isla Pinta, Marchena y Genovesa	1.20		
IOA 203	Isla Santa Fe y Santa María	2.00		
IOA 204	Isla Wolf y Darwin	1.50		

Fuente Cartas publicadas por INOCAR.

Tabla 5.- Distancia al área de fondeo en otras Islas.

Como se observa en las tablas anteriores, el mínimo fondo que se dispone en las islas principales es de 5.0 m o menos, debido a que en las cartas son hechas en la menor marea de sicigia². También se debe considerar el efecto de las corrientes que ocasionan el movimiento de bajos, bancos de arena, y que las cartas no indican, sino que previenen como aviso a los navegantes. Si se asume un calado máximo como restricción de diseño de 2.0 m como restricción de diseño, se estaría guardando un razonable factor de seguridad, manteniendo siempre al menos agua bajo la quilla.

¹ Veril: Curva de nivel submarino.

² Sicigia: marea que presenta la máxima pleamar y la mínima bajamar del mes, ocurre cuando se alinean el sol, la luna y la tierra. Se presentan dos veces al mes. Este periodo se conoce comercialmente como "Aguaje".

CAPITULO 2

DISEÑO CONCEPTUAL

2.1 REQUERIMIENTOS DE AREA DE CUBIERTA Y DIMENSIONES

PRINCIPALES

Para la obtención del área total de cubierta requerida y por medio de ella estimar las dimensiones principales de la embarcación, se han tomado como referencia diferentes valores de área por pasajero presentadas en el libro El Proyecto Básico del Buque Mercante, [8], pag 530. Se complementó esta información con las dimensiones de algunos espacios del Yate TIP-TOP III, [2]. A continuación se presenta una tabla de los principales compartimentos en que estará dividido el catamarán, el parámetro área /pasajero de cada uno de ellos, y el área total requerida para un total de 20 pasajeros, 6 tripulantes y el capitán.

CARACTERÍSTICAS	AREA/PASAJERO	#	AREA (m ²)
Camarotes doble de pasajeros	8.74	10	87.4
Camarotes de tripulación	7.215	1	7.215
Camarote de Capitán	8.74	1	8.74
Puente de Gobierno	7.22	1	7.22
Cocina	12.6	1	12.6
Comedor	13.02	1	13.02
Salón	13.02	1	13.02
Pasillo y servicios	15	1	15
Espacios públicos	7.5	1	7.5
Total			171.715

Tabla 6.- Área requerida de Cubierta

Una vez calculada el área requerida de cubierta y utilizando el gráfico de área de cubierta vs eslora presentada en "Design and Application of Modern High Speed Catamarans", [3], pag 54, y que se presenta a continuación, se obtiene la eslora de la embarcación que es 21.64 m

Figura 3. - Área de Cubierta vs Eslora [3].

Luego para la obtención de las dimensiones restantes se utilizarán datos de catamaranes ya construidos que se presentan en [3], pag 348, y, [26], pag 7. La siguiente tabla muestra estos datos:

DESCRIPCION	L pies	W pies	B pies	W -2B/L	B/T	DESP lb	Cb	Cm	Ср	Cwp
Johnson	50	17.5	5		4	46300				
Survey Montreal	50.5	20	7	0.128	4	50000				
Shuman	65	26	9	0.133	3	80000	0.43	0.57	0.75	0.85
Double Eagle	65	26	9	0.133	3	65000	0.36	0.49	0.74	0.83
Double Eagle II	65	26	9	0.137	3	62400	0.40	0.53	0.76	0.84
H & M Speed T.	65	26	9	0.133	3	90000	0.43	0.55	0.77	0.84
Rainbow	68.62	29	10	0.145	3.2	82600	0.34	0.51	0.67	0.81
GCRMTC ¹	108.27	35.56	4.74		1.087	257600	0.25	0.39	0.64	0.34

Tabla 7.- Dimensiones principales de Catamaranes construidos.

- W: Manga Total del Catamarán
- B: Manga del semicasco
- W-2B/L = relación entre estructura de unión y eslora

Después se han graficado estos datos con respecto de la eslora de las embarcaciones, y

se han desarrollado ecuaciones de regresión lineal:

¹ GCRMTC: Gulf COSAT Region Maritime Technology Center

Figura 4.- Variación de la manga máxima y de cada semicasco vs eslora

Figura 5. - Variación de la razón B/T vs la eslora

Figura 6. - Variación del Desplazamiento vs la eslora

Figura 7. - Variación de los Coeficientes de Formas vs la eslora

Una vez establecidas las ecuaciones de regresión y con la eslora ya determinada para la embarcación se puede interpolar y obtener las restantes dimensiones principales que son:

DIMENSION	SIMBOLO	UNIDAD	VALOR
Eslora	L	m / ft	21.64/71
Manga máxima	W	m / ft	8.18 / 26.83
Manga Semicasco	В	m∕ ft	2.35 / 7.72
Puntal	D	m / ft	2.92 / 9.58
Calado	Т	m / ft	0.77 / 2.55
Desplazamiento	Δ	ton / lbs	47.26/105862
Coeficiente Bloque	Cb		0.37
Coeficiente de S.M.	Cm		0.51
Coeficiente Prismático	C _P		0.72
Coeficiente plano de agua	C _{WP}		0.77

Tabla 8.- Dimensiones principales de la embarcación

En la siguiente figura se muestran las áreas disponibles en la embarcación, a partir de las dimensiones principales determinadas utilizando las ecuaciones de regresión descritas anteriormente:

Figura 8. - Dimensiones Principales y área total de Cubierta

2.2 DISTRIBUCION GENERAL

Se preparó un esquema de la embarcación, con las dimensiones principales ya obtenidas, considerándose los siguientes compartimientos:

Bajo Cubierta Principal:

Sala de Máquinas

Camarote de Tripulantes

Tanque de Combustible

Tanque de Agua

Cubierta Principal:

Camarotes de Pasajeros

89

Camarote de Capitán

. جر اللہ ا

Cocina

Comedor

Salón

Cubierta Superior:

Puente de Gobierno

El siguiente gráfico nos muestra la ubicación de cada compartimiento y esquema del Catamarán:

Figura 9. - Distribución General del Catamarán

El área total disponible para los pasajeros y el capitán es de 183 m^2 , de manera que se satisface este requerimiento.

2.3.- ESTIMACION CONCEPTUAL DE POTENCIA DE PROPULSION

Se utilizó la regla de Caterpillar para obtener la potencia al eje, diámetro de la hélice y la razón Paso / Diámetro a partir de varias velocidades de la embarcación, con 21.64 m de eslora y 47.26 Ton de desplazamiento. En la siguiente tabla se muestran los valores obtenidos, para un solo casco:

VELOCIDAD	\mathbf{V}/\sqrt{L}	SHP	VA	RPM	BP	P/D	DIAM	ETRO	P/	D
nudos							pulg	ст	pulg	ст
10	1.175	114	9.125	500	21	0.8	41	104	32.75	83.5
				600	25.5	0.8	36.25	91.5	28.75	73.5
11	1.3	1.85	10.05	500	16.75	0.8	41	105	32.5	83
				600	22.5	0.8	37.5	95.5	30	77
12	1.425	270	10.95	500	20.05	0.8	48.25	122	38.5	98
				600	24.5	0.8	42.75	108	34	87

Tabla 9.- Características Principales de Propulsión

A continuación se presentan estos resultados en forma gráfica:

Figura 10. - SHP vs. Velocidad

Figura 11. - Diámetro de la Hélice vs. Velocidad

Figura 12. - P/D vs. Velocidad

Como el catamarán navegará a 12 nudos, la siguiente tabla nos muestra los resultados obtenidos para esa velocidad:

VELOCIDAD	SHP	\mathbf{V}/\sqrt{L}	Va	RPM	Bp	P/D	DIAMETRO P/D		'D	
nudos							pułg	cm	pulg	cm
12	270	1.425	10.95	500	20.05	0.8	48.25	122	38.5	98
				600	24.5	0.8	42.75	108	34	87

Tabla 10.- Resultados para la velocidad del Catamarán.

La regla Caterpillar recomienda no sobrepasar de V $I\sqrt{L}$ = 1.34, ya que se entraríamos en la zona de operación de semi-desplazamiento. Así que la velocidad del catamarán, para mantenerse en la zona de desplazamiento, debería ser de 11 nudos, con una razón de V $I\sqrt{L}$ = 1.3.

2.4 ESTIMACION DE PESOS

Las estimaciones preliminares de pesos estructurales del casco, superestructura, maquinaria y alistamiento, se harán en base del número cúbico, utilizando las figuras presentadas por la FAO para el diseño de embarcaciones menores [4], y los de la referencia [2].

El siguiente gráfico muestra la relación del peso del casco por m³ de CUNO vs. la eslora

de la embarcación:

Figura 13. - Peso del Casco vs. Eslora [4]

La siguiente tabla nos muestra el peso total de la embarcación:

DESCRIPCIÓN	PESO(Kg/m ³)	PESO(Ton)
Casco(2)	230	33.717
Superestructura	70	10.261
Maquinaria	15	2.198
Combustible		11.25
Agua		9.84
Total	315	67.266

Ahora se mostrará la distribución de pesos simplificada:

Figura 14. - Distribución de Pesos

A continuación presenta una tabla con los pesos y posición del centro de gravedad de cada uno de los compartimientos de la embarcación medida desde proa y desde línea base.

DESCRIPCION	PESO(TON)	X(m)	M(X)	Y(m)	M(Y)
Casco	33.717	10.82	364,818	1.4689	49.527
Cubierta Principal	7	11.66	81.62	4.04	28.28
Cubierta Superior	3.261	8.7147 28.418		6.1876	20.178
Maquinaria	2.198	13.65	30.0027	0.8908	1.958
Tanque de Combustible	11.25	18.28	205.65	0.9787	11.01
Tanque de Agua	9.84	8.95	88.068	0.543	5.3431
Total	67.266		798.577		116.3

Tabla 12.- Determinación de la posición del Centro de gravedad del Catamarán

De manera que la posición del centro de gravedad de la embarcación es:

LCG	=11.87 m
VCG	=1.73 m

En el siguiente grafico se muestra el centro de gravedad del catamarán y de sus diferentes componentes:

Figura 15. - Centro de gravedad del Catamarán y de sus diferentes componentes

2.5 ANALISIS DE LOS RESULTADOS OBTENIDOS EN EL DISEÑO CONCEPTUAL.

El dimensionamiento a nivel conceptual del presente diseño se ha basado principalmente de la información presentada en, [3]. El catamarán denominado GCRMTC, presentado en [26], varía bastante con la primera referencia y por lo tanto su influencia se refleja en los gráficos obtenidos. Sin embargo los coeficientes de las ecuaciones de regresión y los cálculos del diseño conceptual del presente catamarán no cambian en gran proporción. Existe una variación notoria en peso de la embarcación entre la estimación hecha con la ecuación de regresión, 47.26 toneladas, y el obtenido con la suma de pesos estimados en forma preliminar, que es aproximadamente 67.26 toneladas. Siendo esta última una mejor aproximación de dicho parámetro, se la ha tomado como válida a este nivel de diseño; por lo que en la siguiente etapa del proceso preliminar se deberá cambiar las dimensiones principales en un porcentaje que permitan llegar aproximadamente a valores adecuados de distancia al nivel del agua, desde el cuerpo central de conexión entre cascos.

En lo que respecta a la distribución general, el grafico nos muestra una razonable repartición de las diferentes áreas del catamarán, y en el siguiente paso del proceso se detallará estas reparticiones.

La potencia obtenida (270 SHP por casco) parece muy baja, por lo que se hará la comparación en el siguiente proceso preliminar para saber sobre su valor real. A pesar que la regla Caterpillar nos indica que no se recomienda pasar de $V I \sqrt{L} = 1.34$, ya que se entraría en la zona de semi-desplazamiento y esto se cumple cuando el catamarán navega a 12 nudos, se mantendrá esta velocidad. en el siguiente procesos de diseño por ser un parámetro de comparación con la embarcación monocasco estándar para este servicio.

CAPITULO 3

DISEÑO PRELIMINAR

3.1 DESARROLLO DE LINEAS DE FORMAS Y CALCULOS HIDROSTATICOS

Al obtener las dimensiones principales en el capítulo anterior se ha notado que existen variaciones notoria entre las dos estimaciones del peso de la embarcación. Sumando las estimaciones de los componentes, es de aproximadamente 67.26 Ton, mientras que empleando la ecuación de regresión partiendo de diseños existentes, el desplazamiento calculado que es de 47.26 Ton. Por lo que tomando el primero como mejor aproximación, en esta etapa del diseño preliminar se incrementarán en un 10% la eslora y manga, y, el puntal en un 15%, debido a las dimensiones de la hélice requerida. Con estos valores modificados se espera llegar aproximadamente a las características operativas adecuadas de la embarcación.

DESCRIPCIÓN	DISEÑO CONCEPTUAL (m)	DISEÑO PRELIMINAE (m)		
Eslora	21.64	23.94		
Manga	2.35m	2.558		
Puntal	2.92	3.358		
Calado	0.77	1.014		

Tabla 13.- Comparación de las Dimensiones Principales

Con estas dimensiones principales ya alteradas, se emplearon los programas Gforms y Alisam [10] y [11], y se obtuvieron las formas de la embarcación las cuales se muestran a continuación:

Figura 16. - Plano de Líneas de Formas de cada casco de la Embarcación

Los cálculos hidrostáticos principales se desarrollaron empleando SHCP, [15]. A continuación se muestran las características principales y los gráficos de las curvas obtenidas del Catamarán, presentando los valores en forma tabular en el apéndice A. Por último se hará una comparación con los resultados obtenidos en el diseño conceptual.

Características Principales

Las siguientes son las características principales del Catamarán:

DESPLAZAMIENTO DE DISENO	40.380 TONS SW
LCG DE DISENO	-0.487 m. DESDE S. M (+PROA)
CALADO DE DISENO	1.014 m.
ASIENTO DE DISENO	0.000 m. (+POR POPA)
ESLORA ENTRE PP	23.800 m.
MANGA MÁXIMA	2.558 m.
COEFICIENTE DE AREA SECCIONAL	0.949
COEFICIENTE PRISMATICO	0.672
COEFICIENTE BLOOUE	0.638

CURVAS HIDROSTATICAS

Las curvas que se presentan a continuación son las de desplazamiento, coeficientes de formas, alturas metacéntricas, posición longitudinal del centro boyantez y centro de flotación:

Figura 17. - Curva de Desplazamiento(ton) vs Calado(m)

Figura 18. - Curva de Coeficientes de Formas vs Calado(m)

 $e^{p}0$

Ci N

51

c.Pr

6.B . S.E. L

UB ES

Figura 19. - Variación del KM_T y KM(m) vs Calados(m)

Figura 21. – Superficie Mojada(m²) vs Calados(m)

Para obtener el BM_T del Catamarán, calculamos la Inercia del plano de flotación del semicasco que es igual a:

$$I = BM_{\tau} * \nabla$$

donde la Inercia es igual a 22.85 m⁴.

