ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la tierra

Diseño de un campamento desmontable "Mina escuela" en la concesión minera FICT-1

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Ingeniero Civil

Presentado por:
Carlos Raul Ramírez Hidalgo
Kevin Washington Romero Quirizumbay

GUAYAQUIL – ECUADOR Año: 2020

DEDICATORIA

A lo largo de estos años han pasado eventos que han formado mi carácter, pero más que todo la sabiduría y enseñanza de mis padres han hecho que ahora a culminar mis estudios me sienta orgullo de la persona que soy y sé que ellos sentirían lo mismo si estuvieran con vida por eso y más este proyecto es dedicado a ellos. Martha Hidalgo y Carlos Ramírez. De la mano de Dios seguiré cumpliendo las metas que me proponga de aquí en adelante.

Sin dejar a un lado, mis hermanas, que me han ayudado en lo que mas han podido y que al fin acabó la familia siempre esta para apoyarse unos a los otros.

Carlos Raul Ramírez Hidalgo.

DEDICATORIA

El presente trabajo se lo dedico principalmente a Dios por darme la oportunidad de culminar mi formación profesional.

A mi madre, por acompañarme en cada logro alcanzado y brindarme su apoyo incondicional.

A mi padre, por ser mi inspiración y ejemplo que seguir, formando un hombre de buenos valores.

A mis hermanos, que siempre me acompañan con sus sonrisas, alegrando cada uno de mis días.

Kevin Washington Romero Quirizumbay

AGRADECIMIENTOS

Primeramente, agradecer a Dios que me ha dado la sabiduría necesaria para tomar buenas decisiones y llegar a culminar esta etapa de estudiante universitario.

A mis amigos, que han sido una parte esencial en esta etapa estudiantil. Tanto en el ámbito estudiantil como en momentos de diversión.

A los profesores, en especial aquellos que aparte de ser grandes maestros también son grandes consejeros.

A la ESPOL por ser una institución donde aprendí que no hay obstáculos que te detenga ni materia que no se pueda pasar. Con dedicación y muchas horas de estudio todo se puede.

Carlos Raul Ramírez Hidalgo

AGRADECIMIENTOS

Le agradezco a Dios por guiarme, cuidarme y darme la fortaleza para culminar con esta etapa de mi vida.

A mis padres, que han sido un pilar fundamental en el transcurso de mi carrera estudiantil, motivándome a lograr lo mejor.

A mis hermanos, por siempre darme fuerza y motivación para la seguir adelante.

A mis abuelos, por estar velando siempre por mi bienestar.

A mis amigos, que estuvieron acompañando y compartiendo conmigo a lo largo de estos años universitarios.

A la Escuela Superior Politécnica del Litoral, donde adquirí una infinidad de conocimientos fundamentales.

A todos los docentes, que compartieron sus conocimientos, contribuyendo en gran parte de mi formación profesional.

Kevin Washington Romero Quirizumbay

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; Carlos Raul Ramírez Hidalgo, Kevin Washington Romero Quirizumbay y damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Carlos Raul Ramírez

Hidalgo

Kevin Washington

Romero Quirizumbay

EVALUADORES

ING. DAVIDE BESENZON VENEGAS

PROFESOR DE LA MATERIA

ING. CARLOS QUISHPE
OTACOMA

PROFESOR TUTOR

RESUMEN

La FICT posee una concesión minera donde no existe un espacio propio para albergar

estudiantes de ingeniería en minas, lo cual dificulta llevar a cabo salidas de campo.

Provocando en los estudiantes una falta de experiencia en situaciones reales dentro de

un proyecto. Por lo tanto, en el presente trabajo se pretende diseñar un campamento

desmontable.

Dentro del proyecto analizamos una misma estructura con diferentes materiales, madera

y acero, donde se comparó las variables de transporte, durabilidad, mantenimiento y

costos. Además, se utilizó una matriz de compensación evaluando con un nivel de

funcionalidad a las variables mencionadas anteriormente. Con la condición de que el

campamento sea desmontable, se consideró principalmente la durabilidad y

mantenimiento de la estructura.

La estructura metálica se diseñó en un área de ocupación de 144 m², con una capacidad

para albergar a 18 personas, con espacios para oficinas, departamento médico, cocina,

comedor, bodega, baños y habitaciones. Al mismo tiempo, se establecieron 5 pórticos

tipo celosía separados a 3 m entre sí. Analizándolo como un sistema OMF donde se

diseña para permanecer en el rango elásticos con una capacidad mínima de alcanzar

deformaciones en el rango inelástico.

Por último, se comprobó el cumplimiento de los requisitos establecidos en la NEC-SE-

DS, obteniéndose de esta forma perfiles óptimos en capacidad de resistencia de carga.

El presupuesto de obra obtenido es de \$98,479.96, y el costo por metro cuadrado es de

\$333.60, en un periodo de trabajo de mes y medio para la construcción del proyecto.

Palabra Clave: campamento, desmontable, metálica, sistema, minería.

Ī

ABSTRACT

FICT has a mining concession where there is no space to house mining engineering

students, which makes it difficult to carry out field trips. As a consequence, students lack

experience in real situations within a project. Therefore, in the present document we

present the design of a demountable camp.

In this project we analyzed the same structure with different materials, wood and steel,

while comparing variables of transport, durability, maintenance and costs. In addition, a

compensation matrix was used for evaluating the level of functionality for aforementioned

variables. Given the condition that the camp has to be dismountable, the durability and

maintenance of the structure were the main factors considered.

The steel structure was designed for an area of occupation of 144 m², with a capacity to

house 18 people, with space for offices, a medical department, kitchen, dining room,

storage room, bathrooms and bedrooms. At the same time, 5 lattice type steel frames

were set up 3 m apart. Analyzing it as an OMF system, designed to remain in the elastic

range with a minimum capacity to achieve deformations in the inelastic range.

Finally, a compliance with the requirements established in the NEC-SE-DS was verified,

thus obtaining optimal profiles in load resistance capacity.

The project budget obtained is \$ 98,479.96, being \$ 333.60 the cost per square meter,

considering a timeframe of a month and a half for the construction of the project.

Key words: camp, demountable, steel, system, mining.:

Ш

ÍNDICE GENERAL

RESUMEN		ا
ABSTRACT		.II
ÍNDICE GENERA	AL	Ш
ABREVIATURAS	5	VI
SIMBOLOGÍA	V	/
ÍNDICE DE FIGU	JRASV	Ш
ÍNDICE DE TABI	LAS	ΙX
ÍNDICE DE PLAI	NOS	Χ
CAPÍTULO 1		.1
1 Introducción	1	.1
1.1 Descripc	ción del problema	.2
1.2 Justifica	ción del problema	.3
1.3 Alcance.		.3
1.4 Objetivo	S	.3
1.4.1 Obje	etivos General	.3
1.4.2 Obje	etivos Específicos	.4
1.5 Geografi	ía	.4
1.5.1 Ubic	cación Geográfica	.4
1.5.2 Aspe	ectos Geográficos	.4
1.6 Marco te	eórico	.5
1.6.1 Refe	erencia histórica	.5
1.6.2 Cam	npamentos	.5
1.6.3 Galp	oones	.6
1.6.4 Acer	ro estructural	.7
1.6.5 Siste	emas estructurales	.8

	1.6	6.6	Definición de cargas	10
	1.7	Alte	ernativas	10
	1.7	7.1	Proyectos estructurales de madera	11
	1.7	7.2	Proyectos estructurales de acero	11
	1.7	7.3	Diferencias entre costo de una vivienda de madera y acero	12
С	APÍTI	JLO	2	15
2	Me	etodo	ología	15
	2.1	Re	copilación de información topográfica	15
	2.2	Dis	eño de planos arquitectónicos	16
	2.3	Dis	eño estructural	17
	2.3	3.1	Normativas de diseño	17
	2.3	3.2	Especificaciones técnicas (materiales estructurales)	17
	2.3	3.3	Análisis de las cargas	18
	2.4	Dis	eño de cimentación	22
	2.4	1.1	Placa base	22
	2.4	1.2	Cimentación superficial	25
	2.5	Est	rudio de Impacto ambiental	26
	2.5	5.1	Permiso ambiental	26
С	APÍTI	JLO	3	27
3	Re	sulta	ados y análisis	27
	3.1	Res	sultados	27
	3.1	1.1	Diseño estructural	27
	3.1	1.2	MODELADO EN SAP	30
	3.2	Pre	esupuesto	31
С	APÍTI	JLO	4	34
4	ΕV	/ALL	JACIÓN DE IMPACTO AMBIENTAL	34
	4 1	Ohi	ietivos	34

4.	1.1	Objetivo general	34
4.	1.2	Objetivo especifico	34
4.2	Des	scripción del proyecto	34
4.3	Ubi	icación geográfica	36
4.4	Tip	o de proyecto	37
4.5	Act	tividades del proyecto	38
4.6	Lín	ea base ambiental	39
4.0	6.1	Factores Climáticos	39
4.0	6.2	Suelo	39
4.0	6.3	Fauna	40
4.0	6.4	Flora	40
4.7	lde	ntificación de factores, aspectos e impactos ambientales	41
4.8	Val	loración de los impactos ambientales	43
4.9	Ме	didas de prevención	46
4.10	C	CONCLUSIÓN	48
CAPÍT	ULO	5	49
5 Co	onclu	siones y recomendaciones	49
5.1	Cor	nclusiones	49
5.2	Red	comendaciones	50
BIBLIC	GRF	=ÍA	51
APÉNI	DICE	S	53

ABREVIATURAS

ACI American Concrete Institute

AISC American Institute of Steel Construction

AISI American Iron and Steel Institute

ANSI American National Standards Institute

ASTM American Society for Testing and Materials

ESPOL Escuela Superior Politécnica del Litoral

FICT Facultad de Ingeniería en Ciencias de la Tierra

INEN Instituto Ecuatoriano de estandarización y normalización

LRFD Load and Resistance Factor Design

NEC Norma Ecuatoriana de la Construcción

SUIA Sistema Único de Información Ambiental

TULSMA Texto Unificado de Legislación Secundaria de Medio Ambiente

WGS World Geodetic System

SIMBOLOGÍA

cm Centímetros

cm² Centímetros cuadrados

CO₂ Dióxido de carbono

g GravedadKg Kilogramo

Kgf Kilogramo fuerza

kPa Kilo Pascales

Kip Libra fuerza por pulgada cuadrada

KN/m³ Kilo newton por metro cúbico

Ksi Kilo libra fuerza por pulgada cuadrada

Kg/cm² Kilogramo por centímetro cuadrado

Kg/m³ Kilogramo por metro cúbico

Kgf/cm² Kilogramo fuerza por centímetro cuadrado

m Metro

mm Milímetros

msnm Metro sobre el nivel del mar

m² Metro cuadrado

m³ Metro cúbico

m/s Metro por segundo

in, pulgPulgadaRefReferenciaSegundosTonTonelada

Tonf Tonelada fuerza

Ton/cm² Tonelada por centímetro cuadrado

Ton/m² Tonelada por metro cuadrado

°C Grado centígrado

% Porcentaje

\$ Dólares americanos

ÍNDICE DE FIGURAS

Figura 1.1 Mapa geográfico del área minera	4
Figura 1.2 Terraza intermedia donde se evidencia asentamiento	5
Figura 1.3 Campamento	6
Figura 1.4 Galpón	6
Figura 1.5 Marco Rígido	9
Figura 1.6 Marco de cercha y columna	9
Figura 2.1 Vista en perspectiva del terreno	15
Figura 2.2 Distribución arquitectónica del proyecto.	17
Figura 2.3 Espectro de respuesta elástico e inelástico de diseño	20
Figura 3.1. Esquema de conexión empernada	29
Figura 3.2 Diagrama de fuerza axial	30
Figura 3.3 Diagrama de momento.	30
Figura 3.4 Curva de flujo de trabajo.	33
Figura 4.1 Puntos de ubicación de coordenadas	36
Figura 4.2 Trámite ambiental	37
Figura 4.3 Ingreso de coordenadas del proyecto.	37

ÍNDICE DE TABLAS

Tabla 1.1 Características del acero determinas por la ASTM	8
Tabla 1.2 Costo directo total de una vivienda construida con acero	12
Tabla 1.3 Costo directo total de una vivienda construida con madera	13
Tabla 1.4 Matriz de compensación	14
Tabla 2.1 Matriz de necesidades del campamento	16
Tabla 2.2 Propiedades de los materiales	17
Tabla 2.3 Valores referenciales	19
Tabla 3.1 Perfiles empleados en el diseño	27
Tabla 3.2 Dimensiones y número de pernos	28
Tabla 3.3 Longitud de soldadura	28
Tabla 3.4 Reacciones en la base	29
Tabla 3.5 Pernos por conexión	29
Tabla 3.6 Listado de rubros de proyecto	31
Tabla 3.7 Precios totales por rubro	32
Tabla 4.1 Coordenadas del proyecto	36
Tabla 4.2 Fases del proyectos y actividades con su respectiva descripción	38
Tabla 4.3 Factores climáticos	39
Tabla 4.4 Fauna del sitio de proyecto	40
Tabla 4.5 Tipos de flora	41
Tabla 4.6 Impacto ambiental generado en cada fase del proyecto	42
Tabla 4.7 Matriz de valoración de impacto ambiental	44
Tabla 4.8 Propuesta de medidas de prevención.	46

ÍNDICE DE PLANOS

Plano A-001 : Arquitectónica planta baja

Plano A-002 : Arquitectónica planta alta

Plano ES-001 : Cimentación

Plano ES-002 : Estructura de acero pórtico eje A y E

Plano ES-003 : Estructura de acero pórtico eje B y D

Plano ES-004 : Estructura de acero pórtico eje C

Plano ES-005 : Conexiones estructurales

Plano ES-006 : Armazón de paredes tipo sandwich

CAPÍTULO 1

1 INTRODUCCIÓN

La universidad es un acceso a la sociedad del conocimiento además de un espacio de innovación permanente, clave para el crecimiento de un país en el ámbito social, político y económico. Gracias a los avances tecnológico y científico los países han ido progresando hasta llegar a situarse como una comunidad avanzada durante las tres últimas décadas, pues, a través del tiempo se ha visto que los países más desarrollados eligieron políticas de educación superior en masa. (Clemente Ruiz, 1997)

Con el paso de los años las universidades han optado por plantear diferentes métodos educativos, con la finalidad de que los estudiantes adquieran conocimientos de manera interactiva; siendo una de ellas las salidas de campo. En donde se trata de eliminar parte de la rutina diaria de aprendizaje, de los alumnos, a la cual están acostumbrados dentro de las aulas de clases; además, dan una conexión con el mundo laboral y plasman su conocimiento en problemas o necesidades presentes en la sociedad.

En la actualidad, la carrera de ingeniería en minas, en el ecuador, tienen una deficiencia en lo que respecta a salidas de campo. Debido a la falta de lugares destinados para el alojamiento y capacitación de los futuros profesionales.

En virtud de lo señalado, se busca implementar una estructura metálica desmontables, que tengan la característica de ser empernado; luego desarmarlo y trasladarlo con gran facilidad a otro sitio donde sea solicitado. Dicho campamento constara con las áreas necesarias para alojar estudiantes, profesores e ingenieros.

De este modo se trata de mejorar el nivel educativo de los estudiantes pertenecientes a la carrera de ingeniería en mina, cuya finalidad es poseer un nivel competitivo con las demás universidades.

1.1 Descripción del problema

A nivel latinoamericano, según el (QS TOPUNIVERSITIES,2020) E.S.P.O.L. se ubica en el puesto 64 de mejores universidades. Pese a los altos estándares educativos de la institución, aún se tiene falencia en la formación del alumnado.

Entre las opiniones recolectada a diferentes estudiantes, se demuestra que, a pesar de adquirir una gran variedad de conocimientos teóricos, en el salón de clases, la gran mayoría carece de experiencias en situaciones reales dentro de un proyecto.

Para ilustrar mejor, se toma como ejemplo a los estudiantes de la carrera de ingeniería en minas, ya que es fundamental en dicha profesión realizar expediciones a campo abierto; sin embargo, es de suma importancia contar con diversas áreas similares a una residencia, donde el alumno pueda descansar, alimentarse y almacenar equipos o herramientas de trabajo, incluyendo las muestras recolectadas en campo; también, es ineludible evaluar el estado de salud pertinente a cada persona previo al ingresar a una mina.

Llegado a este punto, la Facultad de Ingeniería en Ciencia de la Tierra cuenta con una concesión minera donde se tiene planeado elaborar un proyecto de mina escuela, el cual ya presenta un estudio previo por el Ing. José Daniel Polo, llamado "Estudio Geotécnico y Geológico en las Minas abandonadas de la Concesión FICT-1 para el prediseño de una Mina Escuela".

Por tanto, en su empeño por contribuir a la mejora continua del nivel de educación superior, la F.I.C.T., se encuentra en la necesidad de disponer de un campamento desmontable donde se pueda satisfacer las necesidades de un grupo de investigadores o estudiantes.

1.2 Justificación del problema

La falta de una infraestructura para salidas de campo donde se prevee fortalecer los conocimientos adquiridos, hace obligatoria la presencia de una residencia funcional. A fin de permitir una interacción entre el estudiante y los mecanismos utilizados en el sitio; al mismo tiempo de conocer las formalidades que se sigue antes del ingreso a un proyecto.

Dicho lo anterior, se busca diseñar una estructura de acero para la edificación de un campamento con sus respectivas áreas sean estas sociales o de descanso, teniendo en cuenta los siguientes puntos: procesos constructivos, tiempo; falta de vías asfaltadas, acceso; utilización de materiales o equipos, transporte. Simultáneamente, cada uno de los elementos de la armadura debe cumplir las solicitaciones estructurales, conforme a lo establecido en la normativa de diseño vigente, con el propósito de salvaguardar la vida de todos los ocupantes.

1.3 Alcance

El proyecto detallado a continuación tiene como relevancia la elaboración de planos arquitectónicos, estructurales y de cimentación, con base al análisis y diseño de una estructura de tipo OMF para un campamento minero incluyendo el respectivo presupuesto. Generando finalmente un folleto en el cual se indique el proceso de montaje de la estructura, donde se detallan las conexiones y el proceso que debe llevarse a cabo, con el objetivo de implementar correctamente la estructura en sitio.

El presente documento no contempla el diseño eléctrico e hidrosanitario, ni la cimentación en otros tipos de suelo (solo se mencionan que tipos podrían utilizarse).

1.4 Objetivos

1.4.1 Objetivos General

Diseñar un campamento con la capacidad de ser ensamblado y desmontado en sitio, para alojar estudiantes, profesores o autoridades pertinentes en la concesión minera FICT-1.

1.4.2 Objetivos Específicos

- Diseñar una estructura metálica incluyendo la cimentación para el sitio donde se estará ubicado el campamento
- 2. Obtener planos arquitectónicos, estructurales y de cimentación.
- Realizar el presupuesto estimado del proyecto, basándose en el análisis de precios unitarios (APUS).

1.5 Geografía

1.5.1 Ubicación Geográfica

La edificación será ensamblada en el territorio correspondiente a la concesión FICT-1, perteneciente a E.S.P.O.L., el cual está localizado en al extremo suroeste del cantón Naranjal, provincia del Guayas.

Figura 1.1 Mapa geográfico del área minera

Fuente: Google Earth, 2020

La concesión tiene una extensión de 228.09 hectáreas, de la cual tiene un área aproximada de 2000 metros cuadrados destinados para la construcción de campamentos provisionales.

1.5.2 Aspectos Geográficos

La zona de construcción presenta una serie de terrazas continuas con pendientes pronunciadas, esto es debido a las irregularidades montañosas.

1.6 Marco teórico

1.6.1 Referencia histórica

La Facultad de ingeniería en Ciencias de la Tierra (FICT), perteneciente a E.S.P.O.L., desde mucho tiempo atrás tiene a su cargo la concesión minera FICT-1; a pesar de ello, el área actualmente se encuentra abandonada y no se realiza actividad alguna. Esto debido a que el operador minero desistió de sus labores en el sitio; por tanto, el lugar cuenta con zonas habilitadas para la implementación de campamentos, galerías subterráneas, entre otros.

En un sector del área minera se evidencian restos correspondientes a un previo asentamiento de algún tipo de estructura.

Figura 1.2 Terraza intermedia donde se evidencia asentamiento

Fuente: FICT-ESPOL,2019

1.6.2 Campamentos

Son espacios sociales destinados a concentrar un gran número de personas, el cual se caracteriza por tener un sin fin usos entre los más comunes están la recreación, el trabajo e investigación. Para el caso de estudio, la importancia de la estructura radica en ayudar contribuir al desenvolvimiento de futuros ingenieros en mina dentro de un proyecto.

Figura 1.3 Campamento

Fuente: Sedemi

1.6.3 Galpones

Es una estructura de alta resistencia que no disipa energía; no obstante, se las emplea cuando existen terrenos con baja capacidad portante, generando de esta forma grandes beneficios a la armadura en lugares sísmico. Normalmente no necesita de un puente grúa para su montaje.

Figura 1.4 Galpón

Fuente: Sismotec

1.6.3.1 Consideraciones en la implementación de un campamento

El levantamiento de la obra está destinado para albergar mayormente a estudiantes, profesores e investigadores de la carrera de ingeniería en minas. Conforme a las necesidades del grupo selecto de persona se establecen diversas áreas, privadas o sociales, previendo acoplar la siguiente distribución:

- Área social
- Baños
- Bodega
- Cocina
- Comedor
- Departamento Medico
- Dormitorios
- Duchas
- Oficinas

1.6.3.2 Condiciones generales para emplazamiento de la estructura

Conforme a la utilidad de la armadura y en donde va a permanecer un extenso periodo de tiempo, se toman las siguientes consideraciones:

- Terreno
- Fácil montaje y desmontaje de la estructura
- Ubicación
- Clima
- Pisos
- Orientación
- Sistema (OMF-alta resistencia).

1.6.4 Acero estructural

El acero estructural por lo general se lo comercializa en forma de perfilería o laminas; además, se caracteriza por poseer una alta resistencia a compresión como a tracción. Por otra parte, al estar compuesto principalmente por el hierro y carbono, tiene la desventaja de ser vulnerable a la corrosión; por tanto, debe ser recubierto de zinc (galvanizado), anticorrosivo o pintura.

A continuación, se presenta una tabla de las características del acero según la American Society of Testing Materials, ASTM. (Miguel David & Jhon Arenas, 2008)

Tabla 1.1 Características del acero determinas por la ASTM

Designación ASTM	Acero	Formas	Usos	Fy min. Ksi	Fu min. tensión ksi
A-36 NOM B-254	Al carbono	Perfiles, barras y placas	Puentes, edificios estructurales en gral. Atornillados, remachados y soldados	36 e < 8" 32 e > 8"	58 – 80
A-529 NOM B-99	Al carbono	Perfiles y placas e< ½"	Igual al A-36	42	60-85
A-441 NOM B-284	De alta resistencia y baja aleación	Perfiles, placas y barras e < 8"	Igual al A-36 Tanques	40-50	60-70
A-572 NOM B	Alta resistencia y baja aleación	Perfiles, placas y barras e< 6"	Construcciones atornilladas, remaches. No en puentes soldados cuando Fy> 55 ksi	42-65	60-80
A-242 NOM B-282	Alta resistencia, baja aleación y resistente a la corrosión atmosférica	Perfiles, placas y barras e< 4"	Construcciones soldadas, atornillada, técnica especial de soldadura	42-50	63-70
A-514	Templados y revenidos	Placas e< 4"	Construcciones soldada especialmente. No se usa si se requiere gran ductilidad	90- 100	100- 150

Fuente: Diana Ardila & Alexander Peraza,2004

1.6.5 Sistemas estructurales

Los sistemas más utilizados en el diseño de galpones son:

1.6.5.1 Marcos Rígidos

Son mayormente empleados en la construcción de edificios, las cuales están compuestas por columnas y vigas que se encuentran articulas o empotradas en su cimentación, estos marcos pueden ser desarrollados en 2 o 3 dimensiones. Generalmente estas estructuras son indeterminadas al realizar un análisis estructural. (Alex García & Eduardo Gálvez,2003)

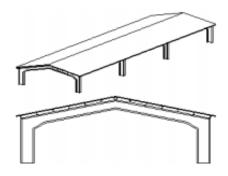


Figura 1.5 Marco Rígido.

Fuente: Alex García & Eduardo Gálvez, 2003

1.6.5.2 Marcos de cercha y columna.

Regularmente se utiliza este tipo de marcos en proyectos que requieran grandes claros y la altura no interfiere en gran magnitud al diseño. El armazón en si está compuesta de barras a tensión y elementos esbeltos tipo columna.

