ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

Susceptibilidad de amenaza por movimientos en masa en los cerros del casco urbano del Cantón Eloy Alfaro (Durán).

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Ingeniería en Geología

Presentado por:

Koraima Patricia Zambrano Peralta

GUAYAQUIL - ECUADOR

Año: 2019

DEDICATORIA

En reconocimiento al apoyo, compresión y sobre todo el cariño demostrado en los momentos más críticos, se dedica esa publicación a mis padres, Julieta Peralta y Claudio Zambrano.

A mis hermanos Patricio y Francisco.

A Valeria, Dylan, Daniela, Luis, Anita y a todas las personas que siempre confiaron en mi persona durante toda mi formación académica.

AGRADECIMIENTOS

A Dios por ser guía espiritual en los momentos más difíciles a lo largo de mi formación académica.

Agradezco a mi familia por el apoyo y ayuda constante brindada a lo largo de mi formación profesional.

A mi director de tesis el Dr. Eddy Sanclemente por su guía.

Al ingeniero Ángel Valdiviezo Ajila jefe de gestión técnica y análisis de riesgo, por su guía, motivación y ayuda quien inspiro esta Tesis.

A los docentes por sus consejos y enseñanzas para mi formación profesional.

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, me corresponde conforme al reglamento de
propiedad intelectual de la institución; Koraima Patricia Zambrano Peralta y doy m
consentimiento para que la ESPOL realice la comunicación pública de la obra por
cualquier medio con el fin de promover la consulta, difusión y uso público de la
producción intelectual"

Koraima Patricia Zambrano Peralta

EVALUADORES

Msc. Daniel Gárces

PROFESOR DE LA MATERIA

Dr. Eddy Sanclemente

PROFESOR TUTOR

RESUMEN

El Municipio del cantón Durán en conjunto con la Escuela Superior Politécnica del Litoral ha desarrollado el proyecto, "Resiliencia climática de Durán: diseñando estrategias de adaptación para riesgos hidroclimáticos (RESCLIMA- DURAN)". Se desarrollo con la necesidad de estudiar, analizar y mitigar diferentes eventos adversos que han afectado a la población del cantón. Este trabajo de titulación se desarrolla dentro del componenete 1200 del proyecto denominado análisis de amenaza por movimientos en masa. Históricamente, en el cantón Durán se han presenciado flujos de detritos, caídas de rocas y movimientos complejos, que colocan en riesgo al 56.50% de las viviendas cercanas a los cerros. Este trabajo, clasifica los diferentes tipos de roca de los cerros utilizando el índice de Slope Mass Rating continue (SMR-C) integrando parámetros: geológicos, geofísicos y geomecánicos levantados en el área de estudio. Por medio de funciones continuas desarrolladas por Tomas et al, 2007, obteniendo como resultado el mapa de susceptibilidad de movimientos en masa de los cerros en el cual se identifica que aproximadamente el 40% del área se encuetra en la clase IV descrita como roca de mala calidad poniendo en riesgo a cuatro sectores urbanos.

Palabras Clave: movimientos en masa, susceptibilidad, cerros de Durán, Slope Mass Rating continuo (SMR-C).

ABSTRACT

The Durán's city hall with the Escuela Superior Politécnica del Litoral has developed the project "Durán's climate resilience: designing adaptation strategies for hydroclimatic risk(RESCLIMA-DURÁN)". It was developed with the need to study, analyze and mitigate different adverse events that suffers the population of the canton. This degree work is developed within the 1200 component of the project called mass movement analysis. Historically in the Durán's canton there have been flows of debris, rock falls and complex movements that put at risk 56.50% of homes, his work classifies the different rock types of the hills using the Slope Mass Rating continue index (SMR-C) integrating parameters: geological, geophysical and geomechanical raised in the study area, by means of continuous functions developed by Tomas et al., 2007, obtaining as a result the susceptibility map of mass movements of the hills in which it is identified that approximately 40% of the area is found in class IV described as poor quality rock putting four urban sectors at risk.

Keywords: mass movements, susceptibility, Durán's hills, Slope Mass Continuous rating (SMR-C).

ÍNDICE GENERAL

EVALUADORES	5
RESUMEN	
ABSTRACT	
ÍNDICE GENERAL	
ABREVIATURAS	VII
SIMBOLOGÍA	VIII
ÍNDICE DE FIGURAS	IX
ÍNDICE DE TABLAS	XV
CAPÍTULO 1	16
1. INTRODUCCIÓN	16
1.1 Descripción del problema	18
1.2 Justificación del problema	19
1.3 Objetivos	20
1.3.1 Objetivo general	20
1.3.2 Objetivos específicos	20
1.4 Descripción de la zona de estudio	20
1.4.1 Localización	20
1.4.2 Clima e hidrografía	21
CAPÍTULO 2	24
2. MARCO TÉORICO	24
2.1 Marco geológico	24
2.1.1 Geodinámica y geológia regional	24
2.2 Movimientos en masa (MM)	27
2.3 Marco geofísico	31

2.3.1 (TER)	Sondeos eléctricos verticales (SEV) y Tomografía eléctrica de resistivid 31	ad
2.3.2	Inversión tomográfica	34
2.4 Ma	arco geomecánico	36
2.4.1	Descripción de macizos rocosos	36
2.4.2	Caracterización de la matriz rocosa	37
2.4.3	Descripción de las discontinuidades	38
CAPÍTULO	3	41
3. MET	ODOLOGÍA	41
3.1 Tra	abajo de campo	41
3.1.1	Geología	41
3.1.2	Geofísica	42
3.1.3	Geomecánica	45
3.2 Tra	abajo de gabinete	48
3.2.1	Geología	48
3.2.2	Geofísica	50
3.2.3	Geomecánica	54
CAPÍTULO) 4	64
4. RES	ULTADOS Y DISCUSIÓN: GEOLÓGIA	64
4.1 Ge	eología de los cerros del casco urbano de Durán	64
4.2 Inv	ventario de movimientos en masa históricos de Durán	79
CAPÍTULO) 5	81
5. RES	ULTADOS Y DISCUSIÓN: GEOFÍSICA	81
5.1 To	mografía eléctrica de resistividad RES1_NS	81
5.2 To	mografía eléctrica de resistividad RES2_NS	82
53 To	amografía eléctrica de resistividad RES3 NS	83

eléctrica de resistividad RES4_NS85	5.4 T
eléctrica de resistividad RES5_EO86	5.5 T
de datos directos e indirectos y generación de modelos	5.6 C
87	geoeléc
96	CAPÍTUL
S Y DISCUSIÓN: GEOMECÁNICA96	6. RE
maria- unidades geomecánicas96	6.1 V
parámetro - mapa geomorfológico96	6.1.1
Parámetro- Índice rock mass rating básico continuo (RMRb-C)	6.1.2
maria- análisis cinemático de los cerros107	6.2 V
cundaria- cálculo y evaluación del índice del SMR-C108	6.3 V
118	CAPÍTUL
NES Y RECOMENDACIONES118	7. CO
es118	7.1 C
ciones121	7.2 F
A122	8. BIE
129	9. AN
129	Índice de
de columnas estratigráficas131	9.1 C
epresentativas134	9.2
e movimientos en masa registrados en el área de estudio 138	9.3 Ir
s electricas141	9.4 T
afía eléctrica de resistividad RES1_NS141	9.4.1
afía eléctrica de resistividad RES2_NS143	9.4.2
afía eléctrica de resistividad RES3_NS145	9.4.3

9.4.4	Tomografía eléctrica de resistividad RES4_NS	146
9.4.5	Tomografía eléctrica de resistividad RES5_EO	147
9.5	Geomorfologia	149
9.6	Fichas de Levantamiento Geomecánico	151

ABREVIATURAS

DEM Modelo Digital de Elevación

DESInventar Sistemas de Inventario de Desastres

TER Tomografía Eléctrica

SEV Sondeo Eléctrico Vertical

SIG Software de Información Geográfica

UG Unidad Geoeléctrica

MM movimientos en masa

SIMBOLOGÍA

mil Milésima de pulgada

mg Miligramo

pH Potencial de Hidrógeno

m Metro

mV Milivoltio

Oh Ohmios

Cm Centímetros

Dcm Decímetros

ÍNDICE DE FIGURAS

Figura 1.1 Deslizamientos ocurridos en los años de 2009, 2010, 2014 y 2015 en los
cerros del casco urbano del cantón Eloy Afaro-Durán19
Figura 1.2 Mapa de ubicación de los cerros del casco urbano del cantón Eloy Alfaro-
Durán Escala 1:10.000, la línea amarilla delimita los sectores cercanos de cada uno
de los cerros
Figura 1.3 Clima local del cantón Eloy Alfaro-Durán. El rectángulo negro remarca el
área de Durán modificado de INAMHI,200822
Figura 1.4 Mapa Hidrográfico de los cerros del casco urbano del cantón Eloy Alfaro-
Durán a escala 1:14.000, 1) Dirección oeste el río Guayas y 2) Dirección este el estero
San Enrique, la línea amarilla delimita sectores cercanos a los cerros23
Figura 2.5 Escenario propuesto para la evolución geodinámica del CCOP (terrenos de
Piñón y Guaranda) entre los tiempos de Coniaciano y Paleoceno.(Melle, 2008) 25
Figura 2.6 Literal A) geología simplificada de la Cordillera Chongón-Colonche, Litera
B) geodinámica pertinente al área de estudio remarcada en un rectángulo rojo 26
Figura 2.7 Estratigrafía del bloque de la formación Piñón (Luzieux et al., 2006) 27
Figura 2.8 Criterios para la clasificación y descripción de movimientos de masa. A)
Ejemplos de caídas, desprendimientos y desplomes de rocas o masas rocosas, B)
Ejemplos de Flujos, C) Movimientos en masa por volcamiento, E) Movimiento en masa
con propagación lateral por licuación de masa de roca fracturada sobre rocas arcillosas
F) Deslizamiento rotacional, G) Hundimientos de terreno. Varnes (Cruden & Varnes,
1996)30
Figura 2.9 Resistividades típicas de los materiales en $[\Omega m]$, Fuente: (Pérez, 2010) . 32
Figura 2.10 Disposiciones de electrodos en el arreglo Schlumberger. Fuente:
(Mamani,2016)33
Figura 2.11 Equipo para TER Terrameter LS. Fuente: ABEM, 201234
Figura 2.12 Terrameter LS para levantamiento básicos de imágenes tomográficas de
resistividad eléctrica. Fuente: (ABEM,2012)
Figura 2.13 Representación esquemática de las propiedades geométricas de las
discontinuidades a partir de González de Vallejo et al. (2002)

Figura 2.14 Diagrama estereográfico, representación de planos estructurales de cuatro
familias, la densidad de los polos se muestra en la concentración de Fisher er
porcentaje del área total en escala de grises. Fuente: (Secretaria de Comunicaciones
y Transporte, 2010)40
Figura 3.15 Distribución de levantamiento de tomografías eléctricas (línea roja)
realizadas en el área de estudio, cuatro de ellas corresponde a el cerro "Las Cabras
A)-B)-C) y D), una de ellas corresponde al cerro "Los Almendros" E). La sombra verde
representa el área de estudio43
Figura 3.16 Levantamiento de tomografías eléctricas, literal a) Instalación de
electrodos para la toma de datos, literal b) rreglo de los cables para la toma de datos
literal c) configuración del equipo para la toma de las Tomografías Eléctricas44
Figura 3.17 Primera carilla de la ficha de datos geomecánicas. (Gonzáles de
Vallejo et al, 2002) modificado por (Valdiviezo Ajila, 2014)46
Figura 3.18 Segunda carilla ficha de datos geomecánicas. (Gonzáles de Vallejo et al
2002) modificado por (Valdiviezo Ajila, 2014)47
Figura 3.19 Distribución de los tres tipos de datos levantados en campo: 144
estaciones principales (EP), 313 puntos de control (PC) y 201 medidas de control (MC)
Eigure 2.20 Corrección de puntos malos en la línea PES, 1 NS
Figura 3.20 Corrección de puntos malos en la línea RES_1 NS
Figura 3.21 Código de configuración de elevación, altitud y longitud del archivo .da para colocar la corrección topográfica
Figura 3.22 Visualización de coordenadas geográficas (x, y, z) del archivo .dat en e
software RES2DINV, literal a) muestra codificación del archivo con los datos de equipo
navegador GPS Yuma 2, marca Trimble, en este se distinguen altos topográficos y cor
topografía no cercana a la realidad, y en el literal b) Topografía con la extracción de puntos en el DEM de la ubicación de los electrodos53
Figura 3.23 Mapa de Aspectos de la zona de estudio
Figura 3.24 Mapa de pendientes de la zona de estudio
Figura 3.25 Sistema de clasificación de macizo rocosos (RMR), númeral 4. Fuente
(Bieniawski Z., 1989)58
Figura 3.26 Factores de ajuste de la Clasificación SMR (Romana, 1985)60
Figura 3.27 Herramienta utilizada para el cálculo del SMR-C
rigora dier i idriamidika ameada para di daldald adi divirt di imminimimimimi Uz

Figura 3.28 Algoritmo para el cálculo del índice del calificación de masa de pendientes
(Slop Mass Rating SMR-C) utilizando software de información geográfica (SIG) 63
Figura 4.29 Literal a) Cerros "Las Cabras" con la ubicación de los sectores, el
rectángulo rojo indica el sur del cerro en donde se tomó la foto adyacente, literal b)
ladera oeste del cerro, en líneas rojas punteadas se muestran zonas de fracturación,
identificación de pliegues con líneas punteadas de color verde
Figura 4.30 Afloramientos presentes al sueste del cerro "Las cabras" en el sector de
colinas del valle. Literal b) anticlinal de lutita silicificada. Literal c) afloramiento de lutita
silicificada So estratificación (línea entrecortada de color amarillo)65
Figura 4.31 Cerros "Las Cabras" con su sectorización, el rectángulo rojo indica el sector
centroeste del cerro en donde se tomaron las fotos del literal b) Flujo de detritos en
líneas punteadas se delimita la zona de reptación del material rocoso66
Figura 4.32 Cerros "Las Cabras" con su sectorización, el rectángulo rojo indica el sector
central del cerro en donde se tomaron las fotos. Literal a) Contacto entre lutita
silicificada de color marrón y arenisca fina de tonalidades grises, con presencia de
meteorización esferoidal. Literal b) contacto de arenisca fina y de lutita silicificada de
color marrón, la linea amarilla entrecortada delimita la estratificación So67
Figura 4.33 literal a) Cerros "Los Almendros" con su sectorización, litral b) afloramiento
de arenisca gruesa, existen zonas de fracturación indicadas con la línea roja68
Figura 4.34 Cerros "Del Tres" con su sectorización, el rectángulo rojo se remarca un
sector centro del cerro. Literal b) Afloramiento presente en el cerro "Del Tres",
presencia de zonas de fracturación. So estratificación
Figura 4.35 Afloramientos presentes en el Cerro "Del Tres". Literal a) zonas de
fracturación de rocan, literal b) zona de fracturación
Figura 4.36 Afloramientos presentes en el Cerro "La Cantera". Literal a) contacto (línea
roja) presente entre lutita silicificada y arenisca fina. Litera b) zonas de fracturación
(línea roja)71
Figura 4.37 Estructuras secundarias presentes en el sustrato rocoso en el área de
estudio. (J) junta o diaclasa. (Valdiviezo Ajila, 2014)72
Figura 4.38 Cerros "Del Tres" con su sectorización. El rectángulo rojo se remarca el
sector San Enrique. Literal b) Afloramiento perteneciente al cerro "San Enrique"73

Figura 4.39 Ubicación espacial de las 144 columnas estratigráficas (puntos naranjas)
levantadas en campo, la línea azul demarca los perfiles de litocorrelación en los cuales
se indica la localización de la columna estratigráfica enumerada con respecto a la
correlación74
Figura 4.40 Columnas representativas de cada cerro del área de estudio75
Figura 4.41 Mapa litoestratigráfico perteneciente a los cerros del casco urbano del
cantón Durán
Figura 4.42 Deslizamientos Históricos de los cerros del casco urbano de Durán
registrados por el GAD de Durán79
Figura 5.43 Conversión de los modelos de inversión a modelo de resistividad en el
software Erigraph. RES1_NS, en el literal a) Método de inversión robusto, literal b)
Método de inversión smoothness constrained least-squares. La leyenda vertical
correspondiente a la profundida se encuentra en unidad métrica (m), la leyenda
horizontal corresponde a la resistividad y se encuentra en unidades de [ohm-m]82
Figura 5.44 Conversión de los modelos de inversión a modelo de resistividad en el
software Erigraph. RES2_NS, en el literal a) Método de inversión robusto, literal b)
Método de inversión smoothness constrained least-squares. La leyenda vertical
correspondiente a la profundida se encuentra en unidad métrica (m), la leyenda
horizontal corresponde a la resistividad y se encuentra en unidades de [ohm-m] 83
Figura 5.45 Conversión de los modelos de inversión a modelo de resistividad en el
software Erigraph. RES3_NS, en el literal a) Método de inversión robusto, literal b)
Método de inversión smoothness constrained least-squares. La leyenda vertical
correspondiente a la profundida se encuentra en unidad métrica (m), la leyenda
horizontal corresponde a la resistividad y se encuentra en unidades de [ohm-m]84
Figura 5.46 Conversión de los modelos de inversión a modelo de resistividad en el
software Erigraph. RES4_NS, en el literal a) Método de inversión robusto, literal b)
Método de inversión smoothness constrained least-squares. La leyenda vertical
correspondiente a la profundida se encuentra en unidad métrica (m), la leyenda
horizontal corresponde a la resistividad y se encuentra en unidades de [ohm-m] 86
Figura 5.47 Conversión de los modelos de inversión a modelo de resistividad en el
software Erigraph. RES3_NS, en el literal a) Método de inversión robusto, literal b)
Método de inversión smoothness constrained least-squares. La leyenda vertical

correspondiente a la profundida se encuentra en unidad métrica (m), la leyenda
horizontal corresponde a la resistividad y se encuentra en unidades de [ohm-m]87
Figura 5.48 Distribución espacial de datos directos e indirectos, en el Cerro "Las
Cabras" y el cerro "San Enrique". 1) RES 1_ NS, 2) RES 2_NS, RES 3_NS, 4) RES
4_NS y 5) RES5_EO88
Figura 5.49 Diagrama de dispersión de datos de profundidad versus resistividad, los
puntos azules representa la relación de estos parámetros89
Figura 5.50 Tomográfias eléctricas ubicadas en el cerro "Las Cabras", identificadas en
el rectangulo rojo91
Figura 5.51 Interpretación de la RES_1NS, RES_3NS y RES_4 NS correlacionada con
datos geofisicos directos e indirectos, literal a) Modelo de resistividades en 2D y literal
b) Modelo de unidades geoeléctricas. (Unidades geoeléctricas)93
Figura 5.52 Interpretación de la RES_2NS, literal a) Modelo de resistividades en 2D
con correlación del SEV_12 y P_4, literal b) Modelo de unidades geoeléctricas, c)
Columna litológica interpretada en el centro a los 60 m de apertura, y ubicación
espacial de la RES2_NS, en el electrodo 10 se ubica el SEV_12 y en electrodo 19 se
ubica la P_4. (Unidades geoeléctricas)94
Figura 5.53 Interpretación de la RES_5NS, literal a) Modelo de resistividades en 2D
sin correlación, literal b) Modelo de unidades geoeléctricas, c) Columna litológica
interpretada en el centro a los 60 m de apertura, y ubicación espacial de la RES5_EO.
(Unidades geoeléctricas)95
Figura 6.54 Mapa Geomorfológico de los cerros del casco urbano del cantón Durán
utilizando la metodología de (Van Zuidam, 1986) y (Pedraza-Gilsanz, 1996). Las
formas denudacionales (código D1 a D5, con sub-unidades) y formas estructurales
(código S1 y S2).Literal A) y Literal B)
Figura 6.55 Valores mínimos de RMR básico continuo seleccionados de cada unidad
litológica presente en el área de estudio. Arenisca Gruesa (1), Brecha-Arenisca y
Brecha-Lutita (2), Arenisca Fina (3), Arenisca-Lutita (4), Lutita (5)105
Figura 6.57 Unidades geomecánicas generadas con la correlación de los parámetros
: litoestratigráfico, geofísico, geomorfológico v RMR-C, del área de estudio106

Figura 6.58 Análisis de discontinuidades presentes en el área de estudio, en la red
estereográfica los planos de color rojo muestran juntas y el plano azul estratificación.
Figura 6.59 A) Modelo cuña/planar DipDir 169/Dip 20, B) Modelo cuña/planar DipDir
306/Dip 78. C) Modelo cuña/planar DipDir 51/Dip 78, D) Modelo cuña/planar DipDir
355/Dip 74. Los rectángulos rojos indican los sectores con calidad de roca mala109
Figura 6.60 A) Modelo volcamiento DipDir 169/Dip 20, B) Modelo volcamiento DipDir
306/Dip 78. C) Modelo volcamiento DipDir 51/Dip 78, D) Modelo volcamiento DipDir
355/Dip 74. Los rectángulos rojos indican los sectores con calidad de roca mala112
Figura 6.61 Mapa de susceptibilidad de movimientos en masa de los cerros del casco
urbanos del cantón Durán115
Figura 6.62 Mapa de susceptibilidad de movimientos en masa, en el peor escenario
(RMR-c mínimos) y deslizamientos históricos ocurridos de los cerros del casco urbanos
del cantón Durán

ÍNDICE DE TABLAS

Tabla 2.1 Clasificación de los movimientos en masa de Varnes. Fuente: Modificado de
Varnes (Cruden & Varnes, 1996)28
Tabla 3.2 Adquisición de datos con el método geofísico eléctrico de tomografías
eléctricas dentro del área de estudio, en la celda de coordenadas geográficas se
indican las coordenadas iniciales (o), medias (m) y finales (f) de la línea tomográfica.
42
Tabla 5.3 Clase de litológicas interpretadas por CITAP en el 201490
Tabla 5.4 Unidades geoeléctricas (UGE) según litologías inferidas geofísicamente. 90
Tabla 6.5 Resistencia a la compresión simple de muestras tipo para cada litología. Las
muestras se codifican con las iniciales del tipo de litología Arenisca Gruesa (AG),
Arenisca Fina (AF), Lutita (L), Arenisca-Lutita (AL), Brecha-Arenisca (BA) seguido de -
Durán
Tabla 6.6 Valores obtenidos de los parámetros del RMR-C de cada una de las fichas
geomecánicas. La litología se codifica con las iniciales: Arenisca Gruesa (AG),
Arenisca Fina (AF), Lutita (L), Arenisca-Lutita (AL), Brecha-Arenisca (BA). Las fichas
geomecánica se codifica con (EG) seguido de - con el número de ficha levantada 104
Tabla 6.7 Planos generales establecidos
Tabla 6.8 Clasificación del índice del SMR-C según Romana (1985)108

CAPÍTULO 1

1. INTRODUCCIÓN

El impacto de la fluctuación climática genera que las ciudades sean susceptibles a desastres naturales, debido a sus altas densidades poblacionales, poblaciones vulnerables y limitada infraestructura en asentamientos informales (IPPC, 2007) (IPCC, 2014b). Según la base DesInventar, durante 1980 a 2018 se registrarón diversos eventos en Ecuador de los cuales el 86% ocurrieron en centros urbanos, siendo los deslizamientos y las inundaciones los fenómenos recurrentes (DESINVENTAR, s.f.).

Estudios de riesgos señalan que las áreas urbanas implican una permanente transformación del territorio que degrada el medio, acentuando, acelerando o generando la aparición de diferentes amenazas, agudizando el riesgo por exposición a factores extrínsecos o intrínsecos, que de no ser estudiados resultan en una mala planificación del ordenamiento territorial (FLACSO-Ecuador, 2012).

Esta problemática se ve exacerbada y magnificada en ciudades con altas densidades poblaciones, que son afectadas por procesos de origen geológico e hidrometeorológico repetitivos (Secretaría de Gestión de Riesgos-SGR, 2014). En este marco se desenvuelven varios cantones de la franja litoral en Ecuador, entre ellos el cantón Durán considerando como la sexta ciudad mas grande del Ecuador, posee el quinto lugar de la región costa en aglutinar el 44% de hogares dispuestos en asentamientos irregulares, donde el 97% de los habitantes se encuentran en situación de amenaza, debido a que el porcentaje de crecimiento del área solo supera el 2% del porcentaje de crecimiento poblacional (Subsecretaría de Hábitat y Asentamientos Humanos-SHAH, 2015).

Durán cuenta con una densidad poblacional de 860 habitantes por km² en el casco urbano (GAD Municipio del Cantón Durán, 2015) ubicandose en la categoria mas alta de población sugerido por el CAT-MED (CAT-MED Plaform for Sustainable Urban Models, 2010).

El territorio urbano del cantón se encuentra aproximadamente asentado en un 95% sobre un suelo poco cohesivo de origen aluvial, mientras que el 5% restante yace sobre las rocas en los cerros. En estos cerros, se observan asentamientos humanos informales, actividades de tipo extractiva y áreas de espacio comunales, siendo los asentamientos informales los elementos que presentan una mayor exposición de ser afectados por movimiento en masa (Gobierno Autónomo Descentralizado del cantón Durán, 2015).

Historicamente, el cantón ha sido afectado por fenómenos de movimientos en masa. En el 2015, el Municipio de Durán, declaró en emergencia parte del cerro. (El Telégrafo, 2015). Los movimientos en masa (MM) constituyen una amenaza continua que puede generar pérdidas económicas y humanas, de la cual se estima, que tenga un aumento en las próximas décadas, como resultado del cambio climático y el aumento de vulnerabilidades especialmente en zonas urbanas (Poussin, 2015) (IPCC, 2014b).

El control de estas problemáticas recae en los GAD municipales, ya que estos deben garantizar el ordenamiento territorial, planificación urbana y gestión de suelos (SENPLADES, 2013a). Sobre esta base el Municipio del cantón Durán, a través de la Dirección de Gestión de Riesgos conjuntamente con la Escuela Superior Politécnica del Litoral se encuentran realizando el proyecto "Resiliencia climática de Durán: Diseñando Estrategias de adaptación para riesgos hidroclimáticos (RESCLIMA- DURAN)". (ESPOL- Decanato de Investigación, 2017).

Sobre este antecedente, se desarrolla el presente proyecto de titulación, dentro del componente 1200 del proyecto (RESCLIMA- DURAN) correspondiente al análisis de amenazas por movimientos en masas del cantón.

1.1 Descripción del problema

Varios son los factores que inciden en los movimientos en masa, entre las cuales se puede citar las precipitaciones (cantidad y aparición anual), la pendiente natural, la naturaleza de la roca, la existencia de fallas geológicas, la presencia de discontinuidades en una masa rocosa y la estratificación de la roca, las características mecánicas de la roca y el uso antrópico de los suelos, etc. (D'Ercole & Trujillo, 2003). Es importante destacar que este último factor, se puede mitigar con un correcto plan de ordenamiento territorial.

Durán posee un área urbana de 58.6 km² que constituye el 27.83% de toda su extensión, a pesar de la reducida área consolidada cuenta con el 97.84% de las viviendas, de las cuales aproximadamente un 40% se ubica en las cercanías de los cerros, donde la mayoría de sus habitantes ha vivido por más de 20 años (Gobierno Autónomo Descentralizado del cantón Durán, 2015) (ESPOL-TECH, 2014).

Históricamente, se han detectado eventos adversos relacionados a procesos erosivos y deslizamientos en las laderas del cerro (Figura 1.1), asociados principalmente por la calidad de roca, precipitaciones y además la actividad antrópica, como son: construcción de viviendas, generación de caminos, y actividades cotidianas, que favorecen a la meteorización del suelo, colocando en riesgo al 56.50% de las viviendas asentadas (ESPOL-TECH, 2014).

¿Los cerros ubicados en el casco urbano del cantón Durán, pueden ser considerados como una zona de riesgo para la población asentada a sus cercanías generando un peligro geotécnico?.

Figura 1.1 Deslizamientos ocurridos en los años de 2009, 2010, 2014 y 2015 en los cerros del casco urbano del cantón Eloy Afaro-Durán.

1.2 Justificación del problema

Las afectaciones provocadas por deslizamientos a los sectores urbanos del cantón, requiere que el GAD Municipal del cantón Durán, estudie y conozca zonas de susceptibilidad a movimientos en masa de los cerros, que permitirá sugerir medidas de ordenamiento territorial con el fin de mitigar y mejorar las condiciones de vida de los habitantes asentados en la cercanías de los cerros.

1.3 Objetivos

1.3.1 Objetivo general

Caracterizar las zonas susceptibles a movimientos en masa de los cerros del casco urbano del cantón, utilizando la calificación de masa en pendiente - continuo (Slope Mass Rating / SMR-C) para la elaboración de un mapa de amenaza por deslizamientos.

1.3.2 Objetivos específicos

- Realizar un mapa de unidades litológicas de los cerros del casco urbano del cantón, por medio del levantamiento de campo para definir la disposición espacial de las rocas presentes.
- Categorizar las unidades geomecánicas, de acuerdo con el calculando del índice calificación de masa en pendiente - continuo (Slope Mass Rating / SMR-C) continúo utilizando sistemas de información geográfica.
- Evaluar la estabilidad de las unidades geomecánicas de acuerdo con el puntaje obtenido del índice calificación de masa en pendiente - continuo (Slope Mass Rating / SMR-C), para elaborar un mapa de amenaza por movimientos en masa del cerro.

1.4 Descripción de la zona de estudio

1.4.1 Localización

La zona de estudio está comprendida por el conjunto de relieves ubicados en el casco urbano del cantón Durán en la provincia del Guayas. Este conjunto de relieves está constituido por los siguientes cerros de acuerdo con su ubicación: en su parte occidental por el cerro "Las Cabras", en su parte central por el cerro "Los Almendros", y en la parte noreste por el cerro "Del Tres" (Figura 1.2).

Estos cerros se extienden de oeste a este desde el margen izquierdo del Ría Guayas 3 km aproximadamente, se caracterizan por presentar taludes rectos con pendientes suaves hacia el sur y empinadas de este a oeste.

El área de los cerros comprende 13 sectores urbanos: Colinas del Valle, Cerro las cabras, Mercado de Durán, El Mirador, Ferroviaria 3, Cdla. Primavera 2, Las Terrazas, 3 de marzo, Unidos Venceremos, Bienestar para todos, Nueva Vida 2000, El Bosque y San Enrique(Figura 1.2).

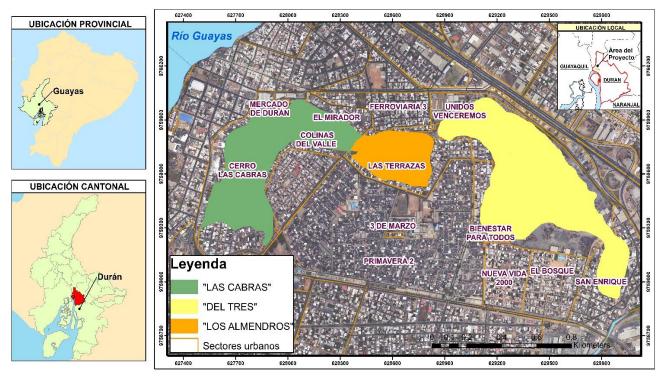


Figura 1.2 Mapa de ubicación de los cerros del casco urbano del cantón Eloy Alfaro-Durán Escala 1:10.000, la línea amarilla delimita los sectores cercanos de cada uno de los cerros.

1.4.2 Clima e hidrografía

De acuerdo con el mapa de climas del Ecuador de INAMHI, 2008, los climas existentes en el cantón Durán son el subhúmedo con gran déficit hídrico en época seca y cálido, lo cual es consistente con los índices de precipitación, concentrados en la zona norte y noroccidente (GAD municipal de Durán, 2015) (Figura 1.3).

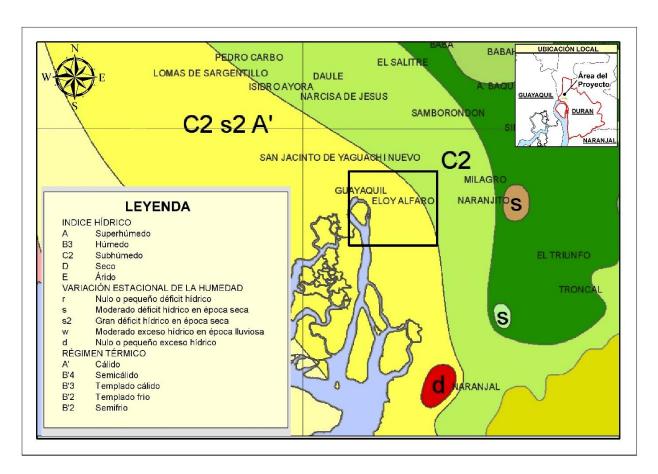


Figura 1.3 Clima local del cantón Eloy Alfaro-Durán. El rectángulo negro remarca el área de Durán modificado de INAMHI,2008.

El cantón Durán posee un patrón estacional constante típico de la región litoral del Ecuador, con períodos lluviosos entre los meses de diciembre a mayo, lo que produce una concentración de precipitaciones en 7 meses con un promedio aproximado de lluvias acumuladas de 965 mm y un período seco a muy seco de 5 meses (RESCLIMA, DURAN, 2018). La temperatura global promedio de la ciudad de Durán bordea los 27.3 °C, siendo el mes de agosto el más frío con 21.8° C y el más cálido en diciembre con 32.5° C (RESCLIMA, DURAN, 2018).

El cantón Durán se encuentra ubicado en la cuenca baja del Río Guayas, por sus características de relieve se encuentra atravesado por una serie de esteros y canales propios de la dinámica fluvial del estuario del Río Guayas. El sistema de drenaje de los cerros se encuentra condicionado por la dirección de sus laderas, donde se puede

observar dos sistemas preferenciales:1) hacia el oeste, aquellas que desembocan en el río Guayas y 2) hacia el este, aquellas que desembocan en el cauce principal de la cuenca urbana del estero San Enrique. (Ver figura 4)

Figura 1.4 Mapa Hidrográfico de los cerros del casco urbano del cantón Eloy Alfaro-Durán a escala 1:14.000, 1) Dirección oeste el río Guayas y 2) Dirección este el estero San Enrique, la línea amarilla delimita sectores cercanos a los cerros.

CAPÍTULO 2

2. MARCO TÉORICO

2.1 Marco geológico

2.1.1 Geodinámica y geológia regional

El litoral ecuatoriano conforma la región de antearco del Ecuador. De acuerdo con Melle, y otros, 2008, la región de antearco inicia su formación con el sumergimiento de la Formación Piñón (basamento), como producto de una pluma mantélica en el paleo Océano Pacífico sobre la Meseta Oceánica Colombiana del Caribe (CCOP). Posteriormente a inicios del Coniacinao (89.8 ± 0.3 Ma) son emplazadas brechas volcánicas y lavas (Miembro Orquídeas) en la parte superior del CCOP (Figura 2.5).

Las formaciones Calentura junto con el terreno Piñón formaban parte de la Meseta del Caribe; mientras que, las formaciones de San Lorenzo y Cayo representan las facies proximales y distales de un arco de isla de edad Campaniano Medio- Maastrichtienese., este período estuvo marcado por la depositación de margas y areniscas marinas profundas, y el desarrollo incipiente de un arco insular (tobas), que luego abarca la depositación de turbiditas volcanoclásticas (Fm. Cayo) (Melle, y otros, 2008) (Figura 2.5).

Entre ≈68 Ma y ≈58 Ma, el terreno Piñón recibió sedimentos pelágicos, cherts silíceas negras ricas en radiolarios (Fm. Guayaquil), sin ninguna entrada detrítica (Figura 2.5). En cuanto al aporte no detrítico, se ha comprobado que una parte oriental del CCOP estuvo en contacto con el margen continental ecuatoriano en el Maastrichtienese Tardío (Terreno Guaranda de la Cordillera Occidental del Ecuador)), mientras que el terreno Piñón recibió cuarzo detrítico discordante (Jaillard et al., 2004) (Figura 2.5).

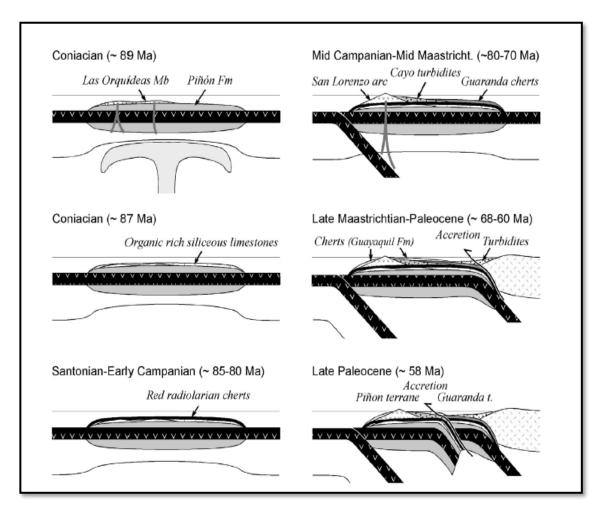


Figura 2.5 Escenario propuesto para la evolución geodinámica del CCOP (terrenos de Piñón y Guaranda) entre los tiempos de Coniaciano y Paleoceno.(Melle, 2008).

El área de estudio se ubica en la Cordillera Chongón-Colonche con orientación NNW-SSE, (Lebrat et al., 1987; Reynaud et al.,1999; Luzieux et al., 2006), limitada al norte por las fallas Colonche y Cascol de dirección NW-SE, al norte de la falla Cascol se han identificado cabalgamientos en dirección NNE-SSW. Estratigráficamente el área de estudio presenta a el Bloque Piñón, Formación Cayo y la Formación Guayaquil (Figura 2.6, literal A)).

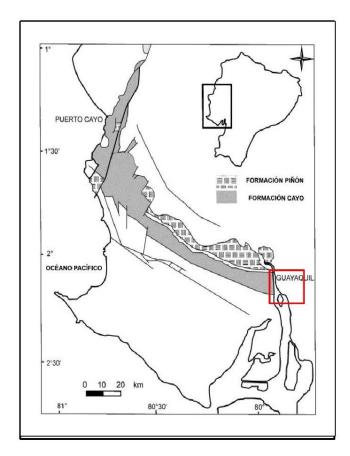


Figura 2.6 Literal A) geología simplificada de la Cordillera Chongón-Colonche, Litera B) geodinámica pertinente al área de estudio remarcada en un rectángulo rojo.

La Formación Cayo es una secuencia de rocas volcanoclásticas y sedimentarias marinas de 2500 metros de espesor (Figura 2.7). La parte basal consiste en gruesas secuencias granulosas de rocas volcanoclásticas, probablemente depositadas contemporáneamente con actividad de arco (Machiels et al., 2008). La parte superior, compuesta en turbiditas y flujos de escombros, y muestra una tendencia progresiva de adelgazamiento grano decreciente (Thalmann, 1946; Wallrabe-Adams, 1990; Benítez 1990, 1995; Reynaud et al., 1999; Luzieux et al., 2006).

La Formación Guayaquil presenta un espesor de 400 m de lutitas pelágicas, cherts, tobas silíceas y algunas capas delgadas de turbiditas completamente desprovista de material continental (Thalmann, 1946; Faucher et al., 1971; Jaillard et al., 1995). La Formación Guayaquil se encuentra superpuesta inconformemente sobre las calizas turbiditicas de la Formación San Eduardo y los sedimentos clásticos del grupo Ancón (Benítez, 1995) (Figura 2.7).

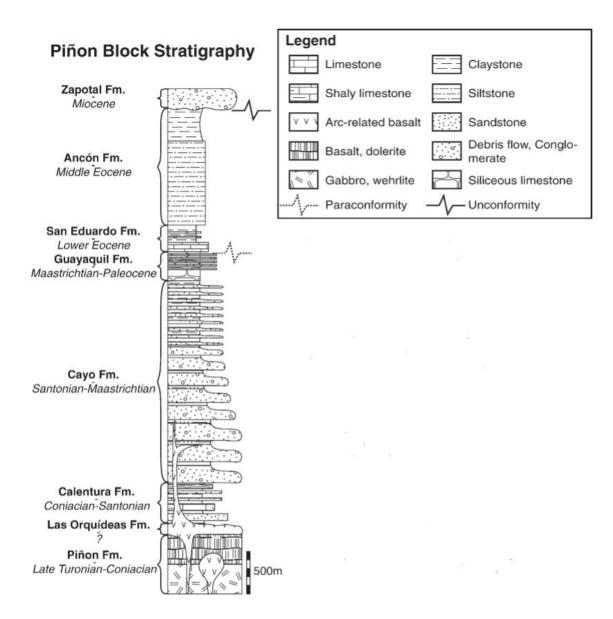


Figura 2.7 Estratigrafía del bloque de la formación Piñón (Luzieux et al., 2006).

2.2 Movimientos en masa (MM)

Los movimientos en masa comprenden procesos geológicos altamente destructivos que pueden afectar a las comunidades (Suarez, 1998), estos han sido clasificados en diversos tipos por autores como Sharpe (Sharpe, 1938), Terzaghi (Terzaghi, 1950) y Varnes (Cruden & Varnes, 1996), este último toma en cuenta el tipo de movimiento y el material involucrado, haciendo referencia al suelo y roca, del cual se obtiene cinco tipos de movimientos: caídas, basculamientos, deslizamientos, separaciones laterales, flujos y complejos (Tabla 2.1).

Tabla 2.1 Clasificación de los movimientos en masa de Varnes. Fuente: Modificado de Varnes (Cruden & Varnes, 1996).

Tipo de movimiento		Tipo de movimiento		
		Roca	Suelo	
			De grano grueso	De grano fino
Caídas		Caídas de	Caídas de	Caída de
		rocas	detritos	suelos
Basculamiento		Basculamiento	Basculamiento	Basculamiento
		de rocas	de detritos	de suelos
Deslizamiento	Rotacionales	Deslizamiento	Deslizamiento	Deslizamiento
		rotacional de	rotacional de	rotacional de
		rocas	detritos	suelos.
	Traslacionales	Deslizamiento	Deslizamiento	Deslizamiento
		traslacional de	traslacional de	traslacional de
		rocas	detritos	suelos
Separaciones laterales		Separación lateral en rocas	Separación	Separación
			lateral en	lateral en
			detritos	suelos
Flujos		Flujo de rocas	Flujo de detritos	Flujos de
				suelos
Movimientos Complejos		Combinación de dos o más tipos.		

Los movimientos de caída de rocas se originan por el desprendimiento de material de un talud con pendiente fuerte, a lo largo de una superficie, en el cual ocurre ningún o muy poco deslizamiento de corte y desciende principalmente, a través del aire por caída libre, asociados o rodando (Suarez, 1998), las caídas de roca por lo general son movimientos intermitentes en caída libre, asociados a escarpes de rocas duras y fracturadas (Vargas, 2000). Con respecto a los basculamientos son movimientos producidos por efecto de la gravedad y la rotación, hacia delante de un material rocoso, alrededor de un punto de giro localizado en su parte inferior (Figura 8).

Por otra parte, los deslizamientos son movimientos a lo largo de uno o más planos discretos que desplazan masas, pueden ser rotacionales o traslacionales en sus movimientos (Mora R.,2002), estos se caracterizan por desarrollar una o más superficies de ruptura, zona de desplazamiento y zona de acumulación (Vargas, 2000). En relación a las separaciones laterales estas consisten en un movimiento de extensión acompañado por fracturamineto cortante o tensional, que se desplaza en sentido lateral o casi horizontal en donde subyacen masas rocosas fracturadas y materiales de composición arcillosa; en referencia a los flujos, son movimientos relativos de material litológico de textura fina y gruesa que se desplazan a lo largo de una superficie de falla bien definida, la cual sigue discontinuidad formada por un cambio litológico, una estructua geológica o una caracteristica geotécnica (Figura 2.8).

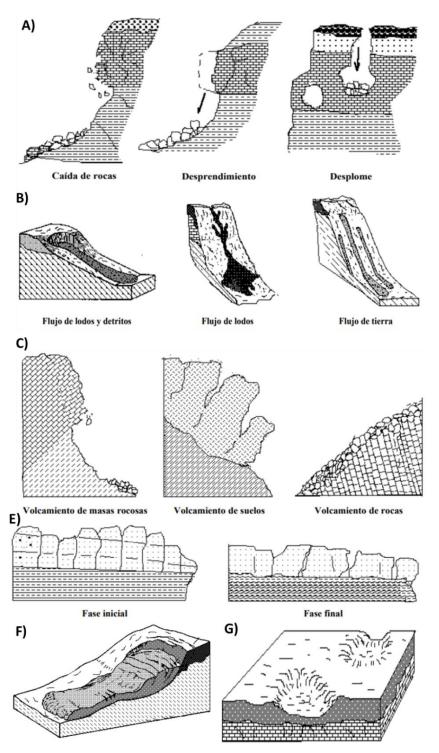


Figura 2.8 Criterios para la clasificación y descripción de movimientos de masa. A) Ejemplos de caídas, desprendimientos y desplomes de rocas o masas rocosas, B) Ejemplos de Flujos, C) Movimientos en masa por volcamiento, E) Movimiento en masa con propagación lateral por licuación de masa de roca fracturada sobre rocas arcillosas F) Deslizamiento rotacional, G) Hundimientos de terreno. Varnes (Cruden & Varnes, 1996).

2.3 Marco geofísico

Los métodos de exploración geofísica son diversos, estos consiste en inferir la estructura geológica a través de la distribución de alguna propiedad física del subsuelo, dependiendo del método utilizado. Son diversas las propiedades de la Tierra, en ellas cabe mencionar la resistividad eléctrica del subsuelo, velocidad de propagación de ondas de sonido, densidad de masa y susceptibilidad magnética entre las más importantes (Geofísica Exploraciones, 2008).

El método más utilizado es el geofísico cuya rama es la que trata sobre el comportamiento de sedimentos en relación con la corriente eléctrica, los más comunes se basan en la inyección artificial de una corriente eléctrica los que son:

- Sondeos eléctricos verticales (SEV)
- Tomografías eléctricas de resistividad (TER)

2.3.1 Sondeos eléctricos verticales (SEV) y Tomografía eléctrica de resistividad (TER)

Los sondeos eléctricos verticales (SEVs), permiten obtener la distribución de las resistividades reales con la profundidad en un punto (1-D) mediante la inversión de curvas de resistividad aparente – distancia AB (Manilla, 2003).

La tomografía eléctrica de resistividad (TER) es un método de resistividad multielectródica, basado en la modelización 2-D de la resistividad del terreno mediante el empleo de técnicas numéricas (elementos o diferencias finitos). Sin embargo, actualmente se está avanzando en la modelización 3-D (Serrano, 2003).

Esta herramienta tiene el objetivo de determinar la distribución de la resistividad del subsuelo haciendo mediciones desde la superficie del terreno. La resistividad eléctrica es una propiedad relacionada con la composición y arreglo de los contituyentes sólidos del suelo, el contenido de agua y la temperatura (Loke, Tutorial : 2-D and 3-D electrical imaging surveys, 2011) (Samouëlian, Cousin, Tabbagh, Bruand, & Richard, 2005). Este

método se considera como una forma de acceder al conocimiento de la variabilidad de las propiedades físicas del mismo, a continuación se presenta la resistividades típicas de ciertos materiales (Figura 2.9).

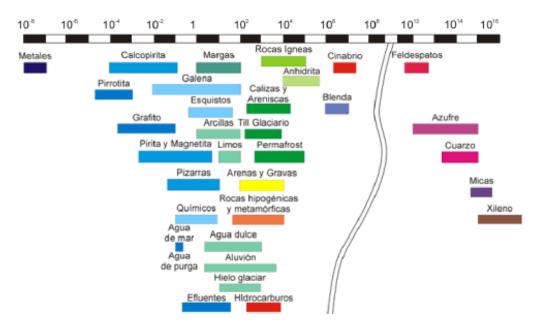


Figura 2.9 Resistividades típicas de los materiales en [Ωm], Fuente: (Pérez, 2010)

El proceso de adquisición de la TER es automatizado, por ende, esto permitirá realizar un gran número de medidas, tanto en profundidad como lateralmente, en un breve espacio de tiempo.

La inyección de corriente y la medición del potencial eléctrico resultante, se realiza a través de electrodos clavados en el suelo y la manera en que estos son acomodados recibe el nombre de configuración o arreglo electródico. En nuestro proyecto se implementó la configuración Schlumberger (Weinzettel, 2009).

El objetivo del método se basa en obtener una sección 2-D de resistividades reales del subsuelo, modelo a partir del cual podremos interpretar el tipo de material con la ayuda de datos in situ (mapas geológicos, perforaciones, registro de pozos, etc). Para ello será preciso el empleo de un programa de inversión, con el que transformar las resistividades aparentes obtenidas de la campaña de campo, a valores de resistividad real (Serrano, 2003)

La configuración dependen de la disposición de los electrodos asi se definen los arreglos, los arreglos más utilizados para los metodos geo-eléctricos son: wenner-schlumberger, dipolo-dipolo, polo-polo, polo-dipolo, wenner y schlumberger. Elegir el tipo de arreglo depende del objetivo de investigación, este puede depender de varios factores como el tipo de estructuras geológicas, profundidad de investigación deseada, sensibilidad del arreglo y la fuerza de la señal del mismo. En nuestro trabajo se utilizará la configuración de Schlumberger (Montiel A., 2015).

En el arreglo schlumberger los electrodos M y N permanecen fijos mientras que los de corriente A y B se mueven paulativamente incrementado la distancia AB, con esto se incrementa la profundidad de explotación, donde la distancia de los electrodos MN es menos a los AB. El arreglo debe cumplir la relación AB>5MN (Figura 2.10).