Ahora obtenemos el BM_T del Catamarán que es igual a:

$$BM_{T} = \frac{2(I_{o} + A_{PF} * d^{2})}{\nabla}$$

$$BM_T = 27.3 m$$

Ahora para obtener el KM_T es igual a:

$$KM_{T} = KB + BM_{T}$$

 $KM_{T} = 27.87 m.$

Todos los datos para el Calculo de BMT y KMT son tomados del Apéndice A

Resumen de Cálculos Hidrostáticos y comparación con el Diseño Conceptual

La siguiente tabla establece una comparación entre los resultados obtenidos en el diseño Conceptual y en el Preliminar:

DESCRIPCIÓN	CONCEPTUAL	PRELIMINAR
Eslora	21.64 m	23.94 m
Manga del semicasco	2.35 m	2.558 m
Puntal	2.92 m	3.358 m
Calado	0.77 m	1.014 m
Desplazamiento	47.26 Ton	80.76 Ton
Coeficiente Bloque	0.37	0.638
Coeficiente de Área Seccional		0.949
Coeficiente Prismático	0.72	0.672

Tabla 14.- Resultados de las Características Principales del Catamarán

3.2 DISTRIBUCION GENERAL

Ya determinadas las formas y teniendo una idea de que cómo deben disponerse los diferentes compartimentos, se desarrolló una distribución general de la embarcación. El área total de pasajeros es de 173 m², incluyendo pasillos, comedor, cocina, y camarotes, que es superior a los 171 m² requeridos para este diseño de acuerdo a lo estimado en el Capitulo 2. Los tanques de combustibles tienen una capacidad de 3500 galones y los de agua de 2600 galones de acuerdo a los requerimientos.

El siguiente grafico nos muestra tal distribución:

3.3 CALCULO ESTRUCTURAL

Se va a calcular la estructura de cada semicasco siguiendo las reglas de clasificación de la ABS para la construcción de buques de acero de Eslora inferior a 90 m, [19]. En la siguiente tabla se muestran los módulos seccionales de las diferentes estructuras locales, como cuadernas, refuerzos, y, esloras, con sus respectivas fórmulas de cálculo. También se incluye el calculo del espesor del planchaje tanto del fondo, costado, cubierta, y que van a componer la cuaderna maestra del Catamarán.

Ľ≠	23.94
B≈	2.582

DESCRIPCION	FORMULAS	t	M.S	h(dado)	h(hallado)	w	C1	K1	S	1	q	Y	α
		mm	Cm ³	m	mm	mM				m	N/mm ²	N/mm ²	
Quilla	t=0.625L+12.5	27.5			135.0								
Roda	t=0.625L+6.35	21.3				119.9							
Espesor del planchaje													
planchaje del fondo	0.056L+5.5	6.8											
Costado	$t = S \sqrt{h} / 254 + 2.5$	2.5		3.4					200.0				
Cubierta	t=S \sqrt{h} /254+2.54	4.9		1.5					488.0				
Cuaderna Transversal del Fondo	$SM = 7.8 chsl^2$		122.7	1.5			0.8		2.0	2.6			
Cuaderna Transversal del Costado	$SM = 7.8 chsl^2$		99.1	1.5			0.9		2.0	2.2			
Refuerzos Longitudinales del Fondo	$SM = 7.8 chsl^2$		16.9	1.5			0.9		0.40	2.0			
Refuerzos Longitudinales del Costado	SM= 7.8chsl ²		16.9	1.5			0.9		0.4	2.0			
Baos	$SM = 7.8 chsl^2$		65.2	1.5			0,6		2.0	2.2			
Esloras	$SM = 7.8 chsl^2$		16.6	1.5			0.9		0.40	2.0			
Mamparos Estancos				L		_							
Planchas, espesor	t= sk \sqrt{qh} /c+1.5	3.1		1.5			290.0	0.9	450.0		1.0	235.0	1.1
Refuerzos	$SM = 7.8 chsl^2$		19.4	1.5			0.4		0.5	2.8			
Mamparos de Colisión													
Planchas, espesor	t= sk \sqrt{qh} /c+1.5	3.3		1.5			254.0	0.9	450.0	2.2	1.0	235.0	1.1

Tabla 15.- Módulos Seccionales y espesores de los estructurales de cada semicasco del Catamarán según ABS

Luego se estimaron las dimensiones del elemento plancha – refuerzo para el cálculo de cuadernas, refuerzos longitudinales del fondo, costado, y esloras, calculando su módulo seccional, las cuales se presentan en forma detallada en el apéndice B. La siguiente tabla muestra la comparación del módulo seccional estimado, con el requerido por ABS, la cual permite comprobar la satisfacción de los requerimientos:

DESCRIPCIÓN	SM ABS	SM DIMENSIONADO
Cuadernas	122.7	141.53
Refuerzos	16.9	18.36

Tabla 16.-Comparación de módulos seccionales

Una vez obtenidas las dimensiones de los elementos estructurales se grafica la sección media:

Figura 23. - Cuaderna maestra de la Embarcación

Luego se calcula el peso de la estructura del casco y superestructura por unidad de área, y a partir de ello el peso de la estructura de la embarcación.

Peso total de un Casco

DESCRIPCIÓN	PESO / m ²	SUPERFICIE	PESO TOTAL
	Kg/m²	m²	TON
Plancha, Cuaderna, Refuerzos	63.76	245.00	15.62
Mamparos			1.56
Quilla y Roda			1.56
		SUMA=	18.74

Tabla 17.-Peso total de un casco

Peso Total de Superestructura

DESCRIPCIÓN	PESO / m ²	SUPERFICIE	PESO TOTAL
	Kg/m ²	m ²	TON
Cubierta Principal	51.38	180.9	929
Cubierta Superior	51.38	71.44	3.68
		SUMA=	12.97

Tabla 18.-Peso total de Superestructura

Entonces el peso total del catamarán con su respectivo centro de gravedad será:

DESCRIPCIÓN	PESO(TON)	X(m)	M(X)	Y(m)	M(Y)
Casco	37.48	12.4	464.75	2.1	78.71
Superestructura	12.97	12.87	192.66	5.3	68.74
Estructura transversal de unión	7.00	12.73	89.11	3.06	21.42
Maquinaria	2.198	14.22	31.25	0.82	1.80
Combustible	11.25	18.13	203.96	0.87	9.78
Agua	9.84	8.95	88.00	0.69	6.78
Total	80.74		1069.73		187.23

Tabla 19.-Peso total del Catamarán

De manera que la posición del centro de gravedad de la embarcación es:

LCG =13.25 m
VCG = 2.31 m

Luego tenemos que el GM_T para el Catamaran sera igual a:

$$GM_{\tau} = KM - KG$$

 $GM_T = 25.56 \text{ m}$

Ahora la siguiente tabla muestra la comparación de los resultados tanto conceptual, como preliminar del peso total del Catamarán:

DESCRIPCIÓN	CONCEPTUAL	PRELIMINAR
Peso Total	67.26 Ton	80.74 Ton
VCG	1.73 m	2.03 m
LCG	11.87 m	13.25 m
Calado	0.77 m	1.014 m
Asiento	0.00 m	0.00 m

Tabla 20.-Comparación de pesos y centros de gravedad del Catamarán

3.4 ESQUEMATIZACION DE LOS SISTEMAS AUXILIARES

Se esquematizarán los siguientes sistemas auxiliares del buque, [1], [9]:

- Agua Dulce
- Eléctrico
- Gobierno

SISTEMA DE AGUA DULCE

El consumo por persona / día se asume en 40 galones, y las personas que se transportarán son un total de 27, lo que significa que el consumo de agua es de 324 galones por día. La capacidad de agua que puede ser transportada es de 1080 galones, pero se tiene una desalinizadora que permite alcanzar constantemente esta capacidad de agua. Para calcular la Potencia de la bomba principal del circuito de agua dulce se ha tomado la velocidad de flujo que recomienda Marine Engineering [29], debiendo alcanzar una presión mínima que sea la necesaria para que el agua llegue a la habitación del capitán. Se ha asumido una sobrepresión de 0.5 Kg/cm², [28], para vencer la resistencia de tuberías y accesorios y un exceso para la salida. En el siguiente cuadro se presenta el cálculo de la potencia de la bomba en el que se ha considerado que se abren simultáneamente 4 llaves:

Vnominal	Vlimite	Vescogida	FLUJO	FLUJO TOTAL	Н	EFICIENCIA	POTENCIA
pies/seg	pies/seg	pies/seg	pies ³ /seg	cm ³ /seg	kg/cm ²		HP
3.54	20	15.00	0.0205	2318.44	1.2	0.5	0.73

Tabla 21		Calculo	de	la	potencia	de	la	bomba
	•				perene			0011104

Entonces la potencia de la bomba de agua dulce será de 1 HP.

SISTEMA ELECTRICO

El balance eléctrico del Catamarán será para tres condiciones de carga, que son:

- Normal.- Para el sistema de aire acondicionado, sensores electrónicos encendidos, luces de camarotes y áreas comunes en servicio.
- 2. Puerto.- Para los sistemas de radio
- Entrada y Salida de Puerto.- Todos los sistemas operando en su máxima capacidad.

La electricidad a bordo de la embarcación esta dispuesta como sigue:

- 1. Circuito Alterno 230 VAC 3 Ph 60 Hz para:
 - Alumbrado
 - Cargador de baterías
 - Bomba hidróforo N°1
 - Bomba hidróforo N°1
 - Cocina
 - Extractor de aire de sala de máquinas
 - Ventilador de aire de sala de máquinas
 - Bombas de achique
 - Bomba contra incendio
 - Winche de fondeo
 - Extractores y tomacorrientes
 - Unidades de acondicionamiento de aire
 - Planta desalinizadora

- 2. Circuitos Continuos VDC
 - Arranque de motores propulsores
 - Arranque de generadores
 - Alumbrado de emergencia
- 3. Circuitos de Aterrizamiento
 - Corriente AC
 - Corriente DC

Los equipos eléctricos a bordo son:

- 1. Amarre
- 2. Fondeo
- 3. Acondicionamiento de aire, y ventilación
- 4. Planta desalinizadora

SISTEMA DE GOBIERNO

Para obtener mayor maniobrabilidad, se ha considerado la instalación de una pala por casco, cuyas dimensiones serán obtenidas de la formula descrita por Det Norske Veritas, [8]; el área de la pala no debe ser menor que el dado la fórmula siguiente, aplicable a timones que trabajan detrás del chorro de la hélice propulsora:

$$AR = 0.01 * Lpp * T^{-}[1 + 50 * CB^{2} \left(\frac{B}{Lpp}\right)^{2}]$$

El área resultante para la embarcación es de 0.28 m^2

Si la comparamos con la primera aproximación dada en [8], la cual el área de la pala varia entre el 1.5% y 2.5% del producto Lpp*T, la cual calculada con el 1.5% de variación nos da un área de 0.34 m^2 . Por lo tanto considerando el diámetro de la hélice que debe colocarse el valor del área de pala del Catamarán será de 0.30 m^2 . Con esto el alto y ancho de la pala será igual a $0.83 \text{ m} \times 0.4 \text{ m}$

CAPITULO 4

SEGUNDA FASE DEL DISEÑO PRELIMINAR

4.1 CÁLCULO DE RESISTENCIA Y PROPULSIÓN

Para el cálculo de la Propulsión de la embarcación, se empezará por estimar la Resistencia Total al avance, para lo que se utilizará primero el método de Taylor, [5], el cual determinará los EHP requeridos para cada casco. Luego se calculará el Factor de Interferencia entre cascos, empleando los resultados de Tasaki, [32], a partir del número de Froude y la separación relativa entre semicascos, donde dicho factor se define como:

$$IF_{wp} = \frac{R_{wp} - 2R_{dwp}}{2R_{wpd}}$$

donde:

R_{wp}: Resistencia por Formación de Olas de todo el catamarán,
R_{wpd}: Resistencia por Formación de Olas de cada semicasco

Finalmente se combinarán las resistencias de cada semicasco con el Factor de Interferencia para estimar la Resistencia Total al avance del catamarán. En la siguiente tabla se muestran los resultados del primer paso, esto es, del cálculo de la Resistencia total para cada semicasco, para varias velocidades, con las respectivas fórmulas aplicadas:

	metros	pies
L	23.804	78.10
В	2.558	8.39
Н	0.96	3.15

Vk3(nudos)	8
Vk2(nudos)	10
Vk1(nudos)	12
Cv	2.74E-03
Ср	0.70475

K1	6.67E-04	K2	5.33E-05
S(pie ²)	818.14	K3	4.40E-04
V(pie ³)	1306.83		

	<u> </u>				Cr							
Vk/L	B/H=2.25	B/H≃3.00	E-D	K*F	B/H=2.66	Re	Cf	(Cf+ ∆Cf)X10 ⁻³	Ct	Vk ³	EHP	Vk
0,91	1.65E-03	1.98E-03	3.30E-04	4.53E-01	2.13E-03	109927050.53	2.05E-03	2.45E-03	4.57E-03	512	1.67E+01	8
1.13	5.56E-03	5.60E-03	4.00E-05	4.53E-01	5.62E-03	137408813.16	2.00E-03	2.40E-03	8.02E-03	1000	5.72E+01	10
1.36	6.50E-03	7.00E-03	5.00E-04	4.53E-01	7.23E-03	164890575.80	1.94E-03	2.34E-03	9.56E-03	1728	1.18E+02	12

Tabla 22 .- Calculo de EHP utilizando la Serie de Taylor, [5].

Figura 24. -Factor de Interferencia en función del # de Froude, [7]

Las siguientes tabla y gráfico nos muestran el Factor de interferencia para varias números de Froude de cada semicasco del catamarán:

V(nudos)	# FROUDE	INTERFERENCIA
8	0.26	0.08
10	0.33	-0.2
12	0.39	0.4

Tabla 23 .- FI en función del # de Froude del Semicasco

Figura 25. – FI vs # de Froude del Semicasco

Por lo tanto la potencia total por Interferencia entre semicascos se presenta en el siguiente cuadro:

Cr	INTERFERENCIA	EHPinterferencia
2.13E-03	0.08	1.24
5.62E-03	-0.2	-16.03
7.23E-03	0.4	71.28

Tabla 24 .- EHP por Interferencia entre semicascos

Entonces la Potencia total requerida será:

EHPdos semicascos	EHPinteferencia	EHPtotal
1.67E+01	1.24	1.79E+01
5.72E+01	-16.03	4.12E+01
1.18E+02	71.28	1.89E+02

Tabla 25.-EHP total requeridos

En este caso, para una velocidad de 12 nudos la potencia total necesaria será de 189 EHP para los semicascos. Con una eficiencia del reductor de 0.98 tenemos que la potencia a la hélice será de 185.22 SHP. Ahora con un coeficiente propulsivo de 0.5 tenemos que la potencia al freno será de 370 BHP para cada casco, eso significa que se necesitarán dos motores de 370 BHP cada uno. El motor seleccionado es uno marca CUMMINS, modelo NTA-855-M con una potencia de 380 BHP a 2100 RPM.

