ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Diseño de un compactador de envases de aluminio de 25kg por bloque compactado"

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Ingeniero Mecánico

Presentado por:

José Mariano Guaranga Lema

Frein Fernando Vera Nevarez

GUAYAQUIL - ECUADOR Año: 2020

DEDICATORIA

Dedicado a mi familia y en especial a mi abuelita Santa y mi tío Londres que desde el cielo están observando lo que he podido logar.

Frein Vera Nevarez

Dedicado a mi familia que siempre recibí apoyo en todo momento, también a mis profesores que impartieron sus conocimientos y sabidurías en mi vida estudiantil.

José Mariano Guaranga

AGRADECIMIENTO

A Dios, a mi familia, el cual me pudieron brindar su apoyo y soporte durante toda mi etapa estudiantil, en especial a mi madre Santy Nevarez que a pesar de toda adversidad estuvo dándome fuerza para continuar y no declinar.

Frein Vera Nevarez

Mi más sincero agradecimiento a Dios y en especial a mi padre Mariano Guaranga Lema y a mi madre Felipa Lema Gualli, así como a toda mi familia, gracias por el apoyo incondicional que me brindaron en todo momento en mi vida estudiantil.

José Mariano Guanga

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; *José Mariano Guaranga Lema y Frein Fernando Vera Nevarez* damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

José Mariano Guaranga

Lema

Frein Fernando Vera Nevarez

EVALUADORES

RODOLFO
Digitally signed by RODOLFO EZEQUIEL PAZ MORA
MORA
Date: 2021.02.26 17:18:07 05:00'

Rodolfo Paz Mora

PROFESOR DE LA MATERIA

Ernesto Martínez Lozano MS. C

PROFESOR TUTOR

RESUMEN

El presente proyecto de investigación se fundamenta en el diseño de una máquina

compactadora de latas de aluminio de una empresa cervecera, a fin de reducir el espacio

de almacenamiento del material defectuoso, y por tanto descartando al no cumplir con

los estándares de calidad NTE INEN 448.

Para el efecto, se procedió a recolectar los requisitos para un diseño acorde a las

necesidades de la empresa, lo que incluyó determinar el espacio donde se pretende

instalar la máquina, el porcentaje de la densidad a compactar y las características para

un montaje y operación automática eficientes.

Posteriormente se realizaron cálculos y análisis matemáticos para seleccionar todos los

componentes que conforman el diseño del sistema compactación. Además, para validar

el correcto funcionamiento del diseño se simuló el montaje de la máquina en el programa

Autodesk Inventor 2018, obteniendo un factor de seguridad de 2,25.

Estos resultados confirman que el diseño de la maquina compactadora propuesto en

este proyecto es eficiente en cuanto a la calidad de sus compontes, a la facilidad en su

montaje y operación, y a la conveniencia económica de su adquisición.

Palabras clave: envases de aluminio, compactación, diseño y proceso

I

ABSTRACT

This research project is based on the design of an aluminum can compacting machine

from a brewing company, to reduce the storage space of the detective material, and

therefore discarding it by not complying with NTE INEN 448 quality standards.

For this purpose, the requirements for a design were collected according to the needs of

the company, which included determining the space where the machine is intended to be

installed, the percentage of the density to be compacted and the characteristics for

efficient automatic assembly and operation.

Mathematical calculations and analyses were then performed to select all the

components that make up the compaction system design. In addition, to validate the

proper functioning of the design, the machine was simulated in the Autodesk Inventor

2018 program, obtaining a safety factor of 2,25.

These results confirm that the design of the compacting machine proposed in this project

is efficient in terms of the quality of this component, the ease in its assembly and

operation, and the economic convenience of this acquisition.

Keywords: aluminum containers, compaction, design, and process

Ш

ÍNDICE GENERAL

RE	SUMEN		I
ABS	STRACT		II
ÍND	ICE GEN	NERAL	!!!
ABF	REVIATU	JRAS	. VI
SIM	BOLOG	ÍA	VII
ÍND	ICE DE	FIGURAS	. IX
ÍND	ICE DE	TABLAS	. XI
CAF	PÍTULO [,]	1	1
1.	Introduc	cción	1
1	.1 Def	finición del Problema	1
1	.2 Jus	tificación del proyecto	1
1	.3 Obj	etivos	1
	1.3.1	Objetivo General	1
	1.3.2	Objetivos Específicos	1
1	.4 Ma	rco teórico	3
	1.4.1	Empresas cerveceras	3
	1.4.2	Descripción de proceso de envasado	3
	1.4.3	Sistema de compactación de desechos sólidos	4
	1.4.4	Equipo estacionario / vertical	5
	1.4.5	Compactador extrusor	6
	1.4.6	Características de envases de aluminio	7
	1.4.7	Sistema oleohidráulico	8
CAF	PÍTULO 2	2	.15
2.	Metodo	logía	.15

2.	1	Dise	eño conceptual	15
2.	2	Prod	ceso de funcionamiento	15
	2.2.	1	Sistema de alimentación	16
	2.2.2	2	Compactado	17
2.	3	Para	ámetros de diseño	17
	2.3.	1	Características de compactador	18
2.	4	Dise	eño preliminar	19
	2.4.	1	Ponderación de criterio	19
	2.4.	2	Selección de mejor alternativa	20
	2.4.	3	Matriz de decisión	21
2.	5	Dise	eño detallado	22
	2.5.	1	Análisis de material a compactar	22
2.	6	Cálc	culo de subsistema hidráulico	24
	2.6.	1	Obtención fuerza de compactación	26
	2.6.	2	Cálculo y selección de cilindro hidráulico	27
	2.6.	3	Dimensionamiento de vástago	30
2.	.7	Dim	ensionamiento del sistema hidráulico	33
	2.7.	1	Caudal del sistema hidráulico	33
	2.7.	2	Tiempo y velocidad recorrido	34
	2.7.	3	Selección de mangueras hidráulicas	34
	2.7.	4	Cálculo de velocidad a través de la tubería	35
	2.7.	5	Selección de aceite hidráulico	36
	2.7.	6	Selección de bomba hidráulica	37
	2.7.	7	Cálculo de potencia del motor	39
	2.7.	8	Cálculo y selección del tanque hidráulico.	39
2	R	Circ	uito Hidráulico	4 0

2.9	Dise	eño de la precámara y cámara de compactación	41
2.9	.1	Determinación de las fuerzas en los planos restantes	42
2.9	.2	Cámara de compactación	44
2.9	.3	Precámara de compactación	50
2.9	.4	Caras móviles	52
2.10	Sist	ema de control	57
2.11	Dise	eño de forma final	57
CAPÍTU	JLO 3	3	59
3. Res	sultad	dos y análisis	59
3.1	Res	sultados del diseño oleo hidráulico	59
3.2	Sim	ulación de la estructura	61
3.3	Res	sultados diseño estructural	69
3.4	Aná	ilisis de costos	70
3.4	.1	Análisis de costo de sistema hidráulico	70
3.4	.2	Costos de la estructura de la compactadora	72
3.4	.3	Componentes adicionales de la compactadora	73
3.5	Ret	orno de la inversión	73
CAPÍTU	JLO 4	1	79
4. Cor	nclus	iones y recomendaciones	79
4.1	Cor	nclusiones	79
4.2	Red	comendaciones	79
BIBLIO APÉND			

ABREVIATURAS

INEN Instituto Ecuatoriano de NormalizaciónESPOL Escuela Superior Politécnica del Litoral

ODS Objetivo de Desarrollo Sostenible
OMS Organización Mundial de Salud

SIMBOLOGÍA

 P_{O} potencia del sistema oleohidráulico Р presión máxima de compactación eficiencia del motor eléctrico N_m densidad de envase de aluminio sin compactar $\rho_{E/vacio1}$ masa antes de compactado m_{AC} masa después de compactado m_{DC} V_{AC} volumen antes de compactado V_{DC} volumen después de compactado F fuerza compactada F_R fuerza real compactado presión sobre envases P_{en} área de la placa A_{pl} área del émbolo calculado A_{cal} fuerza requerida F_{RO} P_N presión nominal diámetro del émbolo diseño compactado D_D Vvolumen de cámara compactación ancho de paca а b altura de paca longitud de carrera $L_{\mathcal{C}}$ fuerza admisible F_D d. diámetro del vástago esfuerzo admisible σ_{ac} constante de rozamiento del vástago (0,85 - 0,95) η Le longitud efectiva K factor de longitud efectiva fuerza axial máximo F_{max} Ε módulo de elasticidad de acero Ι momento de inercia de un cilindro sección transversal C_{s} coeficiente de seguridad velocidad interior de la tubería v_{tb}

- S_t sección transversal de la tubería
- Q caudal del sistema

Gal Galones

ÍNDICE DE FIGURAS

Figura 1.1 Proceso de envasado	4
Figura 1.2 Compactador estacionario horizontal	5
Figura 1.3 Compactador vertical	6
Figura 1.4 Compactador extrusor	6
Figura 1.5. Estructura de una bomba interna	9
Figura 1.6. Estructura de la bomba de engrane	10
Figura 1.7. Válvula de alivio	11
Figura 1.8. Tanque de reservorio	12
Figura 1.9. Mangueras	13
Figura 1.10. Tuberías	13
Figura 1.11. Electroválvulas	14
Figura 1.12. Filtros	14
Figura 2.1. Concepto de diseño	15
Figura 2.2. Sistema de alimentación – Banda	17
Figura 2.3. Cilindro de doble efecto	24
Figura 2.4. Componentes – materiales de cilindro de doble efecto	25
Figura 2.5. Diagrama de cuerpo libre de paquete	29
Figura 2.6. Abanico para el cálculo del diámetro interior	35
Figura 2.7. Curva de viscosidad de aceite ISO 32, 46 y 68	37
Figura 2.8. Circuito oleohidráulico del sistema	40
Figura 2.9. Representación de la cámara y precámara de compactación	42
Figura 2.10 Representación cara inferior	45
Figura 2.11 D.C.L. de la cara inferior	45
Figura 2.12 Representación cara posterior	47
Figura 2.13 D.C.L. de la cara posterior	47
Figura 2.14 Representación cara superior	49
Figura 2.15 D.C.L. de la cara superior	49
Figura 2.16 Representación cara lateral derecha	50
Figura 2.17 D.C.L. de la cara lateral derecha	51
Figura 2.18 Representación cara de compactación principal	53
Figura 2.19 D.C.L. de la cara de compactación principal	53
Figura 2.20 Representación de la cara compuerta	54

Figura 2.21 D.C.L. de la cara compuerta	55
Figura 2.22 Sistema de control del compactador	57
Figura 2.23 Diseño de forma final del compactador	58
Figura 3.1 Deformación de la cara posterior	64
Figura 3.2 Esfuerzo de Von Misses cara posterior	64
Figura 3.3 Factor de seguridad cara posterior	65
Figura 3.4 Deformación de la cara de expulsión	65
Figura 3.5 Esfuerzo de Von Misses cara de expulsión	66
Figura 3.6 Factor de seguridad cara de expulsión	66
Figura 3.7 Deformación de la cara de compuerta	67
Figura 3.8 Esfuerzo de Von Misses cara de compuerta	67
Figura 3.9 Factor de seguridad cara de compuerta	68
Figura 3.10 Deformación de la cara superior	68
Figura 3.11 Esfuerzo de Von Misses cara superior	69
Figura 3.12 Factor de seguridad cara superior	69
Figura 3.13 Deformación de la cara de compactación	70
Figura 3.14 Esfuerzo de Von Misses cara de compactación	70
Figura 3.15 Factor de seguridad cara de compactación	71

ÍNDICE DE TABLAS

Tabla 2.1. Objetivos, funciones y medios	18
Tabla 2.2. Ponderación de criterios	19
Tabla 2.3. Tabla morfológica	20
Tabla 2.4. Posibles variables de diseño	21
Tabla 2.5. Matriz de decisión	21
Tabla 2.6. Datos recogidos para el cálculo de la densidad	22
Tabla 2.7. Resultados para la densidad de envases de aluminio	23
Tabla 2.8. Medidas estandarizadas para el sistema hidráulico	33
Tabla 2.9. Cálculo de caudal del sistema	33
Tabla 2.10 Tiempo y velocidad de cilindros hidráulicos	34
Tabla 2.11 Relación de presión y velocidad para sistemas hidráulicos	34
Tabla 2.12 Descripción de materiales a utilizar	41
Tabla 2.13 Tablas de resumen de las caras y sus refuerzos	56
Tabla 3.1 Cantidad de compactaciones de bloque 25kg	57
Tabla 3.2 Ciclo de trabajo en la última compactación, expulsión y apertura	60
Tabla 3.3 Resultados estructural de las caras de la compactadora	69
Tabla 3.4 Lista de precios de elementos de compactación	71
Tabla 3.5 Costos estructura.	72
Tabla 3.6 Costos de componentes adicionales	73
Tabla 3.7 Costos actuales	74
Tabla 3.8 Inversión total	74

CAPÍTULO 1

1. INTRODUCCIÓN

1.1 Definición del Problema

Una compañía en la industria cervecera inició una nueva línea de producción de la bebida en envases de aluminio (latas), sin embargo, en el proceso de la cadena productiva la empresa registra envases defectuosos que deben ser separados porque no cumplen con los estándares de calidad **NTE INEN 448** establecidos bajo las normativas ecuatorianas de fabricación; estos envases presentan errores en su volumen de contenido, en su sellado, así como en su apariencia, pues registran golpes y abolladuras.

Este problema provoca la acumulación de latas defectuosas en una de las bodegas de la empresa, ocasionando un déficit de área que puede ser utilizada para el almacenamiento de envases que sí cumplen con los estándares de comercialización. Así mismo, la situación genera desorden, sonidos inadecuados y altos costos de mantenimiento y traslado, porque el material defectuoso se vende a la industria del reciclaje sin un previo proceso de compactación.

En tal virtud, este proyecto de investigación plantea el diseño de una máquina compactadora de envases de aluminio automatizada con la finalidad de reducir el espacio de almacenamiento y lograr eficiencia en el traslado, a través del compactado del material defectuoso en bloque.

1.2 Justificación del proyecto

En Ecuador no es fácil hallar un equipo automatizado de compactación de latas de aluminio que cumpla con las exigencias y características que requieren las empresas cerveceras para descartar los envases con errores de fábrica.

Esta situación, en el caso de la empresa cervecera estudiada en este trabajo,

genera la acumulación de material reciclable que ocupa un espacio considerable dentro de su área de producción, pues se necesita completar un volumen determinado para que sea recolectado por una empresa recicladora.

No obstante, surge la necesidad de la propuesta de un diseño de una máquina compactadora de envases de latas de aluminio para promover un almacenamiento óptimo, así como el mejoramiento en el manejo de la manipulación del material.

El diseño se podrá comercializar a cualquier micro y macroempresas que esté involucrado en sector del plástico, cartoneras, botellas de vidrios y metal.

Actualmente, hay una gran cantidad de locales de centros de acopio de a nivel nacional que fácilmente podrán acceder a nuestro diseño, ayudando de la mejor manera en el manejo eficiente del material, organización, almacenamiento, limpieza y productividad.

1.3 **Objetivos**

1.3.1 **Objetivo General**

Diseñar un sistema de compactación automática para prensar envases de aluminio, con un sistema óleohidráulico que produzca pacas de 25Kg.

1.3.2 Objetivos Específicos

- Identificar las deficiencias de almacenamiento de material defectuoso de la empresa cervecera estudiada, para el cálculo del volumen a compactar.
- Establecer las diferentes características del diseño del sistema para la selección de partes y componentes y, para el cálculo y simulación de fuerzas críticas.
- 3. Estimar el valor de fabricación del sistema para la determinación del costo/beneficio de su adquisición.

1.4 Marco teórico

1.4.1 Empresas cerveceras

Cada año en Ecuador se consumen 5,5 millones de hectolitros de cerveza, es decir, el consumo per cápita es de 39 litros.

El promedio de la capacidad de producción de cervezas enlatadas en el país es de 40,000 latas por hora, siendo la presentación de 355 centímetros cúbicos la de mayor consumo (*El Universo*, s. f.)

Por otro lado, según un informe de la Asociación para el empaquetado y procesamiento de tecnología (*PMMI*, s. f.), en el año 2012 los envases de aluminio para la industria cervecera representaron el 4% de la producción mundial, mientras en el año 2017 esta cifra creció en un 23%. Por esta razón muchas de las empresas cerveceras están mudando su producción a envases de aluminio, ya que son más económicos, poseen mejores propiedades de protección y causa menor daño al medio ambiente.

1.4.2 Descripción de proceso de envasado

En muchas empresas el proceso de envasado de cerveza comienza con la recepción de las latas vacías, que posteriormente son inspeccionadas por personal calificado que verifica si cumplen las normas técnicas de fabricación de envases; el material no calificado es recolectado y embodegado. Una vez seleccionados los envases óptimos se procede a llenarlos con el producto; posteriormente, se continua con el proceso de sellado y enjuague de envases, y finalmente se realiza una verificación de la hermeticidad de las latas, pues aquellas que registran filtraciones o desperfectos también son vaciadas y embodegadas, mientras que las latas sin desperfectos son enviadas a empaquetarse, tal como se aprecia en la figura 1.1.

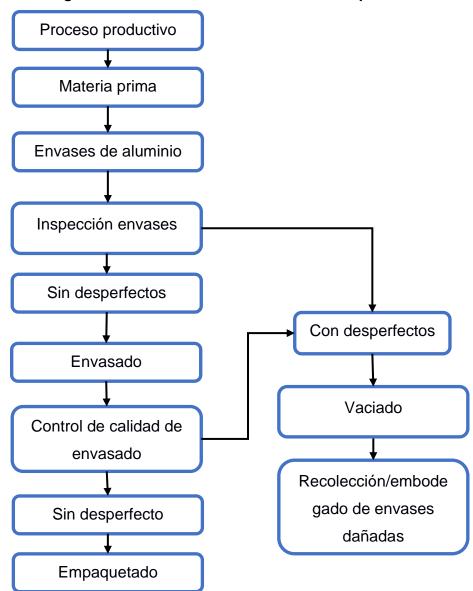


Figura 1.1: Proceso de envasado – retiro de producto

1.4.3 Sistema de compactación de desechos sólidos

Un sistema de compactación de desechos sólidos facilita la reducción del volumen de materiales voluminosos volviéndolos más manejables, a través de la aplicación de fuerza ejercida por fluidos incompresibles, mejorando la eficiencia de la operación y la reutilización de los desechos sólidos. Existen diferentes sistemas de compactación: hidráulico, mecánico, neumáticos, eléctricos, entre otros.

Varios de los equipos utilizados en sistemas de compactación de desechos sólidos en las diferentes industrias tales como: recicladora, chatarrera,

alimentaria, fábricas, metalurgias, entre otras, son clasificados como estacionarios y móviles, caracterizándose este último por su montaje sobre ruedas (Cascante & Haro, s. f.).

Equipo compactador estacionario

Una vez recolectados los desechos sólidos son depositados dentro de un compactador que siempre permanece inmóvil, ya sea manual o mecánico es considerado estacionario (*Recytrans. Gestión de residuos*, s. f.)

Figura 1.2. Compactador estacionario horizontal Fuente: (*LCC*, s. f.)

1.4.4 Equipo estacionario / vertical

Se caracteriza por comprimir desechos de manera vertical, pudiendo operarse de manera hidráulica o mecánica. Usualmente los desechos compactados son contenidos dentro de una caja corrugada que fácilmente puede ser amarrada.

Estructura Sólida

Placa compresor

Residuos compactados

Figura 1.3. Compactador vertical

1.4.5 Compactador extrusor

Se caracteriza por comprimir de manera horizontal o vertical y se utiliza para la compresión de residuos sólidos en grandes cantidades. Generalmente son empleados por grandes centros de acopio y chatarreras.

Figura 1.4. Compactador extrusor Fuente: (HSM, s. f.)

1.4.6 Características de envases de aluminio

La materia prima para obtener aluminio es la bauxita, mineral que contiene entre 20% a 30% de aluminio en su masa total y es considerado el tercer elemento más común sobre la corteza terrestre.

Las características únicas que posee el aluminio favorecen su consumo en todos los países del mundo, por lo que sus aplicaciones son innumerables. Sus propiedades mecánicas se caracterizan por poseer baja densidad, buena resistencia a la oxidación, una superficie metálica clara, gran impermeabilidad a los olores y agua, entre otras.

Los envases de latas de aluminio poseen una gran ventaja con respecto a otros envases gracias a su ligereza, rápida transferencia de calor, gran resistencia a la rotura que protege el contenido durante largos periodos de tiempo, ocupa poco espacio y es 100% reciclable.