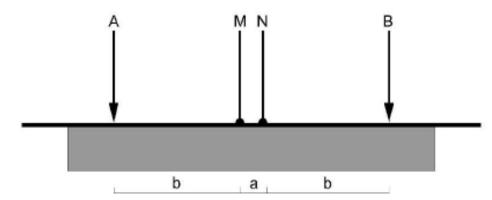


Figura 2.10 Disposiciones de electrodos en el arreglo Schlumberger. Fuente: (Mamani,2016)

Para lugares en los cuales se requiere una cobertura horizontal se puede utilizar la tecnica del roll-along. Esta técnica consiste en pasar del inicio al final del tendido para no perder información a profundidad. Pueden hacerse del 25%, 50% o 75% según el objetivo del estudio.

El equipo utilizado es el Terrameter ABEM LS es un avanzado sistema de adquisición de datos de potencial espontáneo (Self Potential SP), resistividad y polarización inducida en dominio del tiempo (PI). El instrumento cuenta con todo lo necesario para realizar levantamientos geoeléctricos de imágenes tomográficas (ABEM, 2012) (Figura 2.11, Figura 2.12)

Figura 2.11 Equipo para TER Terrameter LS. Fuente: ABEM, 2012.

En la figura 2.12, se observa las partes que son embarcadas junto al Terrameter LS como equipo de levantamiento de la tomografía eléctrica de resistividad.

Figura 2.12 Terrameter LS para levantamiento básicos de imágenes tomográficas de resistividad eléctrica. Fuente: (ABEM,2012).

2.3.2 Inversión tomográfica

La teoría de inversión está organizada en un conjunto de técnicas matemáticas y estadísticas, cuya finalidad es reproducir información de las propiedades físicas de un

sistema partiendo de los datos obtenidos en este sistema. Por ende, Los métodos de inversión generan un "modelo idealizado" de subsuelo que se sujete a los parámetros medidos y que este sujeto a ciertas restricciones (Abdeslem, Regalado Sosa, & Cerquone Ravelo, 2013).

La rutina de inversión del programa está basada en el método de mínimos cuadrados con restricción de suavizado. Una de las ventajas de este método es el factor de amortiguación (damping) y el filtro de achatamiento pueden ser ajustados a diferentes tipos de datos. El modelo 2D usado en este programa divide al subsuelo en número de bloques rectangulares y homogéneos. Luego se determina la resistividad de los bloques, producto de la pseudosecciones de resistividades medidas y las aparentes (Mamani, 2016).

El objetivo de la inversión de datos tomográficos eléctricos es encontrar un modelo de distribución de resistividades verdaderas del subsuelo con el menor error cometido, por ende, esta determina un modelo idealizado (Mamani, 2016).

Para la inversión tomográfica se utilizó el software RES2DINV que está diseñado para interpolar e interpretar datos de campo de prospección geofísica eléctrica (sondeo 2D) de resistividad eléctrica (conductividad) y polarización inducida. Existen varias técnicas de inversión, las más frecuente son: el método de mínimos cuadrados que involucra métodos de elementos finitos y de diferencias finitas. Las técnicas de inversión que se han implementado en este proyecto son dos, escogidas de acuerdo con la finalidad del proyecto: (Loke, Turorial: 2D and 3D Electrical Imaging Surveys, 2012).

 Selección robusta de inversión (select robust inversión): ofrece excelentes resultados donde el terreno presenta ruidos aleatorios o "gaussiano", donde se minimiza el cuadro de cambios en los valores de resistividad del modelo produciendo un modelo con variaciones suaves de resistividad. Adecuado para áreas donde existe la interfaz suelo-roca. • Método de mínimos cuadrdos restringuido de suavidad (smoothness constrained least-squares method: esta opción combina el método de mínimos cuadrados amortiguados con el método restringido de suavidad, diseñada para situaciones donde los valores de sensibilidad de los datos de los bloques del modelo están significativamente distorsionados por variaciones de resistividad. Además, da mejores resultados en la resolución de estructuras compactas donde el ancho y el grosor son ligeramente pequeños en profundidad

2.4 Marco geomecánico

2.4.1 Descripción de macizos rocosos

Un macizo rocoso puede definirse en distintas áreas con aspectos diferentes, por ejemplo: zonas con litologías distintas, elementos estructurales, grado de fracturación, grado de meteorización, etc., lo que se recomienda una división inicial por zonas. Frecuentemente se utiliza la metodología implementada por Ferrer & González de Vallejo, 1999, la cual consiste en seis pasos:

- a) Identificación del afloramiento: consiste en la localización, situación geográfica, accesos, extensión, características geométricas, etc. Debe indicarse si es un afloramiento natural o corresponde a una excavación y las condiciones en que se encuentra.
- **b)** Fotografías y esquemas: consiste en fotografíar y dibujar los afloramientos observados en campo a lo largo de las salidas de campo.
- c) Descripción geológica general: formación y edad geológica, litologías, estructuras observables a gran escala, rasgos estructurales generales: macizo estratificado, fallado, fracturado, masivo, etc., zonas alteradas y meteorizadas y espesor de estas y presencia de agua, surgencias, etc.
- d) División en zonas y descripción general de cada zona: la zonificación se realizará en base a criterios litológicos y estructurales considerando los sectores

más o menos homogéneos del afloramiento, no siendo conveniente establecer demasiadas zonas, aunque el número y la extensión de estas dependerá del grado de heterogeneidad de los materiales y estructuras que formen el macizo, de la extensión del afloramiento y del grado de detalle y finalidad de la investigación.

e) Identificación de zonas singulares: se define a zonas singulares a elementos o estructuras no sistemáticas, que no se repiten en el macizo, y que tienen influencia en sus propiedades y comportamientos mecánico, por ejemplo, fallas, diques, pliegues, zonas de brecha, etc., estas se describen de manera individual indicando la problemática específica.

2.4.2 Caracterización de la matriz rocosa

Son tres los aspectos que deben describirse en campo: Identificación, Meteorización o alteración y resistencia a compresión simple.

a) Identificación

La identificación visu de roca se establece a partir de su composición y textura o relaciones geométricas de sus minerales, las observaciones prácticas se reducen en cinco: composición mineralógica, forma y tamaño de roca, color y transparencia y dureza.

b) Meteorización o alteración

El grado de meteorización de la roca condiciona de forma permanente las propiedades mecánicas. Según avanza el proceso de meteorización aumenta la porosidad, permeabilidad y deformabilidad del material rocoso, al mismo tiempo que disminuye su resistencia, esta puede categorizarse en seis niveles: sano, algo meteorizado, medio meteorizado, muy meteorizado, completamente meteorizado y suelo residual.

c) Resistencia a compresión simple

El ensayo de compresión simple permite obtener un valor de carga última del suelo, esta puede ser estimada en el afloramiento por medio de ensayo de carga puntual PLT o el martillo de Schmidt, el primer ensayo obtiene el índice de juntas, mientras el martillo de

Schmidt o esclerómetro mide la resistencia de rebote de una superficie rocosa, las dos son correlacionable con la resistencia a compresión simple.

2.4.3 Descripción de las discontinuidades

Las discontinuidades son planos de fractura que condicionan el comportamiento de los macizos rocosos (resistencia, deformación, y el equilibrio y movimiento de fluidos) y la medida de estas propiedades se realiza en campo (Gonzáles de Vallejo et al, 2002) (Figura 2.13):

- Orientación de una discontinuidad: se define por la dirección de buzamiento (dirección de la línea de máxima pendiente del plano de discontinuidad respecto al norte) variando en valores entre 0° y 360° y su buzamiento (inclinación respecto a la horizontal de dicha línea) mediante el clinómetro con valores variables de entre 0°-90°.
- **Espaciado:** es definido como la distancia entre dos planos de discontinuidades de una misma familia, medida en dirección perpendicular a dichos planos.
- Continuidad o persistencia: en un plano de discontinuidad es su extensión superficial, medida por la longitud según la dirección del plano y según su buzamiento, las familias más continuas condicionan los planos de rotura del macizo rocoso.
- Rugosidad: se emplea para hacer referencia tanto a la ondulación de las superficies de discontinuidad, como a las irregularidades o rugosidades a pequeña escala de los planos. Esta emplea dos escalas de observación: 1) escala decimétrica y métrica para la ondulación de superficies planas, onduladas o escalonadas y 2) escala milimétrica y centimétrica para rugosidad o irregularidad en superficies pulidas, lisas o rugosas.

- Resistencia de las paredes: depende del tipo de matriz rocosa, la existencia o
 no de relleno y el grado de meteorización, esto influye en la resistencia al corte y
 en su deformabilidad, obtenida por medio de los índices de campo.
- Abertura: es la distancia perpendicular que separa las paredes de la discontinuidad cuando no existe relleno.
- Relleno: influye en el comportamiento este puede ser de materiales blandos arcillosos, material producto de la meteorización de la roca o material rocoso de naturaleza distinta a las de las paredes.
- Filtraciones: se define como el flujo de agua circulante por medio de las discontinuidades (permeabilidad secundaria) y a través de la matriz rocosa (permeabilidad primaria).

Figura 2.13 Representación esquemática de las propiedades geométricas de las discontinuidades a partir de González de Vallejo et al. (2002).

Una vez efectuado el levantamiento geológico estructural y definidas las características y propiedades de cada una de las discontinuidades del macizo rocoso, se realiza la representación gráfica de las diferentes familias de discontinuidades mediante una proyección estereográfica, en la que se representa polo o planos con valores medidos de las diferentes familias. (Figura 2.14)

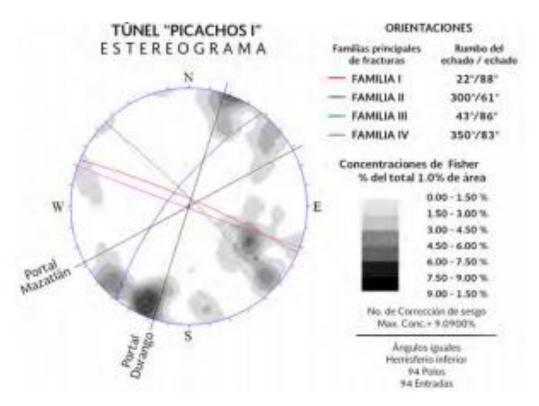


Figura 2.14 Diagrama estereográfico, representación de planos estructurales de cuatro familias, la densidad de los polos se muestra en la concentración de Fisher en porcentaje del área total en escala de grises. Fuente: (Secretaria de Comunicaciones y Transporte, 2010).

Es aconsejable medir varias orientaciones de discontinuidades para definir adecuadamente cada familia. El número de medidas dependerá de la extensión de la zona de estudio, de la aleatoriedad de las orientaciones de los planos y del detalle del análisis (González de Vallejo et al., 2002).

CAPÍTULO 3

3. METODOLOGÍA

La metodología para la caracterización de susceptibilidad de movimientos en masa consiste en dos partes: 1) trabajo de campo: levantamiento detallado de los datos tomados de campo (geológico, geofísico y geomecánico) y 2) trabajo de gabinete: procesamiento, descripción, análisis e interpretación de los datos de campo mediante las metodologías propuestas por: (Compton, 1970) con respecto a los datos geologícos; (ABEM, 2012), (Abdeslem, Regalado Sosa, & Cerquone Ravelo, 2013) (Loke, Turorial: 2D and 3D Electrical Imaging Surveys, 2012) y (Mamani, 2016) con respecto a datos geofísicos; (Gonzáles de Vallejo et al, 2002); (Van Zuidam, 1986) y (Pedraza-Gilsanz, 1996); (Valdiviezo Ajila, 2014); (Sen & Sagah, 2003) y (Tomas et al, 2007) con respecto a datos geomecánico, que serán unificados con el método de sobreposición del mapa de susceptibilidad de rocas. A continuación, se describe la metodología seguida:

3.1 Trabajo de campo

3.1.1 Geología

El levantamiento geológico se basó en el reconocimiento de las unidades litológicas aflorantes, levantamiento de columnas estratigráficas y toma de datos estructurales en el área de estudio, siguiendo las directrices de la guía geológica de campo de (Compton, 1970).

Para el levantamiento de campo se implemento el método de afloramientos, el cual consiste en localizar a escala cada afloramiento, dibujando su contacto con el material superficial que lo rodea, los afloramientos pequeños tienen que hacerse de modo general, las lineas de contacto deben dibujarse como líneas llenas dentro del áreas aflorantes y como líneas punteadas a tráves de las áreas cubiertas. Estos pueden diferenciarse por medio de colores, símbolos y líneas diferenciadas (Greenly & Howel, 1930).

Se generaron perfiles guías paralelos separados cada 100 m, superpuestos en la ortofoto 2018 facilitada por el GAD de Durán, se realizó el recorrido lo más próximo posible a las guías trazadas en los cuales se levantaron tres tipos de datos: estaciones principales (engloba columnas estratigráficas, medidas estructurales e identificación de litologías), medidas de control y puntos de control. Estos datos fueron ubicados con ayuda del navegador GPS YUMA 2 de marca Trimble.

3.1.2 Geofísica

En este proyecto, se implementa el método de prospección eléctrica mediante la aplicación de tomografías de resistividad eléctrica (TER), con el fin de correlacionar datos anteriormente obtenidos en campo e inferir la calidad de roca y de la existencia de estructuras geológicas.

Se levantó cinco tomografías eléctricas (TER), cuatro TER de 160 m y una línea de 80 m de longitud, con la misma disposición espacial que las líneas (Tabla 2.2).

Tabla 3.2 Adquisición de datos con el método geofísico eléctrico de tomografías eléctricas dentro del área de estudio, en la celda de coordenadas geográficas se indican las coordenadas iniciales (o), medias (m) y finales (f) de la línea tomográfica.

No.	Fecha	Línea	Longitud	Espaciado	Coordenadas geográficas	Método
1	17/09/2018	RES1_NS	160 m	2 m	(6277730,9759627) ₀ (627703,9759554) _m (627647,97594999) _f	Roll-along
2	18/09/2018	RES2_NS	160 m	4 m	(62784,97594427) ₀ (627884,9759367) _m (627892,9759298) _f	Schlumberger
3	18/09/2018	RES3_NS	160 m	4 m	(627874,9759798) ₀ (627824,9759737) _m (627792,9759663) _f	Schlumberger
4	19/09/2018	RES4_NS	160 m	4 m	(628045,9759895) ₀ (627975,9759865) _m (627905,9759821) _f	Schlumberger
5	19/09/2018	RES5_EO	80 m	2 m	(628470,9759711) ₀ (628509,9759697) _m (628542,9759674) _f	Schlumberger

La toma de datos se efectuó con el equipo resistivimétro Terrameter LS (marca ABEM) (Figura 2.11), el cual controla la inyección de corriente y la medida del cambio del potencial. El arreglo seleccionado fue el Schlumberger, este es un arreglo moderadamente sensible a variaciones verticales como horizontales, el equipo está compuesto de (ABEM, 2012):

- 81 electrodos
- 82 jumpers
- 4 rollos de cables (4C) compuesto por 8 rollos de cables
- 2 conectores rojos para el paso de corriente
- 1 batería de 12 V

Las TER, fueron distribuidas de la siguiente manera: cuatro en el cerro "Las Cabras" y una línea en el cerro "Los Almendros" (Figura 3.15)

Figura 3.15 Distribución de levantamiento de tomografías eléctricas (línea roja) realizadas en el área de estudio, cuatro de ellas corresponde a el cerro "Las Cabras" A)-B)-C) y D), una de ellas corresponde al cerro "Los Almendros" E). La sombra verde representa el área de estudio.

Se colocó los electrodos de acuerdo con el espaciado dispuesto de la longitud de la tomografía eléctrica (Figura 3.16, literal a)), se colocó los cables cuidadosamente con la finalidad de no superponer ningún cable y no exista algún error en la lectura de datos (Figura 3.16, literal b)), con el equipo instalado y la revisión de cada una de las partes que lo constituyen se procedió a la programación del Terrameter L.S. para la obtener las pseudosecciones de resistividades del subsuelo (Figura 3.16, literal b)).

Figura 3.16 Levantamiento de tomografías eléctricas, literal a) Instalación de electrodos para la toma de datos, literal b) rreglo de los cables para la toma de datos, literal c) configuración del equipo para la toma de las Tomografías Eléctricas

3.1.3 Geomecánica

En este apartado se realiza la descripción de los macizos rocosos, caracterización de macizos rocosos y descripción de discontinuidades para ello se trabajará con la metodología propuesta por (Gonzáles de Vallejo et al, 2002) la cual es resumida en una ficha para la toma de datos geomecánicas en campo (Figura 3.17, Figura 3.18).

La ficha de campo consiste en dos carillas: la primera carilla posee la información respectiva de la descripción y caracterización del macizo rocoso (Figura 3.17), la segunda corresponde a la descripción de las discontinuidades presentes en el afloramiento (Figura 3.18).

Descripción y Caracterización del macizo rocoso

- Identificación del afloramiento. (Localización, situación geográfica, geometría, etc)
- 2. Fotografías y esquemas.
- 3. Descripción geológica general. (Litología, naturaleza, meteorización, potencia y depósitos superficiales).
- 4. Zonificación del afloramiento mediante criterios litológicos, estructurales o por el grado de meteorización generado así una homogenización de los datos.
- 5. Identificación de zonas con presencia de elementos estructurales no repetibles que influyen en sus características geomecánicas.
- 6. Caracterización del macizo rocoso

Descripción de discontinuidades del macizo rocoso

Los elementos estructurales son caracterizados mediante su orientación, espaciado, continuidad, rugosidad, abertura, relleno, filtraciones y resistencia a la compresión simple estimada mediante el rebote del martillo de Schmidt (Figura 3.18).

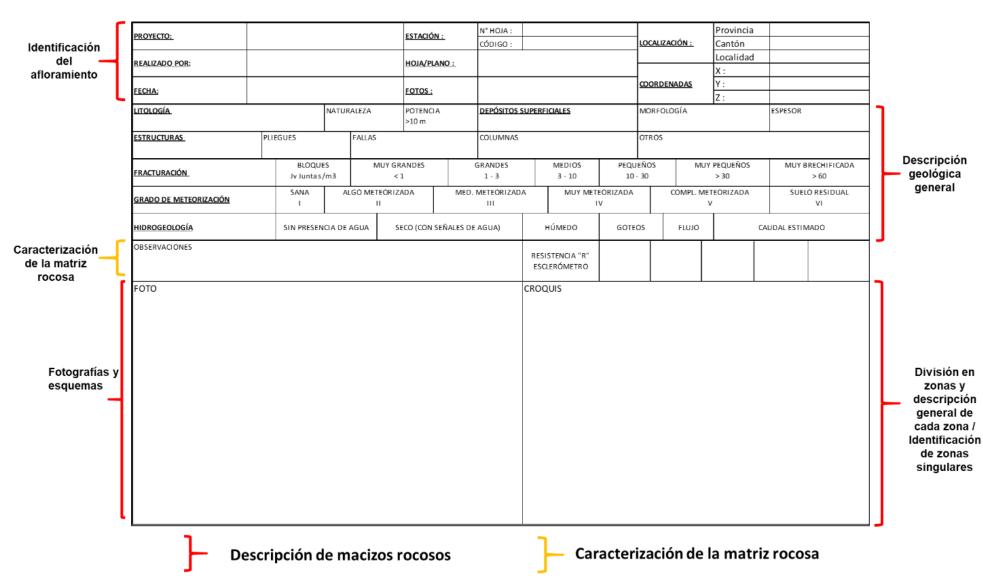


Figura 3.17 Primera carilla de la ficha de datos geomecánicas. (Gonzáles de Vallejo et al, 2002) modificado por (Valdiviezo Ajila, 2014).

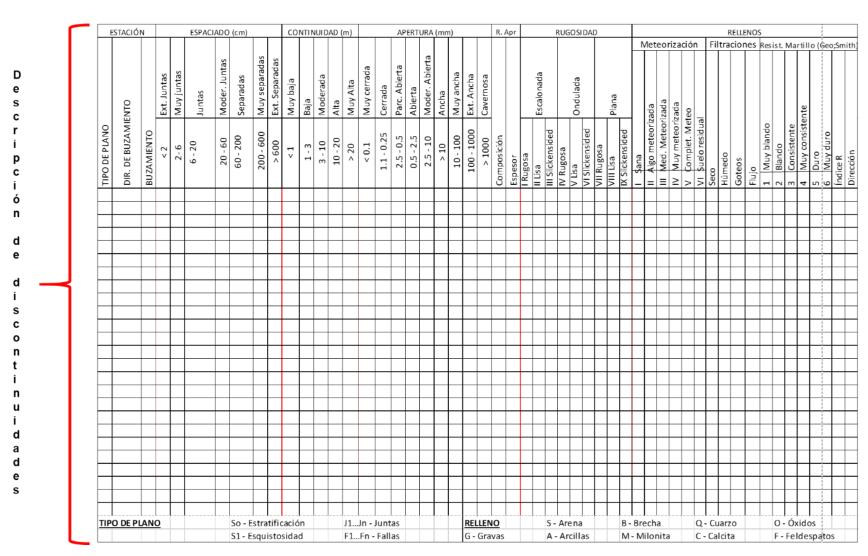


Figura 3.18 Segunda carilla ficha de datos geomecánicas. (Gonzáles de Vallejo et al, 2002) modificado por (Valdiviezo Ajila, 2014)

Las descripciones pertenecientes a los parámetros de espaciado, continuidad, abertura corresponde a medición directa de campo que son clasificadas de manera estándar por el International Society for Rock Mechanics (ISRM, 1981). La rugosidad es definida de acuerdo con los perfiles estándar de rugosidad por el International Society for Rock Mechanics (ISRM, 1981). La resistencia será medida de acuerdo con el martillo de Schmidt con un promedio de 10 rebotes por cada tipo de estructura y por la consistencia del macizo al golpe con el martillo del geólogo. El parámetro de filtración será clasificado de acuerdo con el flujo de agua en cuatro seco, húmedo, goteos o flujos (Figura 3.18)

3.2 Trabajo de gabinete

3.2.1 Geología

Los datos levantados en campo se distribuyeron en tres tipos de datos: 144 estaciones principales (EP) que incluye la toma de datos estructurales y columnas estratigráficas, 313 puntos de control (PC) litología aflorante y 201 medidas de control (MC) estructuras presentes en el área (Figura 3.19). Con la información de campo se generó una base de datos que incluye, tipo, coordenadas geográficas (x, y, z), litología, medida estructural, tipo estructura, y columna estratigráfica, estas fueron digitalizadas en el software de Sedlog 3.1 (Anexo 9.1).

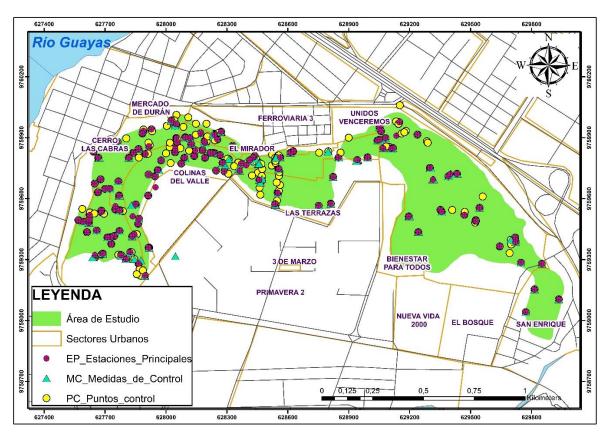


Figura 3.19 Distribución de los tres tipos de datos levantados en campo: 144 estaciones principales (EP), 313 puntos de control (PC) y 201 medidas de control (MC).

La delimitación de unidades litológicas se realizará por medio columnas estratigráficas representativas que serán construidas por el método de correlación litoestratigráfico (Anexo 9.2), este método se basa en el estudio de los cambios litológicos bruscos y en la presencia de algunos niveles de litologías especiales detectables a simple vista de las columnas estratigráficas levantadas en campo (Prieto, 2003). Para la implementación de este método se trazará un perfil de correlación para cada uno de los cerros, tratando de tomar la mayor cantidad de columnas de campo y estas se correlacionarán de acuerdo con su cota de ubicación.

Consecuentemente, se procederá a realizar la construcción del mapa litoestratigráfico y el corte geológico implementando software de información geográfica. La construcción del mapa litoestratigráfico conlleva la representación de los materiales geológicos de la superficie del suelo sobre el mapa topográfico de una determinada área (Delgado, Padilla, & Barrientos, 2010). Este trabajo inició con la construcción del mapa topográfico,

para ello se utilizó información topográfica disponible del GAD municipal del cantón Durán. La información fue cargada, digitalizada, procesada y analizada en el software de información geográfica.

Manipulando las columnas estratigráficas, medidas de control y puntos de control existentes se realizó el reconocimiento y medida de orientación de planos estructurales entre contacto litológicos y partiendo de las curvas de nivel topográficas y curvas de nivel estructurales o isohipsas de diferentes litologías se pudo realizar la determinación de los patrones de afloramiento culminando con la construcción del mapa litoestratigráfico.

Para la construcción de los cortes geológicos se utilizó la información topográfica del área de estudio, con el fin de obtener el perfil topográfico y posteriormente utilizar la técnica de extrapolación de dirección de capas (isohipsas), que consiste en trasladar los puntos de contacto entre unidades litológicas que posean la misma cota y demás características geológicas (discordancia, fallas, etc).

3.2.2 Geofísica

El procesamiento de los datos fue realizado por etapas:

- Exportación de los datos levantados en campo por medio del software Terrameter
 LS Toolbox en formato .dat.
- Visualización, verificación y corrección de datos levantados en campo, para ello se implementó el software RES2DINV, con autorización de la Secretaria de Gestión de Riesgo (SGR) que cuenta con la licencia para su uso.
- 3. Inversión de los datos de resistividad aparente con técnicas de modelado diferentes con el uso del software RES2DINV.

La primera etapa consistió en la descarga de los datos levantados en campo, con la colocación de su respectivo código.

La segunda etapa inicio con la visualización de los datos, para esto se carga el archivo ".dat" en el programa donde este realizó la respectiva lectura de los datos, seguido de la

verificación de puntos en donde se identificó la presencia de datos erróneos o "puntos malos", que son picos altos en consideración de los puntos adyacentes; por ende, para cada uno de los archivos se procedió a realizar la corrección de "puntos malos" que tienen valores inusualmente altos o bajos respecto a los puntos vecinos.

La eliminación de estos datos erróneos se realiza de forma manual por medio de la ventana de edición en donde se visualiza los puntos tomados en campo (Figura 3.20). A partir del criterio del interpretador se pueden marcar los puntos malos que se desea eliminar y se guarda el archivo como una nueva copia con los datos corregidos. La corrección de "puntos malos" se realizó únicamente en la línea RES_1 NS, debido a que era la única que presentaba valores de resistividad negativos en el programa.

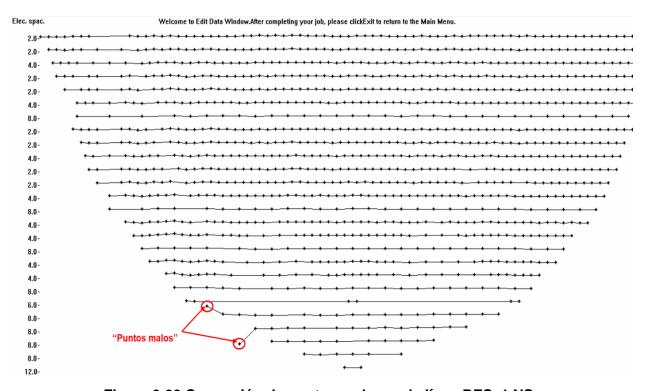


Figura 3.20 Corrección de puntos malos en la línea RES_1 NS.

En esta segunda etapa, se incluyó la corrección topográfica que consiste en modificar el archivo ".dat" de cada línea, con el fin de ajustar la topografía a los modelos de inversión, para ello se utilizó las coordenadas geográficas de cada electrodo adquiridas en el equipo GPS Yuma 2 que posee un margen de error de 1 metro. En la configuración del

archivo ".dat", se realiza por separado los datos de elevación y los datos de latitud y longitud (Figura 3.21, literal a) y b)).

a)		b)						
Topography in s 2 81 0.00000000000 2.0000000000 4.0000000000	Topography in separate list 2 31 3.000000000000 69.50000000000 2.00000000000 68.60000000000 4.0000000000 67.20000000000 5.00000000000 66.10000000000 8.00000000000 65.90000000000 10.00000000000 65.60000000000		1 Global coordinates present Number of coordinate points 81 Local Longitude Latitude 0.00000000000 627730.8960000000 9759627.91400000000 2.00000000000 627729.8432700000 9759623.71648000000 4.000000000000 627729.37760200000 9759621.77179000000 6.000000000000 627728.80821100000 9759619.91954000000 8.000000000000 627728.00959400000 9759617.87489000000					
14.00000000000 16.00000000000 18.0000000000 20.00000000000 22.0000000000	66.4000000000 67.00000000000 67.5000000000 68.8000000000 68.2000000000 67.50000000000 67.10000000000 67.9000000000	10.00000000000 12.00000000000 14.00000000000 16.00000000000 18.00000000000 20.00000000000 22.000000000	627727.66580400000 627727.20942100000 627726.68886300000 627730.41477100000 627726.50776300000 627725.86849200000 627725.61494400000 627725.79319200000	9759615.75756000000 9759613.78500000000 9759611.75858000000 9759625.82521000000 9759609.87009000000 9759608.01765000000 9759605.92329000000 9759603.96520000000				

Figura 3.21 Código de configuración de elevación, altitud y longitud del archivo .dat para colocar la corrección topográfica.

La visualización del archivo que incluía la topografía adquirida del navegador Yuma 2, mostró picos que no asemejaban la topografía real del terreno (Figura 3.22 literal a)). Por ende, se realizó un modelo digital del terreno (DEM) con curvas de separación métrica recopiladas del GAD de Durán, con el fin de extraer las coordenadas geográficas (x,y,z) de la ubicación los electrodos en cada uno de los perfiles para suavizar la topografía actual. Para ello se generó un nuevo archivo ".dat" con la configuración de la corrección topográfica con los puntos obtenidos en el DEM, se realizó la visualización de esta y se obtuvo una topografía suavizada y coherente con la topografía real del terreno (Figura 22, literal b)). Por esta razón, el procesamiento de la inversión se realizó con los archivos que contienen la corrección topográfica con los datos del DEM. Este procedimiento se llevó a cabo para cada una de las líneas levantadas en campo.

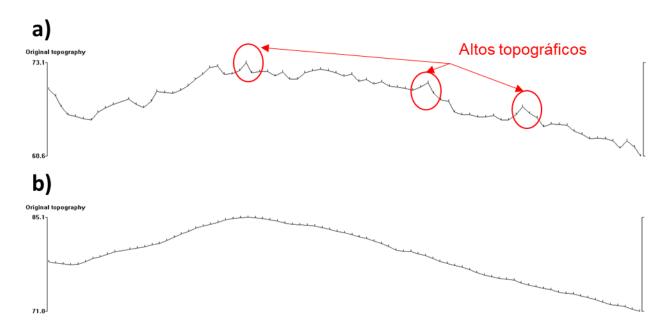


Figura 3.22 Visualización de coordenadas geográficas (x, y, z) del archivo .dat en el software RES2DINV, literal a) muestra codificación del archivo con los datos de equipo navegador GPS Yuma 2, marca Trimble, en este se distinguen altos topográficos y con topografía no cercana a la realidad, y en el literal b) Topografía con la extracción de puntos en el DEM de la ubicación de los electrodos.

Previamente a la tercera etapa, se realizó la definición del parámetro de cálculo necesario en el proceso de inversión que define el número de iteraciones.

La tercera etapa consiste en el procesamiento de las TER, para ello se utilizó las metodologías de inversión disponibles en el software RES2DINV el cual genera un modelo hipotético de resistividades verdaderas del subsuelo (inversión), compara las resistividades y calcula el error cometido, que se va ajustando de acuerdo con una serie de iteraciones consiguiendo un modelo de resistividades coherentes con la geología del sector (Mamani, 2016).

Para la generación de modelos geoeléctricos de cada una de las tomografías eléctricas se realizó la conversión de archivos de formato .inv a .rho utilizando el software de Erigraph, con la finalidad obtener una mejor visualización bidimensional de resistividad aparente del subsuelo. Seguidamente, se correlacionará datos directos (perforaciones y calicatas) e indirectos (sondeos eléctricos verticales) proporcionados por el GAD

municipal del cantón Durán en conjunto con CIPAT-ESPOL en el 2014, para realizar un análisis de resistividad vs profundidad (Anexo 9.), y obtener rangos de resistividades óptimos que permitan interpretar las capas litologías en profundidad e identificar la presencia de estructuras geológicas, para validar el mapa litoestratigráfico.

3.2.3 Geomecánica

En este apartado se analizaron datos de campo diferenciando entre variables primarias y secundarias. Las variables primarias serán los parámetros obtenidos en las fichas geomecánicas (buzamiento y orientación de las discontinuidades, método de excavación de talud, etc) que se digitarán directamente. Mientras, las variables secundarias serán las obtenidas a partir del modelo digital de terreno DEM (Orientación de laderas y Pendientes) (Figura 3.23, Figura 3.24).

MAPA DE ORIENTACIÓN DE LADERAS

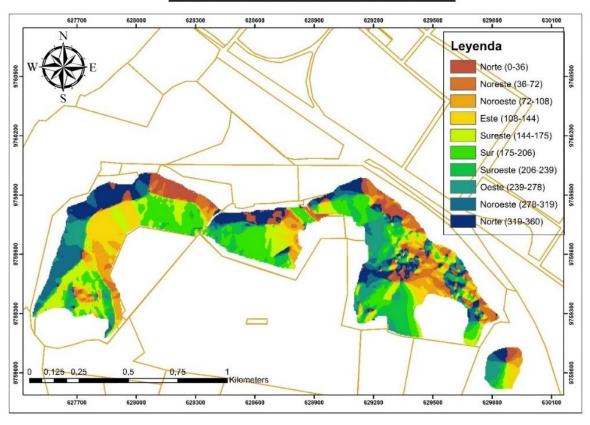


Figura 3.23 Mapa de Aspectos de la zona de estudio.

MAPA DE PENDIENTES

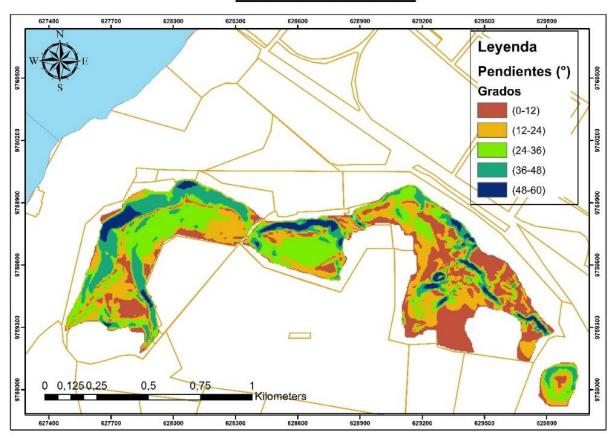


Figura 3.24 Mapa de pendientes de la zona de estudio.

El área de talud será obtenida de acuerdo con la correlación de cuatro parámetros: 1) litoestratigrafía, 2) geofísica, 3) geomorfología y el 4) RMR básico de sistema continuo que permitirán zonificar geomecánicamente la roca de los cerros para ajustar el cálculo del índice de SMR-C. El primer y el segundo parámetro fueron resultados obtenidos en apartados geológicos y geofísicos.

El tercer parámetro geomorfológico de la zona de estudio se realizará en base a las curvas de nivel con separación métrica recopiladas de proyectos anteriores. Se elabora un modelo digital del terreno obtenido a partir de las curvas de nivel. En base a estas se elaboró tres mapas: el mapa hipsométrico se clasificó heurísticamente para resaltar las diferencias de altitud que identifica los principales rasgos del relieve (cada 20 metros), el mapa de pendientes utilizando la reclasificación de las pendientes en cinco categorías de acuerdo con el natural break y el mapa geomorfográfico usando la metodología de

(Van Zuidam, 1986) y (Pedraza-Gilsanz, 1996) en él se pueden identificar las formas del relieve con base en los declives del terreno. Con los tres mapas se realizó la supersosición y se realizó la identificación de geoformas que fueron clasificadas según su origen denudacional.

El cuarto parámetro RMR básico de sistema continúo definido por Sen & Sadagah, 2003, demuestra la simplificación de los factores de 6 a 5 utilizando funciones continuas, para este parámetro se analiza los datos levantados en las fichas geomecánicas. (Figura 3.18)

El RMR básico se enfoca en cinco parámetros de acuerdo con la clasificación de (Sen & Sadagah, 2003):

- 1. Resistencia de compresión uniaxial de la roca intacta (rσ)
- 2. Denominación de la calidad de la roca, "RQD" (r RQD)
- 3. Espaciado entre las discontinuidades (rx)
- 4. Espaciado entre discontinuidades (rJ)
- 5. Estado de las aguas subterráneas (rG)
- 1. La resistencia a la compresión simple de los diferentes tipos de roca (σc) se utilizó el martillo de Schmidt tipo L en cada unidad litológica delimitada del área de estudio. Para ello se recogió muestras de mano de cada tipo de macizo rocosa del cual se pesará su masa y se medirá su volumen, con la finalidad de obtener el valor del peso específico de cada roca (Tabla 3.5).

El valor de la resistencia a la compresión uniaxial de la roca (σ) será calculado utilizando la siguiente ecuación:

$$\sigma = 10^{0.00088\gamma \dot{R}} + 1.01 \tag{3.1}$$

En donde:

σ= resistencia a la compresión simple

y= peso específico de la roca

Revalor medio del índice R del martillo Schmidt

2. El cálculo del RQD, se utilizó la metodología de Priest y Hudson en 1981, la cual nos permite estimar el valor del RQD a partir de la frecuencia del espaciado de discontinuidades (λ) utilizando la siguiente fórmula:

$$RQD=100e^{-0.1h} (0.1h+1)$$
 (3.2)

Donde $\Lambda = 1/\dot{x}$ (3.3) y \dot{x} (3.4) es el promedio del espaciado de discontinuidades en metros.

- **3.** El espaciado entre discontinuidades (r_X) es una medida de la separación métrica entre las juntas de cada familia de diaclasas de la roca, para su obtención se utilizó un flexómetro.
- **4.** Las condiciones hidrogeológicas (rJ) engloba el estado en que se encuentran las juntas, para ello se describió apertura, relleno, rugosidad y alteración de las mismas.

Las ponderación de cada característica de discontinuidad (rJ) se suma de acuerdo a su rating, obtenienco un valor final del parámetro. (Figura 3.25).

Г	Parámetros			Rango de valores				
4	Condición de discontinuidades	Continuidad	<1 m	1-3 m	3-10 m	10-20 m	>20 m	
		Rating	6	4	2	1	0	
		Separación	Ningun a	<0,1 mm	0,1-1,0 mm	1-5 mm	>5 mm	
		Rating	6	5	4	1	0	
		Rugosidad	Muy Rugosa	Rugosa	Ligeramente rugosa	Lisa	Slickensided	
		Rating	6	5	3	1	0	
		Relleno		Relleno Duro		Relleno Suave		
			Ningun o	<5 mm	>5 mm	<5 mm	>5mm	
		Rating	6	4	2	2	0	
		Meteorización	Sana	Algo meteorizada	Med. Meteorizada	Muy meteorizad a	Completamente meteorizada	
		Rating	6	5	3	1	0	

Figura 3.25 Sistema de clasificación de macizo rocosos (RMR), númeral 4. Fuente: (Bieniawski Z., 1989)

5. El estado de las aguas subterráneas (rG) contempla la presencia o flujo de agua en las juntas del macizo rocoso, para su obtención se describe su grado de humedad. Calculadas para un valor ru (relación entre la presión de poros y el estrés vertical considerando la profundidad) de 0.2 para los taludes húmedos, los cuales son valores estimados por Bieniawski en su clasificación del 1989.

Los cinco parámetros descritos conforman el : Rock Mass Rating continuo (RMR-C):

RMR-C= RMRb-rC= rG+ rJ+
$$r\dot{x}$$
+ r RQD+ $r\sigma$ (3.9)

Donde:

$$rG = -10 \log ru - 1.5$$
 (3.5)

$$rX = 24 + 15.1 \log x$$
 (3.6)

$$rRQD = 0.2 RQD (3.7)$$

$$r\sigma = 0.075 \sigma c \tag{3.8}$$

Obtenido los resultados del tercer y cuarto parámetro, se procedió a realizar la correlación de parámetros usando la superposición de datos. Con el objetivo de

identifican zonas de diferente calidad geomecánica, obteniendo las unidades geomecánicas (área del talud).

Con las unidades geomecánicas obtenidas (área del talud) se procederá a realizar el cálculo del índice geomecánico Slope Mass Rating Continue (SMR-C) implementando la metodología propuesta por (Tomás et al., en 2007) para taludes en roca. El SMR-C se define como el SMR definido por (Romana,1985) con funciones continuas, por ende, se implementa el RMR básico de sistema continúo definido por (Sen& Sadagah en 2003) adicionando una serie de factores (F1, F2, F3 y F4) que permiten ajustar la relación geométrica existente entre las discontinuidades y el talud de forma continua.

Para ello se utilizó la siguiente expresión:

SMR-C= RMR básico de sistema continuo +
$$(F1*F2*F3) + F4$$
 (3.14)

- RMR básico de sistema continuo, se calcula de acuerdo con Sen& Sadagah en 2003, la cual considera 5 parámetros, tomados en campo por medio de las fichas geomecánicas (parámetro cuatro).
- F1: depende del paralelismo entre las direcciones de discontinuidades y del talud.
 Se encuentra en un rango de 1.00 a 0.15, valor que se ajusta a la relación, donde
 A es el ángulo entre la dirección de la pendiente (∝S) y la dirección de la discontinuidad (∝i).

$$F1 = 0.64 - 0.006 \arctan((|A| - 17))/10)$$
 (3.10)

F2: se refiere al buzamiento de las discontinuidades (βj). en modo de falla planar.
 Su valor se encuentra en el rango de 1.00 a 0.15, y se ajusta a la relación
 F2=Tg²βj donde βj denota el valor de buzamiento de la discontinuidad. Para fallas de tipo volcamiento F2 tiene el valor de 1.00.

$$F2=0.5625+ (\arctan (0.17\beta j-5))/195$$
 (3.11)

• F3: relación entre el buzamiento del talud (βs) y el buzamiento de la discontinuidad (βj), las mismas se expresan con la letra "C". Esta función varía entre el ángulo de inclinación y el buzamiento de la discontinuidad ya que pueden tener una relación positiva o negativa (Tomás et al., en 2007), expresa el valor de F3 en dos funciones que dependerán del tipo de falla presente en el talud de acuerdo con el análisis cinemático estructural.

Para el tipo de falla planar o cuña C será igual a βj - βs y la función de F3 será:

$$F3 = -30 + 0.333 \arctan(C)$$
 (3.12)

Para el tipo de falla por volcamiento C es igual a $\beta j + \beta s$ y F3 es calculado de la siguiente manera:

$$F3 = -13 + 0.143 \arctan(C-120)$$
 (3.13)

• F4: factor de ajuste por el método de excavación empleado (Figura 3.26).

	SMR =	= RMR _b + (F₁ x F₂ x	F₃)+ F₄ (ROMANA,	1985)				
FACTORES DE AJUSTE DE LAS JUNTAS (F ₁ , F ₂ , F ₃)	α_i/β_j	TALUD α_j = DIRECCIÓN DE BUZAMIENTO DE LA JUNTA						
	MUY FAVORABLE	FAVORABLE	NORMAL	DESFAVORABLE	MUY DESFAVORABLE			
ROTURA PLANA $ \alpha_j - \alpha_s = $ VUELCO $ \alpha_i - \alpha_{s-1800} = $	> 30°	30° - 20°	20° - 10°	10° - 5°	< 5°			
VALORES	0.15	0.40	0.70	0.85	1.00			
AJUSTE ANALÍTICO	$F_1 = (1 - \operatorname{sen} \alpha_j - \alpha_s)^2$							
\(\beta_j\) =	< 20 °	20° - 30°	30° - 35°	35° - 45°	> 45°			
VALORES ROTURA PLANA	0.15	0.40	0.70	0.85	1.00			
VUELCO	1.00							
AJUSTE ANALÍTICO	$F_2 = \operatorname{tg}^2 \beta j$							
ROTURA PLANA β_j - β_s =	>10°	10° - 0°	0°	0°-(-10°)	<(-10°)			
VUELCO $\beta_j + \beta_s =$	< 110°	110° - 120°	> 120°	-	-			
VALORES	0	- 6	- 25	- 50	- 60			
AJUSTE ANALÍTICO	F ₃ = (SE MANTIENEN LOS VALORES PROPUESTOS POR BIENIAWSKI, 1976 / 79)							
FACTOR DE AJUSTE POR EL	F ₄ = VALORES EMPÍRICOS ESTABLECIDOS PARA CADA MÉTODO DE EXCAVACIÓN							
MÉTODO DE EXCAVACIÓN	TALUD NATURAL	PRECORTE	VOLADURA SUAVE	VOLADURA 6 MECÁNICO	VOLADURA DEFICIENTE			
İ	+ 15	+ 10	+ 8	0	- 8			

Figura 3.26 Factores de ajuste de la Clasificación SMR (Romana, 1985)

Las variables secundarias están relacionadas con el modelo digital del terreno, aplicando relaciones matemáticas para calcular los factores de ajuste F1, F2 y F3 del SMR-C aplicando del Software de Información Geográfica (SIG). (Figura 3.26)

Para este trabajo se utilizó software de información geográfica el análisis espacial y álgebra de datos (Figura 3.27). Los polígonos de las unidades geomecánica (área del talud) poseen campos rasterizados para el cálculo de los factores de ajuste los cuales son: DIP, DIPDIR, RMRc, F4, Geomorfologia, Litología, Geofísica.

Para los campos de DIR y DIPDIR, se identifican zonas de concentración de polos de los planos estructurales recolectados en las fichas geomecánicas implementando la red estereográfica con la falsilla de Smith usando un demo del programa Dips 6 de Rocscience. Con el objetivo de obtener el valor de las medidas de dir (DIR) y dirdirection (DIPDIR) de los planos estructurales principales presentes de la zona de estudio.

Para el cálculo del índice del SMR-C en el software de información geográfica se utilizó la herramienta de ModelBuilder en el cual se construyó un diagrama de flujo (Figura 3.28), donde las variables ingresadas son: área del talud (unidades geomecánicas), mapa de pendientes y mapa de orientación de taludes, las variables de los factores de ajuste del índice SMR-C (F1, F2 y F3) son calculadas con la herramienta del álgebra de mapas "Raster Calculator" (Proceso 3, 4 y 5), en donde se ingresa la función continua correspondiente para el tipo de modelo Cuña/Planar o Volcamiento. (Figura 3.27). Para el proceso 6 y 7 se ingresan los datos obtenidos con el procesamiento de las fichas geomecánicas (Figura 3.28).

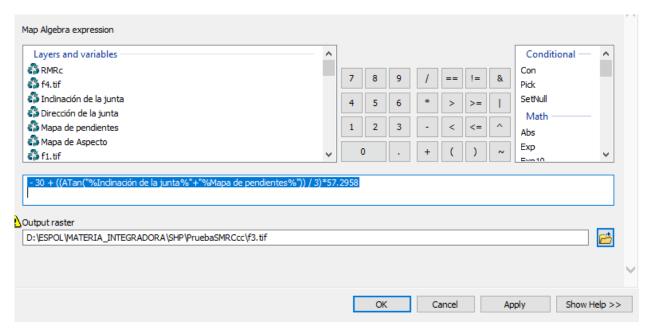


Figura 3.27 Herramienta utilizada para el cálculo del SMR-C.

Para cada una de las estructuras principales obtenidas se procedió a correr los dos tipos de modelos generados en ModelBuilder (Figura 3.28). Para cada modelo obtenido con los diferentes tipos de estructuras se realiza la clasificación de los valores del índice del SMR-C. Además, cada modelo obtenido fue comparado con las zonas de recurrencia en las cuales se han presentado deslizamientos posteriores. Con esto se realiza la superposición de los dos tipos de modelos para cada estructura y se obtiene el mapa de susceptibilidad de movimientos en masa para el área de estudio

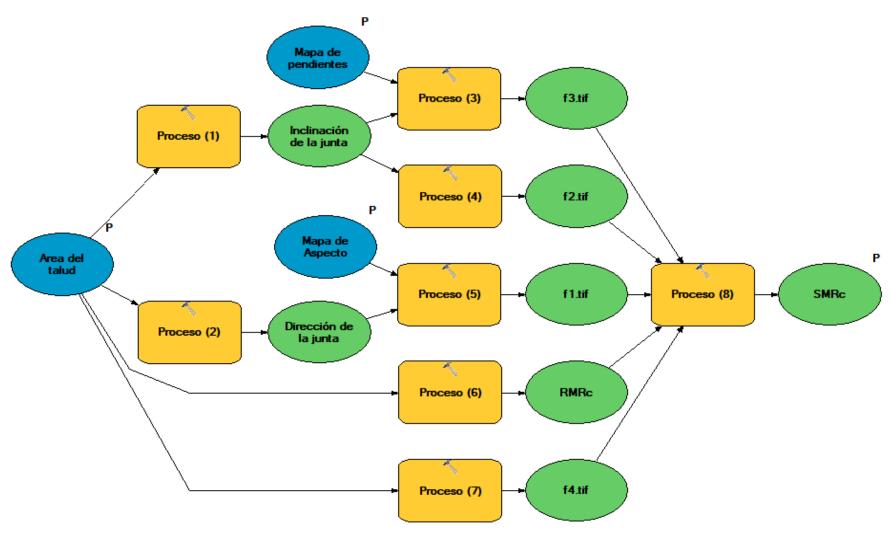


Figura 3.28 Algoritmo para el cálculo del índice del calificación de masa de pendientes (Slop Mass Rating SMR-C) utilizando software de información geográfica (SIG).