Gracias al arreglo geométrico presente que se forma con sus miembros, las cargas causantes de la flexión en las armaduras se concierten en fuerzas de compresión tensión en los miembros. Otro rasgo del arreglo en las armaduras de techo hace que la carga se transmita a través de los nodos por medio de los largueros (correas). Todo el conjunto de la armadura techo-columna es lo que se conoce como marco. (Alex García & Eduardo Gálvez,2003)



Figura 1.6 Marco de cercha y columna

Fuente: Alex García & Eduardo Gálvez,2003

1.6.6 Definición de cargas

1.6.6.1 Cargas vivas

También se las puede llamar carga variable, son aquellas que depende de la ocupación que se le a la edificación. Las que las conforman son: el peso de personas, mobiliario, accesorios móviles o temporales, etc. (NEC-SE-CG,2015)

1.6.6.2 Cargas Permanentes o Carga muerta

Están constituidas por el peso propio de los elementos estructurales que conforman la edificación. Permanecen inertes en su lugar como: muros, instalaciones en general, paredes, recubrimiento y todo objeto integrado permanentemente a la estructura. (NEC-SE-CG,2015)

1.7 Alternativas

En el presente documento se consideran tres posibles alternativas de diseño estructural, basándose principalmente en el material utilizado sean estos de:

- Hormigón Armado
- Acero
- Madera

A causa de los diferentes componentes mencionados, se deben establecer variables que en conjunto generan un diseño óptimo. En el caso de análisis, selección de propuesta, se examinan los criterios más significativos en base a las solicitaciones del proyecto.

Entre todas las variables que se pueden indicar, las de mayor importancia para el emplazamiento de nuestro estudio son:

- Estructura desmontable
- Fácil traslado
- Mantenimiento
- Durabilidad

Dicho lo anterior, la estructura de hormigón armado se descartaría totalmente de entrada porque no cumple con el criterio de ser desmontable, condición fundamental una vez dado por culminada la concesión minera.

Por lo tanto, haremos una comparación entre estructuras de madera y acero. Toda esta información es tomada de un estudio técnico económico comparativo entre proyectos estructurales de hormigón armado, acero y madera para viviendas y edificios.

1.7.1 Proyectos estructurales de madera

La madera posee un comportamiento excepcional en lugares sísmicos, dado que absorbe con mayor eficacia las fuerzas dinámicas inducidas por sismos, gracias a su flexibilidad, fortaleza y poco peso. Lo que da como resultado una disminución de la aceleración de la estructura por la reducción de su inercia. Con la madera se puede hace estructuras desmontables, condición necesaria para la elaboración del campamento.

1.7.1.1 Condiciones de la madera

La madera es un material que se lo encuentra en la naturaleza y como tal no es susceptible a daños externos. La durabilidad depende tanto de el tipo de especie y el lugar donde se lo extrajo, además de la resistencia que tiene ante la pudrición por hongos o ataques externos como insectos u otros agentes destructores.

1.7.2 Proyectos estructurales de acero.

El acero se lo conoce por su alta resistencia lo cual brinda poco peso a una estructura dando así la ventaja de tener grandes luces y construir en suelos con poca capacidad portante. Bajo condiciones normales de funcionamiento el acero no cambia sus propiedades en el tiempo.

Así como en la madera tiene la posibilidad de diseñarse una estructura desmontable y poder ser trasladado a otro sitio.

1.7.2.1 Condiciones del acero

El mal que aqueja a una estructura metálica es la corrosión, la cual afecta el acero causando un deterioro de sus propiedades. La corrosión por agente microbiológicos es poco frecuente, pero si existen bacterias que aceleran este proceso.

Para disminuir este problema lo que se puede hacer es utilizar aceros con igual composición. En el mercado existen diferentes materiales que brinda capas de protección para el acero, lo más recomendable es utilizar pintura automotriz.

1.7.3 Diferencias entre costo de una vivienda de madera y acero

Tabla 1.2 Costo directo total de una vivienda construida con acero

	TABLA DE CANTIDADES Y PRECIO	s			
ÓDIGO	DESCRIPCION	UNIDAD	CANTIDAD	P.UNITARIO	TOTAL
1	MOVIMIENTO DE TIERRAS				
	Excavación a máguina de cimientos	m3	55.28	2.66	147.0
	Relleno compactado suelo natural	m3	37.74	3.68	138.8
	Desalojo de material	m3	21.05	2.86	60.2
	ESTRUCTURA				
2,1	Hormigón simple en raplantillo f'c=140kg/cm2	m3	1.22	85.75	104.6
	Hormigón simple en plintos f'c=210kg/cm2	m3	6.12	102.30	626.0
	Acero de refuerzo en plintos fy=4200kg/cm2	kg	260.48	1.39	362.0
2,4	Hormigón ciclópeo para cimientos de cadenas de amarre f'c=180kg/cm2	m3	6.68	74.13	495.1
2,5	Hormigón simple en cadenas f'c=210kg/cm2 (incluye encofrados)	m3	1.75	292.75	512.3
2,6	Acero de refuerzo en cadenas fy=4200kg/cm2	kg	184.51	1.39	256.4
2,7	Hormigón simple en losa de contrapiso f'c=180kg/cm2 (e=0.10m)	m2	54.73	9.97	545.6
2,8	Lastre	m3	5.47	12.05	65.9
2,9	Malla electrosoldada d=5.5mm, 0.15x0.15m (contrapiso)	m2	54.73	4.66	255.0
2,10	Hormigón simple en pedestales f'c=210kg/cm2 (incluye encofrados)	m3	3.16	383.92	1,213.1
2,11	Acero de refuerzo en pedestales fy=4200kg/cm2	kg	620.84	1.39	862.9
2,12	Suministro, fabricación y montaje de acero ASTM A-38	kg	5,155.64	1.92	9,898.8
2,13	Hormigón simple en losas deck f'c=210kg/cm2	m3	8.64	109.49	945.9
2,14	Lámina metálica en losas deck (e=0.65mm)	kg	734.62	1.94	1,425.1
2,15	Malla electrosoldada d=5.5mm, 0.15x0.15m (losas de entrepiso y cubierta)	m2	115.14	4.66	536.5
		TOTAL:			18,452.10

Fuente: Atapuma Naranjo, Jarrin Vivar, Mora Martínez, 2013

Tabla 1.3 Costo directo total de una vivienda construida con madera

): Vivienda Madera				
	TABLA DE CANTIDADES Y PRECIOS				
CÓDIGO	DESCRIPCION	UNIDAD	CANTIDAD	P.UNITARIO	TOTAL
1	MOVIMIENTO DE TIERRAS				
1,1	Excavación a máquina de cimientos	m3	38.64	2.66	102.7
1,2	Relleno compactado suelo natural	m3	24.05	3.68	88.5
1,3	Desalojo de material	m3	17.51	2.86	50.0
2	ESTRUCTURA				
2,1	Hormigón simple en raplantillo f'c=140kg/cm2	m3	0.80	85.75	68.6
2,2	Hormigón simple en plintos f'c=210kg/cm2	m3	4.00	102.30	409.2
2,3 2,4	Acero de refuerzo en plintos fy=4200kg/cm2	kg	243.58	1.39	338.5
2,4	Hormigón ciclópeo para cimientos de cadenas de amarre f'c=180kg/cm2	m3	7.98	74.13	590.0
2,5	Hormigón simple en cadenas f'c=210kg/cm2 (incluye encofrados)	m3	2.00	292.75	585.5
2,6	Acero de refuerzo en cadenas fy=4200kg/cm2	kg	182.92	1.39	254.2
2,7	Lastre	m3	5.47	12.05	65.9
2,8 2,9	Suministro y montaje de soleras y entablados de contrapiso	m	206.53	5.67	1,171.0
2,9	Hormigón simple en pedestales f'c=210kg/cm2 (incluye encofrados)	m3	2.38	383.92	913.7
2,10	Acero de refuerzo en pedestales fy=4200kg/cm2	kg	365.74	1.39	508.3
2,11	Suministro y montaje de acero ASTM A-36 en platinas y pernos	kg	47.45	1.65	78.2
2,12	Suministro, fabricación y montaje de madera	m	665.15	5.44	3,618.4
2,13	Suministro, fabricación y montaje de entablado de entrepiso y cubierta	m	309.50	5.68	1,757.9
2,14	Suministro, fabricación y montaje de madera en cercha	m	669.84	7.18	4,809.4
		TOTAL:			15,410.7

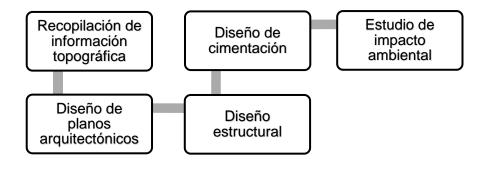
Fuente: Atapuma Naranjo, Jarrin Vivar, Mora Martínez, 2013

En las tablas 1.2 y 1.3 se puede observar el costo de una vivienda de 2 pisos hecha en acero y madera. El costo en acero es de \$18,452.16 mientra que en madera es \$15,410.74. Lo cual en compracion la madera es mas económica que el acero. Entonces podemos concluir que lo mas factible para la contruccion del campamneto en cuestion de precio, la variable desmontale, seria una estructura de madera, pero no.

La otra variable que interviene en este proyecto es la durabilidad, la madera al trabajar en su montaje es subsetible a que se produsca pequeñas fisuzas, que al pasar el tiempo puedan a que ayuden a perder algunas de sus propiedades. Además, el monataje y posterior desmontaje produce un disminución representativo en la resistencia de madera.

Tabla 1.4 Matriz de compensación

Factor	Peso (%)	Madera	Acero
Costo	20	20	13
Durabilidad	35	25	35
Transporte	25	25	25
Mantenimiento	20	5	15
TOTAL	100	75	88


Fuente: Propia

Por lo tanto, al no tener una gran diferencia de costo la mejor opcion que se a tomado para el diseño del campamento es una estructura de acero porque cumple eficientemente con criterio de se desmontable, de fácil traslado, bajo mantenimiento y alta durabilidad.

CAPÍTULO 2

2 METODOLOGÍA

Para el diseño de la estructura desmontable tipo galpón se desarrollaron las siguientes actividades:

2.1 Recopilación de información topográfica

En lo referente a topografía, la información fue obtenida gracias a un estudio previamente realizado en la zona, lo que ayudó mucho en el modelamiento del relieve del terreno, mediante el programa Revit. Con esto se logró proyectar el área de construcción destinada para el montaje del campamento; de igual forma, optimizar el recorrido de las tuberías sanitaria, teniendo en consideración la localización del sistema de alcantarillado existente en sitio. Con lo antes mencionado se determinó la ubicación ideal del proyecto, además, de la orientación arquitectónica aprovecharndo de esta forma la luz natural brindada en el lugar.

Figura 2.1 Vista en perspectiva del terreno

Fuente: Ramírez C. y Kevin R., 2020

2.2 Diseño de planos arquitectónicos

El diseño arquitectónico es fundamental para el desarrollo de proyectos de construcción, importando mucho el campo de aplicación y las necesidades del cliente. La correcta distribución de espacios es crucial en el proceso de creación; por lo tanto, para el desarrollo del diseño primero nos basamos en las indicaciones del cliente, las preferencias de espacio pospuestas por él y por último el uso al cual será destinado. A continuación, en la Tabla 2.1 se detalla la matriz de necesidades del campamento minero, elaborado en función de los antes mencionados.

Tabla 2.1 Matriz de necesidades del campamento.

Área	Elementos	
Área administrativa	Oficina	
Área de revisión médica	Departamento médico	
	Baños de hombres y mujeres	
	Bodega	
Área de servicio	Cocina	
	Comedor	
	Salón	
Área de descanso	Habitación de profesores y alumnos	

Una vez determinado cada uno de los requerimientos del proyecto, se establece diseñar el plano arquitectónico para una edificación de dos niveles; conteniendo en el primer nivel el área administrativa, de revisión médica y de servicio a excepción del salón, mientras que en el segundo nivel se ubica el área de descanso y salón.

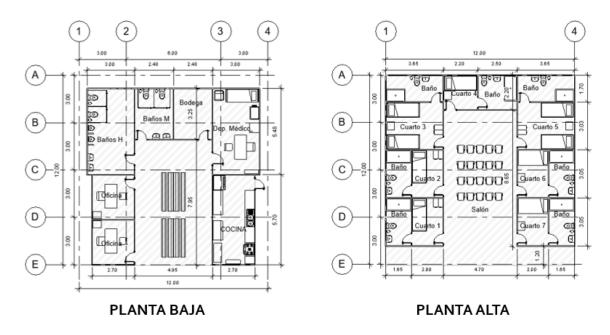


Figura 2.2 Distribución arquitectónica del proyecto.

Fuente: Propia.

2.3 Diseño estructural

2.3.1 Normativas de diseño

Para el diseño estructural se emplearon las siguientes normas:

- NEC-SE-CG, Caga (No Sísmicas) 2015
- NEC-SE-DS, (Peligro Sísmico, Diseño Sismo Resistente) 2015
- AISC360-16, (American Institute of Steel Construction) 2016
- AISC, (Base Plate and Anchord Rod Design Second Edition) 2006
- AISI, (American Iron and Steel Institute)
- ACI318S-14, (America Concrete Institute) 2014

2.3.2 Especificaciones técnicas (materiales estructurales)

Los materiales principalmente considerados dentro de los análisis fueron los siguientes:

Tabla 2.2 Propiedades de los materiales.

Material	Propiedad	Valor
Acero A36	Esfuerzo mínimo de fluencia	Fy = 36 klb/pulg ²

	Peso específico	7850 kg/m ³
	Resistencia a la compresión a los 28 días:	F'c = 240 Kg/cm ²
Hormigón	Módulo de elasticidad E=15000 $\sqrt{f'c}$	Ec = 232.379 Kg/cm ²
	Peso específico	2400 Kg/m ³

2.3.3 Análisis de las cargas

2.3.3.1 Carga viva

Estas cargas dependen de la ocupación o uso a la cual se destinará la estructura; además, están constituidas por el peso de equipos, mobiliarios, personas y accesorios móviles.

El valor de dichas cargas se procedió a tomarlas de la NEC-SE-CG específicamente del capítulo 4.2 tabla 9.

• Habitaciones: 0.2 Ton/m²

• Cubierta: 0.007 Ton/m²

2.3.3.2 Carga muerta permanente

Son las cargas conformadas por el peso propio de cada uno de los elementos de la estructura, estas son calculadas y obtenidas directamente del programa SAP2000, usado para el análisis estructural del proyecto.

2.3.3.3 Carga muerta sobreimpuesta

Son aquellas tales como paredes, instalaciones y todas las cargas no consideradas dentro del programa.

Planchas de acero antideslizantes: 0.05 Ton/m²

Pared tipo sándwich e=50 mm: 0.011 Ton/m²

Instalaciones: 0.02 Ton/m²

2.3.3.4 Zonificación sísmica del sitio

La aceleración máxima en roca es conocida como el valor de Z; a su vez es expresada como porción de la aceleración de la gravedad, que se espera represente el sismo de diseño. La zonificación es el producto de una serie de estudios referentes al peligro sísmico, el cual está basado en un 10% de excedencia dentro 50 años, en otras palabras, para un período de retorno estimado de 475 años.

La geología local ayuda a definir el tipo de perfil de suelo para el diseño sísmico, por ello, tomando como referencia la tabla 2 del capítulo 3.2 de la NEC-SE-DS se determinó como perfil de suelo elegido al suelo tipo D con los criterios de: Vs entre 360 m/s – 180 m/s; N entre 50 – 15; Su mayor a 100 kPa y menor 50 kPa.

2.3.3.5 Espectro de respuesta de diseño según NEC-15

El espectro de repuesta elástica se lo obtuvo a partir de una serie de datos indicados en la normativa, siendo estos la aceleración máxima del terreno, el valor de Z; el tipo de suelo del sitio de emplazamiento del proyecto; por último, los coeficientes de amplificación del suelo, Fa, Fd y Fs, en función del perfil elegido. En la Tabla 2.3 se visualiza cada uno de los valores seleccionas.

Tabla 2.3 Valores referenciales.

Ciudad	:	Naranjal
Suelo tipo	:	D
Z	:	0.40
Fa	:	1.20
Fd	:	1.19
Fs	:	1.28

A continuación, en la figura 2.2 se muestra el espectro elástico e inelástico para un perfil de suelo tipo D, el que se genera a partir de las siguientes expresiones:

Sa=
$$\eta ZFa(1+(\eta -1)T/T_0)$$
; $0 \le T \le T_0$ (2.1)

Sa=
$$\eta ZFa$$
; $T_0 \le T \le T_c$ (2.2)

Sa=
$$\eta$$
ZFa $(T_c/T)^r$; T > T_c (2.3)

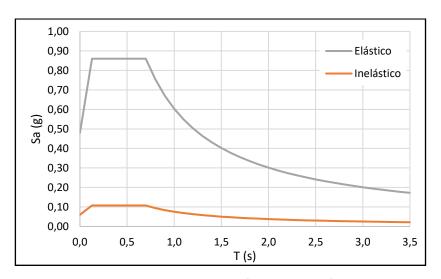


Figura 2.3 Espectro de respuesta elástico e inelástico de diseño.

Dónde:

η : Es la división entre la aceleración espectral Sa en T=0.1s y el
 PGA para el período de retorno indicado.

Fa : Es conocido como coeficiente de amplificación de suelo en la zona para un período corto. Se considera los efectos de sito.

Fd: Coeficiente de amplificación de suelo, donde se amplifica las ordenadas del espectro elástico de respuesta. Se considera los efectos de sito.

Fs : Coeficiente de amplificación de suelo, donde considera el comportamiento no lineal de los suelos.

Sa : Espectro de respuesta elástico de aceleración.

T : Periodo fundamental de vibración de la estructura.

T_o : Periodo límite de vibración en el espectro sísmico elástico.

T_c : Periodo límite de vibración en el espectro sísmico elástico.

2.3.3.6 Combinación de cargas

Mediante varias pruebas se han determinado diferentes combinaciones de cargas, para que la estructura y subestructura deben ser diseñadas de tal forma que la resistencia de diseño iguale o exceda los efectos de las cargas incrementadas, por ellos a continuación mostramos las siguientes combinaciones proporcionada en la NEC-SE-CG

Donde:

D : Carga permanente.

E : Carga de sismo.

L : Carga viva.

Lr : Carga de cubierta.

2.4 Diseño de cimentación

2.4.1 Placa base

La conexión de la placa base perteneciente a la columna viene hacer la interacción existente entre la estructura y la cimentación. Estas conexiones son utilizadas en edificios, con la finalidad de soportar cargas de gravedad; además, funcionan como parte de los sistemas de resistencia a cargas laterales.

Para el diseño se utilizó recomendaciones del ANSI/AISC 360-10. Donde de la sección J8 de la normativa se anotó los siguientes valores:

En el caso de bases de columnas y aplastamiento de concreto el coeficiente de reducción es Ø=0,65 por el método LRFD.

Área total de apoyo de concreto:

$$Pp = 0.85 * fc * A1$$
 (2.11)

En un área menor a la total del apoyo de concreto:

$$Pp = 0.85 \, fc \, A1 \, (A2/A1)^{(1/2)} \tag{2.12}$$

Donde:

A1 : Área de apoyo concéntrico de acero en un soporte de concreto.

[cm²]

A2 : Máxima área de la porción de la superficie de apoyo que es geométricamente similar y concéntricamente con el área de carga. [cm²]

F'c : Resistencia a compresión especificada del hormigón. [Kgf/cm²]

En la situación de las cargas axiales, momentos flectores y cortantes, el concreto ejerce un empuje sobre la placa, donde la fuerza q se determina mediante la ec. 2.13

$$q = fp * B \tag{2.13}$$

Donde:

Fp : Presión entre la placa base y el concreto

B : Ancho de la cimentación de hormigón

La presión máxima soportada por el hormigón

$$qmax = fp max* B (2.14)$$

Se determinó la excentricidad crítica con el ec. 2.15

$$ecrit = \frac{N}{2} - \frac{Pr}{2qmax}$$
 (2.15)

Por otra parte, se obtuvo la razón entre el momento y la fuerza de aplicación

$$e = \frac{Mu}{Pu} \tag{2.16}$$

Con el fin de verificar el cumplimiento de la siguiente condición

Esto nos ayudó a entender que las anclas están sometidas a tensión, debido a los momentos de gran magnitud.

Se verificó la distancia entre el borde de la placa y la barra de anclaje, se asumió inicialmente de 7.62 cm

Posteriormente, se determinó la longitud aportante para ello primero se determinó el valor de f

$$f = \frac{N}{2} - 3 \tag{2.17}$$

Donde:

f : Distancia del eje neutro al eje del tornillo

$$A1 = \left(f + \frac{N}{2}\right)^2 \tag{2.18}$$

$$B1 = 2Pu * \frac{e+f}{qmax}$$
 (2.19)

Se calculó la longitud aportante empleando la expresión 2.20

Y1,2 =
$$\left(f + \frac{N}{2}\right) \pm \sqrt{\left(f + \frac{N}{2}\right)^2 - \frac{2*Pu*(e+f)}{qmax}}$$
 (2.20)

Una vez obtenidos los valores de Y se tomó como valor referencial el mínimo entre ambos.

La tensión de la barra de anclaje se obtuvo empleando la ecuación 2.21

$$Tu = qmax * Y - Pu$$
 (2.21)

Para hallar el espesor de la placa se hizo uso de las siguientes fórmulas:

$$m = \frac{N - 0.95d}{2} \tag{2.21}$$

$$tp_{req} = 1.5 * m * \sqrt{\frac{fpmax}{Fy}}$$
 (2.22)

$$x = \frac{N}{2} - \frac{d}{2} \tag{2.23}$$

$$tp_{req} = 2.11 * \sqrt{\frac{Tu*x}{Fy*B}}$$
 (2.24)

$$n = \frac{B - 0.8bf}{2}$$
 (2.25)

$$tp_{req} = 1.5 * n * \sqrt{\frac{fpmax}{Fy}}$$
 (2.26)

Dentro de los resultados de las ecuaciones mencionas para el espesor, se escoge el mayor de los tres y por último se determinó la fuerza de la barra.

$$Fbarrra = \frac{Tu}{nbarra}$$
 (2.27)

2.4.2 Cimentación superficial

La cimentación es un elemento esencial en el proyecto, cuya función es transmitir directamente todas las cargas que la estructura posee al suelo, de tal forma que no existan asentamientos perjudiciales en la funcionalidad de está.

Por ello, para nuestro diseño lo que se buscó es evaluar la capacidad ultima de carga de una cimentación poco profunda, utilizando la fórmula de Terzaghi la cual se muestra a continuación:

$$qu = c'Nc + qNq + 1/2y BNy$$
 (2.28)

$$qu = yDf (2.29)$$

Donde:

c' : Cohesión del suelo.

γ : Peso unitario del suelo.

Nc, Nq, Ny : Factor de capacidad de carga adimensionales.

Df : Profundidad de la cimentación.

2.5 Estudio de Impacto ambiental

2.5.1 Permiso ambiental

En todo proyecto de ingeniería civil, por más básico y pequeño que sea se requiere de la obtención de un permiso ambiental, para ello ingresamos a la plataforma web del Sistema Único de información Ambiental (SUIA), perteneciente al Ministerio de Ambiente, donde se procedió a ingresar los datos solicitados.

En primera instancia, se consultó el tipo de permiso según la actividad a realizarse y se obtuvo que solo se requiere de un certificado ambiental, lo cual indica una actividad de bajo riesgo ambiental; no obstante, es fundamental revisar la guía de buenas prácticas de la autoridad ambiental.

CAPÍTULO 3

3 RESULTADOS Y ANÁLISIS

3.1 Resultados

3.1.1 Diseño estructural

3.1.1.1 Perfiles Seleccionados

Para la selección de los perfiles se consideró la necesidad de mantener la uniformidad de la sección, en cada uno de los elementos; en el caso de necesitarse más capacidad de resistencia, de los materiales, se optó por cambiar el espesor del perfil más no cambiar por una sección diferente, dado que a la final esto daría un mal aspecto arquitectónico la estructura.

Tabla 3.1 Perfiles empleados en el diseño.

Canal U 80X40X3
Canal U 100X50X2
Canal U 100X50X3
Canal U 100X50X4
Canal U 100X50X5
Canal U 125X50X2
Correa G 80X50X2
Ángulo L 25X25X3
Ángulo L 40X40X3
Tubo Cuadrado 100X3

Fuente: Propia.

3.1.1.2 Diseño de placa base

En el proyecto se contó con dos tipos de columnas, las principales que forman parte del marco y las secundarias que ayudan a montar las paredes, cada una con su respectiva placa base. Las dimensiones de ambas se indican en la Tabla 3.2.

Tabla 3.2 Dimensiones y número de pernos.

	Dimensión		Perno	s	Dado de	hormigón
_	В	N	Diámetro	N°	B [cm]	N [cm]
	[cm]	[cm]	[mm]			
Columna -	56	26	30	4	80	40
Cimentación						
Columna de	10	10	13	4	No a	plica,
armazón					atornillado er	n el entrepisc
(paneles)					y en el c	ontrapiso

Fuente: Propia

3.1.1.3 Soldadura

El diseño de la soldadura se basó en el calculó de la resistencia del elemento por fluencia, fractura y por resistencia a la soldadura, seleccionando la resistencia menor entre los 3 para si poder sacar la longitud a soldar.

Tabla 3.3 Longitud de soldadura.

PLACA [cm x cm]	Acero	A [cm]	E [cm]	A _e [cm ²]	Fu	øRn	ws	t _{efe}		stencia seño	Long. [cm]
30 .0 x 10.0	A529	10.0	0.5	0.77	65	37.8	1/8	3/34	2.78	34.87	31.82
40 .0 x 12.5	A36	12.5	0.3	0.58	58	25.3	5/16	19/86	6.96	18.83	6.87
50.0 x 26.0	A36	26.0	3.0	12.08	58	525.9	1/4	3/17	5.57	391.71	9.77
Perfil											
2L 25 x 3	A36	2.5	0.3	0.20	58	8.7	5/16	19/86	2.96	6.48	2.36
2L 40 x 3	A36	4.0	0.3	1.57	58	10.0	5/16	19/86	2.96	7.45	2.72

Fuente: Propia

3.1.1.4 Diseño de cimentación

Para el diseño de la cimentación, se elegio un caso particular dado que no se contaba con la información necesaria para los respectivos casos, además como la estructura es desmontable, es necesario saber los estudios de suelos en el sitio que se vaya a colocar, por tal motivo la cimentación de la estructura varía dependiendo del lugar.