Según datos de la Asociación Europea de Aluminio, la cantidad de reciclaje de dicho material en ese continente se ubica entre el 85% y 95%, dependiendo de sus aplicaciones. No obstante, en Europa, casi el 50% del aluminio utilizado para fabricar envases es reciclado (*European Aluminium*, s. f.)

Entre las ventajas de reciclado de alumno están:

- Ahorro energético: Con el reciclaje se ahorra el 95% de la energía necesaria para producir aluminio a partir de la Bauxita.
- Ahorro de recursos naturales: El reciclaje permite un ahorro de material prima en un 40%.
- Reducción de contaminantes: El dióxido de carbono emitido es mínimo cuando se recicla.

Las latas de aluminio en la actualidad necesitan 40% menos del material que aquellas fabricadas hace 25 años, generando un ahorro en materia prima y energía.

Así, las diferentes fuentes de desechos de residuos de aluminio, provienen de residuos de demoliciones, aeronaves, bicicletas, computadoras, botes, utensilios de cocina, productos defectuosos, perfiles de construcción y envases (Sandoval & Fernanda, 2015).

1.4.7 Sistema oleohidráulico

Un sistema oleohidráulica es una rama de la hidráulica y se caracteriza por transmitir altas potencias mediante fluidos incompresibles que puede ser aceites o fluidos derivados del petróleo, además pueden ser accionadas de manera manual o con motor eléctrico para generar alta presión, considerable caudal, mayor precisión.

Un sistema está formado por diferentes componentes tales como; elementos de accionamiento, dispositivos de control y regulación, fluidos de transporte, bomba y motor.

Bombas de pistón

Es una bomba hidráulica de desplazamiento positivo que trasforma la energía mecánica a energía de presión mediante el movimiento de pistones. Estas bombas se caracterizan por desplazar fluido de alta presión o para fluidos de alta viscosidad y en cada movimiento del pistón desaloja la misma cantidad de volumen que ingresa (*HRS BP Series*, s. f.).

Aplicaciones

- Agua de alta presión se utiliza en hidro limpiadoras, equipos de corte por agua, equipos de chorreo por arena.
- Bombeo de hormigón, bombeo de aguas de alta presión para perforadora, tuneladoras, en la industria de minería.
- Bombas de relleno en reservorios de petróleo
- Bombas de fumigación en agricultura
- Centrifugados en servicios de agua potable.
- Sistemas de maquinarias pesadas.

Bombas de paleta

Es una bomba hidráulica con rotor de tipo paleta, el cual recibe un fluido por un extremo a baja presión y eleva hasta presiones de 70-250 Bar. Estas bombas trabajan a caudales bajos con movimientos silenciosas, además posee un gran rendimiento volumétrico y una larga vida útil. Estos tipos de bombas a menudo son utilizados en diferentes circuitos hidráulicos en diversas máquinas de movimientos lineales (*Distritec – Hidráulica · Neumática*, s. f.).

Aplicaciones

- Transporte de fluidos en sector petrolero.
- Transporte de productos químicos.
- Transferencia de agua en instalaciones de refrigeración.
- Sistema de refrigeración en vehículos.

Bombas de engranajes internos

Estas bombas están compuestas por dos engranes, interno y externo que forma una excentricidad entre ambos, al engranar completamente en los dientes en su lado opuesto forma una media luna donde se aloja el fluido a descargar, provocando una disminución de presión lo que facilita la aspiración de esta. Una de las ventajas importantes es la duración al desgaste por trabajar a bajas velocidades (Masabanda Tucta & Pulla Marín, 2018)

Engranaje motriz

Succión

Media luna

Figura 1.5. Estructura de una bomba interna
Fuente: (SAPIENSMAN 2015)

Bombas de engranes externos

Estas bombas están formadas por una carcasa que forma un estator y con un rotor de doble engranaje. Están diseñados con poca precisión y tolerancia que lo hace más económico con una alta eficiencia y caudales altos. Gracias a su simplicidad en el diseño lo hacen más adquiridos para los diseños.

Al puerto de entrada

Engranaje conducido

Engranaje impulsor

Hacia el puerto de salida

Presión atmosférica

Figura 1.6. Estructura de bomba de engrane

Aplicaciones

- Lubricación en máquinas herramientas
- Sistemas hidráulicos
- Bombas de aceite de motores
- Industrias petroleras
- Equipos mecánicos en la industria alimenticia

Válvula reguladora de presión

La función de la válvula es regular la presión del sistema, y es considerado un elemento de seguridad, el cual no permite que dichos valores sobrecarguen todos los elementos involucrados del sistema, es decir, mantienen los parámetros de presión dentro de límites de operación (*Livenza / Sohipren S.A.*, s. f.)

Figura 1.7. Válvula de alivio (Vickers, s.f.)

Actuadores hidráulicos

Los actuadores hidráulicos trasforman la energía hidráulica en energía mecánica y se componen por dos piezas; un embolo conectado a un vástago y un cilindro de tipo barril. El embolo separa en dos cámaras, denominados en cámara de vástagos y en cámara inferior.

Los cilindros pueden clasificar de las siguientes maneras.

- Cilindro de simple efecto.
- Cilindro de doble efecto.
- Cilindro telescópicas

Motor eléctrico para bomba oleohidráulicos

Estos motores pueden transformar la energía eléctrica alterna en energía mecánicas, y transmiten por medio de la flecha hacia la bomba del sistema para su posterior accionamiento de los cilindros.

Ventajas

Cero emisiones de gases contaminantes.

- Pueden trabajar a una alta eficiencia mayores a 75%, dicho valor puede aumentar según los requerimientos de trabajo.
- No emite ruidos molestosos.
- El par de giro es constante según el motor.

Para una correcta selección del motor, es necesario conocer la potencia que el sistema hidráulico trabajará y se utiliza la siguiente ecuación

$$P_O = \frac{P * Q}{K * N_m} \tag{1.1}$$

Siendo:

 P_0 : Potencia del sistema oleo hidráulico.

P: Presión máxima de compactación

Q: Caudal del sistema oleo hidráulico.

 N_m : Eficiencia del motor eléctrico dicho valor se hallas entre 0.80 y 0.90.

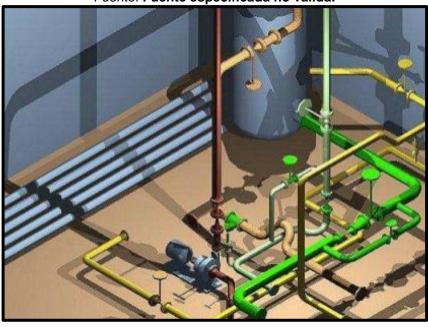
K: Contante de unidades de ajuste. K=1790 si trabaja en Psi y caudal gpm para obtener potencia en KW, así mismo, K=602 con presión en Bar y caudal lts/min (*DirectIndustry*, s. f.).

Tanque de reservorio de aceite


Conocido también como tanque elevado según **Fuente especificada no válida.**, se ubica por encima del suelo apoyado por estructuras de concreto, pilotes o paredes cuya función principal consiste en mantener las presiones adecuadas para garantizar un servicio constante y eficiente.

Figura 1.8. Tanque de reservorio Fuente: Fuente especificada no válida.

Mangueras, recortes y tuberías


Las mangueras son productos de PVC flexibles elaborados bajo estándares de calidad de acuerdo con el uso que se le dé en la industria, en los hogares o en la agricultura **Fuente especificada no válida.**

Según **Fuente especificada no válida.** las tuberías son una estructura conformada por tubos de diversos materiales cuyo objetivo consiste en el transporte de fluidos, gases o sólidos en suspensión.

Figura 1.10. Tuberías
Fuente: Fuente especificada no válida.

Electroválvula

Las electroválvulas se forman por la conexión entre un sistema electromecánico y una válvula de distribución neumática, lo que genera un compuesto eléctrico.

Fuente especificada no válida.


Figura 1.11. Electroválvulas Fuente: Fuente especificada no válida.

Filtros

Los filtros según **Fuente especificada no válida.** pueden considerarse como un sistema de emisión de señales con la habilidad de atenuar, amplificar, rechazar o aislar componentes con entrada específicas.

Figura 1.12. Filtros
Fuente: Fuente especificada no válida.

Interceptores de control

De acuerdo con **Fuente especificada no válida.** los interceptores de control son tuberías que interrumpen la participación de dos o más colectores para finalizar en un emisor o en la planta de tratamiento.

CAPÍTULO 2

2. METODOLOGÍA

2.1 Diseño conceptual

Lo primero que se debe conocer para plantear los parámetros del diseño de un compactador de envases de aluminio, son las necesidades del cliente para un óptimo desarrollo del sistema y el material compactado. En la mayoría de las empresas no se encuentran equipos especializados para este proceso, sin embargo, hay equipos costosos únicamente para compactar sin ningún sistema de alimentación. No obstante, se detalla a continuación el proceso de obtención de bloques compactados de envases de aluminio para una empresa cervecera.

2.2 Proceso de funcionamiento

Para tener una mejor comprensión del diseño del sistema de compactación, es necesario satisfacer las necesidades del cliente y sintetizar su estructura, tal como se aprecia en la figura 2.1.

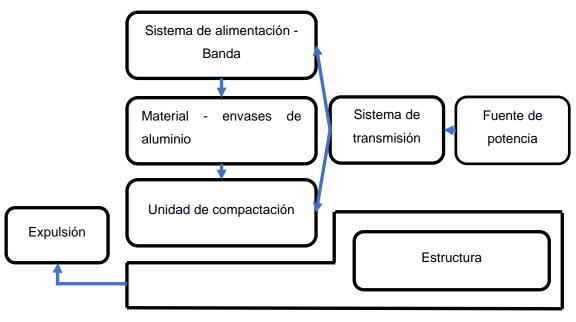


Figura 2.1. Concepción del diseño

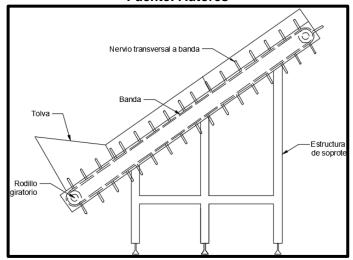
.

El diseño de la máquina compactadora requiere al principio un sistema de alimentación por medio de banda transportadora, así los residuos llegan a la unidad de compactación y esta es comprimido (envases de aluminio), para luego ser expulsado para un correcto almacenado en su lugar de reserva.

2.2.1 Sistema de alimentación

Son las etapas que debe de cumplir antes de compactar los envases de aluminio; Al principio el material es provisto por el operario manualmente hacia una tolva de recolección incorporado en la estructura de alimentación, así la banda se encarga de transportar el material hacia una cavidad donde por gravedad cae en la zona de compactación (*Maquinaria industrial*, s. f.).

Las funciones para banda transportadora que cumple son las siguientes.


- ✓ Llevar los envases de aluminio en una posición inclinada no mayor a un ángulo de 35°.
- ✓ Alimentar de manera continua los envases de aluminio a una distancia solicitada.

Con todo lo mencionado de banda transportadora se debe de implementar un sistema de alimentación según las funciones y requerimientos necesarias para la compactación. Según el material a transportar de manera continua se debe considerar una banda con perfil rugosa ya que posee un gran coeficiente de fricción, debido a que posee un gran agarre para en sistemas inclinadas.

Transportadora inclinada

Como se puede apreciar en la **Figura 2.2**, es un diseño simple, que son utilizados en la mayoría de las industrias alimentaria y sirve para elevar un producto de un punto al otro de manera rápida y eficaz. El equipo tiene una inclinación de 35°, que incluye una tolva de captación para los envases de aluminio y transporta gracias a los nervios perpendiculares que la banda posee, facilitando así un mejor agarre y eficiencia en el traslado.

Figura 2.2. Sistema de alimentación - Banda Fuente: Autores

2.2.2 Compactado

El compactado es proceso por el cual se reduce el volumen de un material voluminoso a uno más manejable, dicha reducción depende de la fuerza ejercida (*Recytrans. Gestión de residuos*, s. f.).

Una vez llenado por medio de banda transportadora los envases de aluminio en la zona de compactación, la prensa hidráulica se despliega una fuerza de compresión que deforma hasta obtener un bloque manejable (envases de aluminio), seguidamente se almacena para luego ser trasportado.

De esta forma el diseño debe satisfacer las necesidades, a un bajo costo fabricación y operación. También debe priorizar la seguridad del operador ya que se trabajará con equipo que puede provocar riesgos.

Expulsión: El bloque compactado no debe de ser zunchado, ya que al comprimir se forma un monolito que difícilmente puede desintegrar, así no pierde la forma.

2.3 Parámetros de diseño

Para el diseño de la máquina compactadora la empresa cervecera establece una serie de parámetros que deben satisfacer.

- ✓ El porcentaje de la densidad compactado debe llegar al 30% de la densidad teórica del aluminio.
- ✓ Al diseñar se debe tener en cuenta la facilidad de operación del sistema, que tenga buena eficiencia, bajo costo de fabricación, y buen sistema de seguridad para el personal que interactúa.
- ✓ La máquina debe ser capaz de compactar un promedio de bloques de 25Kg, sin restricción del tiempo ya que los envases defectuosos no se desechan por altas demanda.
- ✓ Para el montaje de la máquina compactadora se tiene un área de $25 m^2$, se debe tener cuenta que dicha zona de compactación, también se comparte con almacenamiento de bloques compactados y recolección.
- ✓ El diseño debe contar con facilidad de montaje, facilidad de mantenimiento y bajo costo de fabricación.

2.3.1 Características de compactador

De acuerdo en la **Tabla 2.1** se describe las características para el proceso en cámara de compactación según el objetivo y función que debe de cumplir según el criterio de selección de las diferentes alternativas.

Tabla 2.1. Objetivo, funciones y medio

Característica	Funciones	Medios	Criterios de selección
	Recibir envases de aluminio previo al ingreso a la cámara de compactación	Tolva recolectora	
Compactar envases de	Comprimir envases de aluminio que se encuentran en la	Pistón doble efecto	Menor costo de fabricaciónFácil montaje e
aluminio de cervezas no	unidad de compactación	Pistón efecto simple	instalación • Seguridad
conformes	Retiro del bloque compactado de la	Pistón doble efecto	Fácil mantenimientoBajo consumo de
	cámara	Manual	energía
	Controlar el	Automático	
	proceso de compactación	Manual	

Se anhela que el diseño que sea seleccionado cumpla con los criterios de selección y los parámetros establecidas, debe de ser de bajo costo de

fabricación, de fácil instalación y de manejo para las personas que van a manipular el equipo, que el mismo pueda dar seguridad para evitar algún tipo de accidente, fácil mantenimiento y que tenga bajo consumo de energía.

2.4 Diseño preliminar

2.4.1 Ponderación de criterio

A continuación, se detalla según el nivel de importancia de los criterios para su posterior comparación por pares.

Criterios de diseño para compactación:

✓ Montaje e instalación: fácil más posible

✓ Costo fabricación: bajo posible

✓ Seguridad: mayor posible

✓ Mantenimiento: más fácil posible

✓ Consumo de energía: bajo posible

Si deseamos conocer el nivel jerárquico de cada uno de los criterios a evaluar, se emplea una matriz de priorización o comparación de pares, el cual cosiste en ubicar en la primera columna y fila los diferentes criterios de acuerdo con el nivel de importancia. Asignando valores entre uno (1) y cinco (5), siendo uno (1) el menos importante.

Tabla 2.2. Ponderación de criterios

Criterios	Costo fabricación	Montaje e Instalación	Seguridad	Mantenimiento	Consumo energía	Total
Costo de fabricación	-	4	4	3	4	15
Montaje e instalación	2	ı	3	3	3	11
Seguridad	5	3	-	4	3	15
Mantenimiento	4	2	3		4	13
Consumo energía	3	3	2	1	-	9

Según la **Tabla 2.2**, el criterio de mayor importancia es el costo de fabricación y la seguridad con una calificación de 15, de esta forma el diseño se enfocará en un equipo asequible y que brinde seguridad para el operario del equipo.

También se puede observar que el mantenimiento del equipo tiene una calificación de 13, por lo que el diseño debe tener un plan de mantenimiento ya que el equipo no va a funcionar todo los días y los componentes pueden presentar algún problema.

Por último, el diseño también debe el consumo de energía eléctrica con una calificación de 9, este valor sigue siendo relevante para el diseño.

2.4.2 Selección de mejor alternativa

2.4.2.1 Matriz morfológica

En la tabla morfológica nos permite identificar las posibles soluciones de nuestro diseño mediante las mezclas de alternativas.

Tabla 2.3. Tabla Morfológica

Medios Características/funciones	1	2	
Carga de alimentación	Banda inclinada	Manual	
Receptar envases de aluminio, previo al ingreso a cámara de compactación	Tolva piramidal	Tolva biselada	
Comprimir envases	Pistón doble efecto	Pistón efecto simple	
Transporte de descarga	Banda perfil rugoso	Banda por rodillos	

Mediante la tabla 2.3, se obtienen 4 posibles soluciones para nuestro sistema.

Tabla 2.4 Tabla de posibles soluciones de diseño.

Solución	Alternativas
Α	Banda inclinada, tolva piramidal, pistón simple efecto, banda perfil rugosa
В	Carga manual, tolva biselada, pistón efecto simple, banda por rodillos
С	Banda inclinada, tolva biselada, pistón doble efecto, banda por rodillos
D	Manual, tolva piramidal, pistón efecto simple, banda por rodillos.

2.4.3 Matriz de decisión

Se elabora la tabla en donde se encuentran todas las posibles variantes de diseño que resulta de la tabla morfológica. Se comparan las alternativas con los criterios de la tabla 2.5.

Se asignan valores porcentajes a cada criterio y además una escala de medición que 1 (mínimo) hasta 10 (máximo).

Tabla 2.5 Matriz de selección

Criterio	Costo de fabricación	Montaje e instalación	Seguridad	Mantenimiento	Consumo energía	Total satisfacción
Importancia	0.24	0.17	0.24	0.21	0.14	SS
Alternativas	Bajo posible	Fácil posible	Alto posible	Fácil posible	Poco posible	
А	2.16 (9)	1.02 (6)	1.68 (7)	1.47 (7)	0.84 (6)	7.17
В	1.92 (8)	1.02 (6)	1.68 (7)	1.47 (7)	0.84 (6)	6.93
С	1.92 (8)	2.16 (9)	2.16 (9)	1.47 (7)	0.98 (7)	7.89
D	1.68 (7)	1.02 (6)	1.44 (6)	1.47 (7)	1.12 (8)	6.73

De acuerdo con la tabla 2.5, se tienen los puntajes obtenidos para cada alternativa donde la ganadora es la opción C que cumple los requerimientos del cliente. Así el diseño se enfocó en el costo, seguridad, espacio y facilidad de operación del equipo.

2.5 Diseño detallado

2.5.1 Análisis de material a compactar

Para el cálculo de la densidad de latas vacías, es decir, material no compactado se llevó a cabo utilizado una gaveta plástica con medidas estándares, luego se llenó completamente de envases de aluminio vacíos.

Tabla 2.6. Datos recogidos para el cálculo de la densidad.

Cantidad pruebas	Masa gaveta vacía [Kg]	Masa gaveta – envases [Kg]	Volumen de gaveta [m^3]
1	1,98	3,10	0.5000.0000.00
2	2,05	3,12	0,56X0,23X0,36

A continuación, se instituye las siguientes ecuaciones.

$$\rho_{AC1} = \frac{Masa~gaveta - env\'ase~(prueba~1) - Masa~gaveta~(prueba~1)}{Volumen~de~gaveta} \tag{2.1}$$

$$\rho_{AC2} = \frac{Masa\ gaveta - env\'ase\ (prueba\ 2) - Masa\ gaveta\ (prueba\ 2)}{Volumen\ de\ gaveta} \tag{2.2}$$

 $ho_{E/vacio1}$: Densidad de envase de aluminio sin compactar, primera prueba 1.

 $\rho_{E/vacio2}$: Densidad de envase de aluminio sin compactar, segunda prueba 2. Se reemplaza los valores de las dos pruebas según la tabla 2.7, en las dos ecuaciones (2) y (3).

Tabla 2.7. Resultado para densidad de envases de aluminio.

N° prueba	Densidad $ \left[\frac{Kg}{m^3} \right] $	$\begin{bmatrix} \rho_{ACP} \\ \left[\frac{Kg}{m^3}\right] \end{bmatrix}$
1	24,35	23,86
2	23,36	23,00

En la tabla 2.7, se aprecia la densidad antes de compactar promedio (ρ_{ACP}) de envases de aluminio sin compactar, que posteriormente será utilizado para calcular el volumen sin compactar.