Para el análisis propulsivo se empleó el programa Disprop, [16], que permitió obtener los valores de la resistencia al avance, seleccionar el propulsor ideal, empuje, torque, etc, valores necesarios para un semiscasco de la embarcación.

Las siguientes tablas nos indicap, en forma detallada el calculo propulsivo para diferentes velocidades del casco y diámetro de la hélice:

VELOCIDAD	RESISTENCIA	RESISTENCIA					
nudos	LBS	TON					
8.04E+00	1.04E+03	4.66E-01					
9.99E+00	2.19E+03	9.77E-01					
1.20E+01	5.38E+03	2.40E+00					

RESISTENCIA AL AVANCE

Tabla 26.-Resistencia al Avance

SELECCIÓN DEL PROPULSOR

DESCRIPCION	DIAMETRO[pies]:	2.50E+00	2.75E+00	3.00E+00
REV/MIN	VELOC. [nudos]:	1.13E+01	1.15E+01	1.17E+01
7.00E+02	PASO/DIAMETRO:	1.40E+00	1.13E+00	9.33E-01
	EFIC. PROPULS .:	4.16E-01	4.67E-01	5.10E-01
REV/MIN	VELOC. [nudos]:	1.14E+01	1.16E+01	1.17E+01
8.00E+02	PASO/DIAMETRO:	1.15E+00	9.31E-01	7.72E-01
	EFIC. PROPULS.:	4.38E-01	4.85E-01	5.18E-01
REV/MIN	VELOC. [nudos]:	1.14E+01	1.16E+01	1.17E+01
9.00E+02	PASO/DIAMETRO:	9.69E-01	7.88E-01	6.51E-01
	EFIC. PROPULS .:	4.54E-01	4.93E-01	5.12E-01

Tabla 27.-Selección del Propulsión Recomendado.

CARACTERISTICAS PRINCIPALES

DESCRIPCIÓN	DIAMETRO[pies]:	2.50E+00	2.75E+00	3.00E+00
	EMPUJE[libras]:	4.51E+03	4.94E+03	5.30E+03
	TORQUE[lb-pie]:	2.46E+03	2.46E+03	2.46E+03
REV/MIN	FAC. DE ESTELA:	1.48E-01	1.45E-01	1.42E-01
7.00E+02	FAC. DED. EMP.:	1.24E-01	1.20E-01	1.17E-01
	EF. AG. ABIER.:	4.23E-01	4.75E-01	5.18E-01
	EF. REL. ROT. :	1.01E+00	1.01E+00	1.01E+00
	TAOc :	4.37E-01	3.04E-01	2.20E-01
	SIGMA :	5.04E-01	4.20E-01	3.55E-01
	EMPUJE[libras]:	4.70E+03	5.10E+03	5.36E+03
	TORQUE[lb-pie]:	2.16E+03	2.16E+03	2.16E+03
REV/MIN	FAC. DE ESTELA:	1.48E-01	1.45E-01	1.42E-01
8.00E+02	FAC. DED. EMP.:	1.24E-01	1.20E-01	1.17E-01
	EF. AG. ABIER.:	4.45E-01	4.93E-01	5.26E-01
	EF. REL. ROT. :	1.01E+00	1.01E+00	1.01E+00
	TAOc :	3.28E-01	2.30E-01	1.65E-01
	SIGMA :	3.91E-01	3.25E-01	2.75E-01
	EMPUJE[libras]:	4.85E+03	5.17E+03	5.31E+03
	TORQUE[lb-pie]:	1.92E+03	1.92E+03	1.92E+03
REV/MIN	FAC. DE ESTELA:	1.48E-01	1.45E-01	1.42E-01
9.00E+02	FAC. DED. EMP.:	1.24E-01	1.20E-01	1.17E-01
	EF. AG. ABIER .:	4.62E-01	5.01E-01	5.20E-01
	EF. REL. ROT. :	1.01E+00	1.01E+00	1.01E+00
	TAOc :	2.57E-01	1.79E-01	1.26E-01
	SIGMA :	3.12E-01	2.59E-01	2.1 9 E-01

Tabla 28.-Características Principales del propulsor

Los siguientes gráficos nos muestran las curvas de la Resistencia al Avance, Eficiencia

Propulsiva, y la Potencia al eje aproximada:

Figura 27. -Eficiencia Propulsiva del Catamarán

Figura 28. –Potencia al eje del Catamarán

Entonces el propulsor elegido es de la serie B-Wageningen, de 4 palas, con 0.83 m (2.75 pies) de diámetro, con una relación Paso / Diámetro de 0.93, y, una eficiencia propulsiva de 0.485. Además esta hélice propulsora debe operar a 800 rpm, y permitirá alcanzar una velocidad de 11.6 nudos, aproximadamente.

4.2 ANÁLISIS Y DISEÑO DE LA ESTRUCTURA DE UNIÓN TRANSVERSAL.

Para el análisis de la estructura de unión transversal, se ha tomado como base las formulaciones dadas en [30], para la estimación de las cargas (fuerzas axiales, torques, fuerza cortante vertical, y, momentos de flexión) que soporta la estructura. Para este estudio, además, sólo se modeló la mitad de la estructura de unión, para aprovechar la simetría (respecto del plano de crujía) tanto de la geometría del sistema como de la distribución de cargas aplicadas.

La estructura está formada de planchas y refuerzos de 6 mm de espesor, con los siguientes elementos:

- 1. Plancha Superior ó de Cubierta
- 2. Plancha Inferior ó del Fondo
- 3. Un mamparo longitudinal en línea de crujía
- Cinco mamparos transversales (dos extremos y los otros tres coincidiendo con los mamparos transversales de los cascos)
- 5. Diez y seis refuerzos transversales ubicados de acuerdo a como están distribuidos en el casco las cuadernas, formando anillos transversales cerrados.

La siguiente figura muestra el modelo desarrollado aplicando el método de Elementos Finitos, en el que se han retirado las planchas de cubierta y costado para su mejor visualización. El eje x apunta en dirección Popa-Proa, el eje y en dirección Estribor-Babor, y el eje z en dirección vertical hacia arriba. La separación vertical de la plancha del fondo con la superior es de 0.6 m, y la longitud de la estructura de conexión es de 20 metros.

Figura 29.- Distribución General de la Estructura de Unión Transversal del Catamarán

Se desarrolló el análisis de la estructura transversal en dos condiciones de cargas, que según [30], son las que más exigen a la estructura:

- 1. Flexión y Corte (recibiendo las olas de costado)
- 2. Torsión (recibiendo las olas en dirección oblicua)

1. Flexión y Corte

En este caso, las olas se acercan a la embarcación por el costado, y producen la máxima carga cuando aceleran verticalmente la embarcación y además producen fuerzas transversales dirigidas hacia el interior del conjunto. Para estimar las cargas de flexión, corte y momento flector que la estructura de conexión transversal del catamarán soporta cuando recibe olas de costado, se deben calcular las fuerzas externas verticales y horizontales, y los respectivos puntos de acción de las mismas. También se debe estimar el desplazamiento instantáneo de cada casco, y la localización transversal de esta fuerza desde el centro del plano vertical de simetría (eje Z); además se debe calcular el calado medio instantáneo que es igual a 1.4 el calado de la embarcación. Este número resulta de asumir que la aceleración vertical que produce el tren de olas que incide sobre la embarcación es de aproximadamente 0.4g, que sumado a la aceleración de la gravedad, produce una carga efectiva de 1.4g. Este valor de aceleración se asume como razonable según [30]. El siguiente grafico presenta las fuerzas externas aplicadas al catamarán en esta condición de carga:

Figura 30.- Fuerzas sobre la embarcación cuando se recibe las olas de costado, [30]

Ahora el siguiente grafico muestra las Fuerzas internas que se desarrollan en la conexión entre los cascos y la estructura de conexión transversal, producidas por las fuerzas externas hidrodinámicas, representadas en forma hidrostática:

ł

Figura 31.- Fuerzas Internas sobre el casco, [30]

La siguiente tabla resume los valores obtenidos para los diferentes parámetros involucrados en el cálculo de las cargas externas e internas a partir de la longitud y amplitud de ola, de acuerdo a la formulación presentada por [30] e indicadas en el apéndice C.

FUERZAS AXIALES, CORTES VERTICALES, MOMENTOS

DESCRIPCION	W	Wc	Lw	Amp	HL	HR	VL	VR	r	Р	Δ/2	M(S/2)	Mq	Q
	ton	ton	pies	pies	ton	ton	pies	pies	pies	ton	ton	ton-pie	ton-pie	ton
CONDICION CARGA N°1(FLEXION Y CORTE)														
LONGITUD DE OLA			42.12											
AMPLITUD DE OLA				6.49										
FUERZA HORIZONTAL HIDROSTATICA(HL)	75.7	7			79,98									
FUERZA HORIZONTAL HIDROSTATICA(Hr)						0.40								
FUERZA DE BOYANTEZ(Δ. INSTANTANEO)											55.212			
LOCALIZACION TRANSV. DE FUERZA DE BOYANTEZ							2.75	0.19	11.79					
CARGA AXIAL TRANSVERSAL										-79.58				
MOMENTO TOTAL												-466.71	-487.45	
FUERZA CORTANTE MAXIMA														-8.259

Tabla 29 .- Fuerzas y Momentos en la conexión estructura transversal-semicasco
A continuación se presenta un resumen de los valores de cargas para la Condición de carga N°1:

CARGA AXIAL TRANSVERSAL	P=	-79.58TON
FUERZA CORTANTE MAXIMA	Q=	-8.26TON
MOMENTO TOTAL	M(S/2)=	-142TON-m

Tabla 30 .- Resumen de cargas resultantes

A continuación se describirán algunos detalles del modelo de la estructura de unión, empleando el método de Elementos Finitos, a través del programa SAP90, [17]. El siguiente gráfico muestra los nodos y planchas en el mamparo de popa como ejemplo ilustrativo:

Figura 32.- Modelización de los mamparos transversales

Las fuerzas totales calculadas se aplican en la superficie de conexión de la estructura con el semicasco, y se distribuyen de la siguiente forma entre los nodos que definen dicha área de contacto, siguiendo las recomendaciones de Mansour, [17]:

- La fuerza total transversal, (P), que actúa comprimiendo la estructura de unión, se la distribuye de manera uniforme en todos los nodos ubicados en la periferia de los planchas de fondo y cubierta, y, de los mamparos transversales de la estructura de conexión.
- La fuerza cortante vertical (Q), se distribuye de manera uniforme en los nodos que se encuentran sobre los 5 mamparos transversales, porque se asume que dichos elementos son los que desarrollan principalmente esfuerzos cortantes verticales.
- El momento producido por las fuerzas transversales (M) obtenidas de la tabla XXX, se aplica a la estructura a través de parejas de fuerzas entre las planchas de cubierta y fondo, con signo opuesto de manera que no producen fuerza neta, pero contribuyendo con momento, cuya suma total corresponde al valor de M; también en los nodos internos de los mamparos transversales se aplicaron parejas de fuerzas porque dichos elementos también contribuyen a la resistencia a la flexión.

En el siguiente grafico se muestran los nodos donde se aplicaron dichas cargas, en una porción de la estructura:

Figura 33 .- Discretización de las cargas sobre la estructura de unión transversal

Las restricciones (Condiciones de Frontera) se impusieron para representar la simetría de la estructura, en el plano de crujía. Los nodos que coinciden en este plano se restringieron de desplazarse en las tres direcciones, y además sólo se les permitió rotar en dirección y (Bb-Eb). El siguiente grafico muestra las restricciones dadas en el plano de crujía, en una porción de la estructura de unión.

Figura 34. -Restricciones del movimiento

Ahora para obtener los valores de esfuerzos y deformaciones de la estructura de unión transversal se la ha analizado utilizando el programa SAP90, [18]. El siguiente gráfico muestra los máximos esfuerzos en dirección transversal (Babor-Estribor) producidos en la Condición de carga N°1 en una porción de la estructura:

Figura 35. - Esfuerzos máximos producidos en Condición de Carga Nº1

Las siguientes tablas muestran los valores de las fuerzas internas por unidad de longitud que se presentan tanto en los planchajes de fondo y cubierta, mamparos transversales, refuerzos transversales, obtenidos del análisis del programa. Los esfuerzos fueron calculados dividiendo dichos parámetros para el espesor de la plancha analizada.

PLANCHAJE HORIZONTAL

DESCRIPCION	ELEMENTO	NODO	S11(MAX)	S22	S22(MAX)	S11	t	ESF X	ESF Y
			ton/m	ton/m	ton/m	ton/m	m	ton/m2	ton/m2
CUBIERTA	313	1611	5.8647	10.1 9			0.006	977.45	1698.33
CUBIERTA	301	1662			16.429	-0.059	0.006	- 9 .83	2738.17
INFERIOR	13	14	-7.22	-13.93			0.006	-1203.33	-2321.67
INFERIOR	1	62			-22.18	0.372	0.006	61.99	-3696.67

Tabla 31 .- Máximos Esfuerzos producidos en los planchajes

MAMPAROS(numerados de Popa a Proa)

DESCRIPCIÓN	ELEMENTO	LEMENTO NODO		t	ESF X
	[ton/m	m	ton/m2
MAMPARO 1	1081	1	-23.97	0.006	-3995
MAMPARO 2	1142	413	-13.279	0.006	-2213.17
MAMPARO 3	1270	443	-13.244	0.006	-2207.33
MAMPARO 4	1338	458	-13.52	0.006	-2253.33
MAMPARO 5	1353	61	-23.054	0.006	-3842.33

Tabla 32 .- Máximos Esfuerzos producidos en los mamparos

REFUERZOS(FONDO / CUBIERTA)

DESCRIPCION	ELEMENTO	NODO	S11(MAX)	t	ESF X
			ton/m	m	ton/m2
BAO 11	1105	309	-12.44	0.006	-2073.33
BAO 12	1112	1909	8.83	0.006	1471.67
BAO 21	1117	312	-12.312	0.006	-2052.00
BAO 22	1124	1912	9.2341	0.006	1539.02
BAO 31	1129	315	-12.539	0.006	-2089.83
BAO 32	1136	1915	9.3443	0.006	1557.38
BAO 41	1161	321	-12.712	0.006	-2118.67
BAO 42	1168	1921	9.4599	0.006	1576.65
BAO 51	1173	324	-12.632	0.006	-2105.33
BAO 52	1180	1924	9.5534	0.006	1592.23
BAO 61	1185	327	-12.71	0.006	-2118.33
BAO 62	1192	1927	9.664	0.006	1610.67
BAO 71	1197	330	-12.8	0.006	-2133.33
BAO 72	1204	1930	9.7506	0.006	1625.10
BAO 81	1209	333	-12.83	0.006	-2138.33
BAO 82	1216	1933	9.7737	0.006	1628.95
BAO 91	1221	336	-12.78	0.006	-2130.00
BAO 92	1228	1936	9.7229	0.006	1620.48
BAO 101	1233	339	-12.666	0.006	-2111.00
BAO 102	1240	1939	9.6063	0.006	1601.05
BAO 111	1245	342	-12.54	0.006	-2090.00
BAO 112	1252	1942	9.45	0.006	1575.00
BAO 121	1257	345	-12.54	0.006	-2090.00
BAO 122	1264	1945	9.26	0.006	1543.33
BAO 131	1289	351	-12.34	0.006	-2056.67
BAO 132	1296	1951	9.094	0.006	1515.67
BAO 141	1301	354	-12.12	0.006	-2020.00
BAO 142	1308	1954	9.1	0.006	1516.67
BAO 151	1312	357	-12.01	0.006	-2001.67
BAO 152	1320	1957	9.0198	0.006	1503.30
BAO 161	1325	360	-11.92	0.006	-1986.67
BAO 162	1332	1960	8.6732	0.006	1445.53

Tabla 33 .- Máximos Esfuerzos producidos en los Refuerzos

De estos valores, los máximos esfuerzos producidos se presentan en el Mamparo N°1, que está ubicado en Popa y cuyo valor es de 3995 Ton/m², y en el Mamparo N°5 ubicado en Proa, teniendo un valor de 3842.33 Ton/m². Estos valores no sobrepasan del esfuerzo Normal de cedencia del acero que es igual a 25350 Ton/m² (ASTM36). Así mismo se presentan a continuación los valores de las deformaciones extremas producidas, y se graficará una porción de la estructura deformada.