CAPÍTULO 4

4. RESULTADOS Y DISCUSIÓN: GEOLÓGIA

4.1 Geología de los cerros del casco urbano de Durán

El levantamiento de datos de campo inicio en la zona sur en el cerro denominado "Las Cabras" (Figura 4.29), en el literal a) se observó dos zonas de fractura en la colina del cerro, además se observa una zona de plegamiento hacia la base en la parte suroeste inferior.

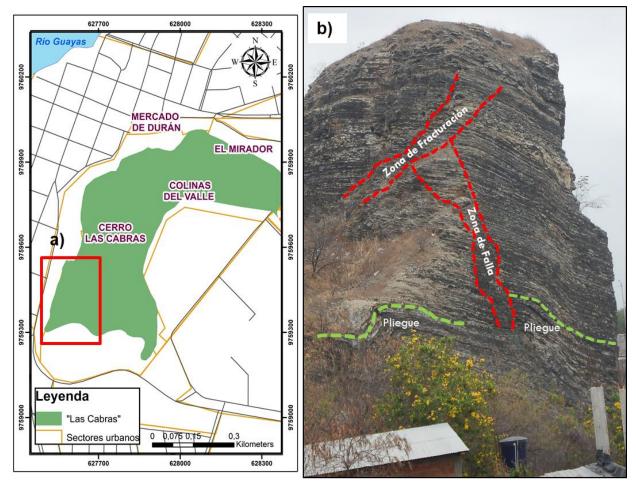


Figura 4.29 Literal a) Cerros "Las Cabras" con la ubicación de los sectores, el rectángulo rojo indica el sur del cerro en donde se tomó la foto adyacente, literal b) ladera oeste del cerro, en líneas rojas punteadas se muestran zonas de fracturación, identificación de pliegues con líneas punteadas de color verde.

En esta zona se observaron afloramientos que presentan unidades de lutita silicificada de alternancia de color marrón y tonalidades grises de capas cm (ver figura 4.30, literal c)), en el sector se encuentro un anticlinal de aproximadamente 4m de altura con capas de espesor de 10-20 cm aproximadamente de tonalidad marrón claro 4m y colores grises, en la figura.

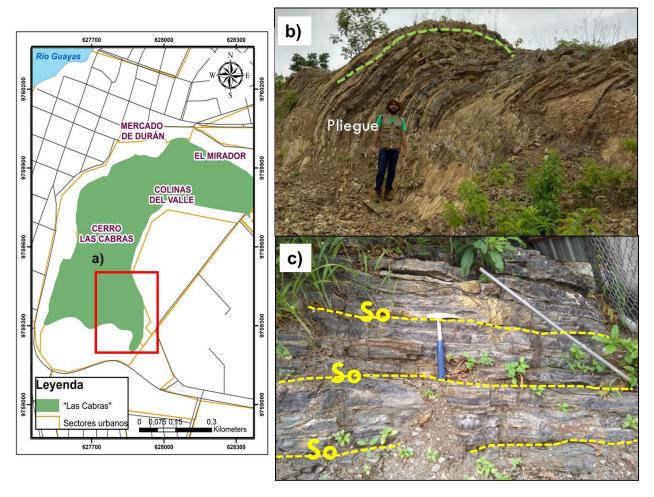


Figura 4.30 Afloramientos presentes al sueste del cerro "Las cabras" en el sector de colinas del valle. Literal b) anticlinal de lutita silicificada. Literal c) afloramiento de lutita silicificada So estratificación (línea entrecortada de color amarillo).

.

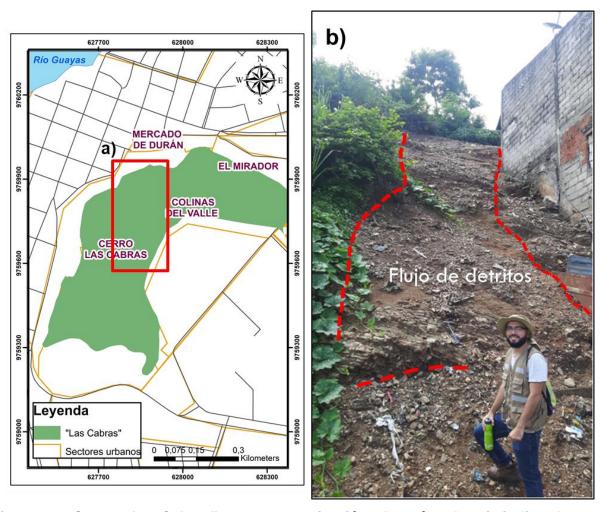


Figura 4.31 Cerros "Las Cabras" con su sectorización, el rectángulo rojo indica el sector centroeste del cerro en donde se tomaron las fotos del literal b) Flujo de detritos en líneas punteadas se delimita la zona de reptación del material rocoso.

En la zona central del cerro "Las Cabras" (ver figura 4.32), se observaron afloramientos que muestran contactos litológicos entre lutita silicificada de color marrón claro y areniscas de tonalidad grises, con presencia de meteorización esferoidal, (figura 4.32, literal b)) se observó un afloramiento de potencia dcm, en base se observó una capa de 20 cm de lutita silicificada que está en contacto erosivo con una capa de 40 cm de arenisca fina. (figura 4.32, literal c)) presencia de contacto erosivo en un afloramiento métrico en la base se observa lutita de capas intercaladas de 10-20 cm de color marrón y en la parte superior se observa la unidad de arenisca fina de color marrón claro presentada en un bloque de aproximadamente 4m de altura con meteorización esferoidal.

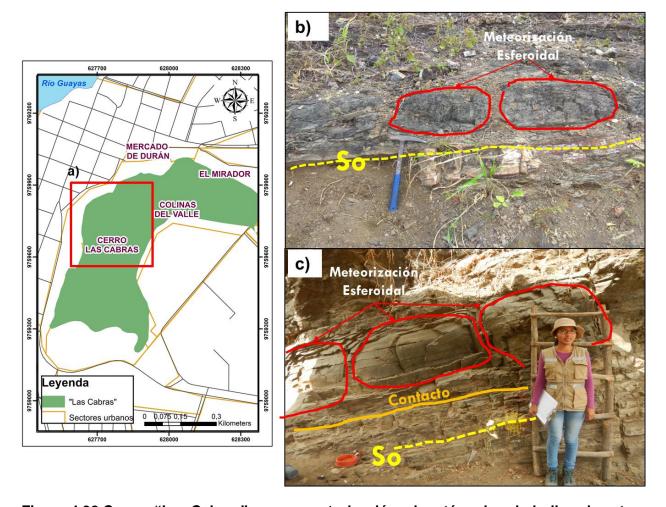


Figura 4.32 Cerros "Las Cabras" con su sectorización, el rectángulo rojo indica el sector central del cerro en donde se tomaron las fotos. Literal a) Contacto entre lutita silicificada de color marrón y arenisca fina de tonalidades grises, con presencia de meteorización esferoidal. Literal b) contacto de arenisca fina y de lutita silicificada de color marrón, la linea amarilla entrecortada delimita la estratificación So.

El sector norte del cerro "Los Almendros" (figura 4.33), se identifica la estructura primaria correspondiente a la estratificación de las rocas con una orientación de 190°/20° (Dirección de buzamiento/ Buzamiento). La figura 4.33, Literal b), se observa un afloramiento de potencia métrica de capas intercaladas de brecha y areniscas gruesas con presencia de meteorización esferoidal, zonas de fracturas y plegamientos.

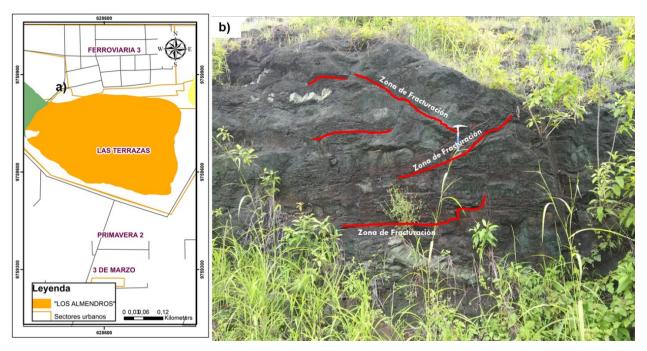


Figura 4.33 literal a) Cerros "Los Almendros" con su sectorización, litral b) afloramiento de arenisca gruesa, existen zonas de fracturación indicadas con la línea roja.

El cerro "Del Tres" (figura 4.34), literal b) se observa un afloramiento de potencia aproximada de 10 m del se observan capas estratificadas de lutita silicificada de color gris con tonalidades verdosas intercaladas entre tamaños de 5 -10 y 20 cm de espesor, a lo largo del afloramiento se observan zonas de fracturación.

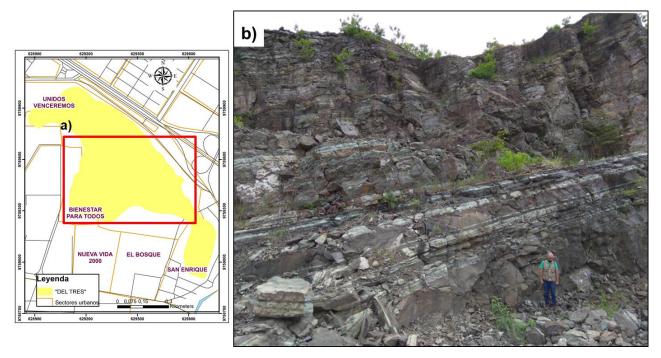


Figura 4.34 Cerros "Del Tres" con su sectorización, el rectángulo rojo se remarca un sector centro del cerro. Literal b) Afloramiento presente en el cerro "Del Tres", presencia de zonas de fracturación. So estratificación.

En la figura 4.35, en el literal a) se observa un afloramiento de 10 m de potencia de intercalación entre lutitas silicificadas y areniscas finas de color gris con tonalidades verdosas, en las cuales se observan zonas de fracturación, en el literal b) figura 4.35 se observa lutita de color marrón de capas de tamaño dcm fracturado.

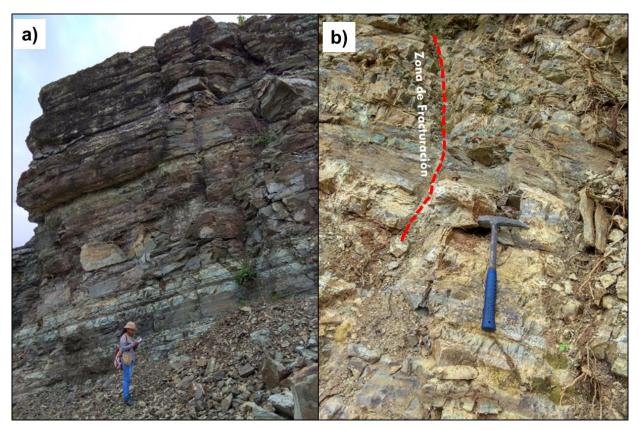


Figura 4.35 Afloramientos presentes en el Cerro "Del Tres". Literal a) zonas de fracturación de rocan, literal b) zona de fracturación.

En la figura 4.36, en el literal a) se muestra un contacto neto entre lutitas silicificada de color marrón oscuro con tonalidades grises y verdosas de capas cm estratificadas con potencia de 7 m, en la parte superior se observa arenisca fina de color gris verdoso de 4 m de potencia aproximadamente. En el literal b) se observa un afloramiento de 25 m aproximadamente de intercalaciones de lutita silicificada y areniscas fina de color gris con tonalidades verdosas, en las cuales se observa zonas de fracturas a lo largo del afloramiento.

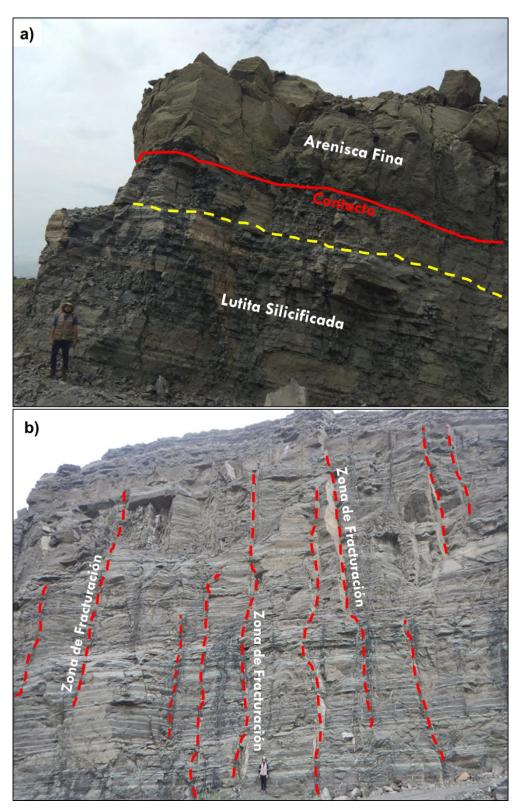


Figura 4.36 Afloramientos presentes en el Cerro "La Cantera". Literal a) contacto (línea roja) presente entre lutita silicificada y arenisca fina. Litera b) zonas de fracturación (línea roja).

El sector norte del cerro Del Tres se identificaron estructuras primarias identificadas la estratificación de las rocas con una orientación de 200°/20° (Dirección de buzamiento/Buzamiento) fácilmente inidentificable en las capas de arenisca y limolitas. Se identificaron estructuras secundarias correspondiente a familias de diaclasas en capas de brecha y areniscas. (Figura 4.37).

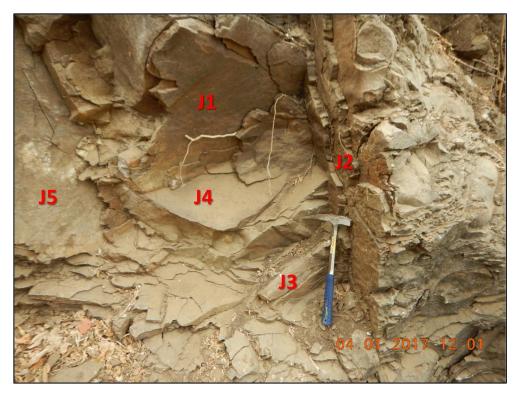


Figura 4.37 Estructuras secundarias presentes en el sustrato rocoso en el área de estudio. (J) junta o diaclasa. (Valdiviezo Ajila, 2014)

La ubicación del cerro San Enrique se indica en la figura 4.38, este sector se caracteriza por presentar una secuencia de lutitas silicificadas, intercaladas con limolitas y tobas de color gris a crema (Figura 4.38, literal b)), la estratificación se observa bien marcada con estratos que se alternan entre 20 a 30 cm con pequeñas bandas de pedernal observables en nódulos color negro.

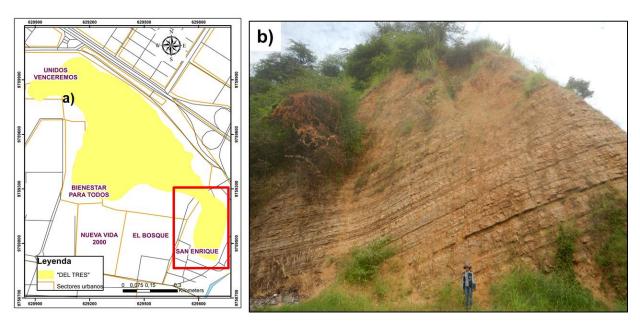


Figura 4.38 Cerros "Del Tres" con su sectorización. El rectángulo rojo se remarca el sector San Enrique. Literal b) Afloramiento perteneciente al cerro "San Enrique".

Se construyó una columna estratigráfica representativa para cada cerro, litocorrelacionando las características litológicas de las unidades rocosas (Anexo 9.1 y Anexo 9.2). Las columnas que cortan los perfiles trazados: el perfil A-A' (cerro "Las Cabras"), el perfil B-B' (cerro "Los Almendros") y el perfil C-C' (cerro de "Del Tres") partiendo desde su cota de ubicación (Figura 4.39).

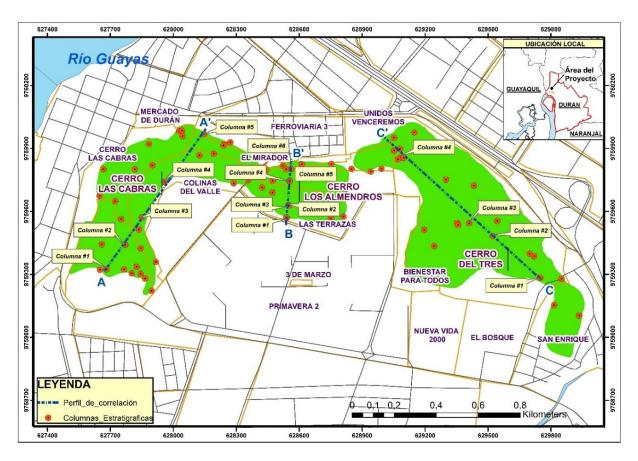


Figura 4.39 Ubicación espacial de las 144 columnas estratigráficas (puntos naranjas) levantadas en campo, la línea azul demarca los perfiles de litocorrelación en los cuales se indica la localización de la columna estratigráfica enumerada con respecto a la correlación.

Las columnas estratigráficas son herramientas geológicas que permiten esquematizar, agrupar y diferenciar la asociación de las rocas en determinados sectores de acuerdo con su tipo y origen para luego definir unidades litológicas (Figura 4.40)

=

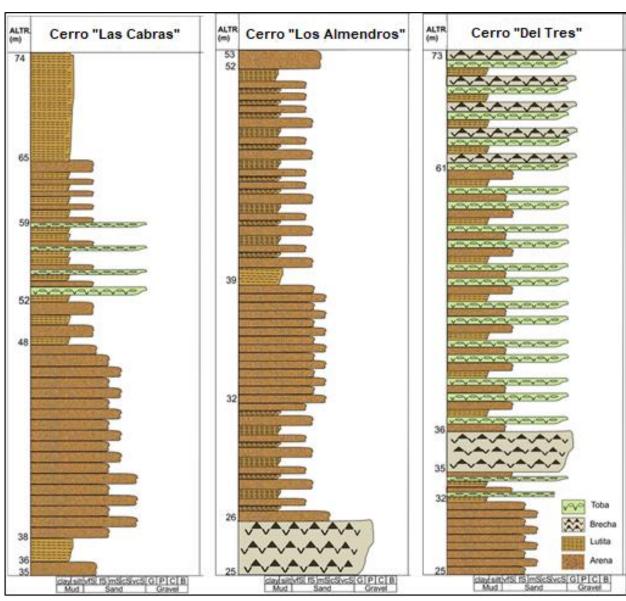
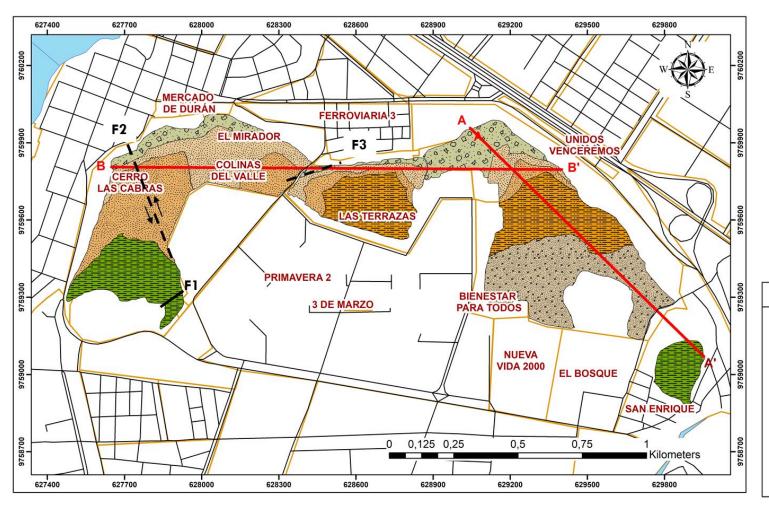
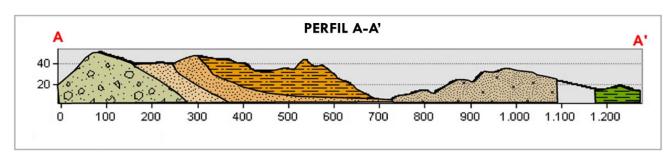




Figura 4.40 Columnas representativas de cada cerro del área de estudio.

Se construyó el mapa litoestructural de los cerros del casco urbano del cantón Durán, el cual es la representación de los cuerpos de roca o suelo, identificados mediante la interpretación de las columnas representativas (Figura 4.41); así como también la inclusión de las relaciones espaciales entre las diferentes estructuras geológicas como: fallas, fracturas, diaclasas, y estratificación litológica. Con esto se sintetizo seis grupos litológicos, además se generaron dos cortes geológicos, con el objetivo de conocer su disposición (Figura 4.41).

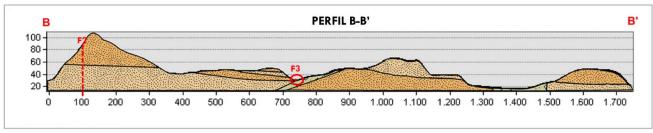


Figura 4.41 Mapa litoestratigráfico perteneciente a los cerros del casco urbano del cantón Durán.

La litoestratigrafía del área de estudio se agrupa en seis diferentes paquetes litológicos:

- Lutita se presetan en el flanco sur del cerro "Las Cabras" y en al sur del cerro "Del Tres" corrresponde a el 11% del área de estudio con dirección estructutal de DIPDIR 190/DIP 20, presentan una potencia que varían entre los 20 a 60 m. Se encuentran en contacto concordante continuo con las rocas de la formación Cayo. Se caracterizan por presentar capas de espesores dcm color gris y gris verdoso de lutitas silicificadas, bien estratificadas y compactas, con presencia de nódulos de chert color gris oscuro a negro (figura 4.30, literal c)); poseen intercalaciones de limos color marrón claro estratificado compacto de 10 mm a 1 cm de espesor, al sur del Cerro Las Cabras se observa la formación de suelo laterítico (Figura 4.31, literal b)). La estratificacion (So) presenta un dirección de buzamiento predominate de 170º con 20º de inclinación, en ciertos lugares pueden presentar pliegues y estructuras de carga estructuralmente esta atravesado por la Falla DIPDIR 150/DIP 20 y la Falla DIPDIR 290/DIP 80 hacia el su (UTM 17 S 634553/9759614).
- Arenisca Fina, se extiende desde la ladera centro y norte del cerro "Las Cabras",
 en el flanco sur del cerro "Los Almendros" y al norte del cerro "Del Tres" ocupando

aproximadamente el 24% del área total, estratigráficamente esta litología es grano decreciente una medida estructural de DIPDIR 180/DIP 20, ademas se encuentra atravesada por una Falla con dirección DIPDIR 290/DIP 80, presenta una potencia variable de 40 m a 50 m en contacto concordante continuo con las rocas de la formación cayo. Se caracteriza por presentar capas de espesor dcm de color marrón claro a oscuro.

- Arenisca Gruesa, se extiende desde la ladera centro sureste y norte del cerro "Las Cabras", observándose al sur del cerro "Los Almendros" y centro del cerro "Del Tres" representando el 25% del área total estructuralmente se encuentra atravezado por una Falla con dirección DIPDIR 80/DIP 290, su estratificación (So) se presenta con DIPDIR 200/20, estratigráficamente posee grano decrecencia en dirección este. Capas de espesor m de arenisca color marrón a gris con presencia de meteorización esferoidal.
- Arenisca-Lutita, representa un 13% del área de estudio, se dispone el los flancos sur del cerro "Los Almendros" y en el centro sur del cerro "Del Tres" estructuralmete se posee en DIPDIR 190/DIP 18. Se caracteriza por capas intercaladas dcm de arenisca color marrón oscuro con capas de espesor dcm a cm de lutitas color gris oscuro.
- Brecha-Arenisca, se dispone al norte de la zona de estudio y corresponde al 12% del total, estructuralmente se cuentra atravesado por tres fallas, al nortoeste por la falla con dirección DIPDIR 290/DIP 80, al centro norte por la falla con dirección DIPDIR 170/DIP 25 y al noreste por la falla con dirección DIPDIR 205/DIP 22. Se caracteriza por capas de espesor dcm de areniscas gruesas color marrón oscuro y capas de espesor dcm de brechas de color gris oscuro, en esta unidad se observa la presencia de meteorización esferoidal.
- Brecha-Lutita, representa un 12% de la zona de estudio y esta se observa exclusivamente en el cerro "Del Tres". Se caracteriza por una potencia variable de

10 a 30 m, con capas dcm a mm de lutitas color verdosos a grises y capas dcm a m de brecha de color gris con nódulos de silice.

4.2 Inventario de movimientos en masa históricos de Durán

Se realizo la recopilación de deslizamientos históricos ocurridos en la zona de estudio con el fin de identificar sectores de recurrencia a movimientos en masa, los puntos geográficos de eventos recurridos fueron otorgados por el GAD municipal del cantón Eloy Alfaro con los que se creo una base de deslizamirnentos. (Anexo 9.3)

Dentro del área urbana del cantón Eloy Alfaro se tiene registro de 30 eventos con su localización entre los años del 2013, 2014, 2017 y 2018 (figura 4.42). Con esta información se realizó una base de datos de movimientos en masa, donde se incluye la fecha, la fuente, coordenada geográfica, el sector y el tipo de evento.

DESLIZAMIENTOS HISTÓRICOS

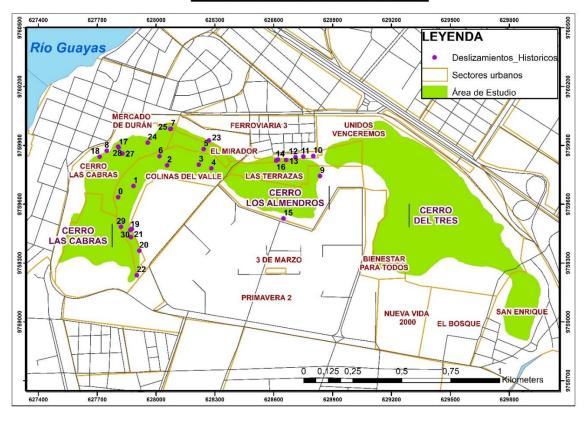


Figura 4.42 Deslizamientos Históricos de los cerros del casco urbano de Durán registrados por el GAD de Durán.

En la figura 4.42, se muestra la concentración de deslizamientos históricos en seis sectores del área de estudio: cuatro perteneciente al cerro "Las Cabras": Colinas de valle, el mirador, mercado de Durán y cerro Las Cabras, y perteneciente al cerro "Los Almendros": las Terrazas.

Los cuatro sectores pertenecientes a el cerro "Las Cabras" serán descritas a continuación:

- En el sector de colinas del valle, en la parte sur se identificó una zona de recurrencia a movimientos en masa de dos tipos: flujos de detritos y caídas de roca, en los años 2017 y 2018. En la parte sección centro y norte del sector se ha identificado deslizamientos en los años del 2013 y 2014.
- En los sectores de cerro Las Cabras, Mercado de Durán y el Mirador, en su parte central y norte se identifican dos tipos de movimientos en masa: flujos de detritos y caídas de rocas ocurridas en los años del 2014 y 2017.
- En el sector de las Terrazas pertenecientes a el cerro "Los Almendros" se identifican dos tipos de movimientos en masa: flujos de detritos y caídas de rocas ocurridas en los años del 2013, 2014 y 2017.

Analizando las fechas y los sectores que presentan movimientos en masa, se identifica que los años 2014 y 2017, fueron los más fuertes en los cuales se suscitaron 25 de los 30 eventos, principalmente en los sectores del cerro Las Cabras y las Terrazas.

CAPÍTULO 5

5. RESULTADOS Y DISCUSIÓN: GEOFÍSICA

En este aparatado se procedió a describir, analizar e interpretar los resultados obtenidos para cada TER. A continuación se describe cada tomografía eléctrica visualizada en el software del Erigraph, en la cual se realizó la conversión de los datos invertidos de formato. INV a valores de resistividades verdaderas de formato. RHO. Posteriormente se generó los modelos de unidades geoeléctricos correlacionando las litologías presentes y sus respectivas resistividades. Las pseudosección con corrección topográfica y sin corrección topográfica obtenidas con el software RES2DINV para los dos métodos de inversión se encuentran en el Anexo 9.4.

El error cuadrático medio para las TER no es mayor al 4%, en ninguno de las imágenes mostradas, este error es aceptable por lo tanto los perfiles son aptos para su descripción.

5.1 Tomografía eléctrica de resistividad RES1_NS

La figura 5.43 se muestra las resistividades obtenidas con las técnicas de inversión, estas son similares, por ende, se describirán conjuntamente. En la pseudosección se destacan dos capas, la primera capa posee rangos desde los 7.5 a 53 $[\Omega m]$ con una profundidad de 12 m, sin embargo, se observan dos cuerpos con menor resistividad de 7.5 $[\Omega m]$ con una extensión de 20 m y la segunda capa posee resistividades de 53 a 260 $[\Omega m]$ que va desde los 12 m hasta los 33 m, en los cuales se pueden observar dos cuerpos distribuidos a los lados con resistividades mayores de 140 $[\Omega m]$.

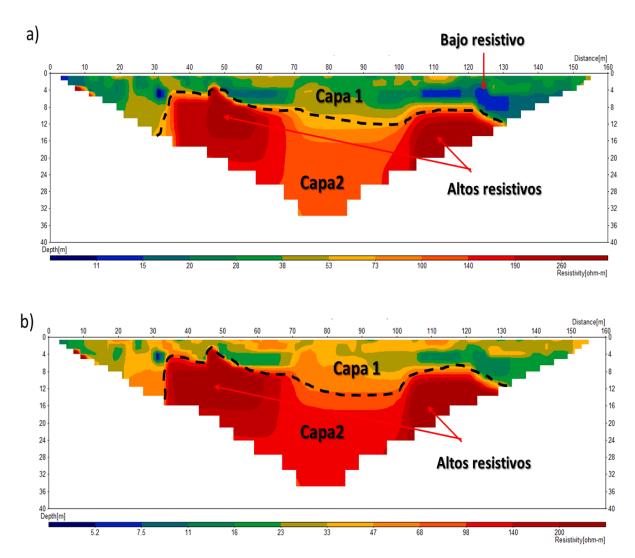


Figura 5.43 Conversión de los modelos de inversión a modelo de resistividad en el software Erigraph. RES1_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares. La leyenda vertical correspondiente a la profundida se encuentra en unidad métrica (m), la leyenda horizontal corresponde a la resistividad y se encuentra en unidades de [ohm-m].

5.2 Tomografía eléctrica de resistividad RES2_NS

En la figura 5.44 se muestran las pseudosecciones con los dos métodos de inversión, en el literal a) se muestra una pseudosección que posee un rango de resistividades que va desde 12 a 1700 [Ω m], en esta se diferencian dos capas la primera posee un valor de resistividad de 29 a 86 [Ω m], con un espesor aproximado de 14 m en la cual se observan cuerpos con resistividades menores de 12 [Ω m] intruidos a una profundidad de 12 m con

una extensión de 60 m; la capa 2, posee resistividades que va desde 86 a 630 [Ω m], sin embargo posee un cuerpo resistivo de forma esférica con valores resistivos de 1000-1700 [Ω m] que posee una región una longitud de 20 m y un espesor de 4m.

En el literal b) se muestra igualmente dos regiones resistivas con cuerpos de resistividad anómala a las adyacentes, el rango de resistividades es de 11 a 810 [Ω m].

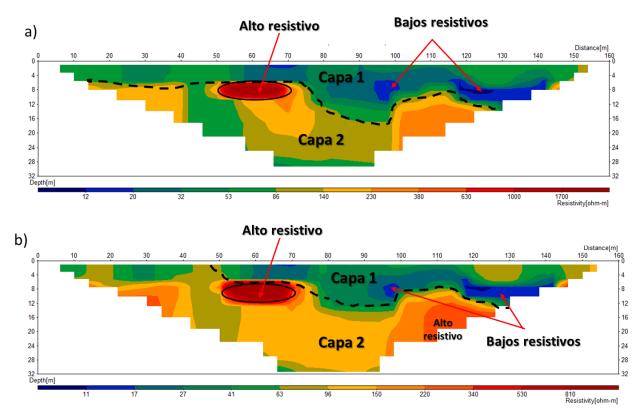


Figura 5.44 Conversión de los modelos de inversión a modelo de resistividad en el software Erigraph. RES2_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares. La leyenda vertical correspondiente a la profundida se encuentra en unidad métrica (m), la leyenda horizontal corresponde a la resistividad y se encuentra en unidades de [ohm-m].

5.3 Tomografía eléctrica de resistividad RES3_NS

En la figura 5.45, se visualizan los dos métodos de inversión implementados, estos poseen aproximación en su rango de resistividad que va de 17 [Ω m] a valores mayores de 200 [Ω m], además de observarse una geometría similar, por tal razón se realizó una descripción conjunta.

La capa 1 posee una profundidad de 4 m que se extiende a lo largo de la tomografía, esta capa posee un rango de resistividades que van de 37-50 [Ω m], la capa 2, posee un rango de resistividad que va de 63 a 150 [Ω m], posee una profundidad aproximada de 28 m, sin embargo en esta región se identifica un cuerpo esferoidal con resistividades de 180 a 270 [Ω m]; sin embargo, en el literal b) se demarca una posible estructura con una línea roja punteada vertical que delimita dos zonas de resistividad en la misma región, al lado derecho resistividades de 120 a 250 [Ω m] y a lado izquierdo valores de 66 a 120 [Ω m].

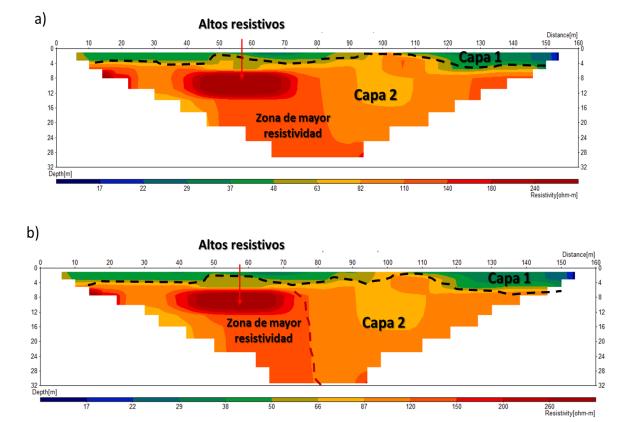


Figura 5.45 Conversión de los modelos de inversión a modelo de resistividad en el software Erigraph. RES3_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares. La leyenda vertical correspondiente a la profundida se encuentra en unidad métrica (m), la leyenda horizontal corresponde a la resistividad y se encuentra en unidades de [ohm-m].

5.4 Tomografía eléctrica de resistividad RES4_NS

La figura 5.46, muestra la conversión de datos de formato. INV a formatos. RHO, la cual se muestra equivalente para los dos métodos inversión por ende se realizó una descripción general, donde se indica dos capas con resistividades predominantes en la TER.

La capa 1 posee un rango de resistividades que va 37 a 68 [Ω m], en el centro de la capa se observa un cuerpo esferoidal de menor resistividad de un espesor de 4 m y una extensión de 20 m aproximadamente, igualmente en su lado derecho se observan cuerpos esferoidales de 10 a 5 m de extensión y con una resistividad equivalente de 30 [Ω m]; la capa 1 se distingue por poseer un rango de resistividad de 55 a 68 [Ω m], de 20 metros de apertura en superficie hasta una profundidad de 28 m.

La capa 2 posee un rango de resistividades mayor que parte de los 68 a un valor mayor de 230 [Ω m], esta capa es dividida por una baja resistividad perteneciente a la capa 1, la capa 2 se caracteriza por poseer cuerpos laterales de mayor resistividad.

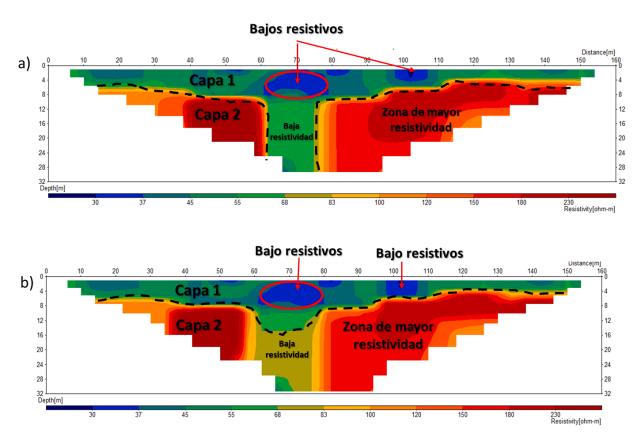


Figura 5.46 Conversión de los modelos de inversión a modelo de resistividad en el software Erigraph. RES4_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares. La leyenda vertical correspondiente a la profundida se encuentra en unidad métrica (m), la leyenda horizontal corresponde a la resistividad y se encuentra en unidades de [ohm-m].

5.5 Tomografía eléctrica de resistividad RES5_EO

La figura 5.47, muestra la conversión de datos en formato INV a formato RHO de cada uno de los métodos de inversión implementados, por la equivalencia geométrica y resistiva, se procedió a realizar una descripción conjunta.

En la pseudosección se identifica dos regiones resistividad dominantes, la primera región denominada capa 1 posee un rango de resistividades que van desde los 44 a 74 [Ω m] con una profundidad aproximada de 3 m y una longitud de 30 m, la segunda región denominada capa 2, posee resistividades que van de 68 a 110 [Ω m], esta capa se extiende desde los 3 m de profundidad hasta los 16 m en esta se delimita una zona de

mayor resistividad en su parte derecha con valores de 100 a 160 [Ω m] con un espesor aproximado de 8 m, sin definir un límite longitudinal por la ausencia de datos.

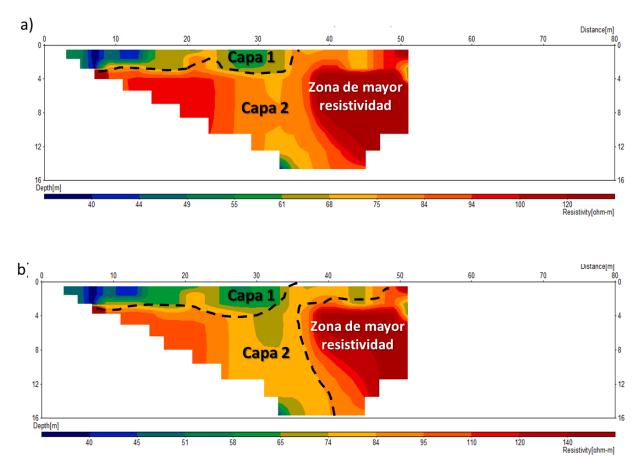


Figura 5.47 Conversión de los modelos de inversión a modelo de resistividad en el software Erigraph. RES3_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares. La leyenda vertical correspondiente a la profundida se encuentra en unidad métrica (m), la leyenda horizontal corresponde a la resistividad y se encuentra en unidades de [ohm-m].

5.6 Correlación de datos directos e indirectos y generación de modelos geoeléctricos

La correlación de datos se llevó exclusivamente en el cerro las Cabras, por la información disponible, se cuenta con datos levantados en campo en conjunto con el GAD de Durán y la Secretaria Nacional de Gestión de Riesgo, y datos recolectados de proyectos anteriores del GAD de Durán en conjunto con ESPOL-TECH CIPAT.

Se cuenta con datos directos como: 8 calicatas y 4 perforaciones, y datos indirectos: 10 sondeos eléctricos verticales y 4 tomografías eléctricas. La datos de perforaciones, calicatas y sondeos eléctricos verticales fueron realizados por CIPAT en el 2014.

La correlación de los datos directos e indirectos se realizo en el software gratuito Erigraph, escogiendo aquellos datos que poseean las mismas coordendas geográficas con respecto a línea de levantamiento de las tomografías eléctricas (Figura 5.48). Por tal razón, se seleccionaron las tomografías eléctricas de RES_1 NS, RES_2 NS y RES_4 NS.

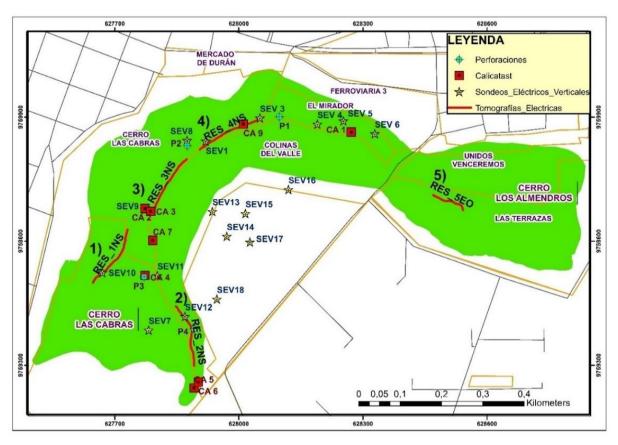


Figura 5.48 Distribución espacial de datos directos e indirectos, en el Cerro "Las Cabras" y el cerro "San Enrique". 1) RES 1_ NS, 2) RES 2_NS, RES 3_NS, 4) RES 4_NS y 5) RES5_EO.

Con los datos recopilados y obtenidos en campo, se generó un diagrama de dispersión de resistividades versus profundidades (Figura 5.49) y se sintetizó la litología intepretada por CITAP. Con el objetivo de generar unidades geoeléctricas (UGE), que se definen

como unidades con valores homogéneos de medios conductivos de electricidad y construir modelos geoeléctricos del subsuelo.

Para sintetizar las litologías interpretadas por CITAP se generó el diagrama de dispersión de resistividades [ohm] versus profundidad (m) de los valores obtenidos de los sondeos eléctricos verticales (SEV) realizados por ESPOL-TECH CIPAT (Figura 5.49). Se editó los valores aberrantes para optimizar los resultados de la gráfica.

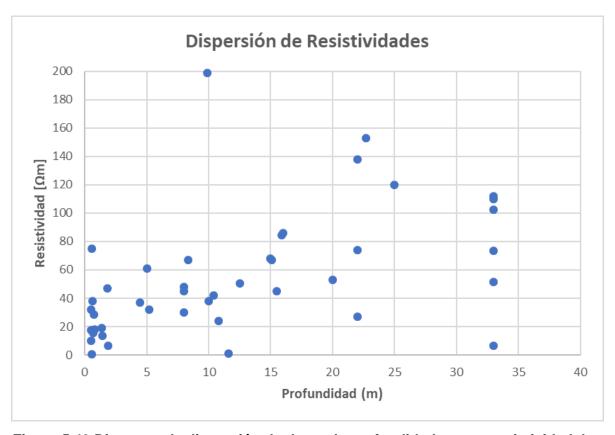


Figura 5.49 Diagrama de dispersión de datos de profundidad versus resistividad, los puntos azules representa la relación de estos parámetros.

Los datos geofísicos interpretados por el CIPAT se basan en valores y tabulaciones publicadas (Palacky, 1987) y (Sharma P., 1997). La clasificación de litológicas inferidas geofísicamente (Tabla 5.3) relacionan la resistividad y la profundidad aproximada homogenizando los datos.

Tabla 5.3 Clase de litológicas interpretadas por CITAP en el 2014.

Litologías					
Descripción	Resistividad [Ωm]	Profundidad Aprox. (m)			
Suelo	0.5- 30.5	0.5-1.4			
Coluvión	15-45	0.7-1.9			
Lutita	30.5-50.5	5-15			
Arenisca Tipo II	50.5-85.5	8-23			
Arenisca Tipo I	> 85.5	> 23			

De acuerdo con la tabla 5.3 y la figura 5.49, se realizó la correlación de resistividades con las litologías presentes en el área de estudio, generando tres unidades geoeléctricas diferenciadas, las cuales permitieron generar modelos geoeléctricos de la zona.

Tabla 5.4 Unidades geoeléctricas (UGE) según litologías inferidas geofísicamente.

Unidades geoléctricas				
Código	Resistividad [Ωm]	Descripción		
UGE 1	20-40	Lutita		
UGE 2	40-80	Arenisca Fina		
UGE 3	> 140	Arenisca Gruesa		

Las unidades geoeléctricas (Tabla 5.4) muestra las litologías inferidas geofísicamente, la unidad geolectrica de lutita (UGE 1) posee rango resistivo de 20-40 [Ω m] a profundidades de 5 y 10 m, para resistividades mayores se observa dispersión del valor de resistividades (Figura 5.49) que comienza a los 40 [Ω m] hasta 80 [Ω m] representando a la unidad geolectrica de arenisca gruesa (UGE 2), llegando a profundidades de hasta los 5 y 20 m aproximadamente. Los valores mayores de profundidad y resistividad poseen un rango variable que alcanza valores de 0-140 [Ω m] y representan a la unidad geolectrica de arenisca gruesa (UGE 3).

A continuación, se muestran los resultados obtenidos en la correlación de datos directos e indirectos con respecto a las resistividades de las tomografías eléctricas, y la descripción de los modelos geoeléctricos generados de la interpretación de la litología y la existencia de alguna estructura geológica presente:

En la figura 5.51, se realizó la correlación de tres tomografías eléctricas RES1_NS, RES3_NS y RES4_NS (Figura 5.50), que se encuentran ubicadas de manera consecutiva en el cerro "Las Cabras" separadas por medidas longitudinales diferentes con esto se generó un modelo geoeléctrico de acuerdo con las características de cada TER; en la parte norte de la correlación correspondiente al suroeste del cerro "Las Cabras" se observa lutita hasta los 8 m de profundidad con valores de resistividad menores a los 40 [Ω m], subyacente a esto se interpreta una unidad geoeléctrica de arenisca fina con valores de resistividad de entre 40-80 [Ω m] que se extiende a lo largo de la correlación que va de norte a sur en el cerro, como base del modelo se interpretó una unidad geoeléctrica de arenisca gruesa con valores de resistividad que van de 80 a 240 [Ω m] de profundidad variable, que se extiende de norte a sur con una longitud de 590 m. En la sección sur de la tomografía eléctrica a una distancia horizontal de 510 m desde el norte se observa un cuerpo tubular que se extiende en profundidad desde la unidad de arenisca fina hasta base, esta zona se interpretó como una falla ?

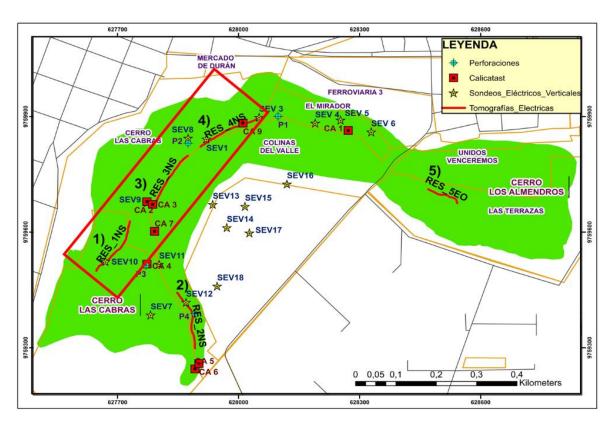


Figura 5.50 Tomográfias eléctricas ubicadas en el cerro "Las Cabras", identificadas en el rectangulo rojo.

La figura 5.52, se realizó la correlación de la RES2_NS con la SEV_12 y la P_4 pertenecientes a la parte sureste del cerro, en la cual se interpretaron dos unidades geoeléctricas, en base se interpreta arenisca gruesa con resistividad mayores de 86 hasta los 1700 [Ω m], partiendo de una profundidad de ente 10 y 20 metros, subyacente a esta unidad se observa lutita de espesor variable con valores de resistividad de 12-86 [Ω m]; a los 45 metros de longitud aproximadamente de la RES se observa una forma tabular de la unidad superior que atraviesa a la inferior, además se observa una depresión de resistividad de 80 a 100 metros de longitud, teniendo 20 metros de apertura.

En la figura 5.53, perteneciente a el cerro "Los Almendros", se interpretaron dos unidades geoeléctricas la primera de ellas alcanza una profundidad de 4 m con resistividades de hasta 61 [Ω m], la segunda capa posee resistividades que van de 61 a 120 [Ω m] que se extiende hasta los 16 m de profundidad.

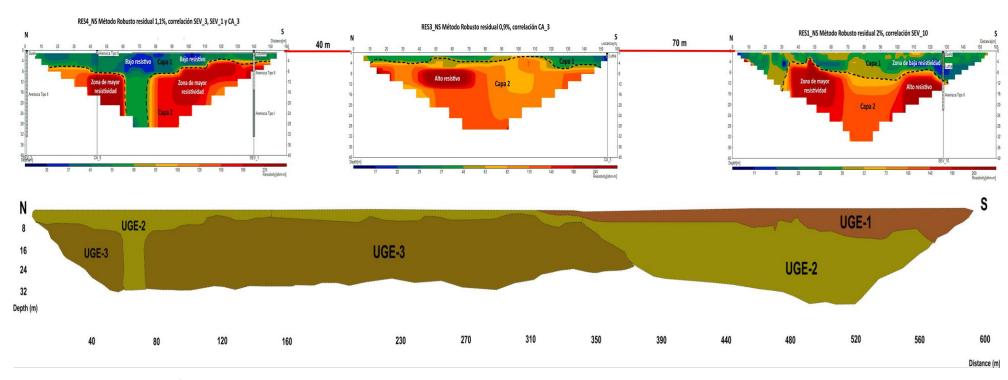


Figura 5.51 Interpretación de la RES_1NS, RES_3NS y RES_4 NS correlacionada con datos geofisicos directos e indirectos, literal a) Modelo de resistividades en 2D y literal b) Modelo de unidades geoeléctricas. (Unidades geoeléctricas).