Para compactar los envases de aluminio es necesario aplicar la ley de conservación de la masa en el diseño. Así la relación de compactación de la densidad de envases de aluminio es 1:4, es decir, la densidad antes de compactación es 4 veces más que a su posterior compactado que equivale al 25% en reducción en volumen.

Aplicando la ley de conservación de la materia se establece de la siguiente manera:

$$m_{AC} = m_{DC} \tag{2.3}$$

$$V_{AC} = 6V_{DC} \tag{2.4}$$

 m_{AC} : masa antes de compactado en [Kg].

 m_{DC} : masa después de compactado en [Kg].

 V_{AC} : volumen antes de compactado en $[m^3]$.

 V_{DC} : volumen después de compactado en $[m^3]$.

Una vez establecido la ley conservación de la masa, se calcula el volumen de envases de aluminio sin compactar a partir de la densidad ya establecida.

Conociendo la densidad promedio de latas de envases de cerveza sin compactar $\rho_{ACP}=23.86\left[\frac{Kg}{m^3}\right]$, y el criterio de la cantidad de masa a

compactar es $m_{AC}=25\left[\frac{Kg}{m^3}\right]$ al día, es proporcionado por el cliente, entonces se calcula el volumen del material V_{AC} de la ecuación (6).

$$V_{AC} = \frac{m_{AC}}{\rho_{ACP}} \tag{2.5}$$

$$V_{AC} = 1.048 \ [m^3]$$

Conociendo la relación de compactación de 1:6, se calcula el volumen final de envases de aluminio compactado de la siguiente manera.

$$V_{DC} = \frac{V_{AC}}{6}$$

$$V_{DC} = 0.17[m^3]$$

El volumen de la cámara de compactación será de $0.17[m^3]$, con este valor se realizará el diseño del equipo, además, la cantidad de materia compactado al día será de 25[Kg], y la densidad compactada es de $650\left[\frac{Kg}{m^3}\right]$ el cual equivale el 25% de la densidad teórica.

2.6 Cálculo de subsistema hidráulico

Es uno de los subsistemas para la máquina compactadora de envases de aluminio, el cual genera y transmite la fuerza necesaria de compacto, es un cilindro de doble efecto que cumple las necesidades dadas anteriormente. A continuación, se describe las partes que conforman un sistema hidráulico, y se nombra los diferentes componentes que lo conforman.

Fuente: (ROLDAN VILORIA, 2001)

S1

C1

C2

F1

V1

V2

P2

P2

P2

Figura 2.3. Cilindro de doble efecto Fuente: (ROLDAN VILORIA, 2001)

Siendo:

D: diámetro del cilindro [mm/cm]

d: diámetro del vástago del cilindro [mm/cm]

L: carrera máxima del émbolo, vástago [m]

S1: Sección del émbolo lado sin vástago [cm²]

S2; Sección útil del émbolo por el lado vástago [cm²]

S3: Sección del vástago [cm²]

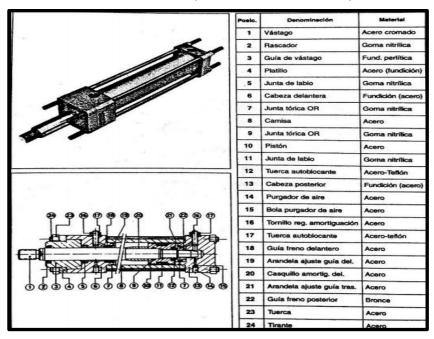
P1: Presión de alimentación cámara C1[Bar]

p2: presión de alimentación cámara C2 [Bar]

C1: cámara de menor capacidad — lado sin vástago

C2: cámara de menor capacidad — lado con vástago

V1: volumen de capacidad mayor - lado sin vástago [Lt]


V2: volumen de capacidad menor — lado con vástago [Lt]

F1: furza ejercida sobre el cilindro en la salida [N]

F2: fuerza ejercida sobre el cilindrio en la entrada [N]

De acuerdo con el libro José Roldan Viloria; los materiales de los diferentes componentes de cilindro de doble efecto que los componen se detallan en la siguiente figura

Figura 2.4. Componentes - materiales de cilindro doble efecto Fuente: (ROLDAN VILORIA, 2001)

2.6.1 Obtención fuerza de compactación

Una vez dimensionado la paca compactada de 60cmX50cmX15cm, según los requerimientos del cliente, y conociendo la cantidad de masa a compactar de $25\,Kg$, se calcula la densidad de $650\,\Big[\frac{Kg}{m^3}\Big]$. Según (Cetrangolo I. & Vera A., 2011), para obtener la densidad requerida de envases compactadas ya mencionadas se necesita una presión $75[\,Bar]$. En el experimento se utilizó un pistón de $0,12\,[m]$ de diámetro, con un área de $0,0113[\,m^2]$.

El experimento consistía en realizar cinco pruebas, una vez llenado en tolva de captación los envases de aluminio se acciono el arranque de la máquina compactadora que posteriormente se detuvo periódicamente para tomar los diferentes valores de presión.

Con esta presión y diámetro del émbolo se calcula la fuerza máxima transmitida por el vástago a la placa que compacta el aluminio con la siguiente ecuación.

$$F = P X A \tag{2.6}$$

F: Fuerza [N]

A: área del cilindro prueba $[m^2]$

P: presión ejercida prueba [Pa]

$$F = (0.0113)m^2 * 7.5M \left[\frac{N}{m^2} \right] = 84.75KN$$

Esta fuerza es la transmitida por el cilindro a la placa móvil del experimento, dicha placa posee un área de $0.215 * 0.30 m^2$, con este valor se calcula la presión que ejerce sobre los envases de aluminio por la placa.

$$P = \frac{F}{4} \tag{2.7}$$

F: fuerza del cilindro [N]

P: presión sobre envases $\left[\frac{N}{m^2}\right]$

A: área de la placa $[m^2]$

$$P = \frac{84,75KN}{0,065 m^2} = 1303,85 \, KPa$$

Con este valor de presión se relaciona con la nueva área de $0.50*0.60~m^2$ que debe tener la paca compactada así se calcula la nueva fuerza aproximada para el cálculo de fuerzas e hidráulicos. La presión ejercida sobre los envases es alrededor de 1303,85 KPa. Calculando la nueva fuerza.

$$F_R = P_{en} X A_{nl} \tag{2.8}$$

 F_R : fuerza real [N]

 P_{en} : presión sobre envases $\left[\frac{N}{m^2}\right]$

 A_{pl} : área de la placa $[m^2]$

$$F_R = 1303,85 * 10^3 \frac{N}{m^2} * 0,30 m^2 = 391,15 KN = 40 TF$$

Al realizar las pruebas en sistemas de compactación no se tomó en cuenta todos los parámetros al igual que en laboratorio, por esta razón se aplica un porcentaje de fuerza del 10%.

$$F_R = 40TF \cong 45TF$$

En conclusión, las máquinas compactadoras trabajan con 45 toneladas fuerza (TF) para comprimir pacas de aluminio.

2.6.2 Cálculo y selección de cilindro hidráulico

Cálculo del diámetro del émbolo

Según las normas DIN ISO 3320 se recomienda una presión de 140,1 Bar que equivale a 14,10 *MPa* para sistemas hidráulicos y conociendo la fuerza requerida para compactar se calcula área de nuevo émbolo.

$$A_{cal} = \frac{F_{RQ}}{P_N} \tag{2.9}$$

 A_{cal} : área del embolo $[m^2]$

 F_{RO} : fuerza requerida [kN]

 P_N : presión nominal [MPa]

$$A_{cal} = \frac{441,0KN}{14,10 MPa} = 0,0313 [m^2]$$

Una vez hallada el área se calcula el diámetro de con la siguiente ecuación;

$$A_D = \frac{\pi X D_D^2}{4} \tag{2.10}$$

 A_D : área del émbolo diseño compactado $[m^2]$

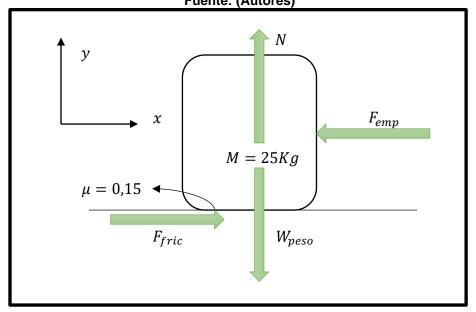
 D_D : diámetro del émbolo diseño compactado [m]

$$D_D = \sqrt{\frac{4 * 0,0313m^2}{\pi}} = 0,1996m$$

Se calculó que el diámetro del émbolo es de 200,0[mm], para una medida comercial.

Entonces, la fuerza máxima que ejerce el cilindro será con una presión de 160 Bar.

$$F_{max} = P X A \tag{2.11}$$


$$F_{max} = \frac{14,10MN}{m^2} * \frac{\pi * (0,200)^2}{4} = 442,10[KN] = 45000Kgf = 45TF$$

De acuerdo con el resultado la fuerza máxima que el sistema opera es de 45 TF, dicho valor puede variar debido a que la unidad hidráulica es manipulada incorrectamente lo que están sujeto a variaciones de presión.

Cálculo de fuerza de expulsión de paquete

Una vez compactado los envases de aluminio, esta debe ser expulsado a través de un pistón perpendicular al pistón compactador. Para lograr mover, se requiere conocer la fuerza mínima, para esto se describe las fuerzas que intervienen de acuerdo con el diagrama de cuerpo libre de la figura 2.5.

Figura 2.5 Diagrama de cuerpo libre de paquete Fuente: (Autores)

A continuación, se calcula la fuerza de empuje mínimo, con la siguiente ecuación:

$$\sum_{r=0}^{\infty} -F_{emp} + F_{fric} = 0$$

$$F_{emp} = F_{fric} = \mu * N$$

$$\sum_{r=0}^{\uparrow y(+)} N - W_{peso} = 0$$

$$N = M * g = 25Kg * 9.8 \frac{m}{s^2} = 245N$$

$$F_{emp} = 0.15 * 245N = 36.75N$$

Para llevar a valores más reales se aplica un factor de conocimiento, ya que no conocemos con precisión el coeficiente de fricción del aluminio compactado por ende se aplica dicho coeficiente y se tiene un valor de 2.

$$F_{emp} = 2 * 36,75N = 110,28N$$

Una vez conocido la fuerza de empuje se calcula con la presión del sistema de 140 Bar, así la nueva área del émbolo se calcula de la siguiente manera:

$$A_{emp} = \frac{F_{emp}}{P_{nom}} = \frac{110,28N}{14,10 * 10^6 \frac{N}{m^2}} = 7,82\mu m^2$$

$$D_{emp} = \sqrt{\frac{4 * 7,82 \mu m^2}{\pi}} = 3,16 mm$$

El diámetro del émbolo para expulsar bloques compactados es de $3,16 \ mm$, pero, dicho valor ya estandarizado es 25mm. Cabe recalcar que también se utilizará este diámetro para la apertura de la compuerta.

2.6.3 Dimensionamiento de vástago

Este elemento es parte del cilindro y se encarga de impartir la fuerza hidráulica necesaria sobre la placa de compactación a medida que esta ejerce presión sobre los envases de aluminio.

2.6.3.1 Longitud de carrera

De acuerdo con la necesidad del cliente y la cantidad de volumen que ingresa a la cámara de compactación se dimensiona la longitud que recorre la placa móvil de un punto a otro.

$$V = a X b X L_C (2.12)$$

V: volumen de cámara $[m^3]$

a: ancho de paca compactada [m]

b: altura de paca compactada [m]

 $L_{\mathcal{C}}$: longitud de carrera, distancia que desplaza la placa de un punto a otro [m]

$$L_C = \frac{0.175m^3}{0.6m * 0.5m} = 0.583[m]$$

De esta manera se obtiene 0.583m, y se lleva una dimensión comercial de $600 \ mm$ que establece los fabricantes.

Longitud de carrera de compuerta

Dado que las dimensiones del bloque son; $a = 600mm, b = 500mm \ y \ largo = 150 \ mm$, entonces la longitud de la carrera de la compuerta de apertura es de 150mm.

Longitud de carrera de pistón de expulsión

De lo anterior mencionado, se puede inferir que la longitud de la carrera del pistón de expulsión es igual al ancho de la paca compactado a = 600mm, este valor está normalizado para según (ROLDAN VILORIA, 2001).

2.6.3.2 Selección del diámetro mínimo para el pandeo del vástago

Para calcular el diámetro del vástago se aplica la norma DIN 2413 y DIN 24334 y se aplica la siguiente ecuación:

$$d^2 = \frac{4 X F_D}{\pi X \sigma_{ac} X \eta} \tag{2.13}$$

d: diámetro del vástago

 F_D : fuerza admisible

 σ_{ac} : esfuerzo admisible

 η : constante de rozamiento del vástago (0,85 - 0,95)

El material para el vástago es acero con un módulo de elasticidad de 210~GPa y con un límite de fluencia $31,6\frac{Kg}{mm^2}$, aplicando el factor más crítico de la siguiente manera:

$$\sigma_{ac} = \frac{31.6 \frac{Kg}{mm^2}}{2.5} = 12.64 \frac{Kg}{mm^2}$$

$$d^{2} = \frac{4 * 50000 Kgf}{\pi * 12,64 \frac{Kg}{mm^{2}} * 0,85} = d = 76,97mm$$

Según la norma DIN-ISO 3320, el diámetro más próximo es de $100 \ mm$, por el cual se establece para el diseño y para el estudio del pandeo.

Conociendo la longitud de carrera del vástago (L_C) de $600 \, mm$, y la fuerza máxima del equipo de $441,45 \, KN$, dichos valores son normalizados.

Dada la forma de la articulación que tiene un extremo fijo y otro libre se asigna una constante llamado longitud efectiva del vástago donde K = 2.

$$L_e = KL_C (2.14)$$

Le: Longitud efectiva [m]

K: factor de longitud efectiva

 L_C : longitud del vástago [m]

$$L_e = (2) * (0.6m) = 1.2m = 1200 mm$$

Para conocer el diámetro mínimo de pandeo se utiliza la ecuación de Euler, conociendo el material y su resistencia elástica.

$$F_{max} = \frac{\pi^2 X E X I}{(L_e)^2 C_s} \tag{2.15}$$

 F_{max} : fuerza axial máximo [N]

E: módulo de elasticidad de acero 210GPa

I: momento de inercia de un cilindro sección transversal $[m^4]$

 L_e : longitud efectiva [m]

 C_s : coeficiente de seguridad (3)

$$I = \frac{\pi * d^4}{64}$$

$$F_{max} = \frac{\pi^2 X 210 * 10^9 \frac{N}{m^2} * \pi * (0.1m)^4}{(1.2m)^2 * 3 * 64} = 2.36MN = 240TF$$

$$F_{max} = 240 \ TF > 45 \ TF$$

Se puede concluir que el vástago soportará al pandeo con un diámetro mínimo de $100 \ mm$.

A continuación, se presenta las medidas normalizadas para la selección del sistema hidráulico.

Tabla 2.8 Medidas estandarizadas para el sistema hidráulico.

ITEM	Diámetro de émbolo [mm]	Diámetro de vástago [mm]	Longitud de carrera [mm]
Compactado	200	100	600
Expulsado	25	12	600
Apertura	25	12	150

2.7 Dimensionamiento del sistema hidráulico

2.7.1 Caudal del sistema hidráulico

Una vez calculado el diámetro de vástago y el diámetro del pistón, así como la longitud de la carrerea como se muestra en la Tabla 4. Se procede a determinar el caudal del aceite que se necesita para el avance y retroceso del cilindro

Para calcular la potencia y selección de diámetro interior de tubería se debe conocer el caudal del sistema el cual fluye a lo largo de esta de manera constante.

Tabla 2.9 Cálculo de caudal del sistema

Descripción	Compresión	Expulsión	Apertura
Longitud de carrera (cm²)	60,00	60,00	15,00
Diámetro de vástago (cm^2)	10,00	1,20	1,20
Diámetro de émbolo (cm^2)	20,00	2,50	2,50
Área de empuje de extensión (cm^2)	314,16	4,91	4,91
Área de empuje de retracción (cm^2)	235,62	3,78	3,78
Tiempo de extensión $\left(cm^3*rac{sec}{q} ight)$	18849,60	294,52	73,63
Tiempo de retracción $\left(cm^3*rac{sec}{q} ight)$	14137,20	266,66	56,67
Tiempo extensión c/u $\left(cm^3*\frac{sec}{q}\right)$	32986,80	521,19	130,29
Tiempo total $\left(cm^3*\frac{sec}{q}\right)$		33638,29	
Caudal sistema $\left(\frac{cm^3}{sec}\right)$; $t = 500 sec$	67,2765		

Según la Tabla 5, el caudal del sistema de compactación es de $67,27\frac{cm^3}{sec}$, para obtener dicho valor se empleó el tiempo de extensión más retracción de los tres cilindros.

2.7.2 Tiempo y velocidad recorrido

A continuación, en la Tabla 2.10 se detalla el tiempo y la velocidad de los cilindros del sistema.

Tabla 2.10 Tiempo y velocidad de cilindros hidráulicos.

Descripción	Compresión	Expulsión	Apertura
Tiempo de extensión (sec)	280,18	4,38	1,09
Tiempo de retracción (sec)	210,14	3,37	0,84
Velocidad de extensión $\left(\frac{cm}{sec}\right)$	0,21	13,70	13,70
Velocidad de retracción $\left(\frac{cm}{sec}\right)$	0,28	17,81	17,81

2.7.3 Selección de mangueras hidráulicas

Para la selección del tubo de presión se debe conocer la velocidad del fluido que trabaja el sistema a 140,75 *Bar*, que equivale a 14,10 *Mpa*.

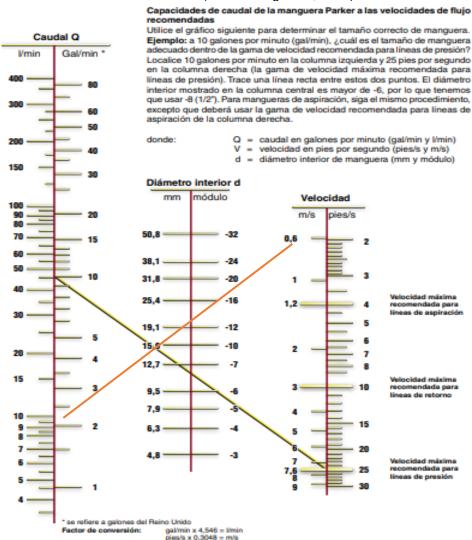

La velocidad del flujo por el interior de la tubería en relación con la presión del sistema se muestra en la tabla 2.11, en dicha correspondencia la velocidad mínima está en un rango de presión del sistema de $4,9 - 9,8 \, MPa$ el cual equivale a $5,0 \, m/s$ la velocidad dentro de la tubería.

Tabla 2.11 Relación de presión y velocidad para sistema hidráulicos

Presión <i>MPa</i>	0 - 0,98	0,98 – 2,45	2,55 – 4,90	4,90 – 9,80	4,90 – 14,70	14,70 – 19,6	>19,60
Velocid ad en m/s	3,00	3,50	4,00	4,50	5.00	5,50	6,00

Figura 2.6 Abanico para cálculo del diámetro interior.

Fuente: (ParkerMangueras, 2021)

De acuerdo con la Figura 9, la intersección (línea anaranjada) entre la velocidad del sistema y el caudal el diámetro interior está por encima del valor $9.5 \ mm$, y se escoge el diámetro de $9.5 \ mm = \frac{3}{8} in$ para el diseño.

2.7.4 Cálculo de velocidad a través de la tubería

Las velocidades recomendadas de impulsión dentro de la tubería son: $2,5 - 5,0 \, m/s$, así mismo la velocidad de retorno está en un rango de $1,5 - 4,0 \, m/s$, para lo cual se aplica la siguiente ecuación para el cálculo de la esta.

$$v_{tb} = \frac{Q}{S_t} \tag{2.16}$$

 v_{tb} : velocidad al interior de la tubería $\left[\frac{m}{s}\right]$

 S_t : sección transversal de la tubería $[m^2]$

Q: caudal del sistema $\left[\frac{Lts}{min}\right]$

Según calculado en la sección **2.8.1**, el caudal del sistema es de 4,03 $\left[\frac{Lts}{min}\right]$, Así mismo el diámetro de la tubería es de 9,50 [mm], el cual se reemplaza de la siguiente manera:

$$Q = 4.03 \frac{Lts}{min} * \frac{1000 \ cm^3}{1 \ Lts} * \frac{1 \ min}{60 \ sec} = 67.17 \frac{cm^3}{sec}$$

$$v_{tb} = \frac{67,17 \frac{cm^3}{sec}}{\frac{\pi * (0,95cm)^2}{4}} = 94,76 \frac{cm^3}{sec} * \frac{1 \frac{m}{sec}}{100 \frac{cm}{sec}} = 1 \frac{m}{sec}$$

De lo anterior expuesto de las velocidades dentro de tuberías, el valor de $1\frac{m}{sec}$ está dentro de rangos establecidos por los fabricantes.