Figura 36. –Deformaciones extremas máximas producidos en un segmento de la estructura analizada, Condición de Carga Nº1

Los valores de deformación máxima y mínima se presentan en la siguiente tabla:

DESCRIPCIÓN	EJE X (m)	EJE Y (m)	EJEZ (m)
DEFORMACIÓN MÁXIMA	0.6581E-04	0.2324E-03	0.9041E-05
DEFORMACIÓN MINIMA	-0.7550E-04	-0.1493E-03	-0.7294E-03

Tabla 34 .- Deformaciones producidas en Condición de carga Nº1

2. Torsión

Para estimar las cargas de torsión que el catamarán soporta cuando recibe olas oblicuas, se ha tomado como base las formulaciones dadas en [30], e indicadas en el Apéndice C, utilizando la longitud y amplitud de ola recomendadas para este caso. El siguiente gráfico presenta la geometría para la estimación de las fuerzas externas aplicadas al catamarán en esta condición de carga:

Figura 37.- Fuerzas sobre la embarcación cuando se recibe olas oblicuas, [30]

Ahora el siguiente gráfico describe el origen de las cargas torsionales que se producen respecto del centro de gravedad a lo largo de la embarcación:

Figura 38.- Fuerzas Torsionales sobre el casco, [30]

La siguiente tabla resume todos los valores obtenidos del cálculo de las cargas torsionales a partir de la longitud y amplitud de ola [30].

DESCRIPCIÓN	VALOR	VALOR
CONDICION DE CARGA N°2		
LONGITUD DE OLA	37.12 pie	11.313 m
AMPLITUD DE OLA	3.66 pie	1.11 m
TORQUE MAXIMO (Mx)	572.617 Ton-pie	174.5 Ton-m

Tabla 35 .- Torque Máximo en la conexión estructura transversal -semicasco

Las cargas serán distribuidas de acuerdo con lo descrito por [31], pág. 228, en cada nodo alrededor del borde de la celda. Una celda se define como la trayectoria cerrada definida por los bordes de la plancha superior, de los mamparos transversales limitantes y de la plancha inferior. En este caso, el flujo cortante en cada celda: q_1 , q_2 , q_3 , y, q_4 , se puede calcular con la siguiente formulación:

$$\frac{q_i}{\theta} \oint \frac{ds}{t} - \frac{q_{i-1}}{\theta} \int_{i-1,i} \frac{ds}{t} - \frac{q_{i+1}}{\theta} \int_{i+1,i} \frac{ds}{t} = 2A_iG$$
$$\theta^{\circ} = \frac{M_x}{2[A]^T[q]}$$
$$\overline{q_i} = \frac{q_i}{\theta^{\circ}}$$

donde q_i es el flujo de corte (τt) en la i-ésima celda.

El siguiente gráfico muestra una porción de la estructura donde el flujo cortante, q, será repartido en los nodos a lo largo de los bordes de la estructura de unión:

Figura 39 .- Discretización de las cargas sobre la estructura de unión transversal

r W

CARGAS	Qi	AREAi	θ	qi
	Ton	m ²	1/m	Ton/m
q1	27304.66	2.4	0.00026	6.97
q2	29151.47	6.0	0.00026	7.45
q3	28914.19	3.0	0.00026	7.39
q4	23680.16	0.6	0.00026	6.05

La siguiente tabla muestra el flujo cortante en cada celda:

Tabla 36 .- Cargas Cortantes en cada sección de mamparos

Ahora para obtener los valores de esfuerzos y deformaciones de la estructura de unión transversal producidas por las cargas de torsión se la ha analizado utilizando el programa SAP90, [18]. El siguientes gráfico nos muestra los máximas fuerzas cortantes por unidad de longitud, diferentes sectores de la plancha superior, producidos en la Condición de carga N°2:

Figura 40. - Esfuerzos máximos producidos en Condición de Carga Nº2

La siguiente tabla muestra los esfuerzos producidos en cada uno de los sectores de la estructura de unión transversal, definiéndose como la zona entre cada pareja de mamparos transversales consecutivos. En forma similar al caso anterior, el esfuerzo se calcula dividiendo la fuerza por unidad de longitud para el espesor de la plancha analizada.

DESCRIPCION	NODO	S12(MIN)	S12(MAX)	t	ESF XY
		ton/m	ton/m	m	ton/m2
SECTOR 1	306	-9,1		0,006	-1516,67
	62		-1,42	0,006	-236,67
SECTOR 2	1687	-7		0,006	-1166,67
	443		0,562	0,006	93,67
SECTOR 3	178	-5,97		0,006	-995,00
	48		-4,7	0,006	-783,33
SECTOR 4	366	-7,4		0,006	-1233,33
	122		-1,101	0,006	-183,50

Tabla 37 .- Esfuerzos máximos producidos en cada sector en dirección X

De los valores obtenidos para el esfuerzo cortante, los máximos esfuerzos se presentan en el Mamparo N°1, que está ubicado en popa y cuyo valor es de 1516 Ton/m²; el siguiente valor de esfuerzo se presenta en el Mamparo N°5, ubicado en proa valiendo 1233.33 Ton/m². Ambos valores se encuentran muy por debajo del esfuerzo de cedencia en corte del acero que es igual a 15306 Ton/m² (ASTM36).

Así mismo, se presenta a continuación las deformaciones extremas producidas, y sé graficará una porción de la estructura deformada.

DESCRIPCION	X	Y	Z
MÁXIMA (m)	3,90E-04	1,10E-04	1,40E-05
MINIMA (m)	0,00E+00	-1,40E-04	-1,40E-05

Tabla 38 .- Deformaciones extremas en la Condición de Carga N°2

4.3 ANÁLISIS DEL COMPORTAMIENTO DEL BUQUE EN OLAS DE PROA

Se analizará a continuación el comportamiento del catamarán en olas regulares de proa, en condiciones de carga al 100% y 25%. Se calculará la aceleración vertical combinando las respuestas de levantamiento y cabeceo, para pasajeros ubicados en las posiciones A y B, como lo indica el siguiente grafico. Estas posiciones corresponden a los extremos de la superestructura, y fueron consideradas pensando que el cabeceo produce mayores desplazamientos verticales en posiciones más alejadas de la sección media del buque.

Figura 42. –Levantamiento y Cabeceo del Catamarán en olas

Se utilizará el programa SCORES, [14], para el cálculo de la respuesta del buque en olas de proa, asumiendo que la respuesta de cada semicasco es independiente del otro. Se consideró una amplitud de ola de 1.0 metro, y se varió la longitud de las olas incidentes entre 10 y 120 metros, con incrementos de 2.5 metros. Se tomaron dos

velocidades dentro del rango de operación de la embarcación: 10 y 12 nudos. El archivo de resultados proveerá valores de la frecuencia de la ola, frecuencia de encuentro, las amplitudes y fases, tanto para Levantamiento como para Cabeceo (grados); los resultados y otros cálculos que se describen a continuación y se presentan en forma tabular en el apéndice D. A continuación, los siguientes gráficos presentan las amplitudes para el Levantamiento y el Cabeceo, con respecto a la longitud de ola, tanto para 10 nudos y 12 nudos:

Figura 43. - Amplitudes en Levantamiento al 100% y 25% de Carga a 10 nudos

Figura 45. - Amplitudes en Cabeceo al 100% y 25% de Carga a 10 nudos

90

r Si

Figura 46. - Amplitudes en Cabeceo al 100% y 25% de Carga a 12 nudos

Los gráficos 43 y 44 tienen una forma similar a los resultados presentados por Bhattacharyya, en la figura 17.2b, p.398, en la que se grafica la amplitud de levantamiento vs la longitud de la ola. Presenta un máximo local pequeño, y luego un segundo máximo, bastante mayor que el primero. El primero se presenta a 0.6 y el segundo a 1.85 de la eslora del buque; en este caso dichos máximos ocurren a (15m/23m) 0.65, y, a (33m/23m) 1.43. Sin embargo se presenta una notoria diferencia en el valor más alto en levantamiento, mientras que en este trabajo se obtienen valores de levantamiento de 1.4 veces la amplitud de la ola, en la referencia mencionada se tienen valores máximos superiores a 2.0, aunque debe mencionarse que en dicha referencia no se especifica el número de Froude al que se desarrollaron los cálculos. En los gráficos 45 y 46 que presentan los resultados del cálculo del cabeceo, no presentan variación notoria entre 10 y 12 nudos en las amplitudes y en condiciones de carga del 25 y 100 %.

A partir de los resultados previos se calcularon las amplitudes del Movimiento Vertical y Aceleración Vertical combinadas en Levantamiento y Cabeceo para las dos condiciones de carga, las cuales se presentan en forma tabular en el apéndice C; este cálculo se repetirá para las dos posiciones longitudinales especificadas en la Figura 42. La siguiente formulación permitirá combinar el levantamiento con el cabeceo del Catamarán:

$$\zeta_{3} \mathbf{e}^{i(\omega_{e}t+\theta_{3})} - \mathbf{X} \zeta_{5} \mathbf{e}^{i(\omega_{e}t+\theta_{5})}$$

donde:

 ζ_3 y ζ_5 son las amplitudes de levantamiento y cabeceo, respectivamente, ω_e , es la frecuencia de encuentro, y,

x es la posición del punto donde se quiere evaluar el movimiento vertical

La aceleración vertical viene dada por la segunda derivada del movimiento vertical respecto del tiempo:

$$\zeta = -\omega_e^2 \zeta e^{(\omega_e t + \theta)}$$

Las figuras 47 a 54 presentan las amplitudes del movimiento combinado vertical y la correspondiente aceleración vertical, tanto en la posición A como en la B, 10 y 12 nudos y a 25 y 100% de carga.

Figura 47. - Amplitudes del movimiento vertical combinado al 100% de carga y en las

posiciones A (Proa) y B (Popa) y a 10 nudos

Figura 48. - Amplitudes del movimiento vertical combinado al 100% de carga y en las

posiciones A (Proa) y B (Popa) y a 12 nudos

Figura 49. - Aceleración Vertical al 100% de carga y en las posiciones A y B y a

10 nudos.

Figura 50. - Aceleración Vertical al 100% de carga y en las posiciones A y B y a

12 nudos.

Figura 51. – Amplitudes del movimiento vertical combinado al 25% de carga y en las posiciones A (Proa) y B (Popa) a 10 nudos

Figura 52. – Amplitudes del movimiento vertical combinado al 25% de carga y en las

posiciones A (Proa) y B (Popa) a 12 nudos

Figura 53. - Aceleración Vertical al 25% de carga y en las posiciones A y B a 10 nudos

Figura 54. - Aceleración Vertical al 25% de carga y en las posiciones A y B a 12 nudos

Los gráficos 47 y 48 nos indican los valores de las amplitudes en el movimiento vertical combinados, a velocidades de 10 y 12 nudos a 100% de carga, los cuales varían con la posición en popa y proa, no así en la aceleración vertical en que los valores son similares en amplitud a 10 y 12 nudos de acuerdo con los gráficos 49 y 50.

A 25% de carga si existe una variación entre los resultados a 10 y 12 nudos, como también entre las posiciones de popa y proa en la amplitud del movimiento vertical; esto se refleja en los gráficos 50 y 51. Lo mismo ocurre con la aceleración vertical donde también existe tal variación y se la puede notarse fácilmente en los gráficos 52 y 53.

4.4 ESTIMACIÓN DE COSTOS.

Para la estimación de costos se ha considerado la construcción de cada casco, superestructura, y, estructura de unión, por separado. El costo de la parte estructural del catamarán fue estimado en base al costo de una plancha de acero de 6 mm disponible en el mercado local, cuyo precio es de US\$ 210.00, y cuyo peso es de 0.455 Ton. El costo de las Máquinas Principales y Generadores fue obtenido de, [33], una cotización obtenida a partir de la marca y modelo de los motores seleccionados. Para la estimación del Costo de personal se consideró que se necesitarán dos soldadores clasificados y de cuatro ayudantes, con un sueldo de acuerdo a la categoría del personal y permitido por la ley; este personal se ha estimado que debe operar durante seis meses. Para la estimación del costo de soldadura se tomó de la tabla XIX, el peso total de los cascos, más superestructura y unión transversal, y se estimó en 5%, aproximadamente, del peso total del acero estructural por concepto de material de soldadura del catamarán. La tabla XXXIX muestra en detalle el desglose de la estimación de costos del casco, superestructura, estructura de unión transversal, así como también el costo del "sandblasting", pintura, maquinaria y mano de obra del catamarán:

			COS	TO(\$)
ITEMS	DESCRIPCION	TON	UNITARIO	TOTAL
1	2 Casco	48.75	461.54	22500.00
2	Superestructura	16.796	461.54	7752.00
3	Estructura de Unión	9.1	461.54	4200.00
3	Soldadura	3.7323	461.54	1722.60
4	2 Maquinas Principales		39250.00	78500.00
5	2 Generadores		14850.00	29700.00
6	Pintura y Sandblasting			16511
7	Costo de Personal		20000	20000
	TOTAL			180885.60

Tabla 39 .- Estimación de Costo principales del Catamarán

Los costos mostrados no incluyen el diseño previo a la construcción y deben estar de acuerdo a los requerimientos establecidos por las autoridades competentes y por el Colegio de Ingenieros Navales; además, al costo total que se indica en la tabla XXXIX, deben sumarse los costos por sistema de propulsión, y otros equipos auxiliares en las salas de máquinas y áreas de ingeniería en general y equipos electrónicos y de navegación. Además habrá que considerar los costos de los acabados de interiores en las áreas de vivienda y comunes.