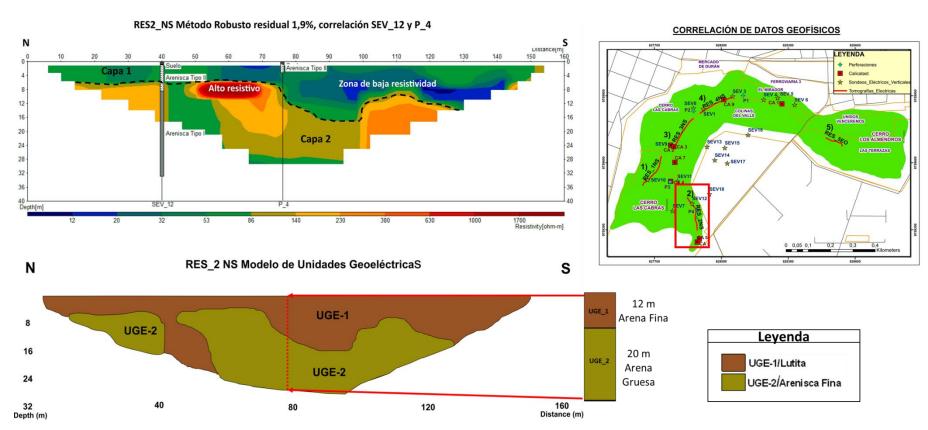


Figura 5.52 Interpretación de la RES_2NS, literal a) Modelo de resistividades en 2D con correlación del SEV_12 y P_4, literal b) Modelo de unidades geoeléctricas, c) Columna litológica interpretada en el centro a los 60 m de apertura, y ubicación espacial de la RES2_NS, en el electrodo 10 se ubica el SEV_12 y en electrodo 19 se ubica la P_4. (Unidades geoeléctricas)

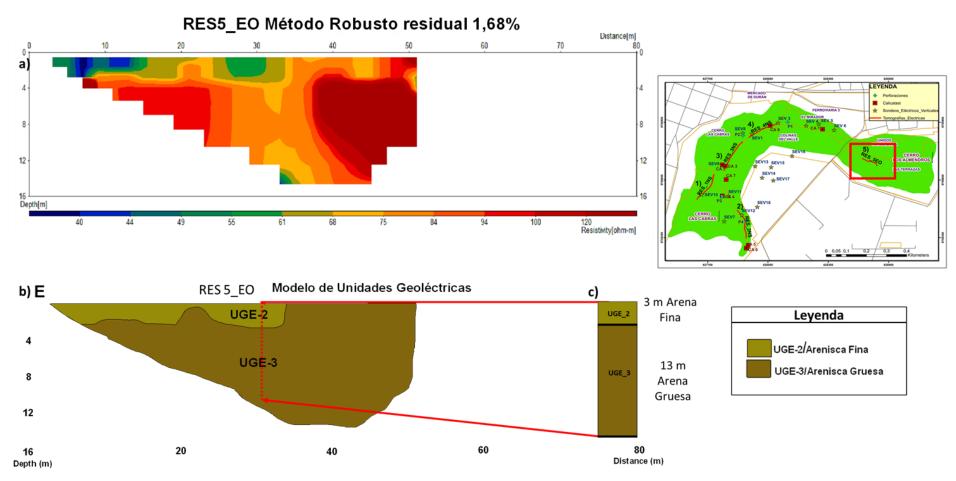
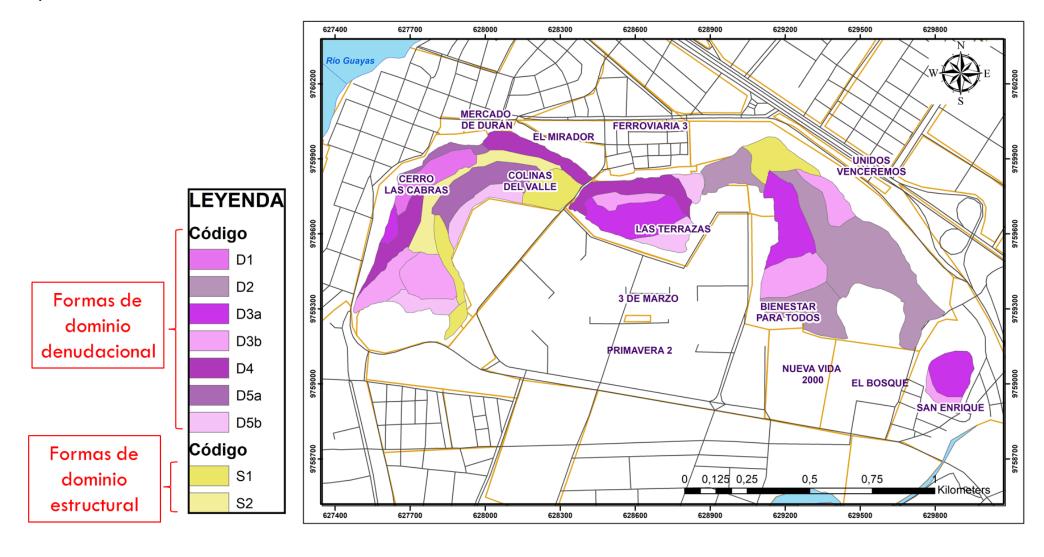


Figura 5.53 Interpretación de la RES_5NS, literal a) Modelo de resistividades en 2D sin correlación, literal b) Modelo de unidades geoeléctricas, c) Columna litológica interpretada en el centro a los 60 m de apertura, y ubicación espacial de la RES5_EO. (Unidades geoeléctricas)

CAPÍTULO 6

6. RESULTADOS Y DISCUSIÓN: GEOMECÁNICA

6.1 Variable primaria- unidades geomecánicas


Para la construcción de las unidades geomecánicas se requiere correlacionar cuatro parámetros: litoestratigráfico (Figura 4.41), geofísico (Figura 5.51, 5.52 y 5.53), geomorfológico y el cálculo del índice del Rock Mass Rating continuo (RMRb-C). Estos parámetros en conjunto proporcionan información sobre: las resistividades, la geomorfología, el índice de calidad de roca y los esfuerzos a los que ha sido sometida la roca. Esta información permite zonificar las rocas según sus características geomecánicas.

En el capítulo 4 y 5 se obtuvo el mapa litoestructural (Figura 4.41) y los modelos de unidades geoeléctricas (Figura 5.51,5.52 y 5.53), a continuación en este capítulo se generará el mapa geomorfológico y el cálculo del índice del RMRb continuo, completando los parámetros para la superposición y posterior obtención del mapa de unidades geomecanicas.

6.1.1 Tercer parámetro - mapa geomorfológico

El mapa geomorfológico del área de estudio se elaboro según la metodología propuesta por Van Zuidam, 1986 y Pedraza-Gilsanz, 1996; basada en el modelo digital de elevación reclasificado.

Realizando la superposición de los tres mapas (Anexos 9.5) obtenidos, se realizó la delimitación de unidades geomorfológicas según sus morfogénesis clasificadas de acuerdo con la propuesta de Van Zuidam (1986) (Figura 6.54).

B)

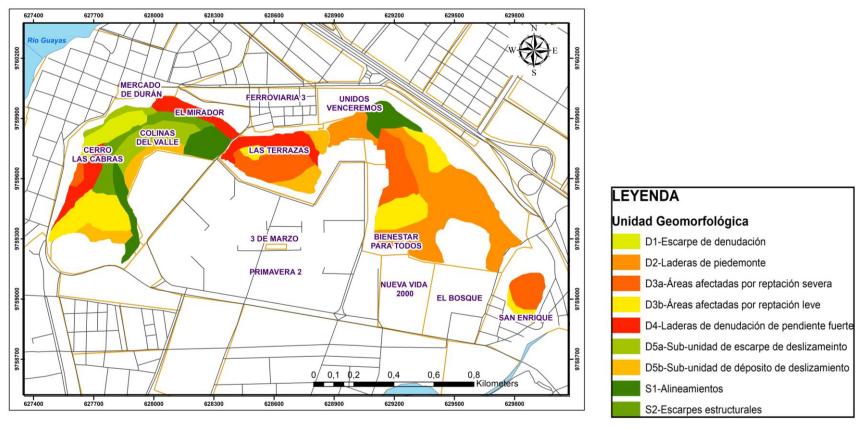


Figura 6.54 Mapa Geomorfológico de los cerros del casco urbano del cantón Durán utilizando la metodología de (Van Zuidam, 1986) y (Pedraza-Gilsanz, 1996). Las formas denudacionales (código D1 a D5, con sub-unidades) y formas estructurales (código S1 y S2).Literal A) y Literal B).

El área fue divida en siete unidades principales, en las que predominadan por las formas de origen denudacional (códigos D1 a D5), que abarcan el 70% del área de estudio. El 30% restante corresponde con formas de origen estructural (códigos S1 y S2). Cada una de estas unidades (Figura 6.54) se describe a continuación:

Formas de denudación

D1- Escarpes de denudación

Corresponde aproximadamente el 3% del área total y están ubicadas en diferentes sectores del área. La unidad con mayor área se encuentra en dirección noroeste del sector de Mercado de Durán; las unidades con menor área se ubican en el sector de las terrazas del cerro "Los Almendros" y en pequeñas áreas del suroeste del cerro "Del Tres", estas unidades poseen pendientes superiores a los 45° de inclinación. (Figura 6.54)

D2- Laderas de piedemonte

Abarcan aproximadamente un 2% del área, y se caracterizan por un relieve irregular con abultamientos. Son laderas con pendientes menores a los 12° y con escasa disección, formadas por acumulaciones de derrubios de colinas denudacionales ubicadas a su alrededor, que están sometidas a intensos procesos de erosión, producto de pendientes altas, de una litología meteorizada, de periodos de precipitación intensa, y de la actividad sísmica. (Figura 6.54)

D3-Laderas de denudación de pendiente baja

Corresponde aproximadamente al 15% del área total, se caracteriza por tener laderas cortas y una topografía con un relieve moderadamente ondulado, donde predominan las colinas de baja altura con planicies de poca extensión. (Figura 6.54)

- D3a- Áreas afectadas por reptación severa

Corresponde aproximadamente el 10% del área, ubicada en la zona sur del cerro "Las Cabras" en los alrededores de los sectores de Colinas del Valle, cuenta con pendientes entre los 6° hasta los 20°, presenta procesos de erosión intensa caracterizadas por reptaciones y caídas de bloques. Estos procesos pueden estar relacionados a las características litológicas de lutitas y areniscas con una alta tasa de meteorización relacionado a cambios en el uso de la tierra. (Figura 6.54)

- D3b- Áreas afectadas por reptación leve

Esta unidad se encuentra al suroeste del cerro "Los Almendros" en los alrededores del sector Bienestar para Todos, se distingue de la morfología de sus alrededores por las pendientes bajas, desde los 0° hasta los 6° aproximadamente corresponde al 5% del área total. (Figura 6.54)

D4- Laderas de denudación de pendiente fuerte

Aproximadamente el 20% del área se caracteriza por sus pendientes mayores a 45°, laderas cortas, identificadas en el cerro "Las Cabras" en los sectores de Colinas del Valle en su parte sur, en la sección norte y noroeste cercanos a los sectores del Mercado de Durán, Cerro Las Cabras y el Mirador, en la parte norte del cerro "Los Almendros" en el sector de Las terrazas y la sección noreste del cerro "Del Tres" cercano al sector de Unidos Venceremos. En la zona de cantera se observan cambios bruscos de pendiente por la alteración del terreno. (Figura 54)

D5- Áreas severamente afectadas por movimientos en masa

A pesar de que, en general, toda el área de estudio está afectada por movimientos en masa, se han identificado áreas más críticas, que corresponden al 30% del área total. Se localizan en los sectores del Mirador, Colinas de Durán y las Terrazas; los dos primeros sectores mencionaos corresponde a el cerro "Las Cabras" y el siguiente corresponde a el cerro "Los Almendros". (Figura 6.54)

Son áreas que se caracterizan por bloques de terreno fracturados a causa de flujos de detritos, caída de rocas y movimientos complejos. Debido a las características morfológicas del terreno son mas comunes los eventos de caídas de rocas en zonas de pendientes mayores a los 20° y los flujos de detritos en pendientes desde 12° a 20°, sin embargo, estos pudrían estar relacionados al cambio del uso del suelo, ya que las características litológicas y geofísicas presentes en estas unidades la categorizan como roca fracturada que producen suelos residuales de espesor variable, con contenido arenoso llegando a ser inestable en presencia del agua. (Figura 6.54)

Dentro de esta unidad se distinguen dos subunidades que se describen de forma independiente:

D5a- Sub-unidad de escarpes de deslizamientos

Esta sub-unidad abarca el 15% del área aproximadamente. Está conformada por escarpes laterales de los deslizamientos principales, en general poseen pendientes de 30° a 45°, ubicados en laderas cortas en direcciones norte, noroeste, noreste y sureste de los cerros, concentrándose en los sectores como: cerro las cabras, colinas del valle, el mirador, las terrazas y unidos venceremos. Estas áreas son inestables con respecto a otras unidades, por tal razón es común identificar rasgos de reptación y deslizamientos.

D5b-Sub-unidad de depósitos de deslizamientos

Estas subunidades de depósitos de deslizamientos se agrupan en el sector noreste del cerro "Los Almendros", y en los flancos noroeste y norte del cerro "Las Cabras". No están relacionados con un tipo de pendiente específico.

Forma de origen estructural

S1-Alineamientos

Existen cuatro lineamientos locales (Figura 5.49), la Falla 1 se ubica en el sector sureste del sector de colinas del valle con dirección DIPDIR 150/DIR 20 en la unidad de lutita, la Falla 2 se ubica en la zona norte del sector unidos venceremos con direcciones DIPDIR 205/DIR 22 en la unidad de brecha, la Falla 3 posee dirección DIPDIR 290/DIR 80 se extiende de norte a sur en el centro del cerro "Las Cabras" cruzando los sectores de colinas del calle y cerro las cabras el último lineamiento en las unidades litológicas de arenisca gruesa, arenisca fina y brecha, la Falla 4 se ubica al norte del cerro "Los Almendros" correspondiente al sur del sector Ferroviaria con dirección DIPDIR 170/DIR 25 en la unidad de brecha.

Estas fallas locales condicionan a los cerros en dos alineamientos generales en dirección suroeste del cerro "Las Cabras" y dirección sureste del cerro "Del Tres", relacionado a la cordillera Chongón Colonche que posee orientación NNW-SSE.

S2- Escarpes estructurales

Esta unidad se diferenció principalmente por la inclinación de las pendientes, que oscilan desde los 0°a mayores de 45°, con orientación de laderas en noreste con valores (278-319) en los sectores del cerro las cabras, colinas del valle, las terrazas y unidos venceremos abarcando un 15% del área total y con la frecuencia de direcciones sureste (144-175) de pendientes que parten de 6° a 20°.

6.1.2 Cuarto Parámetro- Índice rock mass rating básico continuo (RMRb-C)

Para el cuarto parámetro, se utilizó la metodología propuesta por Sen & Sadagah, 2003, el cual toma cinco parámetros descritos en el apartado 3.2.3 Geomecánica, Capítulo 3-metodología. La resistencia de compresión simple continua de cada unidad litológica (σc) se calculó utilizando el martillo de Schmidt tipo L, y los resultados se muestran en la (Tabla 6.5)

Tabla 6.5 Resistencia a la compresión simple de muestras tipo para cada litología. Las muestras se codifican con las iniciales del tipo de litología Arenisca Gruesa (AG), Arenisca Fina (AF), Lutita (L), Arenisca-Lutita (AL), Brecha-Arenisca (BA) seguido de - Durán

Código de la Muestra	Litología	Peso específico (KN/m³)	σс (Мра)
AG-Durán	Arenisca Gruesa	24.50	37.86
BA- Durán	Brecha-Arenisca	28.00	45.76
AF- Durán	Arenisca Fina	21.00	26.28
AL- Durán	Arenisca-Lutita	20.00	33.20
BL- Durán	Brecha-Lutita	23.50	34.80
L- Durán	Lutita	27.00	82.97

Se levantón 24 fichas geomecánicas paras las cinco unidades litológicas: Arenisca Gruesa (AG), Arenisca Fina (AF), Lutita (L), Arenisca-Lutita (AL), Brecha-Arenisca (B-A) la tabla 6.6 resume los valores obtenidos para cada estación geomecánica en cuanto a los parámetros de RMR-C antes descritos. Las fichas se encuentran en el Anexo 9.6.

Se analiza los valores obtenidos de los parámetros del RMR-C de cada una de las fichas geomecánicas con respecto a su litología, con el objetivo de seleccionar los valores menores de cada unidad litológica para analizar el peor esceario de la calidad de roca.

Tabla 6.6 Valores obtenidos de los parámetros del RMR-C de cada una de las fichas geomecánicas. La litología se codifica con las iniciales: Arenisca Gruesa (AG), Arenisca Fina (AF), Lutita (L), Arenisca-Lutita (AL), Brecha-Arenisca (BA). Las fichas geomecánica se codifica con (EG) seguido de – con el número de ficha levantada

Nombre	Litologia	r RQD	rx	rσ	r G	rJ	RMRb
EG-6	AG	4.63	10.29	1.24	5.49	17.00	38.65
EG-7	AG	18.45	25.88	0.78	5.49	22.00	72.60
EG-10	AG	5.61	10.94	1.16	5.49	20.00	43.20
EG-11	AG	11.23	14.75	0.99	5.49	18.00	50.46
EG-23	AG	17.77	23.57	0.81	5.49	13.00	60.65
EG-24	AG	13.42	16.68	0.89	5.49	13.00	49.48
EG-13	BA	11.74	15.17	0.90	5.49	13.00	53.30
EG-1	AF	8.43	12.75	0.97	5.49	20.00	40.65
EG-3	AF	15.90	19.71	0.83	5.49	13.00	56.93
EG-12	AF	16.61	20.91	0.87	5.49	15.00	56.87
EG-2	AL	12.90	16.17	0.97	5.49	13.00	47.53
EG-4	AL	13.74	17.00	0.93	5.49	12.00	49.17
EG-5	AL	3.15	9.24	1.25	5.49	12.00	39.13
EG-8	AL	16.65	20.99	0.81	5.49	20.00	62.94
EG-21	AL	16.64	20.97	0.88	5.49	5.00	56.98
EG-20	AL	16.14	20.10	0.92	5.49	13.00	55.65
EG-9	AL	12.13	15.49	0.95	5.49	19.00	42.07
EG-14	L	9.67	13.60	1.05	5.49	13.00	38.81
EG-15	L	14.34	17.65	0.95	5.49	13.00	48.44
EG-16	L	5.59	10.92	1.09	5.49	8.00	36.09
EG-17	L	17.46	22.75	0.82	5.49	9.00	51.52
EG-18	L	8.47	12.78	1.03	5.49	10.00	36.78
EG-19	L	13.33	16.59	0.86	5.49	13.00	49.27
EG-22	L	17.96	24.14	0.80	5.49	9.00	61.40

En la figura 6.55, se muestran los valores menores del RMR-C de cada litología, se seleccionó estos valores, con el fin de evaluar la calidad geomecánica de la roca de los cerros con el peor escenario de susceptibilidad presente en los cerros.

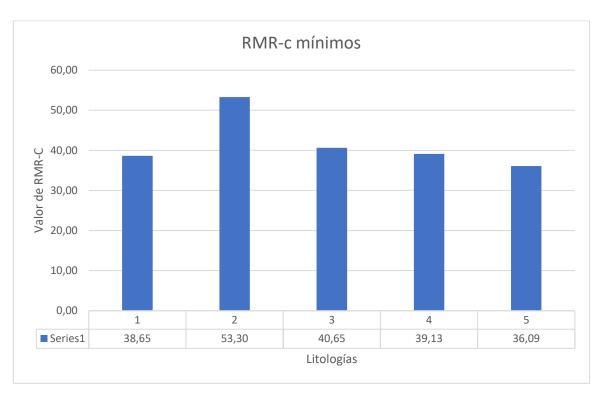


Figura 6.55 Valores mínimos de RMR básico continuo seleccionados de cada unidad litológica presente en el área de estudio. Arenisca Gruesa (1), Brecha-Arenisca y Brecha-Lutita (2), Arenisca Fina (3), Arenisca-Lutita (4), Lutita (5)

El índice de Rock Mass Rating Continue (RMR-c) mínimos de cada litología fue seleccionado para analizar el peor escenario: Lutita con índice de 36.09, Arenisca-Lutita con 39.13 y Arenisca Gruesa 38.65, todos estos descritos con calidad de roca regular de clase IV mala, Arenisca Fina con 40.65, Brecha-Lutita y Brecha-Arenisca con 53.30 cercano a la calidad de roca regular de calse III (Figura 6.55). Se generó un modelo con los valores mínimos de RMR básico continuo para visualizar el peor escenario (figura 6.62).

La superposisicón de los cuatro parámetros se realizon en SIG, se construyo un shapefile (.shp) de tipo polígono donde se almaceno la información referente a cada parámetro de acuerdo con el sector perteneciente (Figura 6.57). Con la correlación realizó la construcción se veintenueve unidades geomecánicas numeradas

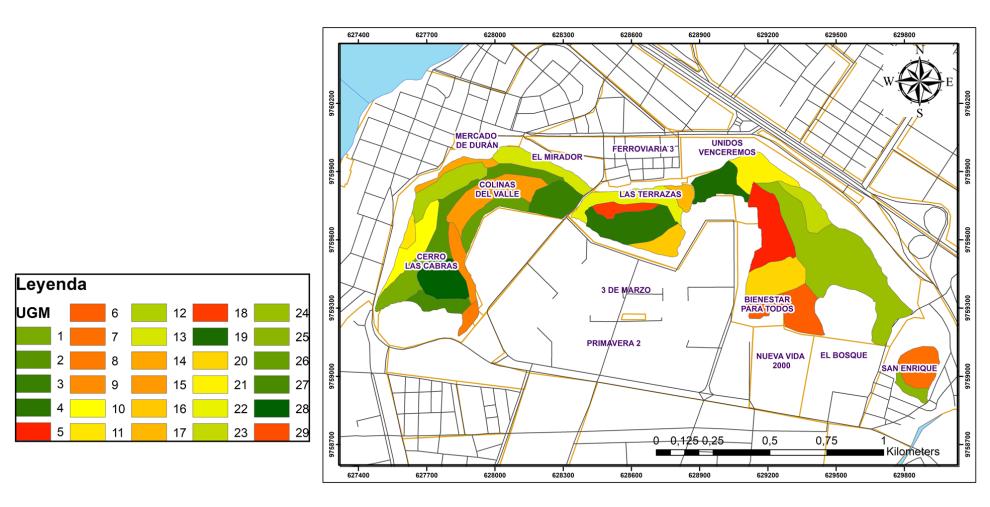


Figura 6.56 Unidades geomecánicas generadas con la correlación de los parámetros : litoestratigráfico, geofísico, geomorfológico y RMR-C, del área de estudio

6.2 Variable primaria- análisis cinemático de los cerros

Los 650 datos estructurales obtenidas en el levantamiento de campo por medio de las fichas geomecánicas, fueron cargados y analizados en el software gratuito Dips 6 de Rocscience.

El análisis cinemático de los cerros, inicio con la identificación de áreas en donde exista una concentración de polos de los planos estructurales levantados en campo. En la red estereográfica se identifico seis zonas de concentración de polos, variando de tonalidad blanco a rojo. (Figura 6.58)

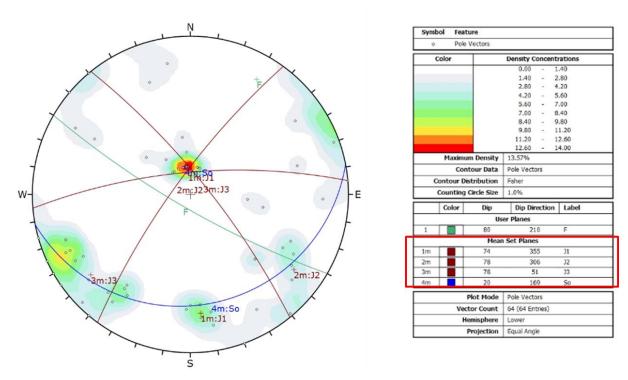


Figura 6.57 Análisis de discontinuidades presentes en el área de estudio, en la red estereográfica los planos de color rojo muestran juntas y el plano azul estratificación.

Se dibujó cuatro planos estructurales que representan zonas de concentración de polos, diferenciando tres familias de juntas (codificadas J1,J2 y J3) y la estratificación (codificada con So). Las medidas estructurales se detallan a continuación (Tabla 6.7):

Tabla 6.7 Planos generales establecidos

Planos						
1 m	74	355	J1			
2m	78	306	J2			
3m	78	51	J3			
4m	20	169	So			
1	80	210	F			

Ademas de las estructuras generales creadas, se incluyo la falla vista en campo con medida estructural 80/210.

6.3 Variable secundaria- cálculo y evaluación del índice del SMR-C

El SMR-C fue calculado para cada unidad geomecánica y para cada familia de discontinuidades presentes en el área de estudio, luego se categoriza el área de estudio en base a la propuesta por Romana (1985). (Tabla 6.8).

Tabla 6.8 Clasificación del índice del SMR-C según Romana (1985).

Clase	V	IV	III	II	I
SMR	0-20	21-40	41-40	61-80	81-100
Descripción	Muy mala	Mala	Normal	Buena	Muy Buena
Estabilidad	Totalmente	Inestable	Parcialmente	Estable	Totalmente
	inestable		Inestable		Estable
Roturas	Grandes roturas	Juntas o	Algunas juntas	Algunos	Ninguna
	por planos	grandes	o muchas cuñas	bloques	
	continuos o por la	cuñas			
	masa.				
Tratamiento	Reexcavación	Corrección	Sistemático	Ocasional	Ninguno
Probabilidad					
de falla	0.9	0.6	0.4	0.2	0

Previo al análisis SIG, se evalúa la estabilidad de cada mapa, utilizando los índices el cálculo del SMR-C (Tabla 6.8). Para ello se procedio a la reclasificación con la herramienta SIG, donde se asigna un valor a cada pixel por clase de estabilidad.

Los mapas generados con cada diagrama de flujo (Figura 6.28), arrojaron diferentes tipos de modelos de cuña/planar y de volcamiento para cada tipo de estructura. Estos modelos fueron categorizados en diferentes clases de acuerdo a su rango de valores obtenidos, a continuación se describen los modelos de cuña/planar:

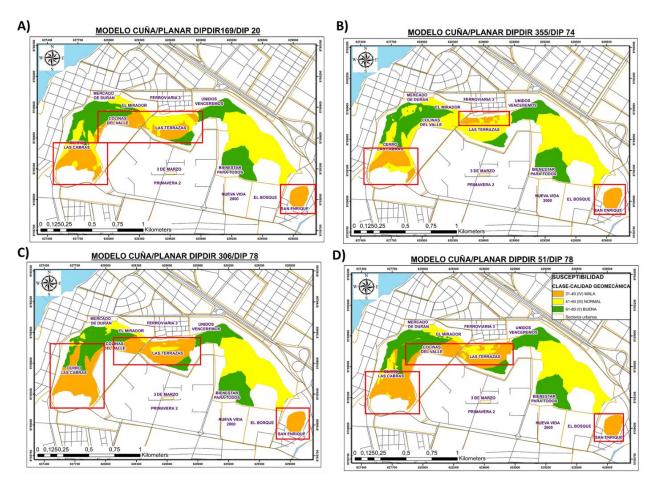


Figura 6.58 A) Modelo cuña/planar DipDir 169/Dip 20, B) Modelo cuña/planar DipDir 306/Dip 78. C) Modelo cuña/planar DipDir 51/Dip 78, D) Modelo cuña/planar DipDir 355/Dip 74. Los rectángulos rojos indican los sectores con calidad de roca mala

Modelo cuña/planar DipDir 169/Dip 20 (Figura 6.59, literal A)) distingue tres tipos de clases de estabilidad (IV, III y II), en la zona sureste del cerro "Las Cabras" correspondiente al sur y flanco sureste del sector de colinas de valles, la zona centrosur del cerro "Los Almendros" correspondiente al sector de las terrazas, y sector san enrique perteneciente al cerro "Del Tres" estas áreas poseen categoría de clase IV (mala). La zona de clase III (normal) en el cerro "Las Cabras" se ubica en los sectores urbanos de mercado de Durán, sureste de colinas del valle y oeste del cerro las cabras y centro del cerro "Los Almendros" en el sector de las terrazas, y se presenta en la zona noroeste, sur y sureste del cerro "Del Tres" en los sectores de unidos venceremos y bienestar para todos. Las zonas de clase II (buena) se encuentran en varios sectores: centroeste del sector las cabras, al suroeste del sector de colinas del valle, correspondiente al cerro "Las Cabras"; en al sur del sector de las terrazas correspondiente a el cerro "Los Almendros" y en la sección norte y sureste correspondiente a el cerro denominado "Del Tres".

Modelo cuña/planar DipDir 355/Dip 74 (Figura 6.59, literal B)) se distingue tres tipos de clases de estabilidad (IV, III y II). La clase IV (mala) se observa al sur del cerro "Las Cabras" en el sector suroeste y sureste del sector de colinas del valle, al norte del sector de las terrazas correspondiente a el cerro "Los Almendros" y al sur de cerro "Del Tres" en el sector de san enrique. La clase III (normal) abarca los sectores del cerro las cabras, mercado de durán y el flanco noroeste del sector de colinas del valle del cerro "Las Cabras"; el flanco este, oeste y centro sur del cerro "Los Almendros" corresponde a el sector de las terrazas; y las zonas central "Del Tres" en los sectores de bienestar para todos. La clase II (normal) corresponde a varios sectores: flanco noreste del sector de colinas del valle, en el flanco oeste correspondiente al sectos de las cabras del cerro "Las Cabras"; al sur del cerro "Los Almendros" correspondiente al sector de las terrazas; y en la zona norte y suroeste del cerro "Del Tres" en la zona minada.

Modelo cuña/planar DipDir 306/Dip 78 (Figura 6.59, literal C)) se distingue tres tipos de clases de estabilidad (IV, III y II). La clase IV (mala) corresponde al sector sur del cerro "Las Cabras", al centro del cerro "Los Almendros" y el sur del cerro "Del Tres" en el sector san enrique. La clase III (normal) se observa en el noreste del sector mercado de durán, al centro del cerro "Los Almendros" centro del cerro "Del Tres" en los sectores de unidos venceremos, bienestar para todos. La clase II (buena) se observa en las

laderas noroeste, noreste y centro del cerro "Las Cabras" en los sectores cerro las cabras y colinas del valle; y en la zona noroeste y suroeste del cerro "Del Tres".

Modelo cuña/planar DipDir 51/Dip 78 (Figura 6.59, literal D)), se distingue tres tipos de clases de estabilidad (IV, III y II). La clase IV (mala) se observa en el sur del cerro "Las Cabras" y al noreste del cerro "Los Almendros" en el sector de las terrazas. La clase III (normal) se presenta en los laderas sur y noroeste del cerro las cabras correspondiente a los sectores de colinas de valle y cerros de Durán; en los flancos sur y norte del cerro "Los Almendros" en el sector de las terrazas; y la zona norte, suroeste y sur del cerro "Del Tres" correspondiente a los sectores de Unidos Venceremos, al norte de Bienestar para Todos y el sector de San Enrique. La clase II (buena) esta presenta en el sur y sureste del cerro "Las Cabras" correspondientes al sector del cerro las cabras y al noroeste del mercado de duran.

En la figura 6.59 muestra de forma comprativa los cuatro modelos cuña/planar de la zona de estudio, descritos en la parte superior. Analizando los modelos se identifican zonas categorizadas con la misma clase, los modelos presentan la clase IV que corresponde a roca de mala calidad en el sector sur de cerro "Las Cabras" y en la zona central del cerro los "Almendros" y la zona sur del cerro "Del Tres", correspondiente a los sectores de colinas del valle, cerro las cabras, las terrazas y san enrique representando el 40% del área de estudio. La clase III con descripción de roca de calidad normal corresponde al 40% del área de estudio involucra los sectores de mercado de durán, unidos venceremos, bienestar para todos y el norte de las terrazas, los sectores restantes correspondientes a la clase II (buena) representan el 20% del área de estudio.

A continuación se realiza la descripción de los modelos de volcamiento obtenidos con cada una de las estructuras generales en estos se distingue tres tipos de clases de estabilidad (IV (Mala), III (Normal) y II (Buena)):

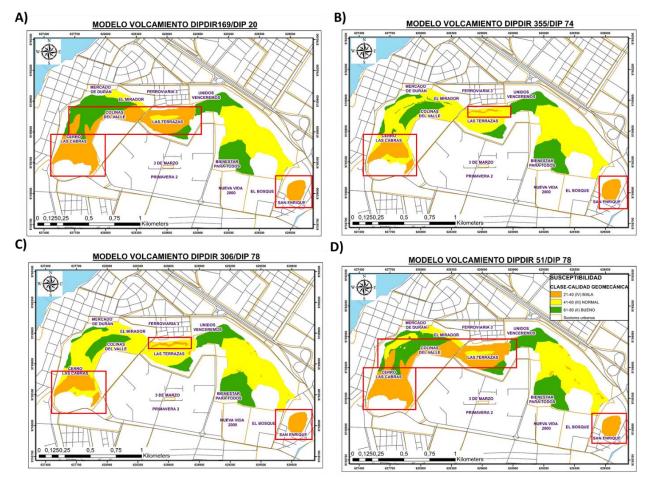


Figura 6.59 A) Modelo volcamiento DipDir 169/Dip 20, B) Modelo volcamiento DipDir 306/Dip 78. C) Modelo volcamiento DipDir 51/Dip 78, D) Modelo volcamiento DipDir 355/Dip 74. Los rectángulos rojos indican los sectores con calidad de roca mala.

Modelo volcamiento DipDir 169/Dip 20 (Figura 6.60, literal A)) la clase IV descrita como roca con calidad mala se encuentra ubicada en el sector sur de colinas de valle y al noreste del sector las terrazas. La clase III (normal) se sitúa en la zona sur y noroeste del cerro "Las Cabras", en los flancos del cerro "Los Almendros" y en la zona norte, suroeste y sur del cerro "Del Tres", correponde a los sectores del cerro las cabras, el sur del sector de colinas del valle, las terrazas, unidos venceremos, bienestar para todos y san enrique. La clase II (buena), corresponde a los sectores de colinas del valle y el mirador, la zona central del sector las terrazas y la zona correspondiente a la zona minada del cerro "Del Tres".

Modelo volcamiento DipDir 306/Dip 78 (Figura 6.60, literal B)) se encuentra categorizado en tres: clase IV (mala) corresponde a la zona sur del cerro "Las Cabras", al sureste y el norte del cerro "Los Almendros" perteneciente a los sectores de colinas del valle y las terrazas. La clase III (normal) corresponde a los sectores del cerro las cabras, mercado de durán, flancos oestes del sector las terrazas, unidos venceremos, bienestar para todos y san enrique. La clase II (buena) corresponde a la zona central, oeste y noreste del cerro "Las Cabras", la cima del cerro "Los Almendro" y la zona correspondiente al área de cantera en el cerro "Del Tres".

Modelo volcamiento DipDir 306/Dip 78 (Figura 6.60, literal C)) se encuentra categorizada en tres clases: La clase IV (mala) se presenta en la zona sur del cerro "Las Cabras" y la zona norte "Los Almendros", y en la sección sur del cerro "Del Tres" estas corresponden a los sectores de colinas del valle, las terrazas y san enrique. La clase III (normal) corresponde a las laderas oestes y estes del cerro "Las Cabras", laderas oestes, noreste y centro sur del cerro "Los Almendros", al suroeste del cerro "Del Tres" pertenecen a los sectores del cerro las cabras, mercado de durán, el mirador, colinas del valle, las terrazas y el área de la cantera. La clase II (buena) se presenta en laderas oeste, noreste y centro del cerro "Las Cabras" la cima del cerro "Los Almendros" y la sección correspondiente al área de cantera en el cerro "Del Tres".

Modelo volcamiento DipDir 51/Dip 78 (Figura 6.60, literal D)) se encuentra categorizada en tres clases: clase IV (mala) corresponde a ladera sureste del cerro "Las Cabras", noroeste y sureste del cerro "Los Almendros", en los sectores de colinas del valle y las terrazas y san enrique. La clase III (normal) se presenta en laderas noroeste y este del cerro "Las Cabras", la zona centro del cerro "Los Almendros", al norte, suroeste y sur del cerro "Del Tres", pertenecientes a los sectores del cerro las cabras, mercado de durán, La clase II (buena) correspondiente a las laderas centro, noreste y oeste del cerro "Las Cabras", sureste del cerro "Los Almendros", el sector norte de unidos venceremos y suroeste del cerro "Del Tres".

En la figura 6.60 muestra de forma comprativa los cuatro modelos de volcamiento de la zona de estudio, descritos en la parte superior. Analizando los modelos se identifican zonas categorizadas con la misma clase. La clase IV correspondiente a roca de mala calidad corresponde al 30 % del área de estudio, distribuida en la zona sur del cerro "Las Cabras", noroeste y sureste del cerro "Los Almendros", la clase III descrita como roca de calidad normal se encuentra distribuida en los sectores de cerro las cabras, colinas del calle, mercado de durán las terrazas, unidos venceremos, bienestar para todos y en el cerro san enrique que corresponde al 50% del área de estudio. la clase II corresponde a roca de buena calidad, representa el 20% del área corresponde a los flancos noreste, sureste del cerro "Las Cabras", cima del cerro "Los Almendros" y el área de cantera en el cerro "Del Tres".

Posterior a la descripción y el análisis de cada uno de los modelos, se realizó la superposición de cada uno de ellos, con la finalidad de obtener el mapa de susceptibilidad de movimientos en masa (Figura 6.61).

El mapa de susceptibilidad de movimientos en masa del área de estudio (Figura 6.61), se categorizó en tres clases de calidad geomecánica, de acuerdo con los Raster obtenidos de las unidades geomecánicas evaluados en los planos estructurales generales (Figura 6.59 y Figura 6.60). La clase IV descrita como roca de mala calidad se presenta al sur y centroeste del cerro "Las Cabras" y en la sección noreste y centrosur del cerro "Los Almendros", correspondiente al sector de colinas del valle, las terrazas y san enrique, representa aproximadamente un 40% del área total. La clase III representa a rocas con calidad normal representa aproximadamente un 55% del área de estudio, presente en los sectores: mercado de durán, cerro las cabras, el mirador, sureste de los sectores de las terrazas, unidos venceremos, bienestar para todos. La clase II descrita como roca de buena calidad representa aproximadamente un 5% del área total y si ubica en el centroeste del sector de colinas del valle

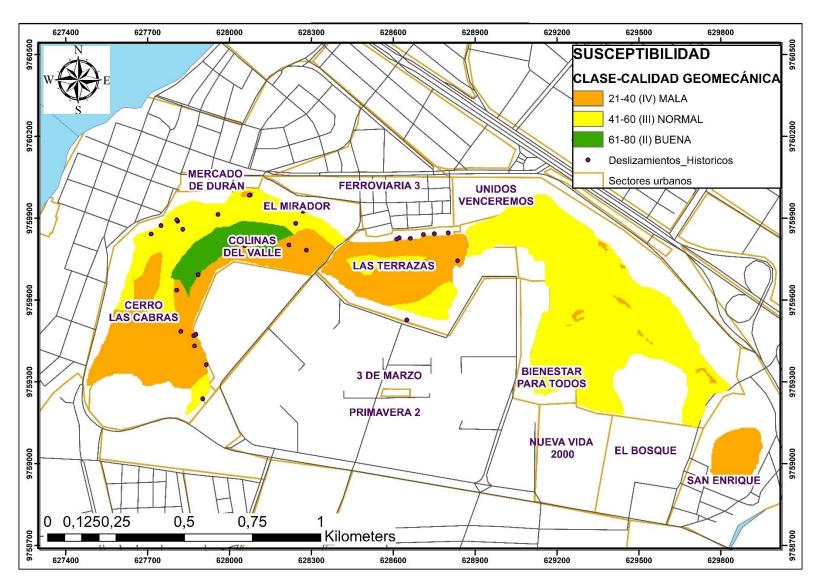


Figura 6.60 Mapa de susceptibilidad de movimientos en masa de los cerros del casco urbanos del cantón Durán.

Para comprobar el mapa de susceptibilidad de movimientos en masa, se realizó la superposición de los deslizamientos históricos inventariados en los años 2013, 2014, 2017 y 2018.

El mapa de susceptibilidad de movimientos en masa y deslizamientos históricos ocurridos en el cantón Durán, evaluado con los índice mínimos de RMRb, se clasifica en dos con rocas de calidad normal de clase II y con rocas de mala calidad de clase III (Figura 6.62), muestra la concentración de los deslizamientos en los sectores urbanos de: colinas del valle, cerro las cabras, mercado de durán, el mirador, las terrazas y san enrique. La dos categorías definidas con el mapa son: Clase IV descrita como roca de mala calidad y la clase II descrita como roca de calidad normal.

La clase geomecánica IV descrita como roca de mala calidad se sitúa en el flanco este del cerro "Las Cabras" atravesando los sectores: cerro las cabras, colinas del valle hasta el mirador, en la zona noreste del cerro "Los Almendros" en eñ sector de las Terrazas y en el extremo sur del cerro "Del Tres" cercano al sector de san enrique, en estos sectores se concentra 20 de los 30 deslizamientos históricos inventariados representando el 67% de los eventos ocurridos en estos sectores.

La calidad geomecánica normal de clase III, se extiende en la zona norte del "Las Cabras" en el sector urbano del mercado de durán, el mirador, en las zona centro y sur del cerro "Los Almendros" y en el cerro "Del Tres" con exepción de la zona sur, en estos sectores se ubican 10 de los 30 deslizamientos que representa un 44% de los eventos ocurridos en el sector.

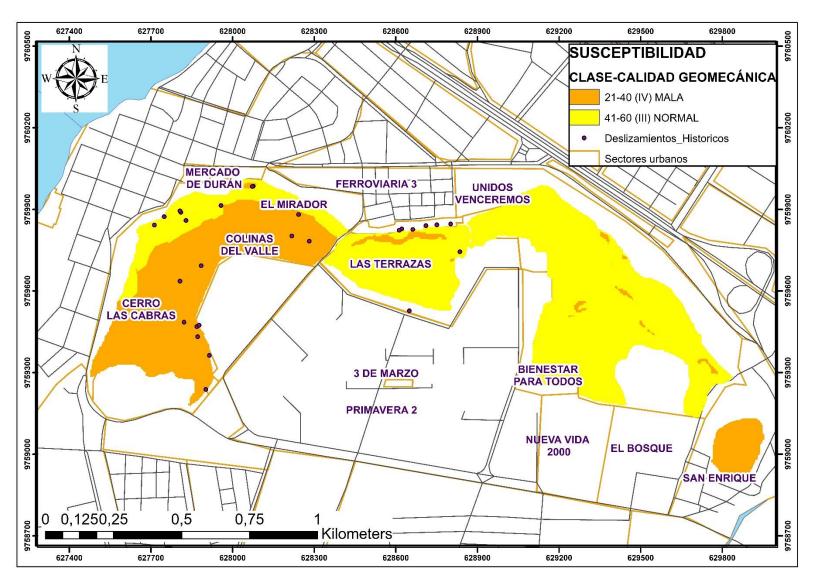


Figura 6.61 Mapa de susceptibilidad de movimientos en masa, en el peor escenario (RMR-c mínimos) y deslizamientos históricos ocurridos de los cerros del casco urbanos del cantón Durán.

CAPÍTULO 7

7. CONCLUSIONES Y RECOMENDACIONES

7.1 Conclusiones

Los resutados obtenidos en este trabajo de titulación son parte de los objetivos planteados en el proyecto Resiliencia climática de Durán: diseñando estrategias de adaptación para riesgos hidroclimáticos (RESCLIMA-DURAN)", y se obtuvo las siguientes conclusiones :

- De acuerdo con el mapa de deslizamientos históricos (Figura sectores urbanos propensos a movimientos en masa corresponde a los sectores de: cerro las cabras, mercado de Durán, colinas del valle, san enrique y las terrazas, donde se han presentado 17 de los 31 movimientos inventariados en este trabajo, de los cuales son: 12 flujos de detritos y 2 caídas de roca.
- En la zona de estudio se caracteriza seis unidades litológicas: Lutita, Arenisca
 Fina, Arenisca Gruesa, Arenisca-Lutita, Brecha-Arenisca y Brecha-Lutita, con
 afloramientos de tamaño métrico y decimétrico en diferentes sectores,
 complementado la información geológica disponible por el GAD Municipal de
 Durán.
- En el área de estudio se identificaron cuatro fallas locales: la Falla 1 DIPDIR 150/DIP 20 se ubica en el sector sureste del sector de colinas del valle, Falla 2 DIPDIR 205/DIP 22 se sitúa en el sector de unidos venceremos en la parte norte, Falla 3 DIPDIR 290/DIP 80 se encuentra atravesando los sectores de cerro las cabras y colinas del valle, Falla 4 DIPDIR 170/DIP 20 en el noroeste del sector de las terrazas, estas representan el sistema de esfuerzos.
- En la zona de estudio se definio tres medios conductivos: El primer medio posee un rango de resistividades de 20 a 40 [Ωm] interpretada como unidad geoeléctrica de lutita, alcanzando profundidades entre 5 y 10 m, el segundo medio posee

resistividades que van de 40 a 140 $[\Omega m]$ interpretada como una unidad geoeléctrica de arenisca fina que alcanza profundidades variables de 10 a 20 m, la tercera capa posee resistividades mayores a 140 $[\Omega m]$, interpretada como arenisca gruesa que alcanza profundidades mayores a los 20 m.

- Se identifico cuatro zonas de depositación de deslizamientos identificadas con la metodología de Van Zuidam,1986 y Pedraza, 1996, ubicadas en la zona sur y noreste del sector de colinas del valle, y en la zona sureste y noreste del sector de las terrazas.
- El índice de Rock Mass Rating Continue (RMR-C), categorizo el área de estudio dentro de dos clases: el 70% del área corresponde a la calidad de roca regular de clase II y el 30% del área corresponde a roca de calidad buena de clase II, lo que indica que los cerros del casco urbano posee una estabilidad normal.
- Por medio de la correlación de los parámetros: litoestratigrafía, geofísica, geomorfología y el índice del Rock Mass Rating básico continuo (RMR-C), se generaron 29 unidades geomecánicas útiles para el cálculo del índice del Slope Mass Rating continuo (SMR-C).
- Con el uso de la red esterografica cuatro planos estructurales generales: tres diferentes tipos de discontinuidad (J) J1 DIPDIR 355/ DIP 74, J2 DIPDIR 306/ DIP 78, J3 DIPDIR 51/ DIP 78 y un estratigrafía (S) So DIPDIR 169/ DIP 20, que indican el sistema de esfuerzos.
- La calidad geomecánica de los cerros se categoriza en tres clases según la evaluación de Romana,1985 dependiendo del valor de índice del SMR-C obtenida en el área de estudio.
- La calidad geomecánica de clase IV descrita como roca de mala calidad se sitúa al sureste del sector de colinas del valle, y la zona noreste y sureste del sector de las terrazas representando aproximadamente el 40% del área de estudio.

- La calidad geomecánica descrita como normal corresponde aproximadamente el 55% del área total, esta se presenta en los sectores del cerro las cabras, mercado de durán, colinas del calle, laderas central,norte y sur del sector de las terrazas y los sectores de unidos venceremos, bienestar para todos, área de cantera y san enrique.
- La clase II descrita como roca de buena calidad corresponde al 5% aproximadamente del área de estudio situada en la zona centraleste del sector de colinas del valle.
- El sur de colinas del valle, noreste y sureste del sector de las terrazas, son sectores urbanos porpensos a la recurrencia de movimientos en masa ya sea por flujos de detritos, caídas de rocas o movimientos complejos.
- Los modelos de susceptibilidad a movimientos en masa generados son sensibles a la variable del índice del Rock Mass Rating continuo (RMR-C), por ende, una información detallada de las zonas permite ajustar el modelo a la realidad.

7.2 Recomendaciones

- Se recomienda incluir información de estudios de sismicidad y precipitaciones del área de estudio, para relacionarlo con los procesos denonantes de deslizamientos.
- Se recomienda levantar nuevamente las tomografías eléctricas (TER) en la temporada lluviosa, en los mismos sitios de muestreo, con el objetivo de realizar estudios de lapsos de tiempo (Time-Lapse ERT monitoring), esto permitirá reconocer y delimitar con mayor precisión zonas de fractura y filtración de agua con el objetivo de indentificar zonas más susceptibles a deslizamientos.
- Se recomienda realizar el levantamiento de datos directos como: perforación y calicatas sobre de las tomografías electricas levantadas con el objetivo de mejorar la interpretación de los modelos geoeléctricos resultantes.
- Se recomienda levantar un mayor número de fichas geomecánicas en las zona norte del cerro "Las Cabras" y a lo largo del cerro "Los Almendros" y el cerro "Del Tres" con la finalidad de obtener datos específicos de sus afloramientos y mejor la caracterización geomecánicas de la zona de estudio.