2.7.5 Selección de aceite hidráulico

Una correcta selección del lubricante hidráulico proporciona una larga vida útil al equipo, mejorando al máximo el rendimiento de esta y a su vez ayuda a poca frecuencia de mantenimiento y costos de lubricación. Con todo lo dicho es necesario tener en cuenta la velocidad, presión, temperatura y el entorno donde se trabajará el equipo. En muchas aplicaciones los fabricantes de aceites recomiendan utilizar de especificación ISO, para que el equipo trabaje sin problemas y alcance su vida de diseño (ALBARRACIN.Pedro, 2003).

Dado que el diseño es un equipo estacionario es recomendable utilizar un aceite sin detergentes que contenga poco aditivo anti-desgaste y un

separador de agua del aceite llamado emulsificador el cual permite un drenado y asentado al interior del tanque para la selección. Estos equipos generalmente trabajan entre 50°C y 60°C, pero no se recomienda que supere los 80°C ya que se puede descomponer algún elemento (Widman, 2012)

Según en la Figura 2.7 el aceite hidráulico ISO 68, es la más apropiada para el diseño, ya que está dentro del rango establecido anteriormente.

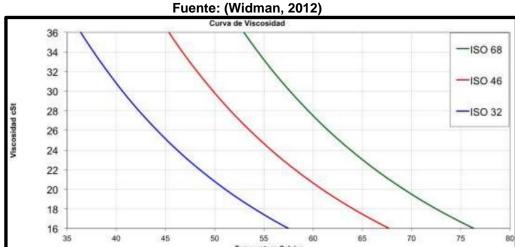


Figura 2.7. Curva de viscosidad aceite ISO 32, 46 y 68.

Las propiedades mecánicas de aceite hidráulico ISO 68, se describe en apéndices

2.7.6 Selección de bomba hidráulica

Para seleccionar la bomba hidráulica se consiguió calcular el caudal del sistema, así mismo, este equipo trabajará con una presión de 140,75 Bar equivalente a 2000 Psi. También se conoce que la bomba trabaja con una eficiencia de 0.85.

$$HP = \frac{Q X P}{1.714 X n} \tag{2.17}$$

HP: potencia de la bomba HP

Q: caudal del sistema Gpm (0,4 $\frac{Lts}{sec}$ ya calculado)

P: presión de la bomba Psi.

 η : eficiencia de la bomba (0,85)

$$Gpm = 0.067 \frac{Lts}{sec} * \frac{1 Gpm}{0.0631 \frac{Lts}{sec}} = 1.1 Gpm$$

$$HP = \frac{1.1 \; Gpm * 2000 \; Psi}{1.714 * 0.85} = 1.51 HP \approx 2 HP$$

También se calculó el desplazamiento de la bomba, aplicando la siguiente ecuación.

$$D_B = \frac{Q_S}{\omega_M} \tag{2.18}$$

Siendo:

 D_B : desplazamiento de bomba

 Q_S : caudal del sistema

 ω_{M} : velocidad angular del sistema

$$D_B = \frac{1.1 \ gpm}{1800 rev} = 0.0006611 \ \frac{gpm}{rev} = 2.31 \frac{cm^3}{rev}$$

El valor de 2,31 $\frac{cm^3}{rev}$, es la cilindrada teórica equivalente al 90%, pero se calculó la cilindrada necesaria para caudal del sistema establecido. Por ende, se requiere una cilindrada de 2,57 $\frac{cm^3}{rev}$.

La bomba para impulsar aceite ISO 68 se requiere una potencia de 2HP, con un desplazamiento necesario de la bomba $6\frac{cc}{rev}$, este valor se halla estandarizado en los catálogos de la bomba de engrane según el apéndice A.

2.7.7 Cálculo de potencia del motor

Según la norma técnica ecuatoriana NTE INEN 2 498:2009, establece que la eficiencia en motores trifásicos con jaula de ardilla está en un rango de 68 y 93 %, para una pérdida del 20%, se establece un promedio de 81% para el motor.

Conociendo la potencia hidráulica ya calculado en la **sección 2.8.6** y la eficiencia se reemplaza los datos en la siguiente ecuación.

$$P_M = \frac{P_H}{\eta} \tag{2.19}$$

 P_M : potencia del motor [hp]

 P_H : potencia hidráulica [hp]

 η : Eficiencia eléctrica

$$P_M = \frac{2 hp}{0.81} = 2,47 \text{ hp} \approx 3 hp$$

De acuerdo con la potencia calculado de 3 hp, se selecciona un motor de 3 hp que existen en el mercado con las características de un motor trifásico, tipo jaula de ardilla y una eficiencia al $\eta=0.81$, para más información verificar en el apéndice B

2.7.8 Cálculo y selección del tanque hidráulico.

Para la selección del reservorio hidráulico se necesita un mínimo de aceite necesario equivalente al 75% del total del volumen del reservorio.

$$Q = 4,04 Lts * \frac{1gal}{3,78Lts} = 1,1gal$$

Para calcular el valor mínimo de operación del aceite en el equipo debe de multiplicar por tres o cuatro el caudal de la operación de la bomba (ROLDAN VILORIA, 2001), utilizando la siguiente ecuación

$$Q_T = QX4 \tag{2.20}$$

 Q_T : caudal aceite al 75%

$$Q_T = 1.1gal * 4 = 4.4gal = 5 gal$$

Como el valor de Q_T equivale al 75% del volumen total del reservorio, se puede calcular utilizando la regla de tres el volumen de esta.

$$\frac{75\%}{100\%} + \frac{4,4gal}{V_R} = V_R = 5,86 \ gal \cong 22,15 \ Lt$$

2.8 Circuito Hidráulico

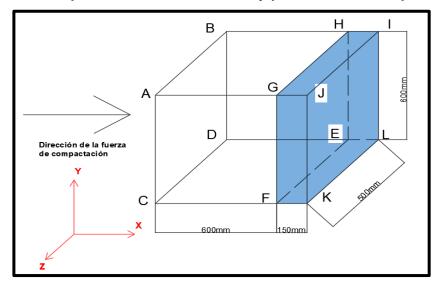
Es una representación gráfica de todos los componentes principales que el fluido de trabajo circula una por sistema, dichos componentes son: válvulas, actuadores, dispositivo de control de flujo, reservorio, filtro y elementos independiente de cada rama.

Una vez conocido todos los parámetros del sistema: la presión, caudal, velocidad y dispositivos de medición. Se realiza el gráfico como se detalla a continuación.

Figura 2.8 Circuito Oleo hidráulico del sistema Fuente: Elaboración propia

También se detalla el listado de todos los componentes que tiene el sistema Oleohidráulico.

Tabla 2.12 Descripción de materiales a utilizar.


Cantidad	Descripción	Observación		
		Compactado	Diámetro émbolo:20 cm Diámetro vástago: 10 cm Carrera cilindro: 60 cm	
3	Cilindros hidráulicos Presión de trabajo 2000 Psi	Expulsión	Diámetro émbolo:2,50 cm Diámetro vástago: 1,2 cm Carrera cilindro: 60 cm	
		Apertura	Diámetro émbolo:2,5cm Diámetro vástago: 1,2 cm Carrera cilindro: 15 cm	
1	Motor Eléctrico		HP, II polo trifásico, 1800 RPM.	
1	Bomba de engranajes		lluminio, eje liso de ½ in, 6gpm, 2	
1	Acople motor-bomba		de ½ in, 1 par.	
3	Manómetro	Manómetro de presión con glicerina, 3/8 in roso NPTF macho de 3/8 in.		
1	Válvula de seguridad		0 Psi, 30 l/min, conexión de 3/8 in.	
3	Válvula antirretorno – regulador de caudal		n), conexión 3/8 in, presión de 10.00, Psi.	
3	Válvula direccional		as-con sinusoidal, presión caudal máximo 60l/min.	
1	Filtro succión	Marca KOMPASS, flujo máximo 15l/min, conexión de 3/8 in.		
1	Reservorio aceite	Capacidad 30 Litros.		
1	Respiradero	Freno de partículas sólidas hasta 3 micrones co eficiencia de 97%, caudal 1,274l/min.		
1	Medidor nivel de aceite	Medida nominal hasta 5 in.		
1	Manguera hidráulica flexible	Diámetro interior 3/8 pulgada, longitud 4 metros		

2.9 Diseño de la precámara y cámara de compactación

Para poder desarrollar los cálculos pertinentes se realiza el diagrama de cuerpo libre de la cámara y precámara de compactación, donde se muestra las dimensiones así mismo la dirección de compactación del sistema.

El color azul de la Figura 2.9 representa el volumen de los envases de aluminio ya compactada, como se pude observar el volumen antes de compactar es mucho mayor después de compactar para seis compactaciones que se requiere.

Figura 2.9 Representación de la cámara y precámara de compactación

Se define lo siguiente:

- Utilizaremos acero ASTM A36.
- Las paredes tendrán una máxima deformación de 0.75mm.
- Para los refuerzos utilizaremos vigas UPN.
- Debido a que sobre las caras existe una sola fuerza aplicada podemos usar tablas de vigas del Apéndice C.
- Se utiliza planchas de 5mm para todas las paredes.

2.9.1 Determinación de las fuerzas en los planos restantes

Se calcula las fuerzas en los planos restantes.

$$\sigma_{x} = \frac{F_{RQ}}{Ac} \tag{2.21}$$

Ac: Área compactada $[m^2]$

 F_{RQ} : Fuerza requerida [N]

 σ_x : Esfuerzo en el plano X [kPa]

$$\sigma_x = \frac{441kN}{0.5m * 0.6m} = 1470kPa$$

Luego de obtener el esfuerzo en el plano X, se procede a utilizar la ecuación generalizada de Hooke para esfuerzo triaxiales,

$$\epsilon_x = \frac{1}{E} \left[\sigma_x - \nu (\sigma_y + \sigma_z) \right] \tag{2.22}$$

$$\epsilon_y = \frac{1}{E} \left[\sigma_y - \nu (\sigma_x + \sigma_z) \right]$$
 (2.23)

$$\epsilon_z = \frac{1}{E} \left[\sigma_z - \nu (\sigma_x + \sigma_y) \right] \tag{2.24}$$

 ϵ_x : deformación unitaria en X

 ϵ_{y} : deformación unitaria en Y

 ϵ_z : deformación unitaria en Z

Eal: Módulo de elasticidad [GPa]

ν: Razón de Poisson

 σ_x : Esfuerzo en el plano X [kPa]

 σ_{v} : Esfuerzo en el plano Y [kPa]

 σ_z : Esfuerzo en el plano Z [kPa]

Se asume que los valores de ϵ_y y ϵ_z son cero ya que es una restricción debido a las paredes de la cámara, los valores de E y ν se los obtiene de la tabla E-1 de la sección de anexos y para facilidad de cálculos las ecuaciones (20), (21) y (22), se arma un sistema de ecuaciones.

$$\begin{bmatrix} E_{al}\epsilon_x \\ E_{al}\epsilon_y \\ E_{al}\epsilon_z \end{bmatrix} = \begin{bmatrix} \sigma_x & -\nu\sigma_y & -\nu\sigma_z \\ -\nu\sigma_x & \sigma_y & -\nu\sigma_z \\ -\nu\sigma_x & -\nu\sigma_y & \sigma_z \end{bmatrix}$$

$$\begin{bmatrix} (71700000)\epsilon_x \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1470 & -(0.34)\sigma_y & -(0.34)\sigma_z \\ -(0.34)(1470) & \sigma_y & -(0.34)\sigma_z \\ -(0.34)(1470) & -(0.34)\sigma_y & \sigma_z \end{bmatrix}$$

Luego de resolver el sistema de ecuación se obtiene que:

$$\begin{bmatrix} \epsilon_x \\ \sigma_y \\ \sigma_z \end{bmatrix} = \begin{bmatrix} 1.33x10^{-5} \\ 757.27 \ kPa \\ 757.27 \ kPa \end{bmatrix}$$

Para determinar la fuerza en el plano Y, se utiliza la ecuación 26.

$$\sigma_{y} = \frac{F_{y}}{Ay} \tag{2.25}$$

Ay: Área proyectada para Y $[m^2]$

 F_{v} : Fuerza requerida en Y [N]

 σ_{v} : Esfuerzo en el plano Y [kPa]

Despejando Fy de la ecuación.

$$Fy = (757.27 \, kPa)(0.50 * 0.15) = 56.79 kN$$

Para determinar la fuerza en el plano Z, se utiliza la ecuación 27.

$$\sigma_z = \frac{F_Z}{Az} \tag{2.26}$$

Siendo:

Az: Área proyectada para Z $[m^2]$

 F_z : Fuerza requerida en Z [N]

 σ_z : Esfuerzo en el plano Z [kPa]

Despejando Fz de la ecuación.

$$Fz = (757.27kPa)(0.60 * 0.15) = 68.15kN$$

2.9.2 Cámara de compactación

Para una mejor descripción de cada pared se la relacionan con cada designación de letras asignadas en la **Figura 2.9**.

• Cara posterior: KLJI

Cara superior: GJHI

Cara inferior: FEKL

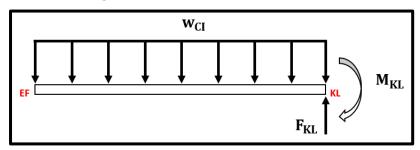

Cara inferior

Figura 2.10 Representación de la cara inferior

En la figura 2.9 la cara inferior tiene dos lados libres, uno con pasador y otro extremo soldado.

Figura 2.11 D.C.L. de la cara inferior

Se observa que es una viga en voladizo con carga uniforme distribuida, se utiliza el caso, entonces la carga distribuida, la fuerza en los extremos, el momento y la inercia son:

$$w_{CI} = \frac{F_y}{l_{CI}} \tag{2.27}$$

 F_{v} : Fuerza en el plano Y [kN]

 l_{CI} : Longitud de la cara inferior [m]

$$w_{CI} = \frac{56.79kN}{0.15m} = 378.6kN/m$$

$$F_{LK} = w_{CI}l_{CI} = (378.6kN)(0.15m) = 56.79kN$$

$$M_{LK} = \frac{w_{CI} l_{CI}^2}{2} = \frac{(378.6kN)(0.15m)^2}{2} = 4.26kPa$$

$$y_{max} = -\frac{w_{CI} l_{CI}^4}{8E_{ac} l_{CI}}$$
(2.28)

Despejando I_{CI}

$$I_{CI} = \frac{w_{CI} l_{CI}^{4}}{8E_{ac} y_{max}} = \frac{(37837kN)(0.15m)^{4}}{8(206.8GPa)(0.0075m)}$$

$$I_{CI} = 15.46cm^4$$

Se utiliza para los refuerzos dos vigas UPN80, se debe encontrar el centroide de la plancha con los refuerzos.

$$C = \frac{nA_r(C_r + e_p) + C_p A_p}{nA_r + A_p}$$
 (2.3)

Siendo:

n: Cantidad de refuerzos

 C_r : Centroide del refuerzo [cm]

 e_p : Espesor de la placa [cm]

 A_r : Área del refuerzo [cm²]

 C_p : Centroide de la plancha [cm]

 A_p : Área de la plancha [cm²]

$$C = \frac{2 * 11cm^{2}(1.45 + 0.5) + 0.25 * (0.5 * 50)cm^{2}}{2 * 11cm^{2} + (0.5 * 50)cm^{2}} = 0.84 cm$$

Luego de obtener el centro de gravedad, se procede a obtener la inercia total la cual debe ser mayor a la inercia obtenida.

$$I_T = n(I_r + A_r C^2) + I_p + A_p C^2$$
 (2.4)

Siendo:

n: Cantidad de refuerzos

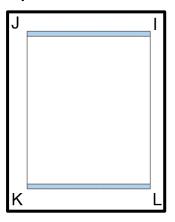
C: Centroide del refuerzo [cm]

 A_r : Área del refuerzo [cm²]

 I_r : Inercia del refuerzo [cm⁴]

 C_p : Centroide de la plancha [cm]

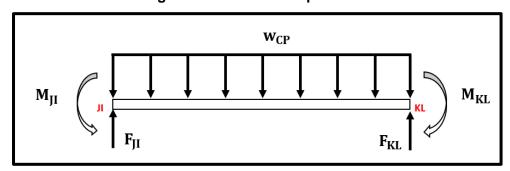
 A_{v} : Área de la plancha [cm²]


 I_p : Inercia de la placa [cm⁴]

$$I_T = 2 * (19.4cm^4 + 11cm^2 * 0.84^2) + 2.08cm^4 + 25cm^2 * 0.84^2$$

$$I_T = 74.25 cm^4$$

Cara posterior


Figura 2.12 Representación de la cara posterior

En la figura 2.11 la cara inferior va a presentar dos lados libres y dos soldados.

Se realiza el diagrama de cuerpo libre para esta cara.

Figura 2.13 D.C.L. cara posterior

Se tiene una viga doblemente empotrada con carga uniforme distribuida, se utiliza el caso, entonces la carga distribuida, la fuerza en los extremos, el momento y la inercia son:

$$w_{CP} = \frac{F_{\chi}}{l_{CP}} \tag{2.5}$$

Siendo:

 F_X : Fuerza en el plano X [kN]

 l_{CP} : Longitud de la cara inferior [m]

$$w_{CP} = \frac{441kN}{0.60m} = 735kN/m$$

$$F_{LK} = F_{JI} = \frac{w_{CP}l_{CP}}{2} = \frac{(735kN)(0.60m)}{2} = 220.5kN$$

$$M_{LK} = M_{JI} = \frac{w_{CP}l_{CP}^{2}}{12} = \frac{(735kN)(0.60m)^{2}}{12} = 13.12kPa$$

$$y_{max} = -\frac{w_{CP}l_{CP}^{4}}{384E_{ac}l_{CP}}$$

Despejando I_{CP}

$$I_{CP} = \frac{w_{CP}l_{CP}^{4}}{384E_{ac}y_{max}} = \frac{(337.5kN)(0.60m)^{4}}{384(206.8GPa)(0.00075m)}$$

$$I_{CP} = 96.01cm^4$$

Se utiliza para los refuerzos cuatro vigas UPN80, se debe encontrar el centroide de la plancha con los refuerzos.

$$C = \frac{2 * 3.66cm * 3.87cm^2 + 0}{2 * 3.87cm^2 + (0.3 * 50)cm^2} = 1.25 cm$$

Luego de obtener el centro de gravedad, se procede a obtener la inercia total la cual debe ser mayor a la inercia obtenida.

$$I_T = 2 * 9.72cm^4 + 2 * 3.87cm^2(3.66 - 1.25)^2 + 1.25cm^4 + 15cm^2(0 - 1.25cm)^2$$

$$I_T = 89.08 cm^4$$

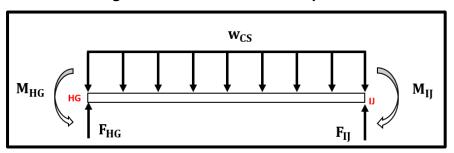

Cara superior

Figura 2.14 Representación de la cara superior

En la figura 2.13 la cara superior va a presentar dos lados libres uno y uno soldado.

Figura 2.15 D.C.L de la cara superior

Es una viga doblemente empotrada con carga uniforme distribuida, se utiliza el caso, entonces la carga distribuida, la fuerza en los extremos, el momento y la inercia son:

$$w_{CS} = \frac{F_y}{l_{CS}} = \frac{56.79kN}{0.15m} = 378.7kN/m$$

$$F_{HG} = F_{IJ} = \frac{w_{CS}l_{CS}}{2} = \frac{(378.6kN)(0.15m)}{2} = 28.39kN$$

$$M_{LK} = M_{JI} = \frac{w_{CS}l_{CS}^2}{12} = \frac{(378.6kN)(0.15m)^2}{12} = 0.71kPa$$

$$y_{max} = -\frac{w_{CS}l_{CS}^4}{384E_{ac}I_{CS}}$$

Despejando I_{CS}

$$I_{CS} = \frac{w_{CS}l_{CS}^{4}}{384E_{ac}y_{max}} = \frac{(378.6kN)(0.15m)^{4}}{384(206.8GPa)(0.001m)}$$

$$I_{CS} = 0.32cm^4$$

Se procede a calcular la inercia de la plancha

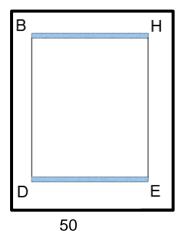
$$I_T = \frac{bh^3}{12}cm^4 = \frac{50*0.3^3}{12}$$

$$I_T = 1.25cm^4$$

Se determina que la inercia de la placa es mayor a la necesaria, por tal motivo no se va a colocar refuerzos.