Tabla 3.4 Reacciones en la base

Output Case	Case Type	Step Type	Global FX [Kgf]x10 ³	Global FY [Kgf]x10 ³	Global FZ [Kgf]x10 ³	Global MX [Kgf- m]x10 ³	Global MY [Kgf- m]x10 ³	Global MZ [Kgf- m]x10 ³
Envolvente	Comb	Max	9.65	96.5	79.124	474.74	-58.77	80.99
Envolvente	Comb	Min	-9.65	-9.65	17.345	59.518	-47.08	-80.98

Fuente: Propia.

3.1.1.5 Diseño de conexiones empernadas

Todos los detalles de conexiones se las puede visualizar en el plano estructural E-006 en anexos.

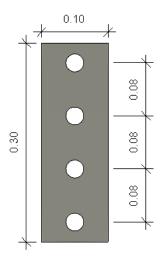


Figura 3.1. Esquema de conexión empernada

Fuente: Propia.

Tabla 3.5 Pernos por conexión

Ubicación	Diámetro	N°	Espaciado	Espaciado
	[pulg]		[cm]	borde [cm]
Planta baja	1.0	4	8	3
Planta alta	3/4	4	8	3

3.1.2 MODELADO EN SAP

3.1.2.1 Diagrama de fuerza Axial

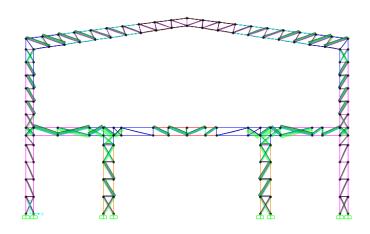


Figura 3.2 Diagrama de fuerza axial.

Fuente: Propia.

Mediante el modelamiento en SAP2000 y un análisis de la estructura, se determinó que existe una buena distribución de la fuerza a través de la estructura, lo cual se evidencia claramente en la figura 3.2; además, esto nos indica que la mayoría de los elementos se encuentran trabajando sin presentar ningún problema.

3.1.2.2 Diagrama de Momento 2-2

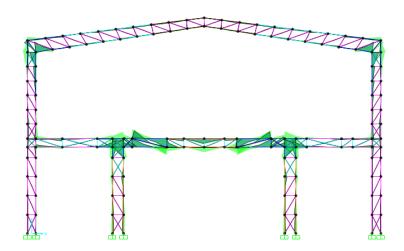


Figura 3.3 Diagrama de momento.

Fuente: Propia.

En la figura 3.3 se visualiza como están actuando los momentos a lo largo del marco, cabe recalcar que los máximos momentos se concentran en la unión de las esquinas, esto nos da a entender que dichas conexiones deben ir reforzadas y tener el debido cuidado al momento de diseñarlas.

3.2 Presupuesto

El proyecto tiene un alcance de solamente el diseño estructural y armazones para la división de espacios, sin contar el sistema hidrosanitario. A continuación, se detalla la lista de los rubros necesarios para el proyecto y sus respectivas cantidades.

Tabla 3.6 Listado de rubros de proyecto

	Descripción	Unidad	Cantidad
1	OBRAS PRELIMINARES		
1.1	Limpieza desbroce manual de terreno	m2	169.00
1.2	Derrocamiento de hormigón simple	m3	2.40
2	MOVIMIENTOS DE TIERRAS		
2.1	Excavación a pulso	m3	7.65
2.2	Relleno compactado con material de sitio	m3	1.25
3	CIMENTACIÓN		
3.1	Replantillo e= 0.05m	m2	6.40
3.2	Acero de refuerzo fy=4200 kg/cm2	kg	1,057.27
3.3	Encofrado de madera para cimentación	m2	48.00
3.4	Hormigón de alta resistencia inicial f'c=280 Kg/cm2 (Dados)	m3	5.12
3.5	Placa base y pernos de anclaje	kg	613.08
4	PISO		
4.1	Acero de refuerzo fy=4200 kg/cm2 (malla)	kg	672.40
4.2	Hormigón simple f'= 180 Kg/cm2 (Contrapiso e=8 cm)	m2	141.20
5	ESTRUCTURA MÉTALICA		
5.1	Provisión y montaje de estructura metálica	kg	4,972.88
5.2	Sistema de piso de plancha galvanizada (e=2 mm)	m2	147.30
5.3	Cubierta Galvalume (e=0.30mm)	m2	172.42
6	PAREDES Y TABIQUES		
6.1	Paredes tipo sandwich (e= 0.05 m)	m2	585.06

Fuente: Propia.

Una vez que se determinó cada uno de los rubros necesarios con sus respectivas cantidades, se procedió a realizar el análisis de precios unitarios donde se comparó los precios ofertados por diferentes proveedores, logrando así escoger los más viables para el desarrollo del proyecto.

En la tabla 3.7 se observa los valores totales por cada rubro, dando de esta forma un total de \$98,479.96 dólares americanos sin incluir el IVA; además, el costo por metro cuadrado es de \$333.60 dólares americanos.

Tabla 3.7 Precios totales por rubro

ID	Descripción	Precios unitarios	Precios totales
1	OBRAS PRELIMINARES		
1.1	Limpieza desbroce manual de terreno	\$ 1.13	\$ 190.17
1.2	Derrocamiento de hormigón simple	\$ 41.10	\$ 98.64
2	MOVIMIENTOS DE TIERRAS		
2.1	Excavación a pulso	\$ 15.33	\$ 117.28
2.2	Relleno compactado con material de sitio	\$ 10.96	\$ 13.71
3	CIMENTACIÓN		
3.1	Replantillo e= 0.05m	\$ 7.79	\$ 49.84
3.2	Acero de refuerzo fy=4200 kg/cm2	\$ 1.84	\$ 1,947.54
3.3	Encofrado de madera para cimentación	\$ 52.70	\$ 2,529.44
3.4	Hormigón de alta resistencia inicial f'c=280 Kg/cm2 (Dados)	\$ 137.42	\$ 703.58
3.5	Placa base y pernos de anclaje	\$ 7.03	\$ 4,312.41
4	PISO		
4.1	Acero de refuerzo fy=4200 kg/cm2 (malla)	\$ 1.65	\$ 1,108.29
4.2	Hormigón simple f'= 180 Kg/cm2 (Contrapiso e=8 cm)	\$ 11.82	\$ 1,668.33
5	ESTRUCTURA MÉTALICA		
5.1	Provisión y montaje de estructura metálica	\$ 8.48	\$ 42,182.93
5.2	Sistema de piso de plancha galvanizada (e=2 mm)	\$ 42.59	\$ 6,273.18
5.3	Cubierta Galvalume (e=0.30mm)	\$ 17.38	\$ 2,996.15
6	PAREDES Y TABIQUES		
6.1	Paredes tipo sandwich (e= 0.05 m)	\$ 58.61	\$ 34,288.47

Fuente: Propia.

También a su vez se generó la curva de flujo de caja del proyecto, en donde se visualiza que días son los más fuertes en cuestión de inversión; por otra parte, se debe mencionar que para el cronograma del proyecto tiene una duración de mes y medio, laborando en si solo 30 días 8 horas diarias.

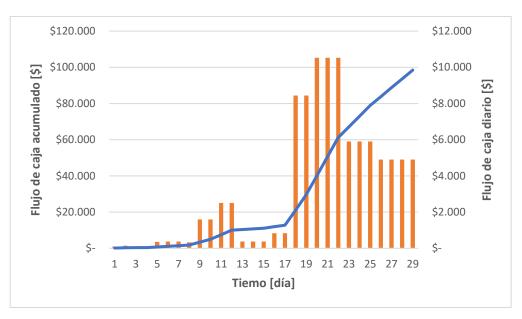


Figura 3.4 Curva de flujo de trabajo.

Fuente: Propia

Los análisis de precios unitarios de cada rubro están en la sección Anexos.

CAPÍTULO 4

4 EVALUACIÓN DE IMPACTO AMBIENTAL

4.1 Objetivos

4.1.1 Objetivo general

Desarrollar la evaluación de impacto ambiental del proyecto campamento desmontable "mina escuela" en el cantón Naranjal con la finalidad de conocer los impactos al medio ambiente y plantear medidas para prevenir o mitigar los posibles impactos en las diferentes fases.

4.1.2 Objetivo especifico

- Reconocer, identificar y determinar los posibles impactos ambientales, sean positivos, negativos o neutros, generados en el sitio por la construcción, operación y mantenimiento de la estructura; incluyendo el abandono del sitio.
- Determinar medidas de prevención y mitigación en base a los impactos más relevantes; con el fin de garantizar el componente ambiental del proyecto.

4.2 Descripción del proyecto

El proyecto tiene por objeto el diseño de un campamento desmontable para ser ubicado en una concesión minera, llamada FICT-1, perteneciente a la facultad de ingeniería en ciencias de la tierra, por lo que se pretende montar en el sitio una estructura metálica con espacios necesarios, cumpliendo el propósito de alojar y capacitar estudiantes. Las áreas destinadas para los campamentos normalmente son momentáneas, por tanto, existe un determinado tiempo de ocupación y posteriormente de desalojo del sitio.

En muchos de los casos el material más utilizado en este tipo de proyectos es la madera, un elemento fácil de encontrar en el medio y sencillo en el proceso de montaje. Otro material es el hormigón, un material más costoso y se necesita maquinarias especiales para poder realizar cualquier proyecto. Como el proyecto tiene la prioridad de ser desmontable, hacer una estructura de hormigón quedaría descartada. Para el desarrollo de la cimentación sería necesario el uso de este material.

Si se analiza profundamente, la madera es un material renovable producto de lo cual es consumido de forma desmesurada, razón suficiente para ocasionar un gran impacto ambiental. Con base en lo mencionado y en función de los factores de durabilidad y mantenimiento se determina como material óptimo el acero, reduciendo considerablemente el impacto que produzca el proyecto en la zona.

Por otra parte, el propósito de esta sección del documento es determinar el impacto ambiental producido por cada una las diferentes actividades a realizarse, siendo estas en la fase de construcción, operación y mantenimiento de la estructura; además, del abandono del sitio una vez finalizada la concesión.

La fase constructiva está conformada por el transporte de la estructura metálica realizada en el taller; además del montaje de cada una de las piezas para la conformación del campamento.

Mientras tanto, en la fase de operación se debe tener presente los desperdicios derivado de la estadía de las personas en el campamento, entre los desechos generados están los residuos sólidos, las aguas negras y aguas grises. A su vez, del mantenimiento se detallarán las actividades a realizar como: recubrimiento a la corrosión al acero y el ajuste de conexiones. También se considera el desalojo de los elementos que conforman el campamento.

Dentro de las fases mencionadas, se utilizarán distintos equipos y materiales según sean requeridos. Entre los materiales están el hormigón, perfiles

metálicos, paneles tipo sandwich, aluminio para puertas, ventanas, pintura de recubrimiento, planchas de cubierta y piso, entre otros.

De ahí que una vez identificado y descrito los posibles impactos ambientales, se realizara una matriz cualitativa con ponderaciones para cada una de las actividades, obteniendo de la siguiente manera un impacto alto, medio o bajo, sean estos positivos o negativos, por consiguiente, se idearan en caso de ser necesario medidas de prevención o mitigación; cuya finalidad es recudir en lo mínimo posible el daño que se producirá al ambiente.

4.3 Ubicación geográfica

El área destinada donde se plantea realizar el proyecto está ubicada al extremo suroeste del cantón Naranjal, provincia del Guayas, limitando con Azuay; es de 2000 metros cuadrados aproximadamente; el pueblo más cercano al punto de construcción es Agua Caliente el mismo que se encuentra a una distancia de 3 kilómetros. A continuación, en la Tabla 4.1 se detallan las coordenadas de ubicación referentes a la obra (WGS-84)

Tabla 4.1 Coordenadas del proyecto

PUNTO	ESTE (X)	NORTE (Y)	ALTITUD (msnm)
Α	669028.00	9707196.00	617.00
В	669060.00	9707221.00	612.00
С	669089.00	9707222.00	602.00
D	669083.00	9707202.00	602.00

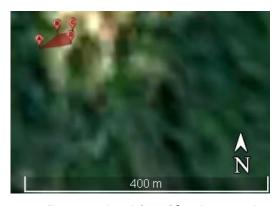


Figura 4.1 Puntos de ubicación de coordenadas

Fuente: Google Earth, 2020

4.4 Tipo de proyecto

Para la gestión ambiental de cualquier tipo de proyecto donde está comprometido el medio ambiente es necesario recurrir a las entidades estatales, en el caso de nuestro proyecto al indicar la actividad a realizar se determinó como punto obligatorio presentar un registro ambiental, la evidencia se muestra en la Figura 4.2 tomado del ministerio de ambiente y agua.

Figura 4.2 Trámite ambiental

Fuente: Ministerio de ambiente y agua, 2020

Por tanto, continuando con el proceso de inscripción del proyecto en la plataforma web se obtiene el certificado de intersección, pero, al momento la situación del país ha hecho que varias instituciones públicas se fusionen, generando conflictos en los sitios de navegación y por tal motivo es complicado obtener el certificado mencionado.

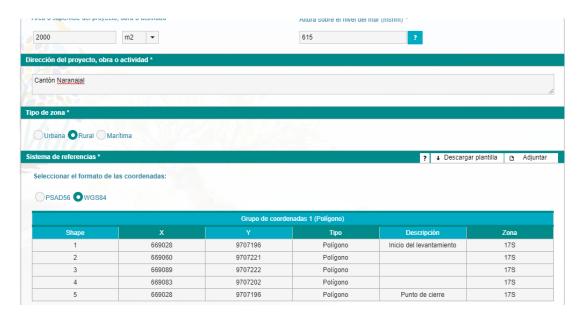


Figura 4.3 Ingreso de coordenadas del proyecto.

4.5 Actividades del proyecto

Como todo proyecto al momento de su ejecución presentarán actividades tanto en la fase de construcción, operación y mantenimiento; además abandono del sitio, dichas etapas provocarán una alteración al ambiente. Por consiguiente, para un buen manejo ambiental se tendrá que evaluar los posibles impactos producto de cada actividad; a continuación, en la Tabla 4.2 se describe las diferentes actividades que se llevarán a cabo en la implementación del campamento desmontable "mina escuela".

Tabla 4.2 Fases del proyectos y actividades con su respectiva descripción

	. ,	•
Fases	Actividades	Descripción
	Eliminación de la vegetación	Corte de la maleza.
	Traslado de materiales y equipos	Uso de medios de transporte para
	básicos	movilizar materiales y equipos.
Constructiva	Cimentación	Uso de los materiales (hormigón)
	Cimentación	equipos.
	Montaio de cotructuro	Ensamblaje de columnas, vigas,
	Montaje de estructura	piso y cubierta.
	Decerge del sistema hidroconitaria	Aguas negras y grises generadas
Operación	Descarga del sistema hidrosanitario	por diferentes áreas.
	Acopio y desalojo de residuos	Desperdicios generados en sitio
	Decubrimiente proventivo de la	Colocación de capa de pintura
	Recubrimiento preventivo de la estructura metálica.	sobre estructura para evitar
	estructura metalica.	corrosión.
		Inspección de tuberías y correcto
Mantanimianta	Davisića dal sistema bidas sanitaris	funcionamiento del sistema de
Mantenimiento	Revisión del sistema hidrosanitario.	alcantarillado. (ver si está
		habilitado)
		Correcto ajuste de las conexiones
	Revisión del sistema estructural.	empernadas e inspección de los
		elementos de cubierta y piso.
	Decementaio de la estructura	Separar los elementos que
Abandono	Desmontaje de la estructura.	conforman la estructura.
Abandono	Desalojo de los materiales y equipos	Medio de transporte para desaloja
	básicos	materiales y equipos.

4.6 Línea base ambiental

Para el análisis de la línea base, se tomará información de la parroquia más cercana a nuestro proyecto. Dado que no existe información dentro de nuestra área de estudio.

La información proporcionada se basará de la parroquia San Carlos ubicado a 29 Km de la cabecera del cantón Naranjal y se encuentra aproximadamente a unos 14 Km de distancia a nuestro proyecto.

4.6.1 Factores Climáticos

En la parte hidrológica tenemos el río Tixay, es el más cercano al proyecto; además, en la Tabla 4.3 se presentan algunas variables como:

Tabla 4.3 Factores climáticos

Descripción
26°C
750 mm
Tropical Mega térmico Semi Húmedo
Tropical Mega térmico Seco
96%

Fuente: ELIZALDE CONSULTORA 2015

4.6.2 Suelo

En la parte de asentamientos de nuestro proyecto el factor más relevante es conocer la clase de suelo existente en el lugar, debido a la estrecha relación con el tipo de cimentación que debe seleccionarse.

Dicha información nos dará una base de cuál sería la afectación del suelo, por ello a continuación mostramos las clases de suelo en el sitio:

CLASE II: Son suelo que en su mayoría son utilizados para la agricultura, ganadería. Las pendientes aproximadamente están a un 5%, buenas para drenaje natural, son no salinas, además son suelos arenosos y arcillosos.

CLASE VI: Este tipo de suelo requiere de un tratamiento especial por su composición, es muy difícil de trabajar con maquinaria.

4.6.3 Fauna

El proyecto al estar ubicado en un territorio donde no existen asentamientos humanos y solo habitan especies endémicas, se ha reconocido que en el sitio tenemos aves, mamíferos, reptiles y anfibios de diferentes familias, los cuales son detallados de mejor forma en la Tabla 4.4 presentada a continuación.

Tabla 4.4 Fauna del sitio de proyecto

Especies	Nombre Común	Familia
	Lechuza	Strigidae
-	Periquito	Psittaciformes
-	Garrapatero	Cuculidae
Aves	Garza azul	Ardeidiae
_	Pato cuervo	Phalacrocoracidae
_	Martin pescador migratorio	Cerylidae
_	Garza blanca	Ardeidae
	Venado	Cervidae
_	Mono aullador	Cebidae
_	Murciélago	Phyllostomidae
Mamíferos [–]	Armadillo	Edentata
_	Perezoso o perico ligero	Megalonychidae
_	Mapache tropical Mono a	Procyonidae
_	Oso hormiguero	Myrmecophagidae
	Boa matacaballo	Boidae
Reptiles y	Iguana común	Iguanidae
anfibios	Sapo común	Bufonidae

Fuente: PMA Coop. Nuevo Porvenir

4.6.4 Flora

Las especies que se encuentra en la zona se detallan en la Tabla 4.5.

Tabla 4.5 Tipos de flora

Nombre Común	Familia
Laurel	Cardiaalliodora
Guayacán	Tabebuiacrhysantha
Teca	Tectonagrandis
Ceibo	Ceiba pentandra
Beldaco	Pseudo bombaxmilei
Rojo	Ucuba
Vorila	Sebifera

Fuente: PMA Coop. Nuevo Porvenir

4.7 Identificación de factores, aspectos e impactos ambientales

La identificación de las alteraciones del medio físico, biológico y socioeconómico ayudan a determinar si el proyecto es viable en el sector; al mismo tiempo reconocer la existencia de graves perjuicios al ambiente, lo cual permitirá realizar las modificaciones respectivas de tal modo que se cumplan con los reglamentos ambientales y así llevar a cabo la ejecución de la obra.

En cada proyecto a efectuarse es imposible evitar los impactos ambientes, pero, se pueden desarrollar medidas que ayuden a disminuir dichos impactos. Para ello deben enlistarse todas las actividades de la obra e identificar los factores propensos a ser afectados.

Dentro de los más significativos en nuestro proyecto poseemos la afectación al factor agua dado que en la fase de operación se genera aguas negras y grises, por ende, se deberá garantizar las descargas al rio. Estas descargas deberán estar dentro de los parámetros permisibles. Otro factor alterado sería el aire, dado que la trasportación de los materiales a la zona generaría emisiones de CO₂ al ambiente; incluyendo los gases tóxicos expulsado en el lugar durante un mantenimiento necesario a los elementos de acero con el fin de evitar el deterioro.

El suelo es otro factor el cual podría ser afectado si no hay un correcto manejo de los residuos sólidos.

A continuación, en la Tabla 4.6 se presentan los impactos ambientales producidos en cada factor ambiental.

Tabla 4.6 Impacto ambiental generado en cada fase del proyecto.

Fase	Medio	Factor	Aspecto ambiental	Impacto ambiental
	Biótico	Fauna	Desbroce de la vegetación	Alteración de la fauna
_		Aire	Generación de gases	Alteración en la calidad
		7 1110	tóxicos	del aire
			Excavación del	Alteración de la
Construcción		Suelo	terreno y fundición de	superficie del suelo
	Físico	G 46.6	cimientos	Alteración de la calidad
			ommonito o	del suelo
			Ruido producido en	Contaminación
		Ruido	el montaje de la	acústica.
			estructura	
		Suelo		Alteración a la calidad
			Generación de aguas	del suelo
		Agua superficial	grises y negra	Alteración de la calidad
Operación	Fisco			del agua
		Suelo		Alteración a la calidad
			Generación de	del suelo
		Agua subterránea	Alteración de la calidad	
		- igua customamoa		del agua
		Aire	Generación de gases	Alteración de la calidad
			tóxicos de la pintura	del aire
			Residuos sólidos por	
		Suelo	mantenimiento del	Alteración en la calidad
		0.0.0	sistema	del suelo
Mantenimiento	Físico		hidrosanitario	
			Generación de gases	
			tóxicos por	Alteración de la calidad
		Biótico Fauna Desbro vege Aire Generació tóx Excava terreno y forma estru Ruido pro el mont estru Suelo Generació grises Agua superficial Generació grises Agua subterránea Generació tóxicos de Residuos mantenir sist hidros Físico Aire Generació tóxicos de Residuos mantenir sist hidros Generació tóxicos de Residuos mantenir sist hidros Aire mantenir sist	mantenimiento del	del aire
			sistema	2.2. 3 3
			hidrosanitario	

		Ruido	Ruido por mantenimiento y reajuste de la estructura	Contaminación acústica
	Físico	Ruido	Ruido producido al en el desmontaje de la estructura.	Contaminación acústica
Abandono		Aire	Generación de gases tóxicos	Alteración de la calidad del aire.
	Socioeconó mico	Educación	Generación de espacio para albergar estudiantes	Creación de centros de capacitación

4.8 Valoración de los impactos ambientales

Los impactos ambientales evaluados mediante la matriz de Conesa-Fernández en la Tabla 4.7 evidencia riesgos bajos, medios o altos; entre las principales actividades con un riesgo alto que ocasionan una afectación de carácter negativo al ambiente son:

- I. Traslado de materiales y equipos básicos.
- II. Descarga del sistema hidrosanitario.
- III. Acopio y desalojo de residuos.

El impacto asociado a cada uno de los puntos anteriores respectivamente es la alteración a la calidad del aire, contaminación de las fuentes de agua superficiales y subterráneas; por último, la alteración a la calidad del suelo.

Los impactos antes mencionados obtuvieron una puntuación de importancia entre 45-63, lo que claramente indica la necesidad de elaborar un mecanismo de prevención dado que son actividades con potencial perjuicio ambiental.

Cabe recalcar, un proyecto no solo tiene aspectos negativos sino también positivos, tal es el de esta obra la cual será un centro capacitación de estudiantes, muy necesario para mejorar el nivel educativo tanto académico como profesional.