8. BIBLIOGRAFÍA

Libros

- Abdeslem, J. G., Regalado Sosa, J. J., & Cerquone Ravelo, H. R. (2013). Un modelo 3D de la densidad del subsuelo en el graben de Espino: un aulacógeno Jurásico en el oriente de Venezuela. *Scielo*.
- ABEM. (2012). Manual de instrucción Terrameter LS". Guía de usuario. Sundbyberg.
- Abril, A. (2011). Metodología de zonificación de areas susceptibles a deslizamiento Quimsacocha. Cuenca.
- Banco del Estado. (2010). Programa de Financiamiento para Gestión de Riesgos.
- Bieniawski, Z. (1989). Engineering Rock Mass Classification.
- Bieniawski, Z. (1989). Engineering Rock Mass Classification. Wiley, Chichester.
- Chaverri, I. (2016). Zonificación de la susceptibilidad a deslizamiento, por medio de la metodología Mora-Vahrson, en la microcuenca del Río Macho, San José, Costa Rica. Cartago.
- Compton, R. (1970). Geología de Campo. PAX-MEXICO.
- Cruden, D., & Varnes, D. (1996). *Landslide types and processes.* Washington.D.C: Trasportation Research Board, National Research Council.
- Delgado, J., Padilla, F., & Barrientos, V. (2010). *Prácticas de Geología-Mapas Geológico y Problemas*. Coriña: E.T.S de Ingenieros de Caminos, Canales y Puertos Universidad da Coruña.
- D'Ercole, R., & Trujillo, M. (2003). *Amenazas, Vulnerabilidad, Capacidades y Riesgo en el Ecuador*. Quito: EKSEPTION.
- Escuela Superior Politecnica del Litoral- Decanato de Investigación. (2017). Resiliencia climática de Duran: Diseñando Estrategias de adaptación para riesgos hidroclimáticos. (RESCLIMA- DURAN). Guayaquil.
- ESPOL-TECH. (2014). Estudios y Propuesta de Estabilización del Cerro Las Cabras-Segundo Producto. Guayaquil.
- ESPOL-TECH E.P. (2014). Estudios y Propuesta de Estabilización del Cerro Las Cabras-Tercer Producto. Guayaquil.

- Ferrer, M., & González de Vallejo, L. (1999). *Manual de campo para la descripción y caracterización de macizo rocosos en afloramientos.* E.T. Brown. Pergamon Press.
- GAD municipal de Durán. (2015). Plan de Desarrollo Territorial del Cantón Eloy Alfaro, Durán.
- GAD Municipio del Cantón Durán. (2015). Plan de Desarrollo y Ordenamiento Territorial.
- Gobierno Autónomo Descentralizado Municipal de Durán. (2015). *Rendición de Cuentas Anual.* Durán.
- Gonzáles de Vallejo et al. (2002). Ingenería Geológica. Madrid: Person Prentice Hall.
- Greenly, E., & Howel, W. (1930). *Methods in geological surveying: London.* London.
- Guzzetti et al,. (2012). Landslide inventory maps: New tools for an old problem.
- Idrovo, A. (2006). Contribución al estudio de los fénomenos de remoción en masa y su relación con la sismicidad. Quito: Escuela Superior Politécnica Nacional.
- INEC. (2010). Resultados del Censo 2010 de población y vivienda en el Ecuador.
- INIGEMM. (2013). Mapa de Susceptibilidad por Movimientos en Masa del Ecuador, escala 1:1'000.000. Quito.
- ISRM. (1981). Suggested methods for rock characterization, testing and monitoring. E.T. Brown. Pergamon Press.
- JTC-1. (2008). *Guidelines for landslide susceptibility, hazard and risk zoning for use planning.* Joint Technical Committee on landslides and Engineered slope.
- Labrousse, B. (1990). Relaciones entre la formación Cayo y la Formación Piñón en el sector de Guayaquil.
- Loke, M. (2011). Electrical resistivity surveys and data interpretation. Penang, Malaysia: Geotomo Software.
- Loke, M. (2011). Tutorial: 2-D and 3-D electrical imaging surveys.
- Loke, M. (2012). Turorial: 2D and 3D Electrical Imaging Surveys. *Geotomo*.
- Luzieux, L., Heller, F., Spikings, R., Vallejo, C., Winkler, & W. (2006). Origin and Cretaceous tectonic history of the coastal Ecuadorian forearc between 1 N and 3 S: Paleomagnetic, radiometric and fossil evidence. Earth and Planetary Science Letters.
- Mamani, F. (2016). Estudio geofísico mediante tomografía eléctrica resistiva en 2D para el abanico aluvial de Punata. Cochabamba.

- MIDUVI. (2015). Hacia ciudades más equitativas, sustentables y productivas. El aporte de la legislación Urbana. Cuadernos Urbanos N. 4. Quito.
- Montiel A., A. M. (2015). Tomografía de resistividad eléctrica en el campus Ixtaczoquitlán de la Universidad de Veracruzana. Mexico: UNAM.
- Mora, R. (2002). Curso Internacional sobre Microzonificación y su Aplicación en la Mitigación de Desastres. Sección A-Fundamentos sobre deslizamientos.
- Mora, R., & al, e. (1992). *Macrozonificación de la amenaza de deslizamientos y resultados obtenidos en el área del valle central de Costa Rica-Escala 1:286000.*San José de Costa Rica: CEPREDENAD.
- Ordoñez, M., Benitez, S., Berrones, G., Jiménez, N., Montenegro, G., & Zambrano, I. (1995). Basin Development in an Accretionary, Oceanic-Floored Fore-Arc Setting: Southern Coastal Ecuador During Late Cretaceous-Late Eccene Time. Guayaquil: Petroproducción.
- Palacky, G. (1987). Resistivity Characteristics of Geological Targets, en: M. Nabighian.

 Society of Exploration Geophysicists. Tulsa: Electromagnetic Methods in Applied Geophysics—Theory.
- Palmstrom, M. (1998). Caracterización de macizos rocosos mediante el Rmi y sus aplicaciones en Mecánicas de Rocas. Madrid: I. T. S. De Ingenieros de Minas.
- Pazos, V., & Vinueza, W. (1990). *Contribución al estudio sobre los deslizamientos en el Ecuador.* Quito: Escuela Superior Politecnica Nacional.
- Pedraza-Gilsanz, J. (1996). Geomorfología: Principios Métodos y Aplicaciones. Ed. Rueda.
- Pérez, N. (2010). Evaluación de la resistividad en campo y en laboratorio y su aplicación a pavimentos. Sanfandila: Publicación Técnica.
- PMA. (2007). Geociencias para las comunidades Andinas.
- Poussin. (2015). Introduction. Doctoral dissertation.
- Prieto, J. (2003). Conceptos Estratigráficos. Mexico: Mexico.
- RESCLIMA, DURAN. (2018). Resiliencia Climática de Durán: Diseñando Estrategias de Adaptación para Riesgos Hidroclimáticos. Durán: ESPOL.
- UN-Habitat. (2012). Urban Patterns for a Green Economy: Leveraging Density.
- UNISDR. (2009). Terminology on Disaster Risk Reduction. Geneva: United Nations International Strategy for Disaster Reduction.

- Valdiviezo Ajila, Á. (2014). Propuesta Metodológica para la aplicción del Slope Mass Rating Continuo (SMR-C) mediante un sistema de información geográfico en los talides de la Vía la Moya-Achuapallas. Guayaquil: ESPOL.
- Van Zuidam, R. (1986). *Aerial photo-interpretation interrain analysis and geomorphologic mapping*. La Haya.
- Suarez, J. (1998). Capítulo 1-Caracterización de los movimientos,» Instituto de Investigaciones sobre Erosión y Deslizamientos.
- Subsecretaría de Hábitat y Asentamientos Humanos-SHAH. (2015). Informe Nacional del Ecuador-Tercera conferencia de las Naciones Unidas Sobre la Vivienda y el Desarrollo Urbano Sostenible Habitat III. Quito.
- Talmann, H. E. (1946). *Micropaleontology of Upper Cretaceous and Paleocene in Western Ecuador*. AAPG.
- Romana, M. (1985). New adjustment ratings for application of Bieniawski classification to slopes. International Symposium on the role of rock mechanics. ISRM-Proceedings.
- Romana, M. (1985). *New adjustment ratings for application of Bieniawski classification to slopes. Int Symp. On the role of rock mechanics ISRM.* Zacatecas.
- Secretaria de Comunicaciones y Transporte. (2010). Estudios Geológicos y Exploración.

 Estados Unidos de Mexico, Dirección General de Servicios Técnicos. Mexico:

 Estados Unidos de Mexico.
- Secretaría de Gestión de Riesgos-SGR. (2014). Programa de Prevención y Mitigación para reducir riesgos por diferentes amenazas.
- SENPLADES. (2013a). Plan Nacional de Desarrollo para el Buen Vivir (PNBV). Quito.
- Serrano, J. (2003). Caracterización geofísica de filtraciones de agua en el subsuelo. Catalunya.
- Sharma P. (1997). *Environmental and Engineering Geophysics*. Cambridge: Cambridge University Press.
- Sharpe, C. (1938). Landslides and related phenomena: A study of mass mouvement of soil and rock. New York: Columbia University Press.
- Villalta, A., & Gonzáles, M. (2011). Zonificación de Amenazas Geológicas por movimientos en masa que permitan el ordenamiento territorial en la Urbanización ciudad victoria de Loja. Loja.

Weinzettel, P. (2009). *Utilización de tomografía eléctrica con distintas configuraciones y espaciamientos electrodicos para la caracterización de la zona no saturada.*Barcelona: Publicación Técnica.

Libro en línea

- CAT-MED Plaform for Sustainable Urban Models. (2010). *CAT-MED Plaform for Sustainable Urban Models*. Obtenido de CAT-MED Plaform for Sustainable Urban Models: https://aurehola.blogspot.com/2012/03/colores-y-rangos-para-la-densidad-de.html
- DESINVENTAR. (s.f.). DESINVENTAR.org. Obtenido de https://online.desinventar.org/desinventar/#ECU-DISASTER
- Geofísica Exploraciones. (2008). "Métodos y técnicas". Obtenido de http://geofisicaexploraciones.com/metodos-y-tecnicas/
- Hendenson, W. (1979). Cretaceous to Eocene volcanic arc activity in the Andes of northern Ecuador. *Journal of the Geological Society*, 367-378. doi:https://doi.org/10.1144/gsjgs.136.3.0367
- IPCC. (2014b). Summary for Policymakers. Climate Change 2014: Impacts, Adaptation and Vulnerability Contributions of the Working Group II to the Fifth Assessment Report. doi:https://doi.org/10.1016/j.renene.2009.11.012
- IPPC. (2007). Climate change 2007: impacts, adaptation and vulnerability: Working
 Group II contribution to the Fourth Assessment Report of the IPCC
 Intergovernmental Panel on Climate Change.
 doi:https://doi.org/10.2134/jeg2008.0015br
- Machielsa, L., Moranteb, F., Snellingsa, R., Calvoc, B., Canoirac, L., Paredesb, C., & Elsen, J. (2008). Zeolite mineralogy of the Cayo formation in Guayaquil, Ecuador. *ELSEVIER*, 180-1888. doi:https://doi.org/10.1016/j.clay.2008.01.012
- Melle, J. V., Vilema, W., Faure-Brac, B., Ordoñez, M., Lapierre, H., Jimenez, N., . . . Milton. (2008). Pre-collision evolution of the Piñón oceanic terrane of SW Ecuador: stratigraphy and geochemistry of the "Calentura Formation". *Bulletin de la Société Géologique de France*, 433-443. doi:https://doi.org/10.2113/gssgfbull.179.5.433

- Reynaud, C., Jaillard, É., Lapierre, H., Mamberti, M., & Mascle, G. H. (s.f.). *America, Oceanic plateau and island arcs of southwestern Ecuador: their place in the geodynamic evolution of northwestern South America.* doi:https://doi.org/10.1016/S0040-1951(99)00099-2
- Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A., & Richard, G. (2005). Electrical resistivity survey in soil science: a review. *Elsiever*, 173-193. doi:https://doi.org/10.1016/j.still.2004.10.004
- Wallrabe-adams, H.-J. (1990). *Petrology and geotectonic development of the Western Ecuadorian Andes: the Basic Igneous Complex.* doi:https://doi.org/10.1016/0040-1951(90)90411-Z

Páginas web

- Centro Geotécnico Internacional. (s.f.). Centro Geotécnico Internacional. Obtenido de Centro Geotécnico Internacional:

 http://www.centrogeotecnico.com/store/product/software-dips.html
- Manilla, A. (2003). Geofísica Aplicada en los proyectos básicos de Ingenierí Civil.
 Secretaría de Comunicaciones y Transportes. Sanfadilla: Instituto Mexicano del Transporte.
 Obtenido de https://www.imt.mx/archivos/Publicaciones/PublicacionTecnica/pt229.pdf

Artículos de revista tomados de Internet

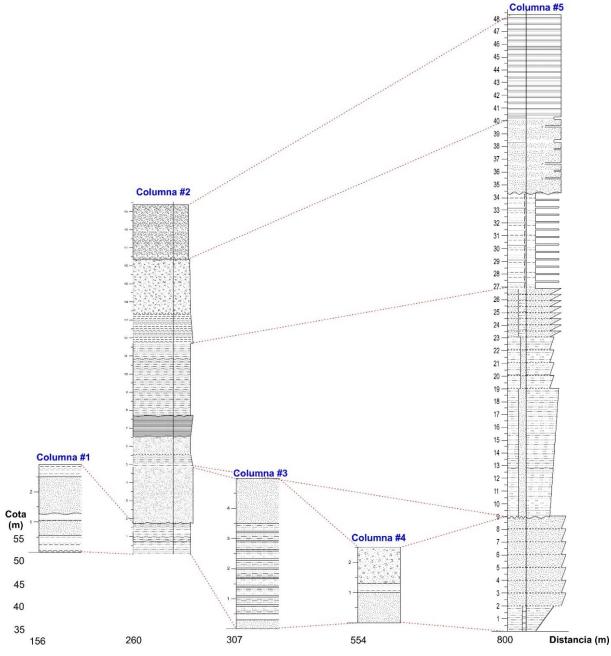
- FLACSO-Ecuador. (2012). *Riesgos urbanos en América Latina.* Quito: Revista Letras Verdes.
- Diario El Universo. (2014). Estudiarán problemas en el cerro Las Cabras.
- El Telégrafo. (7 de Abril de 2015). Obtenido de https://www.eltelegrafo.com.ec/noticias/informacion/1/una-zona-de-duran-fue-declarada-en-emergencia-galeria
- Nicolalde. (11 de julio de 2017). "Guayas es la provincia con mayor número de asentamientos". (Telégrafo, Entrevistador) Obtenido de

- https://www.eltelegrafo.com.ec/noticias/politica/1/guayas-es-la-provincia-con-mayor-numero-de-asentamientos
- Pack, R., Tarboton, D., & Goodwin, C. (2001). "Assessing Terrain Stability in a GIS using SINMAP," in 15th annual GIS conference, GIS 2001.

Artículos de revistas

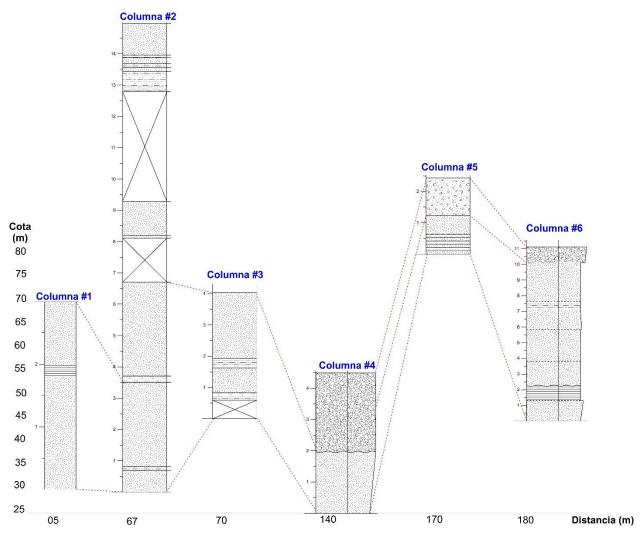
- L. Machiels, F. M. (2008). Zeolite mineralogy of the Cayo formation in Guayaquil, Ecuador. *ScienceDirect*, 180-188.
- Perrone, A., & V, L. (2014). Electrical resistivity tomography technique for landslide investigation. *Earth-Science Reviews*, 72-79.
- Terzaghi, K. (1950). Mechanism of landslides. Aplication of geology to engineering practice. *Geol. Soc. of America, Berkey*, 83-123.
- Vargas, C. (Diciembre de 2000). Criterios para la clasificación y Descripción de movimeintos en masa. *Boletín de Geología*, 22, 40-55.

9. ANEXOS

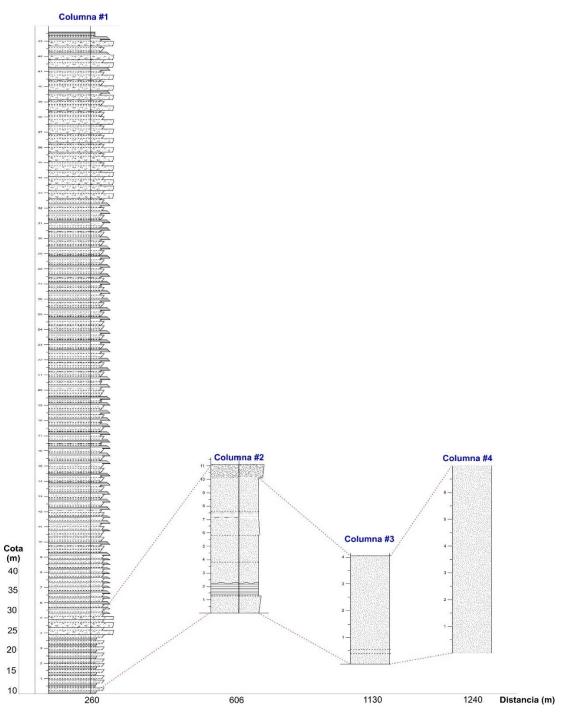

Índice de anexos

Anexo 1 Correlación de cinco columnas estratigráficas interceptadas por el perfil A-A'.
131
Anexo 2 Correlación de cinco columnas estratigráficas interceptadas por el perfil B-B'.
132
Anexo 3 Columna General perfil C-C' perteneciente al cerro "Del Tres"133
Anexo 4 Columna General perfil A-A' perteneciente al cerro "Las Cabras"135
Anexo 5 Columna General perfil B-B' perteneciente al cerro "Los Almendros"136
Anexo 6 Columna General perfil C-C' perteneciente al cerro "Del Tres"137
Anexo 7 Modelo de inversión 2D con topografía y con corrección de puntos malos
RES1_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión
smoothness constrained least-squares141
Anexo 8 Modelo de inversión 2D sin topografía y sin corrección de puntos malos
RES1_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión
smoothness constrained least-squares142
Anexo 9 Modelo de inversión 2D con topografía y con corrección de puntos malos
RES2_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión
smoothness constrained least-squares143
Anexo 10 Modelo de inversión 2D sin topografía y sin corrección de puntos malos
RES2_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión
smoothness constrained least-squares144
Anexo 11 Modelo de inversión 2D con topografía y con corrección de puntos malos
RES4_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión
smoothness constrained least-squares145
Anexo 12 Modelo de inversión 2D sin topografía y sin corrección de puntos malos
RES4_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión
smoothness constrained least-squares146

Anexo 13 Modelo de inversión 2D con topografía y con corrección de puntos malos
RES3_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión
smoothness constrained least-squares147
Anexo 14 Modelo de inversión 2D sin topografía y sin corrección de puntos malos
RES3_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión
smoothness constrained least-squares148
Anexo 15 Mapa Altimétrico de los cerros del casco urbano del cantón Durán149
Anexo 16 Mapa de Pendientes de los cerros del casco urbano del cantón Durán,
clasificación Natural break150
Anexo 17 Mapa geomorfográfico de los cerros del casco urbano del cantón Durán, según
(Van Zuidam, 1986) v (Pedraza-Gilsanz, 1996)

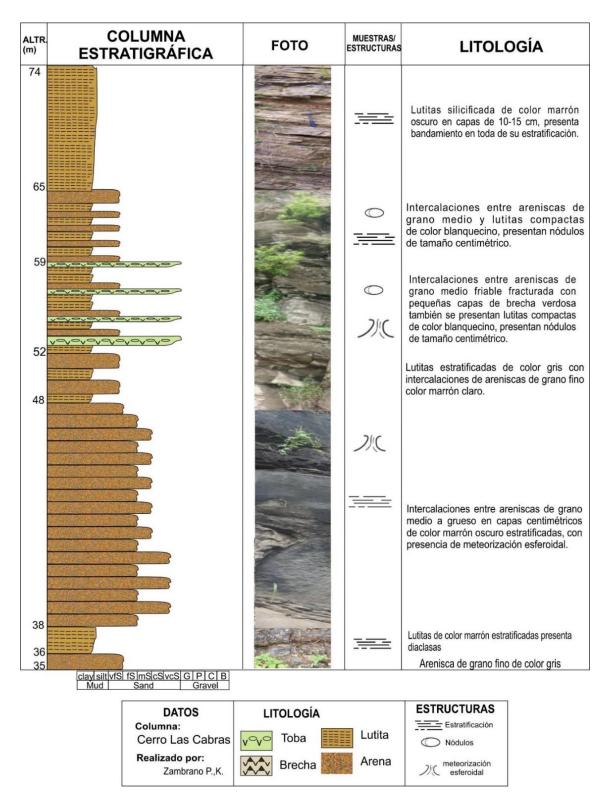

9.1 Correlación de columnas estratigráficas

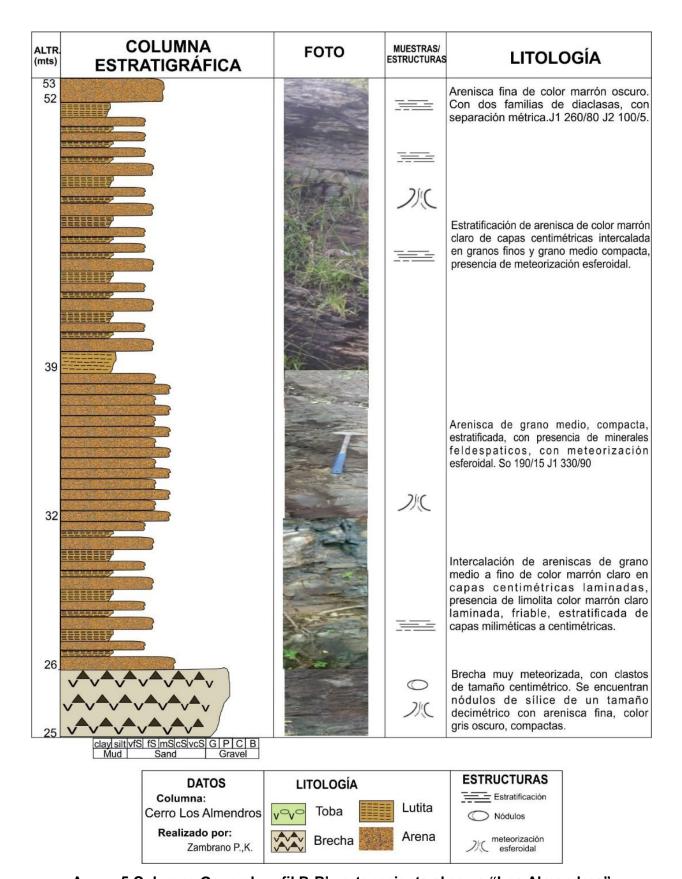
Para el cerro las cabras se utilizó cinco columnas estratigráficas identificadas en el perfil A-A' (Anexo 1).


Anexo 1 Correlación de cinco columnas estratigráficas interceptadas por el perfil A-A'.

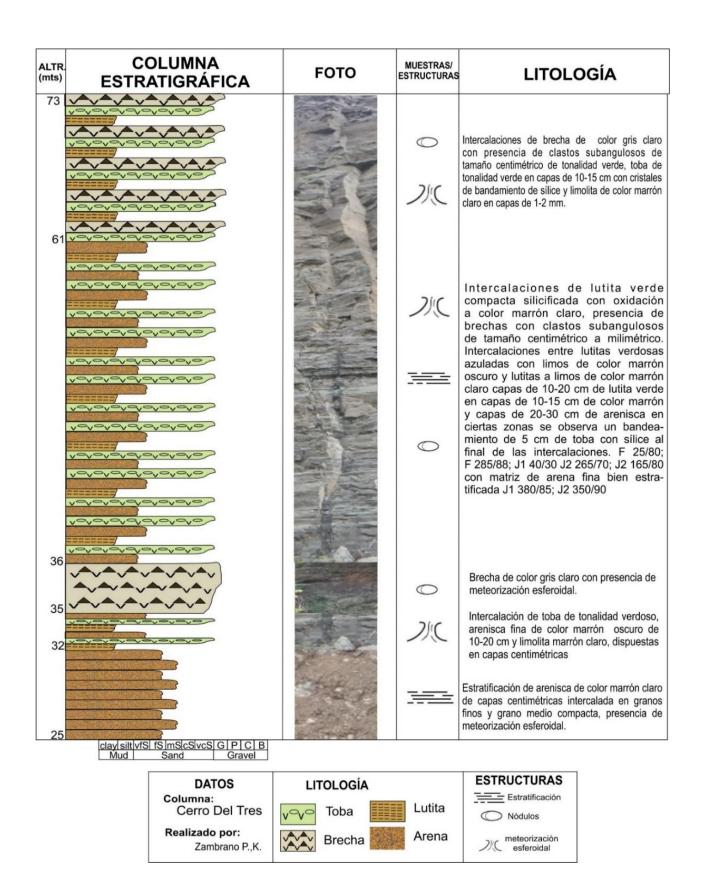
Para el cerro Los Almendros se utilizó seis columnas estratigráficas identificadas en el perfil B-B' (Anexo 2).

Anexo 2 Correlación de cinco columnas estratigráficas interceptadas por el perfil B-B'.


Para el cerro Del Tres se utilizó seis columnas estratigráficas identificadas en el perfil C-C' (Anexo 3).


Anexo 3 Columna General perfil C-C' perteneciente al cerro "Del Tres".

9.2 Columnas representativas


- Se identifico tres tipos de litologías: lutita, toba y arenisca, la columna representativa del cerro "Las Cabras" posee una potencia de 74 m, en base posee una capa de arenisca de grano fino de color marrón oscuro de espesor métrico, suprayacente a esta capa se encuentra dispuesta 2 m de lutita color marrón de grano fino, en techo se observa contacto gradacional con un paquete con espesor de 10 m de arenisca de granos fino y grueso intercaladas en capas de espesor dcm, superior a esta se encuentra una capa de 4 m con intercalaciones de arenisca de grano fino y lutita dispuestas en capas dcm, suprayacente se tiene un bloque con 7 m de capas intercaladas de espesor cm a dcm de toba y lutitas, superior a este se muestra el paquete de arenisca de grano fino y lutita intercalada con espesor de 7 m, finalmente en techo posee contacto gradacional con una capa de 8 m de lutita silicificada de color marrón (Anexo 4).
- La columna representativa del cerro "Los Almendros" posee una potencia de 53 m, en base posee 1 m de brecha, suprayacente a esta capa se tiene 6 m de un paquete de intercalaciones de lutita y areniscas de grano medio a fino de espesores dcm, superior a esta capa se dispone 7 m arenisca de grano medio a grueso intercaladas en capas dcm, encima de esta capa presenta un paquete de 12 m de capas intecaladas de dcm a m de arenisca de grano medio y lutita. (Anexo 5).
- La columna representativa del cerro Del Tres posee una potencia de 73m, la cual en base posee un paquete de 7 m de espesor de areniscas de grano fino a medio dispuesta en capas de espesor dcm, superior a esta capa se encuentra capas de espesor cm de toba, dispuesta superiormente se encuentra una capa de brecha de 1m de brecha, superpuesta a esta encontramos un paquete de intercalaciones de arenisca de grano medio, lutita y toba de 25 m de espesor, en techo se dispone un paquete de 12 m de espesor de toba, lutita y brecha intercalada en capas dcm. (Anexo 6)

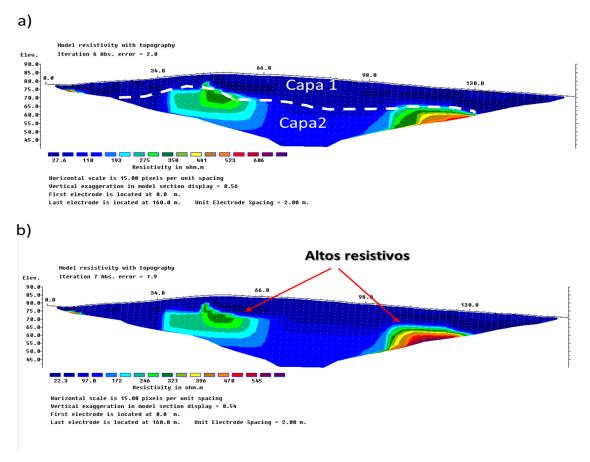
Anexo 4 Columna General perfil A-A' perteneciente al cerro "Las Cabras".

Anexo 5 Columna General perfil B-B' perteneciente al cerro "Los Almendros"

Anexo 6 Columna General perfil C-C' perteneciente al cerro "Del Tres".

9.3 Inventario de movimientos en masa registrados en el área de estudio.

Fecha	Punto	Х	Υ	Sector	Fuente		Tipo
24/1/201	9	62883	975974	Las	Google	Earth	Deslizamiento
3		6	4	Terrazas	Pro		
29/1/201	10	62880	975984	Las	Google	Earth	Deslizamiento
3		2	6	Terrazas	Pro		
29/1/201	11	62875	975984	Las	Google	Earth	Deslizamiento
3		1	3	Terrazas	Pro		
30/1/201	12	62871	975984	Las	Google	Earth	Deslizamiento
3		1	0	Terrazas	Pro		
30/1/201	13	62866	975982	Las	Google	Earth	Deslizamiento
3		3	6	Terrazas	Pro		
3/1/2014	5	62824	975988	EI	Google	Earth	Deslizamiento
		3	1	Mirador	Pro		
21/1/201	6	62801	975984	Colinas	Google	Earth	Deslizamiento
4		8	5	del Valle	Pro		
21/1/201	16	62861	975982	Las	Google	Earth	Deslizamiento
4		3	3	Terrazas	Pro		
23/1/201	7	62807	975998	Cerro	Google	Earth	Deslizamiento
4		6	5	Las	Pro		
				Cabras			
1/2/2014	2	62805	975979	Colinas	Google	Earth	Deslizamiento
		7	9	del Valle	Pro		
7/3/2014	3	62821	975980	Colinas	Google	Earth	Deslizamiento
		8	2	del Valle	Pro		
10/3/201	0	62780	975963	Colinas	Google	Earth	Deslizamiento
4		7	6	del Valle	Pro		
13/3/201	1	62788	975969	Colinas	Google	Earth	Deslizamiento
4		5	3	del Valle	Pro		

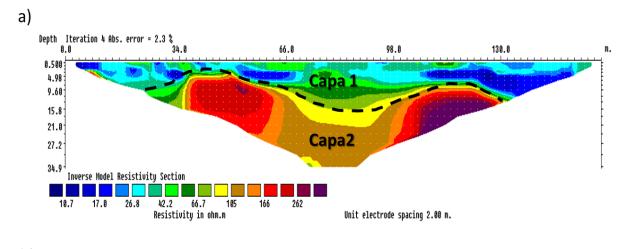

13/3/201	4	62828	975978	Colinas	Google Earth	Deslizamiento
4		2	3	del Valle	Pro	
23/3/201	14	62862	975982	Las	Google Earth	Deslizamiento
4		2	8	Terrazas	Pro	
24/3/201	15	62865	975952	Las	Google Earth	Deslizamiento
4		0	7	Terrazas	Pro	
9/5/2014	8	62774	975987	Cerro	Google Earth	Deslizamiento
		9	3	Las	Pro	
				Cabras		
22/2/201	28	62782	975985	Cruz de	In.RT_CC_Cruz	Flujo de detritos
7		9	9	Mayo	de Mayo	
22/2/201	29	62780	975989	Cruz de	In.RT_CC_Cruz	Flujo de detritos
7		7	4	Mayo	de Mayo	
23/3/201	17	62781	975988	Cruz de	In.	Caídas de roca
7		0	9	Mayo 1	RT_Recorrido	
					de Lluvias	
23/3/201	18	62771	975984	Cruz de	In.	Flujos de detritos
7		3	2	Mayo 2	RT_Recorrido	
					de Lluvias	
23/3/201	19	62786	975946	Colinas	In.	Flujos de detritos
7		9	9	del Valle	RT_Recorrido	
				1	de Lluvias	
23/3/201	20	62791	975936	Colinas	In.	Flujos de detritos
7		5	3	del Valle	RT_Recorrido	
				2	de Lluvias	
23/3/201	21	62787	975943	Colinas	In.	Flujos de detritos
7		2	2	del Valle	RT_Recorrido	
				3	de Lluvias	
23/3/201	22	62790	975923	Parque	In.	Flujos de detritos
7		2	8	Forestal	RT_Recorrido	
					de Lluvias	

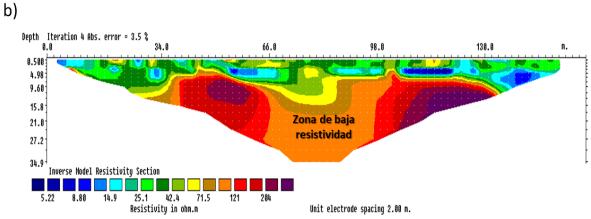
23/3/201	23	62827	975992	El	In.	Flujos de detritos
7		0	5	Mirador	RT_Recorrido	
					de Lluvias	
23/3/201	24	62795	975991	Cerro	In.	Flujos de detritos
7		8	4	Las	RT_Recorrido	
				Cabras	de Lluvias	
23/3/201	25	62807	975998	Mercado	In.	Flujos de detritos
7		3	4	Municip	RT_Recorrido	
				al	de Lluvias	
23/3/201	26	63804	976112	Canal 5	In.	Flujos de detritos
7		4	6	de Junio	RT_Recorrido	
					de Lluvias	
4/4/2017	27	62935	975918	Nueva	In.	Caida de Roca
		4	3	Vida	RT_CC_Caida	
				2000	de roca	
8/2/2018	30	62782	975948	Colinas	In.RT_CC_Flujo	Flujo de detritos
		2	5	del Valle	s de detritos	

9.4 Tomografias electricas

9.4.1 Tomografía eléctrica de resistividad RES1_NS

La TER alcanzó una profundidad de 30 metros en su centro, en el Anexo 7 se muestra los dos métodos de inversión implementados con la corrección topográfica. Se observa una capa de 110 $[\Omega m]$ hasta una profundidad de 10 m, en la segunda capa posee una profundidad de 10-20 m, en donde se observan cuerpos resistivos de 30 m de longitud con resistividades correspondientes de hasta 350 $[\Omega m]$

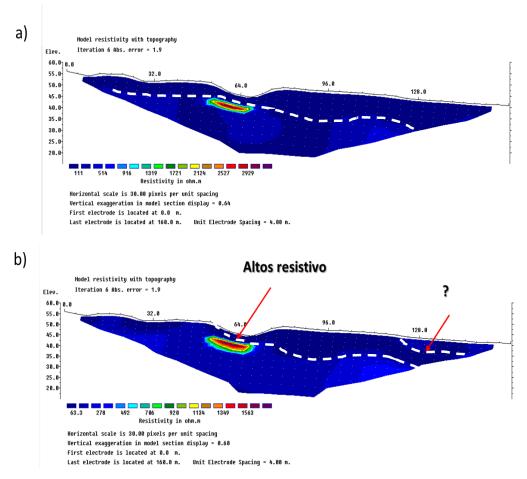



Anexo 7 Modelo de inversión 2D con topografía y con corrección de puntos malos RES1_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares.

El rango de resistividad observado va desde 5.22 [Ω m] hasta 284 [Ω m]. Es destacable en esta pseudosección dos regiones bien definidas la primera se extiende desde la

superficie entre 5 y 6 m de profundidad aproximadamente y la segunda profundiza hasta el máximo observable de la sección.

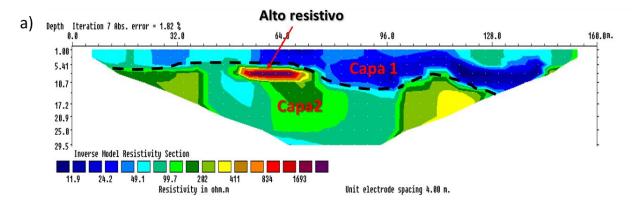
En la Anexo 8 se interpreta dos capas, la primera capa del literal a) presenta una resistividad moderada entre 5.22 y 42.2 $[\Omega m]$ con una distribución continua; la segunda capa muestra dos cuerpos con resistividades mayores que las adyacentes que se encuentran en un rango de entre 150 y 340 $[\Omega m]$, estas estructuras se encuentran en su centro por una zona o cuenca de baja resistividad la cual presenta resistividades entre 70 y 100 $[\Omega m]$.

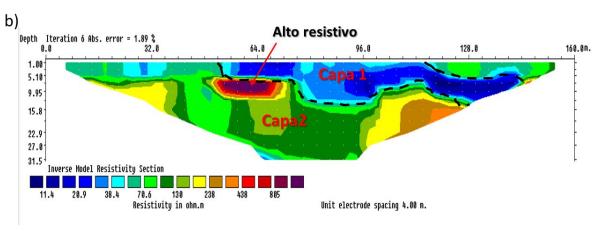


Anexo 8 Modelo de inversión 2D sin topografía y sin corrección de puntos malos RES1_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares.

9.4.2 Tomografía eléctrica de resistividad RES2_NS

La RES2_NS, alcanzo una profundidad de 30 m aproximadamente en su centro, la corrección topográfica permitió un mayor contraste entre las capas, mientras que la inclusión de la topografía del terreno resalta mejor los elementos con resistividades altas.

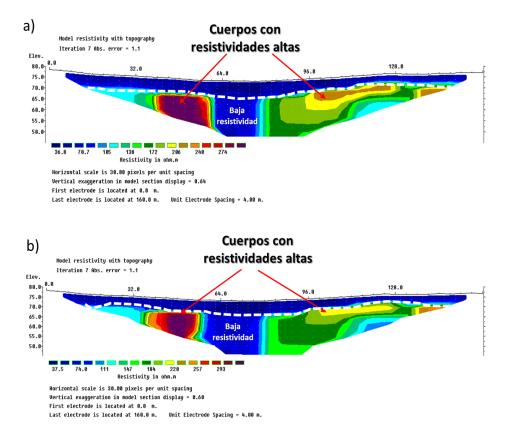

El rango de resistividad observado va desde 11.40 [Ω m] hasta 2929 [Ω m]. En este perfil se pueden diferenciar dos regiones; la primera se extiende desde la superficie entre 5 y 10 metros de profundidad aproximadamente y la segunda profundiza hasta el máximo observable de la sección (Anexo 9).



Anexo 9 Modelo de inversión 2D con topografía y con corrección de puntos malos RES2_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares.

Anexo 10, muestra las imágenes con valores invertidos con resistividades aparentes. La primera capa presenta una resistividad de 11.40 a 100 [Ω m], el espesor de esta capa se observa entre los 7 y 10 m observándose un engrosamiento desde los 52 m del ensayo; esta capa presenta, además, una mayor extensión utilizando el método Robusto, mientras que el método suavizado limita la capa desde el centro aproximadamente a los 52 m (electrodo #13) hasta el final del perfil.

La segunda capa presenta resistividades altas en el rango de 70 a 2929 $[\Omega m]$, una característica destacable en esta capa es la presencia de un cuerpo de resistividades sumamente altas con respecto al promedio del medio. Este cuerpo se presenta desde los 52 m del ensayo en dirección Norte Sur, las resistividades observadas en este elemento bordean el rango de los 706 a 2929 $[\Omega m]$ y posee un espesor entre 5 a 6 m con una extensión de aproximadamente 25 a 30 m.

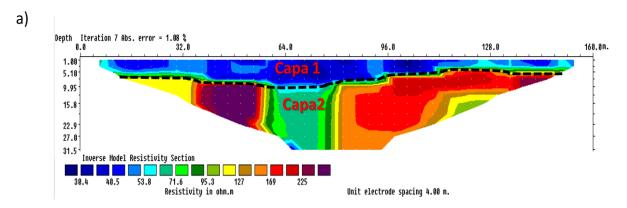


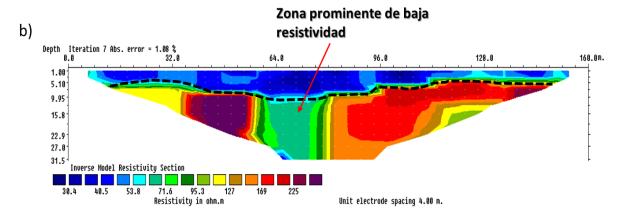
Anexo 10 Modelo de inversión 2D sin topografía y sin corrección de puntos malos RES2_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares

9.4.3 Tomografía eléctrica de resistividad RES3_NS

Anexo 11, muestra la tomografía eléctrica con corrección topográfica con los dos métodos de inversión, con la implementación de estos métodos se identifican dos regiones con resistividades similares con un rango de resistividades equivalentes por ende se realizó una descripción general de la tomografía eléctrica con corrección topográfica.

Se identifico dos regiones con resistividades diferentes, la primera región posee un espesor de 5 m con resistividades de 36 a 78 $[\Omega m]$ a toda la longitud de la TER, la segunda región posee resistividades de 105 a 110 $[\Omega m]$; en esta segunda región destaca una zona de baja resistividad de 74.8 $[\Omega m]$ de los adyacentes que son mayores a los 186 $[\Omega m]$.

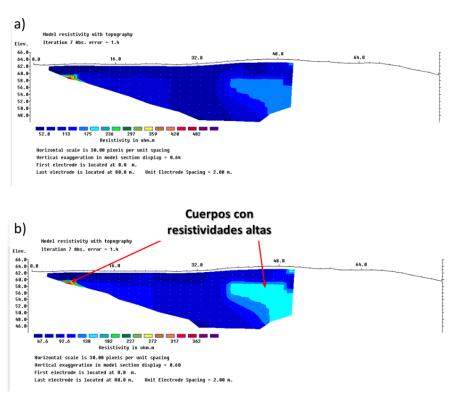



Anexo 11 Modelo de inversión 2D con topografía y con corrección de puntos malos RES4_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares.

9.4.4 Tomografía eléctrica de resistividad RES4_NS

Anexo 12 muestra los dos métodos de inversión implementados en el proyecto para los datos levantados en campo, dado la igualdad de la pseudosección se realizó una única descripción.

En la pseudosección sin la corrección topográfica se diferencian dos regiones, la primera región denominada capa 1 posee un rango de resistividades de 38.4 a 53.8 [Ω m] que se extiende a una profundidad aproximada de 10 m, la segunda región se posee un rango de resistividades que van de 71.6 a 95.3 [Ω m], sin embargo en esta región se identifican cuerpos amorfos con resistividades de hasta 281 [Ω m], separada por una zona prominente de baja resistividad de aproximadamente 30 m longitud.

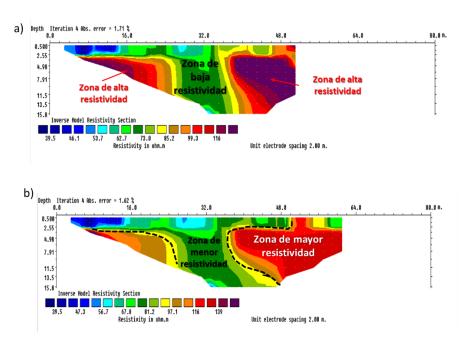


Anexo 12 Modelo de inversión 2D sin topografía y sin corrección de puntos malos RES4_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares.

9.4.5 Tomografía eléctrica de resistividad RES5_EO

En esta TER se obtuvo un rango de resistividad que va desde los $39.50 \ [\Omega m]$ hasta $482 \ [\Omega m]$. Este perfil se observa un poco más del 50 % de la longitud total de la configuración real, debido a que durante el ensayo el equipo quedo bajo en potencia de batería y los datos útiles alcanzaron aproximadamente $51 \ m$ de longitud. Por tal razón se describirá lo obtenido de la TER, tomando en cuenta que puede existir un error en los limites sin datos.

La Anexo 13 muestra los métodos de inversión implementadas con corrección topográfica, que nos indica un rango de resistividad predominante a lo largo de la TER, que va desde los 47.6 a 138 [Ω m], en lo largo de su extensión se destacan dos cuerpos amorfos de resistividades altas con un valor de 175 [Ω m], donde uno de ellos parte desde los 5 m hasta los 28 m de profundidad.



Anexo 13 Modelo de inversión 2D con topografía y con corrección de puntos malos RES3_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares.

Anexo 14 indica la pseudosecciones resultantes con los métodos de inversión implementados sin corrección topográfica, las pseudosecciones son similares en su rango de resistividades y su distribución geométrica. Por lo cual se realizó una descripción general.

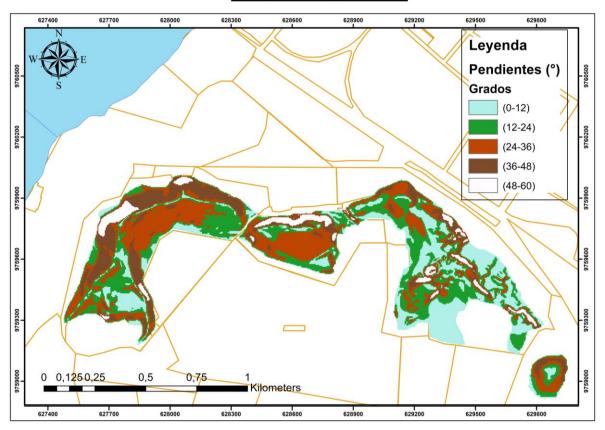
En las pseudosecciones, se delimitan dos zonas de resistividad, la zona de baja resistividad con una profundidad de 3 m aproximadamente y longitud de 38 m posee un rango de resistividad que va desde los 39.5 a 81.2 [Ω m], en la parte superior izquierda se observa un cuerpo amorfo con resistividad de 39.5 a 47.3 [Ω m], a los 24 m de longitud se aprecia una región de resistividad en el rango de 62.7 a 81.2 [Ω m] con una abertura de 10 m aproximadamente y una profundidad de 15.8 m.

La zona de alta resistividad va desde los 3 m de profundidad el máximo alcanzado de las tomografías eléctricas, posee un rango resistivo de 85.2 a valores mayores de 139 $[\Omega m]$, los cuerpos resistivos se ubican a los extremos de la pseudosección separadas por una región de baja resistividad con 10 m de abertura.

Anexo 14 Modelo de inversión 2D sin topografía y sin corrección de puntos malos RES3_NS, en el literal a) Método de inversión robusto, literal b) Método de inversión smoothness constrained least-squares.

9.5 Geomorfologia

El mapa de altimetría fue categorizo en cinco clases con separación de cada 10 m, el cerro "Del Tres" posee alturas máximas de 85 metros y mínimas de 5 metros; los cerros "Las Cabras" y "Los Almendros" poseen cotas desde 25 metros hasta 105 m de altura. (Anexo 15)


627700 629500 629800 628000 LEYENDA Modelo de Elevación Altimetría (m) (5-25) (25-45)(45-65) (65-85) (85-105) CERRO CERRO LAS CABRAS LOS ALMENDROS CERRO 0 0,1250,25 0.75 **K**lometers

MAPA DE ALTIMETRÍA

Anexo 15 Mapa Altimétrico de los cerros del casco urbano del cantón Durán.

El mapa de pendientes fue categorizado cinco clases en natural break separados cada 12° grados, las pendientes menores se muestran al sureste del cerro "Las Cabras" y en la parte central del cerro "Del Tres"; las partes de mayor pendiente se identifican en el sector noroeste del cerro "Las Cabras", en el norte del cerro "Los Almendros" y en pequeñas partes del cerro "Del Tres". (Anexo 16)

MAPA DE PENDIENTES

Anexo 16 Mapa de Pendientes de los cerros del casco urbano del cantón Durán, clasificación Natural break.

El mapa geomorfográfico fue categorizado en seis, sin embargo se observan pendientes recurrentes de 20°-30° en las zonas noreste, norte y sureste del cerro "Las Cabras", y en los flancos este y oeste del cerro "Los Almendros", ademas en los alrededor de los flancos del cerro "San Enrique".

Las categorías de 6°-12° y 12°-20°, se observan en los flancos sur este y sur oeste de los cerros del casco urbano del cantón Durán. (Anexo 17)

MAPA DE GEOMORFOGRÁFICO

Anexo 17 Mapa geomorfográfico de los cerros del casco urbano del cantón Durán, según (Van Zuidam, 1986) y (Pedraza-Gilsanz, 1996).