2.9.3 Precámara de compactación

Para una mejor descripción de cada pared se la relacionan con cada designación de letras asignadas de la **Figura 2.15.**


Cara lateral izquierda: BDHE

Cara lateral derecha: AGCF

Cara inferior: CDEF

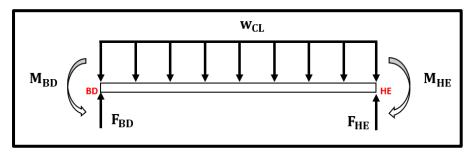

Cara lateral derecha

Figura 2.16 Representación de la cara lateral derecha de la precámara

Tal como se muestra en la figura 2.15 la cara inferior va a presentar dos lados soldados, los cuales están representados por color celeste y los otros dos libres.

Figura 2.17 D. C. L. cara lateral derecha

Se observa que es una viga doblemente empotrada con carga uniforme distribuida, entonces la carga distribuida, la fuerza en los extremos, el momento y la inercia son:

$$w_{CL} = \frac{F_Z}{l_{CL}} \tag{2.6}$$

Siendo:

 F_Z : Fuerza en el plano Z [kN]

 l_{CL} : Longitud de la cara lateral [m]

$$w_{CL} = \frac{68.15kN}{0.60m} = 113.58kN/m$$

$$F_{BD} = F_{HE} = \frac{w_{CL}l_{CL}}{2} = \frac{(113.58kN)(0.60m)}{2} = 34.08kN$$

$$M_{BD} = M_{HE} = \frac{w_{CL}l_{CL}^2}{12} = \frac{(113.58kN)(0.60m)^2}{12} = 3.41kPa$$

$$y_{max} = -\frac{w_{CL}l_{CL}^4}{384E_{ac}I_{CL}}$$

Despejando I_{CL}

$$I_{CL} = \frac{w_{CL}l_{CL}^4}{384E_{ac}y_{max}} = \frac{(113.58kN)(0.60m)^4}{384(206.8GPa)(0.001m)}$$

$$I_{CL} = 24.73cm^4$$

Se utiliza un refuerzo de viga tipo UPN80, se debe encontrar el centroide de la plancha con los refuerzos.

$$C = \frac{1 * 11cm^{2}(1.45 + 0.5) + 0.25 * (0.5 * 50)cm^{2}}{2 * 11cm^{2} + (0.5 * 50)cm^{2}} = 0.77 cm$$

Luego de obtener el centro de gravedad, se procede a obtener la inercia total la cual debe ser mayor a la inercia obtenida.

$$I_T = 1 * (19.4cm^4 + 11cm^2 * 0.77^2) + 2.08cm^4 + 25cm^2 * 0.77^2$$

$$I_T = 42.80 \ cm^4$$

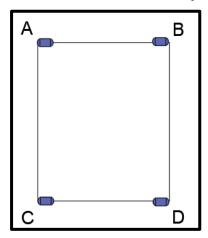
Cara lateral izquierda

Para la cara lateral izquierda se utiliza la misma configuración que se obtuvo en la cara lateral derecha.

2.9.4 Caras móviles

Se utiliza los mismos valores de las fuerzas obtenidas para la cama de compactación, se procede a calcular los espesores de placa y los refuerzos. Para una mejor descripción de cada pared se la relacionan con cada designación de letras asignadas en la figura 2.x.

• Cara de compactación principal: EFGH


Cara de compuerta: ELHI

Cara de expulsión: FKGJ

Cara de compactación principal

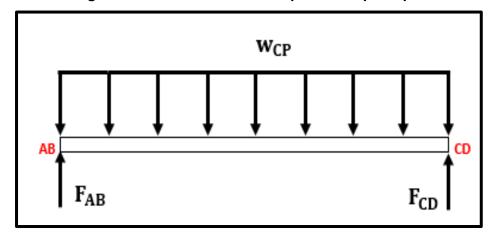
Para la cara de compactación se ha decido dejar una holgura de 2mm, para que pueda moverse de manera libre, es decir que las nuevas medidas quedan 598mm de altura y 498mm de ancho.

Figura 2.18 Representación de cara de compactación principal

Tal como se muestra en la figura 2.17 la cara compactación principal, en las esquinas se colocan barras para evitar que se deforme, al momento de realizar la compactación.

$$w_{CP} = \frac{F_x}{l_{CP}} \tag{2.7}$$

Siendo:


 F_X : Fuerza en el plano X [kN]

 l_{CP} : Longitud de la cara inferior [m]

$$w_{CP} = \frac{441kN}{0.598m} = 737.46kN/m$$

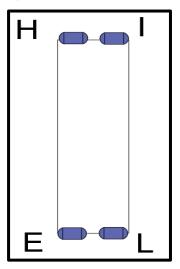
Se realiza el diagrama de cuerpo libre para esta cara.

Figura 2.19 D.C.L. Cara de compactación principal

Se observa que es una viga doblemente empotrada con carga uniforme distribuida, se utiliza el caso, entonces la fuerza en los extremos, el momento y la deflexión máxima son:

$$F_{LK} = F_{JI} = \frac{w_{CP}l_{CP}}{2} = \frac{(737.46kN)(0.598m)}{2} = 220.5kN$$

$$M_{LK} = M_{JI} = \frac{w_{CP}l_{CP}^{2}}{8} = \frac{(737.46kN)(0.598m)^{2}}{8} = 15.09kPa$$


$$y_{max} = -\frac{5w_{CP}l_{CP}^{4}}{384E_{ac}I_{CP}}$$

Despejando I_{CP}

$$I_{CP} = \frac{5w_{CP}l_{CP}^{4}}{384E_{ac}y_{max}} = \frac{5(337.5kN)(0.598m)^{4}}{384(206.8GPa)(0.001m)}$$
$$I_{CP} = 271.62cm^{4}$$

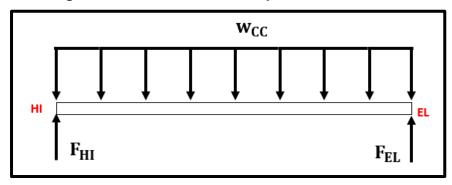

Cara de compuerta

Figura 2.20 Representación de cara de compuerta

En la figura 2.19 la cara inferior va a presentar dos lados con apoyos simples, los cuales están representados por color azul y los otros dos libres. Se realiza el diagrama de cuerpo libre para esta cara.

Figura 2.21 D.C.L. de cara compuerta de la cámara

Se observa que es una viga simplemente apoyada con carga uniforme distribuida, se utiliza el caso, entonces la fuerza en los extremos, el momento y la deflexión máxima son:

$$w_{CC} = \frac{F_z}{l_{CC}} = \frac{68.15kN}{0.60m} = 113.58kN/m$$

$$F_{HI} = F_{EL} = \frac{w_{CC}l_{CC}}{2} = \frac{(113.58kN)(0.60m)}{2} = 34.08kN$$

$$M_{HI} = M_{EL} = \frac{w_{CC}l_{CC}^2}{8} = \frac{(113.58kN)(0.60m)^2}{8} = 5.11kPa$$

$$y_{max} = -\frac{5w_{CP}l_{CP}^{4}}{384E_{ac}l_{CP}}$$

Despejando I_{CC}

$$I_{CC} = \frac{5w_{CC}l_{CC}^4}{384E_{ac}y_{max}} = \frac{5(113.58kN)(0.60m)^4}{384(206.8GPa)(0.001m)}$$

$$I_{CP} = 123.64cm^4$$

Se utiliza para el refuerzo un canal tipo U de 100x50x2mm, se debe encontrar el centroide y la inercia total de la plancha con los refuerzos.

$$C = \frac{1 * 3.66cm * 3.87cm^2 + 0}{1 * 3.87cm^2 + (0.5 * 50)cm^2} = 1.25 cm$$

$$I_T = 1 * 9.72cm^4 + 1 * 3.87cm^2(3.66 - 1.25)^2 + 1.25cm^4 + 15cm^2(0 - 1.25cm)^2$$

$$I_T = 44.54 \ cm^4$$

Cara de expulsión

En la cara de expulsión, ha decido dejar una holgura de 2mm, para que pueda moverse de manera libre al momento de retirar el bloque compactado, es decir, que las nuevas medidas quedan 598mm de altura y 148mm de ancho.

Se va a utilizar la misma configuración de la cara de la compuerta. Se presenta en la tabla 2.13, el resultado de cada cara con sus refuerzos.

Tabla 2.13 Tabla de resumen de las caras y sus refuerzos

Cara	Plancha [mm]	Cantidad	Tipo
Posterior	600x500x5	4	IPN80
Inferior	750x500x5	1	UPN80
Superior	150x500x5	-	-
Lateral derecho	600x600x5	1	UPN80
Lateral izquierdo	600x600x5	1	UPN80
Compactador	598x498x5	4	UPN80
Compuerta	600x150x5	1	UPN80
Expulsión	598x148x5	1	UPN80

2.10 Sistema de control

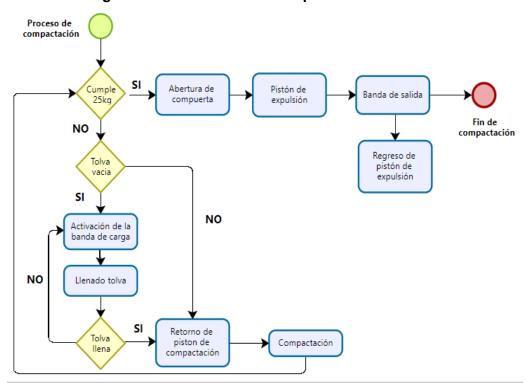


Figura 2.22 D.C.L. de cara compuerta de la cámara

2.11 Diseño de forma final

En la figura 2.22 se muestra el diseño de forma final de la compactadora con sus componentes adicionales como las tolvas de carga, las bandas transportadoras y los pistones.

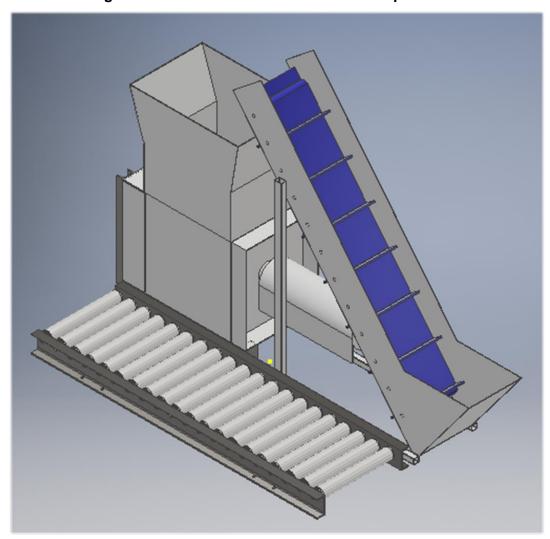


Figura 2.23 Diseño de forma final de la compactadora

CAPÍTULO 3

3. RESULTADOS Y ANÁLISIS

3.1 Resultados del diseño oleohidráulico.

A continuación, se describe el número de compactación que se debe realizar el equipo hasta obtener la densidad desea de $650~Kg/m^3$, equivalente al 30% de la densidad del valor teórico $2600~Kg/m^3$. También, se estima que la masa a compactar diariamente es de 25 Kg, razón por el cual el equipo fue diseñado para caudales bajos con tiempos de compresión y retorno altos, con todo lo dicho se describe en la **Tabla 3.1**

Cabe recalcar que la densidad inicial fue de $23,87 \, Kg/m^3$, dicho valor pertenece a envases de aluminio sin compactar que son utilizado en sector cervecero para el llenado de producto.

Tabla 3.1 Cantidad de compactaciones de bloque 25Kg.

Cantidad de compactación	Masa ingresa a cámara [<i>Kg</i>]	Volumen de cámara compactado $[m^3]$	Densidad del bloque $\left[rac{Kg}{m^3} ight]$
1	4,17	0,038	108,42
2	8,34	0,038	216,84
3	12,51	0,038	325,27
4	16,68	0,038	433,69
5	5 20,85		542,12
6	25,02	0,038	650,54

El diseño de la máquina anteriormente fue propuesto para producir pacas de alumno de 64 Kg, sin tener en cuenta las normativas ecuatorianas para el control de riesgos de accidente, motivos por el cual se aplicó norma INEN que propone que cualquier persona adulta mayores a 18 años puede elevar un bloque de 25 Kg con facilidad sin causar alguna lesión en la persona.

Dado del ciclo de trabajo que realiza los tres actuadores, así como: fuerza que imparte cada uno, tanto en extensión y retracción, así como el tiempo y velocidad, se detalla en la siguiente **Tabla 3.2**

Tabla 3.2 Ciclo de trabajo en la última compactación, expulsión y apertura.

Estado de vástago	Tiempo (sec)	Fuerza (Kgf)	Carrera (cm)	Velocidad (cm/sec)	Caudal (gpm)
		COMPAC	TADO	•	
Extendido	280.00	45.000,00	60,00	0,25	1,10
Reposo	0,00	0,00	0,00	0,00	0,00
Retracción	210.14	33.840,24	60,00	0,28	1,10
Reposo	0,00	0,00	0,00	0,00	0,00
	•	EXPULS	SIÓN		
Extendido	4,38	704,75	60,00	13,70	1,10
Reposo	0,00	0,00	0,00	0,00	0,00
Retracción	3,37	542,38	60,00	17,81	1,10
Reposo	0,00	0,00	0,00	0,00	0,00
		APERT	URA		
Extendido	1,09	704,75	15,00	13,71	1,10
Reposo	0,00	0,00	0,00	0,00	0,00
Retracción	0,84	542,38	15,00	17,81	1,10
Reposo	0,00	0,00	0,00	0,00	0,00

El tiempo total del ciclo de trabajo es de 500 segundos, equivalentes a 8,33 minutos que corresponde a la última parte de compactado de los tres cilindros juntos tanto en extensión y retracción. También se toma en cuenta el tiempo de las cinco primeras compactaciones correspondientes al cilindro compactado, dando un valor de 2450,7 segundo o 40,84 minutos, siendo el tiempo requerido para producir la paca un total de 49, 18 min.

Según la Tabla 4, la mayor fuerza que produce es al compactar es de 45.000 es el cilindro de 20 cm de émbolo, mientras que los dos cilindros se utilizarán para mover la paca de 25 Kg y la compuerta, razón por el cual las dimensiones son las misma de acuerdo con el análisis en la **sección 2.6.2**.

En la **sección 2.7.6**, se obtuvo mediante el cálculo la potencia necesaria de la bomba para accionamiento del sistema ole hidráulico de 2 hp, con una caudal de 1.1 galones por minuto (gpm), sin embargo, para valores bajos de caudal no existe bombas de tipo paleta que generalmente son utilizados en

estos sistemas, motivo por el cual se seleccionó una bomba de engranes con desplazamiento de bomba $2,57 \, cc/rev$, pero se llevó a medidas estandarizadas de $6 \, cc/rev$. Esta trabaja a presiones máximas de 275 Bar de acuerdo con los catálogos, así la presión de trabajo está dentro del rango establecido.

Así mismo, en la **sección 2.7.7**, se calculó la potencia del motor que transmite potencia a través del eje acoplado, de **2,47 hp**, dicho valor se estandarizó a medida comercial de **3 hp**, que trabaja a 1800 revoluciones por minuto (rpm), trifásicos con doble polo.

Según lo calculado la potencia de los dos componentes es muy bajo, para una fuerza de compactación de 50.000,00 Kgf y la presión de trabajo 2.000 Psi y caudales de 1.1 gpm. Así, el diseño trabajará a velocidades bajos con tiempos altos al momento de compactar ya que no se requiere altas demandas de comportamiento.

3.2 Simulación de la estructura

La obtención de los resultados mediante la simulación de Autodesk Inventor 2018 es ver el comportamiento de nuestra estructura al momento de soportar las cargas aplicadas,

La compactadora va a tener varias caras, pero nos enfocaremos en la simulación en las que conforman la cámara de compactación de manera individual de cada parte, que serán la cara posterior, cara superior, cara compuerta, cara de compactación principal, cara de expulsión.

Todos los elementos utilizados fueron acero ASTM A36

Cara posterior

Deformación máxima y mínima

En la figura 3.1 se puede ver que la deformación máxima ocurre en el centro de la plancha y es de 0.1784mm.

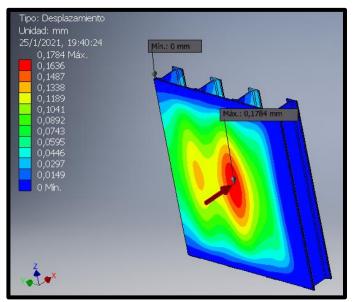


Figura 3.1 Deformación de la cara posterior

Esfuerzo de Von Mises

El mayor esfuerzo se da en las esquinas de la placa y cuyo valor es de 110.5MPa, esto se debe a que están libres.

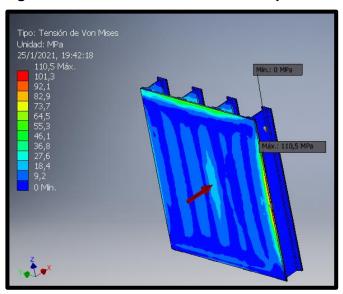


Figura 3.2 Esfuerzo de Von Mises cara posterior

Factor de seguridad

Se presenta en la figura 3.3 el factor de seguridad estático en donde el más bajo es 2.25 y está en las esquinas laterales de la placa.

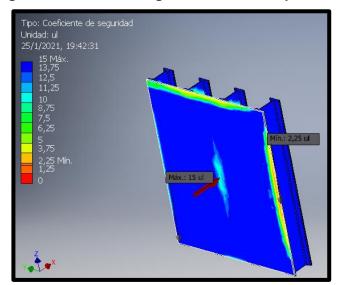


Figura 3.3 Factor de seguridad de la cara posterior

Cara de expulsión

• Deformación máxima y mínima

En la figura 3.4 se puede ver que la deformación máxima ocurre en el centro de la viga UPN80 y es de 0.1224mm.

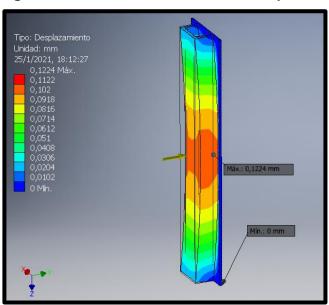


Figura 3.4 Deformación de la cara de expulsión

Esfuerzo de Von Mises

El mayor esfuerzo se da en el centro de la viga UPN80, ya que ahí está ubicado el pistón que mueve placa para retirar el bloque y cuyo valor es de 174.7MPa.

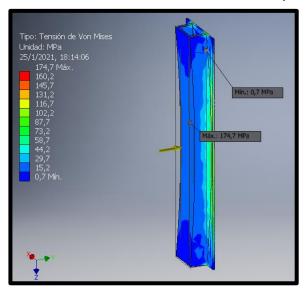


Figura 3.5 Esfuerzo de Von Mises cara de expulsión

• Factor de seguridad

Se presenta en la figura 3.6 el factor de seguridad estático en donde el más bajo es 1.42 y está ubicado en la viga UPN80 ya que ahí se coloca el pistón para mover el bloque compactado.

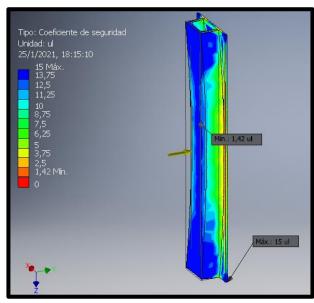


Figura 3.6 Factor de seguridad de la cara de expulsión

Cara compuerta

Deformación máxima y mínima

En la figura 3.7 se puede ver que la deformación máxima ocurre en las esquinas de la plancha y es de 0.8138mm.