El Costo total del Catamarán, en lo que se refiere a la estructura es de \$ 180885.60

4.5 COMPARACIÓN DEL CATAMARÁN CON UNA EMBARCACIÓN MONOCASCO.

A continuación se desarrollará una comparación entre el catamarán diseñado, una embarcación monocasco construida recientemente, [2], y de un segundo catamarán en fase de construcción en el medio. Las tres embarcaciones están diseñadas para proveer el mismo tipo de servicio, pasajeros turistas en las Islas Galápagos. La siguiente tabla nos indicara tales comparaciones:

DESCRIPCION	CATAMARAN DE DISEÑO	YATE TIP TOP III	CATAMARAN ARCHIPEL
ESLORA	23.94 m	29.9 m	27 m
MANGA TOTAL	9.00 m	6.6 m	10.80 m
MANGA SEMICASCO	2.558 m		
PUNTAL	3.36 m	2.96 m	3.40 m
CALADO	<u>1.014 m</u>	1.48 m	1.45 m
DESPLAZAMIENTO	80.76 Ton	150 Ton	90 Ton
VELOCIDAD	12 nudos	13 nudos	
PASAJEROS	20	16	16
TRIPULACION	7	8	10
PROPULSION	2@380 HP	2@400 HP	2@240 HP
COMBUSTIBLE	3500 Gals	3400 Gals	2000 Gais
AGUA	2600 Gals	2600 Gals	3000 Gals
MATERIAL	Асего	Acero	Fibra de Vídrio

Tabla 40.- Comparación del diseño con alternativas

La tabla anterior nos muestra las ventajas que tienen los catamaranes con respecto al monocasco de acuerdo al desplazamiento, ya que en ellos es mucho menor, teniendo en cuenta que las esloras están muy cercanas entre ellas. Los Catamaranes concuerdan en proporción entre ellas, como en dimensiones principales, desplazamiento, personas a bordo. Lo que significa que el estudio realizado a sido bien encaminado.

.

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

Una vez diseñado en forma preliminar el Catamarán de pasajeros para servicios turísticos en las Islas Galápagos, aplicando la espiral de diseño en sus dos primeros niveles, Conceptual y Preliminar, se ha llegado a las siguientes conclusiones:

Al completar la primera vuelta de la Espiral de Diseño, se obtuvieron las dimensiones principales del Catamarán conceptualmente, llegándose a encontrar una variación notoria entre el desplazamiento y la suma de los pesos de la embarcación. Además se notó que el espacio para la hélice era muy pequeño, en función de la potencia para impulsar la embarcación. Todo esto llevó a establecer cambios en las dimensiones principales, que se realizaron posteriormente en la etapa del Diseño Preliminar. De manera que se corrobora la importancia de la filosofía de la Espiral de Diseño: asumir y comprobar.

Se encontró mas fácil la preparación de la Distribución General en el Catamarán que en una embarcación monocasco debido al incremento en área: primero Bajo Cubierta donde los espacios permiten una mejor distribución tanto de Sala de Máquinas, Camarotes de Tripulación, tanques de combustible y agua. Luego sobre cubierta, donde los espacios de los Camarotes de Pasajeros son amplios y cómodos, permitiendo tener el comedor en el mismo piso, y estar aislados del Puente de Gobierno y Camarote del Capitán, ubicados encima de este nivel. Se encontró que la potencia estimada en el cálculo conceptual es muy baja, comparada con la obtenida en la segunda fase de diseño, en la que se hizo un estudio a partir de la resistencia al avance de los cascos por separado. Para la primera se empleó la regla de Caterpillar, considerando cada casco soportando la mitad del peso estimado para toda la embarcación. Para el segundo cálculo se utilizó primero los resultados de la Serie de Taylor por tener una relación eslora / manga de 9.37 (muy elevada para los buques estándar) y se obtuvo los EHP para cada casco. Se calculó luego el factor de interferencia entre cascos y se obtuvo el SHP por interferencia que sumados a los de los cascos produjo los SHP totales, logrando así obtener el valor final de la potencia necesaria de los motores. Esto permitió finalmente seleccionar la hélice adecuada utilizando los modelos de la serie B-Wageningen. Debe anotarse que el Factor de Interferencia presenta zonas con valores positivos y negativos, teniéndose en este caso que incrementar la Resistencia Total debido a la Interferencia de los Cascos.

Se realizó un estudio detallado de la estructura de unión transversal ya que en el medio no hay mucha experiencia sobre este tema. Se utilizó el artículo de Dinsenbacher, [30], por considerarlo como una fuente confiable, para estimar las cargas en dos condiciones que son las de Flexión y Corte (olas de costado), y, la de Torsión (olas oblicuas). Luego se utilizó el método de Elementos Finitos para el cálculo de los esfuerzos y deformaciones máximas que se producen en la estructura. Se comprobó que los valores operativos no pasan del límite de esfuerzo de cedencia del acero (tanto en esfuerzo normal como en corte), de manera que la estructura de conexión puede considerarse sólida en sus proporciones y escantillones. El Costo del Catamarán se lo ha estimado con valores reales y actuales en nuestro medio, tanto para la construcción del casco, superestructura y, equipos principales, como para el costo de materiales y mano de obra. A partir del valor total obtenido nos lleva a pensar que su construcción es viable en el medio

Se realizó una comparación entre el Catamarán diseñado y otras dos embarcaciones turísticas (monocasco y catamarán en construcción). Sobre el primero existe una gran ventaja en lo que se refiere a la preparación de la distribución general, ya que se dispone de mayor área de espacio disponible, calculada para la misma autonomía. Con respecto al Catamarán en construcción lo que se puede indicar es que sus dimensiones principales son proporcionales (L=27 m, B=10.80 m, D=3.4 m, Δ =90 Ton), a los obtenidos en el desarrollo del presente diseño (L=23.94 m, B=9.0 m, D=3.36 m, 80.76 Ton). Todo esto permite reforzar la validez del proceso de diseño implementado y aplicado en este trabajo

RECOMENDACIONES

Debe completarse las vueltas que sean necesarias en la continuación de la Espiral de Diseño, ya que permite ir detectando posibles errores y corregirlos en las etapas posteriores. La recomendación más importante sobre este aspecto, es que a medida que se va diseñando el Catamarán debe chequearse el valor del peso de la embarcación, comparándolo respecto al desplazamiento.

Se deben corroborar las estimaciones del Factor de Interferencia en forma experimental, que permitan comparar las zonas con valores positivos como negativos, en forma similar a como lo presenta la figura 24, [7]. De esta forma quizás se puedan establecer zonas de trabajo económicas.

Se debe realizar un análisis de la plancha reforzada de la superficie superior de la estructura de unión transversal, sometida a flexión local, sometida a los diferentes pesos que se soporta. Este cálculo es un complemento del desarrollado en el Capítulo 4 de esta tesis, en la que se consideró el comportamiento global de la estructura de unión transversal

APENDICES

APÉNDICE A

CALCULOS HIDROSTATICOS DE UN SEMICASCO

UNIDADES Y DEFINICIONES DE LA CORRIDA DE SHCP

CD/P	CAMBIO DE DESPLAZ. POR PIE DE ASIENTO POR POPA (ton)	
DESP	DESPLAZAMIENTO	
Н	CALADO	
KB	ALTO DEL CENTRO DE BOYANTEZ SOBRE LB	
LCB	POSICION LONGITUD. DEL BOYANTEZ DESDE SECCION MEDIA	A
LCF	POSICION LONG. DEL C. FLOTACION DESDE S.M (+PROA)	
BML	RADIO METACENTRICO LONGITUDINAL	
KML	METACENTRO LONGITUDINAL	
MT1	MOMENTO PARA CAMBIAR EL ASIENTO UN M.	
CPL	COEFICIENTE PRISMATICO LONGITUDINAL	
TP1	TONELADAS POR UNIDAD DE INMERSION	
BMT	RADIO METACENTRICO TRANSVERSAL	
KMT	METACENTRO TRANSVERSAL	
VOL	VOLUMEN DE DESPLAZAMIENTO (M. CUBICAS)	
SM	SUPERFICIE MOJADA (M. CUADRADOS)	
AW	AREA PLANO DE AGUA (M. CUADRADOS)	
CW	COEFICIENTE PLANO DE AGUA-AW/(LBPXB*)	
CIW	COEF. INERCIA PLANO AGUA - INERCIA)
		í.

HIDROSTATICAS - PARTE I ASIENTO 0.000 M.

H	VOL	DESP	LCB	KB	SM	СР	CW	CIW
1.01	39.	40.2	-0.48	0.57	79 .	0.672	0.814	0.692
LD1.01	39.	40.4	-0.49	0.57	79.	0.672	0.814	0.692
1.34	56.	57.2	-0.74	0.75	94.	0.711	0.831	0.714
1.68	73.	75.1	-0.86	0.93	110.	0.737	0.844	0.730
2.02	91.	93.3	-0.91	1.11	126.	0.757	0.858	0.748
2.35	109.	111.2	-0.92	1.28	141.	0.773	0.873	0.765
2.69	127.	130.0	-0.90	1.46	157.	0.787	0.888	0.786
3.50	164.	168.5	-0.72	1.82	190.	0.809	0.000	0.000

HIDROSTATICAS - PARTE II ASIENTO 0.000 M.

Н	AW LCF	TP1	CD/P	BML	BMT	KML	KMT	MT1
1.01	501.36	50.80	2.90	43.1	0.59	43.7	1.15	72.8
LD1.01	50, -1.36	50.83	2.90	43.0	0.58	43.5	1.15	72.9
1.34	511.30	52.07	2.85	32.2	0.43	32.9	1.18	77.3
1.68	521.18	53.03	2.63	25.7	0.34	26.6	1.27	81.0
2.02	531.04	53.97	2.36	21.6	0.28	22.7	1.39	84.8
2.35	540.90	54.88	2.08	19.0	0.24	20.2	1.52	88.6
2.69	550.75	55.85	1.77	16.9	0.21	18.4	1.67	92.6
3.50	0. 11.90	0.00	0.00	0.0	0.00	1.8	1.82	0.0

¢ e P

C13 25.

AREAS SECCIONALES EN M.CUADRADOS - PARTE I 1 ASIENTO 0.000 M.

ESTAC.	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50
CALADC)							
1.01	0.00	0.00	0.00	0.18	0.46	0.73	0.99	1.24
LD1.01	0.00	0.00	0.00	0.18	0.46	0.73	1.00	1.25
1.34	0.00	0.00	0.06	0.37	0.76	1.14	1.49	1.82
1.68	0.00	0.00	0.16	0.61	1.12	1.61	2.05	2.46
2.02	0.00	0.01	0.33	0.92	1.55	2.13	2.66	3.13
2.35	0.00	0.06	0.55	1.27	2.02	2.69	3.29	3.82
2.69	0.00	0.18	0.84	1.70	2.56	3.32	3.99	4.57
3.50	0.06	0.74	1.79	2.95	4.03	4.95	5.71	6.34

AREAS SECCIONALES EN M CUADRADOS - PARTE I 2 ASIENTO 0.000 M.

ESTAC.	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50
CALADO								
1.01	1.47	1. 69	1.88	2.04	2.18	2.29	2.37	2.41
LD1.01	1.48	1. 69	1.89	2.05	2.19	2.30	2.38	2.42
1.34	2.12	2.39	2.62	2.82	2.98	3.11	3.20	3.25
1. 6 8	2.82	3.13	3.41	3.64	3.82	3. 9 7	4.07	4.13
2.02	3.54	3.90	4.21	4.47	4.6 7	4.83	4.94	5.00
2.35	4.28	4.6 7	5.00	5.28	5.50	5. 6 7	5.78	5.85
2.69	5.06	5.48	5.84	6 .13	6.36	6.53	6.66	6.73
3.50	6 .87	7.31	7 .6 7	7. 96	8.19	8.35	8.4 6	8.52

AREAS SECCIONALES EN M. CUADRADOS - PARTE I 3 ASIENTO 0.000M.

ESTAC.	8.00	8.50	9.00	9.50	10.00	10.50	11.00	11.50
CALADO	1							
1.01	2.47	2.45	2.45	2.45	2.45	2.45	2.46	2.46
LD1.01	2.47	2.46	2.46	2.46	2.46	2.46	2.46	2.46
1.34	3.31	3.30	3.30	3.30	3.30	3.30	3.30	3.30
1.68	4.18	4.18	4.18	4.18	4.18	4.18	4.18	4.18
2.02	5.06	5.05	5.05	5.05	5.05	5.05	5.05	5.05
2.35	5.91	5.90	5.91	5.91	5.91	5.91	5.91	5.91
2.69	6.79	6.78	6.78	6.78	6.78	6.78	6.78	6.78
3.50	8.57	8.54	8.53	8.52	8.51	8.50	8.48	8.47
AREAS SECCIONALES EN M. CUADRADOS - PARTE I 4 ASIENTO 0.000M:

ESTAC.	12.00	12.50	13.00	13.50	14.00	14.50	15.00	15.50
CALADO	1							
1.01	2.46	2.45	2.45	2.43	2.38	2.29	2.15	1.98
LD1.01	2.46	2.46	2.46	2.44	2.39	2.30	2.16	1.99
1.34	3.30	3.30	3.30	3.28	3.23	3.13	2.98	2.79
1.68	4.18	4.18	4.17	4.15	4.10	3.99	3.83	3.64
2.02	5.05	5.05	5.05	5.03	4.97	4.86	4.69	4.49
2.35	5.91	5.90	5.90	5.88	5.82	5.70	5.53	5.31
2.69	6.78	6.78	6.78	6.76	6.70	6.57	6.39	6.17
3.50	8.46	8.45	8.44	8.41	8.33	8.19	8.00	7.75

AREAS SECCIONALES EN M. CUADRADOS - PARTE I 5 ASIENTO 0.000M.

16.00	16.50	17.00	17.50	18.00	18.50	19.00	19.50
)							
1.77	1.53	1.29	1.05	0.82	0.60	0.41	0.24
1.78	1.54	1.30	1.06	0.82	0.61	0.41	0.24
2.57	2.32	2.06	1.80	1.55	1.31	1.10	0.91
3.40	3.13	2.86	2.58	2.31	2.05	1.82	1.62
4.24	3.95	3.66	3.36	3.08	2.80	2.56	2.34
5.05	4.75	4.44	4.13	3.83	3.54	3.27	3.04
5.89	5.58	5.26	4.93	4.61	4.30	4.02	3.77
7.45	7.11	6.75	6.39	6.03	5.69	5.37	5.08
	16.00 1.77 1.78 2.57 3.40 4.24 5.05 5.89 7.45	16.0016.501.771.531.781.542.572.323.403.134.243.955.054.755.895.587.457.11	16.0016.5017.001.771.531.291.781.541.302.572.322.063.403.132.864.243.953.665.054.754.445.895.585.267.457.116.75	16.0016.5017.0017.501.771.531.291.051.781.541.301.062.572.322.061.803.403.132.862.584.243.953.663.365.054.754.444.135.895.585.264.937.457.116.756.39	16.0016.5017.0017.5018.001.771.531.291.050.821.781.541.301.060.822.572.322.061.801.553.403.132.862.582.314.243.953.663.363.085.054.754.444.133.835.895.585.264.934.617.457.116.756.396.03	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

AREAS SECCIONALES EN M CUADRADOS - PARTE 16 ASIENTO 0.000M.