9.6 Fichas de Levantamiento Geomecánico

PROYECTO:		Tesis S	MD C		ESTACIÓ	NI .	N° HOJA :		1				Provincia	Guaya	S
PROTECIO.		16313 3	IVIK-C		ESTACIO	<u>N .</u>	CÓDIGO :		T1		LOCALIZA	<u>CIÓN :</u>	Cantón	Durán	į
REALIZADO POR:		AB-EC	- 41/		HOJA/PL	ANO ·		Carro I	os Almendros				Localidad	Las Terra	zas
KLALIZADO FOR.		AB-LC	-AV		HOJAJFE	ANO.		cenon	os Allilellalos				X:	628394	ą
FECHA:					FOTOS :						COORDEN	IADAS	Y:	975975	4
PECHA.													Z:	47.5	j
<u>LITOLOGÍA</u> Lutitas silicificadas, limolitas y bre	chas		NATUR <i>A</i> Volcano	ALEZA o-sedimentari	POTENCI s >10 m	Α	<u>DEPÓSITOS</u> gravas y are				MORFOLO Pendient	OGÍA es rectas		ESPESOR entre 2 y 3 m	
<u>ESTRUCTURAS</u>	PLIEGU	ES		FALLAS	•		COLUMNAS				OTROS			-	
<u>FRACTURACIÓN</u>		BLOQUES Jv Juntas/m			RANDES < 1		GRANDES 1 - 3		MEDIOS 3 - 10		IEÑOS - 30	MUY	PEQUEÑOS > 30	MUY BRECHIF > 60	CADA
GRADO DE METEORIZACIÓN		SANA I	A	ALGO METEORI:	'ADA	MED.	METEORIZAD III	A	MUY METE				TEORIZADA V	SUELO RESII VI	UAL
HIDROGEOLOGÍA		SIN PRESENC	CIA DE A	GUA	SECO (CON S	SEÑALES DE	AGUA)		HÚMEDO	GOTE	os	FLUJO	CA	AUDAL ESTIMADO	
OBSERVACIONES Deslizamiento quizas producido po	or afectac	ión antropica. Ta	ilud 3 (3	10/85), Talud 2	(280/55), Ta	lud 1 (70/4	5)		SISTENCIA "R" CLERÓMETRO	24		23	20	13	15

E	STACIÓ	V			ESPACIA	ADO	(cm)			СО	NTIN	NUID	AD (m)			AP	ERT	URA	(mn	1)			R. <i>i</i>	Apr			RU	JGO:	SIDA	.D									REL	LENC)S						\neg
						S		ЭS	S										tа															Me	teo	riza	ció	n	Filtr	acio	nes	Re	esist	. Ma	rtill	o (¢	ieo;S	mith)
	ENTO		Ext. Juntas	Muy Juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa				Escalonada		Ondulada	Olluniana		Plana		chez	rizada	izada	teo	le							ente			
TIPO DE PLANO	DIR. DE BUZAMIENTO	BUZAMIENTO	< 2	2-6	6 - 20	20 - 60	60 - 200	200 - 600	> 600		1 - 3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	l Rugosa	II Lisa	III Slickensided	V Lisa	VI Slickensided		_	in Siickeiisided	I Sana	: =		V Complet. Meteo		Seco	Goteos	Eluio	1 Muy blando	_	3 8	-	+	_	Dirección
So	180			_	12					0.7						1													_		-	Х	_		Х			- 2	_	-	_	+	\perp	Х	Ш	H.	_	5 →
So	190				12					0.5						0.2															_	Х			Х			\vdash	(+	_	Х	Ш	ٰٰٰٰٰٰ۔۔۔ٰٰ		4 →
So	195	_			12					0.5						0.2															_	Х			Х							+	_		Х	L.i		4 →
So	185				12					0.6						0.2															_	Х			Х				_			丄			Χ	L.		0 →
So	190				12					0.7					0.1																	Х	\perp		Х			- 2	_			丄		Х	Ш	\perp		8 →
So	195				12					0.8						0.2																Х			Х				(╧		Х				2 →
J	280	90					40				2					0.2												Х							Х				(╧	Х			L	2	
J	285	90					40				2					0.2												Х	(Х			2	(Х				4	2 →
J	280	80					50				2					0.2												Х							Х			2	(Х				4	0 →
J	270	90					40				2																	Х	(Х				\				Х				2	6 →
J	75	80		5							6									12											Χ				Х				(Х			1	0 →
J	80	70			14						5					0.6															Х					Χ)	(Х				1	3 →
J	75	90			13						6					0.5															Х			Х				1	(Х			1	5 →
J	60	90			14						6					0.9																Χ			Х			2	<					Х			1	8 →
J	140	90			12						10					0.5															Χ				Х			2	(Х			1	0 →
J	350	80				25				0.6					0.1																Χ			Х				2	(Х			1	8 →
J	330	80			16					0.7					0.1																Χ				Х			2	(T	Х				1	6 →
J	335	80			15					0.7					0.1																Χ				Х			2	(T		Х			1	7 →
J	340	80			15					0.8					0.1																	Х			Х			2	(Х	П		1	8 →
J	330	55		T			50				1					0.5												Х					T		Х			7	(T			Х			2 →
J	330						40				2					0.5												Х							Х			2	(\top			Х			4 →
j	320			1			60				1					0.5												Х	_				1		х			1	-			\top			Х			6 →
Ī	350	70		1			40				3					0.5												Х	_						Х				_			\top	\top		Х			5 →
Ť	340	-		7			50	-			2					0.5												Х	_	+					Х				7	1	+	十	\top		Х	- !		6 →
٦	220	-		\dagger			40	_			1	-				0.5										\Box	1	X	_	+	\Box	1	T		X				_	\dagger	\dagger	+	+		Х		_	3 →
TIP	O DE PI		5	1			So - E	_	tific	cació				J1	Jn		as					REL	LEN	0				S - A	_	ıa		E	3 - B	rec				_	Cua	rzo		\top	0	- Ó:	xido	os !	Ť	
				\top			S1 - E								.Fn -								Gra					A - A							nita	a			Calc			T			ldes		tos	

	Tesis SM	IP_C		ESTACIÓN :		N° HOJA :		1				Provincia	Guayas
PROYECTO:	16212 3IV	in C		LUTACION .	-	CÓDIGO:		T2		LOCALIZA	<u> ACIÓN :</u>	Cantón	Durán
REALIZADO POR:	AB-EC-A	1 //		HOJA/PLAN	ın ·	_	erro Io	s Almendros				Localidad	Las Terrazas
REALIZADO FOR.	AB-LC-A	٩٧		HOJA/FLAN	<u> </u>		eno io	s Almendios				X:	628715
FECHA:				FOTOS :						COORDE	<u>NADAS</u>	Y:	9759639
FECHA.												Z:	30
<u>LITOLOGÍA</u>		NATURALEZA		POTENCIA		DEPÓSITOS S				MORFOL			ESPESOR
Lutitas silicificadas, limolitas	•	Volcano-sedi		>20 m		gravas y arei	na-limo	osa			tes rectas		entre 40-50 cm
<u>ESTRUCTURAS</u>	PLIEGUES	FALL	AS			COLUMNAS				OTROS			
	BLOQUES		MUY GRAN	NDES	(GRANDES		MEDIOS	PEQU	EÑOS	MU	Y PEQUEÑOS	MUY BRECHIFICA
<u>FRACTURACIÓN</u>	Jv Juntas/m3		< 1			1 - 3		3 - 10	10 -	30		> 30	> 60
	SANA	ALGO I	METEORIZAD	A	MED. I	METEORIZAD <i>A</i>	\	MUY MET	EORIZADA		COMPL. ME	TEORIZADA	SUELO RESIDUA
GRADO DE METEORIZACIÓN	1		П			III		T	V			V	VI
HIDROGEOLOGÍA	SIN PRESENCIA	DE AGUA	SE	CO (CON SEÑ	ÍALES DE A	AGUA)	Н	ÚMEDO	GOTE	os	FLUJO	C	CAUDAL ESTIMADO
FOTO								STENCIA "R" ERÓMETRO UIS	18.6		20	30	12.4 10.

EST	ACIO	ÓN			ESP	ACIA	DO	(cm)		со	NTIN	IUID	AD (ı	m)			AP	ERTI	URA	(mm	1)			R. A	Apr			RUG	OSIDA	AD									RELL	ENO:	S				-	٦
						S		as	S										ta														Me	teoı	rizad	ción	F	iltra	cior	nes	Resist	t. Ma	rtillo) (Ge	eo;Smith	1)
	ENTO		Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa			1	Escalonada		Ondulada		Plana		rada	izada	zada	teo										
-	DIR. DE BUZAMIENTO	BUZAMIENTO	< 2	2-6	6 - 20	20 - 60	60 - 200	200 - 600	009 <	< 1	1 - 3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	l Rugosa	III Slickensided	IV Rugosa	V Lisa VI Slickensided	VII Rugosa	VIII Lisa	IX Slickensided	I Sana II Algo meteorizada		Muy	V Complet. Meteo	VI Suelo residua	Húmedo	Goteos	Flujo	1 Muy blando	_	\vdash	-	6 Muy duro Índice R Dirección	
	210											10											2	Х	х			Х						Х			Х					Х		_	12 ↓	_
	100	_		15								10						_						х	х			х						Х			Х					Х		_	32 ↓	4
	190			8								10												Х	х			Х						Х			Х					Х		\perp	33 ↓	4
-	200			7								10												Х	х			х						Х			Х	<u> </u>				Х		\perp	30 ↓	_
-	190			13								10												Х	х			х						Х			Х	<u> </u>				Х		\perp	21 ↓	
-	180			12		_						10						_					;	Х	х			Х					\perp	Х			Х	<u> </u>				Х		\perp	31 ↓	
F		80		15		_			500			4						_						х	х		_	х					_		х		Х					Х	Ш	\bot	12 →	
F		80				_		200				5						_						х	х			х					\perp		х		х					Х		\bot	19 →	
F								200			2													х	х			х							х		Х					Х		\perp	22 →	
_									500		2													х	х			х							х		Х					Х		\perp	18 →	
	140			_	12	_								25				_						Х	х			х							х		х					Х		_	9 ↓	4
S1				_	13									25				_						х	х			х							х		Х					Х		_	56 ↓	4
S1	10	_		6										25				_						х	х			х							х		Х					Х		_	7 ↓	4
		30		5		_								25				_						х	х			х					4		х		Х					Х	Ш	\bot	28 ↓	4
		30		3										25										х	х			х							х		Х					Х		\bot	26 ↓	_
S1				5										25				_						х	х			х							х		Х					Х		_	20 ↓	_
S1		_		5										25				_						х	х			х							х		Х					Х		_	14 ↓	
S1				6										25										Х	х			х							х		Х	<u> </u>				Х		\perp	23 ↓	
	120	_		4										25										Х	х			Х							х		Х					Х		\perp	11 🗸	
S1				5										25				_						х	х			х							х		Х					Х		_	12 ↓	
S1				5										30				_						х	х			х					4		х		Х					Х		_	9 ↓	_
S1		_		6		_								30				_						х	х			х					4		х		Х					Х	Ш	\bot	14 ↓	
S1		_		6										30										х	х			х							х		Х					Х		\bot	11 ↓	
S1		_		5										30										х	х			х							х		Х					Х		\bot	11 ↓	
	120			4	_						Щ			30										_	х	Ш	\perp	Х		\perp	Ш				х		Х					Х		丄	11 ↓	4
TIPO) DE	E PL	ANC)		_		Estrat						J1	Jn - J	lunt	as						LEN				S	- Are	ena			B - E	Breck	าล		-	Q - C				0	- Ó	cidos	ŝ		
						9	<u> 51 -</u>	Esquis	stosida	ad				F1	Fn -	Fall	as					G - (Grav	/as			Α	- Ar	cillas			M -	Milo	nita	1	(C - C	alcit	a		F	- Fe	ldes	pato	os	

PROYECTO:	Tesis S	MP-C		ESTACIÓN		N° HOJA :		1				Provincia	Guayas
PROTECIO.	16313 .	NVIK-C		LSTACION	<u>. </u>	CÓDIGO:		T3		LOCALIZA	<u> ACIÓN :</u>	Cantón	Durán
REALIZADO POR:	AB-E0	- 41/		HOJA/PLAN	NO :	_	`arro los	s Almendros				Localidad	Las Terrazas
REALIZADO I OK.	AD L	. AV		IIOJA/I LAI	10 .		20110 103	Annendios				X:	628394
FECHA:				FOTOS :						COORDE	NADAS	Υ:	9759754
PECHA.				<u>F0103 .</u>								Z:	47.5
LITOLOGÍA		NATURALE		POTENCIA		DEPÓSITOS S				MORFOL			ESPESOR
Lutitas silicificadas, limolitas y b			edimentarias	>10 m		gravas y arei	na-limo	sa			tes rectas		entre 2 y 3 m
<u>ESTRUCTURAS</u>	PLIEGUES	FA	ALLAS			COLUMNAS				OTROS			
FRACTURACIÓN	BLOQUES Jv Juntas/r		MUY GRAN < 1	NDES	(GRANDES 1 - 3		MEDIOS 3 - 10	PEQU 10 -	EÑOS - 30	MUY	PEQUEÑOS > 30	MUY BRECHIFICADA > 60
GRADO DE METEORIZACIÓN	SANA I	ALG	GO METEORIZADA II	Δ	MED.	METEORIZAD <i>A</i> III	A		EORIZADA V		COMPL. ME		SUELO RESIDUAL VI
<u>HIDROGEOLOGÍA</u>	SIN PRESEN	CIA DE AGU	JA SEC	CO (CON SEI	ÑALES DE A	AGUA)	н	ÚMEDO	GOTE	os	FLUJO	С	AUDAL ESTIMADO
FOTO FOTO							CROQU	JIS	16		20	18	39 22

ES	STACIO	ÓΝ			ESPAC	IADO) (cm)			СО	NTIN	IUID	AD (m)			AP	ERTL	JRA ((mm	1)			R. <i>A</i>	Apr			RUG	GOSIDA	D								F	RELLE	NOS	5			_		
						S		as	S										ta														Mete	eori	zac	ión	Fil	tra	cion	es	Resis	t. M	artill	o (G	eo Smit	:h)
	ENTO		Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa				Escalollada		Ondulada		Plana		zada	rizada	izada	rteo							ente			
TIPO DE PLANO	DIR. DE BUZAMIENTO	BUZAMIENTO	< 2	2-6	6 - 20	20 - 60	60 - 200	200 - 600	009 <	< 1	1 - 3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	l Rugosa III isa	III Slickensided	IV Rugosa	V Lisa VI Slickensided	VII Rugosa	VIII Lisa	l Sana		≣		V Complet. Meteo	Seco	Húmedo	Goteos	Flujo	1 Muy blando	2 Blando 3 Consistente		-	6 Muy duro Índice R	Dirección
So	230				10								12		0.1													Х						Х			Χ					Х			16 -	\rightarrow
So	240	_			7								12		0.1													Х						Х			Х					Х		Ц		→
So	240	_			7								12		0.1													Х						Х			Χ					Х			14 -	<u>→</u>
So	230				10								12		0.1													Х						Х			Χ					Х		\sqcup		<u>→</u>
So	240	_			8								12		0.1													Х						Х			Χ					Х		\sqcup	20 -	_
So	230	_			8								12		0.1													Х					_	Х			Χ					Х		\sqcup	18 -	_
So	230	_			10								12		0.1													Х						Х			Х					Х			20 -	
So		30			10								12		0.1													Х						Х			Χ					Х			22 -	
J	290	80		5							2					1												Х					-	Х			Х					Х		\sqcup	22 -	
J	210			2						0.5						1												Х						Х			Х					Х			22 -	→
J	315	_		5							2					1												Х						Х			Χ					Х			_	→
J	200	_		3						0.5						1												Х						Х			Χ					Х		\sqcup		<u>→</u>
J	135	_		2							1					1												Х						Х			Χ					Х		\sqcup		<u>→</u>
So	230	_			15								12		0.1													Х						Х			Χ					Х		\sqcup	18 -	
J	280	_					90				1				0.1													Х				_		Х			Χ	_				Х		\sqcup	28 -	<u>→</u>
So	250				12								12		0.1													Х						Х			Χ					Х		\sqcup		\rightarrow
J		80				25					2				0.1													Х						Х			Χ					Х		\sqcup	_	\rightarrow
So	240	_			7								12		0.1													Х						Χ			Χ					Х		\sqcup		\rightarrow
So	220				10								12		0.1													Х					_	Х			Χ					Х		\sqcup		\rightarrow
So	210	_			10				<u> </u>				12		0.1											_	\perp	Х		Ш	_		_	Χ	_	\perp	Х				_	Х		\vdash	20 -	
J	350	_		17	10			<u> </u>		0.7					0.1													Х					_	Х			Χ					Х		\sqcup	21 -	_
J	275	_			15			<u> </u>		0.8					0.1													Х				\perp	_	Х			Х					Х		Ц		\rightarrow
J	350	_	-			50				0.7					0.1													Х					-	Х	$\perp \mid$		Х					Х		Ц	-	\rightarrow
J	0	80					110	<u> </u>		0.6					0.1													Х				\perp	_	Х			Χ					Х		\sqcup		\rightarrow
J	90	80	Ш		10	-				0.6					0.1													Χ		Щ				Х	\perp		Х					Х		Ц	12 -	>
TIP	O DE	PLA	<u>NO</u>				So - E	stra	tific	cació	'n				Jn - J				_				LEN	_			S-	- Ar	ena		В	- Br	echa	a	_	Q	- Cu	arz	0		C) - Ó	xido)S	44	_
							S1 - E	squ	isto	sida	d			F1	.Fn -	Falla	as					G -	Gra۱	vas			Α	- Ar	cillas		N	/I - N	lilor	iita		С	- Cal	lcita	a		F	- Fe	lde	spate	os	

PROYECTO:	Tesis S	MR-C		ESTACIÓN :		N° HOJA :		1			o é s	Provincia	1	Guayas
				1		CÓDIGO :		T4		LOCALIZA	CION :	Cantón		Durán
REALIZADO POR:	AB-EC	-AV		HOJA/PLANO	<u>) : </u>	С	erro los	s Almendros				Localidad	1	Las Terrazas 628570
										COOPDEA	IADAC	X: Y:		9759369
FECHA:				FOTOS:						COORDEN	IADAS	Υ : Z :		24.9
<u>LITOLOGÍA</u>		NATURALEZA		POTENCIA		DEPÓSITOS S	UPERFIC	CIALES		MORFOLO	OGÍA	_ ·	ESPESO	
Arenis cas y Lutitas		Volca no-sedin	nentarias	>10 m		gravas y arer	na-limo	sa		Pendient	es rectas		entre 2	y 3 m
ESTRUCTURAS PLIEG	UES	FALLAS	5			COLUMNAS				OTROS			•	
ED A OTTUDA CIÁN	BLOQUES		MUY GRA	NDES	(GRANDES		MEDIOS	PEQU		MU	Y PEQUEÑOS	MU	Y BRECHIFICA DA
<u>FRACTURACIÓN</u>	Jv Juntas/r	m3	< 1			1 - 3		3 - 10	10	- 30		> 30		> 60
GRADO DE METEORIZACIÓN	SANA I	ALGO M	IETEORIZAD II)A	MED. I	METEORIZADA III	`	MUY METE				ETEORIZADA V	SI	JELO RESIDUA <mark>L</mark> VI
HIDROGEOLOGÍA	SIN PRESEN	CIA DE AGUA	SE	CO (CON SEÑ	ALES DE A	AGUA)	н	ÚMEDO	GOTE	os	FLUJO		CAUDAL ES	TIMADO
FOTO								UIS	37		50	56	48	31

EST	ACIĆ	N			ESPA	CIADO) (cm)			СО	NTIN	IUID	AD (ı	m)			AP	ERTI	URA	(mn	n)			R. <i>A</i>	Apr			RU	GOSID	AD									RELL	ENO	S					
						S		as	S										ta														Me	teo	rizac	ción	Fi	Itra	cior	nes	Resi	st. N	√lar	tillo	(Gec	Smith)
	ENTO		Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa			بالتمالين	Escaloriana		Ondulada		Plana		zada	izada	zada	teo										
		BUZAMIENTO	< 2	2-6	6 - 20	20 - 60	60 - 200	200 - 600	009 <		1-3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	l Kugosa II lisa	III Slickensided	IV Rugosa	V Lisa	VII Rugosa	VIII Lisa	IX Slickensided	II Algo meteorizada	≡	_	V Complet. Meteo	Seco	Húmedo	Goteos	Flujo	1 Muy blando	_	-	4 Muy consistente	5 Duito 6 Muy duro	nd Dir
	320					50						4			0.1									Х	X 2	x				_				х			_				Ш				\bot	16 →
-		80				40						4			0.1									Х	X 2	X				_				х							Ш				\bot	37 →
		80					100					4			0.1									Х		x						_		х							Щ					44 >
	270						70					5			0.1									Х		X		-	\perp	+		_		х			-				\sqcup		_			40 →
		85				60						5			0.1									Х	_	X								х							\sqcup				┷	49 →
	260	_				50						4			0.1									Х	X 2	X				_				х							\sqcup				┿	14 →
	L40	_			10								20			1								Х	Х			х						х							\sqcup				┷	32 →
	L 90					30			_				20			1								Х	Х	_		Х	++	\bot		_		х		_	4	_		<u> </u>	\sqcup	_	4	_	\bot	14 >
		20				30							20			1							-	Х	Х	_		Х	\perp	+		_		х			-				\sqcup		_		+	58 →
		40				20						_	20			1							-	Х	Х			х	\perp	+		_		х							\sqcup		_		+	43 →
-		85			10							3				1							-	Х	Х	_		-	+	Х				х			-				\sqcup				+	43 →
-		80			20							3				1								Х	Х	_		-	\perp	х		_		х			-				\sqcup		_		+	56 →
	_	70			20							3				1							-	Х	Х	_			++	Х				х			-	_		_	\sqcup			_	+	50 →
	270	_			20							3				1							\rightarrow	Х	Х	_		-	\perp	х				х							\sqcup					40 →
		80			20							3				1							\rightarrow	Х	Х			-	\perp	х				х							\vdash					39 →
		80			15							3				1							\rightarrow	Х	Х	_		-		Х		_		х							\vdash	_	_		+	26 →
		90			20							3				1							\rightarrow	Х	Х	_		-		х		4		х							\vdash	_	_		+	32 →
		70			15							4				1							_	Х	Х	_		-		Х		_		х	Н		-	-			\vdash	4	_		+	14 →
	260	_				35						4				1								Х	Х	_		-	\perp	Х				х							\sqcup					11 >
_		80			10				<u> </u>			4				1							-	Х	Х	_		_	\perp	Х		_		х					<u> </u>		\sqcup		4			29 →
	290	_				25						4				1							\rightarrow	Х	Х					х				х							\sqcup				┿	43 →
-	270				18							3				1							-	Х	Х	_			++	х		4		х	\sqcup						\sqcup	_	4	_	\bot	58 →
-		70				25		<u> </u>				3	-			1		_						Х	Х	\perp	-	-	++	х		4		х	Н	_	-	\vdash			\dashv	4	4	4		43 →
	L30				20							4				1							-	Х	Х				$\bot \bot$	х		_		х	\sqcup						\sqcup		_			56 →
	280					25	_				\bigsqcup_{i}	4	بــــــــــــــــــــــــــــــــــــــ			1								Х	Х	_	\bot			х	Щ			Х	\sqcup						\sqcup		_			50 →
TIPC) DE	PL/	ANC	<u>)</u>			So - E								Jn - J								LEN	_					rena	_		B - B					(- Cı				_			dos		
							S1 - E	squ	isto	sida	d			F1	.Fn -	Fall	as					G -	Grav	vas			Α	- A	rcillas			M - N	∕lilo	nita	1	C	- Ca	alcit	:a		الليا	F - F	elc	desp	atos	á

PROYECTO:	Tosis	SMR-C	EG	STACIÓN :	N° HOJA :		1				Provincia		Guayas
INOTECTO.	16313	JIVIN-C		JIACION .	CÓDIGO :		T4		LOCALIZ	ZACIÓN :	Cantón		Durán
REALIZADO POR:	^D E	C-AV	ш,	OJA/PLANO :		Cerrola	os Almendros				Localidad	La	s Terrazas
REALIZADO FOR.	Ab-E	.C-AV	<u> </u>	OJA/PLANU:	-	Cello IC	os Allilellu105				X :		628570
FECHA:			E/	<u>отоѕ :</u>					COORD	<u>ENADAS</u>	Υ:		9759369
FECHA.			<u> </u>	0103.							Z:		24.9
<u>LITOLOGÍA</u>		NATURALEZA		OTENCIA	DEPÓSITOS				MORFO			ESPESOR	
Areniscas y Lutitas		Volcano-sedime	ntarias >1	10 m	gravas y are	na-lim	osa			ntes rectas		entre 2 y	3 m
<u>ESTRUCTURAS</u> P	LIEGUES	FALLAS			COLUMNAS				OTROS				
	BLOQUES	1	ЛUY GRAND	ES	GRANDES		MEDIOS	PEQU	EÑOS	MU	Y PEQUEÑOS	MUY	BRECHIFICADA
<u>FRACTURACIÓN</u>	Jv Juntas/m		< 1		1 - 3		3 - 10		- 30		> 30		> 60
	SANA	ALGO MET	EORIZADA		MED. METEORIZAD	A	MUY MET	EORIZADA		COMPL. M	ETEORIZADA	SUE	LO RESIDUAL
GRADO DE METEORIZACIÓN	1	ı			Ш			V			V		VI
<u>HIDROGEOLOGÍA</u>	SIN PRESENC	CIA DE AGUA	SECO	(CON SEÑALI	ES DE AGUA)	ı	HÚMEDO	GOTE	os	FLUJO		CAUDAL ESTI	MADO
FOTO							STENCIA "R" LERÓMETRO	37		50	56	48	31

ESTACI	IÓN		ES	PAC	IADC) (cn	n)		СО	IITN	NUID	AD (m)			AP	ERTU	JRA	(mm)			R. <i>A</i>	Apr			RU	GOS	IDAD)								F	RELLE	ENO:	S					
					S		as	S										ţ														Λ	/lete	oriz	zacio	ón	Fil	tra	cion	es	Res	ist. I	Mart	tillo	(Geo	;Smith)
ENTO		Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa				Escalonada		Ondulada		ā	Plana		zada	rizada	Izada	- In								ente		10 10 10 10 10 10 10 10 10 10 10 10 10 1
TIPO DE PLANO DIR. DE BUZAMIENTO			2-6	6 - 20	20 - 60	60 - 200	200 - 600	> 600	< 1	1-3	3	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	l Rugosa	II Lisa	_		VI Slickensided	VII Rugosa	IX Slickensided	I Sana	-	≣ ≥	V Complet Meteo			Húmedo	Goteos	Flujo	1 Muy blando			4 Muy consistente	-	Índi
J 330					50		_			1	_				1			_		4		_		Х			Х	_					-	(\bot		Х						X		<u> </u>	32 ↓
J 330					40					2	_				1			_		_		-		Х			х	_	\sqcup	_	_		_	(\perp		Х					;	X		┷	34 ↓
J 320	_	_			60					1	_				1					_			Х	Х			х	_					×		_		Х						X		<u> </u>	36 ↓
J 350	_	_			40					3	1-				1					_		\rightarrow	_	Х			х	_						(_		Х						X		<u> </u>	35 ↓
J 340	_	_			50		_			2	_				1			_		_		_	Х	Х			х							(4		Х					;	X		┷	36 ↓
J 220	_	_			40		_			1					1			_		_			Х	Х			Х						×	(\perp		Х						X		<u> </u>	33 ↓
	30				60					2					1								Х	Х			Х	_					_	(Х					;	X		<u> </u>	32 ↓
	20				50		_			3					1			_		_		-		Х			х	_					-	(\perp		Х						x		┷	34 ↓
	30	_			40					1					1								Х	Х			х						×	(Х					;	X		<u> </u>	39 ↓
So 190				10								20			1								Х	Х				Х					-	(Х					;	X		<u> </u>	31 ↓
So 160	_	_		15								20			1					_			Х	Х				Х					-+	(\perp		Х					;	X		<u> </u>	41 🗸
So 180	_	_		10								20			1								х	Х				Х					×	(_		Х						x			25 ↓
So 175				17								20			1								х	Х				Х					×	(Х						x			53 ↓
So 180	_	_		14								20			1								х	Х				Х					×	(Х						x			18 ↓
	20	_		10								20			1								Х	Х				Х					X	(Х					;	x			19 🔱
	20			12								20			1								х	х				х					×	(┸		Х					;	x			50 ↓
So 180	25	5		12								20			1								х	х				х					×	(Х						x			34 →
So 170	30)		20								20			1								х	Х				Х					×	(х						x			38 →
J 340					40						10				1								х	х			х						×	(х						x			16 →
F 360	70)			50						10				1								х	х			х						×	(х						x			45 →
F 350	85	5			40						10				1								х	х			х						Х	(х						x			32 →
F 350	85	5			40						10				1								х	х			х						X	(Х						x			36 →
F 340	70)			50						10				1								х	х			х						×	(х					2	x			38 →
F 300	80)			40						15				1								х	х			х						Х	(х						x			40 →
	85				50		\neg				10				1				7	寸	7	-		х			х	_					×	-	T	T	х];	x		T	51 →
TIPO D	E PL	ANC)			So -	Est	rati	fica	ción			J1	Jn -	Junt	as					RELI	LEN	0			S	5 - Aı	rena	э		В-	Bre	echa			Q	- Cı	arz	0			0 -	Óxi	dos		
					_				tosi				F1	.Fn -	Fall	as					G - (Grav	/as				4 - A	rcill	as		М	- M	iloni	ta		С	- Ca	lcit	a						atos	

PROYECTO:		Tesis SI	MD_C		ESTA	ACIÓN :		N° HOJA :		1				Provincia		Guayas
PROTECIO.		16313 31	IVIIN-C		LJIA	ACIOIV .	-	CÓDIGO:		GEOHELS		LOCALIZA	ACIÓN :	Cantón		Durán
REALIZADO POR:		Zambrano, K.; B	ormuda	λ . Λ	ноги	A/PLAN	ıo .							Localidad	Escuel	a Santa Marianita
REALIZADO POR.		Zailibialio, K., B	eiiiiuue	: z, A.	ПОЈА	4/ PLAIN	<u> </u>							X :		627678
FECUA					5070	oc .						COORDE	NADAS	Y:		9759695
FECHA:		14 de junio	de 2018	3	FOTO	<u> </u>								Z:		
<u>LITOLOGÍA</u> Lutita compact presencia de nodulos de		ficada con	NATUR Sedime	ALEZA entario Mari		E NCIA 1	L2 m	DEPÓSITOS	SUPER	FICIALES .		MORFOL	OGÍA		ESPESOR	
<u>ESTRUCTURAS</u>	PLIEG	GUES		FALLAS	•			COLUMNAS	5			OTROS				
FRACTURACIÓN		BLOQUES Jv Juntas/m			GRANDES < 1		(GRANDES 1 - 3		MEDIOS 3 - 10	PEQU 10	EÑOS - 30	MUY	PEQUEÑOS > 30	MU	Y BRECHIFICADA > 60
GRADO DE METEORIZACIÓN	<u>1</u>	SANA I	AL	GO METEOR II	IZADA		MED.	METEORIZA III	DA		EORIZADA	(COMPL. MET		SI	JELO RESIDUAL VI
<u>HIDROGEOLOGÍA</u>		SIN PRESENCI	A DE AG	iUA S	SECO (CON	N SEÑA	LES DE	AGUA)	F	IÚMEDO	GOTE	os	FLUJO		CAUDAL E	STIMADO
FOTO	が強いない。人									ETENCIA "R" ERÓMETRO UIS	54.7		28.7	25.4	22.5	20.1

ESTA	CIÓN		ES	SPAC	CIAD	O (cr	n)		CON	ITINI	UIDA	AD (m)		Α	PER	TUR	A (m	ım)			R. <i>A</i>	Apr			R	UGOS	SIDA	ر. D									REL	LEN	OS						
					S		3S	S									7	3														Met	teor	iza	ciór	Fi	ltra	cio	nes	Res	sist.	Mar	tillo	o (Ge	o;Sm	th)
CENT		Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada Darc Abjorta	r ai c. Abiei ta	Abierta Moder Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa				Escalonada		Ondulada			Plana		zada	izada	zada	teo	_						ente				
TIPO DE PLANO)	20 - 60	60 - 200	200 - 600	> 600	<1	1-3	l `;'	10 - 20	> 20	< 0.1	1.1-0.25	2.0 - 0.3	0.5 - 2.5	> 10	100	100 - 1000	> 1000	Composición	Espesor	l Rugosa	II Lisa	III Slickensided	IV Rugosa V Lisa	VI Slickensided	VII Rugosa	VIII Lisa	IX Slickensided	II Algo meteorizada	III Med. Meteorizada		V Complet. Meteo	VI Suelo residual	Húmedo	Goteos	Flujo	-	2 Blando	+	+	_	Índice R	Dirección
So 23	_	_		20									20									Х								х	\perp	Х				х					×	:			25.4	\downarrow
J1 17	_	_		Щ		140		Ш		1				\perp					╙			х	Щ						Ш	х	\perp	х				х			Ш	Щ	×	_		Щ	15.0	\rightarrow
J2 19					40					3	-											х								Х		х				х					Х	:			16.8	\rightarrow
J3 19	_	_			37						4			_	1							С								Х		Х				Х					Х	:			9.9	\rightarrow
J4 19				-	35						4			_	1							х								Х	\perp	х				х					×	:			28.7	\rightarrow
J5 19		_			30					2						1						Х								х	\perp	Х				х					×	:			9.4	\rightarrow
J6 17	_					80	_				3						40)				Х								х		Х				х					×	:			19.1	\rightarrow
J7 18						60				2				_								Х							+	х	\perp	Х				х					×	_			15.1	\rightarrow
J8 17		_			52					1	-											Х								х	\perp	Х				х					×	:				V.
J9 17	_					80				1	-				1							С								х	\perp	Х				х					×	:		-	54.7	\rightarrow
J10 20				_	54					2						2						С								х	_	Х				х					×			_	22.5	\rightarrow
So 12		_			25								20									Х								х		х				х					×				20.1	\downarrow
J11 20	_	_	5								8					2						С								х		х				х					×					
J12 21	_	_		7						1	₩				1							С								х	_	Х				х					×					
J13 19		_				150					4											х								х		Х				Х					Х	:				
So 16	_			20								20										х								Х		х				х					×					
J14 18			3							2						2						х								х		Х				Х					Х	:				
J15 18						200					5											х								х		Х				Х					Х	:				
J16 21				_	80						6				1							х								х		х				х					×	:				
J17 20					60						6				1							х								х		х				х					×					
J18 22	0 80)		17							6				1							С								х		х				х					×					
J19 34	_	_			27						6			$oxed{I}$		2						С								х		х				х										
J20 28)	5						0.20)												х								х		х				х					×					
J21 18	5 80)		13							6			\prod	1				Ĺ			х								Х		х				х					Х			Ш		
J22 17	5 70)			60						1				1							х								х		х				х					×					
TIPO I	DE PL	AN	<u>0</u>			So -	Est	rati	ficaci	ón			J1	Jn -	Junt	as				RE	LLE	NO				S - <i>i</i>	Aren	a		E	3 - B	rech	ıa			Q - C	uar	zo			0 -	Óxio	dos			
						S1 -	Esq	uis	tosid	ad			F1	.Fn -	Fall	as				G-	Gr	ava	s			A -	Arcil	las		1	1 - N	Vilo	nita			C - C	alci	ta			F - I	eld	esp	ato	s	

PROYECTO:		Tesis	SMD-C		ESTACIÓN		N° HOJA :		1				Provincia		Guayas
FROILCIO.		16313 .	JIVIIN-C		LSTACION	-	CÓDIGO :		GEOH14		LOCALIZA	<u>CIÓN :</u>	Cantón		Durán
REALIZADO POR:		Zambrano, K.;	Rermud	Ιοτ Δ	HOJA/PLAI	NO ·							Localidad	Lo	s Almendros
REALIZADO FOR.		Zambiano, k.,	Demilaa	iez, A.	IIOJA/FLAI	<u> </u>							X :		627817
FECHA:					FOTOS :						COORDEN	IADAS	Υ:		9759801
FECHA:		14 de juni	o de 201	18	<u>FUIUS :</u>								Z:		
LITOLOGÍA Brechas com	pacta d	e color marrón	NATUR/ Sedime	ALEZA Volcano entario	POTENCIA	6 m	DEPÓSITOS	SUPER	<u>FICIALES</u>		MORFOLO	OGÍA		ESPESOR	
ESTRUCTURAS	PLII	EGUES		FALLAS		1	COLUMNAS				OTROS M	eteorizacio	on esferoidal	•	
ED A CTUD A CIÓN		BLOQUES		MUY GRA	NDES	G	RANDES		MEDIOS	PEQU	EÑOS	MUY	PEQUEÑOS	MU	/ BRECHIFICADA
<u>FRACTURACIÓN</u>		Jv Juntas/m	13	< 1			1 - 3		3 - 10	10 -	30		> 30		> 60
GRADO DE METEORIZACIO	<u>ÓN</u>	SANA I	AL	GO METEORIZA II	DA	MED. N	METEORIZAD III)A	MUY METE		Ci	OMPL. MET		SU	ELO RESIDUAL VI
HIDROGEOLOGÍA		SIN PRESENCI	A DE AG	SECO	O (CON SEÑA	ALES DE A	AGUA)	ŀ	HÚMEDO	GOTE	os	FLUJO		CAUDAL ES	TIMADO
FOTO	ón, se d	observan bloques	s de bre	chas con meter	prización es	sferoidal			STENCIA "R" LERÓMETRO				The state of the s		

ESTA	CIÓI	١	E	SPAC	IAD	O (cı	n)	CON	ITIN	UIDA	D (m	1)		API	ERTL	JRA	(mr	1)		R.	Apr			RU	GOS	SIDAI	D								RE	LLEN	IOS						
					S		as	2								ta													Ν	/lete	oriz	zacić	n F	iltra	acio	ones	Res	ist.	Mar	tillo	o (Ge	o;Smi	th)
C		47	Muy impas	Juntas	Moder. Juntas	Separadas	Muy separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavellosa			Escalonada		Ondulada	5	<u>.</u>	Plana		zada	rizada	Izada teo	le.						ente				
TIPO DE PLANO		_		6-20	20 - 60	60 - 200	200 - 600	< 1 < 1	1-3	3 - 10	10 - 20	> 20	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000 Composición	Espesor	l Rugosa	II Lisa	III Slickensided IV Rugosa	V Lisa	VI Slickensided	VII Rugosa	VIII LISA IX Slickensided	I Sana		III Med. Meteorizada	IV Muly meteorizada		Seco	Goteos	Flujo		2 Blando	+-	+	6 Muy duro	Índice R	Dirección
So 15	_	20	,	5				0.12	<u> </u>				1.0							Х							х				X			x				Х				21.7	<u> </u>
So 15	_	20		10	_			0.10												х							х				х			x				х				17.0	<u>↓</u>
So 16	_	LO		10	_			0.16	<u> </u>				0.5							х							х				x			x				х				37.5	<u> </u>
So 17	_	18		13				0.13	<u> </u>				1.0							х							х				x			x				х				41.4	<u>↓</u>
So 15		١6	(5				0.55	<u> </u>				0.3							х							х				x]	x				х				15.4	<u> </u>
So 17		20		5				0.20												х							х				x]	x				х					
		30	į	5					3				0.4							х							х				x]	x				х				13.3	\leftarrow
	30 8	30		15					3				1.0							х							х				x]	x				х				22.5	\leftarrow
J3 5	55 8	30		20					1				0.3							х							х				X			x				х				13.2	\leftarrow
J4 (50 8	32		10				0.15	5				1.0							х							х				X			x				х				29.0	← }
J5 (50 8	30		10				0.20												х							х				X			x				х				45.7	\leftarrow
		90			25			0.20					1.0							х							х				X			х				х				56.9	L
J7 13	35 7	70			30				3				1.0							Х							х				x			х				х				19.1	←
J8 13	34 6	60			20				3				1.0							Х							х				x			x				х				20.6	← {
J9 14	18 8	30		9				0.06	5				1.0							х							х				x			x				х				41.8	← [
J10 13	31 8	34		12				0.07	7											х							х				x			x				х				24.8	\leftarrow
J11 14	15 9	90			26			0.30					1.0							х							х				x			x				х					
J12 13	30 8	30			20			0.30												х							х				x			x				х					
J13 14	10 8	30		9				0.12	2				1.0							х							х				x			x				х					
J14 17	0 9	90			40					3			0.2							х							х				x			x				х					
J15 5	50 9	90		13				0.40				\top	1.0							х							х				x			x				х					
J16 14		90		8				0.10					1.0							х							х				x			x				x					
	_	32		8				0.13	3				1.0							х							х				x			x				х					
	_	30		8				0.09					1.0							х							х		П		x			x				х					7
		34	3	3				0.18	3				0.4							х	Ì						х				x		-	x				x					
TIPO	DE F	LAI	10			So-	Estr	atifica	ciói	า	J	1Jı	ı - Ju	ntas				Ī.	RELL	ENC)			S - A	rena	a		В-	Bre	cha	1		Q-	Cua	rzo			0 -	Óxi	dos			
						S1 -	Esqu	uistosi	dad		F	1F	n - F	allas					G - G	irav	as			A - A	rcill	las		М	- M	ilon	ita		C-	Calc	ita			F - F	eld	esp	atos	5	

PROYECTO		Tosis	SMR-C		ESTACIÓN		N° HOJA :		2				Provinc	ia		Guayas
PROTECTO		16212	SIVIK-C		ESTACION	<u>.</u>	CÓDIGO:		GEOH2BR		LOCALIZ	ZACIÓN :	Cantón			Durán
DEALIZADO DOD.	70 m/s	arana V	.; Bermudez, A.		HOJA/PLA	NO .							Localida	ad Canc	ha Vii	rgen de la Merce
REALIZADO POR:	Zami	Jiano, K	.; Bermudez, A.		HUJA/PLA	NO:							X :			627840
FFCUA.					FOTOS :						COORD	<u>ENADAS</u>	Y:		-	9754826
FECHA:	1	.4 de jun	io de 2018		FOTOS :								Z:			
LITOLOGÍA Brechas compa meteorización esferoidal	cta con presen	cia de	NATURALEZA Sedimentario		POTENCIA	. 6 m	DEPÓSITOS	SUPER	FICIALES .		MORFO	DLOGÍA		ESPE	SOR	
<u>ESTRUCTURAS</u>	PLIEGUES		FALLAS	5	<u> </u>		COLUMNAS	;			OTROS	Meteoriz	acion esferoi	dal		
	В	LOQUES		MUY GRAN	IDES	T (GRANDES		MEDIOS	PEQU	IEÑOS	M	UY PEQUEÑOS	;	MUY	BRECHIFICADA
<u>FRACTURACIÓN</u>	Jv Jı	untas/m	13	< 1			1 - 3		3 - 10	10	- 30		> 30			> 60
GRADO DE METEORIZACIÓN	SAN	NA	ALGO M	ETEORIZAD II	A	MED.	METEORIZAI III	DA	MUY METE			COMPL. N	ИЕТЕORIZADA V		SUE	LO RESIDUAL VI
HIDROGEOLOGÍA	SIN P	RESENCI	A DE AGUA	SECO	(CON SEÑA	LES DE A	AGUA)	ŀ	IÚMEDO	GOTE	os	FLUJC)	CAUD	AL EST	IMADO
POTO			***						ETENCIA "R" ERÓMETRO UIS	54		40	39.8	24.4		22.6

ES	TACIO	ÓΝ		ESF	PACI	ADC				CON	TIN	JIDA	AD (m)			APEF	RTUR	A (n	nm)				R. A	pr			RUG	SOSID	AD									RE	LLEN	IOS						
						S		as	S										ta														М	ete	oriza	ció	n l	Filtr	acic	ne	s Re	sist	. Ma	rtil	lo (6	Geo;S	mith)
	ENTO		Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separada	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa			Fersionada			Ondulada		Plana			zada	izada	teo	JE.						0400	aure			
TIPO DE PLANO	DIR. DE BUZAMIENTO	BUZAMIENTO		2-6	6 - 20	20 - 60	l	0	> 600	<1	1 - 3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	II Lisa	III Slicken sided	IV Rugosa	V Lisa VI Slickensided	VII Rugosa	VIII Lisa	IX Slicken sided		Algo meteorizada	IV Muv meteorizada	V Complet. Meteo	VI Suelo residual	Seco	Goteos	Fluio	1 Muy blando	+	3 Consistente	-	_	Índ	4 Dirección
J1	178				17							4				1								x							х			х				х)	х			24	.4 →
J2	80	_	_	3						0.20							2							х						х				х				х)	x			11	-
J3	85	80			9					0.20						0.50								x							х			х				х)	x			39	
J4	174	_	_			50						4				1								x							х			х				х)	х			22	
J5	90	_	_			26					2					0.25								x							х				х			х)	x			20	.8 ←
J6	40	80				30					2						1							x							х				х			х)	х			40	.6 ←
J7	46	78				36					2					0.4								x							х				х			х)	x			54	.0 ←
																																										Ш					
																																										Ш					\perp
																																										Ш					
																																										Ш					
						\neg															T												\top														
						1																_[J				
						T															T																										
						1														_[_[J				
						T																																									
TIP	O DE	PL/	NO				So -	Est	rati	ificac	ciór	1		J1	.Jn	- Junta	as				1	REL	LEI	O			S ·	- Ar	ena			В-	Bre	cha			Q-	Cua	rzo			0 -	Óx	ido	s		
							S1 -	Esq	uis	stosio	dad			F1.	Fn	- Falla	as					G-	Gra	ivas	5		Α	- Ar	cillas			М-	Mil	oni	ta		C -	Calc	ita			F - 1	Fel	des	pate	os	J

PROYECTO:		Tesis	CMD C		ESTACI	IÓN -	N° HOJA :		3				Provinci	а	Guayas
FROILCIU.		16515	JIVIN-C		ESTACI	ION .	CÓDIGO :		EG3-H3-LA		LOCALIZ	<u> ACIÓN :</u>	Cantón		Durán
REALIZADO POR:		Detrás de l	la escuela		HO!A/I	PLANO :				· · ·			Localida	ıd	
NLALIZADO FOR.		Delias de i	ia escueld		HOJA/I	FLAINU .							X :		628826
FECHA:					FOTOS						COORD	<u>ENADAS</u>	Y:		9759607
FECHA:		25 de abri	l del 2018		<u>F0103</u>	<u> </u>		78	803-7807				Z:		
<u>LITOLOGÍA</u> Lutitas silicific	adas ya	rcillas	NATURAL Sedimen		POTEN	ICIA 9 m	DEPÓSITOS	SUPER	<u>FICIALES</u>		MORFO	LOGÍA		ESPESOR	
<u>ESTRUCTURAS</u>	PLIE	GUES		FALLAS	•		COLUMNAS	;			OTROS				
<u>FRACTURACIÓN</u>	•	BLOQUES Jv Juntas/n		MUY	GRANDES < 1	(GRANDES 1 - 3		MEDIOS 3 - 10		EÑOS - 30	MU	Y PEQUEÑOS > 30	MU	Y BRECHIFICADA > 60
grado de meteorización	<u>l</u>	SANA I	ALC	GO METEOR II	ZADA	MED.	METEORIZAI III	DA	MUY METE				ETEORIZADA V	SU	JELO RESIDUAL VI
<u>HIDROGEOLOGÍA</u>		SIN PRESENC	CIA DE AGU	JA	SECO (CON S	SEÑALES DE	AGUA)	F	HÚMEDO	GOTE	os	FLUJO		CAUDAL E	STIMADO
FOTO		(X-10/17)							STENCIA "R" LERÓMETRO UIS	31.7		35.2	39 140 July 2	28.2	24