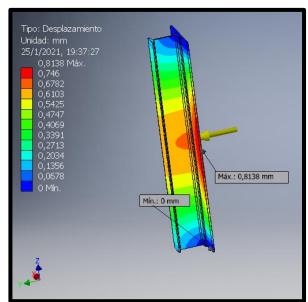


Figura 3.7 Deformación de la cara de la compuerta

• Esfuerzo de Von Mises

El mayor esfuerzo se da en las esquinas de la placa y cuyo valor es de 376.6MPa, esto se debe a que están libres.

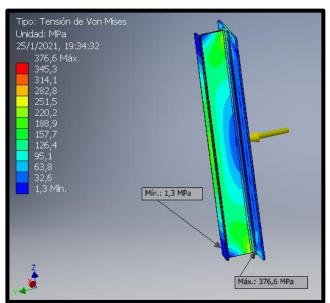


Figura 3.8 Esfuerzo de Von Mises cara de la compuerta

• Factor de seguridad

Se presenta en la figura 3.9 el factor de seguridad estático en donde el más bajo es 1.66 y está en la parte inferior de la placa.

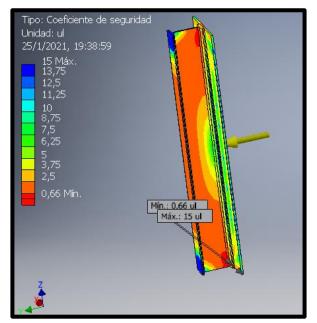


Figura 3.9 Factor de seguridad de la cara de la compuerta

Cara superior

• Deformación máxima y mínima

En la figura 3.10, se puede ver que la deformación máxima ocurre en el centro de la plancha y es de 0.376mm.

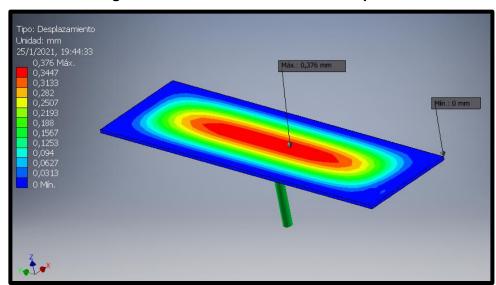


Figura 3.10 Deformación de la cara superior

• Esfuerzo de Von Mises

El mayor esfuerzo se da en las esquinas de la placa y cuyo valor es de 219.4MPa, esto se debe a que están libres.

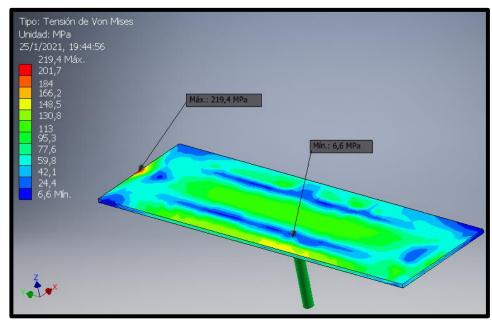


Figura 3.11 Esfuerzo de Von Mises cara superior

• Factor de seguridad

Se presenta en la figura 3.9 el factor de seguridad estático en donde el más bajo es 1.13 y está en la parte inferior de la placa.

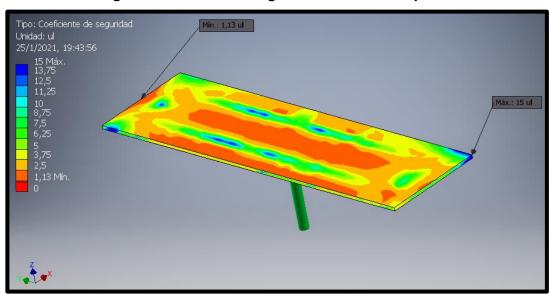


Figura 3.12 Factor de seguridad de la cara superior

Cara compactadora

Deformación máxima y mínima

En la figura 3.13 se puede ver que la deformación máxima ocurre en el centro de la plancha y es de 0.2847mm.

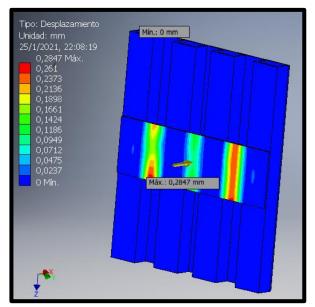


Figura 3.13 Deformación de la cara de compactación

• Esfuerzo de Von Mises

El mayor esfuerzo se da en las esquinas de la placa y cuyo valor es de 307.5MPa.

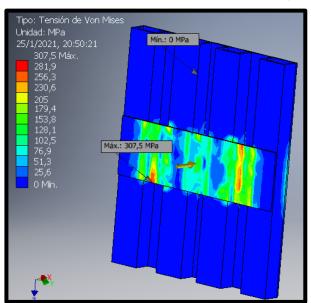


Figura 3.14 Esfuerzo de Von Mises cara de compactación

• Factor de seguridad

Se presenta en la figura 3.15 el factor de seguridad estático en donde el más bajo es 1.81 y está en la parte inferior de la placa.

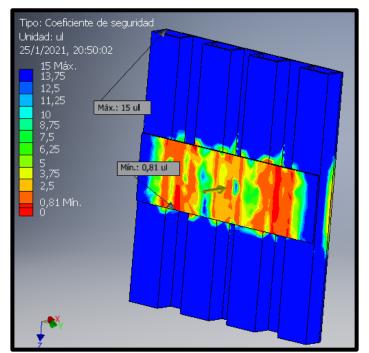


Figura 3.15 Factor de seguridad de la cara de compactación

3.3 Resultados diseño estructural

En esta sección se muestra los resultados que se obtuvieron en la parte analítica y simulación.

Tabla 3.3 Resultados	estructural d	le las caras	de la	compactadora
Tabla 3.3 Resultados	estructural v	ie ias caras	ue ia	compactadora.

	A	NALÍTICOS		SIMULACIÓN			
ITEM	Deformación máxima [mm]	Esfuerzo máximo [MPa]	Factor de seguridad	Deformación máxima [mm]	Esfuerzo máximo [MPa]	Factor de seguridad	
Compactador	0,124	210,67	2,05	0.2847	307.5	1.81	
Posterior	0,105	50,08	4,69	0.1784	110.5	2.25	
Expulsión	0,05	103,7	2,26	0.1224	174.7	1.42	
Compuerta	0,516	72,5	3,17	0.814	376.6	0.61	
Superior	0.116	85.2	2.76	0.376	219.4	1.13	

En la tabla 3.3 se compara la diferencia que existe entre los resultados analíticos y los de simulación. Esto se debe a la idealización utilizada en el modelo matemático, además de tener en cuenta que, en el método analítico, algunas paredes se consideraron libres y empotrados, es decir que teóricamente no se iban a sufrir algún efecto, pero al final se observa en la simulación que esto no es totalmente cierto.

En las deformaciones, factor de seguridad y esfuerzos máximos obtenidas mediante el método analítico, se observa que no tienen semejanza con los valores encontrados en la simulación, en el caso de las deformaciones se debe a que el método analítico arroja valores relativos. Los factores de seguridad en su mayoría están en rango estables para diseño estático, pero también existieron dos valores menores a uno y como se aprecia en las figuras son en las uniones de los dos elementos tanto de la placa y los refuerzos que son los puntos críticos.

Para los esfuerzos máximo ocurre lo mismo que en los factores de seguridad, ya que son dependientes uno del otro.

3.4 Análisis de costos

3.4.1 Análisis de costo de sistema hidráulico

Se realiza un análisis de costo para el sistema hidráulico de cada uno de los componentes, que intervienen, así mismo, de analiza la mano de obra al momento de ensamble y montaje del equipo.

Tabla 3.4 Lista de precios de elementos de compactación

N.º	Descripción	Obse	ervación	Precio unidad [\$]	Total [\$]	Empresa		
		Compactado Compactado Compactado Compactado Carrera cilindro: 60 cm		460,00	460,00	ENERPAC		
3	Cilindros hidráulicos Presión de trabajo 2000 Psi	Expulsión	Expulsión Expulsión Expulsión Expulsión Diámetro vástago: 1,2 cm Carrera cilindro: 60 cm Diámetro émbolo:2,5cm Diámetro vástago: 1,2 cm Carrera cilindro: 15 cm		77,30	ENERPAC		
		-			50,30	ENERPAC		
1	Motor Eléctrico	trifásico	trica 3 HP, II polo , 1800 RPM	277,50	277,50	Electro tecnic		
1	Bomba de engranajes		ılica aluminio, eje 1.26gpm, 2 huec.	115,53	115,53	Hidromecánica		
1	Acople motor- bomba	Acoples of	de ½ in, 1 par	49,0	49,0	Hidromecánica		
3	Manómetro	glicerina, 3/8	de presión con 3 in rosca NPTF 5 de 3/8 in	65,2	195,6	NERPAC		
1	Válvula de seguridad		na 10.000 Psi, 30 exión de 3/8 in.	160,00	160,00	ENERPAC		
3	Válvula antirretorno – regulador de caudal	conexión (imo (30l/min), 3/8 in, presión de 10.00, Psi	720,00	2160,00	ENERPAC		
3	Válvula direccional	sinusoidal, p 4,569 Psi, d	de 4/2 vías-con presión máxima caudal máximo Dl/min	704,25	2112,75	ENERAC		
1	Filtro succión	máximo 15l/r	MPASS, flujo min, conexión de 8/8 in	15,95	15,95	Hidromecánica		
1	Reservorio aceite		ad 30 Litros	12,70	12,70	Hidromecánica		
1	Respiradero	hasta 3 micro	artículas sólidas nes con eficiencia udal 1,274l/min	15,95	15,95	Hidromecánica		
1	Medidor nivel de aceite	Medida nor	Medida nominal hasta 5 in		Medida nominal hasta 5 in		20,00	Hidromecánica
1	Manguera hidráulica flexible		erior 3/8 pulgada, d 4 metros	46,00	46,00	Hidromecánica		
1	Caneca de aceite	hidr	8, para sistemas ·áulicos	98,00	98,00	Hidráulica Pérez		
		TOTAL			5.851,63			

La cantidad calculado no incluye IVA del 12%, por lo que el valor real es \$ 6553,83.

La mano de obra en Ecuador para ensamblar equipos tiene un valor de \$ 700.00, así mismo el costo de montaje sobre la estructura es de \$ 350.00. Con todo lo dicho el sistema hidráulico, incluido dispositivos de medición, materiales, y personal que labora tiene un valor de \$ 7603.82.

3.4.2 Costos de la estructura de la compactadora

Materiales

Se diseño la compactadora de latas de aluminio dando importancia al costo, el cual debía no ser muy elevado y accesible para la empresa, además que brinde seguridad mediante la automatización de la máquina para evitar que el operario tenga algún tipo de accidente. El acero A36 en el mercado su valor va a depender de las dimensiones de las planchas o los tipos de vigas que se utilice.

Tabla 3.5 Costos estructura

	Cantidad	Costo unitario [\$]	Costo total [\$]
Planchas 5mm	1	142.37	142.37
Vigas UPN80	2	76.06	152.12
Vigas IPN80	Vigas IPN80 2		185.10
		Costo material	479.59

En la tabla 3.5, se muestran los materiales y costos que se van a utilizar para la construcción de la estructura de la compactadora.

3.4.3 Componentes adicionales de la compactadora

En la tabla 3.6 se encuentran los valores de los componentes que se van a adquirir en el mercado local, los cuales van a servir para evitar que la persona que vaya a operar la máquina tenga algún tipo de accidente.

Tabla 3.6 Costos de componentes adicionales

	Cantidad	Costo unitario [\$]	Costo total [\$]
Banda y tolva de carga	1	10040.80	10040.80
Banda de descarga	1	5040.00	5040.00
Tolva de almacenamiento	1	1000.00	1000.00
		Costo componentes	16080.80

3.5 Retorno de la inversión

Para la rentabilidad de nuestro proyecto, tomamos en cuenta los siguientes aspectos:

- Alquiler de bodega para poder tener almacenado los envases.
- Costo que representa tener un accidente laboral.
- Disminuir la frecuencia de visita de la empresa recicladora.

En el capítulo 2 se indica que los envases van a ocupar aproximadamente un área de 25m² sin contar los que se van a utilizar en la línea de producción, como nuestra empresa en estudio se encuentra en la vía a Daule, se buscó en páginas de internet el costo aproximado del alquiler de una bodega, para lo cual utilizamos un rango de áreas de 100m² a 500m².

Tener algún elemento almacenado en grandes cantidades y para evitar que ocupen mucho espacio se apilan uno encima de otro, lo cual puede representar un riesgo laboral, debido a que los envases apilados cedan y caerían encima de uno o varias personas que se encuentren dentro de la bodega

La empresa recicladora cobra un rubo por el retiro de los envases, se tomó en cuenta que costo de alquiler tendría un camión de 7.5 toneladas.

Tabla 3.7 Costos actuales

COSTOS ACTUALES								
	Costo [\$] Cantidad Total [\$]							
Alquiler de bodega	600,00	12	7200,00					
Accidente laboral	250,00	10	2500,00					
Retiro de envases	200,00	6	1200,00					
	соsто т	10900,00						

En la tabla 3.7 se va a mostrar los costos que se tendrían cada año.

Tabla 3.8 Inversión total

INVERSIÓN						
		Costo [\$]				
Sistema Hidráulico	Equipos/materiales	6553,83				
Sistema midraulico	Personal	1050,00				
Estructura	Materiales	479,59				
	Personal	1350,75				
	Tolva/ banda de carga	10040,80				
Componentes	Banda de salida	5040,00				
	Tolva	1000,00				
Adicionales	Ingeniería	2000,00				
Autolidies	Margen (3%)	747,40				
	COSTO TOTAL	28.262,37				

Al momento de comparar los costos de inversión con los costos actuales que se generan en la empresa

2 años y 8 meses.

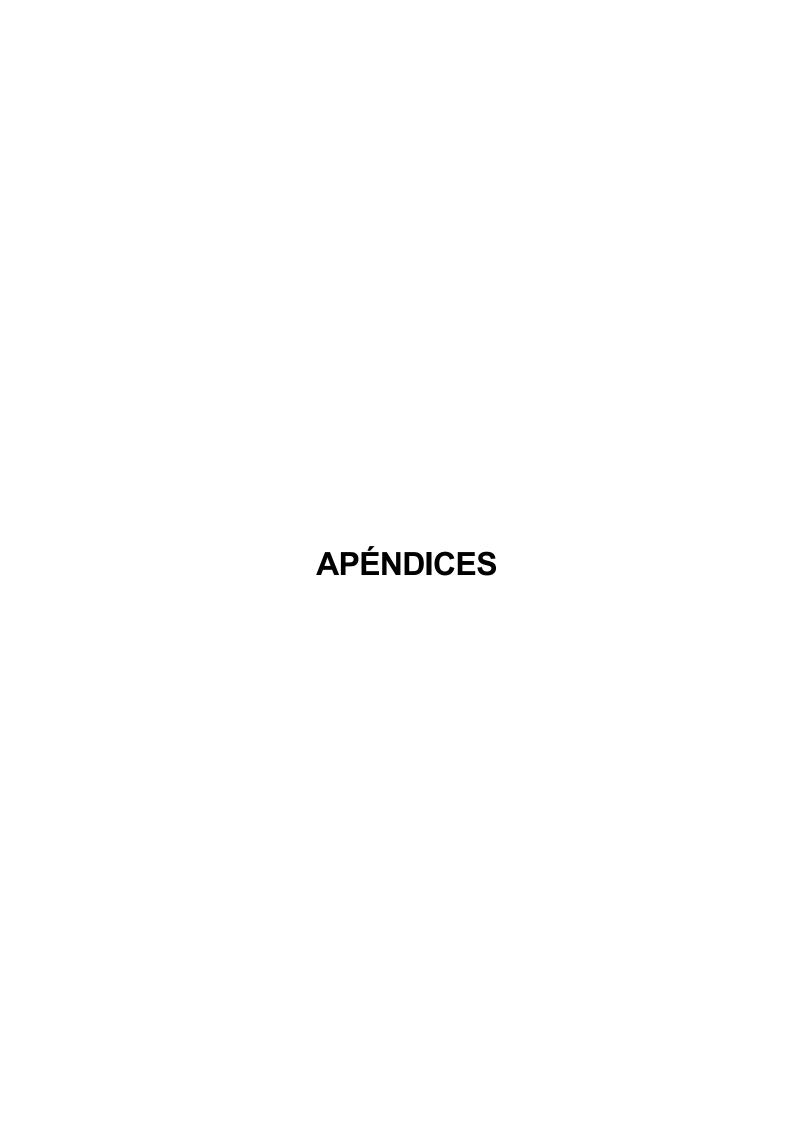
CAPÍTULO 4

4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- Según los resultados conseguidos en la modelación realizada en el software Inventor, se verificó mediante elementos finitos que el diseño no presenta fallas estructurales y trabajará con un factor de seguridad de 2,25.
- Se logró identificar la necesidad de que la industria cervecera debe promover la compactación y reutilización de residuos, dado que reciclar aluminio ofrece la ventaja de reducir emisiones de gases en un 85%.
- La valoración de las alternativas de diseño permitió conocer las características relevantes de cada una, a partir de las cuales se podría evaluar la implementación de estas en la industria del reciclaje.
- Se determinó que el diseño es factible y por tanto se calculó que la compactación de latas de aluminio tendrá un retorno de inversión de 2 años con 8 meses, producto del reciclaje.

4.2 Recomendaciones


- Se recomienda que la empresa cervecera estudiada realice un mejor control estudio de los envases que van a tener almacenado en bodega para así evitar que exista envases que se pierdan.
- Al momento de realizar un mantenimiento ya sea preventivo o correctivo, el equipo debe estar apagado para evitar que se puedan generar daños irreparables o que resulten costosos.

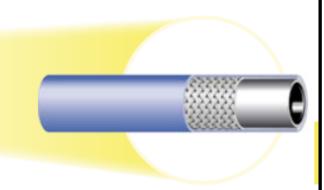
BIBLIOGRAFÍA

- ALBARRACIN.Pedro. (09 de Abril de 2003). LA SELECCIÓN CORRECTA DE UN ACEITE INDUSTRIAL. Obtenido de https://www.widman.biz/boletines/2.php
- GLUAL. (julio de 2008). *Glual hidraulica*. Obtenido de https://www.glual.com/pdf/catalogos/catalogo_KZ_KP_K.pdf
- HIDROMECÁNICA. (s. f.). Catálogo Hidromecánica del Ecuador. Obtenido de https://www.hydromecanica.com/images/pdf/2.BOMBAS/PALETAS/BOMBAS-DE-PALETAS.pdf
- ParkerMangueras. (19 de Enero de 2021). *Parker Store Catálogo*. Obtenido de https://www.parker.com/static_content/parkerimages/euro_hpd/Catalogs/4400_E S.pdf
- ROLDAN VILORIA, J. (2001). Prontuario Hdráulica Industrial. THOMSON PARANINFO.
- ROSHFRANS. (Marzo de 2016). *Aceites para sistemas hidráulicos*. Obtenido de https://www.roshfrans.com/documentos/fichasTecnicasySeguridad/22_HDT_AC EITE_HIDRAULICO_ANTIDESGASTE.pdf
- Shigley, J. E. (2004). Diseño en ingeniería mecánica (Sexta ed.). Mc. Graw Hill.
- Widman, R. (2012). *La selección del fluido hidráulico*. Obtenido de https://www.widman.biz/boletines/109.php
- Bombas pistón- Bomba pistón hidráulica—HRS BP Series. (s. f.). HRS Heat Exchangers.

 Recuperado 7 de noviembre de 2020, de https://www.hrs-heatexchangers.com/es/bombas/bombas-de-piston-serie-hrs-bp/
- Cascante, C. E. L., & Haro, J. A. B. (s. f.). *Título: Diseño y construcción de un compactador de latas y envases de PET.*
- Distritec Hidráulica · Neumática. (s. f.). Recuperado 13 de noviembre de 2020, de https://www.distritec.com.ar/
- El Universo | Noticias de Ecuador y del mundo. (s. f.). Recuperado 14 de diciembre de 2020, de https://www.eluniverso.com/
- FPT series—Grupo hidráulico con motor eléctrico by FPT Fluid Power Technology | DirectIndustry. (s. f.). Recuperado 24 de diciembre de 2020, de https://www.directindustry.es/prod/fpt-fluid-power-technology/product-68854-582602.html
- Home—European Aluminium. (s. f.). Recuperado 21 de diciembre de 2020, de https://www.european-aluminium.eu/

- HSM | Destructoras de Documentos y Reciclaje—Destructoras HSM. (s. f.). Recuperado 17 de diciembre de 2020, de https://www.hsm.cl/
- PMMI | The Association for Packaging and Processing. (s. f.). Recuperado 16 de diciembre de 2020, de https://www.pmmi.org/
- Recytrans. Gestión de residuos: Tratamiento, maquinaria para reciclaje. (s. f.). Gestión de residuos Soluciones Globales para el Reciclaje. Recuperado 17 de diciembre de 2020, de https://www.recytrans.com/
- Sandoval, B., & Fernanda, M. (2015). *Análisis situacional actual de la exportación de materiales ferrosos y no ferrosos en el Ecuador.* http://repositorio.ucsg.edu.ec/handle/3317/5894

APÉNDICE A


Hojas técnicas

801 - Manguera Push-Lok

para una variedad de aplicaciones

Características principales

- Muy flexible
- Amplia gama de colores
- Disponible hasta tamaño -16

Aplicaciones primarias / Restricciones

Todos los mercados:

Para aplicaciones de bajas demandas

Papel y pasta: Para aplicaciones en agua / aire

No permitido el uso en freno neumático. No indicada para sistemas de pulsación

altamente dinámicos.