ESTAC.	20.00
CALADO	
1.01	0.10
LD1.01	0.11
1.34	0.74
1.68	1.44
2.02	2.14
2.35	2.83
2.69	3.54
3.50	4.82

APÉNDICE B

CALCULO DE MODULOS SECCIONALES DE PLANCHA Y REFUERZO

H= 5,42 cm

#	ELEMENTO	A(cm ²)	d(cm)	A*d(cm ³)	$A^{\star}d^{2}$ (cm ⁴)	loi(cm ⁴)
1	PLANCHA	13,6	0,34	4,62	1,57	0,52
2	PLATINA	6,12	3,22	19,71	63,45	41,31
	SUMA	19,72		24,33	65,03	41,83

Z=	1,23 cm
lo=	76,84 cm⁴
SM=	18,36 cm ³

PLANCHA

Be=	20 cm
t=	0,68 cm

PLATINA			
b=	0,68 cm		
h=	9 cm		

Tabla B1 .- Dimensiones del elemento plancha- refuerzo para los refuerzos

longitudinales, del fondo, costados y esloras

El siguiente grafico presenta escantillones del conjunto plancha - refuerzo

Figura B1. -Dimensiones del elemento plancha- refuerzo

Luego también se estimaron las dimensiones del elemento plancha – alma - ala para el calculo del modulo seccional de las cuadernas transversales, comparándola con el que requiere ABS.

	H= 5.42 (Cm				
#	ELEMENTO	A(cm ²)	d(cm)	A*d(cm ³)	A^*d^2 (cm ⁴)	loi(cm ⁴)
1	PLANCHA	68.00	0.34	23.12	7.86	2.62
2	ALMA	9.44	7.62	71.92	548.04	151.53
3	ALA	5.10	14.9	75.99	1132.25	23.91
	SUMA	77.4384		95.04	555.90	154.15

Z=	1.23 cm
lo=	593.40 cm ⁴
SM=	141.53 cm ³

PLANCHA					
be=	100 Cm				
t=	0.68 Cm				

ALMA

b=	0.68 Cm
h≠	13.88 Cm

ALA	<u></u>
b=	0.68 Cm
h=	7.5 Cm

El siguiente grafico nos presenta los valores de la plancha - alma -ala de las cuadernas:

ىلغە ك

APÉNDICE C

METODO PARA ESTIMACIÓN DE CARGAS SOBRE LA ESTRUCTURA

TRANSVERSAL DEL CATAMARAN

Modificación de la Densidad de Fluido

El peso del catamarán esta dada por: $W/2 = \rho g (b - \beta) D_o L C_b$

Y el peso del prisma rectangular:

$$W/2 = \rho_p g (b - \beta) D_o L$$

Donde:

 ρ = densidad del agua g = aceleración de la gravedad Do = calado en agua tranquila C_b = coefiente bloque del catamarán W = peso del barco β = mitad de la estructura transversal de acuerdo al eje z b= mitad de la manga total del catamarán

Igualando tenemos que:

$$\rho_p = \rho C_b$$

Condición de Carga Nº1

Para la condición de carga Nº1 la amplitud de ola es la siguiente:

$$A = \pm 1.0 \sqrt{L_w} ; L_w = 2(S + B)$$

ESPUL

ିଶ୍

 $L_W =$ longitud de ola S = manga de la estructura transversal B = manga del casco La fuerza horizontal total hidrostática sobre los costados, es:

$$H_{\rm L} = \rho g \frac{L}{2} (D + A \operatorname{sen} \frac{\pi (b - \beta)}{2(b + \beta)})^2$$

A= amplitud de ola D= calado instantáneo medio

La fuerza horizontal hidrostática sobre el lado interior del casco es:

$$H_{\rm R} = \rho g \frac{L}{2} (D - A \operatorname{sen} \frac{\pi (b - \beta)}{2(b + \beta)})^2$$

Los puntos de acción de estas cargas sobre la quilla son:

$$V_{L} = \frac{1}{3} (D + A \operatorname{sen} \frac{\pi(b - \beta)}{2(b + \beta)})$$
$$V_{R} = \frac{1}{3} (D - A \operatorname{sen} \frac{\pi(b - \beta)}{2(b + \beta)})$$

La fuerza de boyantes (desplazamiento instantáneo) en cada casco es:

$$\frac{\Delta}{2} = \rho g C_b D L (b - \beta)$$

La localización transversal de esta fuerza es desde el centro vertical de simetría viene dado por: (i - 2) (i - 2) (i - 2)

$$\mathbf{r} = \frac{\mathbf{b} + \beta}{2} \left[1 + \frac{2A}{\pi D} \left(\frac{2(\mathbf{b} + \beta)}{\pi (\mathbf{b} - \beta)} \sin \frac{\pi (\mathbf{b} - \beta)}{2(\mathbf{b} + \beta)} - \cos \frac{\pi (\mathbf{b} - \beta)}{2(\mathbf{b} + \beta)} \right) \right]$$

Una relación entre el calado instantáneo y el calado en agua tranquila viene dada por:

.

$$D/D_0 = 1 \pm 0.4$$

Por equilibrio tenemos que:

$$H_L + P - H_R = 0$$

Por lo tanto

P = -2
$$\rho$$
 g L A (1 ±0.4) D_o sin $\frac{\pi(b-\beta)}{2(b+\beta)}$

P = carga axial transversal interna sobre la estructura transversal

El momento flector debido a las fuerzas externas sobre la estructura transversal están dadas por:

$$M_{\rm H} = -\rho \ g \ \text{LA} \ \sin \frac{\pi (b-\beta)}{2(b+\beta)} \ [2 \ D_{\rm o}(1 \pm 0.4)(H_{\rm I}-d) - D_{\rm o}^{2} (1 \pm 0.4)^{2} - \frac{A^{2}}{3} \sin^{2} (\frac{\pi (b-\beta)}{2(b+\beta)})]$$

d = distancia desde el tope de la estructura transversal hasta abajo del eje neutro de la estructura transversal

La fuerza vertical (incluyendo fuerzas inerciales) actuando en el barco por pie transversal esta dada por:

$$Q_{max} = \frac{\Delta}{W} (\frac{W_c}{2}) = (1 \pm 0.4) \frac{W_c}{2}$$

El momento vertical en el centro de la estructura transversal es obtenida:

$$M_{v}(0) = \frac{W(b+\beta)A}{2\pi D_{o}} \left[\frac{2(b+\beta)}{\pi(b-\beta)} \sin \frac{\pi(b-\beta)}{2(b+\beta)} - \cos \frac{\pi(b-\beta)}{2(b+\beta)}\right] - (1\pm0.4) \frac{W_{c}b}{4}$$

 $W_c = peso de la estructura transversal$

Por lo tanto el momento vertical total esta dado por:

$$M(0) = -\rho g LA \sin \frac{\pi B}{2(S+B)} \left[2 D_0 (1 \pm 0.4) (H_1 - d) - D_0^2 (1 \pm 0.4)^2 - \frac{A^2}{3} \sin^2 \frac{\pi B}{2(S+B)} \right]$$

+ $\frac{W(S+B)A}{2\pi D_0} \left[\frac{2(S+B)}{\pi B} \sin \frac{\pi B}{2(S+B)} - \cos \frac{\pi B}{2(S+B)} \right] + (1 \pm 0.4) \frac{W_c(S+2B)}{8}$

donde: 2 ($b + \beta$) = 2 (S+B)

El momento en la unión entre la estructura transversal y casco es:

$$M_{v}(\pm\beta) = M(0) - \frac{\Delta}{W} \frac{W_{c}\beta}{4} = = M(0) - (1 \pm 0.4) \frac{W_{c}\beta}{4} \circ$$
$$M_{v}(\pm\frac{S}{2}) = M(0) - (1 \pm 0.4) \frac{W_{c}S}{8}$$

Pero el cortante máximo en ola de manga viene dado por:

$$Q = (1 \pm 0.4) \frac{W_c}{2} + 0.34 \frac{M_Q}{S}$$

Y en momento torsional es:

$$M_Q = M(0) - (1 \pm 0.4) \frac{W_c(S + 2B)}{8}$$

Condición de Carga Nº2

Para la condición de carga N°2, la amplitud de ola es la siguiente:

A = ±0.6
$$\sqrt{L_w}$$
; L_W = $\frac{L(s+B)}{\sqrt{(S+B)^2 + (L/2)^2}}$

La fuerza cortante máxima por torsión es:

$$Q = (1 \pm 0.4) Wc/2 + 0.34 M_Q/S$$

$$M(0) = -\rho g LA \sin \frac{\pi B}{2(S+B)} \left[2 D_0 (1 \pm 0.4) (H_1 - d) - D_0^2 (1 \pm 0.4)^2 - \frac{A^2}{3} \sin^2 \frac{\pi B}{2(S+B)} \right]$$

$$+ \frac{W(S+B)A}{2\pi D_0} \left[\frac{2(S+B)}{\pi B} \sin \frac{\pi B}{2(S+B)} - \cos \frac{\pi B}{2(S+B)} \right] + (1 \pm 0.4) \frac{W_o(S+2B)}{8}$$

El máximo valor de torque producido en el centro de la estructura transversal viene dado por:

$$Tc = \frac{\rho g C_b (b - \beta) A L^2}{2\pi} + \frac{0.14 M_{Q} t}{S}$$

APÉNDICE D

TABLAS DE RESULTADOS DE SCORES PARA LEVANTAMIENTO Y CABECEO, TANTO PARA AMPLITUDES Y ACELERACIÓN VERTICAL, A 10 NUDOS EN LAS POSICIONES A y B del CATAMARAN.

Presentaremos las tablas de cálculos para 10 Nudos, y el mismos procedimiento se hizo para 12 Nudos.

Øola	۵ _e	Long ola	rel ola/barco	LE	VANTAMIENTO	CA	BECEO
1/seg	1/seg	m		ξ ₃ (m)	fase(grados)	ξ ₅ (grados)	fase(grados)
2.48	5.72	10.00	0.42	0.02	13.10	0.12	97.50
2.22	4.81	12.50	0.52	0.02	-161.30	0.83	113.50
2.03	4.18	15.00	0.63	0.08	-155.30	0.74	136.40
1.88	3.73	17.50	0.73	0.08	-146.80	0.85	-88.30
1.76	3.37	20.00	0.84	0.05	59.80	3.48	-50.80
1.66	3.09	22.50	0.94	0.37	76.10	6.92	-26.60
1.57	2.86	25.00	1.04	0.82	104.00	9.67	-2.80
1.50	2.67	27.50	1,15	1.14	131.60	10.76	15.90
1.43	2.51	30.00	1.25	1.24	151.40	10.88	28.10
1.38	2.37	32.50	1.36	1.21	164.20	10.73	37.20
1.33	2.25	35.00	1.46	1.15	171.40	10,40	44.30
1.28	2.14	37.50	1,57	1.09	175.30	9.98	49.90
1.24	2.05	40.00	1.67	1.06	177.20	9.50	54.40
1.20	1.97	42.50	1.78	1.03	178.30	9.03	58.10
1.17	1.89	45.00	1.88	1.02	178.80	8.58	61.10
1.14	1.82	47.50	1.98	1.01	179.10	8.15	63.60
1.11	1.76	50.00	2.09	1.00	179.30	7.76	65.70
1.08	1.70	52.50	2.19	1.00	179.40	7.40	67.50
1.06	1.65	55.00	2.30	0.99	179.50	7.06	69.10
1.04	1.60	57.50	2.40	0.99	179.50	6.76	70.40
1.01	1.55	60.00	2.51	0.99	179.50	6.47	71.60
0.99	1.51	62.50	2.61	0.99	179.50	6.21	72.70

				* 10110			
0.97	1.47	65.00	2.72	0.99	179.60	5.96	73.60
0.96	1.43	67.50	2.82	0.99	179.60	5.73	74.50
0.94	1.40	70.00	2.92	0.99	. 179.60	5.52	75.30
0.92	1.37	72.50	3.03	0.99	179.60	5.32	76.00
0.91	1.34	75.00	3.13	0.99	179.60	5.14	76.60
0.89	1.31	77.50	3.24	0.99	179.60	4.97	77.20
0.88	1.28	80.00	3.34	1.00	179.60	4.80	77.80
0.86	1.26	82.50	3.45	1.00	179.60	4.65	78.30
0.85	1.23	85.00	3.55	1.00	179.60	4.51	78.70
0.84	1.21	87.50	3.66	1.00	179.60	4.37	79.10
0.83	1.19	90.00	3.76	1.00	179.70	4.25	79.50
0.82	1.17	92.50	3.86	1.00	179.70	4.13	79.90
0.81	1.15	95.00	3.97	1.00	179.70	4.01	80.30
0.80	1.13	97.50	4.07	1.00	179,70	3.90	80.60
0.79	1.11	100.00	4.18	1.00	179.70	3.80	80.90
0.78	1.09	102.50	4.28	1.00	179.70	3.71	81.20
0.77	1.07	105.00	4.39	1.00	179.70	3.61	81.40
0.76	1.06	107.50	4.49	1.00	179.70	3.52	81.70
0.75	1.04	110.00	4.59	1.00	179.70	3.44	81.90
0.74	1.03	112.50	4.70	1.00	179.70	3.36	82.20
0.73	1.01	115.00	4.80	1.00	179,70	3.28	82.40
0.72	1.00	117.50	4.91	1.00	179.70	3.21	82.60
0.72	0.99	120.00	5.01	1.00	179.70	3.14	82.80

Viene

Tabla D1.- Amplitudes y Fases en Levantamiento y Cabeceo para una carga del 100% y a 10 Nudos