Tabla 4.7 Matriz de valoración de impacto ambiental

TAL		Se	everid (S)	ad		babili curren (P)		(T)	Ex	xtensi	ón	Int	ensid (I)	ad	D	uració (Du)	ón	De	esarro (De)	llo	Red	cupera n (R)	ació	Int	eracc (la)	ión	(Mg)	(Imp)	
ASPECTO AMBIENTAL	IMPACTO	Positivo 1	2 oipam	negativo ω	muy poco probable 1	poco probable S	cierto 3	Relevancia del Impacto	puntual	parcial	alta	baja O	moderada 1	alta	corto plazo	mediano plazo	permanente	largo plazo	medio plazo	inmediato	reversible O	mitigable 1	irreversible	o simple o	acumulativo L	sinérgico 5	Magnitud del Impacto Mg = E + I +Du+De+R+la	Importancia del Impacto Imp = Mg x T	RIESGO
Desbroce de la vegetación	Alteración de la flora		2			2		4		1		0			0					2		1		0			4	16	MEDIO
Generación de gases tóxicos	Alteración de la calidad del aire			3			3	9		1		0				1			1			1		0			4	36	ALTO
Excavación del terreno y	Alteración de la superficie del suelo		2		1			2	1			0					2		1				2		1		7	14	MEDIO
fundición de cimientos	Alteración de la calidad del suelo		2				3	6	1			0				1				2	0			0			4	24	MEDIO
Ruido producto del montaje de la estructura	Contaminació n acústica		2		1			2		1			1			1			1				2	0			6	12	ВАЛО
Generación de aguas	Alteración de la calidad del suelo		2			2		4		1			1			1			1			1		0			5	20	MEDIO
grises y negras	Alteración de la calidad del agua			3			3	9		1				2		1			1			1			1		7	63	ALTO

Generación de residuos	Alteración de la calidad del suelo			3		3	9	1			2		1		1		1		1		7	63	ALTO
sólidos	Alteración de la calidad del agua		2		2		4	1			2		1		1		1			2	8	32	ALTO
Generación de gases tóxicos de la pintura	Alteración de la calidad del aire		2			3	6	1	0			0			1		1	0			3	18	MEDIO
Residuos sólidos por mantenimient o del sistema hidrosanitario	Alteración en la calidad del suelo		2		2		4	1	0			0		1			1	0			3	12	ВАЛО
Generación de gases tóxicos mantenimient o sistema hidrosanitario	Alteración de la calidad del aire		2		2		4	1	0			0			1		1	0			3	12	ВАЈО
Ruido por mantenimient o y reajuste de la estructura	Contaminació n acústica		2		2		4	1	0			0			1	1		0			3	12	ВАЈО
Ruido producto del desmontaje de la estructura.	Contaminació n acústica		2		2		4	1	0			0			1	1		0			3	12	ВАЛО
Generación de gases tóxicos	Alteración de la calidad del aire.			3		3	9	1		1			1		1		1	0			5	45	ALTO
Generación de espacio para albergar estudiantes	Creación de centros de capacitación	1				3	3														0	0	POSITIVO

4.9 Medidas de prevención

Una vez identificado cada uno de los impactos; además, de asignarles una debida puntuación de importancia, se elaborarán medidas de mitigación que ayuden a minimizar las afectaciones que puedan ocasionar al ambiente. En la Tabla 4.8 se clasificará las actividades, el impacto y la medida de mitigación que se podrán desarrollar. Con la finalidad de demostrar si el proyecto es viable; de igual manera cumplir con las normativas vigentes regularizadas por el Ministerio del Ambiente.

Por ejemplo, unos de los impactos con una alta ponderación negativa es la alteración de la calidad del agua producto de las descargas de aguas grises y negras. Una medida de mitigación propuesta es desarrollar un pozo de captación aguas servidas, para posteriormente realizar un tratamiento primario con el cual se cumplan los límites permisibles, para poder descargar estas aguas a un sistema de alcantarillado o un cuerpo de agua natural cumpliendo con la normativa ambiental vigente.

Tabla 4.8 Propuesta de medidas de prevención.

Actividad	Impacto ambiental	Medida de mitigación
Eliminación de la vegetación	Alteración de la flora	 Reforestación de flora a medida que se genere algún daño. Recuperación de áreas verdes una vez desalojado el sitio.
Traslado de materiales y equipos básicos	Alteración de la calidad del aire	 Verificar que el vehículo de transporte tenga el certificado de revisión técnica - vigente. Hacer uso de vehículos modernos, con baja emisiones de CO₂
Cimentación	Alteración de la calidad del suelo	 Evitar preparar las mezclas de hormigón directamente sobre el suelo, por lo cual hacer uso de alguna plataforma o un geotextil.
	Alteración de la superficie del suelo	 Utilizar el material extraído para la generación de zonas verdes, siempre cuando sea una capa orgánica.
Montaje de estructura	Contaminación acústica	 Uso de herramienta de poco impacto acústico. (Hule)

		Tratamiento del agua en tanques sépticos
Descarga del sistema hidrosanitario	Alteración de la calidad del agua	 (plásticos), para su posterior descargue al sistema. Colocar una pequeña planta de tratamiento; para posteriormente utilizar dicha agua en el riego de las zonas verdes.
_	Alteración de la calidad del suelo	Recubrimiento del tanque séptico con geomembrana, evitando la filtración de líquidos.
Acopio y desalojo	Alteración de la calidad del suelo	 Ubicar tanques de recolección de volumen razonable, acorde a la cantidad de residuos generados. Almacenar en recipientes los desechos sólidos,
de residuos	Alteración de la calidad del agua	 así se evita la filtración de metano en el suelo. Tener un sistema de reciclaje donde clasifiquen papel, plástico y material orgánico. Pronto desalojo de los desechos generados.
Recubrimiento preventivo de la estructura metálica.	Alteración de la calidad del aire	 Emplear pinturas con baja emisión de olores. Utilizar lonas de protección, con la finalidad de no dejar caer residuos de pintura en el suelo o sobre la flora.
Revisión del sistema Hidrosanitario	Alteración en la calidad del suelo	 Almacenar desechos sólidos producto del respectivo mantenimiento al sistema de alcantarillado. Pronto desalojo de los desechos generados con los cuidados y equipos respectivos.
HIGIOSAIIIIAIIO _	Alteración de la calidad del aire	 Almacenar desechos sólidos producto del respectivo mantenimiento al sistema de alcantarillado.
Revisión del sistema estructural	Contaminación acústica	Uso de herramienta de poco impacto acústico. (Hule)
Desmontaje de la estructura	Contaminación acústica	Uso de herramienta de poco impacto acústico. (Hule)
Desalojo de materiales y equipo	Alteración de la calidad del aire.	 Plantar árboles para aumentar la captación del dióxido carbono.

4.10 CONCLUSIÓN

Dentro del análisis expuesto, se identificó que para realizar el montaje y funcionamiento de un campamento es necesario obtener un certificado de registro ambiental, categorizado por el Ministerio de Ambiente, esto debido a los moderados impactos y riesgos ambientales de la obra.

Entre los impactos más relevantes, a continuación, presentamos algunas recomendaciones con el fin de minimizar la afectación ambiental.

- ✓ El traslado de materiales y equipos básicos afectan al medio ambiente dado que se emplean vehículos a combustión, los cuales emiten directamente CO₂ al medio ambiente; por tanto, como medida de prevención se propone la plantación de árboles a lo largo el camino para aumentar la captación de CO₂.
- ✓ El acopio y traslado de los desechos sólidos derivados en la etapa de funcionamiento son un riesgo en la calidad del suelo y el agua, debido a la generación de metano que puede esparcirse rápidamente en el ambiente. Como medida de mitigación se propone hacer un sistema de separación de residuos, así de esta forma se busca una reutilización de ciertos materiales; además, la pronta evacuación de los residuos orgánicos a un relleno sanitario.
- ✓ Las descargas del sistema sanitario pueden alterar la calidad del agua, por lo tanto, como medida se propone realizar un pozo donde se efectué un pretratamiento a las aguas grises y negras, con el propósito de cumplir con los limites permisible establecidos en el TULSMA.

Finalmente, se determina que acatando los lineamientos y medidas preventivas propuestas en este capítulo el proyecto es sostenible ambientalmente.

CAPÍTULO 5

5 CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

- El proyecto presenta un área de implantación de 144m² en el cual se realizará una cimentación de hormigón poco profunda; además se fundirá un contrapiso esto debido a que, en el momento de realizar el presupuesto del proyecto, se evidencio que un piso de plancha antideslizantes es más costoso.
- Con un cálculo sencillo se obtuvo el peso de cada columna, dando un aproximado de 70 kg; mientras que la viga más pesada está alrededor de unos 100 kg. Dando así la opción de que dos o tres personas tengan la capacidad de poder trasladar los diferentes elementos que conformar los marcos. De esta forma se hace más sencillo el montaje de la estructura metálica.
- Los únicos elementos que se quedaran en el sitio serán la cimentación y el contrapiso, dado que la estructura es desmontable, es decir que, en cada sitio que se desee montar la estructura se tendrá que realizar la cimentación y el contrapiso tomando en cuenta las condiciones del suelo. La única variable que podría ser afectada por las condiciones del suelo seria la profundidad del dado y el área requerida por este.
- Dentro del diseño estructural se comprobó que cumple con todos los requisitos de la normativa NEC-SE-DS y que los perfiles elegidos para conformar esta estructura son los óptimos en capacidad de resistencia de carga.
- EL peso de la estructura metálica esta por unos 19 kg/m², evidenciando que se pudo hacer un diseño relativamente optimo, considerando la elección de perfiles más ligeros y que al momento de un sismo los elementos de la estructura realmente este trabajando.

 El presupuesto de obra obtenido es de aproximadamente \$98,479.96 dólares americanos, y el costo por metro cuadrado es de \$333.60, en un periodo de trabajo de 30 días laborables, dando un total de mes y medio para la construcción del proyecto.

5.2 Recomendaciones

- Desde el punto de vista de económico, en el caso de que se desee disminuir los costos de la estructura metálicas, se pude colocar elementos laminadas en frio, perfiles tipo correa, dado que la funcionalidad de estas es distribuir las cargas hacia las vigas principales y no se las diseña para que tengan la capacidad de disipar la energía al momento de un sismo.
- Algo a tener en consideración y muy importante al momento de diseñar estructuras metálicas con elementos en celosía, es controlar los periodos para ello y en el caso de tener periodos elevados, se recomienda que al momento de modelar la estructura se utilicen arriostramientos tanto en la dirección del eje X como en el eje Y.
- Otro punto clave para diseñar una estructura económicamente viable la capacidad de resistencia de los materiales es recomendable que se garantice que todos los perfiles estructurales estén trabajando es decir que con la clasificación de colores que da el programa por lo menos estén en color verde, así la estructura es más liviana y menos costosa.

BIBLIOGRFÍA

Atapuma Naranjo, Jarrín Cristian, Mora Martínez. (2013). Estudio Técnico Económico Comparativo entre proyectos estructurales de hormigón armado, acero y madera para viviendas y edificios. Obtenido de http://www.dspace.uce.edu.ec/handle/25000/740

Alex García, Eduardo Gálvez. (2003). Cálculo interactivo de Galpones simétricos asistidos por computadora. Obtenido de https://scielo.conicyt.cl/pdf/rfacing/v11n1/art07.PDF

Clemente Ruiz Duran. (1997). El reto de la educación superior en la sociedad del conocimiento. México: ANUIES

Diana Ardilla, Alexander Peraza. (2004). Diseño de un marco de pruebas para medir deflexiones en estructuras. Obtenido de http://repositorio.unimagdalena.edu.co/jspui/bitstream/123456789/273/1/Ardila_Y_Pera za.pdf

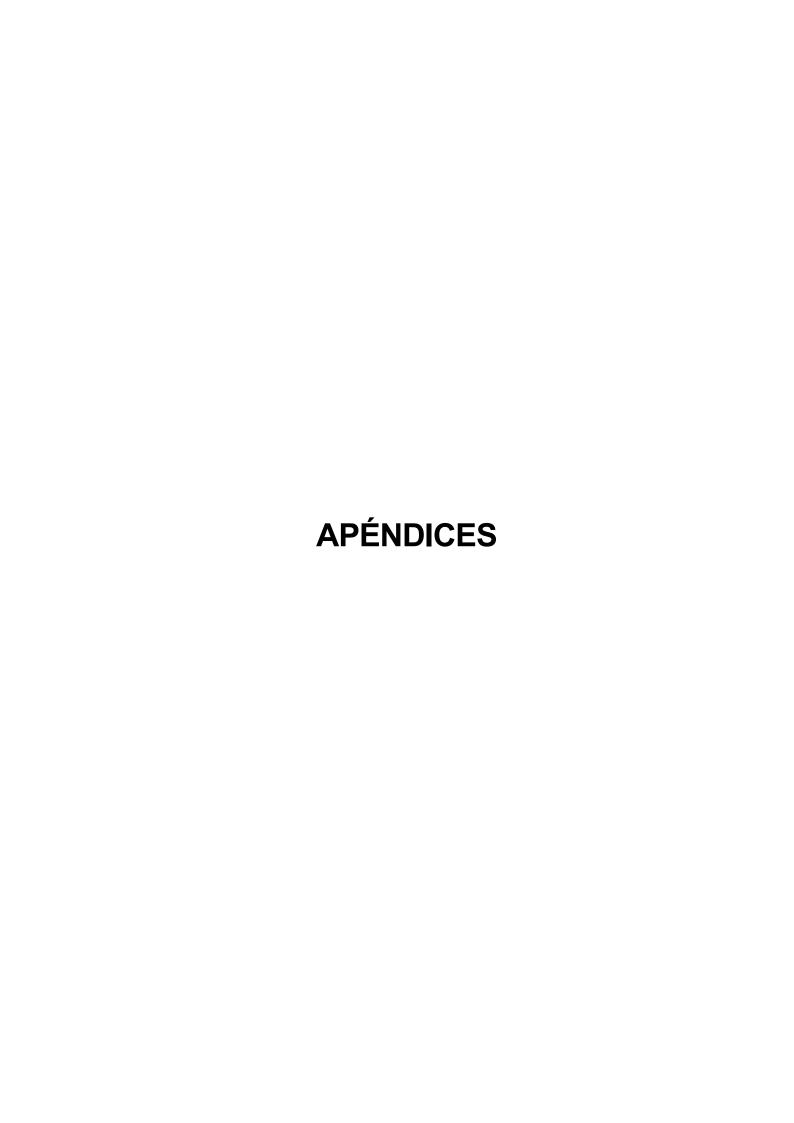
Polo J. (2019). Estudio Geotécnico y Geológico en las Minas abandonadas de la Concesión FICT-1 para el prediseño de una Mina Escuela. Ecuador

QS World University, R. (2020). *Top Universities*. Obtenido de https://www.topuniversities.com/universities/escuela-superior-politecnica-del-litoral-espol#wurs

Área Metropolitana del Valle de Aburrá, Secretaría del Medio Ambiente de Medellín; Empresa públicas de Medellín. (Abril de 2010). Medidas de mitigación. *Manual de Gestión socio-ambiental para obras en construcción*. Medellín, Colombia.

CONSULTORA, E. (2015). Actualización del Plan de Desarrollo y Ordenamiento Territorial de la Parroquia San Carlos. Naranjal. Norma de calidad ambiental y de descargas de efluentes: recurso AGUA. (s.f.). *LIBRO VI ANEXO 1: TEXTO UNIFICADO DE LEGISLACIÓN SECUNDARIA DE MEDIO AMBIENTE*. Ecuador.

DIPAC. (2018). Catálogo Digital perfiles estructurales.


NORMATIVA ECUATORIANA DE LA CONSTRUCCION -NEC (2014). CARGAS NO SISMICAS. CODIGO NEC-SE-CG.

NEC (2014). PELIGRO SISMICO DISEÑO SISMO RESISTENTE. CÓDIGO NEC-SE-DS

AISC 341-05 Seismic Provisions for Structural Steel Buildings ANSI/AWS D1.1(2010) AMERICAN WELDING CODE 2005.

ANSI/AWS D 1.3 (2018) An American National Standard Institute.

AISC. America Institute of Steel Construction(2015)

APÉNDICE A

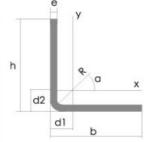
Prediseño de columnas

Columnas

E = 29000 Ksi

Fy = 36 Ksi

Kl/r = 50 Ksi


Fe = 114.56 Ksi

Fcr= 31.56 Ksi = 2.22 Ton/cm²

Nivel	Pu [Ton]	F _{cr} [Ton/cm ²]	Área [cm²]	Perfil
2	7.22	2.22	3.61	100x50x2
1	11.89	2.22	5.95	100x50x4

	Dim	ensio (mm)		Masa	А	d1	Mom de in		Mód resis	lulo tente	Rad de g	
Designación	h	ь	е				lx	ly	Wx	Wy	ix	iy
	mm	mm	mm	Kg/m	cm2	cm	cm4	cm4	cm3	cm3	cm	cm
C 50 x 25 x 2	50	25	2	1,45	1,87	0,72	7,06	1,13	2,83	0,63	1,94	0,72
C 50 x 25 x 3	50	25	3	2,09	2,7	0,77	9,7	1,57	3,88	0,91	1,89	0,76
C 60 x 30 x 2	60	30	2	1,77	2,26	0,85	12,5	2,00	4,16	0,93	2,35	0,94
C 60 x 30 x 3	60	30	3	2,56	3,3	0,89	17,5	2,84	5,85	1,34	2,31	0,93
C 60 x 30 x 4	60	30	4	3,30	4.2	0,95	21,1	3,51	7,03	1,72	2,24	0,91
C 80 x 40 x 2	80	40	2	2,40	3,07	1,09	30,8	4,89	7,71	1,68	3,17	1,26
C 80 x 40 x 3	80	40	3	3,51	4,5	1,14	43,9	7,01	11	2,45	3,12	1,25
C80 x 40 x 4	80	40	4	4,56	5,87	1,19	55,4	8,92	13,9	3,17	3,07	1,23
C 80 x 40 x 5	80	40	5	5,55	7,18	1,23	65,49	10,62	16,37	3,83	3,02	1,21
C80 x 40 x 6	80	40	6	6,49	8,42	1,28	74,18	12,1	18,54	4,44	2,96	1,19
C 100 x 50 x 2	100	50	2	3,02	3,87	1,34	61,5	9,72	12,3	2,66	3,99	1,58
C 100 x 50 x 3	100	50	3	4,45	5,7	1,39	88,5	14,1	17,7	3,89	3,94	1,57
C 100 x 50 x 4	100	50	4	5,81	7,47	1,44	113	18,1	22,6	5,07	3,89	1,56
C 100 x 50 x 5	100	50	5	7,12	9,18	1,48	135	21,8	27,1	6,19	3,84	1,54

								Ång	ulos de	alas ig	uales									
	ь	h	e	Masa	Área	d1	d2	Ángulo	E	je X -)	K	E	je Y - Y	1	Ej	e U - U		E	je V - \	/
Descripción	D		u	Iviasa	Area	01	uz	a	bc	Wx	DK.	ly	Wy	ry	lu	Wu	ru	lv	Wv	rv
	mm	n mm	mm	Kg/m	cm2	cm	cm	(*)	cm4	cm3	cm	cm4	am3	cm	cm4	om3	cm	cm4	cm3	cm
L 20x 2	20	20	2	0,57	0,73	0,60	0,60	45,00	0,28	0,20	0,62	0,28	0,20	0,62	0,46	0,32	0,79	0,10	0,14	0,37
L 20 x 3	20	20	3	0,81	1,03	0,65	0,65	45,00	0,38	0,28	0,60	0,38	0,28	0,60	0,63	0,45	0,78	0,12	0,17	0,34
L 25x 2	25	25	2	0,73	0,93	0,72	0,72	45,00	0,56	0,32	0,78	0,56	0,32	0,78	0,92	0,52	1,00	0,20	0,23	0,4
L 25x 3	25	25	3	1,05	1,33	0,78	0,78	45,00	0,78	0,45	0,77	0,78	0,45	0,77	1,30	0,74	0,99	0,26	0,30	0,48
L 30 x 2	30	30	2	0,88	1,13	0,85	0,85	45,00	1,00	0,46	0,94	1,00	0,46	0,94	1,63	0,77	1,20	0,37	0,35	0,5
L 30x 3	30	30	3	1,28	1,63	0,90	0,90	45,00	1,40	0,67	0,93	1,40	0,67	0,93	2,32	1,09	1,19	0,49	0,46	0,58
L 30x 4	30	30	4	1,65	2,10	0,95	0,95	45,00	1,76	0,86	0,91	1,76	0,86	0,91	2,93	1,38	1,18	0,58	0,55	0,5
L 40x 2	40	40	2	1,20	1,33	1,10	1,10	45,00	2,44	0,84	1,26	2,44	0,84	1,26	3,96	1,40	1,61	0,92	0,65	0,7
L 40x 3	40	40	3	1,75	2,23	1,15	1,15	45,00	3,49	1,22	1,25	3,49	1,22	1,25	5,71	2,02	1,60	1,27	0,90	0,7
L 40x 4	40	40	4	2,28	2,90	1,20	1,20	45,00	4,44	1,59	1,24	4,44	1,59	1,24	7,23	2,59	1,59	1,55	1,10	0,7
L 40x 5	40	40	5	2,77	3,54	1,25	1,25	45,00	5,29	1,92	1,22	5,29	1,92	1,22	8,80	3,11	1,58	1,77	1,25	0,7

Prediseño de vigas

Separación correas = 1.22 m

Luz = 6.00 m

Cargas

D 0.085 Ton/m²

L 0.400 Ton/m²

 $Q = 0.742 \text{ Ton/m}^2$

Qu= 0.905 Ton/m

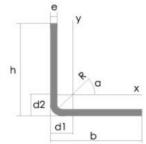
Momento

 $M = Qu(L)^2/8$

M= 4.073 Ton.m

e.0 =∅

 $Mu = o^*z^*fy$


 $Z = Mu/\otimes fy$

 $Z = 0.178 \text{ m}^3 = 17.846 \text{ cm}^3$

C100*50*4

	Dim	ensio (mm)		Masa	Masa A d1 Momento Módulo de inercia resistente		de inereie		Rad de g			
Designación	h	b	е				lx	ly	Wx	Wy	ix	iy
	mm	mm	mm	Kg/m	cm2	cm	cm4	cm4	cm3	cm3	cm	cm
C 50 x 25 x 2	50	25	2	1,45	1,87	0,72	7,06	1,13	2,83	0,63	1,94	0,72
C 50 x 25 x 3	50	25	3	2,09	2,7	0,77	9,7	1,57	3,88	0,91	1,89	0,76
C 60 x 30 x 2	60	30	2	1,77	2,26	0,85	12,5	2,00	4,16	0,93	2,35	0,94
C 60 x 30 x 3	60	30	3	2,56	3,3	0,89	17,5	2,84	5,85	1,34	2,31	0,93
C 60 x 30 x 4	60	30	4	3,30	4,2	0,95	21,1	3,51	7,03	1,72	2,24	0,91
C 80 x 40 x 2	80	40	2	2,40	3,07	1,09	30,8	4,89	7,71	1,68	3,17	1,26
C 80 x 40 x 3	80	40	3	3,51	4,5	1,14	43,9	7,01	11	2,45	3,12	1,25
C 80 x 40 x 4	80	40	4	4,56	5,87	1,19	55,4	8,92	13,9	3,17	3,07	1,23
C 80 x 40 x 5	80	40	5	5,55	7,18	1,23	65,49	10,62	16,37	3,83	3,02	1,21
C 80 x 40 x 6	80	40	6	6,49	8,42	1,28	74,18	12,1	18,54	4,44	2,96	1,19
C 100 x 50 x 2	100	50	2	3,02	3,87	1,34	61,5	9,72	12,3	2,66	3,99	1,58
C 100 x 50 x 3	100	50	3	4,45	5,7	1,39	88,5	14,1	17,7	3,89	3,94	1,57
C 100 x 50 x 4	100	50	4	5,81	7,47	1,44	113	18,1	22,6	5,07	3,89	1,56
C 100 x 50 x 5	100	50	5	7,12	9,18	1,48	135	21,8	27,1	6,19	3,84	1,54

Cálculo de peso sísmico

Carga Muerta Nivel 1

Descripción de la carga

Planchas de acero deslizante (e= 6 mm) = 0.050 Ton/m²

Pared Sanduche (e= 50 mm) = 0.011 Ton/m²

Instalaciones = 0.020 Ton/m²

Ref: DIPAC

Ref: Grupo Panel Sandwich

Ref: NEC SE CG 4.1

 $Wd = 0.081 \text{ Ton/m}^2$

 $Wpp = 0.004 \text{ Ton/m}^2$

Wtotal = 0.085 Ton/m^2

Carga Muerta Techado

Descripción de la carga

Panel DRT = 0.004 Ton/m²

Instalaciones = 0.013 Ton/m²

Ref: Steelpanel Novacero

Ref: NEC SE CG 4.1

Carga viva reducida

Wtotal = 0.017 Ton/m^2

Carga Viva Nivel 1

Descripción

Habitaciones = 0.2 Ton/ m²

Aula = $0.2 \text{ Ton/} \text{ m}^2$

Ref: NEC SE CG 4.2.1

Ref: NEC SE CG 4.2.1

 $WL = 0.4 \text{ Ton/m}^2$

Carga Viva Techado

Descripción

Cubierta plana = 0.07 Ton/m²

Ref:NEC SE CG 4.2.1

 $WL = 0.06 \text{ Ton/m}^2$

Área de implantación 144 m²

Peso sísmico

Primer Nivel

 $Wd + Wpp = 0.085 Ton/m^2$

 $WIo = 0.4 Ton/m^2$

Techado

 $Wd + Wpp = 0.017 Ton/m^2$

WIo = 0.06 Ton/m^2

Dirección X

Ct 0.072

hn = 6.00

 $\alpha = 0.8$

Tx = 0.302 s

Dirección Y

Ct = 0.072

hn = 6.00

 $\alpha = 0.8$

Ty = 0.302

S

W

W 1er Nivel = 12.25 Ton

W Techado = 2.4 Ton

Wtotal = 14.70 Ton

$$Vx = 5.22 \text{ Ton}$$

Cs

I = 1

Sa = 0.864

 $\Phi p = 0.9$

 $\Phi E = 0.9$

Rx = 3

Ry = 3

Csx = 0.356

Csy = 0.356

			Dirección 2	X, Vx	5,22	[Ton]	Dirección `	Y, Vy	5,22	[Ton]
Nivel	Altura [m]	Wx [Ton]	Wx.Hx^kx	CVx	Fx [Ton]	Vx [Ton]	Wx.Hx^ky	CVy	Fy [Ton]	Vy [Ton]
2	6	2,45	14,69	0,29	1,49	1,49	14,69	0,29	1,49	1,49
1	3	12,25	36,74	0,71	3,73	5,22	36,74	0,71	3,73	5,22
Sumatoria		14,70	51,43				51,43			