E	STACIÓ	N		ESP	ACI A	ADO (d	cm)		CC	NTIN	NUIDA	AD (n	n)			APE	RTU	RA ((mm	1)			R. A	pr			RUC	309	SIDA	D								R	ELL	ENO	S						
					٧	,	as	S										ta														Ν	/lete	oriz	zacio	ón	Filt	raci	on	ies F	Resi	st. N	∕lart	tillo	(Ge	eo;Smi	ith)
	ENTO		Ext. Juntas	Muy juntas	Moder lintas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa				Escalonada		Ondulada		9	רום מומ		zada	izada	zada	23							ente				
TIPO DE PLANO	DIR. DE BUZAMIENTO	BUZAMIENTO	<2	2-6			200 - 600	> 600		1 - 3	3 - 10	10 - 20	>20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000		Espesor	l Rugosa	II Lisa III Slickensided	IV Rugosa	V Lisa	VI Slickensided	VII Rugosa	IX Slickensided	l Sana	=	≣ ≥	V Complet Meteo		Seco	Húmedo	Goteos		1 Muy blando	2 Blando 3 Consistente		\vdash	6 Muy duro	Índice R	Dirección
So	170	10				70						20					2					-	х	_			_	_		X	-		-	K			х		4	_	4	Х		Ш		15.9	
So	185	60				100				1.4							2						х	_			_	_		×	_)	K			х		4	4	4	Х		Ш	_	13.4	\vdash
J1	95	88				156					2	_					2						х					_		×)	ĸ			х		\downarrow	\perp	4	Х		Ш	_	31.7	\rightarrow
J2	85	75			30	_					4						2						х					╄		X	4)	ĸ			х		4	4	4	Х		Ш	_	14.9	_
J3	105	89			60	_					2	-					2					_	x					1		x)	Κ _			х		\downarrow	\bot	\bot	х		Ш	_	35.2	_
J4	350	80				150					4						2						х	_				L		×)	ĸ			х		\bot		┵	Х		Ш	_	39.0	_
J5	348	80			80	<u> </u>					4						2						х					L		×)	ĸ			х		\bot		┵	Х		Ш	ightharpoonup	24.0	\downarrow
J6	105	88		2							2					1							х	_				┸		x)	ĸ			х		\perp		ᆚ	х		Ш	\dashv	28.2	\leftarrow
J7	245	62			50				0.3														х							x)	ĸ			х		\perp		\perp	Х		Ш			Ш
J8	110	84		1							2												х							x)	ĸ			х		\perp		\perp	Х		Ш			Ш
19	15	30		1	_				0.3														х							x)	ĸ			х		\perp	\perp	\perp	Х		Ш	\Box		Ш
J10	98	89			28	3					2				0.8								х							x)	ĸ			х		\perp		\perp	Х		Ш			Ш
So	115	20		1	3				0.6														х							x)	ĸ			х		\perp		┙	Х		Ш			Ш
J11	295	72				150					4												x							x)	ĸ			х		\perp		┙	х		Ш			Ш
J12	190	30				70						20					2						х							x)	ĸ			х					х		Ш			Ш
J13	90	90				70					3						2						х							x)	ĸ			х					х		Ш			Ш
J14	95	77			20						3						2						х							x)	ĸ			х					х		Ш			Ш
J15	325	40				200					2.5						2						х							x)	ĸ			х					х		Ш			Ш
J16	102	80				200	1				2.5						2						x							x)	ĸ			х					х		Ш			Ш
J17	315	45			40						4						2						х							x)	ĸ			х					Х					
J18	280	80			32	2					4						2						х							х)	ĸ			х		Т			х					П
J19	105	80				170					4						2						х							х)	ĸ			х		Т			х					П
J20	30	30				200					5						2						x							x)	κ T			х		Т		T	х					П
J21	60	45				150					4					1							х							х)	ĸ			х					х					
J22	285	80					250				4						4						х							×)	ĸ			х		T	T	\top	х		П	\exists		\Box
TIP	O DE I	PLA	<u>00</u>			So -	Estr	atif	icac	ión			J1	Jn -	- Jur	ıtas					REL	LEI	NO			S	- Ar	en	a		В-	Bre	cha			Q	- Cu	arz	0		C) - Ć	xid	los			\Box
						S1 -	Esqu	uist	osid	ad			F1	.Fn	- Fa	llas					G -	Gra	avas	s		Α	- Aı	rcil	las		М	- M	ilon	ita		С	- Ca	lcita	э 📗		F	- Fe	elde	espa	atos	5	

PROYECTO:		Tesis SM	R-C		ESTACIÓN :	N.	° HOJA :		4				Provinci	а		Guayas
TROTECTO:		10313 3141			ESTACION:	CC	ÓDIGO :		EG5-H4-LS		LOCALIZA	<u>CIÓN :</u>	Cantón			Durán
REALIZADO POR:					HOJA/PLANO:								Localida	d		
REALIZADO FOR.					HOJA/PLANO .	•							X :			627682
FECHA:					FOTOS :						COORDE	NADAS	Υ:			9759324
FECHA:		27 de abril d	el 2018		<u>F0103 :</u>				7803-7807				Z:			
<u>LITOLOGÍA</u> Lutita silicifiad	la		NATURALE Sediment		POTENCIA 4 m	D	<u>EPÓSITOS</u>	SUPE	<u>ERFICIALES</u>		MORFOL	OGÍA		ES	PESOR	
ESTRUCTURAS	PLIEG	UES	FA	ALLAS	•	CC	OLUMNAS				OTROS N	eteorizac	ion esferoid	lal		
<u>FRACTURACIÓN</u>		BLOQUES Jv Juntas/m	3	MUY GF			ANDES 1 - 3		MEDIOS 3 - 10	PEQU 10		MU	Y PEQUEÑOS > 30		MUY	BRECHIFICADA > 60
GRADO DE METEORIZACIÓN	<u>l</u>	SANA I	AL	GO METEORIZ	ADA		TEORIZAD III)A	MUY METE				TEORIZADA V		SUE	LO RESIDUAL VI
HIDROGEOLOGÍA		SIN PRESENCI	A DE AGUA	SE(CO (CON SEÑALE	ES DE AGU	A)		HÚMEDO	GOTE	os	FLUJO		CAL	JDAL EST	TIMADO
OBSERVACIONES									SISTENCIA "R" CLERÓMETRO	48.5		14.4	47.3	56	5.2	47.8
FOTO								CRO	QUIS							

ESTACIÓI	N		ESP	ACIAD) (cm))		CON	TINU	JIDAE) (m)			A	PERT	URA (n	nm)			ı	R. Ap	or			RUG	OSID	AD								RE	ELLEN	NOS						1
											Ť					_					T								Т	Viete	eori	zacio	ón	Filtr	acio	nes	Re	sist.	Mar	tillo (Geo;	Smith)	İ
ENTO	1	Ext. Juntas Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta Mily Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa			Feralonada	Lacalollada		Ondulada		Plana		zada	rizada	izada	al						ente				
-	BUZAN	<2 2 C		20 - 60	60 - 200	200 - 600	> 600	\ 1	1-3		10 - 20	< 0.1	1.	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	I Rugosa II Lisa	III Slickensided	IV Rugosa	V Lisa VI Slickensided	VII Rugosa	VIII Lisa	Sana			V Complet Meteo	-	Seco	Goteos	Flujo	1 Muy blando	2 Blando 3 Consistente	Muy	5 Duro	P	Dirección	
	15		10							7			1							>	(_						х		Х				Х				х			_	8.5 ←	
-	20		14							7					0.5					>	(х		х				х				х			_	8.1 ↓	
	18		13							7						2.5				>	(х		х				х				х			_	4.4 ↓	
	18		12							7						6	_			>	(х		х				х				х			_	7.3 ↓	
	20		17							7						3				>	(х		х				х				х			_	7.8 ←	
J1 265	82				170					4						4				>	(х		х				х				х			5	6.2 ←	
J2 100	84		16		140					4						10				>	(х		х				х				х			4	7.8 ↓	
J3 295	80		20					0.60								4				>	۲							х		х				х				х			4	4.4 ↓	
J4 355	70			24				0.10								5				>	√							х		х				х				х			3	7.8 ←	
J5 85 8	80			24				0.10								6				>	₹							х		х				х				х			3	2.5 ↓	
J6 285	80			60				0.20								8				>	₹							х		х				х				х					
J7 270 8	84				160					4						2.5				>	۲							х		х				х				х					
J8 345	82				160					4						5				>	۲							х		х				х				х					
J9 120	86					250				4						10				>	۲							х		х				х				х					
So 168	20			30					3							5				>	۲							х		х				х				х					
So 180	15			33					3							8				>	۲							х		х				х				х					
So 180	20			33					3							6				>	7	T						х		х				х				х					
So 170	30		15							5						10				1	4	T						х		х				х				х					
So 175	25			27						5						10				A	4	7				х				х				х				х					
J10 110	82				130				2							6				>	,							х		х				х				х					
J11 180	90				80			0.30								5				>	7	T						х		х				х				х					İ
J12 245	70			50				0.50								3				>	7	1				х				х				х				х					1
	85				85			0.30								3				>	7							х		х				х				х					١
	68			50				0.40								4				>	, 							х		х				х	1			х					1
	20		15						П	5						4				>	-				$\dagger \dagger$	\top		х		х	_			х	1		H	x		\dashv			İ
TIPO DE I		NO			So - E	Estra	tific	ación			J1	Jn	- Ju	ntas	<u></u>				REI	LEN	_	1		S -	- Are	na		E	- Br	echa	a		Q-	Cua	irzo			0 - Ć	Óxid	os			İ
					S1 - E								ı - Fa							Gra					- Arc		5		/I - N				_	Cal				F - F			os		

							N° HOJA :		3				Provincia		Guayas
PROYECTO:		Tesis S	MR-C		ESTACIÓN	<u>:</u>	CÓDIGO :		GEOMEC3-BR-	-AR	LOCALIZAC	IÓN :	Cantón		Durán
DEAUGADO DOD		560	01						4				Localidad	ı	Las Terrazas
REALIZADO POR:		ESP	OL		HOJA/PLAN	<u>NO :</u>			1				X :		629009
FECHA:					FOTOS :						COORDEN	ADAS	Y:		9759889
		26 de abril											Z :		
<u>LITOLOGÍA</u> Brechas y Are	ensca fina		NATURAI Sedimen	LEZA Volcano ntario	POTENCIA	9 m	DEPÓSITOS	SUPER	<u>FICIALES</u>		MORFOLO	ΞÍΑ		ESPESOR	
<u>ESTRUCTURAS</u>	PLIE	GUES	F	ALLAS	•		COLUMNAS	5			OTROS			•	
FRACTURACIÓN	·	BLOQUES Jv Juntas/m		MUY GRAN < 1	IDES	G	GRANDES 1 - 3		MEDIOS 3 - 10	PEQU 10		MUY	PEQUEÑOS > 30	N	UY BRECHIFICADA > 60
GRADO DE METEORIZACIO	<u>ÓN</u>	SANA I	AL	GO METEORIZAD II	A	MED. I	METEORIZAI III	DA	MUY METE	EORIZADA V	CC	MPL. MET V	EORIZADA		SUELO RESIDUAL VI
HIDROGEOLOGÍA		SIN PRESENCI	A DE AGU	JA SECO	(CON SEÑAI	LES DE A	AGUA)	ı	HÚMEDO	GOTE	os	FLUJO		CAUDAL	ESTIMADO
OBSERVACIONES FOTO									STENCIA "R" LERÓMETRO	44.2	36	5.1	36.8	44.1	32.7
													Vov		OE A

ESTACIÓN		ES	PAC	IADO) (cm	n)		CON	TIN	UIDA	AD (m)			APE	RTURA	(mn	n)			R. A	Apr			R	UGOS	SIDA	را. D									REL	LEN	os					
OTN	Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta Miny Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta Moder, Abierta	Ancha	Muv ancha	Ext. Ancha	Cavernosa				Escalonada		Ondulada	Olludiada		Plana				izaci			trac	cione	es	Resis		_	llo ((Geo;Sn	nith)
TIPO DE PLANO DIR. DE BUZAMIENTO BUZAMIENTO	< 2			20 - 60	60 - 200	200 - 600	> 600	< 1	1 - 3	3 - 10	10 - 20		25	2.5-0.5	0.5-2.5	> 10	_	0		Com	Espesor	l Rugosa	II Lisa	III Slickensided	IV Rugosa V Lisa	kensided	Sa	VIII LISa	in Silckelisided	=	≣		V Complet. Meteo	- c)	Húmedo	Goteos	riujo 1 Mini blando		+	5 Duro	-	Índice R	Dirección
So 225 22	_	Ш		38							10			2.5		<u> </u>	-			Х				_	_	-	+	X			х		_	Х		_	_	х	+	<u> </u>	\sqcup	17.5	
J1 110 90		Н	_		80			0.38	-			+			2	-	-			Х				_		-	+	X	_		Х	_	+	Х		_	_	x	_		\sqcup	13.3	
J2 165 90		H	_	30					2					2.5			-			Х					+	+	1 1	X		-	Х	_	+	Х		+	+	X			$\vdash\vdash$	15.9	
J3 165 90	_	Н	_	20	80				2			+		2.5		-				Х				-		-	1 1	x	-		Х	_	+	Х		+	-	X	_		$\vdash\vdash$	18.8	
J4 320 60 J5 325 80	_	H	-	30 30					3			+		2.5			-	+		X					-	+	+	X			X	-	+	X		+	+	X	_		\vdash	44.1 32.7	
J6 315 88	_	H	-	25					3			+		2.5			-			X						-	+ +	X		-	X	-	+	X		+	+	X	_		\vdash	19.2	
J7 10 85		H.	15	25								+		2.5			-			x x				1	+	+	+	x x		-	X X		+	×		+	+	x	+-		\forall	44.2	
J8 285 86	_	H	1.5	40				0.50			-	+		2.5			-			x					+	+	+-+	×	+	1	x	-	+	÷		+	+	^	_		\forall	14.9	
J9 305 88		Н		25			_	0.40						2.5						x							+	×			x		+	Ŷ			+	x x	+	1	H	29.4	
J10 5 86	_	H		30				0.40						2.5						X					+		1 1	x			x		+	x		\pm		T _x	_		H	20.1	
So 205 18	_	6		-				0			10	+		2.5						X						1	+	x			x			x			\top	x	+		H	36.1	
So 195 18				28							10			2.5						х								x			х			х				x	_		Ħ	36.8	
So 190 20		H	8									+		2.5						x							+	x			х			х				x	+		Ħ		
J11 325 82	_			30					2					2.5						х							1 1	x			х			х				x	T		П		
So 5 24	_	П		30							10			2.5						х							1	x			х			х				х					
J12 305 82	2	П		50				0.50						2.5						х]	x			х			х				х					
J13 110 80)				85			0.60							2					х]	x			х			х				х					
J14 330 80)			30					1					2.5						x								x			х			х				х					
J15 295 84			10						2					2.5						х								x			х			х				х					
J16 290 80)		10						2					2.5						x								x			х			х				х					
J1														2.5						Х								x			х			х				х					
J1		П												2.5						Х								x			х			х				х	乚		Ш		
So 190 20				20						7				2.5						х							:	x			х			х				x					
So 5 18	3				23						10			2.5			\perp			Х								x L			х		\perp	х			\perp	x			Ш		
TIPO DE PL	ANG	2			So -	Est	rati	ficaci	ión		J1	Jn	- Jur	itas				RE	LLE	NO				S - <i>I</i>	Aren	a		_	3 - Br		_				uarz	_		0 - 0	Źxiα	dos			
					S1 -	Esq	uis	tosid	ad		F:	lFr	ı - Fa	llas				G -	Gr	ava	ıs			A	Arcil	las		N	M - N	/lilo	nita		C	- Ca	alcit	:a		F - F	eld	esp	ato	S	

PROYECTO:	Proyecto Resc	clima Durán		ESTACIÓN :		N° HOJA :		1				Provinc	a	Guayas
	<u> </u>					CÓDIGO :		EG1-H1-BR		LOCALIZ	ACIÓN :	Cantón		Durán
REALIZADO POR:				HOJA/PLAN	n ·							Localida	ıd	Las Terrazas
REALIZADO I OK.				HOSPYT EPRIV	<u>. </u>							X:		628790
FECHA:				FOTOS						COORD	<u>ENADAS</u>	Υ:		9759771
FECHA:	25 de abril	del 2018		FOTOS :			7	7803-7807				Z:		21.2
LITOLOGÍA Brecha	as de clatos cm, lutitas,	NATURALEZA Vo	lcano	POTENCIA 1	1,60 m	DEPÓSITOS	SUPER	RFICIALES		MORFO	LOGÍA		ESPES	OR .
areniscas y tobas.		Sedimentario												
ESTRUCTURAS	PLIEGUES	FALLAS		•		COLUMNAS	5			OTROS	Meteoriza	icion esferoi	dal	
	BLOQUES		IUY GRAN	DES		GRANDES		MEDIOS	PEQUEÑO) s	1	MUY		1UY BRECHIFICADA
<u>FRACTURACIÓN</u>	Jv Juntas/m3		< 1	DL3	0	1 - 3		3 - 10		- 30	PEC	QUEÑOS	,	> 60
GRADO DE METEORIZACIÓN	SANA I	ALGO MET		A	MED. N	METEORIZAI III	DA	MUY METE	EORIZADA V		COMPL. N	IETEORIZADA V		SUELO RESIDUAL VI
HIDROGEOLOGÍA	SIN PRESENCIA	A DE AGUA	SECC	(CON SEÑAL	LES DE A	AGUA)	ı	HÚMEDO	GOTE	os	FLUJO		CAUDAL	ESTIMADO
OBSERVACIONES	'		_ <mark> </mark>					ISTENCIA "R" RÓMETR						
								0	18.4		18.1	13	14.7	13
ГОТО							CROC	ĮUI3						

ESTACIÓN ESPACIADO (cm)								CON	TINU	UID/	ı) QA	m)	APERTURA (mm) R. A									pr	r RUGOSIDAD							RELLENOS																
	Ť		Ī			T`					j						ГÌ				Ť	Ť	\exists								r	Meteorización								Resist. Martillo (Geo;Smith)				ith)		
ENTO		Ext. Juntas	Muy juntas Juntas		Moder. Juntas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa				Escalonada		Ondulada			Plana				а	eo										20,0	
TIPO DE PLANO DIR. DE BUZAMIENTO	BUZAMIENTO	_	2-6		20-60	200 - 600	009 <	< 1	1 - 3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	l Rugosa	II LISa III Slickensided	IV Rugosa	V Lisa	VI Slickensided		VIII Lisa IX Slickensided	I Sana	II Algo meteorizada	_		V Complet. Meteo	VI Suelo residual	Húmedo	Goteos	Flujo	1	7	4 Muy consistente	+	-	Índice R	Dirección
So 14		_		4		120	_		1					1							>	(_						х		_			Х		Х				\vdash	х	_	-	Ш	13.7	
So 14				_		150			1					1							>	(х					Х		х				-	х			Ш	18.1	
So 13	_	_		_		100	_		1					1							>	(х					Х		х				-	х			Ш	14.6	_
So 130				_		200	_		2	_				1							>	(х					Х		х				-	х			Ш	10.4	
J1 3	_	_				200)		2	_			0.50								>	(х					Х		х					х				12.2	_
J1 9	_	_		_		150			2				0.50								>	(х					х		х					х			Ш	13.4	_
J1 10		_				200)			3			0.50								>	(х					х		х					х			Ш	13.0	
So 180	30					180)			3				1							>	<							х					х		х					х				9.6	\downarrow
J1 180						150)		2				0.3								>	<							х					х		х					х				18.6	\downarrow
J1 !	60					120)		2				0.3								>	<							х					х		х					х				11.4	\downarrow
So 16	40					80)		1				0.5								>	<							х					х		х					х					
So 210	30					150)		1				0.5								>	<							х					х		х					х					
So 170	20					150)		1				0.4								>	<							х					х		х					х					
So 11	90	S				180)		1				0.4								>	‹							х					х		х					х			П		
J1 17	28					170)		1				0.5								>	‹							х					х		х					х			П		
So 50	60					200)		1				0.3								>	<							х					х		х					х			П		
J1 160	20					210)	0.90					0.2								>	<							х					х		х					х			П		
So 3	5 70					220)	0.50						1							>	<							х					х		х					х					
J1 180	20					230)	0.80	1					1							>	<							х					х		х					х			П		
So 16	10					70)		1					1							>	<							х					х		х					х			П		
So 9	3 50					20)		1					1							>	‹							х					х		х					х			П		
	20	_		T		20	_		1					1							>	(х					х		х				\vdash	х			П		
	30	_		\neg		20				2				1							>	(х					х		х					х			П		
J1 3				一		20				2				1							>	(х					х		х					х			П		
J1 14	_	_		\dashv		20				2				1						T	>	-	1	7					х	_	1			х	\exists	х				_	x		1	\sqcap		\Box
TIPO DE PLANO					S	o - Estra	ación	П		J1	is					REL	RELLENO				S-	S - Arena					- Brecha			\top	(Q - Cuarzo				O - Óxidos				\Box						
S1 - Esquis												.Fn - I							G - Gravas																C - Calcita					F - Feldespatos						

	Drovosto Por	clima F)urán		ESTACIÓN		N° HOJA :		1				Provincia		Guayas
	Proyecto Res	sciilla L	Juran		ESTACION	<u>.</u>	CÓDIGO :		EG1-H1-L		LOCAL	<u> IZACIÓN :</u>	Cantón		Durán
													Localidad	l	as Terrazas
					HOJA/PLAI	NO:							X :		628797
											COORI	<u>DENADAS</u>	Υ:		9759741
	25 de abr	il del 20	018		FOTOS :			7	803-7807				Z:		34.7
	clatos cm,	NATURA	ALEZA Vo	lcano	POTENCIA	11,60 m	DEPÓSITOS	SUPER	FICIALES		MORF	OLOGÍA		ESPESOR	
S.		Sedime	entario												
PLII	EGUES		FALLAS				COLUMNAS	5			OTROS	S Meteorizac	ion esferoida	1	
	BLOQUES		N		DES	(MEDIOS				MUY	MU	Y BRECHIFICADA
	Jv Juntas/m	3		< 1			1 - 3		3 - 10	10	- 30	PEQU	JEÑOS		> 60
	SANA I	А			4	MED.	METEORIZA III	DA						SI	JELO RESIDUAL VI
	SIN PRESENCI	A DE AG	iUA	SECO	(CON SEÑAI	LES DE A	GUA)	ŀ	HÚMEDO	GOTE	os	FLUJO		CAUDAL ES	STIMADO
								ESCLER	ÓMETR O	31.7		28.1	47.9	28.3	26.5
	S.	25 de abr as de clatos cm, s. PLIEGUES BLOQUES Jv Juntas/m SANA I	25 de abril del 20 as de clatos cm, NATUR. S. Sedime PLIEGUES BLOQUES Jv Juntas/m3 SANA I	S. Sedimentario PLIEGUES FALLAS BLOQUES N Jv Juntas/m3 SANA ALGO MET	25 de abril del 2018 as de clatos cm, Sedimentario PLIEGUES FALLAS BLOQUES MUY GRAN JV Juntas/m3 < 1 SANA ALGO METEORIZAD/ II	25 de abril del 2018 as de clatos cm, Sedimentario POTENCIA BLOQUES FALLAS BLOQUES MUY GRANDES JV Juntas/m3 < 1 SANA ALGO METEORIZADA I II	### HOJA/PLANO : ### HOJA/PLANO : ### 15 de abril del 2018 ### 25 de abril del 2018 ### 25 de abril del 2018 ### 35 de clatos cm, Sedimentario ### POTENCIA 11,60 m Sedimentario ### POTENCIA 11,60 m Sedimentario ### 1,60 m Sedimentario ### 1,60 m Sedimentario ### 1,60 m Sedimentario ### 3 de clatos cm, Sedimentario ### 3 de clatos cm, Sedimentario ### 3 de clatos cm, Sedimentario ### 3 de clatos cm, Sedimentario ### 3 de clatos cm, Sedimentario ### 3 de clatos cm, Sedimentario ### 3 de clatos cm, Sedimentario ### 3 de clatos cm, Sedimentario ### 3 de clatos cm, Sedimentario ### 3 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 4 de clatos cm, Sedimentario ### 5 de clat	Proyecto Rescrima Duran STALLON: CÓDIGO:	PLIEGUES BLOQUES JV Juntas/m3 ALGO METEORIZADA III SIN PRESENCIA DE AGUA POTOS: FOTOS: POTENCIA 11,60 m DEPÓSITOS SUPER POTENCIA 11,60 m DEPÓSITOS SUPER CÓDIGO: FOTOS: 7 POTENCIA 11,60 m DEPÓSITOS SUPER COLUMNAS POTENCIA 11,60 m DEPÓSITOS SUPER FALLAS COLUMNAS ALGO METEORIZADA III SIN PRESENCIA DE AGUA RESI ESCLER	POTOS: 25 de abril del 2018 ASANA SANA I SIN PRESENCIA DE AGUA POTOS: FOTOS: FOTOS: FOTOS: FOTOS: POTENCIA 11,60 m DEPÓSITOS SUPERFICIALES POTENCIA 11,60 m DEPÓSITOS SUPERFICIALES COLUMNAS COLUMNAS MEDIOS 3 - 10 MED. METEORIZADA III SIN PRESENCIA DE AGUA RESISTENCIA "R" ESCLERÓMETR	PLIEGUES BLOQUES JV Juntas/m3 ALGO METEORIZADA I SIN PRESENCIA DE AGUA SECO (CON SEÑALES DE AGUA) CÓDIGO: EG1-H1-L TROUBLES T803-7807 DEPÓSITOS SUPERFICIALES COLUMNAS PEQUEÑ 1 - 3 3 - 10 10 MEDIOS 3 - 10 10 MEDIOS BLOQUES JV Juntas/m3 4- 10 10 CÓDIGO: EG1-H1-L TROUBLES TROUBLES PEQUEÑ BEDIOS BEQUEÑ 1 - 3 3 - 10 10 MUY METEORIZADA III RESISTENCIA "R" ESCLERÓMETR O 31.7	Proyecto Rescrima Duran CÓDIGO : EG1-H1-L LOCAL	Proyecto Rescrima Duran CÓDIGO : EG1-H1-L LOCALIZACIÓN :	Proyecto Resclima Duran STACUN: CÓDIGO: EG1-H1-L LOCALIZACIÓN: Cantón Localidad Localidad X: X: X: Y: Z: Z: Z: Z:	Proyecto Rescrima Duran ESTACION: CÓDIGO: EG1-H1-L HOJA/PLANO: CORDENADAS X: X: X: Z5 de abril del 2018 ASTURALEZA VOlcano Sedimentario POTENCIA 11,60 m DEPÓSITOS SUPERFICIALES PLIEGUES FALLAS COUMNAS MORFOLOGÍA ESPESOR PLIEGUES FALLAS COUMNAS OTROS Meteorizacion esferoidal MUY GRANDES JV Juntas/m3 MUY GRANDES SANA ALGO METEORIZADA III SIN PRESENCIA DE AGUA SECO (CON SEÑALES DE AGUA) HÚMEDO GOTEOS FLUJO CAUDAL ES RESISTENCIA "R" ESCLERÓMETR O 31.7 28.1 47.9 28.3

ES	TACI	ÓN		ESF	PACI	ADC) (cm)		CON	ITINU	IDA	D (m	1)		AP	ERTU	RA (mm	1)			R.	Apr			R	UG	OSIDA	.D									REI	LEN	OS						
						S	, z	S									Ę															М	eteo	riza	ciór	n F	iltra	acio	nes	Res	sist.	Mar	tillo	(Ge	eo;Sm	nith)
	ENTO		Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada Cerrada	Parc Abjerta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa				Escalonada			Ondulada		Plana	Ī				eo							ente				
TIPO DE PLANO	DIR. DE BUZAMIENTO	BUZAMIENTO	< 2	2-6		20 - 60	60 - 200	> 600			3 - 10	10 - 20	> 20	< 0.1 1.1 - 0.25	7 5 - 0 5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	l Rugosa	II Lisa	III Slickensided	IV Rugosa	V Lisa VI Slickensided	VII Rugosa	VIII Lisa	IX Slickensided		III Algo meteorizada IIII Med. Meteorizada	IV Muy meteorizada	V Complet. Meteo	VI Suelo residua	Seco	Goteos	Flujo	\vdash	2 Blando	_	-	9	Índice R	Dirección
So	190		_		8		_	-	0.20	+	_	4			+-		_					Х	\perp	_	_			_		Х		_	х	<u> </u>	Ш	-	x			Ш	Х	<u> </u>			31.7	
So	170				10		_	_	0.15	-	_	_			+-	2	<u> </u>					Х	\perp	_	_				Х		Ш		х	_	Ш	_	x			Ш	X	-			22.6	-
So	157	5	_	-	11				0.18		_	_		0.50	+-							Х	\perp		_					х	Н		х			_	x			Ш	×				24.0	
So	150		_	-	10				0.14	+-+	_	_			_							Х	\perp		_					х	Ш		Х	<u> </u>		_	x			Ш	×	_			31.7	_
	150		_	-	20				0.34	+-+	_			0.25	+-							Х			_					х			_	х		_	x			Ш	Х	_			26.5	
So	184	4	_	-	15				0.26	+-+	_	_			+-	1						Х	\perp		_					х				х			x			Ш	×				28.1	_
So	176		_	-	16		_		0.25	+-+	_	_		0.4	+		<u> </u>					Х		_	_					х			_	Х	Ш	_	x			Ш	Х				28.3	
So	180			-	14			_	0.40	+-+	4	4			_		ļ					Х	\perp	_	_					х				х	Ш	_	x			Ш	X	<u> </u>			22.6	
	184				10				0.28	+-+	4	4		0.30	-							Х	\perp	_	_					х			_	Х	Ш	_	x			-	x	-			47.9	<u> </u>
	190		_	-	12				0.30	+-+	_	_			4							Х	\perp		_				Х					<u> </u>	х	_	x			\vdash	х					1
J1	320		_		17				0.12		_				+-	2						Х			_				Х				_	<u> </u>	х	_	x			Ш	x					-
	165		_	_	15				0.70	+	_	_			+-	_			<u> </u>		-	Х	+		_				Х			_	_	<u> </u>	х	-	x			Ш	X	+				\vdash
J1	305				13			4	0.20	+ +	_	4			_		<u> </u>		<u> </u>			Х	+	_	4				-	Х		_	Х	<u> </u>	Ш	_	x	-		Ш	X	1				\rightarrow
So	159	_			20				0.20		4	4	_		_		-				_	Х	+		_					х		_	Х			_	x			Щ.	X	+-				-
So	155		_	-	20			-	0.27	-	+	4	_		+-	_	ļ				-	х	+		4					Х		-		х		_	x			Ш	×	+				
So	165				20			-	0.37	+-+	+	4	_		+-	2	ļ					Х	1		4					х		-		х		_	x			Ш	X	+				-
J1	149	_	_		6		_	-	0.04	-	4	4	_		1		<u> </u>		<u> </u>		-	Х	+	_	-					х		_	Х	-			x			Н	×	+				
J1	135				7		_		0.04	-	\dashv	4			+-	2	-	_		H		Х	+					_	1	х		_	Х	-	H	_	x	-		\vdash	X	1				+
J1	150	_	_	3			_	+	0.03	-	+	+	_		_	_	-	_	<u> </u>	H		Х	+	_	\dashv				1	х	Н	4	х	╁	H	_	x	-		Н	X					₩.
J1	150		_	-	10				0.05	+-+	4	4	_		-	2	-					Х	+		_					х		_		х		_	x			\sqcup	X	-				-
J1	20		_		10				0.06		4	4	_		-							Х	+	_	_				-	х		_	Х	-		_	x			\sqcup	Х					
J1	55	_			13				0.18	+-+	4	4	_		+-							Х		_	_				-	х		_		х		_	x			H	х	-				-
J1	345			Ш	10		\perp	-	0.20	-	4	_	_		4	_	<u> </u>		_			Х	\perp		_			_	1	х	Ш		_	х	\sqcup	-	x	1	ļ	Ш	X	+				
J1	150		_	Щ	8			1	0.20	-	_	\perp	_		+-	_	┞		<u> </u>			Х	+		_	_		_	<u> </u>	х	Ш	_		х	\sqcup	-	x	1		Ш	×	1		\sqcup		\perp
J1	120		_	_	11	_			0.20		_	4		0.4			L		L			Х	$\downarrow \downarrow$	_ļ					_	х	Ш			х	Щ		x		_	Щ	х			Щ		$\perp \perp$
TIP	O DI	E PL	ANC	2	_				tifica		4	_		Jn - Jun							LLE			4	$\overline{}$	S - <i>i</i>					В-						Cua					Óxio				1
L							S1 - E	squ	istosi	dad		F	1	Fn - Fal	las					G -	Gr	ava	as			A -	Arc	illas			М-	Mil	onit	a		C -	Calc	ita			F - F	eld	esp	ato	S	

PROYECTO:		Proyecto Re	sclima D	urán	ESTA	ACIÓN :	N° HOJA :	+	2			,	Provinci	а	Guayas
		,					CÓDIGO :		EG1-H2-L		LOCALIZ	ACIÓN :	Cantón		Durán
REALIZADO POR:					нои	A/PLANO :							Localida	d	Las Terrazas
REALIZADO I OR.					11037	A/I LANO .							X :		628765
											COORDI	ENADAS	Y:		9759553
FECHA:		25 de abr	il del 20	18	FOTO	<u>os :</u>		7	803-7807				Z:		
LITOLOGÍA Brech	nas de d			LEZA Volcano	POTI	ENCIA 11,6	m DEPÓSITO			eslizamie	MORFO	LOGÍA		ESPESO	DR 10-15 m^3
lutitas, areniscas y toba	S.		Sedime	ntario							Pendie	nte recta/p	olana		
ESTRUCTURAS	PLIE	EGUES		FALLAS			COLUMN	AS.			OTROS	Meteoriza	cion esferoio	al	
		BLOQUES	:	MUY GF	ANDES		GRANDES		MEDIOS	PEQUEÑ	OS.		MUY	Ι ,	MUY BRECHIFICADA
<u>FRACTURACIÓN</u>		Jv Juntas/r		<			1 - 3		3 - 10		- 30	PEQI	UEÑOS	"	> 60
		SANA	Δ1	LGO METEORIZA	DΛ		D. METEORIZ	A D A	NALLY NAET	EORIZADA		COMPL ME	TEORIZADA	-	SUELO RESIDUAL
GRADO DE METEORIZACIÓN		JANA	AL	II	DA	IVIE	D. METEURIZ	ADA		V			V		VI
WETEORIZACION										I					
<u>HIDROGEOLOGÍA</u>		SIN PRESENC	CIA DE AG	SUA SE	CO (CON	SEÑALES I	DE AGUA)	H	HÚMEDO	GOTE	os	FLUJO		CAUDAL	ESTIMADO
OBSERVACIONES 7 juntas	por m	^3						RESI	STENCIA "R"						
									ÓMETR						
									0	30.7		53	47.4	43	31
FOTO								CROC	UIS						

EST	ACIĆ	ÍΝ		ESF	PACI	ADO) (cn			СО	NTIN	NUIDA	AD (r	m)			APE	RTU	RA (mm)		R	. Ар	r			RU	GOSI	DAE	D									REL	LEN	OS						
				S		ıta		ada	ıda						да		ta		ierl		_					_							1	Иet	eor	izac	ción	Fi	Itra	cio	nes	Res	sist.	Mar	rtillo	(Ge	o;Sm	ith)
	IENTO		Ext. Juntas	Muy juntas	Juntas	Moder. Junta	Separadas	Muy separada	Ext. Separada	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abier	Ancha	Muy ancha	Ext. Ancha	Cavernosa			Escalonada			Ondulada			Plana		izada	ırizada	rizada	eteo											
TIPO DE PLANO	DIR. DE BUZAMIENTO	BUZAMIENTO	< 2	2-6	6 - 20	20 - 60	60 - 200	200 - 600	> 600	< 1	1 - 3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composicion	Espesor I Rugosa	II Lisa	III Slickensided	IV Rugosa	V Lisa	VI Slickensided	VII Rugosa	VIII Lisa IX Slickensided	Sana	II Algo meteorizada	III Med. Meteorizada	_	V Complet. Meteo	VI Suelo residual	Húmedo	Goteos	Flujo		2 Blando		+	6 Muy duro	Índice R	Dirección
So 2	210	20		6									12			0							х									x				х		х				i	х	:			25.8	\leftarrow
So 2	225	20		5									14			0							х									х				х		х				ıT	х				18.6	\downarrow
So 2	210	18			12								20			0							х									х				х		х				П	х				30.7	\downarrow
So 2	230	22			8								16			0							х									х				х		х				П	х				31.0	\downarrow
So 2	205	18			9								13			0							х									х				х		х				П	х		\Box		20.7	\leftarrow
So 1	.95	18		6									15			0							х									х				х		х				П	х				28.4	\leftarrow
So 2	225	20			9	T	T	T					19			0							х									х				х		х				П	х				43.0	\leftarrow
So 2	230	20			9	一	T	一						22		0							х									х				х		х				П	х		\Box		28.8	\downarrow
So 2					10	T	T	T						23		0							х									х				х		х				П	х				53.0	\leftarrow
So 2					8								20			0							х									х				х		х	_			ıΠ	х		П		47.4	\leftarrow
						30							13							4			х					х								х		х	_			iΠ	х		П			
J2 3	300	75				14							14			1			1				х					х								х		х				iT	х		П			
		82				30		1					15							10			х								х					х		х				ΠŤ	х		\Box	\Box		
	50	45		6							0.1												х					х								х		х				П	х		\Box			
	_	40		2							0.1												х					х								х		х				ıΠ	х		П			
	_	40		5				寸			0.1												х					х								х		х	_			Π	х		\Box			П
	50	35		3							0.1												х					х								х		х				П	х		\Box			
	-	40			8			1					17							5			х									х				х		х				ΠŤ	х		\Box	\Box		
	_	80			8		一						17							3			х	_								х			-	х		х				Π	х		\Box	\Box		П
	80	82			8	一	T	T			0.3									x			x					х								х		х	_			ΠŤ	х		\Box			П
	320	75		6			\neg	1				0.4					2						х					х								х		х	_			ΠŤ	х					\Box
	_	82		5		\dashv	\dashv	7	\dashv				15	Н		1						1	x	_		T			1			х	\top		-	Х		x				一	x		\Box	T		
	-	80		H	\neg	16	\dashv	7					18			一	3					7	х	_		T	T		T	H	\vdash	х			-	х		х				ıT	х		\Box	\Box		\Box
J103	_	60		H	_	30	\dashv	7					13		<u> </u>	T	1.5		T			1	x	_			1		T		\vdash	х			\vdash	х		x				寸	x	_	\Box	\sqcap		
	85	14		H	\dashv		\dashv	\dashv							_	0			_		\dashv	7	×	_	\top	T	T		T		\vdash	x			\vdash	x		x				一	X		\forall	o		\Box
TIPO			ANC	5			So -	Est	trat	ific	ació	n .		J1	Jn -		ntas				7	REI	LEN	_			S -	. Ar	rena				- Br	ech	-		(_	uar	ZO		\neg	0 -		dos	\dashv		
											idad			F1							- 1		Gra	_			_		rcill				1 - N		_				alci						lesp	ato	5	

PROYECTO:		Proyecto Re	salima D	Numé m	ESTACIÓ		N° HOJA :		1				Provincia		Guayas
PROTECTO.		Proyecto Re	SCIIIIa L	Julan	ESTACIO	/N .	CÓDIGO :		EG1-H2-BR		LOCAL	IZACIÓN :	Cantón		Durán
DEALIZADO DOD.					HOJA/PI	I ANO :							Localidad	L	as Terrazas
REALIZADO POR:					HUJA/PI	LANU:							X :		628767
F50114											COOR	<u>DENADAS</u>	Y:		9759663
FECHA:		25 de ab	ril del 20	018	FOTOS :	i		7	803-7807				Z:		
<u>LITOLOGÍA</u> Brech areniscas y tobas.	as de c		NATURA Sedime	LEZA Volcano ntario	POTENC	CIA 11,60 m	DEPÓSITOS	SUPER	<u>FICIALES</u>		MORF	OLOGÍA		ESPESOR	
<u>ESTRUCTURAS</u>	PLIE	GUES	1	FALLAS	•		COLUMNAS	;			OTRO	S Meteorizac	ion esferoidal		
FRACTURACIÓN		BLOQUES Jv Juntas/m	3	MUY GRAN < 1	IDES	(GRANDES 1 - 3		MEDIOS 3 - 10	PEQUEÑ 10	OS - 30	PEQL	MUY JEÑOS	MUY	Y BRECHIFICADA > 60
GRADO DE METEORIZACIÓN		SANA I	Å	ALGO METEORIZAD	A	MED.	METEORIZA III	DA	MUY METI				TEORIZADA V	SU	JELO RESIDUAL VI
<u>HIDROGEOLOGÍA</u>		SIN PRESENCI	A DE AGI	JA SECO	(CON SEÑA	ALES DE AC	GUA)	ŀ	HÚMEDO	GOTE	os	FLUJO		CAUDAL ES	STIMADO
OBSERVACIONES									STENCIA "R" OMETR	15.7		14.3	17.3	19.3	19.7
FOTO								CROQ	, UIS						

ESTA	CIÓN	J	Е	SPA	CIAD	O (cı	m)	со	NTIN	IUID	AD (m)			APER ⁻	TUR	A (m	nm)			R.	Apr			RU	GOSI	DAD	1								REI	LLEN	OS						
					S		as										ta													N	lete	oriz	ació	n	Filtr	acio	nes	Res	sist.	Mar	tillo	(Ge	o;Sm	th)
C		Fvt luntac	Mily inntas	Juntas	Moder. Juntas	Separadas	Muy separadas Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavelliusa			Escalonada		Ondulada		Plana			zada فتعرفت	Izada	teo	le.						ente				
TIPO DE PLANO		BUZAIMIEN I U	2		20 - 60	60 - 200	200-600		1-3	3 - 10		> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100-1000	> 1000 Composición	Espesor	l Rugosa	II Lisa	III Siickensided IV Rugosa	V Lisa	VI Slickensided	VII Rugosa VIII Lisa	IX Slickensided		II Algo meteorizada	III IVIEd. IVIeteorizada		VI Suelo residual	Seco	Goteos	Flujo	1 Muy blando	2 Blando	+	\vdash	6 Muy duro	Índice R	Dirección
So 33	_	38	\perp			160			3												Х				х							х		Ш	х			Ш	Х			_	15.7	\rightarrow
So 21		30				130				10	_										Х				х							х			х				х			_	14.3	\leftarrow
		30	\perp		-	130				10								_			х				х				Ш			х		Ш	х			Ш	х			_	17.3	
	_	8	\perp		50					10											х				х							х		Ш	х			Ш	х			_	19.3	\leftarrow
-	_	30	\perp		50					10)										Х				х							х		Ш	х			Ш	х			_	19.7	\leftarrow
So 15		10	┸		35				1.4	ļ											х				х				Щ			х		Ш	х			Ш	х					
		54			35			0.9													Х				х				Ш			х			х				х	_				
So 32	_	28			50			0.1													Х				х							х			х				х					
	_	.5	┸			70			3	3											х				х				Ш			х		Ш	х			Ш	х					
So 35		18	\perp			70				5	_										х				х				Ш			х			х				х					
J1 3	_	25			40					5	5										Х				х							х			х				х					
So 3		90	┸			70				5	5										х	<u> </u>			х				Ш			х		Ш	х			Ш	х			_		
	_	30				70				5	5										х				х							х		Ш	х				х	_				
So 35	_	88				70					10										х				х							х		Ш	х				х					
So 28	30 1	.2	┸			70					10										х				х				Ш			х			х			Ш	х					
		30	\perp			70				3	_										х				х				Ш			х		Ш	х			Ш	х					
		72				70					5										Х				х				Ш			х			х				х					
	_	30		10	-					2	2										Х				х							х			х				х					
	_	30	┸	10	-					2	2										Х				х				Ш			х		Ш	х				х					
	_	70				100															Х				х				Ш			х			х				х					
	_	60			-	100															х				х							х		Ш	х				х					
	_	35	\perp	10						2	2										х				х				Ш			х		Ш	х			Ш	х					
	_	30			Ш	70					5										х				х				Ш			х		Ш	х			Ш	х					
J1 8	32 8	34	┸			20				2	2										х				х							х			х				х					
J1 8	38 7	78				20				2	2										х				х							х			х				х					
TIPO	DE F	LAN	10			So -	Estrat	tifica	ción						ntas					RELL		_		9	S - Ar	rena	1		В-	Bre	cha			Q-	Cua	rzo			0 - 0					
						S1 -	Esqui	stosi	dad			F1.	Fn	- Fa	allas				(G - (ìrav	as		/	A - A	rcilla	as		M-	Mi	loni	ta		C -	Cald	ita			F - F	eld	espa	atos	5	

PROYECTO:		Tesis SN	ЛR-C		ESTACIÓ	N :_	N° HOJA :		1			مخد	Provincia		Guaya	
							CÓDIGO :		EG-21		LOCALIZA	CION :	Cantón		Durár	1
REALIZADO POR:		AV-KZ	7		HOJA/PL	ANO:		Cer	ro Las Cabras				Localidad			
											1		X :			<u> </u>
FECHA:					FOTOS :						COORDE	NADAS	Υ:			1
													Z:			
<u>LITOLOGÍA</u>			NATURA		POTENCI	Α	DEPÓSITOS S	UPER	RFICIALES		MORFOL			ESPESOR		
Arenisca Media-Base de Lut	tita		Sedimer	ntaria	>6 m		arena gravo	s a			Pendien	tes inclina	ıda	entre 2 y	3 m	1
<u>ESTRUCTURAS</u>	PLIEGU	JES		FALLAS	•		COLUMNAS				OTROS			•		
		BLOOUES.			D.1.1.D.50		CD AND EC		MEDIOS I	DE QUE É			• 41.07			
<u>FRACTURACIÓN</u>		BLOQUES Jv Juntas/m3	}		RANDES 1		GRANDES 1 - 3		MEDIOS 3 - 10	PEQUEÑ 10	- 30		MUY UEÑOS	MUY	BRECHII > 60	
GRADO DE		SANA	A	ALGO METEORIZ	ADA	MED.	METEORIZAD	4	MUY METE	ORIZADA		COMPL. ME	ETEORIZADA	SU	ELO RESI	DUAL
METEORIZACIÓN		1		II			Ш		11	/			V		VI	
<u>HIDROGEOLOGÍA</u>		SIN PRESENCI	A DE AGU	А	SECO (CON S	SEÑALES DE	AGUA)		HÚMEDO	GOTE	os	FLUJO		CAUDAL EST	IMADO	
OBSERVACIONES Fuerte meteorzación posible FOTO	emente pro	ducido por actividad	antropic	a				ESCL	SISTENCIA "R" ERÓMETR O	24		23	20	13		15
																1 1 1 1

1	STACIÓ	N		ESP	ACIA	DO (c	m)		СО	NTIN	UIDA	D (m)			AP	ERTU	JRA	(mm)			R. A	pr		F	RUGO:	SIDAE)								RELI	LENO)S				
					S		as	IS										ta													Me	eteo	riza	ción	F	iltra	cior	nes	Res	ist. N	⁄lartil	Io (Ge	c;Smith)
	ENTO		Ext. Juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa			2000	Escalollada	chelibao	Olluulaua	200	ב ב ב	700	ırizada	izada	iteo	al .						ente		
TIPO DE PLANO	DIR. DE BUZAMIENTO	BUZAMIENTO	< 2 2- 6		20	60 - 200	200 - 600	009 <	< 1	1 - 3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5-0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	I Rugosa II Iisa	III Slickensided	IV Rugosa V Lisa	VI Slickensided	VII Rugosa	IX Slickensided	l Sana	III Med. Meteorizada	Muy meteor	V Complet. Meteo	VI Suelo residual	Húmedo	Goteos	Flujo	\vdash	2 Blando	_	5 Duro 6 Muy duro	ź j
So	200			20	_							10		х)	x			х						х		х				Ш	Х			32 ↓
So	175	_			40							15		х)	x			х						х		х				Ш	х			16 ↓
So	195				45							10		х)	x			х						х		х				Ш	х			26 ↓
So	175				40							15		х)	x			х	\perp					х		х				Ш	х	\perp	\perp	17 ↓
So	175	_			30							10		Х)	X	_		х	\perp			\sqcup		Х		Х	<u> </u>			Ш	Х	\perp		35 ↓
So	175				40							15		х										x			х						х		х				Ш	х			40 →
J	355				50						3.5					2							_	S	2		х						х		х				Ш	х			25 ↓
J	355	_			56					1.2	_				1								/	A	1		х						Х		х				Ш	Х			24 ↓
J	350					70				1.6					1								_ /	A	1		х	-					Х		Х				Ш	Х			36 ↓
J	300					150			0.68	_				Х									_	X	_		х	-					Х		Х	-			Ш	Х	\perp		20 →
J	305	_			60				0.7					Х									_	X	_		х	-					Х		х	-			Щ	х	\perp		
J	265				60				0.9	_				Х									-	X	_		х	\neg					Х		Х	_			Щ	Х	\perp		
J		74			30				0.7					Х									-	x	_		х	-					Х		Х				Ш	х	\perp		
J	315						400				4			Х									_	X	_	_	х	-		_		_	Х		Х	-			\sqcup	Х	\perp	-	
J	280				60						<u> </u>			Х									_	x	_	_	х	-		_	\vdash		Х		Х	_			\sqcup	Х	+	-	
J	315			1	0.5		300	<u> </u>			4			Х						\dashv			_	Х		-	X	-		-	\vdash	-	Х	\vdash	Х	1	1		\dashv	Х	+	-	-
J	295				30				0.2	_				Х									-	Х	_		х	-					Х		Х	-			Н	Х	+	-	
J		70		-	46			_	0.8	-	_	H		Х						_			_	X	_	-	х			-	$\vdash \vdash$	-	Х		Х	1	1	\vdash	\vdash	Х	+	+	-
J ,		74		-			70	-	0.9		_			Х				_	_	\dashv	+	_	_	Х	+	+	X	_	+	+	\dashv	-	Х	\vdash	Х	+	-		\vdash	Х	+	\rightarrow	\dashv
J	360					80					3	_		Х						_			_	Х	_		X	_			\vdash		Х		Х	+			\vdash	Х	+	-	
J		80				80					3	-		Х						-			_	Х	_		х	_			\vdash		Х		х	+	-		\vdash	Х	+		
<u> </u>		80				120					2			Х						_			_	X	_		х					-	Х		Х	1			${f H}$	Х	+	+	-H
J		80			20	120		<u> </u>			2	1		Х				_		_			_	X	_	-	х	-	-	-		+	Х		х	-	-		${f H}$	Х	+	-}-	-+
J	320	_		-	30			<u> </u>			_	4		Х						_			_	X	_	-	х	-		-		-	Х		х	1	1		$\vdash \vdash$	Х	+	+	-H
J	310		_	_	40			<u>. c.</u>	.,			4		X	Ш								_	X	_	_	x		+	_	щ		Х		<u> x</u>				H	X		\dashv	-
TIP	O DE PL	ANO	<u>, </u>	+		So - I								Jn - J							RELL			-	+		Aren		-		Bred				Q - C						Óxido	_	
						S1 - E	squis	stos	ıdad				F1	.Fn -	Fall	as				[(G - 0	rav	as			Α-	Arcil	ııas		M	- Mil	onit	a	(C - C	alcit	ta			F - F	eldes	spatos	