Oola	0e	long ola	rei ola/barco	LE	VANTAMIENTO	CAI	BECEO
1/seg	1/seg	m		ξ ₃ (m)	fase(grados)	ξ ₆ (grados)	fase(grados)
2.48	5.72	10.00	0.45	0.01	6.50	0.32	110.50
2.22	4.81	12.50	0.56	0.04	-154.40	0.86	118.00
2.03	4.18	15.00	0.67	0.09	-150.50	0.35	160.00
1.88	3,73	17.50	0.79	0.04	-147.80	1.73	-61.90
1.76	3.37	20.00	0.90	0.18	65.40	4.84	-39.50
1.66	3.09	22.50	1.01	0.59	90.40	8.31	-16.80
1.57	2.86	25.00	1.12	1.00	119.50	10.45	4.50
1.50	2.67	27.50	1.24	1.20	142.90	11.12	19.60
1,43	2.51	30.00	1.35	1.22	158.40	11.21	30.30
1.38	2.37	32.50	1.46	1.19	167.90	11.03	38.50
1.33	2.25	35.00	1.57	1.14	173.20	10.67	45.00
1.28	2.14	37.50	1.69	1.10	176.30	10.21	50.30
1.24	2.05	40.00	1.80	1.06	178.00	9.72	54.70
1.20	1.97	42.50	1.91	1.04	179.00	9.23	58.20
1.17	1.89	45.00	2.02	1.03	179.50	8.77	61.10
1.14	1.82	47.50	2.14	1.02	179.80	8.33	63.60
1.11	1.76	50.00	2.25	1.01	179.90	7.92	65.60
1.08	1.70	52.50	2.36	1.00	-180.00	7.55	67.40
1.06	1.65	55.00	2.47	1.00	-179.90	7.20	69.00
1.04	1.60	57.50	2.59	1.00	-179.90	6.88	70.40
1.01	1.55	60.00	2.70	1.00	-179.90	6.58	71.60
0.99	1.51	62.50	2.81	1.00	-179.90	6.31	72.70

	·						<u> </u>				r			<u> </u>						-	_		<u> </u>
	73.60	74.50	75.30	76.00	76.60	77.20	77.80	78.30	78.70	79.10	79.50	79.90	80.30	80.60	80.90	81.20	81.50	81.70	82.00	82.20	82.40	82.60	82.80
	6.06	5.82	5.60	5.40	5.21	5.03	4.87	4.71	4.56	4.42	4.29	4.17	4.05	3.94	3.84	3.74	3.65	3.56	3.47	3.39	3.31	3.24	3.17
	-180.00	-180.00	-180.00	-180.00	180.00	180.00	180.00	180.00	179.90	179.90	179.90	179.90	179.90	179.90	179.90	179.90	179.90	179.90	179.90	179.90	179.90	179.90	179.90
Viene	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	2.92	3.04	3.15	3.26	3.37	3.48	3.60	3.71	3.82	3.93	4.05	4.16	4.27	4.38	4.50	4.61	4.72	4.83	4.95	5.06	5.17	5.28	5.40
	65.00	67.50	70.00	72.50	75.00	77.50	80.00	82.50	85.00	87.50	80.00	92.50	95.00	97.50	100.00	102.50	105.00	107.50	110.00	112.50	115.00	117.50	120.00
	1.47	1.43	1.40	1.37	1.34	1.31	1.28	1.26	1.23	1.21	1.19	1.17	1.15	1.13	1.11	1.09	1.07	1.06	1.04	1.03	1.01	1.00	66 .0
	0.97	0.96	0.94	0.92	0.91	0.89	0.88	0.86	0.85	0.84	0.83	0.82	0.81	0.80	0.79	0.78	0.77	0.76	0.75	0.74	0.73	0.72	0.72

Tabla D2.- Amplitudes y Fases en Levantamiento y Cabeceo para una carga del 25% y a 10 Nudos

	ACEL VERT	m/seg2	0.78	2.53	1.74	1.35	5.42	10.06	13.87	15.43	14.78	13.17	11.38	9.81	8.49	7.41	6.53	5.80	5.20	4.70	4.27	3.90	3.59	3.31
	raiz(A ² +B ²)		0.02	0.11	0.10	0.10	0.48	1.05	1.69	2.16	2.34	2.34	2.25	2.13	2.02	1.92	1.83	1.75	1.68	1.63	1.57	1.53	1.49	1.45
	80		0.02	-0.11	60 [.] 0-	0.10	-0.43	-0 88	-1.21	-1.27	-1.19	-1.12	-1.08	-1.06	-1.04	-1.02	66.O	96.0-	-0.93	-0.90	-0.86	-0.83	-0.80	-0.78
	¥		0.02	0.01	0.04	0.02	0.21	0.57	1.18	1.75	2.02	2.05	1.97	1.85	1.73	1.63	1.54	1.46	1.41	1.36	1.31	1.28	1.25	1.23
	ECEO	fase(rad)	1.70	1.98	2.38	-1,54	-0.89	-0.46	-0.05	0.28	0.49	0.65	0.77	0.87	0.95	1.01	1.07	1.11	1.15	1.18	1.21	1.23	1.25	1.27
$sen(\theta_5 - \theta_3)$	CAB	ξ ₆ (rad)	0.00	0.01	0.01	0.01	0.06	0.12	0.17	0.19	0.19	0.19	0.18	0.17	0.17	0.16	0.15	0.14	0.14	0.13	0.12	0.12	0.11	0.11
B≃ -Χξ₅	AMIENTO	fase(rad)	0.23	-2.82	-2.71	-2.56	1.04	1.33	1.82	2.30	2.64	2.87	2.99	3.06	3.09	3.11	3.12	3.13	3.13	3.13	3.13	3.13	3.13	3.13
()	LEVANT	ξ ₃ (m)	0.02	0.02	0.08	0.08	0.05	0.37	0.82	1.14	1.24	1.21	1.15	1.09	1.06	1.03	1.02	1.01	1.00	1.00	0.99	0.99	66.0	0.99
$55 \cos(\theta_5 - \theta_3)$	×	٤	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48	7.48
A=(5,3-X	long ola	ε	10.00	12.50	15.00	17.50	20.00	22.50	25.00	27.50	30.00	32.50	35.00	37.50	40.00	42.50	45.00	47.50	50.00	52.50	55.00	57.50	60.00	62.50
ndo que:	9	1/\$69	5.72	4.81	4.18	3.73	3.37	3.09	2.86	2.67	2.51	2.37	2.25	2.14	2.05	1.97	1.89	1.82	1.76	1.70	1.65	1.60	1.55	1.51
Tenier	0 ola	1/seg	2.48	2.22	2.03	1.88	1.76	1.66	1.57	1.50	1.43	1.38	1.33	1.28	1.24	1.20	1.17	1.14	1.11	1.08	1.06	1.04	1.01	0.99

•

						Viene					
0.97	1.47	65.00	7.48	0.99	3.13	0.10	1.28	1.21	-0.75	1.42	3.07
0.96	1.43	67.50	7.48	0.99	3.13	0.10	1.30	1.19	-0.72	1.39	2.86
0.94	1.40	70.00	7.48	0.99	3.13	0.10	1.31	1.17	-0.70	1.36	2.67
0.92	1.37	72.50	7.48	0.99	3.13	0.09	1.33	1.16	-0.68	1.34	2.51
0.91	1.34	75.00	7.48	0.99	3.13	0.09	1.34	1.14	-0.65	1.32	2.36
0.89	1.31	77.50	7.48	0.99	3.13	0.09	1.35	1.13	-0.63	1.30	2.23
0.88	1.28	80.00	7.48	1.00	3.13	0.08	1.36	1.12	-0.61	1.28	2.11
0.86	1.26	82.50	7.48	1.00	3.13	0.08	1.37	1.11	-0.60	1.26	2.00
0.85	1.23	85.00	7.48	1.00	3.13	0.08	1.37	1.11	-0.58	1.25	1.90
0.84	1.21	87.50	7.48	1.00	3.13	0.08	1.38	1.10	-0.56	1.24	1.81
0.83	1.19	90.00	7.48	1.00	3.14	0.07	1.39	1.10	-0.55	1.22	1.72
0.82	1.17	92.50	7.48	1.00	3.14	0.07	1.39	1.09	-0.53	1.21	1.65
0.81	1.15	95.00	7.48	1.00	3.14	0.07	1.40	1.08	-0.52	1.20	1.58
0.80	1.13	97.50	7.48	1.00	3.14	0.07	1.41	1.08	-0.50	1.19	1.51
0.79	1.11	100.00	7.48	1.00	3.14	0.07	1.41	1.08	-0.49	1.18	1.45
0.78	1.09	102.50	7.48	1.00	3.14	0.06	1.42	1.07	-0.48	1.17	1.40
0.77	1.07	105.00	7.48	1.00	3.14	0.06	1.42	1.07	-0.47	1.17	1.35
0.76	1.06	107.50	7.48	1.00	3.14	0.06	1.43	1.06	-0.46	1.16	1.30
0.75	1.04	110.00	7.48	1.00	3,14	0.06	1.43	1.06	-0.45	1.15	1.25
0.74	1.03	112.50	7.48	1.00	3.14	0.06	1.43	1.06	-0.44	1.14	1.21
0.73	1.01	115.00	7.48	1.00	3.14	0.06	1.44	1.06	-0.43	1.14	1.17
0.72	1.00	117.50	7.48	1.00	3.14	0.06	1.44	1.05	-0.42	1.13	1.13
0.72	0.99	120.00	7.48	1.00	3.14	0.05	1.45	1.05	-0.41	1.13	1.10

Tabla D3.- Amplitudes del Movimiento Vertical y Aceleración Vertical para una carga del 100%, a 10 nudos y en la posición A.

ACEL VERT	m/seg2	0.98	3.45	3.04	2.78	6.72	11.32	13.53	12.32	10.09	8.44	7.35	6.54	5.90	5.34	4.87	4.45	4.09	3.77	3.49	3.24	3.02	2.83	
raiz(A ² +B ²)		0.03	0.15	0.17	0.20	0.59	1.18	1.65	1.72	1.60	1.50	1.45	1.42	1.40	1.38	1.36	1.34	1.32	1.30	1.29	1.27	1.25	1.24	
æ		-0.02	0.15	0.12	-0.13	0.57	1.18	1.62	1.69	1.59	1.50	1.45	1.42	1.39	1.36	1.33	1.28	1.24	1.20	1.16	1.11	1.07	- 8.	
A		0.02	0.04	0.13	0.16	-0.16	0.11	0.33	0.32	0.20	0.08	0.05	0.09	0.16	0.24	0.32	0.39	0.46	0.51	0.56	0.61	0.64	0.68	
ECEO	fase(rad)	1.70	1.98	2.38	-1.54	-0.89	-0.46	-0.05	0.28	0.49	0.65	0.77	0.87	0.95	1.01	1.07	1.11	1.15	1.18	1.21	1.23	1.25	1.27	
CAB	ξ, (rad)	00.00	0.01	0.01	0.01	0.06	0.12	0.17	0.19	0.19	0.19	0.18	0.17	0.17	0.16	0.15	0.14	0.14	0.13	0.12	0.12	0.11	0.11	Continua
AMIENTO	fase(rad)	0.23	-2.62	-2.71	-2.56	1.04	1.33	1.82	2.30	2.64	2.87	2.99	3.06	3.09	3.11	3.12	3.13	3.13	3.13	3.13	3.13	3.13	3.13	
LEVANI	ξa (m)	0.02	0.02	0.08	0.08	0.05	0.37	0.82	1.14	1.24	1.21	1.15	1.09	1.06	1.03	1.02	1.01	1.00	1.00	0.88	66 .0	0.99	0.99	
×	£	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	
iong ola	E	10.00	12.50	15.00	17.50	20.00	22.50	25.00	27.50	30.00	32.50	36.00	37.50	4 0.00	42.50	45.00	47.50	50.00	52.50	55.00	57.50	80.00	62.50	
	1/560	5.72	4.81	4,18	3.73	3.37	3.09	2.86	2.67	2.51	2.37	2.25	2.14	2.05	1.97	1.89	1.82	1.76	1.70	1.65	1.60	1.55	1.51	
Bo <u>la</u>	1/889	2.48	2.22	2.03	1.88	1.76	1.66	1.57	1.50	1.43	1.38	1.33	1.28	1.24	1.20	1.17	1.14	1.11	1.08	1.06	1.04	1.01	0.99	

	2.65	2.50	2.36	2.23	2.11	2.01	1.91	1.82	1.74	1.67	1.60	1.53	1.47	1.42	1.37	1.32	1.27	1.23	1.19	1.15	1.12	1.08	1.05
	1.22	1.21	1.20	1.19	1.18	1.17	1.16	1.15	1.15	1.14	1.13	1.13	1.12	1.12	1.11	1.11	1.10	1.10	1.09	1.09	1.09	1.09	1.08
	1.00	0.97	0.93	0:90	0.87	0.85	0.82	0.80	0.77	0.75	0.73	0.71	0.69	0.67	0.66	0.64	0.62	0.61	0.59	0.58	0.57	0.56	0.54
	0.71	0.73	0.75	0.77	0.79	0.81	0.82	0.84	0.85	0.86	0.87	0.88	0.88	0.89	0.90	0:90	0.91	0.91	0.92	0.92	0.93	0.93	0.94
	1.28	1.30	1.31	1.33	1.34	1.35	1.36	1.37	1.37	1.38	1.39	1.39	1.40	1.41	1.41	1.42	1.42	1.43	1.43	1.43	1.44	1 .	1.45
Viene	0.10	0.10	0.10	0.09	0.09	0.09	0.08	0.08	0.08	0.08	0.07	0.07	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.05
	3.13	3.13	3.13	3.13	3.13	3.13	3.13	3.13	3.13	3.13	3.14	3.14	3.14	3.14	3.14	3.14	3.14	3.14	3.14	3.14	3.14	3.14	3.14
	0.99	0.99	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00
	65.00	67.50	70.00	72.50	75.00	77.50	80.00	82.50	85.00	87.50	<u> 90.00</u>	92.50	95.00	97.50	100.00	102.50	105.00	107.50	110.00	112.50	115.00	117.50	120.00
	1.47	1.43	1.40	1.37	1.34	1.31	1.28	1.26	1.23	1.21	1.19	1.17	1.15	1.13	1.11	1.09	1.07	1.06	1.04	1.03	1.01	1 .0	0.99
	0.97	96 .0	0.94	0.92	0.91	0.89	0.88	0.86	0.85	0.84	0.83	0.82	0.81	0.80	0.79	0.78	0.77	0.76	0.75	0.74	0.73	0.72	0.72

Tabla D4.- Amplitudes del Movimiento Vertical y Aceleración Vertical para una carga del 100%, 10 nudos y en la posición B.