Revisión de envolvente e índice de estabilidad

TABLE: Sec	tion Cut Force	es - Analysis				
SectionCut	OutputCase	CaseType	StepType	F1 Tonf	F2 Tonf	F3 Tonf
Nivel 1	Sx	LinStatic		9.504	-0.0003	-3.193
Nivel 1	Sy	LinStatic		5.274E-07	4.949	-0.000004
Nivel 1	envolvente	Combination	Max	9.514	4.950	-11.894
Nivel 1	envolvente	Combination	Min	-9.502	-4.949	-71.291
Nivel 2	Sx	LinStatic		3.655	0.00002	-6.272
Nivel 2	Sy	LinStatic		-4.217E-07	1.877	-0.000003
Nivel 2	envolvente	Combination	Max	3.676	1.877	7.087
Nivel 2	envolvente	Combination	Min	-3.642	-1.877	-7.222

	Distancia x	envolvente x		Indice de estabilidad
2	0,0148	0,0034	Q2	0,00194
1	0,0046	0,0015	Q1	0,00088
				Indice de estabilidad
	Distancia y	envolvente y		
2	0,0012	0,0002	Q2	0,00035
1	0,0007	0,0002	Q1	0,00049

Diseño de placa base

Datos

d = 100 mm

bf = 400 mm

Fy = 36 ksi

F'c = 3 ksi

Pu = 16.28 kip

Mu =179.58 kip*in

$$Np = d + (1) * 3in = 6.937 in$$

$$Bp = bf + (1) * 3in = 18.748 in$$

$$N = 10 in$$

$$B = 20 in$$

Con estos valores se empezará el análisis de la placa base

$$\emptyset = 0.65$$

$$A2 = 1$$
 $A1 = 1$

Se debe asumir en que el área de la placa va a ser igual al área que va a

$$fmax = ø * 0.85 * f'c * \sqrt{A2/A1} = 1.658 \text{ ksi}$$

Tensión de soporte

$$qmax = fmax * B = 33.15 kip/in$$

esfuerzo del hormigón como

$$e = \frac{Mu}{Pu} = 11.031 \text{ in}$$

$$ecrit = \frac{N}{2} - \frac{Pu}{2 * qmax}$$

if(e > ecrit,"cumple","No cumple") ="Cumple"

$$f = \frac{N}{2} - 3in = 2in$$

$$A1 = \left(f + \frac{N}{2}\right)^2 = 49 \text{ in } 2$$

$$B1 = 2 * Pu * \frac{e + f}{gmax} = 12.799 \text{ in } 2$$

If (A1≥B1,"cumple","No cumple") ="Cumple"

Determinar la longitud portante "Y" y la tensión de la barra de anclaje.

$$Y1 = \left(f + \frac{N}{2}\right) + \sqrt{\left(f + \frac{N}{2}\right)^2 - 2 * Pu * \frac{e + f}{qmax}} = 13.017 \text{ in } 2$$

$$Y1 = \left(f + \frac{N}{2}\right) - \sqrt{\left(f + \frac{N}{2}\right)^2 - 2 * Pu * \frac{e + f}{qmax}} = 0.983 \text{ in } 2$$

$$Y = min(Y1, Y2) = 0.983in$$
 $Tu = qmax * Y - Pu = 16.315 kip$

Determine el espesor mínimo de la placa.

$$m = \frac{N - 0.95 * d}{2} = 3.13 \text{ in}$$

$$tp_{req} = 1.5 * m * \sqrt{\frac{fmax}{Fy}} = 1.007in$$

Interfaz de tensión.

$$x = \frac{N}{2} - \frac{d}{2} - 1.5in = 1.531 in$$

$$tp_{req} = 2.11 * \sqrt{\frac{Tu * x}{Fy * B}} = 1.007 in$$

Verificar el grosor utilizando el valor de n

$$n = \frac{B - 0.8 * bf}{2} = 3.701 in$$

$$tp_{req} = 1.5 * n * \sqrt{\frac{fmax}{Fy}} = 1.191 in$$

$$tp = 1.2 in$$

Se elige el espesor mayor y se lo redondea hasta un decimal.

Fbarra1 =
$$\frac{Tu}{nbarra}$$
 = 1.191 in

Diseño de cimentación

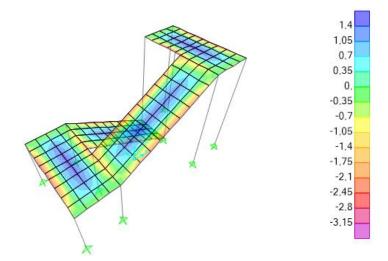
Como la estructura es desmontable y por no contar con la información del tipo de suelo y otros valores adicionales se optó por asumir un tipo de suelo y valores como: Angulo de fricción.

$$qu = 1.3 c' \text{ Nc} + q \text{ Nq} + 0.4 \text{ y B Ny}$$

Suelo tipo D

Datos

$$qu = (1.3) * (50) * (37.16) + (1) * (16.5) * (16.18) + 0.49 * (16.5) * (0.2178)(16.18)$$


$$qu = 2705.63 K N/M2$$

$$qadm = \frac{Qu}{Fs}$$

$$qadm = \frac{2705.63}{3}$$

$$qadm = 107.64 \, KN$$

Diseño de escalera

Hp = 3.4 m

Ancho min = 1.2 m

Huella = 0.28 m

Contrahuella = 0.18 m

Pendiente = 0.64 m

 N° de escalones = 9.44

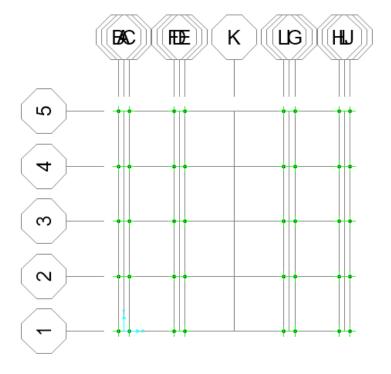
Descanso =1.2 m

H = 3.4 m

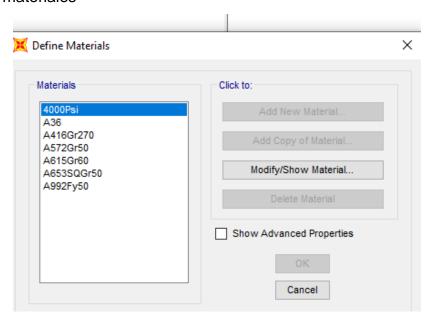
LLW = 1.2 m

RLW = 1.2 m

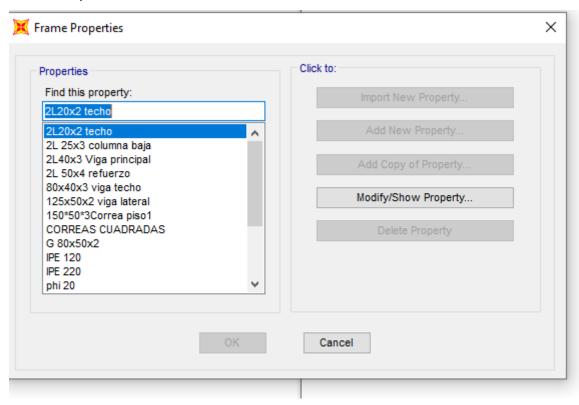
SPL = 2,64 m

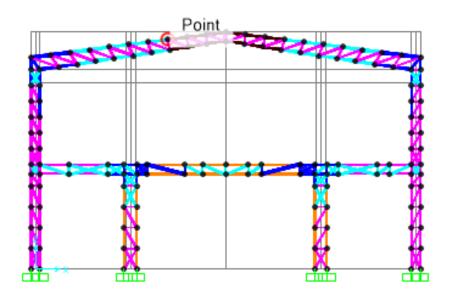

SW1 = 1.2 m

SW2 = 1.2 m

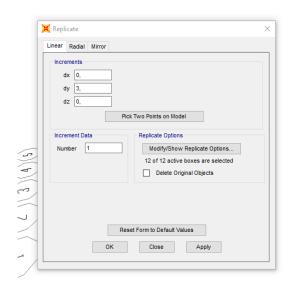

OW = 0.2 m

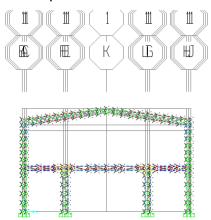
Modelado de la estructura

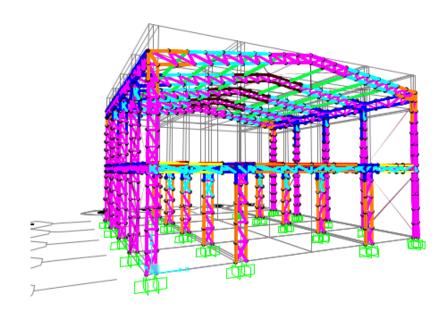

Realizar la Grid


Definición de materiales

Creación de perfiles

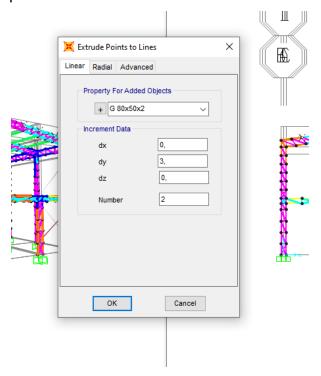

Creación del pórtico

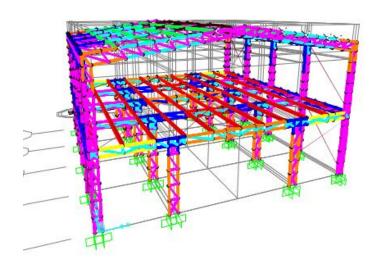



Replicación del pórtico hacia un eje especifico

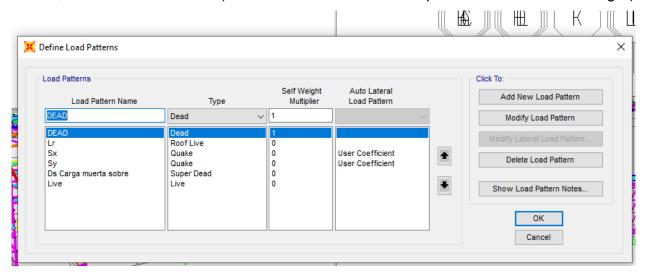
Seleccionar el pórtico por completo

Opción Edit, replicate, seleccionar a cada cuanto se quiere replicar.

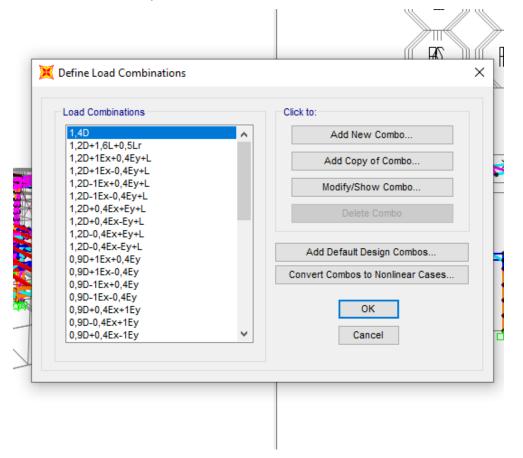




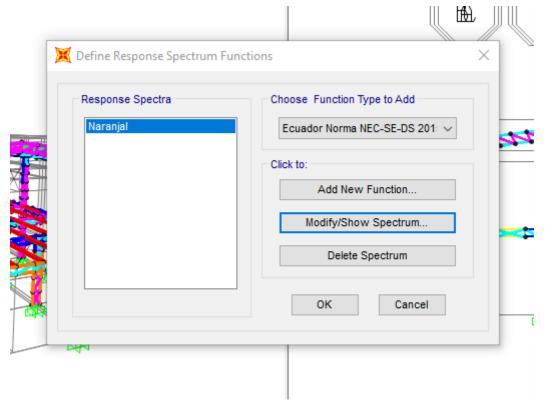
Para la colocación de las correas en cubierta y en primer piso Seleccionar puntos en el plano X-Z donde se colocarán las correas


Edit, Extrude, Extrude Point to Lines, seleccionar la correa, se coloca la distancia de separación en el sentido del eje requerido, Number: indicar cuantas veces quiere que se repita en ese eje y aceptar.

Definición de cargas


Define, Define Load Patterns (Guiarse con normativa NEC para la elección de lar cargar)

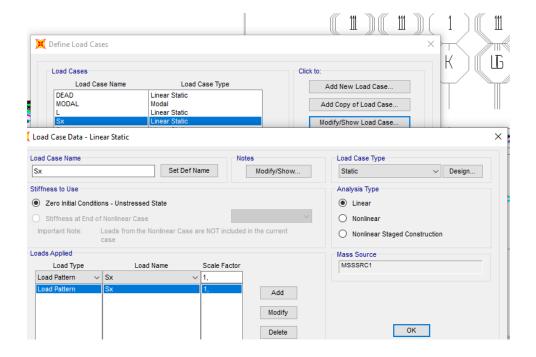
Definición de combinación de cargas

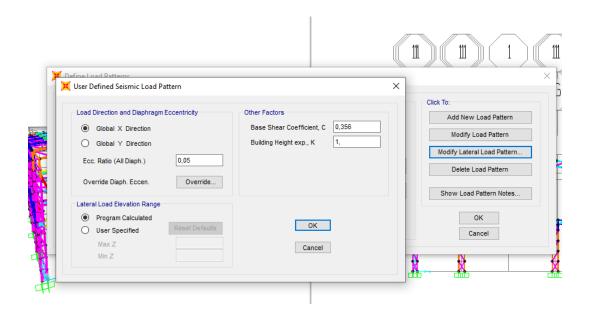

Define, Load Combinations

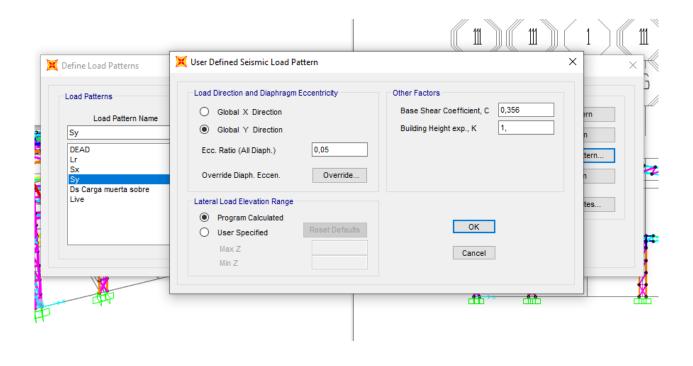
Guiarse con normativa NEC para realizar los combos

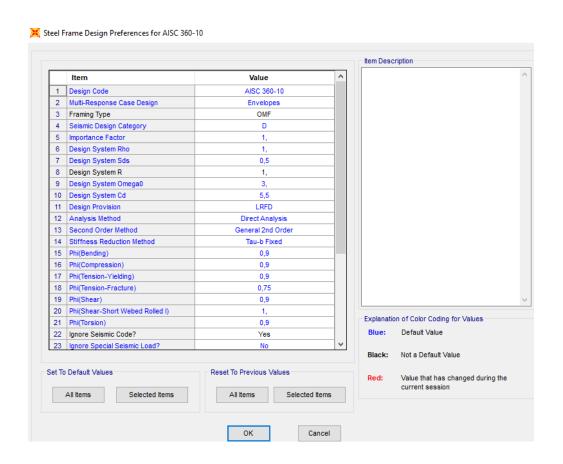


Colocar valores del espectro de respuesta

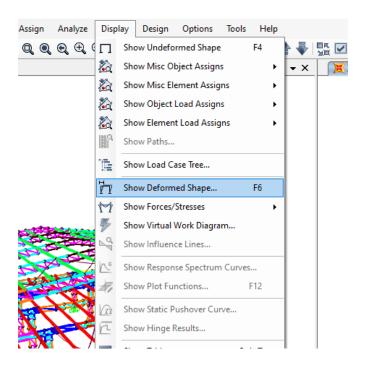

Define, Response Spectrum Funcions, seleccionar los parámetros de la normativa ecuatoriana y realizar una nueva función

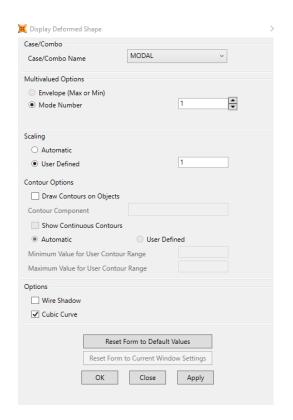


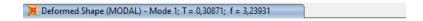

Colocar los valores calculados anteriormente

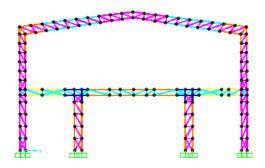


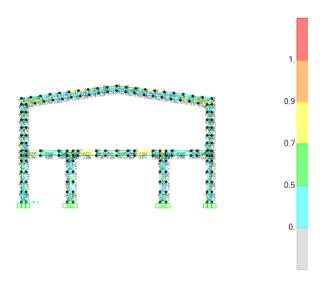
Dependiendo de cada proyecto y las características de los materiales se realizan los cambios.








Correr el modelado, para ver el periodo del modal y dar una primera observacion de la estructura ir a esta es opcion



Se revisa el periodo calculado con la gráfica de espectro de respuesta inelástica. En normativa NEC existe dos métodos para el cálculo del periodo, el valor que muestra el programa debe estar por lo menos entre estos valores para su confirmación.

Capacidad de resistencia de los materiales

ID Rubro: 1.1 Unidad (U): m2

Detalle Rubro: Limpieza desbroce manual de terreno

Rendimiento: 12.00 U/Horas 0.08 Horas/U

	EQUIPOS						
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO		
Herramienta menor (5%)					0.04		
SUBTOTAL EQUIPOS (EQ.)							

MANO DE OBRA							
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO		
Peón (Estruc. Ocup. E2)	2.00	3.60	7.20	0.08	0.60		
Albañil (Estruc. Ocup. D2)	1.00	3.65	3.65	0.08	0.30		
SUBTOTAL MANO DE OBRA (MO.)							

	MATERIALES							
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO				
		SUBTOTAL M	ATERIALES (MA.)	0.00				

TRANSPORTE						
DESCRIPCIÓN UNIDAD CANTIDAD TARIFA COSTO						
SUBTOTAL TRANSPORTE (TR.)						

COSTO DIRECTO (CD=EQ+MO+N	ЛА+TR)	TOTAL CD:	0.94
GASTOS GENERALES (GG)	2.18%	X (CD)	0.02
UTILIDAD (UT)	8.00%	X (CD)	0.08
OTROS INDIRECTOS (OI)	9.00%	X (CD)	0.08
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	1.13

ID Rubro:	1.2	Unidad (U):	m3
Detalle Rubro:	Derrocamiento de hormigón simple		

Rendimiento: 0.22 U/Horas 4.55 Horas/U

	EQUIPOS							
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO			
Herramienta menor (5%)					1.76			
SUBTOTAL EQUIPOS (EQ.)					1.76			

	MANO DE OBRA						
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO		
Peón (Estruc. Ocup. E2)	2.00	3.60	7.20	4.55	32.73		
SUBTOTAL MANO DE OBRA (MO.)							

MATERIALES								
DESCRIPCIÓN	DESCRIPCIÓN UNIDAD CANTIDAD PRECIO UNIT. COS							
SUBTOTAL MATERIALES (MA.)								

TRANSPORTE					
DESCRIPCIÓN	UNIDAD	CANTIDAD	TARIFA	COSTO	
SUBTOTAL TRANSPORTE (TR.)				0.00	

COSTO DIRECTO (CD=EQ+MO+N	//A+TR)	TOTAL CD:	34.49
GASTOS GENERALES (GG)	2.18%	X (CD)	0.75
UTILIDAD (UT)	8.00%	X (CD)	2.76
OTROS INDIRECTOS (OI)	9.00%	X (CD)	3.10
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	41.10

ID Rubro:	2.1	Unidad (U):	m3
-----------	-----	-------------	----

Detalle Rubro: Excavación a pulso

Rendimiento: 0.30 U/Horas 3.33 Horas/U

EQUIPOS					
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Herramienta menor (5%)					0.46
SUBTOTAL EQUIPOS (EQ.)					0.46

	MANO DE OBRA					
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO	
Peón (Estruc. Ocup. E2)	1.00	3.60	3.60	3.33	12.00	
Maestro de obra (Estruc.	0.03	4.04	0.12	3.33	0.40	
SUBTOTAL MANO DE OBRA (MO.)				12.40		

	MATERIALES						
DESCRIPCIÓN	DESCRIPCIÓN UNIDAD CANTIDAD PRECIO UNIT.						
SUBTOTAL MATERIALES (MA.)							

TRANSPORTE					
DESCRIPCIÓN	UNIDAD	CANTIDAD	TARIFA	COSTO	
SUBTOTAL TRANSPORTE (TR.)				0.00	

COSTO DIRECTO (CD=EQ+MO+M	ЛА+TR)	TOTAL CD:	12.86
GASTOS GENERALES (GG)	2.18%	X (CD)	0.28
UTILIDAD (UT)	8.00%	X (CD)	1.03
OTROS INDIRECTOS (OI)	9.00%	X (CD)	1.16
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	15.33

ID Rubro: 2.2 Unidad (U): m3

Detalle Rubro: Relleno compactado con material de sitio

Rendimiento: 2.00 U/Horas 0.50 Horas/U

EQUIPOS					
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Plancha vidroapisonadora	1.00	6.50	6.50	0.50	3.25
Herramienta menor (5%)					0.30
SUBTOTAL EQUIPOS (EQ.)					3.55

MANO DE OBRA					
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
Peón (Estruc. Ocup. E2)	2.00	3.60	7.20	0.50	3.60
Maestro de obra (Estruc.	1.00	4.04	4.04	0.50	2.02
SUBTOTAL MANO DE OBRA (MO.)				5.62	

MATERIALES					
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO	
Agua	m3	0.03	1.00	0.03	
SUBTOTAL MATERIALES (MA.)					

TRANSPORTE				
DESCRIPCIÓN	UNIDAD	CANTIDAD	TARIFA	COSTO
SUBTOTAL TRANSPORTE (TR.)				0.00

COSTO DIRECTO (CD=EQ+MO+N	ЛА+TR)	TOTAL CD:	9.20
GASTOS GENERALES (GG)	2.18%	X (CD)	0.20
UTILIDAD (UT)	8.00%	X (CD)	0.74
OTROS INDIRECTOS (OI)	9.00%	X (CD)	0.83
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	10.96

ID Rubro: 3.1 Unidad (U): m2

Detalle Rubro: Replantillo e= 0.05m

Rendimiento: 5.80 U/Horas 0.17 Horas/U

EQUIPOS					
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Concretera 1 saco	1.00	4.60	4.60	0.17	0.79
Herramienta menor (5%)					0.11
SUBTOTAL EQUIPOS (EQ.)			0.90		

MANO DE OBRA					
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
Peón (Estruc. Ocup. E2)	2.00	3.60	7.20	0.17	1.24
Albañil (Estruc. Ocup. D2)	1.00	3.65	3.65	0.17	0.63
Maestro de obra (Estruc. 0	0.50	4.04	2.02	0.17	0.35
SUBTOTAL MANO DE OBRA (MO.)				2.22	

MATERIALES					
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO	
Cemento fuerte tipo GU Saco 50Kg - D	saco	0.30	7.80	2.34	
Area	m3	0.04	12.80	0.51	
Piedra	m3	0.05	11.20	0.56	
SUBTOTAL MATERIALES (MA.)				3.41	

TRANSPORTE					
DESCRIPCIÓN	UNIDAD	CANTIDAD	TARIFA	COSTO	
SUBTOTAL TRANSPORTE (TR.)			0.00		

COSTO DIRECTO (CD=EQ+MO+N	ЛА+TR)	TOTAL CD:	6.53
GASTOS GENERALES (GG)	2.18%	X (CD)	0.14
UTILIDAD (UT)	8.00%	X (CD)	0.52
OTROS INDIRECTOS (OI)	9.00%	X (CD)	0.59
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	7.79

ID Rubro:	3.2	Unidad (U):	kg
-----------	-----	-------------	----

Detalle Rubro: Acero de refuerzo fy=4200 kg/cm2

Rendimiento: 25.00 U/Horas 0.04 Horas/U

EQUIPOS					
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Herramienta menor (5%)					0.02
SUBTOTAL EQUIPOS (EQ.)				0.02	

MANO DE OBRA						
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO	
Peón (Estruc. Ocup. E2)	1.00	3.60	3.60	0.04	0.14	
Fierrero (Estuc. Ocup. D2)	2.00	3.62	7.24	0.04	0.29	
SUBTOTAL MANO DE OBRA (MO.)				0.43		

MATERIALES					
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO	
Alambre de amarre #18	kg	0.05	1.68	0.08	
Acero de refuerzo fy=4200 kg/cm2	kg	1.05	0.96	1.01	
		SUBTOTAL M	ATERIALES (MA.)	1.09	

TRANSPORTE				
DESCRIPCIÓN	UNIDAD	CANTIDAD	TARIFA	COSTO
SUBTOTAL TRANSPORTE (TR.)			0.00	

COSTO DIRECTO (CD=EQ+MO+N	MA+TR)	TOTAL CD:	1.55
GASTOS GENERALES (GG)	2.18%	X (CD)	0.03
UTILIDAD (UT)	8.00%	X (CD)	0.12
OTROS INDIRECTOS (OI)	9.00%	X (CD)	0.14
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	1.84

ID Rubro: 3.3 Unidad (U): m2

Detalle Rubro: Encofrado de madera para cimentación

Rendimiento: 5.00 U/Horas 0.20 Horas/U

EQUIPOS					
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Herramienta menor (5%)					0.13
SUBTOTAL EQUIPOS (EQ.)				0.13	

MANO DE OBRA					
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
Peón (Estruc. Ocup. E2)	1.00	3.60	3.60	0.20	0.72
Carpintero (Estruc. Ocup.	2.00	3.65	7.30	0.20	1.46
Maestro de obra (Estruc.	0.50	4.04	2.02	0.20	0.40
SUBTOTAL MANO DE OBRA (MO.)					2.58

MATERIALES					
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO	
Tabla dura de encofrado de 0.30 m	u	7.80	5.30	41.34	
Clavos	kg	0.15	1.08	0.16	
SUBTOTAL MATERIALES (MA.)					