PROYECTO:		Tesis SN	AD C			ESTACIÓN :		N° HOJA :		1					Provincia		Guayas
FROILCIO.		16313 310	/IK-C			LSTACION .		CÓDIGO:		EG-21		LOCALIZA	<u>CIÓN :</u>		Cantón		Durán
REALIZADO POR:		AV-KZ-J	IN A			HOJA/PLAN	٥.		Corre	Las Cabras					Localidad		
REALIZADO FOR.		AV-NZ-	JIVI			HOJA/PLAN	<u>J.</u>		Cerro	Las Cabias					X :		
FFOULA												COORDEN	IADAS	,	Y :		
FECHA:						FOTOS :									Z :		
LITOLOGÍA			NATURA			POTENCIA		DEPÓSITOS :	SUPERF	ICIALES		MORFOLO		•		ESPESOR	
Lutita Silicificada			Sedime	ntaria		>5m		arena gravo	sa			Pendient	es inclin	nada	1	entre 2 y	3 m
ESTRUCTURAS Diaclasas	PLIEG	UES		FALLAS				COLUMNAS				OTROS					
		BLOQUES		MU	Y GRAN	NDES		GRANDES		MEDIOS	PEQUEÑO	OS		Μl	JY	MUY	BRECHIFICADA
<u>FRACTURACIÓN</u>		Jv Juntas/m3	3		< 1			1 - 3		3 - 10	10 -	- 30	PE	QUE	ÑOS		> 60
GRADO DE		SANA	A	ALGO METEO	RIZADA	4	MED.	METEORIZAD	A	MUY MET	EORIZADA	(COMPL. N	METE	ORIZADA	SUI	ELO RESIDUAL
METEORIZACIÓN .		1		П				Ш		- 1	V			V			VI
		0.1.1.00			0.70												
<u>HIDROGEOLOGÍA</u>		SIN PRESENCI	A DE AGU	A	SEC	CO (CON SEÑ	ALES DE	AGUA)		HÚMEDO	GOTE	OS	FLUJO			CAUDAL EST	IMADO
OBSERVACIONES									RES	ISTENCIA "R"							
Fuerte meteorzación posible	emente pro	oducido por actividad	antropic	a					ESCLE	RÓMETR							
										0	24		23		20	13	15
FOTO									CROC	QUIS	-		-				

	STACIÓ			ESP/	ACIA	DO (c	m)		СО	NTIN	UIDAI	D (m)				APE			(mm	1)			R. A	pr			RUG		SIDA	AD.									RELLI	ENO:	5					
	10		Ext. Ju Muy j	Juntas	Mode	Separa	s Ár	Ext. Se	Muy k	ja	Mode	a	Jy ∤	Jy c	Cerrac	rc. /	Abiert	Mode	Ancha	Jy 8	Ext. A	Caver				Escalo		Ondu	5		Plana			teo		ión	Fi	ltra	cion	es	Resi	st. N	1arti l	llo (G	eo;Smi	th)
	NIEN-		Ž Ž	In	Ĭ	Sel	Muy	Exi	ž	Baja	Ĭ	Alta	Muy	Muy	S	Parc.	AP	ž	An	Muy	Ë	Ca						<u>ь</u>					rizad	oriza	orizac	/leteo	5				0	٩	stent			
TIPO DE PLANO	DIR. DE BUZAMIENTO	BUZAMIENTO	< 2 2-6	6 - 20	20 - 60	60 - 200	200 - 600	> 600	< 1	1-3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	l Rugosa	II Lisa III Slickensided	IV Rugosa	V Lisa	VI Slickensided	VII Rugosa	VIII Lisa	A Silchei Isided	II Algo metec	III Med. Meteoriza	IV Muy meteorizad	V Complet. Meteo	Seco	Húmedo	Goteos		-	2 Blando 3 Consistente	-	-	- 0	Dirección
So	170	20	6	,								20		х										х				Ť	Ĺ	Ĺ	х				х		х				T	х	+		_	\downarrow
So	140	20		10								20	:	х										х							х				х		х					х			40	\rightarrow
So	165	20	6	5								20		х				Î						х							х				х		х					х			14	\rightarrow
J	330	20		20					0.4					Х										х							х				х		х					х			13	\rightarrow
J	250	88		20	_				0.6				;	х										х							х				х		х					х			_	\rightarrow
So	172			10								20	;	х										х				↓			х				х		х					х			16	_
J	255				25				0.5				_	х										х							Х				х		х				_	х				\rightarrow
J	235	_		20	_				0.45				_	х			_							Х			_	╁	1		Х			_	х		х				_	х	+			\rightarrow
So	172	-		20	_							10	_	х										Х	_	_	-	\bot		+	Х			-	х	_	Х				_	х	+-		17	_
J		80		18					0.68					х										Х				-		-	Х		+		х		Х				_	х	_		43	\downarrow
J		90		15					0.7			\dashv	_	X		-								Х	-	-	+	+		+	Х	-	+	-	Х		Х				+	Х	-		\vdash	
J	120	80		10 10					0.9			25	_	X									-	X			+	+	+		X	+	+		X		X				+	X	+		+-	H
J	60			7	_						20	-		x x		-		-						X X	+	+	+	+	+	+	X X		+		x x		x				-	X X	_		+	H
So	155		5	_							20	_	_	×									-	x X				+			x		+		X		X				\dashv	X	+		+-	Н
J	74		5	+					0.35				_	x										Х							х		\top		x		x				1	x	+		+	Н
J	60			10					0.32	_				x									-	х				1			х				х		х				\top	x				П
J	65	_		20	_				0.18					х										х							х				х		х					х				
J	65	82	5						0.16				:	х										х							х				х		х					х				
J	180	74				100				1.2				х										х							х				х		х					х				
J	130			20					0.23					х										х							х				х		х					х				
J	55	90	6						0.5					х										х							х				х		х					х				
J	40			12					0.24				-+	х	ļ		_	_						Х				\perp			х	\perp			х		х					х	_		↓	Ш
J		90		12	-						3	-	-	х	_	_	4	_						Х			\perp	_	_	\perp	х		_	1	х		х				\perp	х	_		₩	Ш
J		83			60	_			<u> </u>		2	-		X									_	Х						Ш	Х			<u> </u>	х		Х					X			╄	Щ
TIP	O DE PI	ANC	<u>)</u>		_		Estrat -					_		ln - J		_	-				RELI		_		_		- Ar					3 - Bı					Cι		_	-			xido			
						S1 - I	Esquis	stosi	idad				F1	Fn - I	Falla	as					G - (Gra۱	vas			A	Aı	rcill	las		I	VI - N	∕lilc	onita	1	C	- Ca	Icit	a		F	- Fe	elde	spato)S	

PROYECTO:		Tesis SN	∕IR-C		ESTACIÓN		N° HOJA :		1				Provincia		Guayas
TROTECTO:		16313 314			ESTACION	<u>-</u>	CÓDIGO :		EG-22		LOCALIZ	<u> ACIÓN :</u>	Cantón		Durán
REALIZADO POR:		AV-KZ-J	IM		HOJA/PLAN	NO ·		Cerr	o Las Cabras				Localidad		
NEACEADO FOR		714 162 3			1103Ay 1 LA	<u></u>		CCII	o Eus Cubius				X:		628001
FECHA:					FOTOS :						COORDE	NADAS	Y:		9759677
TECHA:													Z:		
<u>LITOLOGÍA</u> Arenisca G	Gruesa		NATURAI		POTENCIA		DEPÓSITOS S		FICIALES		MORFO			ESPESOR	
			Sedimen		>6 m		arena gravo	sa				ntes inclin	ada	entre 2 y 3	3 m
<u>ESTRUCTURAS</u>	PLIEGU	JES		FALLAS			COLUMNAS				OTROS				
		BLOQUES		MUY GF		(GRANDES		MEDIOS	PEQUEÑO			MUY	MUY	BRECHIFICADA
<u>FRACTURACIÓN</u>		Jv Juntas/m3	}	<	1		1 - 3		3 - 10	10 -	- 30	PEC	UEÑOS		> 60
GRADO DE		SANA	Α	LGO METEORIZA	.DA	MED.	METEORIZAD	Α	MUY METE			COMPL. M	ETEORIZADA	SUE	LO RESIDUAL
<u>METEORIZACIÓN</u>		I		II			Ш		11	/			V		VI
HIDROGEOLOGÍA		SIN PRESENCIA	A DE AGU	A	SECO (CON SE	ÑALES DE	AGUA)		HÚMEDO	GOTE	os	FLUJO		CAUDAL ESTI	MADO
OBSERVACIONES Pequeño afl	oramiento	de arenisca media a	gruesa n	nuy meteori za d	a con			RES	SISTENCIA "R"						
vegetación								ESCLE	ERÓMETR						
									0	24		23	20	13	15
FOTO								CRO	QUIS						
											_				

	ESTACI	ÓN		E	SPA	CIAD	OO (cr	m)		CC	NTIN	UIDA	D (m)			AP	ERTI	JRA	(mm))			R. A	pr			RUG	OSID	AD									RELL	ENOS	;					
						S			S										æ														Met	teo	rizad	ción	Fi	ltra	cion	ies F	Resi	st. M	artill	o (Ge	eo;Sn	iith)
	ENTO		Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa			Chracket	Escaloriada		Ondulada		Plana		zada	izada	zada	teo	-						ente			
	DIR. DE BUZAMIENTO	BUZAMIENTO	< 2	2-6			60 - 200	200 - 600	> 600	< 1	1-3	3-10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10		10 - 100	100 - 1000	> 1000	Composición	Espesor	l Kugosa II lisa	III Slickensided	IV Rugosa	V Lisa	VII Rugosa		IX Slickensided	I Algo meteorizada	III Med. Meteorizada	IV Muy meteorizada	V Complet. Meteo	Seco	Húmedo	Goteos	·		2 Blando 3 Consistente	+	5 Duro 6 Muv duro	Índice R	
J	27	75 20) 2							0.8	3					Х)	х				х							х		Х					х			1	
S	_	_	_		10					0.6	5					х)	х				х			Ш				х		х				\perp	х	Ш	ᆚ	1	
S	_	30 40	_		10						2	_				х)	х				х							х		х				\perp	х		┵	18	
J	_	70 80)				90	_			3					х)	х				х							х		х				\perp	х		┵	2:	
S		15 30	_				78						20			Х)	х				х							х		х				\perp	х			2	3 →
S		72 40)				78						20			х)	x				х							х		х					х		\perp		
S		20 73			16								20			Х)	x				х							х		х					х				
J	6	50 90)		9					0.12	!					Х)	x				х							х		х					х				
J		50 76	_		15					0.11						х)	x				х							х		х					х				
J	6	50 8C)		15					0.11						Х)	х				х							х		х					х				
																																														Ш
																																														Ш
																																														Ш
																																														Ш
																																									\perp					Ш
		\perp																																							\perp					
																										floor										$oxed{\int}$					$oxed{J}$			$oxed{oxed}$		
																										floor										$oxed{\int}$					$oxed{J}$			$oxed{oxed}$		
																																														П
																																														П
T	PO DE	PLAN	10				So - E	Estrat	ifica	ción				J1	Jn	Junt	as				F	RELI	LEN	0			S-	- Ar	ena			B - E	Brech	na		C) - Cı	uarz	20		C) - Ó:	xidos	s		
							S1 - E	squi	stosi	idad				F1	.Fn -	Fall	as				(G - (Grav	/as			Α	- Ar	cillas			M -	Milo	nita	9	C	- Ca	lcit	а		F	- Fe	ldes	pato	S	

PROYECTO:		Tesis SN	AR-C		ESTACIÓN		N° HOJA :		1				Provincia		Guayas
- KOTECIO.		10313 311	iii C		LSTACION	<u>.</u>	CÓDIGO :		EG-21		LOCALIZAC	<u>IÓN :</u>	Cantón		Durán
REALIZADO POR:		AV-K	7		HOJA/PLAN	NO ·		Cerro	Las Cabras				Localidad		
TEALIZADO FOR		714 114	-		1103741 Era	<u></u>		CCITO	Lus Cubius				X:		
FECHA:					FOTOS :						COORDEN	<u>ADAS</u>	Υ:		
													Z:		
LITOLOGÍA			NATURAI		POTENCIA		DEPÓSITOS :		CIALES		MORFOLO			ESPESOR	
Arenisca Media- Base de Lui			Sedimer		>6 m		arena gravo	isa			Pendiente	es inclin	a u a	entre 2 y	3 m
<u>ESTRUCTURAS</u>	PLIEG	IUES		FALLAS			COLUMNAS				OTROS				
		l								~		1			
FRACTURACIÓN		BLOQUES Jv Juntas/m3		MUY GR		'	GRANDES 1 - 3		MEDIOS 3 - 10	PEQUEÑO 10 -		DEC	MUY QUEÑOS	MU	Y BRECHIFICADA > 60
													. 20		
GRADO DE METEORIZACIÓN		SANA I	A	LGO METEORIZA II	DA	MED.	METEORIZAD III	А	MUY MET			OMPL. N	1ETEORIZADA V	SU	ELO RESIDUAL VI
METEORIZACION		'					***			•			<u> </u>		
<u>HIDROGEOLOGÍA</u>		SIN PRESENCI	A DE AGU	A S	ECO (CON SE	ÑALES DE	AGUA)	F	IÚMEDO	GOTE	os	FLUJO		CAUDAL ES	TIMADO
OBSERVACIONES															1
Fuerte meteorzación posible	emente pr	oducido por actividad	antropica	a					STENCIA "R" ÓMETR						
								LJCLLIN	0	24		23	20	13	15
FOTO								CROQ	LIIS	24			20	13	15
								CITOQ	015						

	STACIÓ	N		ESF	ACIA	DO (c	m)		СО	NTIN	UIDAI	D (m))			AP	ERTL	JRA	(mm	1)			R. <i>A</i>	۱pr			RUG	OSIE	DAD									REL	LENC)S						
					S		35	S										:a														Me	eteo	riza	ción	F	iltra	acio	nes	Res	sist.	Mar	tillo	(Geo	o;Sm	th)
	ENTO		Ext. Juntas	Muy juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa				Escalonada		Ondulada		Plana		0	rizada	izada	teo							-	ente			
TIPO DE PLANO	DIR. DE BUZAMIENTO	BUZAMIENTO	< 2	2-6	20 - 60		200 - 600	009 <	< 1	1 - 3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000	Composición	Espesor	l Rugosa	II Lisa III Slickensided	_	V Lisa	VI Sugosa	VIII Lisa	IX Slickensided		III Med. Meteorizada	-	V Complet. Meteo	VI Suelo residual	Húmedo	Goteos	Flujo	1 Muy blando	2	ω,	4 Muy consistente	+	Índice R	Dirección
J	250		_	-		75				3	_														_	-	Х			-	Н		_	Х		Х			₩	₩	-	Х	_	+		\rightarrow
J.	2		-		1	140					5															_	Х		-	-	Н			Х		Х	1	-	\vdash	\vdash	\vdash	х		+		\rightarrow
1	300		\dashv	_	-	200		-		4	4	H	\dashv		-	\dashv				_		-				-	X	\dashv	+	+	\vdash		-	Х		X	\vdash	-	₩	+	\vdash	X	+	\dashv	19	\rightarrow
1	340 35		\dashv	12	,	180		-		1		\vdash				\dashv				-					-	+	X	H	+	+	H	+	-	X	+	X	-	-	\vdash	\vdash	-+	X	+	+	—	\vdash
So	149	_	\dashv	6	_			-		-		20								-		_			-		X	+	+	+	Н	-	-	X	-	X	+	1	\vdash	\vdash	-	X	+	+	—	\vdash
30	149	20	\dashv	0	+			\vdash				20										\dashv			+	+	Х	\dashv	+	+	\vdash	+	+	Х	+	Х	+	1	\vdash	\vdash	H	х	+	+	—	\vdash
			\dashv	-	-																					-	+		-	+	Н			\mathbf{H}				1	1	H	\vdash		+	+		H
			\dashv																												Н								1	\vdash	H		+			H
																																		T					+	H				T		\rightarrow
			\neg																								t							T					1	П			\top	T		Ħ
																																								T				11		П
																																														П
																																														П
																																														Ш
												Ш																			Ш									igsqcut	Ш					Ш
			Ц																								Ш				Ш			Ш						$igspace^{!}$			\perp	$\perp \downarrow$		Ш
																											Ш				Ш			Ш						igsqcut				$\perp \downarrow$		Ш
					1							Ш																	_	_	Ш	_		Щ	_		1	<u> </u>	igspace	\perp	Ш		_	$\downarrow \downarrow$		Ш
<u> </u>			\perp		1			<u> </u>		1		Ш							\Box			_			_	_	Ш	\sqcup	4	\bot	Ш	_	_	Ш	_	4	1	<u> </u>	<u> </u>	\perp	Ш	_	4	\sqcup		Ш
					_	<u> </u>						\sqcup													_	_	Ш		\perp	\perp	Ш			Ш	\perp				Щ	\sqcup				$\downarrow \downarrow$		Щ
TIP	O DE P	LAN	2			So - I						_		Jn - J								LEN			_		- Are					Bred		Щ		Q - C			<u> </u>		0 -					
						S1 - E	squi	stos	idad				F1	Fn -	Fall	as					G - (Grav	/as			Α.	- Ard	cilla	S		M -	Mil	onita	a	(C - C	alcit	ta			F - F	Felc	lesp	atos	<u>i</u>	

Tesis S			ESTACIÓN :	. (CÓDIGO :		EGEO4-LS		LOCALIZAC	ιόνι ·	Cantón		Durán
ESP	OL									ON.	Canton		Duran
ESP	OL		HOJA/PLAN	۸.							Localidad		
			HUJA/PLAN	<u>0:</u>							X :		627865
									COORDENA	ADAS	Υ:		9759280
26 de abri	l del 2018		FOTOS :								Z :		
		ZA Sedimentaria	POTENCIA 6	6 m <u>[</u>	DEPÓSITOS	SUPER	RFICIALES		MORFOLO	GÍΑ	_	ESPESOR	
DITECTIES	1	EALLAS			COLLINANIAS				OTPOS				
PLIEGUES		FALLAS			COLUMNAS	•			OIKOS				
			DES				MEDIOS				MUY	MU	Y BRECHIFICADA
Jv Juntas/	m3	< 1			1 - 3		3 - 10	10 -	30	PEQU	IEÑOS		> 60
SANA I	ALG	O METEORIZADA II		MED. M	IETEORIZAD III	DA			СО			SL	JELO RESIDUAL VI
SIN PRESEN	CIA DE AGUA	SECO (CON SEÑALE	S DE AG	iUA)	ı	HÚMEDO	GOTEC	os	FLUJO		CAUDAL ES	STIMADO
						ESCLEF	RÓMETR O	47.9	28	3.3	28.1	31.7	31.7
	PLIEGUES BLOQUE Jv Juntas/ SANA	PLIEGUES BLOQUES JV Juntas/m3 SANA I	PLIEGUES FALLAS BLOQUES MUY GRAN Jv Juntas/m3 < 1 SANA ALGO METEORIZADA I II	PLIEGUES BLOQUES JV Juntas/m3 ALGO METEORIZADA I I NATURALEZA Sedimentaria POTENCIA MUY GRANDES < 1 SANA ALGO METEORIZADA II II II III III III III II	PLIEGUES BLOQUES Jv Juntas/m3 ALGO METEORIZADA I NATURALEZA Sedimentaria POTENCIA 6 m SANA ALGO METEORIZADA II MED. N	PLIEGUES FALLAS COLUMNAS BLOQUES MUY GRANDES GRANDES Jv Juntas/m3 < 1 1 3 SANA ALGO METEORIZADA III SIN PRESENCIA DE AGUA SECO (CON SEÑALES DE AGUA)	PLIEGUES FALLAS COLUMNAS BLOQUES MUY GRANDES GRANDES JV Juntas/m3 < 1 1 - 3 SANA ALGO METEORIZADA III SIN PRESENCIA DE AGUA RES ESCLEI	PLIEGUES FALLAS COLUMNAS BLOQUES JV Juntas/m3 ALGO METEORIZADA III SIN PRESENCIA DE AGUA SECO (CON SEÑALES DE AGUA) MEDIOS 3 - 10 RESISTENCIA "R" ESCLERÓMETR	PLIEGUES FALLAS COLUMNAS BLOQUES MUY GRANDES GRANDES 3 - 10 10 - SANA ALGO METEORIZADA III MED. METEORIZADA III MUY METEORIZADA III MED. METEORIZADA III ME	PLIEGUES FALLAS COLUMNAS OTROS	NATURALEZA Sedimentaria POTENCIA 6 m DEPÓSITOS SUPERFICIALES MORFOLOGÍA PLIEGUES FALLAS COLUMNAS OTROS BLOQUES MUY GRANDES GRANDES 1 - 3 3 - 10 10 - 30 PEQUEÑOS Jv Juntas/m3 < 1 MED. METEORIZADA MUY METEORIZADA III NUY METEORIZADA III NUY METEORIZADA NUY METEORIZA	PLIEGUES FALLAS COLUMNAS OTROS BLOQUES MUY GRANDES GRANDES 3 - 10 PEQUEÑOS PEQUEÑOS PEQUEÑOS SANA ALGO METEORIZADA III MED. METEORIZADA III NÚMEDO GOTEOS FLUJO SIN PRESENCIA DE AGUA SECO (CON SEÑALES DE AGUA) HÚMEDO GOTEOS FLUJO RESISTENCIA "R" ESCLERÓMETR O 47.9 28.3 28.1	PLIEGUES FALLAS COLUMNAS OTROS BLOQUES MUY GRANDES GRANDES 3 - 10 PEQUEÑOS PEQUEÑOS PEQUEÑOS 10 - 30 PEQUEÑ

ESTA	CIÓ	N		-	ESPA	CIADO	(cm)		T	CO	NTIN	IUIDA	D (m))			APEF	RTUF	RA (ı	nm)			R.	. Apr			RU	IGOSID	AD									RELLE	NOS	;					
						S		as	ıs										ta													Me	teoı	izac	ión	Fi	ltra	cione	es R	esist	. Maı	rtillo	(Ge	o;Sm	ith)
CHI			Ext. Juntas	Muy Juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Cavernosa				Escalonada		Ondulada		Plana		zada	izada	izada	teo						ente				
TIPO DE PLANO		BUZAMIENTO	< 2		6 - 20	20 - 60	60 - 200	200 - 600	> 600	<1	1 - 3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10			100 - 1000	0	_	l Rugosa	II LISa	III SIICKensiaea IV Rugosa	V Lisa	VII Rugosa	VIII Lisa	IX Slickensided	Sana II Algo meteorizada	III Med. Meteorizada	-	V Complet. Meteo	VI Suelo residual	Húmedo	Goteos	1 Muy blando	2 Blando		-	6 Muy duro	Índice R	Dirección
	10	_			14						2.3								3				Α	_		_		х					Х			Х				Ш	х	<u> </u>	-	31.7	\rightarrow
	50	_			10						2.3								3				Α	_				х					Х			Х				Ш	х		-	22.6	_
	_	32			10						2.3									_	20		Α					х					Х			Х				Ш	х		-	24.0	-
		30			9							8									20		Α	_				х					Х			Х				Ш	х			31.7	
	_	20			10				_	0.60									10				Α					х					Х			х				Ш	х			26.5	_
	_	80		_	15					0.60		3	_										х					х					х			Х				Ш	х			28.1	
	_	80					70	_				3	_										х					х					Х			Х				Ш	х			28.3	_
	_	75					70					3											х					х					х			х				Ш	х			22.6	
		90				20				0.60									10				х				Х						х			х				8	х			47.9	\leftarrow
	_	68			15					0.60									5				х						х				Х			Х				Ш	х				Ш
		52				40						1.4											х						х				х			х					х				Ш
		80				30						25							10				Α						х				х			х					х				Ш
		74				30							3.5						10				Α						х				х			х					х				Ш
J9 8	30	75				50					1.2												х						х				х			х					х				
J10	30	78				30					2												х						х				Х			Х					х				
J11 3	30	78				50						3							10				Α						х				х			х					х				
J12 :	LO	70				40					2												х						х				х			х					х				
J13	0	80					65					4							5				Α						х				х			х					х				
J14 :	LO	78				20					2												х						х				х			х					х				
J15 26	60	86			10																		х						х				х			х				П	х				
So 18	35	28			8							6											х						х				х			х				П	х				П
	70	26										6							8				х			ı			х				х			х				-	х				
	50	30			15																		х						х				х			х				П	х				
	_	38			15							8											х						х				х			х				П	х				П
	_	40			10							10								12			х						х				х			х				\sqcap	х				П
TIPO	DE I	PLA	NO				So - E	strat	tific	cació	n			J1	.Jn	- Junt	as				ı	ELL	EN	0		9	S - A	rena			B - I	Brech	na		(Q - C	uar	zo		0	Óxi	dos			
							S1 - E	squi	sto	sidac	t			F1.	Fn	- Fall	as				(i - G	irav	as		A	4 - A	rcillas	S		М-	Milo	nita		(C - C	alci	ta		F-	Feld	lesp	ato	s	

PROYECTO:		Tesis	SMD-C		ESTACIÓN	1.	N° HOJA :		1				Provi	ncia		Guayas
FROTECTO.		16313	JIVIIN-C		LSTACION	<u></u>	CÓDIGO :		EG6-LS		LOCALIZ	ZACIÓN :	Canto	n		Durán
REALIZADO POR:					HOJA/PLA	MO ·							Local	dad		
KLALIZADO FOK.					HOJAJFLA	1110.							X:			627778
FECHA:					FOTOS :						COORD	ENADAS	Υ:			9759322
FECHA.		27 de abri	l del 20	18	<u>F0103 .</u>								Z:			
LITOLOGÍA Lutita Silicificada	a_		NATUR		POTENCIA	A 30 m	DEPÓSITOS	SUPER	RFICIALES		MORFO	DLOGÍA		Quebra	ESPESOR	
			Sedime													
<u>ESTRUCTURAS</u>	PLIEGU	IES x		FALLAS			COLUMNAS	5			OTROS					
FRACTURACIÓN		BLOQUES		MUY GRA	NDES	(GRANDES		MEDIOS	PEQUEÑ			MUY		MUY	BRECHIFICADA
FRACTURACION		Jv Juntas/m3	3	< 1			1 - 3		3 - 10	10	- 30	PEQ	UEÑOS			> 60
GRADO DE		SANA	A	ALGO METEORIZAD	Α	MED.	METEORIZAI	DA		EORIZADA		COMPL. M		PΑ	SUE	LO RESIDUAL
<u>METEORIZACIÓN</u>		I		11			Ш		['	V			V			VI
<u>HIDROGEOLOGÍA</u>		SIN PRESENCIA	DE AG	UA SECO	(CON SEÑA	LES DE A	AGUA)		HÚMEDO	GOTE	os	FLUJO		C	AUDAL EST	TMADO
OBSERVACIONES				<u> </u>				RFS	ISTENCIA "R"							
									RÓMETR							
									0	47		42	37		49	40
FOTO								CROC	QUIS	•						

ESTAC	IÓN		ESI	PACI	ADO	(cn	n)		CON	NTINU	JIDA	ND (n	n)			APEF	RTUF	RA (ı	mm))			R. A	pr			RUG	SOSI	IDA)									REL	LEN	OS						
					5		35	S										:a														1	Иete	eor	izac	ión	Fi	iltra	acio	ne	Res	ist.	Mar	tillo	(Ge	eo;Sr	nith)
ENTO		Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa				Escalonada		Ondulada			Plana		zada	rizada	izada	rteo	al .						ente				
TIPO DE PLANO DIR. DE BUZAMIENTO		< 2	2-6		20 - 60	60 - 200	200 - 600	> 600	< 1	1-3	3-10		> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	_	_	Espesor	l Rugosa	III Lisa	IV Rugosa	V Lisa	VI Slickensided		VIII Lisa IX Slickensided	l Sana	=	≡	_	V Complet. Meteo	VI Suelo residua		Goteos	Fluio	1 Muy blando	7	3 Consistente 4 Miny consistente		_	Índi	- Dirección
So 298		_	_	9			_				8				0.8							-	Х	\dashv	_	_	+	-			х	+	\vdash	х		_	Х	_	-	-		-	×			47	_
So 165		_	\dashv	11	-	_	\dashv				8	-			0.7						_	-	X		_	+	+	<u> </u>		-	Х	+-	-	Х	-	_	Х	_	+	-	1	\vdash	x	-		26	_
So 145		_	-	5	-	_	\dashv				8				1						-	_	A		_	_	+	<u> </u>			х	+	\vdash	х	+	_	х	+	-	╂			x	-		29	_
So 170			_	20			-				8				1						+	-+	A		_	-	+			-	Х		-	X			Х	_	+	-			X .			42	_
So 165			_	15 12							8				0.8						_	_	X		_		+	<u> </u>			X	-	-	X		-	X		-	-		-	X			31	
			_	11							-	_			0.8						_	-+	X		_		+	<u> </u>			X	-	-	X		-	X	_	-	-			X			20	
So 128			-	17			\dashv				4				0.8						+	_	X A		-	+	+				X	+	-	x x		-	X	-	+	-		\vdash	X			19	_
So 136		-	-	5			\dashv				8				0.80							-+	X	_		-	+	<u> </u>			х	+	\vdash	x x	-	-	X X	_	+-	-			x x			37	_
So 180			+	12	-		-				8				0.80						+	_	A A		_	-	╁			x x	+	╁	-	x			×			-			x x			49	_
J1 250		_		10			\dashv			2.3	_				0.7	2						-	x		-	+	+			^ X		+	-	^ X	+		x	_		1		\vdash	<u>^</u>			28	
J2 245		_	_	49						2.3					20						_	-	x				+			x		+	\vdash	x			×	_		1		\vdash	x			40	_
J3 230			1	30			\dashv			1.2					2							-	x				+	1		-	х	+	-	x			x	_	+			\vdash	x				<u>`</u>
J4 245		_	1	25			\dashv			1.4	_				2						_	-	x				+	<u> </u>		-	x	+	-	x			x	_	+			\vdash	x			20	_
J5 145		_	1	28					0.40	_						3					1	_	x		<u> </u>		T				x		\vdash	x			x	_		T		\vdash	x			30	_
J6 295			1	20			\dashv		0.70	_					2						1	_	x							-	x		-	x			x	_				H,	x			32	
J7 35				26						2					10							-+	x								x		\vdash	х			Х					,	x				Ť
J8 240		_		25						8	_				10							,	x							х			-	х			х	_				,	x				
J9 335		_		22					1.20						0.7)	x							х				х			x					,	x				
J10 310		_		31					2.67						0.8)	x							х				х			x					,	x				
J11 75				40						5					1)	x							х				х			x	_				,	x				
J12 182				50						3					1)	x							х				х			x	_				,	x				
J13 90				18						3					1						1	1	Α					Ì		х				х		İ	х					,	x				П
J14 176	_	1	1							2					0.7						T	,	х	7						х				х			х					,	x				
J15 160	_	П	T	20						22					1						T	,	х	1						х				х			х					,	x				
TIPO D	E PL	ANC)			So ·	- Es	tra	tifica	ción			J1	.Jn -	Junt	as					REL	LEN	10			S	- Ar	ena	3		В	- Br	echa	3		(ე - (Cua	rzo			0 -	Óxi	dos	,		
						S1 -	- Es	qui	stosi	dad			F1	Fn	- Fall	as					G-	Gra	ıvas	5		Α	- Ar	cill	as		N	1 - M	lilon	ita		(C - C	alc	ita			F-	Felo	desp	oato	os	

PROYECTO:		Tesis SN	AD C		ESTACIÓ	N .	N° HOJA :		5				Provincia		Guayas
PROTECTO.		Tests 3h	/IK-C		ESTACIO	<u>v.</u>	CÓDIGO:		EG6-H5-LS		LOCAL	IZACIÓN :	Cantón		Durán
DEALIZADO DOD.					HOJA/PL	ANO :							Localidad		
REALIZADO POR:					HOJA/PL	ANU:							X :		627802
55014											COORI	<u>DENADAS</u>	Y :		9759304
FECHA:		27 de abril	del 2018		FOTOS :								Z :		
<u>LITOLOGÍA Lutita</u> sil	icificada.		NATURA Sedime		POTENCI	A 3 m	DEPÓSITOS	SUPERI	FICIALES Ta	alud	MORF	OLOGÍA		ESPESOR	
<u>ESTRUCTURAS</u>	PLIEG	UES		FALLAS	•		COLUMNAS	5			OTROS	5		.	
<u>FRACTURACIÓN</u>		BLOQUES Jv Juntas/m	3	MUY GRAI < 1	NDES	(GRANDES 1 - 3		MEDIOS 3 - 10	PEQUEÑO 10	OS - 30	PEQU	MUY JEÑOS	MU	Y BRECHIFICADA > 60
GRADO DE METEORIZACIÓN		SANA I	AL	GO METEORIZAD	Α	MED.	METEORIZA III	DA	MUY METE				TEORIZADA V	SU	JELO RESIDUAL VI
HIDROGEOLOGÍA		SIN PRESENCI	A DE AGU	JA SECO	(CON SEÑ	ÍALES DE A	AGUA)	Н	IÚMEDO	GOTE	OS	FLUJO		CAUDAL ES	STIMADO
OBSERVACIONES				•				RESI: ESCLER	STENCIA "R" ÓMETR O	59.8		51	53	48.4	42
FOTO								CROQ	UIS						

ESTA	CIÓN	Τ	E	SPAC	IADO	(cm)			CON	ITINU	JIDAI) (m)			APE	RTUF	AS (ı	mm)		R.	Apr			RUG	OSID	AD									RE	LLEN	OS						\neg
							S										В													Me	teor	izac	ión	F	ltra	acio	nes	Res	sist.	Mar	tillo	(Ged	;Smi	:h)
CEN		Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta Muv Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha				Escalonada		Ondulada		Plana		4,000	rizada	izada	iteo	-B						ente				
TIPO DE PLANO			2-6	6 - 20	20 - 60	60 - 200	200 - 600	> 600	<1	1 - 3		10-20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	7	> 10	10 - 100	100 - 1000	Con	Espesor	l Rugosa	II Lisa III Slickensided	+-	V Lisa	VII Rugosa	VIII Lisa	IX Slickensided	I Algo motoori	III Med. Meteorizada	-	V Complet. Meteo	VI Suelo residual	Húmedo	Goteos	Flujo	-	2 Blando		+	6 Muy duro	Índice R	Dirección
So 14					30			_				12				_		30	4	_	В				-	х	4	\perp	_	\perp	х			Х	+	-			X				12.0	\downarrow
So 13		_			24		\sqcup				_	12	_		\sqcup	_		20	4	_	Α	<u> </u>			$\downarrow \downarrow$	х	_	$\bot \downarrow$		\perp	х		\downarrow	X	\perp	1	<u> </u>	\sqcup	×	:	\sqcup		_	\leftarrow
So 14				18							_	12					- 8	80	_		В				-	х	4			_	х			х					X	-			23.0	$\overline{\downarrow}$
So 13			3									12		0.7					_		Α	<u> </u>			-	х				_	х			х	<u> </u>				х				53.0	$\overline{\downarrow}$
So 15	_	_		9												5					х					х					х			х					x					\leftarrow
J1 33						118				3					2						В							х			х			х					х	(30.8	\downarrow
J2 21						138	-			3				0.8							х				х						х			х					х					←
J3 23						138				1				0.7							х							х			х			х					х	(18.4	\leftarrow
J4 18						115				3					1						х						х				х			х					х				39.3	\downarrow
J5 18						115				3				0.5							х						х				х			х					х	(;	30.6	\leftarrow
	5 82			15				O	0.38						1						х						х				х			х					х	(!	59.8	\leftarrow
So 16		1		15				0	0.38						1				20		В						х				х			х					х	(
J7 15	30)		13						1				0.5							х						х				х			х					х	(
J8 17		5		10						1				0.6							х						х				х			х					х	(
J9 17	0 85	5		10						3							3				Α						х				х			х					х					
J10 18	84 86	5			40					2					2						х							х			х			х					х					
J11 35	80)		15						3									10		х							х			х			х					х					
J12 18	82 82	2			40					2				0.5					10		х							х			х			х					х					
J13 34	15 78	3	6					1	L.20						1						х							х			х			х					х					
J14 23	5 80)	3							3					1			T			С							х			х			х					х					
J15 17	'5 78	3			46			C	0.07						1						х							х			х			х					х					
J16 27	4 78	3		8						3					1						С							х			х			х					х				İ	
So 17	'5 16	5		11								12			2						С							х			х			х					х					\neg
So 21)	3									12			2						х							х			х			х					×					\neg
So 20	5 16	5	5									12			2						х							х			х		Ì	х					x					\neg
TIPO	DE PL	ANG	2			So -	Estr	atifi	caci	ón		J1	Jn	- Jun	tas				1	RELL	ENC)		S-	- Are	na			B - B	rec	ha		(Q - (Cua	rzo		(0 -	Óxio	dos			\neg
						S1 - I	Esqu	iisto	sida	ad		F1	Fn	ı - Fa	llas				(G - G	rava	as		Α	- Arc	illas			M - N	Vilo	onita		(C - C	alc	ita			F - F	eld	esp	atos		

PROYECTO:			Tesis SI	MD C			ESTACIÓN		N° HOJA :		1				Provinc	:ia		Guayas
PROTECTO.			16313 31	IVIN-C			ESTACION	-	CÓDIGO :		EG5-H3-LS		LOCAL	<u>.ización :</u>	Cantón			Durán
DEALIZADO DOD.							HOJA/PLAN						Ī		Localid	ad	Li	as Terrazas
REALIZADO POR:							HUJAJPLAN	<u> </u>							X :			627778
F50114													COOR	<u>DENADAS</u>	Y :			9759322
FECHA:			27 de abril	del 2018			FOTOS :			7	7803-7807				Z :			
	gris mu	лу со і	mpacta al estado				POTENCIA	14,50 m	DEPÓSITOS	SUPER	RFICIALES		MORF	OLOGÍA			ESPESOR	
de pedernal				Sedimer	ntario													
<u>ESTRUCTURAS</u>	P	LIEG	UES		FALLAS		•		COLUMNAS	i			OTRO	S				
			BLOQUES			MUY GRAN	DES	(RANDES		MEDIOS	PEQUEÑ	OS		MUY		MUY	BRECHIFICADA
FRACTURACIÓN			Jv Juntas/m	13		< 1			1 - 3		3 - 10	10	- 30	PEQ	UEÑOS			> 60
GRADO DE			SANA	Α	LGO ME	TEORIZADA	١	MED. I	METEORIZAI	DA	MUY METE			COMPL. MI	TEORIZADA		SU	ELO RESIDUAL
<u>METEORIZACIÓN</u>			I I			H			Ш		יו	V			V			VI
LUDDOCEOLOCÍA			CINI DDECENICI	A DE ACU		5500	(CON SEÑAL	FC DE A	CHA		LUÍMEDO	COTE	0.0	FILLIO			ALIDAL EC	TIMADO
<u>HIDROGEOLOGÍA</u>			SIN PRESENCI	A DE AGU	IA	SECO	(CON SENAL	ES DE A	GUA)		HÚMEDO	GOTE	US	FLUJO			AUDAL ES	TIMADO
OBSERVACIONES										RES	ISTENCIA "R"							
										ESCLE	RÓMETR							
											0	62		54.8	66.6		56.9	54.6
FOTO										CROC	QUIS							

ESTA	CIÓI	N		ESI	PACIA	00 (cn	n)		cc	NTIN	IUIDA	D (n	ո)			APE	RTUI	RA (n	nm)			R.	Apr	-		F	RUGO	OSID/	AD								R	ELLE	NOS	;					
					S		as	S										ta														Met	eor	zaci	ón	Filt	raci	ione	s R	esis	t. M	arti	llo (Geo;S	mith)
CH			Ext. Juntas	Muy juntas Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separadas	Muy baja	Baja	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavelliusa			Escalonada			Ondulada		Plana		zada	rizada	izada	reo							ente			
TIPO DE PLANO	_	BUZAN	<2	2-6 6-20	20 - 60	60 - 200	200 - 600	> 600	< 1	1-3	3 - 10	10 - 20	> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	> 1000 Composición	Espesor	l Rugosa	II Lisa	III Slickensided	IV Rugosa	V Lisa VI Slickensided	VII Rugosa	VIII Lisa	IX Slickensided	II Algo meteorizada			V Complet, Meteo	Seco	Húmedo	Goteos	1 Muv blando	_	3 Consistente	\rightarrow	5 Duro	- 'n	
	_	22		1	_						5.8	_			1				_			Х								Х		igspace	Х			Х			\bot	┷	х			44	_
	_	22		1		1_		_			5.8					2				4		х		_		Ш			х	\bigsqcup		\perp	х		\perp	х			\bot	_	х		_	62	
	_	18		1							5.8	_			0.50							х								х			х			х			_	┷	х			54	
So 1	57	16		1	1						5.8	-			1							х								х			х			х			_	┷	х			20	_
	_	14		14	4						5.8	-			0.25							х								х				х		х			\bot	┷	х			66	
	74	18		1	5						5.8					1						х								х				х		х					х			56	.9 ↓
	_	24		1	2						5.8				0.4							х								х				х		х					х			43	
So 1	55	18		10	כ						5.8				1							х								х				X		х					х			47	.2 ↓
So 1	66	20		1	3						5.8				0.30							х								х				x		х				х				54	.6 ↓
So 1	50 :	20		1	1						5.8				1							х							х					х		х				х					
So 1	50	18		10	6						5.8					2						х							х					х		х				х					
J1 4	18	79				77	7				5.8				1							х							х					х		х					х				
J2 20)5	73				65	5		0.7						1							х								х			х			х					х				
J3 4	14	80					140			1.5					1							х								х			х			х					х				
J4 :	28	88					310		0.9						1							х								х				х		х					х				
	00	85				94	ı			1.8						2						х								х				х		х				\Box	х				
	35	82				86	5								1							х								х			х			х			Ť		х				
	30	88				60)									2						х								х			х			х			T	T	х				
	_	90				68	_								1				T			х								х			х			х	T		1		х				
	52	_			1	65	;									2			T	1	T	х							Ť	х				x	1	х	T		\top	_	х	7		1	
	_	82	\neg		1	1	150							T	1				T	十	Ť	х	+			П			Ť	х			х	T	1	х	\dagger	T	\top	_	х	7	\top	T	
	_	60	1	10	6									寸	1				T	\dashv	T	х	+		П	П	\Box			х				x	1	х	T	T	\top	х	H	1	1	1	\top
	50	_			2	5	1	T							1				T	1	T	х	_							х		T		x	T	х	T		\top	T	х	1			
	_	80		1	4			T							1				T	1	T	x				H				х		T	-	x		х	\exists	1	\top	_	х	1			
J14 1	_	90	\dashv	1	4		1	1						寸	0.4			H	\dashv	\dashv	T	Х	T	\vdash		H	H		1	x		T	\vdash	x	+	x	\dashv	\top	\top	T	x	1	\top	T	\top
TIPO	_	_	NO		†	_	Estra	atifi	icacio	ón			J1	Jn -	Junt	as				F	RELI	.EN(0	+		S -	Are	na	+		3 - Br	ech	_		0	- Cu	arz	0	+	0	- Ó>	xid	os		
	Ī	1	Ī			_	Esqu								- Fall							rav	_					illas			M - N				_	- Cal		_	+				spat	os	

PROYECTO:		Tosis	SMR-C			ESTACIÓN		N° HOJA :		1				Pro	ovincia		Guayas
PROTECIO.		Tests	SIVIN-C			ESTACION	<u> </u>	CÓDIGO :		EG4-H1-LA		LOCALIZ	<u> ACIÓN :</u>	Cai	ntón		Durán
DE41174D 0 D0D														Loc	calidad		
REALIZADO POR:						HOJA/PLA	ANO:							Χ:			627864
												COORD	NADAS	Υ:			9759279
FECHA:		27 de abi	ril del 2	018		FOTOS :								Z :			
<u>LITOLOGÍA</u> Lutitas	s y Are			ALEZA N	⁄larino	POTENCIA	A 6 m	DEPÓSITOS	SUPER	RFICIALES .		MORFO	LOGÍA			ESPESOR	centimetricos
<u>ESTRUCTURAS</u>	PLI	EGUES		FALLAS				COLUMNAS	5			OTROS					
,	-	BLOQUES	5	N	/IUY GRA	NDES	(GRANDES		MEDIOS	PEQUEÑ	OS		MUY	,	MU'	Y BRECHIFICADA
<u>FRACTURACIÓN</u>		Jv Juntas/r	m3		< 1			1 - 3		3 - 10	10	- 30	PEC	QUEÑOS			> 60
GRADO DE METEORIZACIÓN		SANA I	А		TEORIZAD II)A	MED.	METEORIZA III	DA	MUY METE			COMPL. N	METEORIZ V	ZADA	SU	IELO RESIDUAL VI
<u>HIDROGEOLOGÍA</u>		SIN PRESENC	CIA DE A	GUA	SECC	(CON SEÑ	ALES DE	AGUA)	I	HÚMEDO	GOTE	os	FLUJO			CAUDAL ES	STIMADO
OBSERVACIONES									RES	STENCIA "R"							
									ESCLEF	RÓMETR							
										0	33.5		37.6	39	.7	26.2	25
FOTO									CROC	UIS							

ESTACI	ÓN		ESP	ACI	ADC	(cm	1)	СС	ITN	NUIE	DAD	(m)			APE	RTL	JRA	(mn	n)			R. A	pr			RL	JGO	SID	AD									R	ELLE	NO:	S						
					S		as s	م									ta															M	ete	oriz	zacić	n l	Filtr	aci	one	es R	≀esi	st. N	Лar	tille	o (Ge	eo;Sn	ոith)
ENTO		Ext. Juntas	Muy juntas	Juntas	Moder. Juntas	Separadas	Muy separadas	Ext. Separaua Muv baja	Baia	Moderada	Alta	Muy Alta	Muy cerrada	Cerrada	Parc. Abierta	Abierta	Moder. Abierta	Ancha	Muy ancha	Ext. Ancha	Cavernosa				Escalonada			Ondulada		Plana	5		zada	rizada i-calc	Izada	le							ente				
TIPO DE PLANO DIR. DE BUZAMIENTO	BUZAMIENTO		2-6		20 - 60	60 - 200	200 - 600	> 600	1-3			> 20	< 0.1	1.1 - 0.25	2.5 - 0.5	0.5 - 2.5	2.5 - 10	> 10	10 - 100	100 - 1000	_		Espesor	l Rugosa	II Lisa	III Slickensided	IV lica	V Lisa VI Slickensided	VI Silcheitsided		IX Slickensided	l Sana	II Algo meteorizada		V Complet, Meteo	>	Seco	nameao Cotos	Goteos	Flujo	1 Iviuy biando		4 Muy consistente	-	9	Índice R	Dirección
So 187	28				22			_		<u> </u>	15		_	0.5							-	Х	_		_			4	_	Х	\perp	_		X	_	+ +	х	4	_		\bot	Х		Ш	_	18.4	-
So 185		_		_	24			_		<u> </u>	15		_		1							Х	_		_	_	_	4	_	Х	\perp	4		х		-	х	1	_		4	Х		Ш		16.7	
So 215		_	_	19	_	_	_	_		_	15		_				10				_	Х	_		_	_	_	4	_	х		4		×	_		x	_	_		4	Х		Щ	-	39.7	_
So 172		_		10						1	15		_		1						;	Х	_		_			4	_	Х		4		х		_	х		_		4	х		Ш		11.2	
So 185		_	_	15						╄	15		_		2						;	Х	_		_			4	_	Х	\perp	_	х	_		-	x	1	_		4	х		Ш	_	33.5	-
So 170				18				_		4			_		2						:	Х	_							Х		_	х			_	х	1	_		_	Х		Ш		26.2	_
So 182		_		13							15		_	1							;	х								х			х				x				\perp	Х			_	17.2	_
So 200				8							15				2						:	х								х			х				х				\perp	х			-	25.0	_
So 193		_		13							15				2							х								х			х				х					х				10.7	
So 175			6								15			0.5								х								х			х				х				┸	х			Ш	37.6	\downarrow
J1 18				9						4				1								х								х				х			х					х			Ш		
J2 7	80		4							4				1								х								х				х			х					х					
J3 230				10						4							5					х								х			×				x					х					
J4 242	90		5	20						4							10					х								х			х				х					Х					
J5 250	90			20						4				0.5								х								х			х				х					х					
J6 28	90			14						4				0.5								х								х			х				х					х					
J7 335	90			20						4				1								х								х			х				х					х					
J8 230	80			9						4							10					х								х			х				х					х					
J9 236	80			11						4									20			х								х			х				х					х					
J10 220					23					4				1						Ī	1	х					Ī			х			х				х					х					
J11 234	90				24					4				0.5								х						T	T	х			×				х				T	х		П	П		
J12 334	90			8						4				0.5								х								х			×				х					х					
J13 233				16						5				1								х								х			×			_	х					х					
J14 340		_	3							5			T	1								х								х		1	×	T		-	х					х		П	Ħ		\Box
J15 235	_	_	_	10						5	-						10			T	-	х					T	T	T	х	1 1	1	х			-	x	T			\top	х		\Box	H		\Box
TIPO D)		9	So -	Estr	atifi	icac	ión	П	J1	.Jn -	- Jur	itas					REL		_				S - A	rer	na			B - I	Bred					Cua	arzo	0		С) - Ć	xic	los	П		$\uparrow \neg \uparrow$
					9	S1 -	Esq	uisto	osid	ad		F1	.Fn	- Fa	llas					G-	Gra	ava	s			A - A	۱rci	llas	5		М-	Mil	oni	ta		_	Cal		_		F	- Fe	eld	esp	atos	s	