Øola	0e	long ola	X	LEVANT	AMIENTO	CA	BECEO	A	В	raiz(A ² +B ²)	ACEL VERT
1/seg	1/seg	m	m	ξ ₃ (m)	fase(rad)	ξ ₆ (rad)	fase(rad)				m/seg2
2.48	5.72	10.00	7.48	0.01	0.11	0.01	1.93	0.02	0.04	0.05	1.53
2.22	4.81	12.50	7.48	0.04	-2.69	0.01	2.06	0.04	-0.11	0.12	2.73
2.03	4.18	15.00	7.48	0.09	-2.63	0.01	2.79	0.06	-0.03	0.07	1.15
1.88	3.73	17.50	7.48	0.04	-2.58	0.03	-1.08	0.02	0.23	0.23	3.14
1.76	3.37	20.00	7.48	0.18	1.14	0.08	-0.69	0.34	-0.61	0.70	7.96
1.66	3.09	22.50	7.48	0.59	1.58	0.15	-0.29	0.91	-1.04	1.38	13.21
1.57	2.86	25.00	7.48	1.00	2.09	0.18	0.08	1.58	-1.24	2.01	16.46
1.50	2.67	27.50	7.48	1.20	2.49	0.19	0.34	2.00	-1.21	2.34	16.70
1.43	2.51	30.00	7.48	1.22	2.76	0.20	0.53	2.13	-1.15	2.42	15.26
1.38	2.37	32.50	7.48	1.19	2.93	0.19	0.67	2.10	-1.11	2.38	13.39
1.33	2.25	35.00	7.48	1.14	3.02	0.19	0.79	2.00	-1.09	2.28	11.55
1.28	2.14	37.50	7.48	1.10	3.08	0.18	0.88	1.88	-1.08	2.17	9.97
1.24	2.05	40.00	7.48	1.06	3.11	0.17	0.95	1.76	-1.06	2.06	8.64
1.20	1.97	42.50	7.48	1.04	3.12	0.16	1.02	1.66	-1.04	1.96	7.56
1.17	1.89	45.00	7.48	1.03	3.13	0.15	1.07	1.57	-1.01	1.87	6.66
1.14	1.82	47.50	7.48	1.02	3.14	0.15	1.11	1.50	-0.98	1.79	5.92
1.11	1.76	50.00	7.48	1.01	3.14	0.14	1.14	1.44	-0.94	1.72	5.30
1.08	1.70	52.50	7.48	1.00	-3.14	0.13	1.18	1.38	-0.91	1.66	4.78
1.06	1.65	55.00	7.48	1.00	-3.14	0.13	1.20	1.34	-0.88	1.60	4.34
1.04	1.60	57.50	7.48	1.00	-3.14	0.12	1.23	1.30	-0.85	1.55	3.97
1.01	1.55	60.00	7.48	1.00	-3.14	0.11	1.25	1.27	-0.82	1.51	3.64
0.99	1.51	62.50	7.48	1.00	-3.14	0.11	1.27	1.24	-0.79	1.47	3.36
0.97	1.47	65.00	7.48	1.00	-3.14	0.11	1.28	1.22	-0.76	1.44	3.11

Continua

•

_ \/ 4	A#A A
- V I	ene
	UIIU

0.96	1.43	67.50	7.48	1.00	-3.14	0.10	1.30	1.20	-0.73	1.41	2.89
0.94	1.40	70.00	7.48	1.00	-3.14	0.10	1.31	1.18	-0.71	1.38	2.70
0.92	1.37	72.50	7.48	1.00	-3.14	0.09	1.33	1.17	-0.68	1.35	2.53
0.91	1.34	75.00	7.48	1.00	3.14	0.09	1.34	1.15	-0.66	1.33	2.38
0.89	1.31	77.50	7.48	1.00	3.14	0.09	1.35	1.14	-0.64	1.31	2.24
0.88	1.28	80.00	7.48	1.00	3.14	0.08	1.36	1.13	-0.62	1.29	2.12
0.86	1.26	82.50	7.48	1.00	3.14	0.08	1.37	1.12	-0.60	1.27	2.01
0.85	1.23	85.00	7.48	1.00	3.14	0.08	1.37	1.11	-0.58	1.26	1.91
0.84	1.21	87.50	7.48	1.00	3.14	0.08	1.38	1.11	-0.57	1.24	1.82
0.83	1.19	90.00	7.48	1.00	3.14	0.07	1.39	1.10	-0.55	1.23	1.73
0.82	1.17	92.50	7.48	1.00	3.14	0.07	1.39	1.09	-0.54	1.22	1.66
0.81	1.15	95.00	7.48	1.00	3.14	0.07	1.40	1.09	-0.52	1.21	1.58
0.80	1.13	97.50	7.48	1.00	3.14	0.07	1.41	1.08	-0.51	1.20	1.52
0.79	1.11	100.00	7.48	1.00	3.14	0.07	1.41	1.08	-0.50	1.19	1.46
0.78	1.09	102.50	7.48	1.00	3.14	0.07	1.42	1.07	-0.48	1.18	1.40
0.77	1.07	105.00	7.48	1.00	3.14	0.06	1.42	1.07	-0.47	1.17	1.35
0.76	1.06	107.50	7.48	1.00	3.14	0.06	1.43	1.07	-0.46	1.16	1.30
0.75	1.04	110.00	7.48	1.00	3.14	0.06	1.43	1.06	-0.45	1.15	1.25
0.74	1.03	112.50	7.48	1.00	3.14	0.06	1.43	1.06	-0.44	1.15	1.21
0.73	1.01	115.00	7.48	1.00	3.14	0.06	1.44	1.06	-0.43	1.14	1.17
0.72	1.00	117.50	7.48	1.00	3.14	0.06	1.44	1.05	-0.42	1.13	1.13
0.72	0.99	120.00	7.48	1.00	3.14	0.06	1.45	1.05	-0.41	1.13	1.10

Tabla D5.- Amplitudes del Movimiento Vertical y Aceleración Vertical para una carga del 25%, 10 nudos y en la posición A.

Oola	0e	long ola	X	LEVANTAMIENTO CABECEO		A	B	raiz(A ² +B ²)	ACEL VERT		
1/seg	1/seg	m	m	ξ ₃ (m)	fase(rad)	ξ ₆ (rad)	fase(rad)				m/seg2
2.48	5.72	10.00	-10.00	0.01	0.11	0.01	1.93	0.00	-0.05	0.05	1.76
2.22	4.81	12.50	-10.00	0.04	-2.69	0.01	2.06	0.05	0.15	0.16	3.64
2.03	4.18	15.00	-10.00	0.09	-2.63	0.01	2.79	0.13	0.05	0.13	2.34
1.88	3.73	17.50	-10.00	0.04	-2.58	0.03	-1.08	0.06	-0.30	0.31	4.26
1.76	3.37	20.00	-10.00	0.18	1.14	0.08	-0.69	-0.04	0.82	0.82	9.31
1.66	3.09	22.50	-10.00	0.59	1.58	· 0.15	-0.29	0.16	1.39	1.40	13.35
1.57	2.86	25.00	-10.00	1.00	2.09	0.18	0.08	0.23	1.65	1.67	13.69
1.50	2.67	27.50	-10.00	1.20	2.49	0.19	0.34	0.13	1.62	1.63	11.64
1,43	2.51	30.00	-10.00	1.22	2.76	0.20	0.53	0.02	1.54	1.54	9.71
1.38	2.37	32.50	-10.00	1.19	2.93	0.19	0.67	-0.04	1.49	1.49	8.38
1.33	2.25	35.00	-10.00	1.14	3.02	0.19	0.79	-0.02	1.46	1.46	7.42
1.28	2.14	37.50	-10.00	1.10	3.08	0.18	0.88	0.05	1.44	1.44	6.64
1.24	2.05	40.00	-10.00	1.06	3.11	0.17	0.95	0.13	1.42	1.42	5.99
1.20	1.97	42.50	-10.00	1.04	3.12	0.16	1.02	0.22	1.38	1.40	5.41
1.17	1.89	45.00	-10.00	1.03	3.13	0.15	1.07	0.30	1.35	1.38	4.92
1.14	1.82	47.50	-10.00	1.02	3.14	0.15	1.11	0.37	1.30	1.36	4.50
1.11	1.76	50.00	-10.00	1.01	3.14	0.14	1.14	0.44	1.26	1.34	4.12
1.08	1.70	52.50	-10.00	1.00	-3.14	0.13	1.18	0.50	1.22	1.31	3.80
1.06	1.65	55.00	-10.00	1.00	-3.14	0.13	1.20	0.55	1.17	1.29	3.51
1.04	1.60	57.50	-10.00	1.00	-3.14	0.12	1.23	0.59	1.13	1.28	3.26
1.01	1.55	60.00	-10.00	1.00	-3.14	0.11	1.25	0.63	1.09	1.26	3.04
0.99	1.51	62.50	-10.00	1.00	-3.14	0.11	1.27	0.67	1.05	1.24	2.84

Viene

A											
0.97	1.47	65.00	-10.00	1.00	-3.14	0.11	1.28	0.70	1.01	1.23	2.67
0.96	1.43	67.50	-10.00	1.00	-3.14	0.10	1.30	0.72	0.98	1.22	2.51
0.94	1.40	70.00	-10.00	1.00	-3.14	0.10	1.31	0.75	0.95	1.21	2.37
0.92	1.37	72.50	-10.00	1.00	-3.14	0.09	1.33	0.77	0.91	1.19	2.24
0.91	1.34	75.00	-10.00	1.00	3.14	0.09	1.34	0.79	0.88	1.18	2.12
0.89	1.31	77.50	-10.00	1.00	3.14	0.09	1.35	0.80	0.86	1.17	2.01
0.88	1.28	80.00	-10.00	1.00	3.14	0.08	1.36	0.82	0.83	1.16	1.92
0.86	1.26	82.50	-10.00	1.00	3.14	0.08	1.37	0.83	0.80	1.16	1.83
0.85	1.23	85.00	-10.00	1.00	3.14	0.08	1.37	0.84	0.78	1.15	1.74
0.84	1.21	87.50	-10.00	1.00	3.14	0.08	1.38	0.85	0.76	1.14	1.67
0.83	1.19	90.00	-10.00	1.00	3.14	0.07	1.39	0.86	0.74	1.13	1.60
0.82	1.17	92.50	-10.00	1.00	3.14	0.07	1.39	0.87	0.72	1.13	1.53
0.81	1.15	95.00	-10.00	1.00	3.14	0.07	1.40	0.88	0.70	1.12	1.48
0.80	1.13	97.50	-10.00	1.00	3.14	0.07	1.41	0.89	0.68	1.12	1.42
0.79	1.11	100.00	-10.00	1.00	3.14	0.07	1.41	0.89	0.66	1.11	1.37
0.78	1.09	102.50	-10.00	1.00	3.14	0.07	1.42	0.90	0.65	1.11	1.32
0.77	1.07	105.00	-10.00	1.00	3.14	0.06	1.42	0.91	0.63	1.10	1.27
0.76	1.06	107.50	-10.00	1.00	3.14	0.06	1.43	0.91	0.61	1.10	1.23
0.75	1.04	110.00	-10.00	1.00	3.14	0.06	1.43	0.92	0.60	1.10	1.19
0.74	1.03	112.50	-10.00	1.00	3.14	0.06	1.43	0.92	0.59	1.09	1.15
0.73	1.01	115.00	-10.00	1.00	3.14	0.06	1.44	0.92	0.57	1.09	1.12
0.72	1.00	117.50	-10.00	1.00	3.14	0.06	1.44	0.93	0.56	1.08	1.08
0.72	0.99	120.00	-10.00	1.00	3.14	0.06	1.45	0.93	0.55	1.08	1.05

Tabla D6.- Amplitudes del Movimiento Vertical y Aceleración Vertical para una carga del 25%, 10 nudos y en la posición B.

BIBLIOGRAFÍA.

- 1. Taggart, R., Ship Design and Construction. SNAME, 1980.
- 2. Domínguez, J., Memoria Técnica de la construcción del Yate TIP- TOP III. Tecnavin S.A., 2001
- 3. Fry, E., and Graul T., Design and Application of Modern High-Speed Catamarans. Marine Technology, SNAME, Julio 1972
- 4. FAO, II Curso de Diseño de Embarcaciones Pesqueras, Guayaquil 1980
- 5. Gertler, B., A reanalysis of the original test data for the Taylor standard series. Navy Department, Washington March 1954
- 6. Turner, H., and Taplin, A., The Resistance of Large Powered Catamarans, SNAME, Transacciones, Volumen 76, 1968.
- 7. Lewis, E., Resistance, Propulsion and Vibration, Capítulo V en Principles of Naval Architecture. vol II. SNAME, 1988.
- 8. Albariño, R., Aspiro, J., Meizoso, M., El Proyecto Básico del Buque Mercante, Fondo Editorial de Ingeniería Naval., 1997.
- 9. Baquerizo, M., Lecciones de Electricidad Aplicada al Buque. Fondo Editorial de Ingenieria Naval, 1976
- 10. Marín, J., Gforms, Generación de las formas de un casco, Manual del usuario, 1999
- Marín, J., Alisam, Alisamiento de las formas de un buque, Manual del usuario, 1999
- 12. OMI, Criterios de Estabilidad sin Avería aplicables a los Buques de Pasajes y a los Buques de Cargas, OMI, Londres1987
- 13. Bhattacharya, R., Dynamic of Marine Vehicles. John Wiley, 1962
- Raff, A., Program SCORES-Ship Structural Response in Waves. SSC, r. 230, 1978
- 15. US. NAVY, Shcp, Manual del usuario. US Navy, 1976
- 16. Marín, J., Disprop, Diseño Propulsivo de un buque, Manual del usuario. 1998
- 17. Mansour, y Fenton, Structural Analysis and Design of a Catamaran Cross-Structure by the Finite Element method. Transacciones de SNAME, 1973.

- Wilson, E., Habibuilah, A., SAP90, A Series of Computer Programs for the Static and Dinamic Finite Element Analysis of Structures, Manual del Usuario, 1990.
- 19. ABS, Rules for Building and Classing- Steel Vessel under 90 meters(295 feet) in Lenght, ABS, 1997.
- 20. Lewis, E., Motions in Waves, capítulo VIII en Principles of Naval Architecture, vol. III. SNAME, 1988
- Parsons, M., Informal course notes Ship Design II. The Department of Naval Architecture and Marine Engineering, The University of Michigan, January 1990
- 22. INOCAR, Condiciones climatológicas de la región Insular, 1999
- 23. IMO, Safety of life at Sea, SOLAS. IMO, 1997
- 24. IMO, Maritime Polution, MARPOL. IMO, 1993
- 25. Moreno, J, Diseño preliminar de una Embarcación planeadora para servicio de Guardacostas en las Islas Galápagos, Tesis de Grado, 2000.
- 26.- Latorre R, Herrington, Willis M, Development of Catamaran for Worldwide Market, Final Report, Marzo 1998
- 27.- GERPRO, Gerencia de Producción. Astinave, 2001
- 28.- Moya C, Equipos y Servicios, Agosto 1980
- 29.- E.E. Stephenson, Marine Engineering, capitulo 18, pag 679, 1980
- 30.- A.L. Dinsenbacher, A Method for Estimating Load on Catamaran Cross-Structure, Marine Technology, SNAME, Julio 1970
- 31.- Hughes O, Ship Structural Design, A Rationally-Based, Computer-Aided Optimization Approach, SNAME, 1988, pag 228
- 32.- Tasaki, R., A Note on Wavemaking Resistance of Catamarans. Dpto. de Arquitectura Naval, Universidad de Michigan, Reporte Técnico, 1962
- 33.- Guayasamín D, Rectificadora Botar, Distribuidora de Maquinaria CUMMINS,2002
- 34.- Marín, J., Apuntes de Arquitectura Naval III, FIMCM, 2002