TRANSPORTE					
DESCRIPCIÓN	٧	UNIDAD	CANTIDAD	TARIFA	COSTO
SUBTOTAL TRANSPORTE (TR.)				0.00	

COSTO TOTAL DE RUBRO	GG+UT+	-OI+CD	52.70
OTROS INDIRECTOS (OI)	9.00%	X (CD)	3.98
UTILIDAD (UT)	8.00%	X (CD)	3.54
GASTOS GENERALES (GG)	2.18%	X (CD)	0.96
COSTO DIRECTO (CD=EQ+MO+N	OSTO DIRECTO (CD=EQ+MO+MA+TR)		44.22

ID Rubro: 3.4 Unidad (U): m3

Detalle Rubro: Hormigón de alta resistencia inicial f'c=280

Kg/cm2 (Dados)

Rendimiento: 0.50 U/Horas 2.00 Horas/U

EQUIPOS					
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Concretera 1 saco	1.00	4.68	4.68	2.00	9.36
Vibrador de manguera	1.00	4.06	4.06	2.00	8.12
Herramienta menor (5%)					2.27
SUBTOTAL EQUIPOS (EQ.)				19.75	

MANO DE OBRA					
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
Peón (Estruc. Ocup. E2)	6.00	3.60	21.60	2.00	43.20
Albañil (Estruc. Ocup. D2)	1.00	3.65	3.65	2.00	7.30
Maestro de obra (Estruc.	0.50	4.04	2.02	2.00	4.04
SUBTOTAL MANO DE OBRA (MO.)				54.54	

MATERIALES					
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO	
Cemento fuerte tipo GU Saco 50Kg - D	saco	3.90	7.80	30.42	
Agua	m3	0.09	1.00	0.09	
Arena	m3	0.33	12.70	4.19	
Ripio	m3	0.48	13.15	6.31	
SUBTOTAL MATERIALES (MA.)					

TRANSPORTE				
DESCRIPCIÓN	UNIDAD	CANTIDAD	TARIFA	COSTO
SUBTOTAL TRANSPORTE (TR.)			0.00	

COSTO DIRECTO (CD=EQ+MO+MA+TR)		TOTAL CD:	115.30
GASTOS GENERALES (GG)	2.18%	X (CD)	2.51
UTILIDAD (UT)	8.00%	X (CD)	9.22
OTROS INDIRECTOS (OI)	9.00%	X (CD)	10.38
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	137.42

ID Rubro: 3.5 Unidad (U): kg

Detalle Rubro: Placa base y pernos de anclaje

Rendimiento: 50.00 U/Horas 0.02 Horas/U

EQUIPOS					
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Soldadura electrica	1.00	1.98	1.98	0.02	0.04
Herramienta menor (5%)					0.01
SUBTOTAL EQUIPOS (EQ.)				0.05	

MANO DE OBRA					
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
Peón (Estruc. Ocup. E2)	1.00	3.60	3.60	0.02	0.07
Perfilero (Estruc. Ocup. c2	1.00	3.85	3.85	0.02	0.08
Maestro de obra (Estruc. 0	0.50	4.04	2.02	0.02	0.04
SUBTOTAL MANO DE OBRA (MO.)					0.19

MATERIALES						
DESCRIPCIÓN UNIDAD CANTIDAD PRECIO UNIT.						
Acero estructural ASTM A36	kg	1.05	1.05	1.10		
Soldadura	kg	0.05	2.35	0.12		
Perno 5/8" x 3 1/2", tuerca y arandela	СС	0.01	15.55	0.16		
Pintura anticorrosiva	gl	0.25	17.15	4.29		
SUBTOTAL MATERIALES (MA.)						

TRANSPORTE				
DESCRIPCIÓN	UNIDAD	CANTIDAD	TARIFA	COSTO
SUBTOTAL TRANSPORTE (TR.)				0.00

COSTO DIRECTO (CD=EQ+MO+N	ЛА+TR)	TOTAL CD:	5.90
GASTOS GENERALES (GG)	2.18%	X (CD)	0.13
UTILIDAD (UT)	8.00%	X (CD)	0.47
OTROS INDIRECTOS (OI)	9.00%	X (CD)	0.53
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	7.03

ID Rubro:	4.1	Unidad (U):	kg
-----------	-----	-------------	----

Detalle Rubro: Acero de refuerzo fy=4200 kg/cm2 (malla)

Rendimiento: 40.00 U/Horas 0.03 Horas/U

EQUIPOS						
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO	
Herramienta menor (5%)					0.02	
SUBTOTAL EQUIPOS (EQ.)				0.02		

MANO DE OBRA					
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
Peón (Estruc. Ocup. E2)	1.00	3.60	3.60	0.03	0.09
Fierrero (Estuc. Ocup. D2	2.00	3.62	7.24	0.03	0.18
SUBTOTAL MANO DE OBRA (MO.)				0.27	

MATERIALES					
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO	
Alambre de amarre #18	kg	0.05	1.68	0.08	
Acero de refuerzo fy=4200 kg/cm2	kg	1.05	0.96	1.01	
SUBTOTAL MATERIALES (MA.)					

TRANSPORTE					
DESCRIPCIÓN UNIDAD CANTIDAD TARIFA COSTO					
SUBTOTAL TRANSPORTE (TR.)				0.00	

COSTO DIRECTO (CD=EQ+MO+N	ЛА+TR)	TOTAL CD:	1.38
GASTOS GENERALES (GG)	2.18%	X (CD)	0.03
UTILIDAD (UT)	8.00%	X (CD)	0.11
OTROS INDIRECTOS (OI)	9.00%	X (CD)	0.12
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	1.65

ID Rubro: 4.2 Unidad (U): m2

Detalle Rubro: Hormigón simple f'= 180 Kg/cm2 (Contrapiso

Rendimiento: 11.00 U/Horas 0.09 Horas/U

EQUIPOS					
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
Concretera 1 saco	1.00	4.68	4.68	0.09	0.43
Herramienta menor (5%)					0.12
SUBTOTAL EQUIPOS (EQ.)				0.55	

MANO DE OBRA					
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
Peón (Estruc. Ocup. E2)	5.00	3.60	18.00	0.09	1.64
Albañil (Estruc. Ocup. D2)	1.00	3.65	3.65	0.09	0.33
Maestro de obra (Estruc.	1.00	4.04	4.04	0.09	0.37
SUBTOTAL MANO DE OBRA (MO.)					2.34

MATERIALES					
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO	
Cemento fuerte tipo GU Saco 50Kg - D	saco	0.75	7.80	5.85	
Agua	m3	0.02	1.00	0.02	
Arena	m3	0.05	12.70	0.64	
Piedra	m3	0.04	13.20	0.53	
SUBTOTAL MATERIALES (MA.)					

TRANSPORTE					
DESCRIPCIÓN	UNIDAD	CANTIDAD	TARIFA	COSTO	
SUBTOTAL TRANSPORTE (TR.)				0.00	

COSTO DIRECTO (CD=EQ+MO+MA+TR)		TOTAL CD:	9.91
GASTOS GENERALES (GG)	2.18%	X (CD)	0.22
UTILIDAD (UT)	8.00%	X (CD)	0.79
OTROS INDIRECTOS (OI)	9.00%	X (CD)	0.89
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	11.82

ID Rubro: 5.1 Unidad (U): kg

Detalle Rubro: Provisión y montaje de estructura metálica

Rendimiento: 125.00 U/Horas 0.01 Horas/U

EQUIPOS						
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO	
Soldadora	1.00	1.95	1.95	0.01	0.02	
Cortadora perfil	1.00	1.88	1.88	0.01	0.02	
Herramienta menor (5%)					0.01	
SUBTOTAL EQUIPOS (EQ.)				0.04		

MANO DE OBRA						
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO	
Peón (Estruc. Ocup. E2)	5.00	3.60	18.00	0.01	0.14	
Perfilero (Estruc. Ocup. c2	2.00	3.85	7.70	0.01	0.06	
Maestro de obra (Estruc. 0	1.00	4.04	4.04	0.01	0.03	
SUBTOTAL MANO DE OBRA (MO.)					0.24	

MATERIALES						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO		
Electrodo ER 70S-6	kg	0.03	4.40	0.13		
Canal U 80X40X3	m	0.00	17.80	0.08		
Canal U 100X50X2	m	0.04	20.50	0.89		
Canal U 100X50X3	m	0.00	28.75	0.10		
Canal U 100X50X4	m	0.04	30.50	1.21		
Canal U 100X50X5	m	0.00	34.50	0.07		
Canal U 125X50X2	m	0.02	29.50	0.57		
Correa G 80X50X2	m	0.02	13.00	0.25		
Angulo L 25X25X3	m	0.14	9.65	1.35		
Angulo L 40X40X3	m	0.05	13.80	0.65		
Tubo Cuadrado 100X3	kg	0.03	57.50	1.53		
Galvanizado	kg	0.01	0.95	0.01		
SUBTOTAL MATERIALES (MA.)						

TRANSPORTE					
DESCRIPCIÓN UNIDAD CANTIDAD TARIFA COSTO					
SUBTOTAL TRANSPORTE (TR.)					

COSTO DIRECTO (CD=EQ+MO+M	OSTO DIRECTO (CD=EQ+MO+MA+TR)		7.12
GASTOS GENERALES (GG)	2.18%	X (CD)	0.16
UTILIDAD (UT)	8.00%	X (CD)	0.57
OTROS INDIRECTOS (OI)	9.00%	X (CD)	0.64
COSTO TOTAL DE RUBRO	GG+UT+	-OI+CD	8.48

ID Rubro: 5.2 Unidad (U): m2

Detalle Rubro: Sistema de piso de plancha galvanizada

(e=2 mm)

Rendimiento: 7.50 U/Horas 0.13 Horas/U

EQUIPOS						
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO	
Taladro eléctrico	1.00	1.20	1.20	0.13	0.02	
Herramienta menor (5%)					0.02	
SUBTOTAL EQUIPOS (EQ.)				0.04		

MANO DE OBRA					
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
Peón (Estruc. Ocup. E2)	1.00	3.60	3.60	0.13	0.48
Montador de fachadas	1.00	4.23	4.23	0.13	0.56
SUBTOTAL MANO DE OBRA (MO.)				1.04	

MATERIALES					
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO	
Plancha galvanizada antideslizante 1.2	Plancha	0.50	64.50	32.25	
Tornillo autoperforante cabeza hexagor	U	6.00	0.40	2.40	
SUBTOTAL MATERIALES (MA.)					

TRANSPORTE					
DESCRIPCIÓN	UNIDAD	CANTIDAD	TARIFA	COSTO	
SUBTOTAL TRANSPORTE (TR.)				0.00	

COSTO DIRECTO (CD=EQ+MO+N	//A+TR)	TOTAL CD:	35.73
GASTOS GENERALES (GG)	2.18%	X (CD)	0.78
UTILIDAD (UT)	8.00%	X (CD)	2.86
OTROS INDIRECTOS (OI)	9.00%	X (CD)	3.22
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	42.59

ID Rubro: 5.3 Unidad (U): m2

Detalle Rubro: Cubierta Galvalume (e=0.30mm)

Rendimiento: 7.5 U/Horas 0.13 Horas/U

EQUIPOS									
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO				
Taladro eléctrico	1.00	1.20	1.20	0.13	0.16				
Herramienta menor (5%)					0.07				
SUBTOTAL EQUIPOS (EQ.)									

		MANO DE O	BRA			
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO	
Peón (Estruc. Ocup. E2)	1.00	3.60	3.60	0.13	0.48	
Albañil (Estruc. Ocup. D2)	1.00	3.65	3.65	0.13	0.49	
Maestro de obra (Estruc.	1.00	4.04	4.04	0.13	0.54	
		SI	JBTOTAL MANC	DE OBRA (MO.)	1.51	

MATERIALES									
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO					
Alutecho a=1030mm e=0.3 mm l= 2400	Plancha	0.35	35.10	12.29					
Tornillos autoperforantes 2 pulg cabeza	U	4.00	0.14	0.56					
		SUBTOTAL MA	ATERIALES (MA.)	12.85					

TRANSPORTE									
DESCRIPCIÓN	UNIDAD	CANTIDAD	TARIFA	COSTO					
	DESCRIPCION UNIDAD CANTIDAD TARIFA								
SUBTOTAL TRANSPORTE (TR.)									

COSTO DIRECTO (CD=EQ+MO+M	ЛА+TR)	TOTAL CD:	14.58
GASTOS GENERALES (GG)	2.18%	X (CD)	0.32
UTILIDAD (UT)	8.00%	X (CD)	1.17
OTROS INDIRECTOS (OI)	9.00%	X (CD)	1.31
COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	17.38

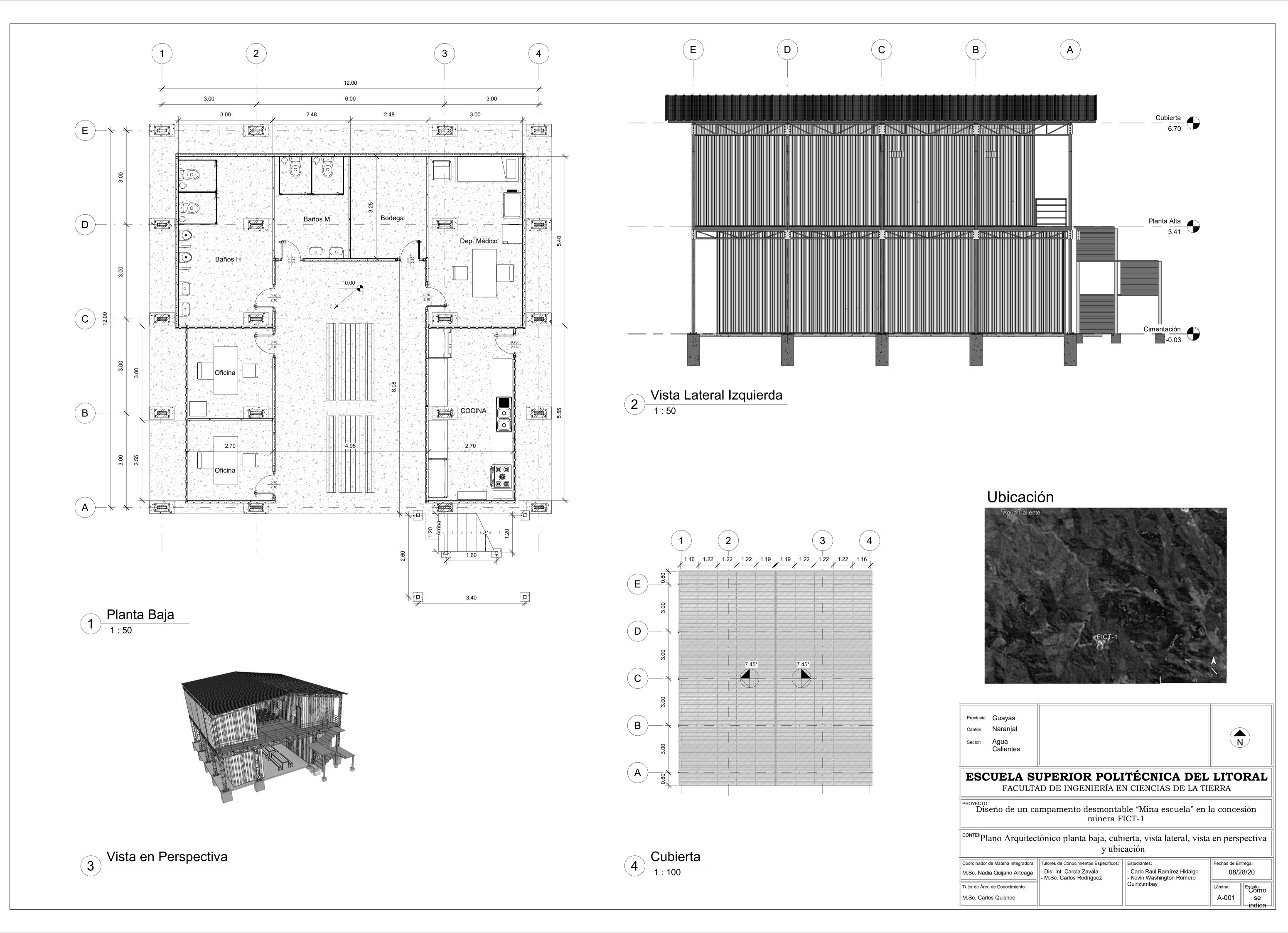
ID Rubro: 6.1 Unidad (U): m2

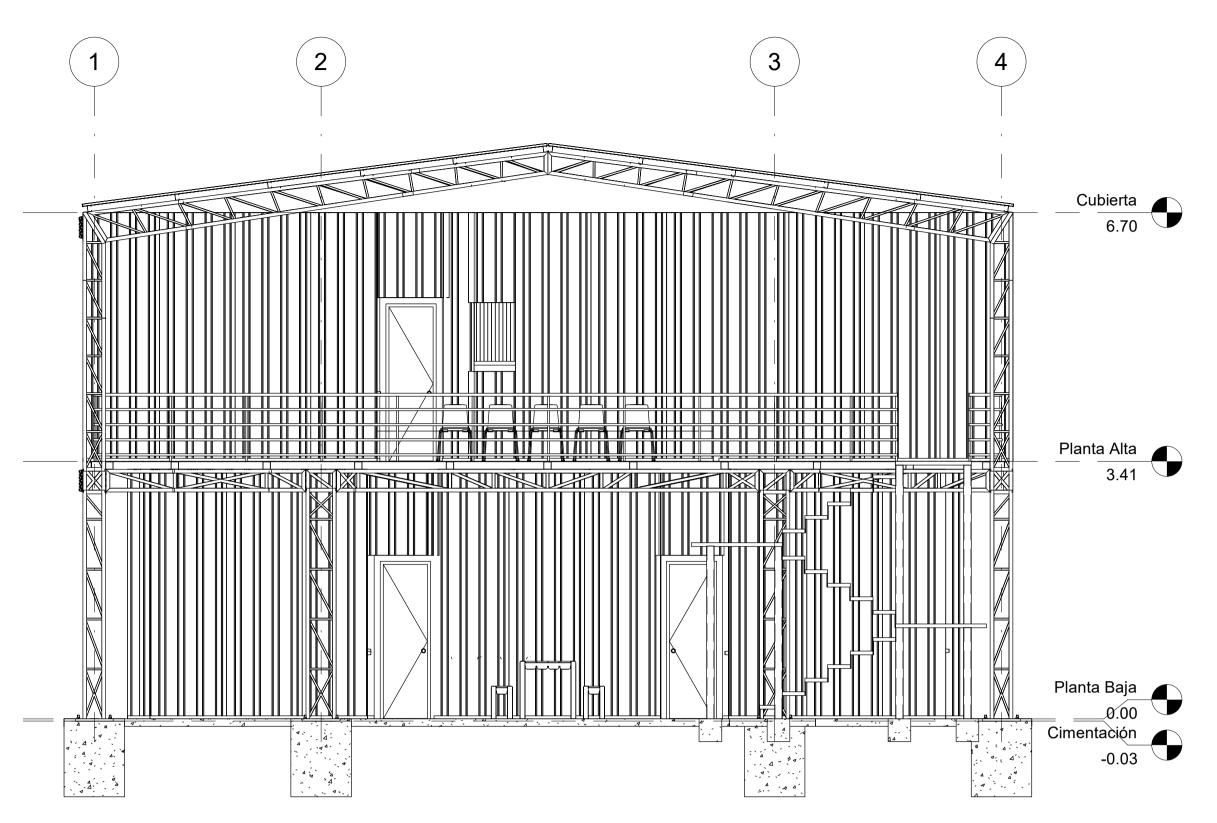
Detalle Rubro: Paredes tipo sandwich (e= 0.05 m)

Rendimiento: 12.00 U/Horas 0.08 Horas/U

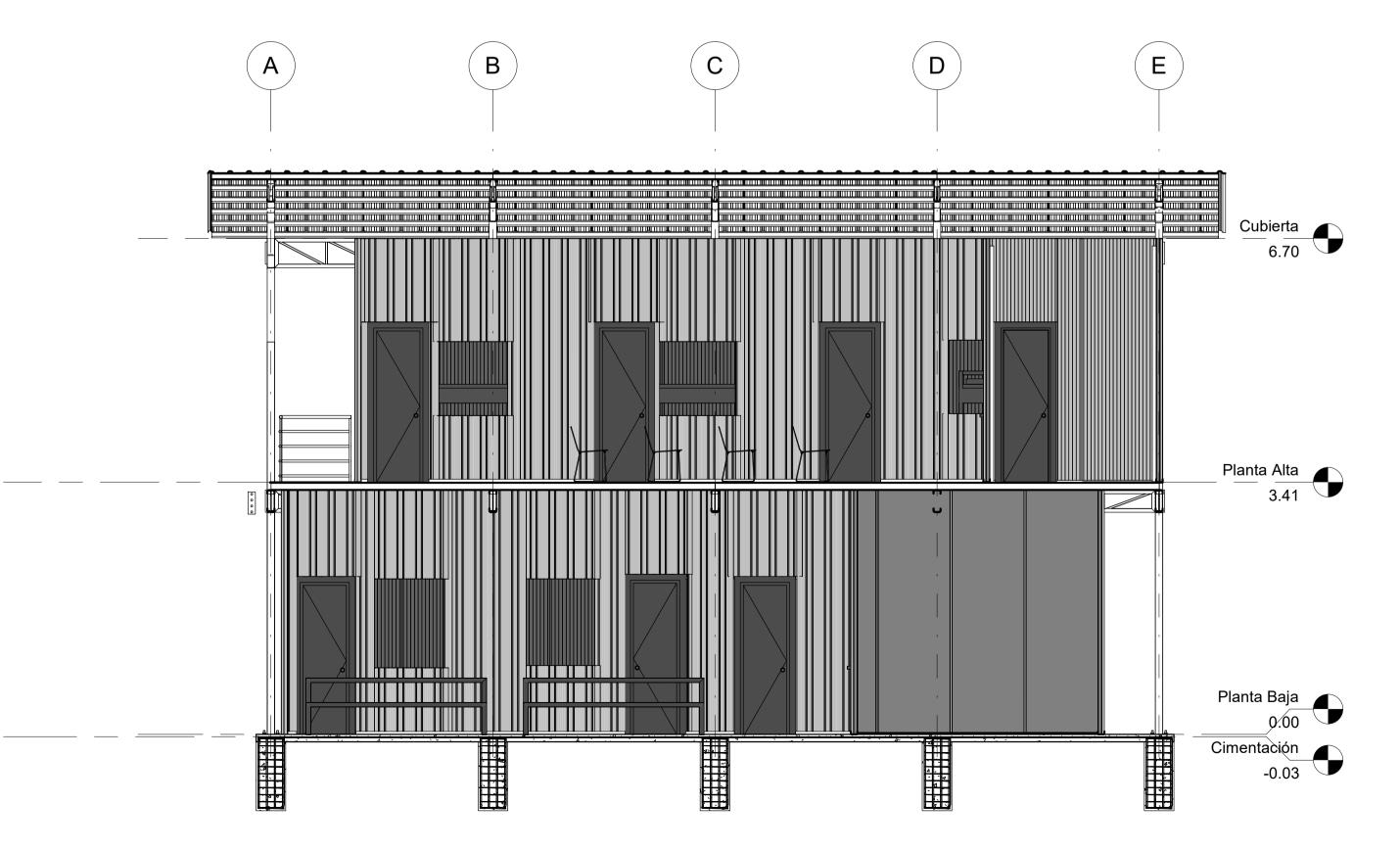
EQUIPOS										
DESCRIPCIÓN	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO					
Taladro eléctrico	1.00	1.20	1.20	0.08	0.1					
Herramienta menor (5%)					1.04					
	SUBTOTAL EQUIPOS (EQ.)									