XXXX-XX-XX

Referencia

801-4-XXX-RL

801-8-XXX-RL

801-10-XXX-RL

801-12-XXX-RL

801-16-XXX-RL

801-6-XXX-RL

Construcción de manguera

Tubo: Goma sintética

6

12

16

20

1/2

5/8

3/4

-10

-12

-16

Capa textil de alta resistencia Refuerzo:

Cubierta: Goma sintética de alto rendimiento

en diferentes colores

6,3

12.7

15.9

19.1

25,4

12,7

19.8

23.0

26.2

32,5

Fluidos recomendados

Aceites hidráulicos y lubricantes de base mineral (hasta +70 °C), refrigerantes, anticongelantes, aire, aire seco, emulsiones de agua y aceite-agua. Consulte la sección de compatibilidad química en pág. Ab-16 para información detallada.

Rango de	temperatura	-40 °C hasta +100 °C
Excepción:	Aire	máx. +70 °C
	Agua	máx. +85 °C

Terminales serie

250

175

6.8

6.8

4.8

1000

1000

1.7

1.7

Presión máx.			sión esión de ura mín.	Vacío kilo	min. radio de	Peso	
MPa	psi	MPa	psi	Pascal*1 kPa	curvatura mm	kg/m	
1,7	250	6,8	1000	95	65	0,13	
1.7	250	6,8	1000	95	75	0,16	
1,7	250	6,8	1000	95	130	0,27	

51

150

180

0.28

0.36

0.55

PGP/PGM 610 Specification - Standard Displacements - Single Unit

Pump Displacement	Code	0070	0100	0140	0160	0180	0210	0230	0260	0280	0320
	cc/rev	7.0	10.0	14.0	16.0	18.0	21.0	23.0	26.0	28.0	32.0
	in³/rev	0.43	0.61	0.85	0.98	1.10	1.28	1.40	1.59	1.71	1.95
Continuous Pressure	bar	275	275	275	275	265	245	235	215	200	175
	psi	3989	3989	3989	3989	3843	3553	3408	3118	2901	2538
Intermittent Pressure	bar	300	300	300	300	290	270	260	240	220	175
	psi	4351	4351	4351	4351	4206	3916	3771	3480	3190	2538
Port Location "X"	mm	71.0	75.5	75.0	78.0	81.0	81.5	83.5	81.0	84.0	90.5
	inch	2.80	2.97	2.95	3.07	3.19	3.21	3.29	3.19	3.31	3.56
Overall Length "Y"	mm	99.0	103.5	109.5	112.5	115.5	120.0	122.0	123.5	126.5	135.0
	inch	3.90	4.07	4.31	4.43	4.55	4.72	4.80	4.86	4.98	5.31
Weight*	kg	5.9	6.2	6.5	6.8	6.8	7.1	7.2	7.3	7.5	8.0
	Ib	13.1	13.6	14.4	14.9	15.0	15.6	15.9	16.2	16.5	17.6

			Par	Corri	ente	Par			Tiempo	máx.						- 4	160 V			
Poter	ncia	_	nominal	con		de	Par	Inercia J	con rotor		Peso	Nivel de			% d	e la pote		ninal		Corriente
		Carcasa	Tn	trabad	o II/In	arranque	máximo	(kgm²)	(s)	(kg)	ruido	RPM	Re	endimier	nto	Fact	or de pot	encia	nominal
HP	kW		(Nm)	Letra	la/In	Ta/Tn	Tm/Tn		Caliente	Frío		dB (A)		50	75	100	50	75	100	In (A)
II polos																				
1	0,75	143/5T	2,02	L	8,2	2,8	3,4	0,0014	22	48	16,5	68,0	3480	75,0	79,0	81,5	0,63	0,74	0,80	1,44
1,5	1,1	143/5T	3,02	L	8,9	3,5	3,8	0,0020	21	46	18,5	68,0	3490	81,5	84,0	84,0	0,70	0,80	0,84	1,96
2	1,5	143/5T	4,04	L	8,9	3,5	3,8	0,0026	17	37	23,5	68,0	3475	82,5	85,5	85,5	0,71	0,80	0,86	2,56
3	2,2	182/4T	5,99	K	8,6	2,5	3,8	0,0080	41	90	40,0	69,0	3515	82,5	86,5	86,5	0,75	0,84	0,88	3,63
5	3,7	182/4T	10,0	J	7,6	2,3	3,5	0,0094	25	55	40,0	69,0	3500	86,5	88,5	88,5	0,76	0,85	0,89	5,90
7,5	5,5	213/5T	15,0	H	7,2	2,1	3,0	0,0197	27	59	63,0	72,0	3520	87,5	89,5	89,5	0,75	0,84	0,88	8,76
10	7,5	213/5T	20,0	Н	7,2	2,2	2,9	0,0268	24	53	74,0	72,0	3520	89,5	90,2	90,2	0,79	0,87	0,90	11,6
15	11	254/6T	29,9	G	6,7	2,2	2,7	0,0530	25	55	107	72,0	3530	89,5	91,0	91,0	0,77	0,85	0,88	17,2
20	15	254/6T	39,9	G	6,1	2,0	2,4	0,0647	21	46	122	72,0	3520	91,0	91,7	91,0	0,82	0,87	0,89	23,2
25	18,5	284/6TS	49,7	G	6,3	2,0	2,5	0,1135	17	37	164	72,0	3535	91,0	91,7	91,7	0,82	0,87	0,89	28,5
30	22	284/6TS	59,6	G	6,3	2,0	2,5	0,1419	15	33	178	72,0	3535	91,7	91,7	91,7	0,82	0,87	0,89	33,8
40	30	324/6TS	79,0	G	6,3	2,3	2,4	0,2063	22	48	248	78,0	3555	91,7	92,4	92,4	0,82	0,87	0,89	45,8
50	37	324/6TS	98,9	F	6,2	2,2	2,3	0,2422	23	51	265	78,0	3550	93,0	93,0	93,0	0,83	0,87	0,89	56,1
60	45	364/5TS	118	G	6,6	2,0	2,6	0,4485	14	31	374	79,0	3560	91,7	93,0	93,6	0,81	0,88	0,90	67,0
75	55	364/5TS	148	G	6,7	2,0	2,6	0,5023	10	22	384	79,0	3555	92,4	93,6	93,6	0,83	0,88	0,90	81,9
100	75	404/5TS 444/5TS	198	G	6,5	2,0	2,4	0,5561	14	31	474 725	79,0	3545	93,0	94,1	94,1	0,85	0,90	0,91	110
125	90		246	G	6,6	2,0	2,5	1,41	29	64		81,0	3570	93,6	94,5	95,0	0,82	0,87	0,89	134
150	110	444/5TS 445/7TS	295	G	6,5	1,8	2,4	1,65	22	48	775	81,0	3570	94,1	95,0	95,0	0,83	0,88	0,89	163 219
200	150 185		394	G	6,5	2,1	2,3	1,88	14	31	868 979	81,0	3570	95,0	95,4	95,4	0,86	0,89	0,90	
250 300	185 220	447/9TS 447/9TS	493 590	F G	6,5 6.8	2,0 2,1	2,2 2,4	2,12 2,45	18 14	40 31	9/9 1154	81,0 81,0	3565 3570	95,4 95,4	95,8 95,8	95,8 95,8	0,87 0,86	0,90	0,91	266 320
350	260	586/7TS	687	G	6.6	1,6	2,3	5.75	28	62	1642	84.0	3580	95,4	96,2	96,2	0,86	0.90	0,90	373
400	300	586/7TS	785	G	6.8	1,8	2,3	5,75	48	106	1700	84,0	3580	95,8	96,2	96,2	0,88	0,90	0,91	430
					-,-	**										,	. ,		- 7	
450	330	586/7TS	883	F	6,6	2,0	2,3	5,58	34	75	1777	84,0	3580	95,8	96,2	96,2	0,88	0,90	0,91	473
500	370	586/7TS	981	G	6,8	2,2	2,4	6,01	39	86	1853	84,0	3580	95,8	96,2	96,2	0,88	0,90	0,91	530
550	400	588/9TS	1078	G	7,4	2,3	2,7	6,54	33	73	2000	89,0	3585	96,0	96,5	96,5	0,84	0,89	0,90	578
600	440	588/9TS	1176	Н	7,4	2,3	2,7	6,54	33	73	2000	89,0	3585	96,0	96,5	96,5	0,84	0,89	0,90	650
650	480	588/9TS	1274	G	7,1	2,0	2,4	7,40	56	123	2102	89,0	3585	96,1	96,6	96,6	0,86	0,90	0,91	685
700	515,2	588/9TS*	1371	G	7,2	2,3	2,5	7,72	34	75	2179	89,0	3585	96,2	96,6	96,6	0,86	0,90	0,91	736

MOTOR:

- Voltaje 220 V AC; 60 Hz
- Potencia 2.2 Kw
- > Velocidad 3450 tr / min

TANQUE:

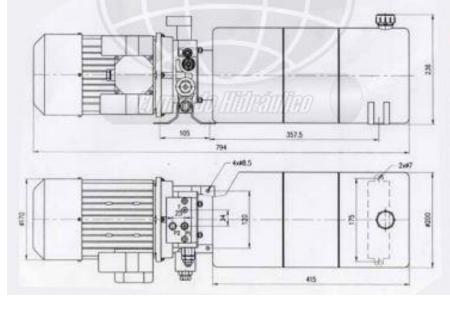
> Volumen 12L

BOMBA:

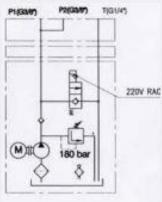
- > Volumen geométrico 2 cc / rev
- Presión de trabajo 180 bar
- > Flujo 6.6 I/min

MODELO ESTANDAR DISPONIBLE

MODELO#


POWER220CS/E

DESCRIPCIÓN


Power Pack Caproni,220 Vol, Simple Efecto, hasta 2600PSI

INSTALACIÓN / DIMENSIONES

POWER PACK

ESQUEMA HIDRÁULICO

APÉNDICE B

Tablas de materiales

	MÉTODO ASTM D	VALORES TÍPICOS
Apariencia a Temperatura Ambiente	Visual	Brillante
Color ASTM	1500	2.0
Viscosidad Cinemática @ 40 °C, mm²/s (cSt)	445	68.00
Viscosidad Cinemática @ 100 °C, mm²/s (cSt)	445	8.493
Índice de Viscosidad	2270	94
Densidad @ 15.6 °C, kg/L	1298	0.8739
Punto de Inflamación, °C	92	220
Punto de Escurrimiento, °C	97	-9
Número de Acidez (AN), mg KOH/g	974	0.30
Características Espumantes, ml/ml	892	
Secuencia I		0/0
Secuencia II		20/0
Secuencia III		0/0
Corrosión de Lámina de cobre, 3h @ 100 °C	130	1a
Características preventivas a la herrumbre	665 A&B	Aprobado

Características del aceite ISO 68.

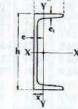

Fuente: (ROSHFRANS, 2016)

Tabla E-1 Propiedades físicas de algunos materiales de ingeniería
Datos de varias fuentes.* Estas propiedades son básicamente similares para todas las aleaciones del material específico

Material	Módulo de elasticidad E		Módulo de	rigidez G	Razón de Poisson v	Densidad de peso γ	Densidad de masa ρ	Gravedad específica
	Mpsi	GPa	Mpsi	GPa		lb/in ³	Mg/m ³	
Aleaciones de aluminio	10.4	71.7	3.9	26.8	0.34	0.10	2.8	2.8
Cobre al berilio	18.5	127.6	7.2	49.4	0.29	0.30	8.3	8.3
Latón, bronce	16.0	110.3	6.0	41.5	0.33	0.31	8.6	8.6
Cobre	17.5	120.7	6.5	44.7	0.35	0.32	8.9	8.9
Hierro, fundido, gris	15.0	103.4	5.9	40.4	0.28	0.26	7.2	7.2
Hierro, fundido, dúctil	24.5	168.9	9.4	65.0	0.30	0.25	6.9	6.9
Hierro, fundido, maleable	25.0	172.4	9.6	66.3	0.30	0.26	7.3	7.3
Aleaciones de magnesio	6.5	44.8	2.4	16.8	0.33	0.07	1.8	1.8
Aleaciones de níquel	30.0	206.8	11.5	79.6	0.30	0.30	8.3	8.3
Acero, carbono	30.0	206.8	11.7	80.8	0.28	0.28	7.8	7.8
Acero, aleaciones	30.0	206.8	11.7	80.8	0.28	0.28	7.8	7.8
Acero, inoxidable	27.5	189.6	10.7	74.1	0.28	0.28	7.8	7.8
Aleaciones de titanio	16.5	113.8	6.2	42.4	0.34	0.16	4.4	4.4
Aleaciones de zinc	12.0	82.7	4.5	31.1	0.33	0.24	6.6	6.6

Propiedades de algunos metales y aleaciones, International Nickel Co., Inc., N.Y.; Metals Handbook, American Society for Metals, Materials Park,

TABLA B-10. Perfiles C (o U) (canales), europeos (unidades ST)

Perfil		Dimension	ies en mm		x (cm)	Area transversal (cm²)		11/14	Eje X-X			Eje Y-Y	
	h	ь	e	e1			Masa (peso) (kg/m)	I _x (cm ⁴)	S _x (cm ³)	r _x (em)	I _y (cm ⁴)	Sy (cm³)	r _y (cm)
50-25	50	25	6	6	0.80	5.1	4.00	20.0	8.0	1.97	3.00	1.76	0.76
60-30	60	30	6	6	0.89	6.4	5.02	32.6	10.8	2.25	5.62	1.10	0.93
8	80	45	6	8	1.45	11.0	8.64	106	26.5	3.10	19.4	6.36	1.33
10	100	50	6	8.5	1.55	13.5	10.60	206	41.2	3.91	29.3	8.49	1.47
12	120	55	7	9	1.60	17.0	13.40	364	60.7	4.62	43.2	11.1	1.59
14	140	60	7	10	1.75	20.4	16.01	605	86.4	5.45	62.7	14.8	1.75
16	160	65	7.5	10.5	1.84	24.0	18.84	925	116	6.21	85.3	18.3	1.89
18	180	70	8	11	1.92	28.0	22.00	1350	150	6.95	114	22.4	2.02
20	200	75	8.5	11.5	2.01	32,2	25.30	1910	191	7.70	148	27.0	2.14
22	220	80	9	12.5	2.14	37.4	29.40	2690	245	8.48	197	33.6	2,30
25-8	250	80	10	12.5	2.14	42.5	34.00	3770	302	9.40	238	40.6	2.36
25-10	250	100	10	16	2.88	53.7	42.20	5180	414	9.80	440	61.7	2.86
30	300	90	13	14	2.14	60.7	47.65	7310	487	10.95	349	51.0	2.39

APÉNDICE C

Tablas de vigas



TABLA 7-2. Vigas doblemente empotradas con diversos tipos de carga

CASO No.	TIPO DE CARGA	MOMENTOS EN LOS EXTREMOS	VALOR DE <i>Ely</i> (y es positiva hacia abajo)
1	$\begin{bmatrix} a & \downarrow P \\ A & L & B \end{bmatrix}$	$M_A = -\frac{Pab^2}{L^2}$ $M_B = -\frac{Pa^2b}{L^2}$	Ely en el centro = $\frac{Pb^2}{48}$ (3L – 4b) Nota: sólo para $a > b$
2	$ \begin{array}{c c} L & P \\ \hline A & B \\ L & B \end{array} $	$M_A = M_B = -\frac{PL}{8}$	Ely mâximo = $\frac{PL^3}{192}$
3	ω N/m A L	$M_A = M_B = -\frac{wL^2}{12} = -\frac{WL}{12}$	$EIy \text{ maximo} = \frac{wL^4}{384} = \frac{WL^3}{384}$
4	$ \begin{array}{c c} & w \text{ N/m} \\ \hline A & L \\ \hline 2 & - L \\ \hline 2 & - L \end{array} $	$M_A = -\frac{5}{192} wL^2 = -\frac{5}{96} WL$ $M_B = -\frac{11}{192} wL^2 = -\frac{11}{96} WL$	EIy en el centro = $\frac{wL^4}{768} = \frac{WL^3}{384}$
5	W N/m	$M_A = -\frac{wL^2}{30} = -\frac{WL}{15}$ $M_B = -\frac{wL^2}{20} = -\frac{WL}{10}$	Ely en el centro = $\frac{wL^4}{768} = \frac{WL^3}{384}$
6	w N/m A L 2 - L B	$M_A = M_B = -\frac{5wL^2}{96} = -\frac{5WL}{48}$	Ely máximo = $\frac{7wL^4}{3840} = \frac{7WL^3}{1920}$
7		$M_A = \frac{Mb}{L} \left(\frac{3a}{L} - 1 \right)$ $M_B = -\frac{Ma}{L} \left(\frac{3b}{L} - 1 \right)$	BOWTS - TO MEN
8	$\begin{bmatrix} L & & & \\ & A & & \\ & & \Delta & \\ & & B & \\ \end{bmatrix}$	$M_A = -\frac{6EI\Delta}{L^2}$ $M_B = \frac{6EI\Delta}{L^2}$	

TABLA 6-2. Resumen de vigas cargadas

CASO No.	TIPO DE CARGA	MOMENTO MÁXIMO	PENDIENTE EN EL EXTREMO	ECUACIÓN DE LA ELÁSTICA (y es positiva hacia abajo)	DEFLEXIÓN MÁXIMA
1	$ \begin{array}{c c} Y \\ \downarrow \\ \downarrow$	M = -PL	$\theta = \frac{PL^2}{2EI}$	$EIy = \frac{Px^2}{6}(3L - x)$	$\delta = \frac{PL^3}{3EI}$
2	$ \begin{array}{c c} Y \\ \hline & a \\ \hline & b $	M = -Pa	$\theta = \frac{Pa^2}{2EI}$	$EIy = \frac{Px^2}{6}(3a - x) \text{para } 0 < x < a$ $EIy = \frac{Pa^2}{6}(3x - a) \text{para } a < x < L$	$\delta = \frac{Pa^2}{6EI}(3L - a)$
3	Υ X X 1 δ 1 δ 1 δ 1 δ 1 δ 1 δ δ	$M = -\frac{wL^2}{2}$ $= -\frac{WL}{2}$	$\theta = \frac{wL^3}{6EI}$ $= \frac{WL^2}{6EI}$	$EIy = \frac{wx^2}{24} (6L^2 - 4Lx + x^2)$	$\delta = \frac{wL^4}{8EI} = \frac{WL^3}{8EI}$
4	Y w N/m X δ	$M = -\frac{wL^2}{6}$ $= -\frac{WL}{3}$	$\theta = \frac{wL^3}{24EI}$ $= \frac{WL^2}{12EI}$	$EIy = \frac{wx^2}{120L}(10L^3 - 10L^2x + 5Lx^2 - x^3)$	$\delta = \frac{wL^4}{30EI} = \frac{WL^3}{15EI}$
5	Y	M = -M	$\theta = \frac{ML}{EI}$	$EIy = \frac{Mx^2}{2}$	$\delta = \frac{ML^2}{2EI}$
6	$ \begin{array}{c c} Y & \frac{L}{2} & \frac{P}{2} & X \\ R_1 & \frac{1}{\theta_L} & \frac{1}{\theta_R} & R_2 \end{array} $	$M = \frac{PL}{4}$	$\theta_{\rm L} = \theta_{\rm R} = \frac{PL^2}{16EI}$	Ely = $\frac{Px}{12} \left(\frac{3}{4} L^2 - x^2 \right)$ para $0 < x < \frac{L}{2}$	$\delta = \frac{PL^3}{48EI}$

	DI DI			w.	$Ph(1^2-h^2)^{3/2}$ $\int_{1^2-h^2}$
7	$R_1 = \begin{bmatrix} \theta_L & a & b & b \\ & & & b & \\ & & & & \\ \hline & \sqrt{L^2 - b^2} & & \theta_R \\ & & & & \\ \hline & & & & \\ R_2 & & & & \\ \hline \end{pmatrix}$	$M = \frac{Pab}{L}$ en $x = a$	$\theta_L = \frac{Pb(L^2 - b^2)}{6EIL}$ $\theta_R = \frac{Pa(L^2 - a^2)}{6EIL}$	$EIy = \frac{Pbx}{6L} (L^2 - x^2 - b^2) \text{ para } 0 < x < a$ $EIy = \frac{Pb}{6L} \left[\frac{L}{b} (x - a)^3 + (L^2 - b^2)x - x^3 \right]$ $\text{para } a < x < L$	$\delta = \frac{Pb(L^2 - b^2)^{3/2}}{9\sqrt{3} EIL} \text{ en } x = \sqrt{\frac{L^2 - b^2}{3}}$ En el centro (no la máx.) $\delta = \frac{Pb}{48EI} (3L^2 - 4b^2)$
8	$\begin{array}{c c} Y & & & & & & X \\ \hline & w & N/m & & & & X \\ \hline & R_1 & & & & & & & & & & & \\ \hline & R_2 & & & & & & & & & & & \\ \hline & R_2 & & & & & & & & & & & \\ \end{array}$	$M = \frac{wL^2}{8}$ $= \frac{WL}{8}$	$\theta_L = \theta_R = \frac{wL^3}{24EI}$	$EIy = \frac{wx}{24} (L^3 - 2Lx^2 + x^3)$	cuando $a > b$ $\delta = \frac{5wL^4}{384EI} = \frac{5WL^3}{384EI}$
9	R_1 θ_L θ_R θ_R θ_R θ_R θ_R θ_R	$M = \frac{wL^2}{9\sqrt{3}}$ $= \frac{2WL}{9\sqrt{3}}$	$\theta_L = \frac{7wL^3}{360EI}$ $\theta_R = \frac{8wL^3}{360EI}$	$Ely = \frac{wx}{360L} (7L^4 - 10L^2x^2 + 3x^4)$	$\delta = \frac{2.5 wL^4}{384 EI} = \frac{5 WL^3}{384 EI}$ en x = 0.519L
10	r $\frac{L}{2}$ w N/m X R_1 $\frac{L}{\theta_L}$ L R_2	$M = \frac{wL^2}{12}$ $= \frac{WL}{6}$	$\theta_L = \theta_R = \frac{5wL^3}{192EI}$	$EIy = \frac{wx}{960L} (25L^4 - 40L^2x^2 + 16x^4)$ para $0 < x < \frac{L}{2}$	$\delta = \frac{wL^4}{120EI} = \frac{WL^3}{60EI}$
11	$R_1 = 0.577 L - M_X$ $R_2 = 0.577 L - M_X$ $R_2 = 0.577 L - M_X$	M = M	$\theta_L = \frac{ML}{6EI}$ $\theta_R = \frac{ML}{3EI}$	$EIy = \frac{MLx}{6} \left(1 - \frac{x^2}{L^2} \right)$	$\delta = \frac{ML^2}{9\sqrt{3} EI} \text{ en } x = \frac{L}{\sqrt{3}}$ En el centro (no la máx.) $\delta = \frac{ML^2}{16EI}$
12	$M = \begin{pmatrix} Y & & & & & & & & & & & & & & & & & &$	M = M	$\theta_L = \frac{ML}{3EI}$ $\theta_R = \frac{ML}{6EI}$	$EIy = \frac{Mx}{6L}(L-x)(2L-x)$	$\delta = \frac{ML^2}{9\sqrt{3} EI} \text{ en } x = \left(L - \frac{L}{\sqrt{3}}\right)$ En el centro (no la máx.) $\delta = \frac{ML^2}{16EI}$

APÉNDICE D

Cotizaciones

DIPAC MANTA S.A. R.U.C. 1390060757001 CONTRIBUTENTE ESPECIAL

Num. Pedido

80805484

- -La mercancia viaja per cuenta y riesgo del comprados
- Salida la mercancia de nuestros almaceres no se
- oceptan rectornos; Los pagos deben reolizanse con cheque cruzado a nombre de DIFAC MANTA S.A.
- Somos contribupentes especiales favor no retener el NA.
- · Emitir los comprobartes de retendon a nombre de EMPAC MANTAS A.

22/01/2021

NOMBRE/RAZON SOCIAL: 009999999 CONSUMIDOR FINAL

Tarjeta Dipac:

COD. DIRECCION: DIPO00009 CONSUMIDOR FINAL

226-1541

VIA DAULE KM 8 Y 1/2 V IA DAULE

Forma/Pago: 01 CONTADO

ESTA COTIZACION ES VALIDA SOLO POR 1 DIA

Ord.	Articulo	Descripción	Und.	Cantidad	Precio	Total USD.
1	PLC480050	PLANCHA 4x8 5mm	ш	1,00	127,12	127,12
2	UPN08006	PERFILUPN 80x 45x 6x6mt.	u	2,00	67,91	135,82

ESTE DOCUMENTO NO CONSTITUYE VENTA Y LOS PRECIOS PUEDEN CAMBIAR SIN PREVIOAVISO

Subtotal 262,94 VENDEDOR: IBARRA CARRERA MARIELA ELIZABETH IVA 31,55 Total USD. 294,49 Colular:

Km 11,5 via Daule Parque I. El Sauce

Conjunto de Bodegas C.B.A.

Bodegas 12-13-14 junto constructora Baquerizo

Telf. 2103145-0987227172-0987227170

Ruc: 0992424281001

 Cliente:
 FREIN NARVAEZ
 20-ene.-21

 Direction:
 Vendedor:
 JM GOICOECHEA

RUC

CANTIDAD	UND	DESCRIPCION	Precio unidad	TOTAL
1	UND	TRANSPORTADOR CON TOLVA SEGÚN PLANO	\$9.000,00	\$8.965,00
		COMPUESTO DE MOTOREDUCTOR DE 1 CABALLO VARIADOR DE FRECUENCIA CUERPO "PLANCHAS DE 3 MM CON BASE ESTRUCTURAL DE 1 1/2 CUADRO DE VARILLAS ENROSCABKES PARA VARIAR LA ALTURA DE SALIDA DE PRODUCTO CAJA DE CONTROL ON OFF RUEDAS UNIDIRECCIONALES BANDA DE CON PERFILES DE HIERRO O DE PVC		
			SUMAN	\$8.965,00

SUB-TOTAL

IVA 12%

TOTAL

\$8.965,00

\$1.075,80

\$10.040,80

Validez Cotizacion: 30 DIAS

Atentamente

Jose Manuel Goicoechea Gerente latinoamerica Biban Peosa

Telf: 2103145-0987227173 Email: goiko@siban.com Guayaquil - Ecuador **HYDROMECANICA**

Distribucion, Ventas y Reparacion Matriz : Clemente Ballén 1707 y Av. del Ejército Telefax : 2-323939/2-531923/2-522228 Cel : 0999586009

e-mail: ventas@hydromecanica.com Sucursal Guayaquil : Km. 3 Av. Juan T. Marengo a lado de las antenas de TV Cable Telf.: 2-381994 Cel :0997689047

e-mail:hydecua_gye@hydromecanica.com Sucursal Quito : Av. 10 de Agosto N35-43 E/ Mañosca y Av.Republica Telefonos:022-246204 - 0983729761

e-mail: hydecua_uio@hydromecanica.com R.U.C.: 0992573902001

Proforma

No. 005107

Partes Hidráulicas para el sector Caminero, Agrícola Pesquero, de la Construccion Producción entre otros.

三种 医 中 年 中 年 年 年

Fecha:

2021.01.23

Telefono: 9999999

Vendedor: JESUS PRIETO JESUS

Direccion: NN

Codigo:

Cliente:

RUC:

999999999999

CONSUMIDOR FINAL

Ciudad: **GUAYAQUIL**

C015383

tem	Codigo	Descripcion	Cantidad	Dscto.	Precio Unitario	Total
1 7	TH200*220	CAMISA HIDRAULICA INT 200* EXT 220	60.00	5.00	6.19	371.40
2 7	TH21/2*27/8	CAMISA PARA CILINDRO HIDRAULICO 21/2*27/8,ESPESOR:3/16"	60.00	5.00	1.02	61.20
3 7	ΓH21/2*27/8	CAMISA PARA CILINDRO HIDRAULICO 21/2*27/8,ESPESOR:3/16"	40.00	5.00	1.02	40.80
4 1	IAG2.65C	BOMBA HIDRAULICA ALUMINIO, EJE LISO DE 1/2", 1.26GPM, 2 HUEC	1.00	5.00	115.53	115.53
5 F	POWER220H	POWER PACK 220 VOL,DOBLE EFECTO ,2000 PSI,BOMBA DE 1 GPM, T	1.00	5.00	803.28	803.28

Son: Un Mil Cuatrocientos Ochenta y Un 31/100 Dólares	Subtotal	1,392.21
Americanos	Descuento	69.61
Sirvase en girar Cheques a nombre de HYDROMECANICA DEL ECUADOR S.A.	IVA	158.71
	Total	1,481.31
	Total	

Tiempo de Entrega:		
Validez de la oferta:	30 Dias o hasta agotar stock	
Forma de pago	*	
Comentarios		

A su disposicion Sellos Hidráulicos, Bombas, Motores, Electroválvulas, Mandos, Cilindros Hidraulicos y Neumáticos, Centrales Hidráulicas, Kit de reparación, Ejes, Camisas y todo en Hidráulica Ventas al por Mayor y Menor

www.hydromecanica.com

Atentamente;

METAL - MECANICA TOMALA QUEVEDO HOLGUER ESTEBAN R.U.C. 0906335633001

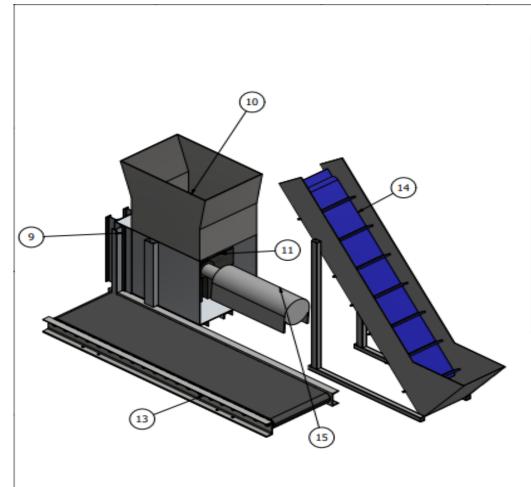
FACTI	JRA	COM	ERCIAL
SERIE 001-001-	-	019	

CLIENTE

AUTORIZACIÓN S.R.L. 1123634924

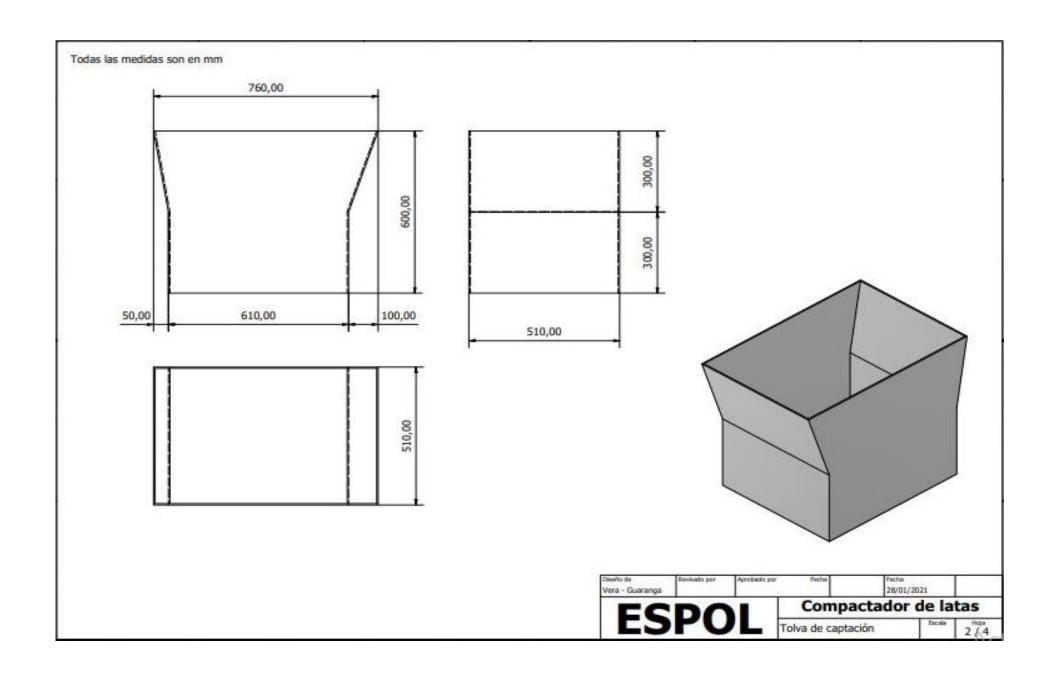
-	1	2	/	
28/	0	1/	20	Ce
7	~	1		1

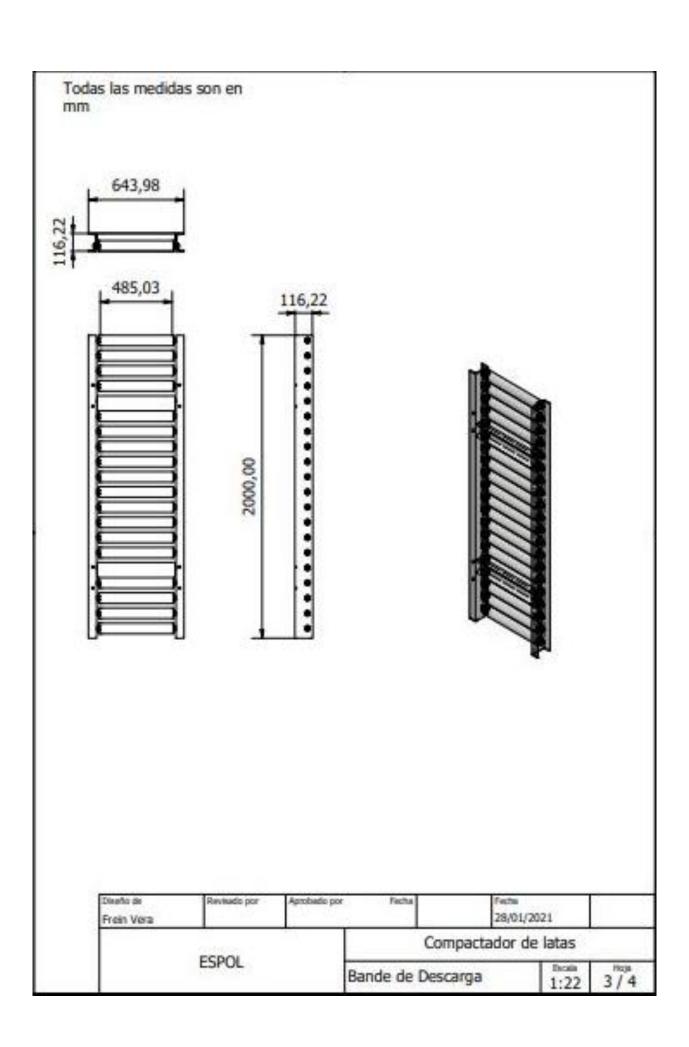
Dirección: Cooperativa Batallón del Suburbio Plan Piloto Mz. 19
- Solar 7 (34 el la L y la M) - Teléfono: Colombia Cel.: 0989951689 E-mail: holtomala@hotmail.com * Guayaquil Ecuador

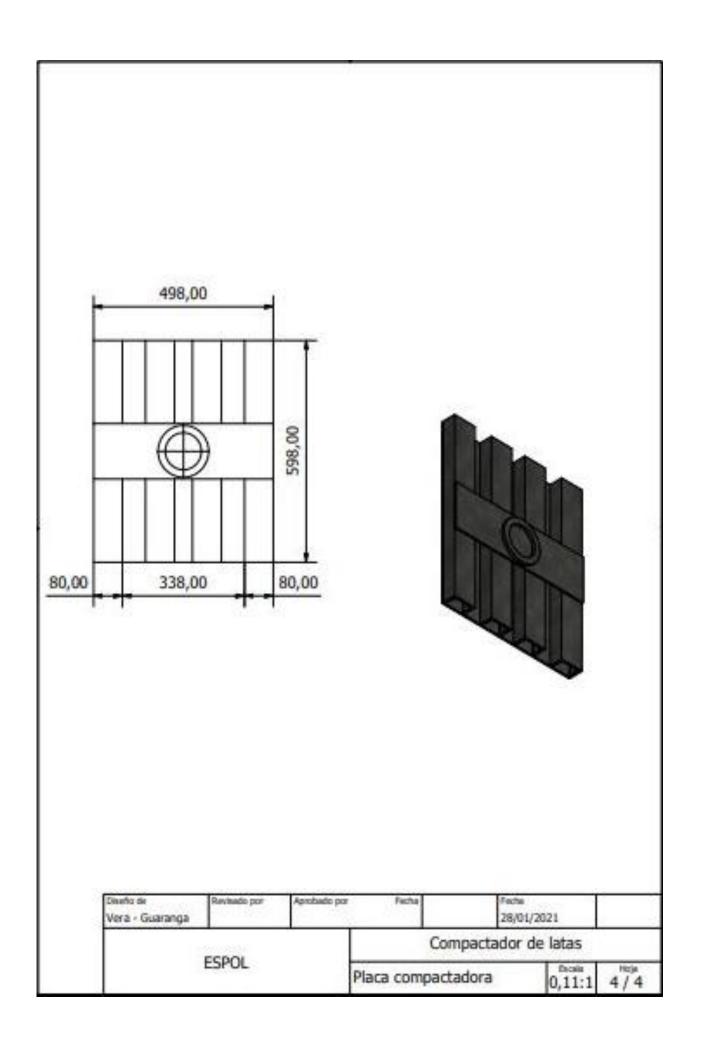

R.U.C. DIRECCION:

CANTIDAD		PRODUCTOS		VALOR UNITARIO	VALOR TOTAL
7	BANDA TRANSP	DRITADORA EL	LECTRICA		
	2.00 m LARGO	UTO			
-	COMPONIENTES 1				
46	CHASIS METALIC				
	MOTRIZ - RODIL				
	GADORES DE B				
	DUCTOR - VARI				
	CONTACTORES -	0			
_	- CABLES.				
DBSERVACIONE	ES:			SUB-TOTAL	4.500=
				I.V.A 0%	_
		Dinero Electrônico	Efectivo	LV.A 12%	540
- M	RMA DE PAGO	Tarjeta de Crédito/Débito	Cheques	TOTAL A PAGARS	5,040
() 10 HINOI	COPO Y SALSO PENETS	The state of the s	Otros	TOTAL A PAGARS	2040

ESPINOZA ZORRILLA HECTOR EDUARDO - ARTES GRAFICAS SAN MARCOS AUT 6517 RUC 0916264898001 TELF: 2175000 1B. 50x2 1951 - 2000 ELAB. 15/10/2018 VALIDO HASTA 15/10/2019 P.A.


ORIGINAL: ADQUIRENTE COPIA CELESTE: EMISOR IMP AZUL


PLANOS



		LISTA DE PIEZAS	
ELEMENTO	CTDAD	Nº DE PIEZA	DESCRIPCIÓN
1	1	base	
2	1	posterior	
3	1	exp	
4	2	lateral	
5	1	comperta	
6	1	superior	
9	1	DIN 1025 - I 80-610	Viga en I laminada en
			caliente
10	1	tolva	
11	1	cara de compacta	
12	1	embolo1	
13	1	banda de descarga	Adicional
14	1	bandadecarga	
15	1	basepiston1	
7	1	DIN1026-1 - U 80 - 600	Canales de acero
		1	laminados en caliente -
		1	Parte 1: canales de
			acero de ala cónica
8	1	DIN1026-1 - U 80 - 760	Canales de acero
		I	laminados en caliente -
		1	Parte 1: canales de
			acero de ala cónica

Diseño de Vera - Guaranga	Revisado por	Aprobado por	Fecha		Fecha 28/01/20	21	
ECDOL		Compactador de latas					
E5	PU		Tolva de o	aptación		Escala	1 // 4