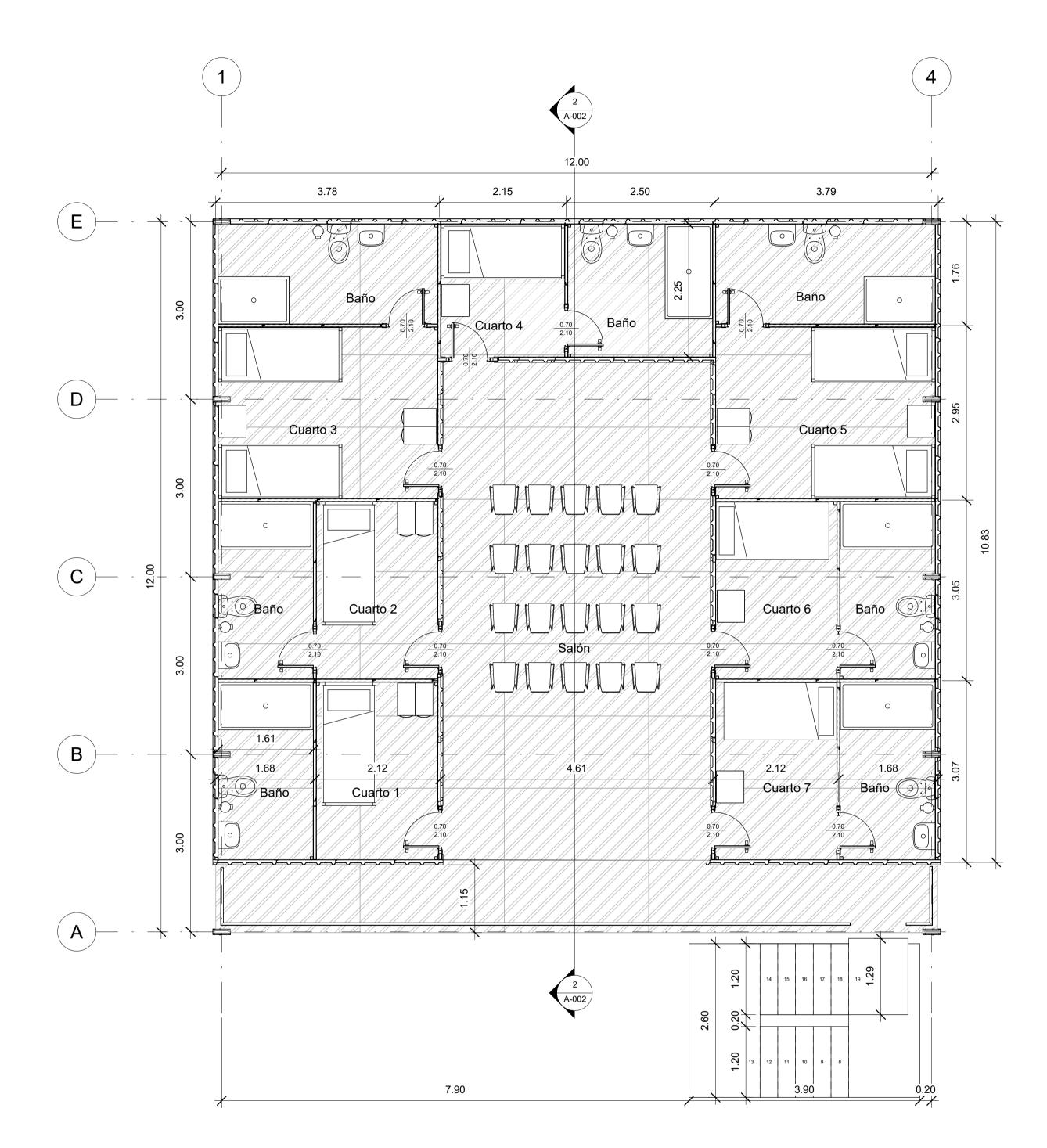
		MANO DE O	BRA		
DESCRIPCIÓN	CANTIDAD	JORNAL/HORA	COSTO HORA	RENDIMIENTO	COSTO
Peón (Estruc. Ocup. E2)	3.00	3.60	10.80	80.0	0.90
Montador de fachadas	2.00	4.23	8.46	80.0	0.71
	_	SI	JBTOTAL MANC	DE OBRA (MO.)	1.61


	MATERIAL	.ES			
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.	COSTO	
Panel tipo sandwich trapezoidal aislante e= 8 cm, a=1.10 m	m2	1.05	31.80	33.39	
Tornillos autorroscante con arandela de acero inoxidable	U	10.00	1.07	10.70	
Juntas de estanquedad (láminas perfila	m	2.00	1.17	2.34	
		SUBTOTAL MA	ATERIALES (MA.)	46.43	


TRANSPORTE									
DESCRIPCIÓN	UNIDAD	CANTIDAD	TARIFA	COSTO					
		SUBTOTAL TR	ANSPORTE (TR.)	0.00					

COSTO TOTAL DE RUBRO	GG+UT-	+OI+CD	58.61
OTROS INDIRECTOS (OI)	9.00%	X (CD)	4.43
UTILIDAD (UT)	8.00%	X (CD)	3.93
GASTOS GENERALES (GG)	2.18%	X (CD)	1.07
COSTO DIRECTO (CD=EQ+MO+M	ЛА+TR)	TOTAL CD:	49.18


2	1.1	-5	OBRAS PRELIMINARES	3 días		jue								L M X .	 	 	
2	1 1		I IVELIIMIIIAVES		5/10/20	8/10/20											
	1.1	*		2 días		mié											
3	1.2	*	Derrocamiento de hormigón simple	2 días	mar 6/10/20	jue 8/10/20	ı										
4	2	-5	MOVIMIENTOS DE TIERRAS	4 días		mar 13/10/20	9	1									
5	2.1	*	Excavación a pulso	4 días	mié	mar 13/10/20											
6	2.2	*	Relleno compactado con material de sitio	1 día	lun	mar 13/10/20											
7	3	-	CIMENTACIÓN	7,88 di	vie 9/10,	mar 20/10/2		9 r									
8	3.1	*	Replantillo e= 0.05m	2 días		jue 15/10/20			*								
9	3.2	*	Acero de refuerzo fy=4200 kg/cm2	6 días		lun 19/10/20											
10	3.3	*	Encofrado de madera para cimentación	2 días		lun 19/10/20				*							
11	3.4	*	Hormigón de alta resistencia inicial f'c=280 Kg/cm2 (Dados)			mar 20/10/20											
12	3.5	*	Placa base y pernos de anclaje	2 días		mar 20/10/20					4						
13	4	-5	PISO	5 días		mar 27/10/20						†					
14	4.1	*	Acero de refuerzo fy=4200 kg/cm2 (malla)	3 días	mié	vie 23/10/20						*					
15	4.2	*	Hormigón simple f'= 180 Kg/cm2 (Contrapiso e=8 cm)			mar 27/10/20							*				
16	5	-5	ESTRUCTURA MÉTALICA	8 días	mié 28/10/20	vie 6/11/20								+		7	


d		EDT	Modo de	Nombre de tarea	Duració	Comienzo	Fin	5.00	+ '20			12 oct '20			10 oct '2	n		26 oct '20		2 00	v '20	l a r	120 Y
	0		tarea					DL	M X	JV	SD	L M X	JV	SD	L M	(SD	L M X	J V S		v '20 M X J V	SDL	M X
17		5.1	*	Provisión y montaje de estructura metálica	5 días		mar 3/11/20												Ī				
18		5.3	*	Sistema de piso de plancha galvanizada (e=2 mm)			mar 3/11/20												+				
19		5.2	*	Cubierta Galvalun	3 días	mié 4/11	vie 6/11/20																
20		6	-5	PAREDES Y TABIQUES	7 días	_	jue 12/11/20)		
21		6.1	*	Paredes tipo sandwich (e= 0.10 m)	7 días		jue 12/11/20														*		

Fachada Frontal

Planta Alta
1:50

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

PROYECTO:
Diseño de un campamento desmontable "Mina escuela" en la concesión minera FICT-1

CONTENIDO:

M.Sc. Carlos Quishpe

Plano Arquitectónico fachada frontal, planta alta, corte 2-2

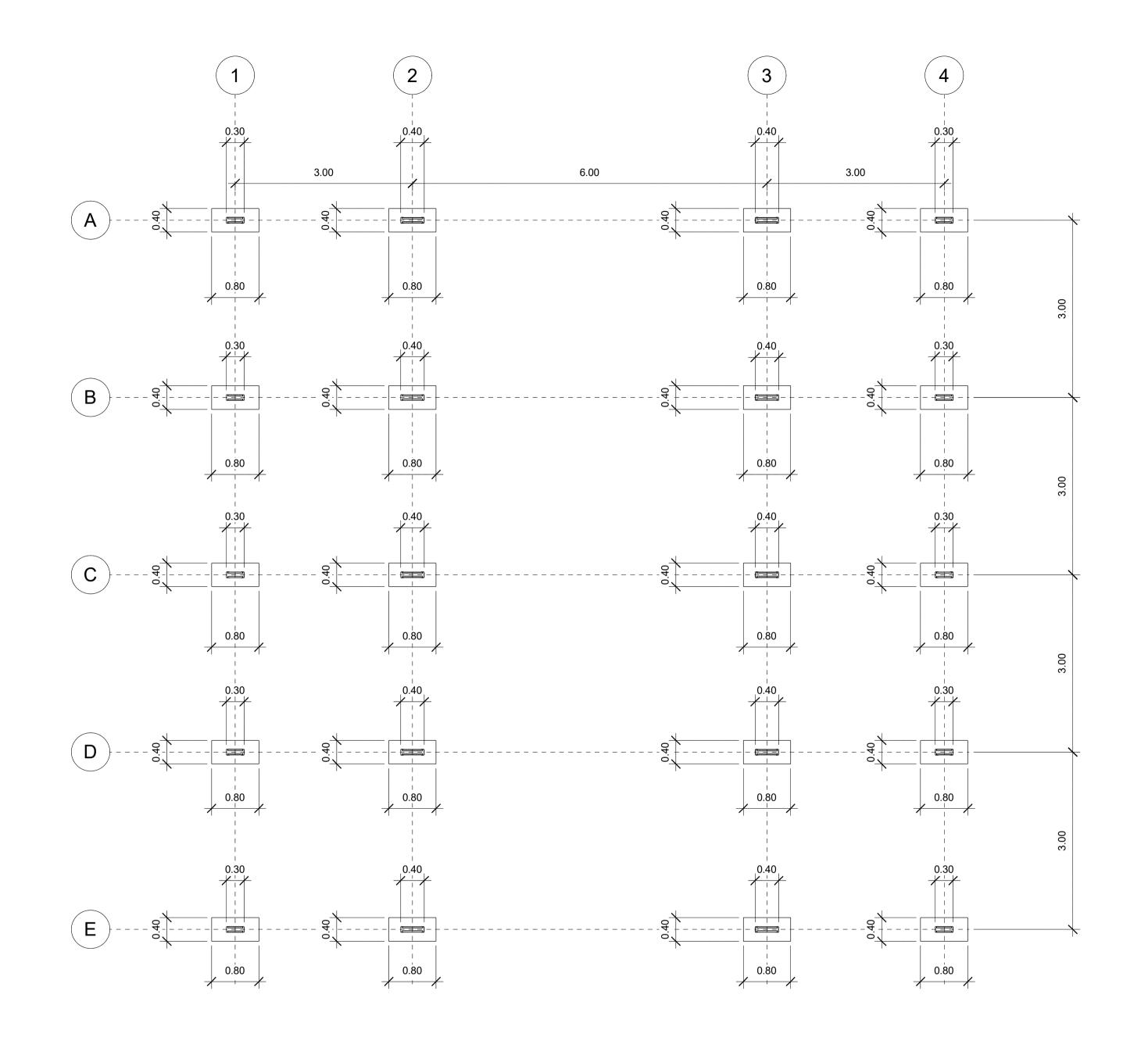
Coordinador de Materia Integradora:

M.Sc. Nadia Quijano Arteaga

- Dis. Int. Carola Zavala
- M.Sc. Carlos Rodriguez

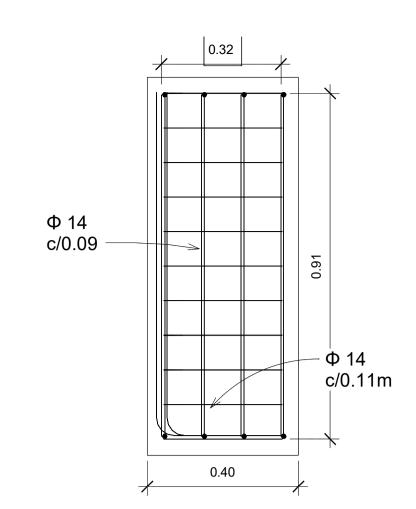
Tutor de Área de Conocimiento:

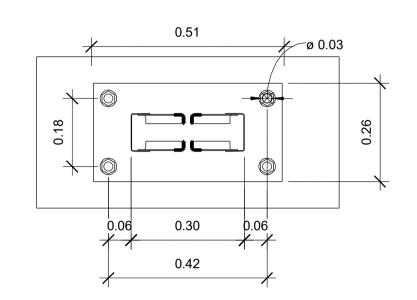
Estudiantes:
- Carlo Rau
- Kevin Wa
Quirizumba

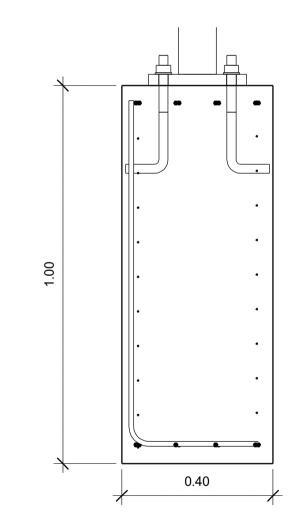

Estudiantes:
- Carlo Raul Ramírez Hidalgo
- Kevin Washington Romero
Quirizumbay

08/28/20

Lámina: Escala: 1:50

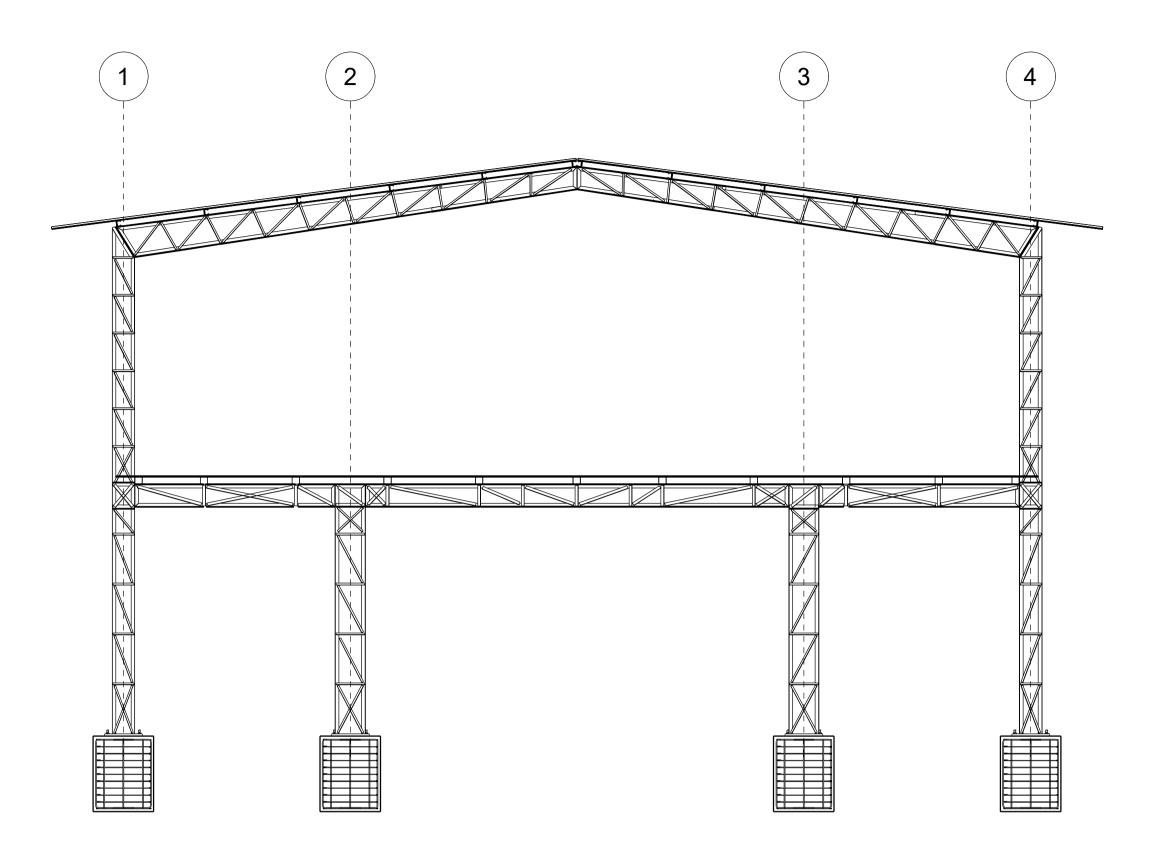

Fechas de Entrega:


2 CORTE 2-2 1:50


Cimentación

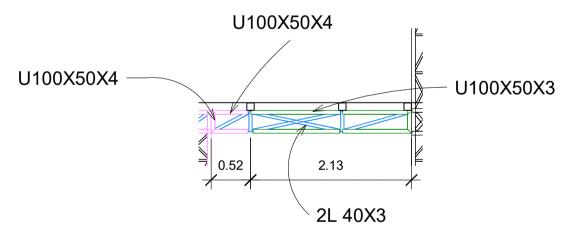
Resistencia del concreto F'c=280 kg/cm2. Varilla corrugada Φ=14mm Fe=2600 kg/cm2 Para estribos Φ=10mm La losa de la planta baja deberá ser vibradas adecuadamente durante la fundición. Posterior al ser hormigonado, las losas deberán ser curadas con aditivo de su preferencia.

Placa base
1:10


Pernos de anclaje

1:10

M.Sc. Carlos Quishpe



Pórticos del eje A y E

2L 25x3

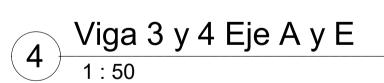
PÓRTICO TIPO EJE A y E

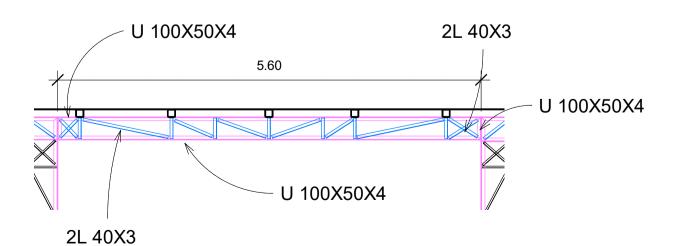
U100x50x2

3 Viga 1 y 2 Eje A y E

U100x50x2

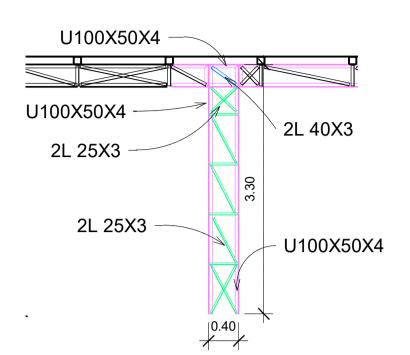
6 Viga de techo Eje A-E

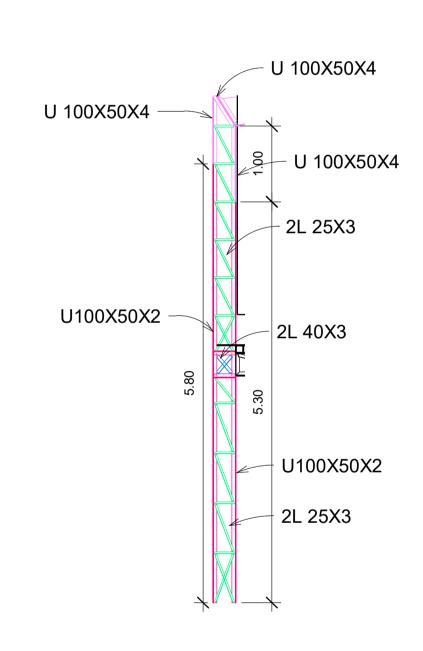

U100x50x4


2L 25x3

U100X50X4

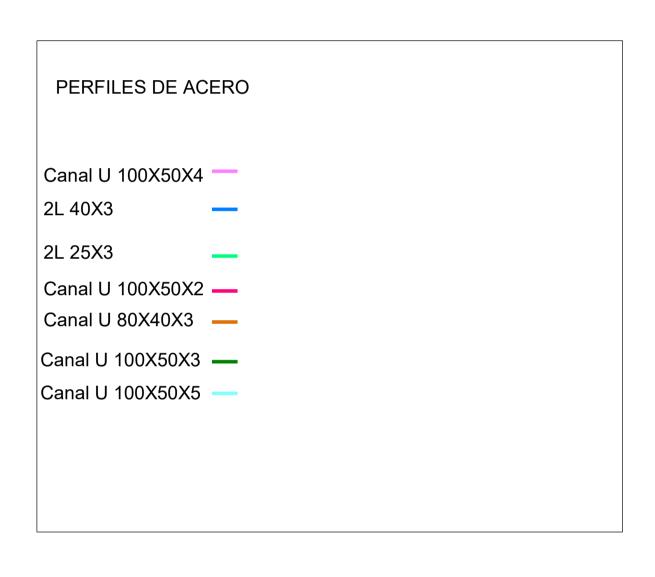
2L 40X3




7 Viga 2 y 3 EJE A y E

2L 40X3

U100x50x3


Columa 2 y 3 Eje A y E

Columna 1 y 4 Eje A y E

Acero Estructural

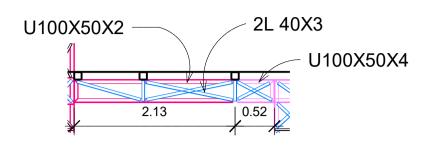
- 1.- Acero estructural Fy= 36ksi A36
- 2,.Diseño por LRFD
- 3.- Codigos utilizados:
- a.- AISC 341-05 Seismic Provisions
- for Structural Strrl Buildings
- b.-AWS D1.1/2010 AMERICAN WELDING CODE 2005.
- c.-AWS D 1.3 /2018 An American
- National Standard.
 - d.-Normativa AICI
- 4.-La unión de viga- columna, son uniones atornilladas, se recomienda dejar una tolerancia de agujero para un mejor montaje.
- 5.-Las varillas de anclaje seran fundidas en el dado de hormigón.

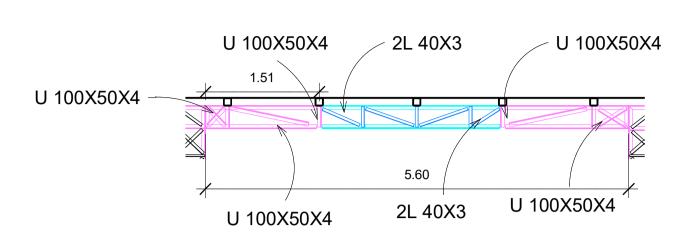
Soldadura

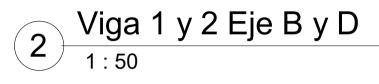
- 1.- Los Soldadores deberan estar calficados por AWS.
- 2.-Materiales de aporte:

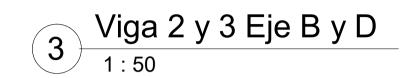
Especificaciones de electrodo: AWS A5.18 Clasificacion ER 70S-6

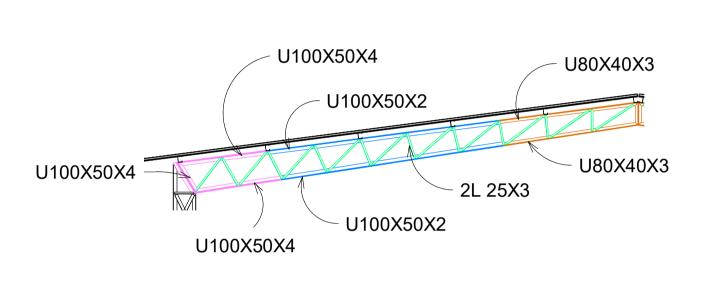
PROCESO: GMAW- Soldadura de arco con alambre sólido y protección gaseosa.

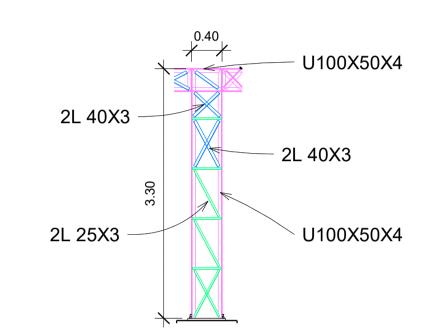

3.- Se debera realizar las inspecciones visuales de soldadura al 100% de las uniones soldadas durante la fabricacion y el montaje.

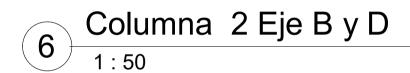


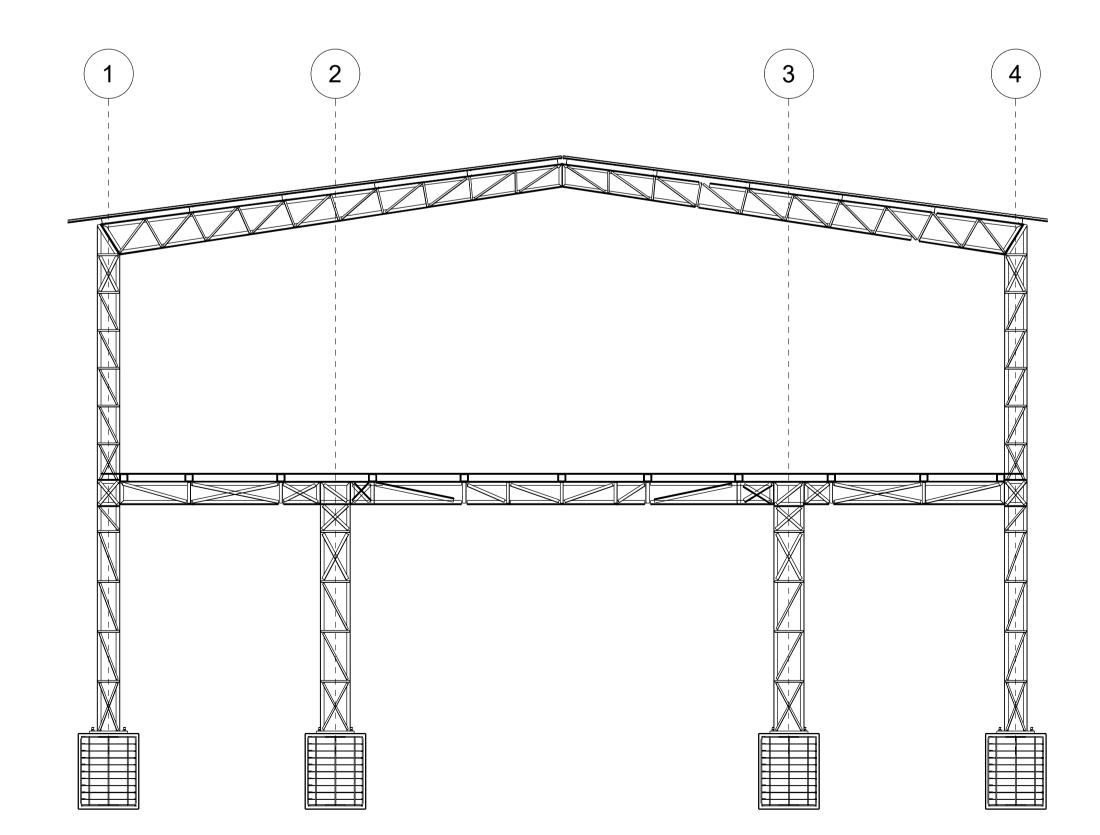

· Carlos Raul Ramírez Hidalgo - Kevin Washington Romero - M.Sc.Carlos Rodriguez Quirizumbay Tutor de Área de Conocimiento: M.Sc. Carlos Quishpe

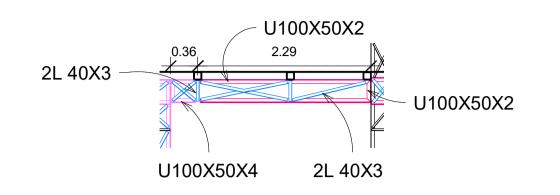

28/08/2020 Escala: Lámina: ES-002 1:50


Pórticos del eje B y D

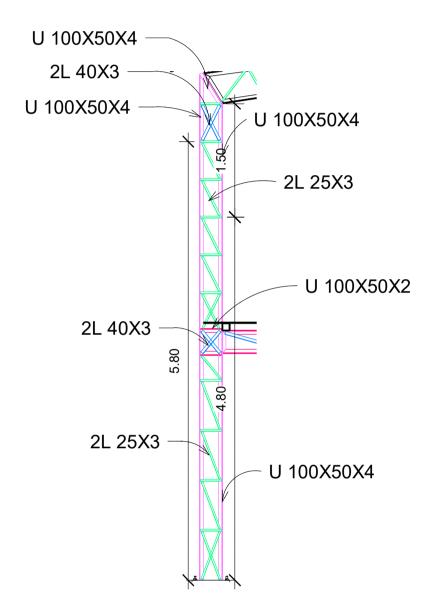








Viga de techo Eje B y D



PÓRTICO TIPO EJE B Y D

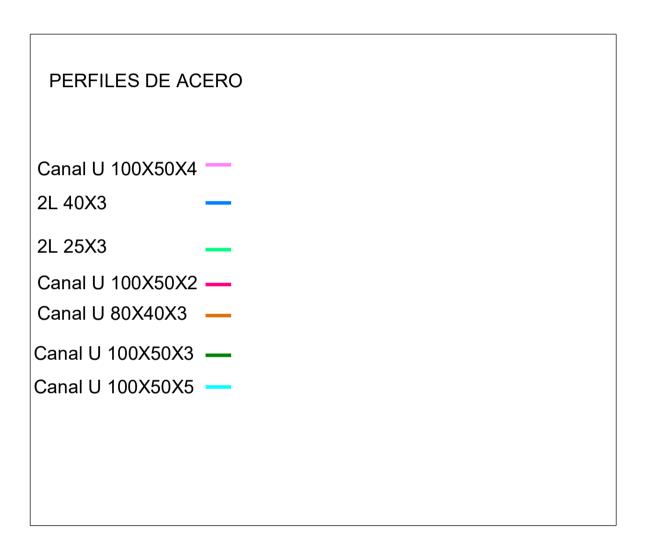
7 Columna 1-4 Eje B y D

Acero Estructural

- 1.- Acero estructural Fy= 36ksi A36
- 2,.Diseño por LRFD
- 3.- Codigos utilizados:
 - a.- AISC 341-05 Seismic Provisions

for Structural Strrl Buildings

b.-AWS D1.1/2010 AMERICAN


WELDING CODE 2005.

c.-AWS D 1.3 /2018 An American National Standard.

d.-Normativa AICI

4.-La unión de viga- columna, son uniones atornilladas, se recomienda dejar una tolerancia de agujero para un mejor montaje.

5.-Las varillas de anclaje seran fundidas en el dado de hormigón.

Soldadura

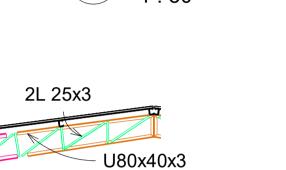
M.Sc. Carlos Quishpe

- 1.- Los Soldadores deberan estar calficados por
- 2.-Materiales de aporte:

Especificaciones de electrodo : AWS A5.18 Clasificacion ER 70S-6

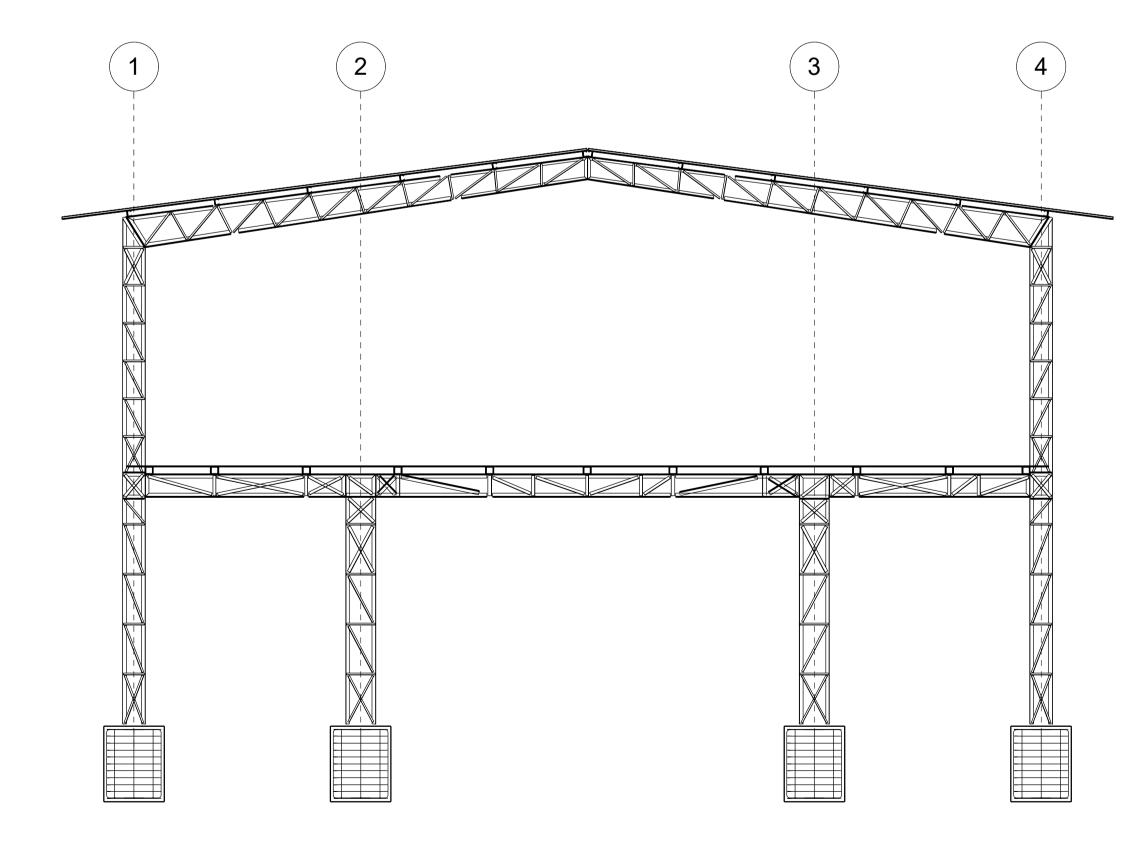
PROCESO: GMAW- Soldadura de arco con alambre sólido y proteccion gaseosa.

3.- Se debera realizar las insoeciones visuales de soldadura al 100% de las uniones soldads durante la fabricacion y el montaje.

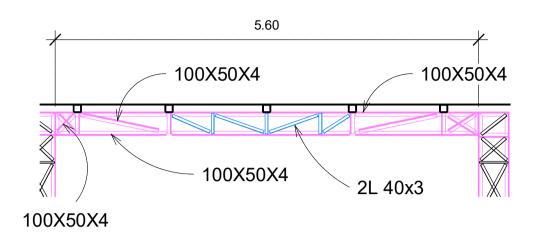

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA Diseño de un campamento desmontable "Mina escuela" en la conseción minera FICT-1 CONTENIDO: Fechas de Entrega: · Carlos Raul Ramírez Hidalgo 28/08/2020 M.Sc. Nadia Quijano Arteaga Kevin Washington Romero - M.Sc.Carlos Rodriguez Quirizumbay Tutor de Área de Conocimiento: Escala:

ES-003 1:50

Pórtico de eje C

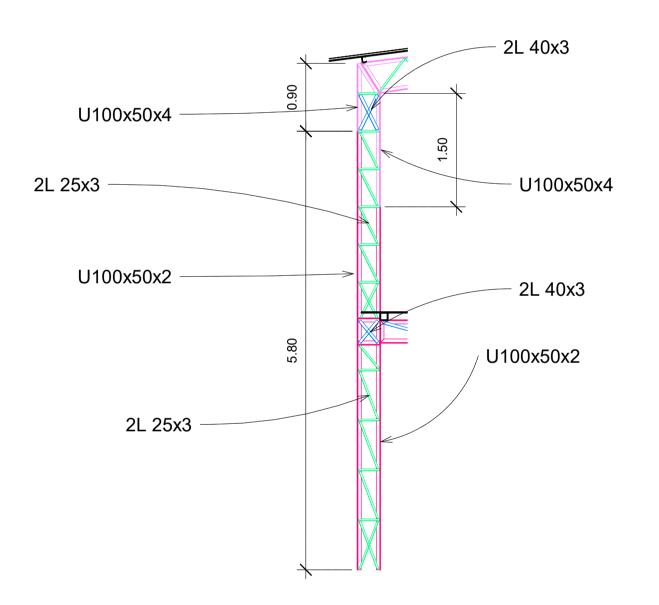

Viga de techo EJE C

U100x50x2


U100x50x4

U100x50x2

U100x50x4



Columna 1 EJE C

Viga 2 y 3 Eje C

1:50

Acero Estructural

- 1.- Acero estructural Fy= 36ksi A36
- 2,.Diseño por LRFD
- 3 Codigos utilizados:

a.- AISC 341-05 Seismic Provisions

for Structural Strrl Buildings

b.-AWS D1.1/2010 AMERICAN


WELDING CODE 2005.

c.-AWS D 1.3 /2018 An American

National Standard.

d.-Normativa AICI

- 4.-La unión de viga- columna, son uniones atornilladas, se recomienda dejar una tolerancia de agujero para un mejor montaje.
- 5.-Las varillas de anclaje seran fundidas en el dado de hormigón.

Soldadura

- 1.- Los Soldadores deberan estar calficados por AWS.
- 2.-Materiales de aporte:

Especificaciones de electrodo : AWS A5.18

Clasificacion ER 70S-6

PROCESO: GMAW- Soldadura de arco con

alambre sólido y proteccion gaseosa.

3.- Se debera realizar las insoeciones visuales de soldadura al 100% de las uniones soldads durante la fabricacion y el montaje.

FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

Diseño de un campamento desmontable "Mina escuela" en la conseción minera FICT-1

CONTENIDO:

Tutor de Área de Conocimiento:

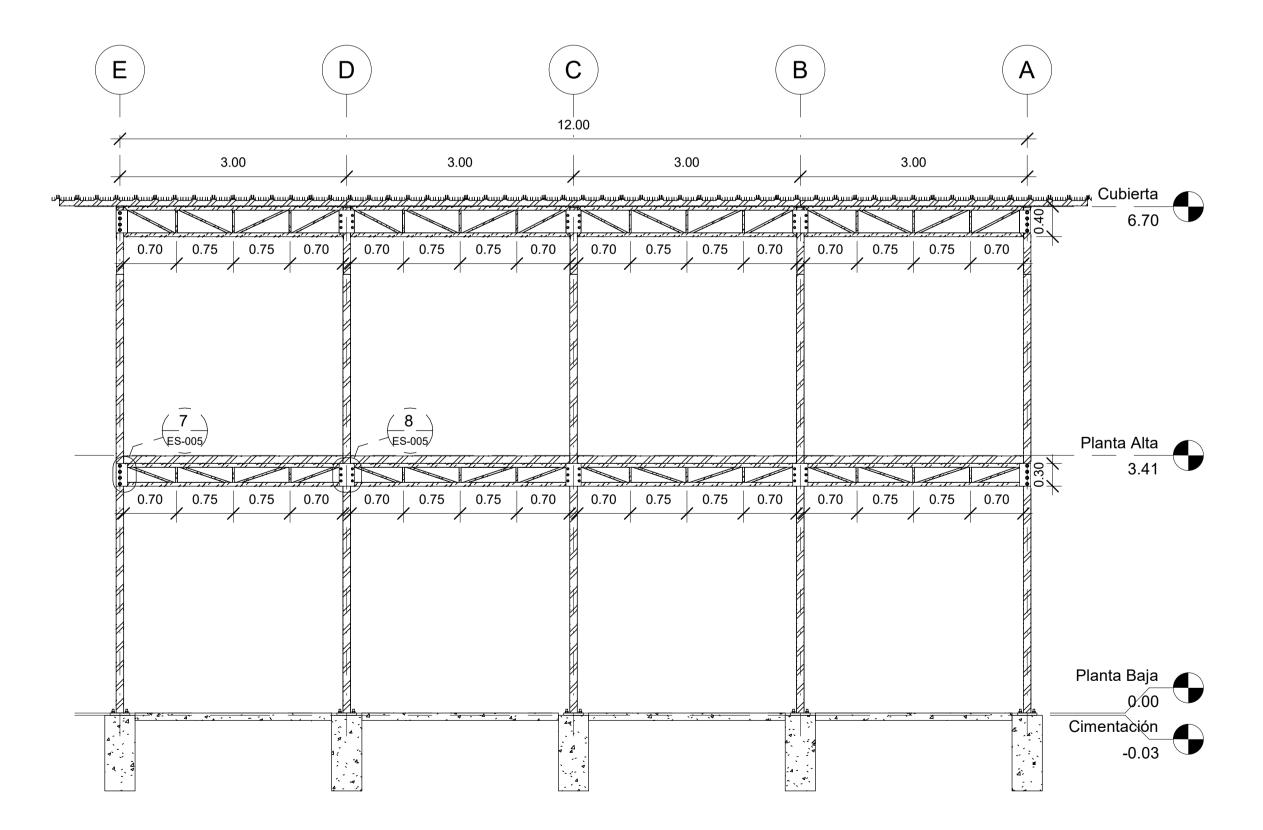
M.Sc. Carlos Quishpe

Coordinador de Materia Integradora: ||| Tutores de Conocimientos Específicos: ||| Estudiantes: - Dis.Int. Carola Zabala M.Sc. Nadia Quijano Arteaga

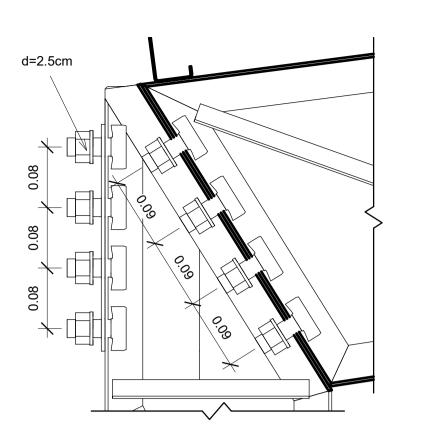
- M.Sc.Carlos Rodriguez

· Carlos Raul Ramírez Hidalgo · Kevin Washington Romero Quirizumbay

28/08/2020 Escala: Lámina: ES-004 1:50

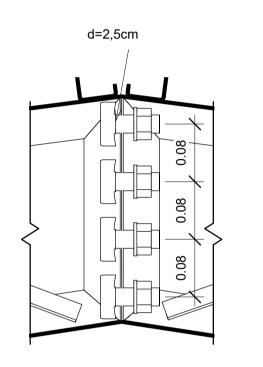

Fechas de Entrega:

PÓRTICO TIPO EJE C

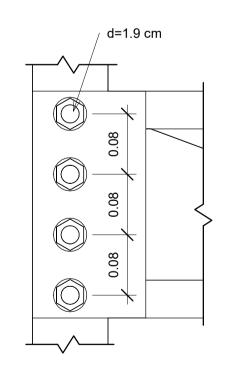

<u>PÓRTICO EJE A</u> Escala 1:50

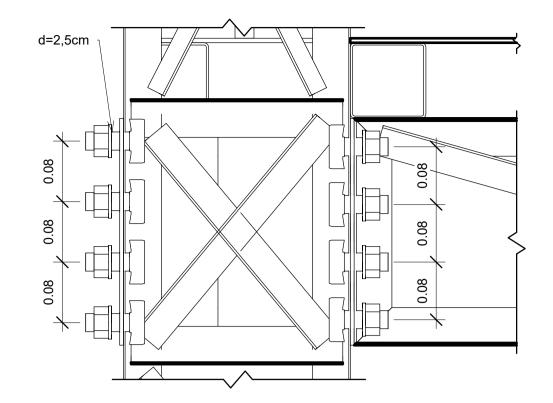
6.15

Vista Frontal

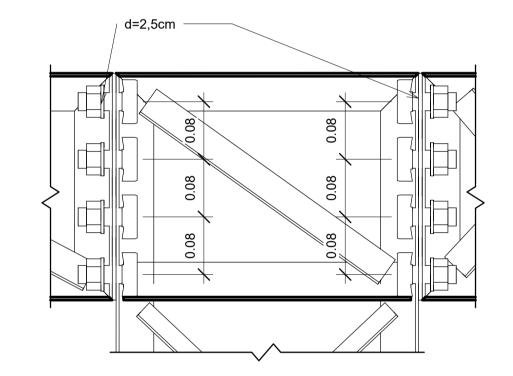


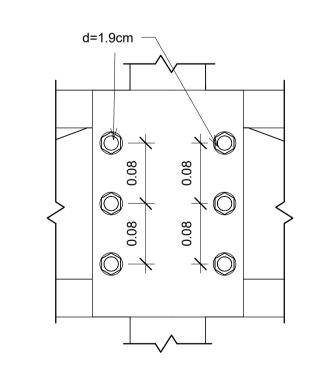
CONEXIONES




Conexión Tipo 1

1:5


5 Conexión Tipo 3



4 Conexión Tipo 2

1:5

6 Conexión Tipo 4

NOTAS IMPORTANTES

Acero Estructural

- 1.- Acero estructural Fy= 36ksi A36
- 2,.Diseño por LRFD
- 3.- Codigos utilizados:

a.- AISC 341-05 Seismic Provisions for Structural Strrl Buildings

b.-AWS D1.1/2010 AMERICAN WELDING CODE 2005.

c.-AWS D 1.3 /2018 An American

National Standard.

d.-Normativa AICI

4.-La union de viga columna, son uniones atornilladas, se recomienda dejar una tolerancia de agujero para un mejor montaje.

5.-Las varillas de anclaje seran fundidas en el dado de hormigon.

Tamaño:2,3 cm

Pernos PARA CONEXIONES PLANTA BAJA Tamaño:2,3 cm PARA CONEXIONES DE VIGAS LATERALES Tamaño; 1,9cm PARA CONEXIONES PLANTA ALTA CUBIERTA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

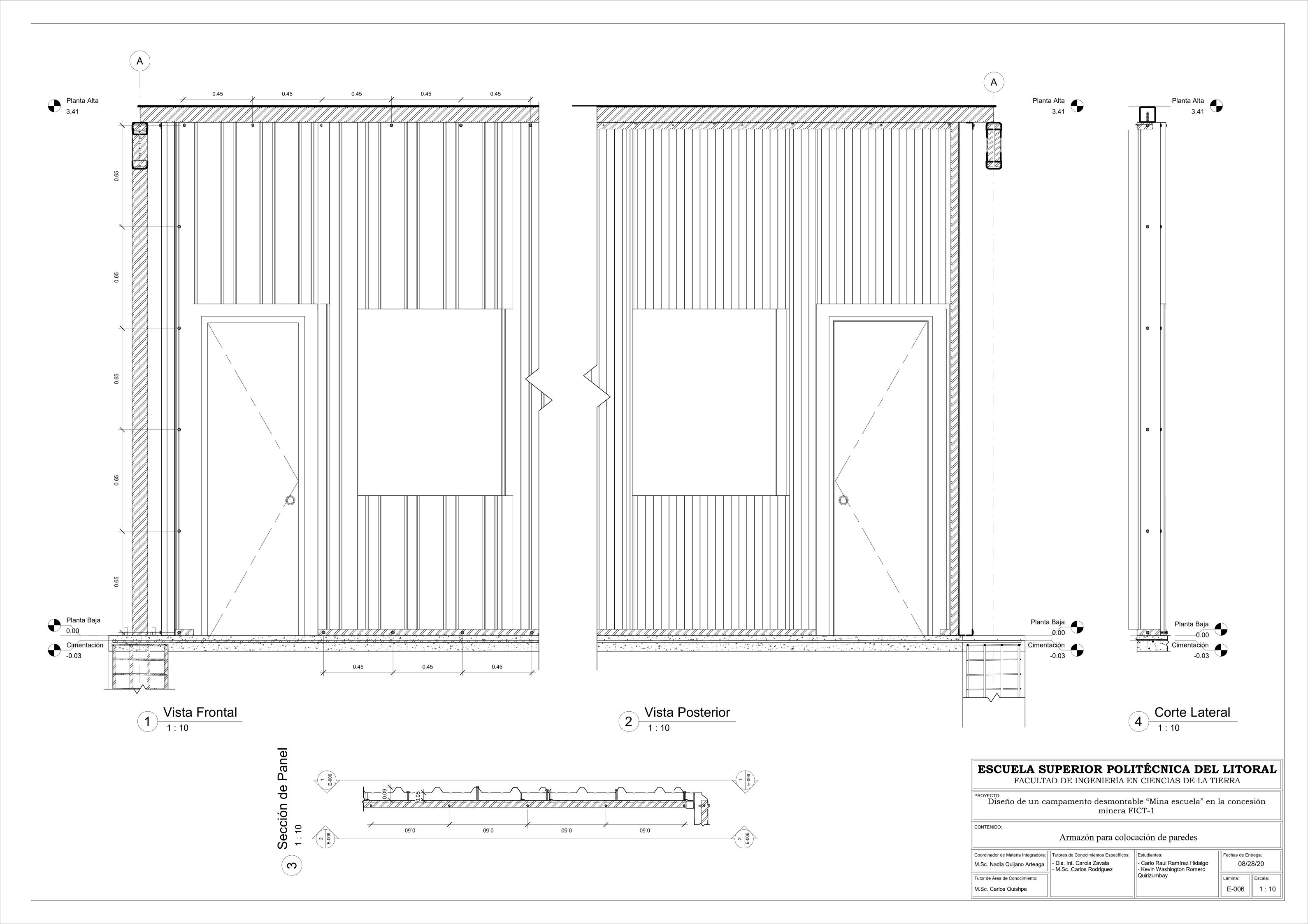
FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA

PROYECTO:
Diseño de un campamento desmontable "Mina escuela" en la concesión minera FICT-1

CONTENIDO:

M.Sc. Carlos Quishpe

Plano Estrucutral de conexiones empernadas


| Coordinador de Materia Integradora: || Tutores de Conocimientos Específicos: || Estudiantes: - Dis. Int. Carola Zavala M.Sc. Nadia Quijano Arteaga Quirizumbay Tutor de Área de Conocimiento:

- Carlo Raul Ramírez Hidalgo - Kevin Washington Romero

08/28/20 ES-005 se

Fechas de Entrega:

