## ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

# Facultad de Ingeniería en Mecánica y Ciencias de la Producción

Estudios y Diseños de las áreas para el desarrollo urbanístico del Cerro Zaruma-Urcu de Zaruma

## PROYECTO INTEGRADOR

Previo la obtención del Título de:

**Ingeniero Civil** 

Presentado por:
Sebastián Alonso Suárez Zamora
Rafael Rolando Bárcenes Campoverde

GUAYAQUIL - ECUADOR Año: 2020

## **DEDICATORIA**

Dedicamos este trabajo a las personas que nos apotaron desde el inicio de nuestra carrera estudiantil, a nuestras familias, amigos y profesores, ya que sin sus consejos y enseñanzas no estaríamos hoy aquí.

## **AGRADECIMIENTOS**

Queremos dar un especial agradecimiento a la Escuela Superior Politécnica del Litoral por formarnos como profesionales en esta etapa de nuestra vida y principalmente a Dios, por permitirnos llegar hasta este punto.

## **DECLARACIÓN EXPRESA**

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; Rafael Rolando Barcenes Campoverde, Sebastián Alonso Suarez Zamora y damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Rafael Rolando Barcenes Campoverde Sebastián Alonso Suarez Zamora

## **EVALUADORES**

**Dr. Miguel Chávez Moncayo**PROFESOR DE LA MATERIA / TUTOR

Ing. Eduardo Santos Baquerizo
PROFESOR TUTOR

### RESUMEN

El diseño de la cimentación representa un punto importante en cualquier obra civil, en especial al construir sobre un terreno irregular como el mismo que existe en la encima del cerro Zaruma-Urc y la proximidad de la cimentación a los taludes del cerro. En el presente documente se procede a realizar un estudio geotécnico del suelo y el diseño de una cimentación adecuada a las propiedades del mismo. Adicionalmente se propone el diseño de una vía de acceso hacia la cima del cerro de dos carriles.

Para el diseño se utilizaron datos procedentes de ensayos de laboratorio efectuados sobre muestras del suelo, siguiendo la normativa INEN. También se aplicaron las normativas NEC 2015, ACI 318-19, Norma de diseño geométrico de carretera – 2003 y NEVI, como guías de cálculo y para verificar requerimientos mínimos o máximos de los diseños propuestos. En el aspecto estructural del diseño de la estructura que soporta el monumento, se realizaron modelaciones en programas computacionales tales como SAP2000 y SAFE para obtener las reacciones al aplicar las cargas de servicio donde se consideró también el análisis sísmico de la estructura.

Como resultado se realizaron planos estructurales del diseño de la estructura que soporta las demandas del monumento y planos viales de la vía de acceso para el cerro Zaruma-Urcu, cumpliendo con las normativas vigentes. En conclusión se presentan diseños, planos, presupuesto y cronograma valorado para la ejecución de los diseños propuestos, donde también se incluye una solución adicional que son los anclajes continuos inyectados para mejorar los propiedades del suelo de la cimentación.

**Palabras Clave:** Zaruma-Urcu, Diseño de Cimentación, Diseño vial, Estudio Geotécnico, Anclajes continuos inyectados.

### **ABSTRACT**

The design of foundations represents an important point in any civil work, especially when building on an irregular terrain such as the same that exists on the top of the Zaruma-Urc and the proximity of the foundation to the slopes of the hill. In this document we proceed to carry out a geotechnical study of the soil and the design of a foundation suitable for its properties. Additionally, a design of an access road to the top of the hill with two lanes is proposed.

For the design, data from laboratory tests carried out on soil samples were used, following the INEN regulations. The NEC 2015, ACI 318-19, Road Geometric Design Standard - 2003 and NEVI were also applied as calculation guides and to verify minimum or maximum requirements of the proposed designs. In the structural aspect of the design of the structure that supports the monument, software modeling was carried out in programs such as SAP2000 and SAFE to obtain the reactions when applying the service loads, where the seismic analysis of the structure was also considered.

As a result, structural plans were made for the design of the structure that supports the demands of the monument and road plans for the access road to the Zaruma-Urcu, complying with current regulations. In conclusion, designs, plans, budget and valued schedule for the execution of the proposed designs are presented, where an additional solution is also included: continuous injected anchors to improve the properties of the foundation soil.

**Keywords:** Zaruma-Urcu, Foundation Design, Road Design, Geotechnical Study, Injected Continuous Anchors.

## Tabla de contenido EVALUADORES ......5 ABSTRACT......7 ABREVIATURAS.......14 SIMBOLOGÍA......15 ÍNDICE DE FIGURAS.......16 ÍNDICE DE TABLAS ...... 19 1.1 1.2 1.3 Información básica......24 1.4 Objetivo General......24 1.4.1 1.4.2 1.5 2. DESARROLLO DEL PROYECTO.......26 2.1 2.2 Trabajo de campo, laboratorio y gabinete.......28 2.2.1 2.2.2 Geología y Geotecnia......28 2.2.3 Ensayos de laboratorio......31

2.2.4

|    | 2.3   | Aná   | álisis ( | de alternativas                                 | 40 |
|----|-------|-------|----------|-------------------------------------------------|----|
|    | 2.3.  | .1    | Restr    | icciones                                        | 40 |
|    | 2.3.  | .2    | Alterr   | nativas                                         | 40 |
|    | 2     | .3.2. | 1 A      | lternativas elegidas                            | 41 |
| C/ | APÍTU | LO 3  | 3        |                                                 | 43 |
| 3. | Disc  | eños  | S        |                                                 | 43 |
| ,  | 3.1   | Dis   | eño d    | le la cimentación                               | 43 |
|    | 3.1.  | .1    | Defin    | ición de cargas                                 | 43 |
|    | 3.1.  | .2    | Pre-d    | limensionamiento                                | 44 |
|    | 3     | .1.2. | 1 A      | lternativa 1                                    | 44 |
|    |       | 3.1   | .2.1.1   | Losa                                            | 44 |
|    |       | 3.1   | .2.1.2   | Vigas                                           | 45 |
|    |       | 3.1   | .2.1.3   | Columnas                                        | 46 |
|    | 3     | .1.2. | 2 A      | Iternativa 2                                    | 47 |
|    |       | 3.1   | .2.2.1   | Losa                                            | 47 |
|    |       | 3.1   | .2.2.2   | Vigas                                           | 48 |
|    |       | 3.1   | .2.2.3   | Columnas                                        | 49 |
|    | 3.1.  | .3    | Mode     | elación estructural                             | 50 |
|    | 3     | .1.3. | 1 P      | arámetros de modelación para ambas alternativas | 50 |
|    | 3     | .1.3. | 2 A      | nálisis sísmico de la estructura                | 52 |
|    | 3     | .1.3. | 3 N      | Nodelación Alternativa 1                        | 54 |
|    | 3     | .1.3. | 4 N      | Nodelación Alternativa 2                        | 55 |
|    | 3     | .1.3. | 5 R      | Resultados de la modelación estructural         | 57 |
|    | 3.1.  | .4    | Mode     | elación de la cimentación                       | 58 |
|    | 3     | 1 4   | 1 P      | Parámetros de modelación                        | 58 |

|     | 3.1.4 | 1.2  | Resultado de la modelación de la cimentación                | 59  |
|-----|-------|------|-------------------------------------------------------------|-----|
| 3   | 3.1.5 | Cap  | pacidad de carga del suelo                                  | 63  |
|     | 3.1.5 | 5.1  | Teoría de capacidad de carga – Terzaghi (1943)              | 63  |
|     | 3.1.5 | 5.2  | Ecuación general de la capacidad de carga – Meyerhof (1963) | 63  |
|     | 3.1.5 | 5.3  | Resultado de la capacidad de carga del suelo                | 64  |
| 3   | 3.1.6 | Cál  | culo de refuerzo de acero                                   | 64  |
|     | 3.1.6 | 5.1  | Losa superior                                               | 65  |
|     | 3.1.6 | 5.2  | Vigas                                                       | 71  |
|     | 3.1.6 | 5.3  | Columnas                                                    | 77  |
|     | 3.1.6 | 6.4  | Losa de cimentación                                         | 82  |
| 3   | 3.1.7 | Sol  | ución estabilizadora                                        | 87  |
| 3.2 | 2 Di  | seño | de vía                                                      | 88  |
| 3   | 3.2.1 | Trá  | fico                                                        | 88  |
| 3   | 3.2.2 | Vel  | ocidad                                                      | 94  |
| 3   | 3.2.3 | Dis  | eño horizontal                                              | 95  |
| 3   | 3.2.4 | Dis  | eño Vertical                                                | 99  |
| 3   | 3.2.5 | Des  | sarrollo de Peralte                                         | 106 |
| 3   | 3.2.6 | Dre  | naje                                                        | 109 |
|     | 3.2.6 | 5.1  | Estudio hidrológico                                         | 109 |
|     | 3.2.6 | 5.2  | Cunetas                                                     | 114 |
|     | 3.2.6 | 5.3  | Tuberías de alcantarillado                                  | 116 |
| 3.3 | B Di  | seño | de Pavimento Flexible                                       | 118 |
| 3   | 3.3.1 | Sul  | o rasante                                                   | 118 |
| 3   | 3.3.2 | Sul  | obase                                                       | 118 |
| (   | 3.3.3 | Bas  | Se                                                          | 120 |

|    | 3.3.4   | Descripción de las muestra del terreno             | 121 |
|----|---------|----------------------------------------------------|-----|
|    | 3.3.5   | Método de diseño y consideraciones                 | 124 |
| C  | APITULO | 4                                                  | 131 |
| 4. | IMPAC   | CTO AMBIENTAL                                      | 131 |
|    | 4.1 OI  | ojetivos                                           | 131 |
|    | 4.2 De  | escripción del Proyecto                            | 131 |
|    | 4.3 Ár  | eas de Influencia Directa e Indirectas             | 131 |
|    | 4.3.1   | Definición de las Áreas de Influencia del Proyecto | 131 |
|    | 4.3.2   | Área de intervención                               | 132 |
|    | 4.3.3   | Área de influencia directa                         | 133 |
|    | 4.3.4   | Área de Influencia Indirecta                       | 133 |
|    | 4.4 Lí  | nea Base Ambiental                                 | 134 |
|    | 4.4.1   | Descripción del Medio Físico                       | 134 |
|    | 4.4.1   | I.1 Clima                                          | 134 |
|    | 4.4.1   | I.2 Tipos de Suelo y Geología                      | 135 |
|    | 4.4.1   | I.3 Hidrología superficial                         | 137 |
|    | 4.4.2   | Descripción del Medio Biótico                      | 138 |
|    | 4.4.2   | 2.1 Flora                                          | 138 |
|    | 4.4.2   | 2.2 Fauna                                          | 141 |
|    | 4.4.3   | Descripción del Medio Socio Económico-Cultural     | 143 |
|    | 4.4.3   | 3.1 Impacto al nivel de empleo                     | 143 |
|    | 4.4.3   | 3.2 Religiosidad                                   | 145 |
|    | 4.4.3   | 3.3 Turismo                                        | 146 |
|    | 4.5 Ac  | ctividades del proyecto                            | 146 |
|    | 451     | Actividades durante la Fase de Construcción        | 146 |

|    | 4.5.           | 2    | Actividades durante la Fase de Operación                                                          | 148 |
|----|----------------|------|---------------------------------------------------------------------------------------------------|-----|
|    | 4.6            | lde  | entificación de Impactos Ambientales                                                              | 148 |
|    | 4.6.           | 1    | Impacto Producido por la Limpieza y Desbroce                                                      | 149 |
|    | 4.6.           | 2    | Impacto Producido por la Instalación del campamento y sitio de acopio.                            | 149 |
|    | 4.6.           | 3    | Impacto Producido por el Movimiento de tierra                                                     | 150 |
|    | 4.6.           | 4    | Impacto Producido para la Explotación de Canteras                                                 | 150 |
|    | 4.6.           | 5    | Impacto Producido por la Preparación para la Cimentación                                          | 151 |
|    | 4.6.           | 6    | Impacto Producido por la Construcción de la Infraestructura                                       | 151 |
|    | 4.6.           | 7    | Impacto Producido por las Actividades de Operación                                                | 152 |
|    | 4.7            | Va   | loración de Impactos Ambientales                                                                  | 152 |
|    | 4.7.           | 1    | Matrices de Valoraciones de Impacto ambiental                                                     | 157 |
|    | 4.8            | Me   | edidas de Prevención/Mitigación                                                                   | 158 |
|    | 4.9            | Со   | nclusiones                                                                                        | 159 |
| С  | APÍTU          | LO   | 5                                                                                                 | 161 |
| 5. | . PRE          | ESL  | JPUESTO                                                                                           | 161 |
|    | 5.1            | De   | scripción de rubros                                                                               | 161 |
|    | 5.2            | An   | álisis de costos unitarios                                                                        | 162 |
|    | 5.3            | De   | scripción de cantidades de obra                                                                   | 163 |
|    | 5.4<br>y mitig |      | loración integral del costo del proyecto incluyendo las medidas de prevendo del impacto ambiental |     |
|    | 5.5            | Cro  | onograma valorado                                                                                 | 168 |
| С  | APÍTU          | LO   | 6                                                                                                 | 169 |
| 6. | . Con          | clu  | siones Y Recomendaciones                                                                          | 169 |
|    | Concl          | usic | ones                                                                                              | 169 |
|    | Recon          | nen  | daciones                                                                                          | 170 |

| BIB | SLIOGRAFÍA                                          | . 172 |
|-----|-----------------------------------------------------|-------|
| PLA | ANOS Y ANEXOS                                       | . 174 |
| A.  | Plan de trabajo                                     | . 174 |
| B.  | Parametros geométricos de las curvas horizontales   | . 175 |
| C.  | resultados de peraltes                              | . 176 |
| D.  | MATRICES DE VALORACION DE IMPACTO AMBIENTAL         | . 182 |
| E.  | CRONOGRAMA VALORIZADO                               | . 190 |
| F.  | Resultados de ensayos proctor y CBR                 | . 191 |
| G.  | APUS                                                | . 195 |
| Н.  | Especificaciones tÉCnicas (Estructura de monumento) | . 215 |
| I.  | ESPECIFICACIONES TENCIAS (CARRETERA)                | . 221 |

## **ABREVIATURAS**

INEN Instituto Ecuatoriano de Normalización

NEC Norma Ecuatoriana de la Construcción

ACI American Concrete Institute

NEVI Norma Ecuatoriana Vial

CBR California Bearing Ratio

INAMHI Instituto Nacional de Meteorología en Hidrología

INEC Instituto Nacional de Estadísticas y Censos

VIA Valoraciones de Impacto Ambiental

APU Análisis de Precio Unitario

**ESTRUC** Estructura

OCUP Ocupacional

ASCE American Society of Civil Engineers

# **SIMBOLOGÍA**

W<sub>L</sub> Límite Líquido

W<sub>P</sub> Límite Plástico

IP Índice de plasticidad

m Metro

cm Centímetro Km Kilometro

hr Hora

m<sup>3</sup> Metro cubico

m<sup>2</sup> Metro cuadrado

u Unidad

Kg Kilogramo ml Metro lineal

f'c Esfuerzo de resistencia a compresión

fy Esfuerzo de resistencia a tensión

mm Milímetros Ø Diametro

KN Kilo-Newton

Ton Tonelada

in Pulgada

# **ÍNDICE DE FIGURAS**

| Figura 2.1. Excavación de aproximadamente 2.5 m en la cima del cerro              | 27      |
|-----------------------------------------------------------------------------------|---------|
| Figura 2.2 Calicata 4                                                             | 30      |
| Figura 2.3. Calicata 3                                                            | 30      |
| Figura 2.4. Calicata 2                                                            | 30      |
| Figura 2.5. Calicata 1                                                            | 31      |
| Figura 2.6. De derecha a izquierda: M6, M9, M2, M7, M4, M5, M11, M8, M10,         | M3, M1  |
|                                                                                   | 32      |
| Figura 2.7. Gráfica del Límite Líquido en función del número de golpes para la r  | muestra |
| 1                                                                                 | 32      |
| Figura 2.8. Gráfica del Límite Líquido en función del número de golpes para la i  | muestra |
| 5                                                                                 | 33      |
| Figura 2.9. Gráfica del Límite Líquido en función del número de golpes para la r  | muestra |
| 7                                                                                 | 34      |
| Figura 2.10. Gráfica del Límite Líquido en función del número de golpes para la r | muestra |
| 9                                                                                 | 34      |
| Figura 2.11. Gráfica del Límite Líquido en función del número de golpes para la r | nuestra |
| 10                                                                                | 35      |
| Figura 2.12 Curva granulométrica de la muestra 1                                  | 36      |
| Figura 2.13. Curva granulométrica de la muestra                                   | 36      |
| Figura 2.14. Curva granulométrica de la muestra 10                                | 37      |
| Figura 2.15. Ensayo de corte directo aplicado a muestra 1                         | 38      |
| Figura 2.16. Ensayo de corte directo aplicado a muestra 2                         | 38      |
| Figura 3.1. Distribución de columnas, Alternativa 1                               | 45      |
| Figura 3.2 Distribución de columnas, Alternativa 2.                               | 48      |
| Figura 3.3. Ecuaciones del Espectro.                                              | 53      |
| Figura 3.4. Espectro Elástico e Inelástico.                                       | 53      |
| Figura 3.5. Modelado de Columnas, vigas. Vista extruida                           | 54      |
| Figura 3.6. Modelado de losa                                                      | 54      |

| Figura 3.7. Diagramas de Envolvente de momentos                    | 55  |
|--------------------------------------------------------------------|-----|
| Figura 3.8. Deformaciones máximas                                  | 55  |
| Figura 3.9. Modelado de Columnas, vigas. Vista extruida            | 56  |
| Figura 3.10. Modelado de losa                                      | 56  |
| Figura 3.11. Diagramas de Envolvente de momentos                   | 56  |
| Figura 3.12. Deformaciones máximas.                                | 57  |
| Figura 3.13. Diagrama de Momentos Alternativa 2                    | 57  |
| Figura 3.14. Diagrama de Momentos Alternativa 1                    | 58  |
| Figura 3.15. Geometría de la Cimentación - Alternativa 2           | 60  |
| Figura 3.16. Fuerzas transmitidas hacia la cimentación             | 61  |
| Figura 3.17. Fuerzas transmitidas hacia la cimentación             | 61  |
| Figura 3.18. Asentamientos resultantes.                            | 62  |
| Figura 3.19. Momentos negativos máximos                            | 65  |
| Figura 3.20. Momentos positivos máximos.                           | 66  |
| Figura 3.21. Dimensiones preliminares.                             | 66  |
| Figura 3.22. Cortante máximo - Losa                                | 69  |
| Figura 3.23. Diagrama de momento y cortante – Viga tipo 1          | 71  |
| Figura 3.24. Diagrama de momento y cortante - Viga tipo 1- COMB4   | 75  |
| Figura 3.25. Diagrama de Interacción – Columna tipo 1              | 79  |
| Figura 3.26. Diagrama de Interacción – Columna tipo 1              | 79  |
| Figura 3.27. Diagrama de Interacción – Columna tipo 1              | 80  |
| Figura 3.28. Momentos negativos máximos                            | 82  |
| Figura 3.29. Momentos positivos máximos.                           | 83  |
| Figura 3.30. Dimensiones preliminares.                             | 83  |
| Figura 3.31. Cortante máximo – Losa de cimentación.                | 86  |
| Figura 3.32 Carretera aforada para el estudio de un nuevo proyecto | 89  |
| Figura 3.33. Elemento de una curva simple                          | 98  |
| Figura 3.34. Curva Cóncava                                         | 103 |
| Figura 3.35. Curva Convexa                                         | 103 |
| Figura 3.36. Posición de un punto sobre la curva vertical          | 104 |
| Figura 3.37. Longitud de desarrollo de peralte                     | 108 |

| Figura 3.38. Sección de cuneta triangular1                                            | 15  |
|---------------------------------------------------------------------------------------|-----|
| Figura 3.39. Curva Granulométrica1                                                    | 22  |
| Figura 3.40. Gráfico de límite líquido a los 25 golpes                                | 23  |
| Figura 3.41. Nomograma para diseño de pavimento flexible                              | 28  |
| Figura 3.42. Esquema gráfico para la ecuación del número estructural1                 | 29  |
| Figura 4.1. Ubicación geográfica de las áreas de intervención, directa e indirecta 1  | 32  |
| Figura 4.2. Mapa georreferenciado con la ubicación de la estación M0180 con respe-    | cto |
| al área de intervención del proyecto1                                                 | 34  |
| Figura 4.3. Fotografía de una calicata ubicada en la cima del cerro                   | 36  |
| Figura 4.4. Excavación de calicatas con una abertura de 2 m x 2m, con la ayuda de u   | ına |
| retroexcavadora1                                                                      | 37  |
| Figura 4.5. Ubicación de los ríos Calera y Amarrillo con respecto al cerro Zaruma Un  | rcu |
|                                                                                       | 38  |
| Figura 4.6. Identificación de zonas naturales de conservación en el cantón Zaruma . 1 | 40  |

# **ÍNDICE DE TABLAS**

| Tabla 2.1. Límite Líquido, Límite Plástico e Indice de Plasticidad de la muestra 1 33      |
|--------------------------------------------------------------------------------------------|
| Tabla 2.2. Límite Líquido, Límite Plástico e Índice de Plasticidad de la muestra 5 33      |
| Tabla 2.3. Límite Líquido, Límite Plástico e Índice de Plasticidad de la muestra 7 34      |
| Tabla 2.4. Límite Líquido, Límite Plástico e Índice de Plasticidad de la muestra 9 35      |
| Tabla 2.5. Límite Líquido, Límite Plástico e Índice de Plasticidad de la muestra 10 35     |
| Tabla 3.1. Cargas consideradas para la modelación, Modelo 146                              |
| Tabla 3.2. Cálculo de radio mínimo (columna circular)                                      |
| Tabla 3.3. Cargas consideradas para la modelación, Modelo 2                                |
| Tabla 3.4. Cálculo de radio mínimo (columna circular)                                      |
| Tabla 3.5. Propiedades del Hormigón                                                        |
| Tabla 3.6. Parámetros – Calculo de los espectros                                           |
| Tabla 3.7. Propiedades del Hormigón                                                        |
| Tabla 3.8. Determinación de diámetro de varilla - Losa                                     |
| Tabla 3.9. Resultados refuerzo – momento negativo                                          |
| Tabla 3.10. Resumen de refuerzos - Vigas                                                   |
| Tabla 3.11. Reacciones – Columna Tipo 1                                                    |
| Tabla 3.12. Reacciones – Columna Tipo 1                                                    |
| Tabla 3.13. Determinación de diámetro de varilla                                           |
| Tabla 3.14. Resultados refuerzo – momento negativo                                         |
| Tabla 3.15 Resumen de aforo de tránsito                                                    |
| Tabla 3.16. Tabla de aforo considerando el 15% del tráfico de vías adyacentes 90           |
| Tabla 3.17. Factor aplicado para transformar el tránsito a vehículo de diseño91            |
| Tabla 3.18. Cálculo de TPDA                                                                |
| Tabla 3.19. Tabla de clasificación de carreteras de acuerdo al TPDA94                      |
| Tabla 3.20. Relación entre la velocidad de diseño y la velocidad de circulación en función |
| de la intensidad del volumen de tránsito95                                                 |
| Tabla 3.21. Anchos de carriles en función de la clase de carretera96                       |
| Tabla 3.22. Ancho de espaldones en función de la clase de carretera96                      |

| Tabla 3.23. Radio mínimo y velocidad de diseño de acuerdo a la clase de carretera     | para  |
|---------------------------------------------------------------------------------------|-------|
| un terreno montañoso                                                                  | 97    |
| Tabla 3.24. Valores de diseño de las gradientes longitudinales máximas                | . 101 |
| Tabla 3.25. Coeficiente de fricción longitudinal en función de la velocidad de diseño | 102   |
| Tabla 3.26. Cotas a lo largo de curva vertical 1.                                     | . 105 |
| Tabla 3.27. Cotas a lo largo de curva vertical 2.                                     | . 105 |
| Tabla 3.28. Cotas a lo largo de curva vertical 3.                                     | . 106 |
| Tabla 3.29. Coeficiente de fricción lateral en función de la velocidad de diseño      | . 107 |
| Tabla 3.30. Registro Pluviométrico de la estación Zaruma                              | . 110 |
| Tabla 3.31. Precipitación máxima mensual                                              | . 111 |
| Tabla 3.32. Valor de precipitación corregido.                                         | . 112 |
| Tabla 3.33. Coeficientes según el tiempo de duración                                  | . 113 |
| Tabla 3.34. Precipitación máxima según el tiempo de duración                          | . 113 |
| Tabla 3.35. Intensidad de lluvia según el periodo de retorno                          | . 114 |
| Tabla 3.36 Diseño de tuberías de alcantarillado                                       | . 117 |
| Tabla 3.37. Características del terraplén de acuerdo a la zona                        | . 118 |
| Tabla 3.38. Características que debe cumplir un material subbase                      | . 119 |
| Tabla 3.39. Clasificación de material subbase de acuerdo a su granulometría           | . 119 |
| Tabla 3.40. Tipo de base de acuerdo al TPDA                                           | . 120 |
| Tabla 3.41. Propiedades características de un material base                           | . 121 |
| Tabla 3.42. Clasificación de material base de acuerdo a su granulometría              | . 121 |
| Tabla 3.43. Pasante acumulado de ensayo granulométrico                                | . 122 |
| Tabla 3.44. Contenido de humedad de la muestra                                        | . 123 |
| Tabla 3.45. Ensayo de Límite Plástico                                                 | . 123 |
| Tabla 3.46. Límite líquido, Límite Plástico e Indice de plasticidad                   | . 124 |
| Tabla 3.47. Resumen de aforo de tránsito                                              | . 125 |
| Tabla 3.48. Cálculo de ejes equivalentes                                              | . 126 |
| Tabla 3.49. Total de ejes equivalente para un periodo de 20 años                      | . 127 |
| Tabla 3.50. Total de ejes equivalente para un periodo de 10 años                      | . 127 |
| Tabla 3.51. Factor regional de acuerdo a la precipitación                             | . 127 |
| Tabla 3.52. Número estructural calculado                                              | . 129 |

| Tabla 4.1. Temperaturas y precipitaciones en la estación meteorológica M0180          | del |
|---------------------------------------------------------------------------------------|-----|
| INAMHI del año 2011                                                                   | 135 |
| Tabla 4.2. Avifauna representativa del Cantón Zaruma                                  | 141 |
| Tabla 4.3. Mamíferos silvestres representativos del Cantón Zaruma                     | 141 |
| Tabla 4.4. Herpetofauna representativa del Cantón Zaruma                              | 142 |
| Tabla 4.5. Valores de influencia espacial del impacto                                 | 153 |
| Tabla 4.6. Valores según la duración del impacto                                      | 154 |
| Tabla 4.7. Factores de peso para los distintos parámetros del impacto                 | 154 |
| Tabla 4.8. Valores de Reversibilidad del impacto                                      | 155 |
| Tabla 4.9. Valores de probabilidad de ocurrencia                                      | 155 |
| Tabla 4.10. Factores de peso Ecuación 4.2                                             | 156 |
| Tabla 4.11. Clasificación de los valores de VIA según su tipo de Impacto y su valor . | 157 |
| Tabla 5.1. Rubros del Proyecto:                                                       | 161 |
| Tabla 5.2. Limpieza y desbroce                                                        | 162 |
| Tabla 5.3. Cantidad por rubro del proyecto                                            | 164 |
| Tabla 5.4. Costos directos del proyecto.                                              | 165 |
| Tabla A.1 Plan de trabajo                                                             | 174 |
| Tabla B.1. Parámetros geométricos de las curvas empleadas en el proyecto              | 175 |
| Tabla C.1. Cota de puntos de transición del peralte a lo largo de la curva 1          | 176 |
| Tabla C.2. Cota de puntos de transición del peralte a lo largo de la curva 2          | 176 |
| Tabla C.3. Cota de puntos de transición del peralte a lo largo de la curva 3          | 177 |
| Tabla C.4. Cota de puntos de transición del peralte a lo largo de la curva 4          | 177 |
| Tabla C.5. Cota de puntos de transición del peralte a lo largo de la curva 5          | 178 |
| Tabla C.6. Cota de puntos de transición del peralte a lo largo de la curva 6          | 178 |
| Tabla C.7. Cota de puntos de transición del peralte a lo largo de la curva 7          | 179 |
| Tabla C.8. Cota de puntos de transición del peralte a lo largo de la curva 8          | 179 |
| Tabla C.9. Cota de puntos de transición del peralte a lo largo de la curva 9          | 180 |
| Tabla C.10. Cota de puntos de transición del peralte a lo largo de la curva 10        | 181 |
| Tabla D.1. Matriz de valoración del Signo del Impacto Ambiental                       | 182 |
| Tabla D.2. Matriz de Intensidad de Impacto                                            | 183 |
| Tabla D.3. Matriz de Extensión o Influencia Espacial del Impacto                      | 184 |

| Tabla D.4. Matriz de Duración del Impacto Ambiental      | 185 |
|----------------------------------------------------------|-----|
| Tabla D.5. Matriz de Magnitud de Impacto Ambiental       | 186 |
| Tabla D.6. Matriz de Reversibilidad                      | 187 |
| Tabla D.7. Matriz de Riesgo o de Probabilidad del Suceso | 188 |
| Tabla D.8. Matriz de valoración del Índice Ambiental     | 189 |

# **CAPÍTULO 1**

### 1. INTRODUCCIÓN

#### 1.1 Antecedentes

Este proyecto se realiza atendiendo un pedido del Club Rotario de Zaruma que se encuentra muy interesado en realizar un desarrollo paisajístico y urbanístico en el cerro Zaruma Urco para beneficio de la ciudad de Zaruma y sus entornos.

El proyecto consiste en estudiar y diseñar una vía de acceso desde la carretera estable hasta la cima o corona del cerro, en un extensión aproximada de 600 m. La vía que debe ser apta para la circulación vehicular debe llegar a la parte más alta del cerro en donde se planea construir una gran estatua de la virgen María de aproximadamente 40 m de altura.

El diseño de la vía y de un modo especial la determinación de las soluciones para construir dicho gran monumento, constituyen los aspectos fundamentales del presente trabajo.

#### 1.2 Localización

El sitio de estudio se encuentra ubicado en la provincia de El Oro ubicado al sur del Ecuador, el proyecto se sitúa justo en el cantón Zaruma el mismo que tiene una población de 24 mil habitantes hasta el año 2014 según datos oficiales del municipio propio de la localidad. El área de estudio específicamente es el cerro Zaruma-Urcu que se ubica aproximadamente a 2 km del centro de la ciudad Zaruma. El cerro tiene una elevación de noventa metros desde el comienzo desde el cruce con la carretera a Zaruma. La cima del cerro está a la cota 1270 m s.n.m.

#### 1.3 Información básica

El proyecto consiste en el análisis de capacidad de carga y propiedades del suelo sobre el cual se va a cimentar una estructura de aproximadamente 1000 toneladas y con una altura de 40 metros, además de eso se realizará el diseño de una vía de acceso de 640 metros de longitud.

Por medio de un total de 4 calicatas, separadas aproximadamente 150 metros entre sí a lo largo de la vía, se pudo constatar los estratos de suelo que se encuentran a una profundidad de 1 m, estando conformado el terreno por estrato superficial de lo que parece ser una capa de cascajo mezclado con material orgánico de aproximadamente 15 cm, y los estratos sub yacentes estaban conformados por riolita con un nivel de meteorización media.

Mediante la colaboración de ingenieros mineros de la empresa BIRA se pudo ratificar que el material rocoso que conforma el cerro se trata de riolita el cual es un tipo de roca ígnea extrusiva. A través de trabajos de campo, se obtuvo previamente una topografía preliminar con curvas de nivel a cada metro, habiendo una diferencia entre la cima o corona y el punto de acceso desde la vía de ingreso es de 85 metros. En la cima del cerro se observó roca bien meteorizada similar a una capa de suelo dura.

### 1.4 Objetivos

### 1.4.1 Objetivo General

Diseñar las soluciones técnicas de las principales obras del desarrollo urbanístico del cerro Zaruma Urcu.

### 1.4.2 Objetivos Específicos

- a) Realizar los estudios topográficos.
- b) Obtener la información geotécnica necesaria.
- c) Diseñar la vía de acceso a la corona del cerro.

- d) Diseñar mediante soluciones técnicas la cimentación de un monumento de 1000 ton de peso.
- e) Analizar el impacto ambiental.

#### 1.5 Justificación

Dado que se trata de la construcción de obras para un desarrollo urbanístico y turístico, en donde se va a tener una gran afluencia de personas es importante garantizar condiciones de seguridad.

Es importante disponer de una vía de acceso segura para una futura circulación vehicular, por lo que mediante los estudios necesarios se realizan los correspondientes diseños geométricos y del pavimento.

La construcción de un gran monumento (de 40 m de altura) en la cima del cerro, a poca distancia de pendientes abruptas, implica un estudio de las condiciones geotécnicas del terreno de tal manera de garantizar que la cimentación de dicha gran estructura no se asiente o por la acción sísmica o del agua sufra daños.

# **CAPÍTULO 2**

### 2. DESARROLLO DEL PROYECTO

### 2.1 Metodología

A continuación, se describe el procedimiento a seguir:

- Recopilación inicial de información, se efectuó una visita de campo, se revisaron las cartas geológicas del sector, se conoció el tipo de proyecto que el cliente planifica construir. Además informaciones técnicas de interés que maneja la empresa BIRA, uno de los integrantes de grupo que conforma "el cliente".
- A parir de la información obtenida se planificaron las actividades de campo laboratorio y gabinete que serían posibles de ejecutar dadas las circunstancias de la emergencia sanitaria.
- Se procede a realizar el trabajo consistente en el levantamiento topográfico y los estudios geotécnicos. Se toman varias muestras. Este trabajo se efectúa tanto en la franja de terreno destinada a la vía, como en la terraza existente en la cima del cerro.







Figura 2.1. Excavación de aproximadamente 2.5 m en la cima del cerro

NOTA: A esa profundidad la gallineta no podía ser excavando material, porque se encontró con roca meteorizada.

- Ensayos de laboratorio, para las muestras requeridas para el análisis del talud y de la vía se realizaron ensayos de granulometría, límites de Atterberg, peso específico y peso volumétrico, adicionalmente para las muestras viales se realizó ensayos de CBR y Proctor.
- El diseño de la vía, se basa en la metodología propuesta por la Norma Ecuatoriana Vial NEVI 12 del MTOP, con las consideraciones de lo establecido en AASHTO 93 para pavimentos flexibles.
- Para el diseño de la cimentación y lo correspondiente a la clasificación de suelo y factores de seguridad a adoptar se considerará lo establecido en la NEC 15 del capítulo de geotecnia y cimentaciones.

### 2.2 Trabajo de campo, laboratorio y gabinete

### 2.2.1 Topografía

Se realizo un levantamiento planimétrico y altimétrico a lo largo del eje de la vía de acceso desde el punto de ingreso hasta la cima del cerro, con una longitud aproximada de 640 metros de largo con un abscisado cada 10 metros, extendiéndose 20 metros a los lados, para obtener el perfil transversal de la vía, considerando además la geometría de los taludes a los costados de la misma para su posterior análisis

### 2.2.2 Geología y Geotecnia

### Aspectos geológicos

De acuerdo al mapa geológico del Ecuador los terrenos de interés pertenecen a la formación geológica Volcánicos Saraguro del Oligoceno. Esta formación incluye lavas andesíticas, lavas riolíticas y piroclastos.

De acuerdo con observaciones más detalladas se ha constatado que la geoestructura del cerro Zaruma Urcu es un macizo rocoso de riolitas. Un aspecto muy importante constituye la existencia de un proceso de meteorización bastante intenso que afecta principalmente las capas superficiales del cerro de 3 a 5m de espesor.

En el pie de monte del cerro se observa la presencia de hasta 8m de espesor de suelos depositados por causa de la erosión y pequeños deslizamientos.

### Caracterización geotécnica

En el camino lastrado que permite el ascenso a la corona del cerro presenta cortes de talud que posibilitan ver tanto capas de suelo como de roca meteorizada en diferentes grados. Se constató que los mayores espesores de suelo y de la roca más meteorizada se encuentran en las partes bajas del cerro.

En la corona del cerro también se han realizado excavaciones aun que no lo suficientemente profundas ya que se observan solo rocas riolitas de color pardo rojizas, lo que significan que están bien meteorizadas.

Con la finalidad de observar los materiales a una mayor profundidad se realizaron 3 calicatas mediante la ayuda de una retro excavadora, con lo cual se logró observar el perfil estratigráfico, de esa plataforma, hasta 4m de profundidad.

### Prospección geotécnica de campo

Se procedió a la obtención de muestras de suelo y roca meteorizada en los taludes de corte existentes, los testigos se sacaron a promedialmente 30 cm de profundidad.

También se realizaron calicatas en la franja para pavimento cada 250 m aproximadamente.

En cuanto al sitio destinado a la cimentación en la cima del cerro, se procedió a realizar cuatro calicatas con la ayuda de una máquina excavadora, con la finalidad de conocer la estratigrafía y tomar muestras.



Figura 2.2 Calicata 4



Figura 2.3. Calicata 3



Figura 2.4. Calicata 2



Figura 2.5. Calicata 1

Nota: La calicata 1 es la que se encuentra mas cercana a la cima, mientras que la calicata 4 se encuentra en la entrada de la via de acceso al cerro. Podemos que mientras mas nos acercamos a la cima el estrato de suelo cambia, además de que el terreno se volvía más duro.

### 2.2.3 Ensayos de laboratorio

Se realizaron ensayos de laboratorio, tanto de muestras tomadas en los taludes y en la franja de terreno destinada a la calzada.

Se realizaron ensayos de granulometría, límites de Atterberg, peso específico y peso volumétrico. Adicionalmente se efectuaron ensayos de CBR y Proctor para el caso de terraplenes.

En los ensayos se aplicó la metodología propuesta en la Norma Ecuatoriana Vial NEVI 12 del MTOP, con las consideraciones de lo establecido en AASHTO 93 para pavimentos flexibles.

Con las muestras obtenidas en el área de cimentación del monumento se realizaron ensayos de compresión simple, para evaluar la resistencia a la carga

Para el caso de la cimentación se aplicó la norma NEC 15 del capítulo de geotecnia y cimentaciones.

De los taludes a lo largo de la vía de acceso se extrajo un total de 11 muestras obtenidas a una profundidad de 30 cm, de las cuales 5 fueron

ensayadas para Límites de Atterberg, 3 para granulometría, 5 para peso específico y 5 para peso volumétrico. Los ensayos se efectuaron solo en las muestras 1, 5, 7,9 y 10.



Figura 2.6. De derecha a izquierda: M6, M9, M2, M7, M4, M5, M11, M8, M10, M3, M1

### a) Límites de Atterberg

### Muestra 1:

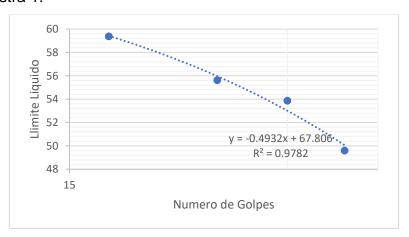



Figura 2.7. Gráfica del Límite Líquido en función del número de golpes para la muestra 1

Tabla 2.1. Límite Líquido, Límite Plástico e Índice de Plasticidad de la muestra 1

| WL %         | 55.48 |
|--------------|-------|
| <b>W</b> P % | 32.51 |
| IP %         | 22.97 |

Fuente: Sebastián Suarez y Rafael Bárcenes

### Muestra 5:

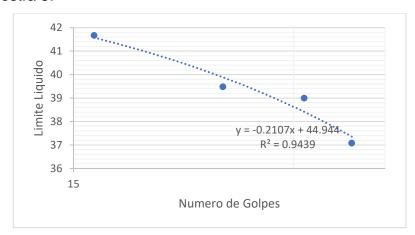



Figura 2.8. Gráfica del Límite Líquido en función del número de golpes para la muestra 5

Fuente: Sebastián Suarez y Rafael Bárcenes

Tabla 2.2. Límite Líquido, Límite Plástico e Índice de Plasticidad de la muestra 5

| WL % | 39.68 |
|------|-------|
| Wp % | 25.71 |
| IP % | 13.96 |

### Muestra 7:

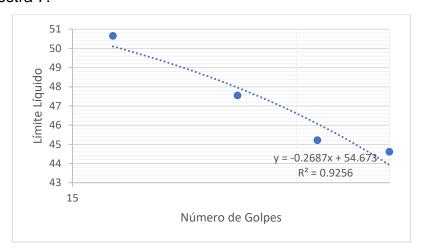



Figura 2.9. Gráfica del Límite Líquido en función del número de golpes para la muestra 7

Fuente: Sebastián Suarez y Rafael Bárcenes

Tabla 2.3. Límite Líquido, Límite Plástico e Índice de Plasticidad de la muestra 7

| WL % | 47.96 |
|------|-------|
| Wp % | 27.03 |
| IP % | 20.92 |

Fuente: Sebastián Suarez y Rafael Bárcenes

### Muestra 9:

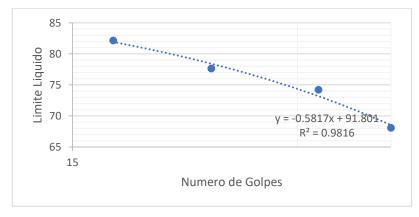



Figura 2.10. Gráfica del Límite Líquido en función del número de golpes para la muestra 9

Tabla 2.4. Límite Líquido, Límite Plástico e Índice de Plasticidad de la muestra 9

| WL %         | 77.26 |
|--------------|-------|
| <b>W</b> P % | 35.75 |
| IP %         | 41.51 |

Fuente: Sebastián Suarez y Rafael Bárcenes

### Muestra 10:

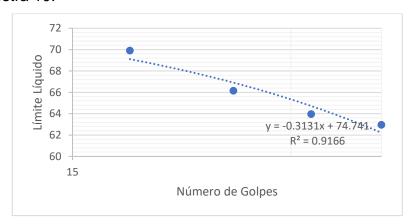



Figura 2.11. Gráfica del Límite Líquido en función del número de golpes para la muestra 10

Fuente: Sebastián Suarez y Rafael Bárcenes

Tabla 2.5. Límite Líquido, Límite Plástico e Índice de Plasticidad de la muestra 10

| WL %         | 66.91 |
|--------------|-------|
| <b>W</b> P % | 43.34 |
| IP %         | 23.57 |

### b) Granulometría

### Muestra 1



Figura 2.12 Curva granulométrica de la muestra 1

Fuente: Sebastián Suarez y Rafael Bárcenes

### Muestra 5

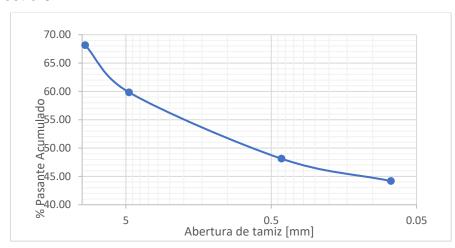



Figura 2.13. Curva granulométrica de la muestra

#### Muestra 10

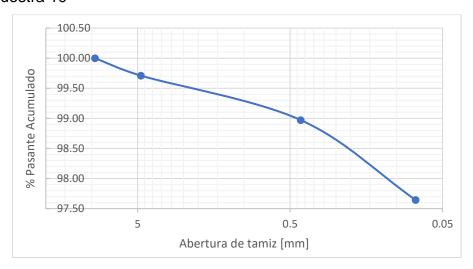



Figura 2.14. Curva granulométrica de la muestra 10

Fuente: Sebastián Suarez y Rafael Bárcenes

## c) Ensayo de corte de directo

De la excavación realizada se extrajeron muestras con el fin de que sean sometidas a ensayos de corte directo para determinar parámetros de ángulo de fricción, cohesión y peso específico. Dichos parámetros son fundamentales para realizar el diseño de la cimentación

Este ensayo se basa en confinar la muestra en una caja de coste directo, en la que se aplica una carga con el fin de generar un esfuerzo normal, humedeciendo o drenando el espécimen del ensayo, de esta manera se consolida la muestra por acción del esfuerzo normal. Se sueltan las paredes que confinan la muestra y se desplaza un marco horizontalmente respecto al otro a una velocidad constante de deformación y, midiendo la fuerza cortante y también los desplazamientos se va desarrollando la falla de la muestra.

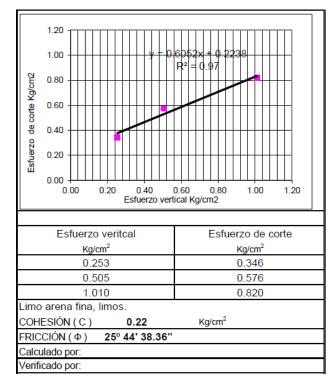



Figura 2.15. Ensayo de corte directo aplicado a muestra 1

Fuente: Ensayo de laboratorio LEMCO 1.20 1.00 Esfuerzo de corte Kg/cm2 0.80 0.60 0.40 0.20 0.00 0.00 0.20 0.40 0.60 0.80 1.00 Esfuerzo vertical Kg/cm2 Esfuerzo veritcal Esfuerzo de corte Kg/cm<sup>2</sup> Kg/cm<sup>2</sup> 0.253 0.346 0.554 0.505 1.010 0.793 Limo arena fina, limos. Kg/cm<sup>2</sup> COHESIÓN (C) 0.23 FRICCIÓN (Φ) 25° 22' 31.35" Calculado por: Verificado por:

Figura 2.16. Ensayo de corte directo aplicado a muestra 2

Fuente: Ensayo de laboratorio LEMCO

## d) Proctor Modificado y CBR

Para el diseño de pavimento usamos los resultados de los ensayos Proctor Modificado con el que obtenemos la humedad optima de la muestra cuyo valor es usado para humedecer la muestra que se va a someter al ensayo CBR al 95%. Este último parámetro evalúa la calidad del terreno en función de su resistencia. La compactación se mide como un porcentaje de la densidad optima del material, para suelos que serán usados como relleno, estos requieren una compactación al 95% del ensayo Proctor modificado. Los resultados se pueden apreciar en el capitulo 3.

## 2.2.4 Trabajo de Oficina

En base la excavación realizada, donde se pretende levantar el monumento, se adiciona el diseño de la superestructura el cual consiste en una losa cuadrada de hormigón armado, para esto se propuso una distribución de columnas sobre las cuales se asienta la losa armada en cuestión. El diseño de la superestructura se basa en las especificaciones del ACI 318-19.

Se determinaron las cargas que se transmitan de la losa a las vigas, de las vigas a las columnas y de las columnas a la losa de cimentación, todo esto en función del peso de la estructura. Por medio del programa SAFE se determinaron los asentamientos máximos que se generan.

En base al levantamiento topográfico se procedió con el diseño de la vía, el cual se sustenta en base al aforo de tránsito realizado. Según lo especificado por la NEVI en el volumen 2 y en las normas de diseño geométrico del MTOP se procede con el diseño geométrico horizontal y vertical de acuerdo al tipo de carretera resultante

El modelado de la vía se hizo en el programa Civil3D en función de los resultados obtenidos del diseño horizontal y de la ubicación de los puntos de inflexión de las curvas y por medio del programa se obtuvieron las cotas del

perfil longitudinal de la vía para proceder con el diseño vertical, secciones transversales, cálculo de pendientes y cálculo de volúmenes.

En base a los resultados obtenidos de los ensayos Proctor y CBR podemos determinar el CBR de diseño con el que, por medio de nomogramas; obtendremos el número estructural del pavimento. La metodología implementa para la obtención del número estructural será por medio del método de la AASHTO el cual es similar al método CBR con la consideración adicional del factor regional, el cual está en función de la precitación media anual del sector en cuestión.

## 2.3 Análisis de alternativas

#### 2.3.1 Restricciones

- a) Las pendientes transversales y longitudinal del terreno bastante fuertes para implantar una vía
- b) La existencia de capas de suelo y rocas bastante meteorizadas
- c) Se conoce el peso pero no las características del diseño
- d) Se tienen un área relativamente pequeña rodeada de pendientes empinadas en la cima del cerro en donde se pretende construir un monumento de 1000 toneladas de peso.
- e) El poco tráfico que se va a tener
- f) Costo y tiempo de ejecución de las soluciones

#### 2.3.2 Alternativas

Respecto al diseño de la vía se plantean dos alternativas:

- a) Pavimento rígido a dos carriles
- b) Pavimento flexible a dos carriles

Respecto al sistema portante del monumento en la cima del cerro, se tienen las siguientes alternativas:

- a) Realizar una gran excavación para hacer descender el nivel de cimentación
- b) Estabilizar las laderas que rodean la terraza.
- c) Apoyar la cimentación a pocos metros (1 a 3) de la superficie y confinar el terreno mediante pantallas inyectadas resistentes

## 2.3.2.1 Alternativas elegidas

## Tipo de pavimento

Partiendo de algunas experiencias vividas en la zona de estudio, en donde se ha experimentado que los terrenos son altamente deformables, se debe considerar de entrada un pavimento flexible. Este criterio se refuerza al conocerse las características geotécnicas de los terrenos del sitio de proyecto.

Otro criterio importante para decidir por el pavimento flexible es que el pavimento rígido es más costoso porque requerirá además de soluciones estabilizadoras complementarias para su buen funcionamiento.

Tampoco se tendrá una gran densidad de tráfico por lo que es recomendable disponer únicamente de un pavimento flexible.

## Solución elegida para las estructuras de soporte del monumento

La alternativa a) tendría un gran impacto ambiental que incluye la perdida de visibilidad posicionamiento. La excavación y desalojo de los materiales lejos del sitio de proyecto tendría un alto costo.

La alternativa b) requiere obras de estabilización que deben rodear todo el cerro. La longitud de las pendientes de estabilización debe ser considerablemente larga para lograr un eficiente efecto estabilizador. La alternativa c) es la más conveniente, es la de menor afectación al ambiente, se puede fácilmente deducir que es la de menor costo ya que se apoya en las características naturales del cerro. La solución es bastante segura en las condiciones naturales más críticas, como lo son una alta sismicidad y la presencia de intensas precipitaciones.

# **CAPÍTULO 3**

# 3. DISEÑOS

#### 3.1 Diseño de la cimentación

Teniendo en cuenta las características geológicas y geotécnicas de la cima del cerro Zaruma Urcu, determinadas a partir de la investigación efectuada, se deduce lo siguiente:

Existe una capa de mayor meteorización que incluye superficialmente suelo residual, cuyo espesor es de aproximadamente 2.5m, a este nivel se tiene roca riolita poco meteorizada. Consecuentemente a la profundidad mencionada se propone construir una losa de cimentación.

En base a toda la información recopilada, a continuación, se analizó dos alternativas para luego determinar cuál de las dos resulta estructural y económicamente más factible.

## 3.1.1 Definición de cargas

Para el diseño estructural de la losa de cimentación, columnas, vigas y losa donde irá asentado el monumento se consideró las siguientes cargas:

## Cargas Muertas:

- 1. Peso propio de:
- a. Columnas
- b. Vigas
- c. Losa
- d. Monumento

## Cargas vivas:

2. Carga ocupacional = 4.19 KN/m<sup>2</sup> ASCE 7-16

## Carga sísmica:

Cortante Basal

## 3.1.2 Pre-dimensionamiento

El pre-dimensionamiento de la estructura a analizar, sirve para definir las dimensiones de los elementos estructurales y las cargas que los mismos deberán resistir.

Ambas alternativas contienen los mismos elementos estructurales, los cuales son: Losa de cimentación, columna, vigas y la losa donde se asentará el monumento. A continuación, se detallar el predimensionamiento de las dos alternativas consideradas.

#### 3.1.2.1 Alternativa 1

#### 3.1.2.1.1 Losa

En la Tabla 8.3.1.1 del ACI 318-19, podemos encontrar la siguiente ecuación que corresponde a el espesor mínimo que debe tener una losa maciza circular con continuidad en solo un extremo y cuyo  $f_y = 4200 \text{ kg/cm2}$ .

$$e_{min} = l_n/24$$
 (ACI 318-19, pg 101)

La variable  $l_n$  hace referencia a la máxima luz de la losa en pulgadas, en la Figura 3.1 podemos apreciar que la máxima luz entre columnas de la alternativa 1, corresponde a 5 m.

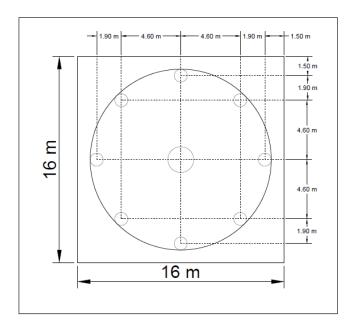



Figura 3.1. Distribución de columnas, Alternativa 1.

Como resultado el espesor mínimo que la losa de la alternativa 1 debe adoptar resulta:

$$e_{min} = \frac{5m * \frac{39.37in}{1m}}{24} = 8.20 in \approx 20.83 cm$$
  
 $e_{adoptado} = 30 cm$ 

## 3.1.2.1.2 Vigas

En la Tabla 9.3.1.1 del ACI 318-19, podemos encontrar la siguiente ecuación, que define el peralte mínimo que se debe adoptar para vigas no pretensadas y cuyas vigas tiene un borde discontinuo (máximo dos vigas unidas en un mismo eje).

$$e_{min} = l/18.5$$
 (ACI 318-19, pg 129)

Donde *l* representa la luz máxima de las vigas en pulgadas, en la Figura 3.1 podemos observar que existe una separación de 5

metros entre todas las columnas. Como resultado se obtiene el siguiente peralte mínimo:

$$h_{min} = \frac{5m * \frac{39.37in}{1m}}{18.5} = 10.640in \approx 27 cm$$

$$h_{adoptado} = 45 cm$$

#### 3.1.2.1.3 Columnas

Las columnas tienen una altura preestablecida de 4 m, para determinar las dimensiones mínimas que se debe adoptar para su sección transversal se debe primero calcular las cargas de servicio. En la Tabla 3.1 se detallará los resultados del cálculo de las cargas de servicio.

Tabla 3.1. Cargas consideradas para la modelación, Modelo 1.

| Columna | Área<br>tributaria<br>[m²] | Longitud<br>Vigas [m] | Peso de<br>la losa<br>[KN/m²] | Peso Vigas<br>[KN/m] | Peso<br>Monumento<br>[KN/m²] | Carga<br>total [KN] |
|---------|----------------------------|-----------------------|-------------------------------|----------------------|------------------------------|---------------------|
| #1      | 14.432                     | 7.463                 | 7.1                           | 3.2                  | 64.7                         | 1060.1              |
| #2      | 38.485                     | 20.080                |                               | 5.2                  | 04.7                         | 2827.5              |

Fuente: Sebastián Suarez y Rafael Barcenes

Obtenidas la carga total por tipo de columna, se procede a calcular la sección mínima que se debe adoptar para soportar dicha carga. La Tabla 3.2 demuestra el cálculo de las dimensiones mínimas y las dimensiones adoptadas.

Tabla 3.2. Cálculo de radio mínimo (columna circular).

| Columna | Carga<br>total [KN] | 0.3 f'c<br>[KN/m <sup>2</sup> ] | Área<br>mínima<br>[m2] | Radio<br>mínimo<br>[m] | Radio<br>Adoptado<br>[m] | Verificación |
|---------|---------------------|---------------------------------|------------------------|------------------------|--------------------------|--------------|
| #1      | 1060.099            | 27458.6                         | 0.129                  | 0.202                  | 0.5                      | Si cumple    |
| #2      | 2827.480            | 200.0                           | 0.343                  | 0.331                  | 1                        | Si Cumple    |

En la Tabla 3.2 se puede apreciar que la medida mínima es expresada en el radio de las columnas, esto proviene del hecho que la alternativa 1 utiliza columnas circulares.

#### 3.1.2.2 Alternativa 2

Para el pre dimensionamiento de la alternativa 2 se realizan los mismos pasos que la alternativa 1, la única diferencia viene a ser el número de columnas y la losa superior cuadrada.

#### 3.1.2.2.1 Losa

Aplicando la ecuación recomendada por el ACI 318-19 Tabla 8.3.1.1 para el espesor mínimo que debe tener una losa maciza con continuidad en solo un extremo y cuyo  $f_y = 4200 \text{ kg/cm}^2$ .

$$e_{min} = l_n/24$$
 (ACI 318-19, pg 101)

En la Figura 3.2 podemos apreciar que la máxima luz entre columnas de la alternativa 1, corresponde a 2.85 m.

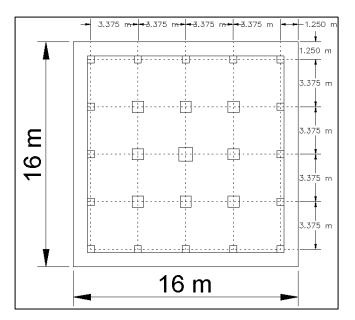



Figura 3.2 Distribución de columnas, Alternativa 2.

Como resultado el espesor mínimo que la losa de la alternativa 2 debe adoptar resulta:

$$e_{min} = \frac{2.85 \, m * \frac{39.37 in}{1m}}{24} = 4.68 \, in \cong 11.89 \, cm$$
 $e_{adoptado} = 30 \, cm$ 

## 3.1.2.2.2 Vigas

Aplicando la Tabla 9.3.1.1 del ACI 318-19, determinamos el peralte mínimo que se debe adoptar para vigas no pretensadas y cuyas vigas tiene un borde discontinuo (máximo dos vigas unidas en un mismo eje).

$$e_{min} = l/18.5$$
 (ACI 318-19, pg 129)

Donde *l* representa la luz máxima de las vigas en pulgadas, en la Figura 3.2 podemos observar que existe una separación de 2.85 metros entre todas las columnas. Como resultado se obtiene el siguiente peralte mínimo:

$$h_{min} = \frac{2.85 \ m * \frac{39.37 in}{1m}}{18.5} = 6.065 \ in \cong 15.40 \ cm$$
 
$$h_{adoptado} = 50 \ cm$$

Para el ancho de la viga, se recomienda utilizar un valor cercano al  $0.5*h_{adoptado}$ , que resultaría de 25 cm. El valor del ancho adoptado resulta ser de 30 cm.

#### 3.1.2.2.3 Columnas

Las columnas al igual que en la alternativa 1, tienen una altura preestablecida de 4 m, se vuelve a determinar las cargas de servicio para la alternativa 2. En la Tabla 3.3 se detallará los resultados del cálculo de las cargas de servicio.

Tabla 3.3. Cargas consideradas para la modelación, Modelo 2.

| Columna | Área<br>tributaria<br>[m2] | Longitud<br>Vigas [m] | Peso de<br>la losa<br>[KN/m2] | Peso<br>Vigas<br>[KN/m] | Peso<br>Monument<br>o [KN/m2] | Carga<br>total [KN] |
|---------|----------------------------|-----------------------|-------------------------------|-------------------------|-------------------------------|---------------------|
| #1      | 3.724                      | 2.850                 | 7.1                           |                         | 50.8                          | 225.771             |
| #2      | 6.332                      | 4.238                 |                               | 2 -                     |                               | 381.731             |
| #3      | 11.9                       | 5.300                 |                               | 3.5                     |                               | 707.971             |
| #4      | 12.162                     | 5.000                 |                               |                         |                               | 722.083             |

Fuente: Sebastián Suarez y Rafael Barcenes

Obtenidas la carga total por tipo de columna, se procede a calcular la sección mínima que se debe adoptar para soportar dicha carga.

La Tabla 3.4 demuestra el cálculo de las dimensiones mínimas y las dimensiones adoptadas.

Tabla 3.4. Cálculo de radio mínimo (columna circular).

| Columna | Carga total<br>[KN] | 0.3 f'c<br>[KN/m²] | Área<br>mínima<br>[m2] | lado<br>mínimo<br>[m] | lado<br>adoptado<br>[m] | verificación |
|---------|---------------------|--------------------|------------------------|-----------------------|-------------------------|--------------|
| #1      | 225.771             |                    | 0.027                  | 0.166                 | 0.5 x 0.5               | Si cumple    |
| #2      | 381.731             | 27458.             | 0.046                  | 0.215                 | 0.5 x 0.5               | Si cumple    |
| #3      | 707.971             | 6                  | 0.086                  | 0.293                 | 0.8 x 0.8               | Si cumple    |
| #4      | 722.083             |                    | 0.088                  | 0.296                 | 1 x 1                   | Si cumple    |

Fuente: Sebastián Suarez y Rafael Barcenes

En la Tabla 3.4 se puede apreciar que la medida mínima es expresada en la dimensión de un lado de la columna, esto proviene del hecho que la alternativa 2 utiliza columnas cuadradas.

#### 3.1.3 Modelación estructural

Con las cargas ya calculadas y todos los elementos estructurales predimensionados, se procede a realizar la modelación de ambas alternativas.

## 3.1.3.1 Parámetros de modelación para ambas alternativas

Para la modelación estructural existen parámetros que se deben definir, tales como las propiedades de los materiales a utilizar y las combinaciones de carga que consideraremos para nuestros modelos. En la Tablas 3.5 se detallan dichos parámetros:

Tabla 3.5. Propiedades del Hormigón.

| Hormigón          |        |              |  |  |  |
|-------------------|--------|--------------|--|--|--|
| f'c               | [KN/m] |              |  |  |  |
| Peso volumétrico. | 23.6   | [KN/m2]      |  |  |  |
| Ec                | 24 628 | [KN/m2]      |  |  |  |
| EC.               | 627.85 | [[1,14/1112] |  |  |  |

Fuente: Sebastián Suarez y Rafael Barcenes

En cuanto a las combinaciones de carga, se utilizaron las combinaciones descritas a continuación:

```
Combinación 1 = 1.4 DEAD
Combinación 2 = 1.2 DEAD + 0.5 LIVE
Combinación 3 = 1.2 DEAD + 1.6 LIVE
Combinación 5.1 = 1.2 DEAD + 1 LIVE + 1 SISMO X – 0.3 SISMO Y
Combinación 5.2 = 1.2 DEAD + 1 LIVE + 1 SISMO X + 0.3 SISMO Y
Combinación 5.3 = 1.2 DEAD + 1 LIVE - 1 SISMO X – 0.3 SISMO Y
Combinación 5.4 = 1.2 DEAD + 1 LIVE - 1 SISMO X + 0.3 SISMO Y
Combinación 5.5 = 1.2 DEAD + 1 LIVE + 1 SISMO Y – 0.3 SISMO X
Combinación 5.6 = 1.2 DEAD + 1 LIVE + 1 SISMO Y + 0.3 SISMO X
Combinación 5.7 = 1.2 DEAD + 1 LIVE - 1 SISMO Y - 0.3 SISMO X
Combinación 5.8 = 1.2 DEAD + 1 LIVE - 1 SISMO Y + 0.3 SISMO X
Combinación 6 = 0.9 DEAD
Combinación 7.1 = 0.9 DEAD + 1 SISMO X – 0.3 SISMO Y
Combinación 7.2 = 0.9 DEAD + 1 SISMO X + 0.3 SISMO Y
Combinación 7.3 = 0.9 DEAD - 1 SISMO X - 0.3 SISMO Y
Combinación 7.4 = 0.9 DEAD - 1 SISMO X + 0.3 SISMO Y
Combinación 7.5 = 0.9 DEAD + 1 SISMO Y – 0.3 SISMO X
Combinación 7.6 = 0.9 DEAD + 1 SISMO Y + 0.3 SISMO X
Combinación 7.7 = 0.9 DEAD - 1 SISMO Y - 0.3 SISMO X
Combinación 7.8 = 0.9 DEAD - 1 SISMO Y + 0.3 SISMO X
```

Las combinaciones del 1 al 7.8 son las combinaciones requeridas para el presente proyecto, fueron obtenidas de las combinaciones de cargas disponibles en la NEC-SE-CG, pg 19.

#### 3.1.3.2 Análisis sísmico de la estructura

El análisis sísmico estudia el comportamiento sísmico del tipo de suelo de la cimentación y se determina la fuerza de cortante basal que se producirá por el tipo de estructura que se está diseñando en caso de un evento sísmico. Es obligatorio realizar este análisis en estructuras diseñadas en Ecuador por las altas actividades sísmicas que se producen en esta región.

La fuerza de cortante basal obtenida en este análisis servirá para poder ser considerada en la modelación estructural y después de crear todas las combinaciones de carga, determinar y diseñar con la más perjudicial para la estructura.

A continuación, se detallará en la Tabla 3.6, los distintos parámetros requeridos para la elaboración del espectro elástico e inelástico del suelo:

Tabla 3.6. Parámetros – Calculo de los espectros.

| Descripción                                                        | simbología  | valor | normativa          |
|--------------------------------------------------------------------|-------------|-------|--------------------|
| Factor Z                                                           | Z           | 0.3   | NEC-SE-DS Tabla 19 |
| Tipo de suelo                                                      | A-B-C-D-E-F | D     | NEC-SE-DS Tabla 2  |
| Coeficiente de amplificación del suelo en zona de periodo corto    | Fa          | 1.3   | NEC-SE-DS Tabla 3  |
| Amplificación de las ordenadas en respuesta para el diseño en roca | Fd          | 1.36  | NEC-SE-DS Tabla 4  |
| Comportamiento no lineal de los suelos                             | Fs          | 1.11  | NEC-SE-DS Tabla 5  |
| Relación entre la aceleración espectral y PGA                      | n           | 1.8   | NEC-SE-DS pg. 34   |
| Coeficiente de Importancia                                         | 1           | 1.3   | NEC-SE-DS Tabla 6  |
| Factor de resistencia                                              | R           | 8     | NEC-SE-DS Tabla 15 |
| Coeficiente del tipo de edificio                                   | Ct          | 0.55  | NEC-SE-DS pg. 62   |
|                                                                    | a           | 0.9   | NEC-SE-DS pg. 62   |
| Coeficiente de planta                                              | phi p       | 1     | NEC-SE-DS Tabla 13 |
| Coeficiente de elevación                                           | phi E       | 1     | NEC-SE-DS Tabla 14 |

Fuente: Sebastián Suarez y Rafael Barcenes

El procedimiento para calcular los espectros de diseño se encuentra en la NEC-SE-DS, en la Figura 3.3 se puede apreciar las ecuaciones correspondientes a los distintos segmentos de rectas que conforman el espectro.

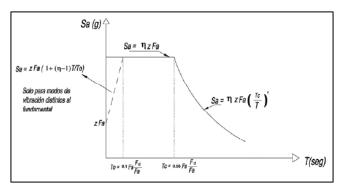



Figura 3.3. Ecuaciones del Espectro.

Fuente: NEC-SE-DS

En la Figura 3.3 se puede observar el espectro Elástico e Inelástico resultantes, los mismos que junto con la determinación del periodo fundamental de la estructura y su correspondiente aceleración en los espectros, es posible calcular el cortante basal en base a la concentración de masa existente en las losas de la estructura.

En el caso analizado solo existe una losa y será donde ira asentado el monumento, y el cortante basal resulta del valor de 3 782.14 KN, tanto en el sentido X como en el sentido Y.

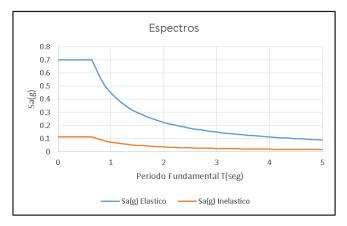



Figura 3.4. Espectro Elástico e Inelástico.

Fuente: Sebastián Suarez y Rafael Bárcenes

El valor del cortante basal se debe colocar en el centro de gravedad de la losa y debe ser modelado como un punto rígido conectado a la losa para poder transmitir la fuerza hacia la estructura.

## 3.1.3.3 Modelación Alternativa 1

La modelación en programas de análisis estructural, permiten determinar los esfuerzos que se producen en distintos elementos estructurales del sistema estructural que se está analizando. En las Figuras 3.5 al 3.8, se puede observar el modelado de la alternativa 1.

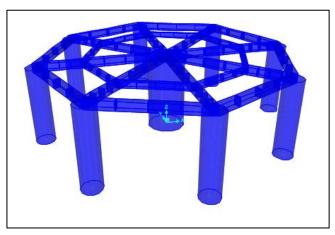



Figura 3.5. Modelado de Columnas, vigas. Vista extruida.

Fuente: Sebastián Suarez y Rafael Barcenes

Figura 3.6. Modelado de losa.

Fuente: Sebastián Suarez y Rafael Barcenes

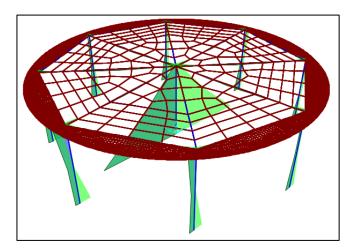



Figura 3.7. Diagramas de Envolvente de momentos.

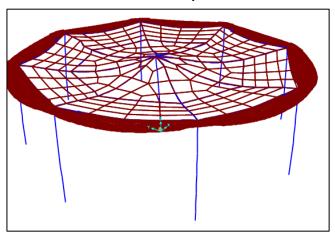



Figura 3.8. Deformaciones máximas.

Fuente: Sebastián Suarez y Rafael Barcenes

## 3.1.3.4 Modelación Alternativa 2

La modelación en programas de análisis estructural, permiten determinar los esfuerzos que se producen en distintos elementos estructurales del sistema estructural que se está analizando. En las Figuras 3.9 al 3.12, se puede observar el modelado de la alternativa 1.

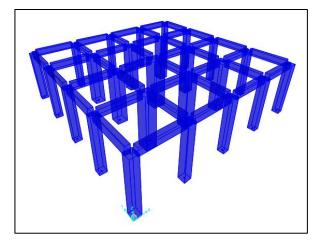



Figura 3.9. Modelado de Columnas, vigas. Vista extruida.

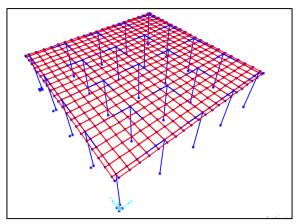



Figura 3.10. Modelado de losa.

Fuente: Sebastián Suarez y Rafael Barcenes

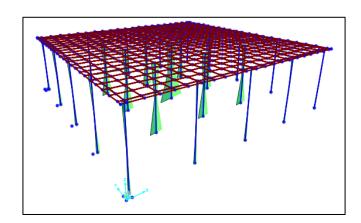



Figura 3.11. Diagramas de Envolvente de momentos.

Fuente: Sebastián Suarez y Rafael Barcenes

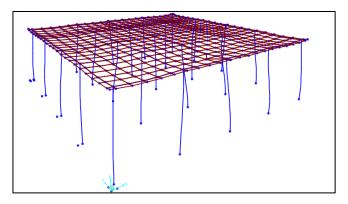



Figura 3.12. Deformaciones máximas.

#### 3.1.3.5 Resultados de la modelación estructural

Después de la revisión de cada elemento estructural (losa, vigas y columnas) se determinó que la Alternativa 1 no era factible por el momento negativo excesivamente alto que se generaba en la columna central como se puede observar en la Figura 3.14. Dicho momento resulto ser 3 veces el momento generado en la Alternativa 2, que se pude observar en la Figura 3.13.

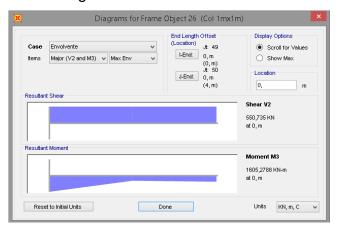



Figura 3.13. Diagrama de Momentos Alternativa 2.

Fuente: Sebastián Suarez y Rafael Barcenes

Adicionalmente el cortante resultante también es muy alto en la Alternativa 1, por estos motivos se procedió a elegir la Alternativa 2 como la opción estructuralmente más eficiente y segura para comenzar el cálculo de refuerzo de acero.



Figura 3.14. Diagrama de Momentos Alternativa 1.

## 3.1.4 Modelación de la cimentación

#### 3.1.4.1 Parámetros de modelación

Para la modelación de la cimentación de la estructura, existen parámetros que se deben definir, tales como las propiedades de los materiales de la losa de cimentación y del estrato de suelo sobre el cual descansa. En la Tabla 3.7 se detallan dichos parámetros:

Tabla 3.7. Propiedades del Hormigón.

| Hormigón          |        |             |  |  |  |
|-------------------|--------|-------------|--|--|--|
| f'c               | 27 459 | [KN/m]      |  |  |  |
| Peso volumétrico. | 23.6   | [KN/m2]     |  |  |  |
| Ec                | 24 628 | [KN/m2]     |  |  |  |
| LC                | 627.85 | [[X[4/]]]2] |  |  |  |

Fuente: Sebastián Suarez y Rafael Barcenes

En cuanto a las propiedades del suelo, resulta importante realizar ensayos de compresibilidad del estrato del suelo para determinar el coeficiente de reacción del subsuelo ( $k_s$ ) que sirve para cuantificar la rigidez del suelo.

Bowel (1997), recomienda en su libro utilizar la siguiente ecuación en caso de no constar con el ensayo de compresibilidad del suelo:

$$k_s = 40(SF)q_a \quad KN/m^3$$
 (Bowel, 1997, pg. 526)

Donde SF corresponde al factor de seguridad adoptado y  $q_a$  es la capacidad de carga admisible calculada. Para el factor de seguridad se recurrió a la NEC-SE-GS 2014, Tabla 6: "Factores de Seguridad Indirectos Mínimos, F.S.I.M", donde se determinó que para el caso en que se conoce las cargas muertas y cargas vivas se puede utilizar un valor mínimo de:

$$SF = 3$$

En cuanto a la capacidad de carga admisible del suelo, se encuentra calculada por el método de Terzaghi y Meyerhof en los apartados 3.1.5.1 y 3.1.5.2 del sub capítulo de Capacidad de carga del suelo. El mismo que resulto de:

$$q_a = 90.13ton/m^2 \cong 884KN/m^2$$

Entonces aplicando la ecuación recomendada por Bowel:

$$k_s = 40(3)(884) \quad KN/m^3$$
  
 $k_s = 106080 \quad KN/m^3$ 

Es importante mencionar que dicha ecuación es muy conservativa y que el suelo en realidad tendrá mejores propiedades de rigidez que el parámetro calculado.

#### 3.1.4.2 Resultado de la modelación de la cimentación

En la modelación estructural no se consideró la cimentación y se empotro las columnas sobre un suelo infinitamente rígido, la siguiente modelación se llevó a cabo considerando la fuerza axial y momentos flectores que se generaron en dicho empotramiento.

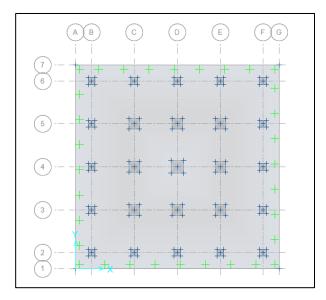



Figura 3.15. Geometría de la Cimentación - Alternativa 2

En la Figura 3.15 se observa que se modelo la geometría de la losa de cimentación correspondiente a la Alternativa 2. Los cuadrados azules representan las superficies de contacto de las columnas de la estructura y el cuadrado gris representa la dimensión total de 16 m x 16 m x 0.35 m de la losa de cimentación. En este caso, el programa ocupado realiza un análisis con el método flexible para determinar los esfuerzos transmitidos a la superficie del suelo y sus asentamientos.

Este método consiste en analizar el suelo como un número infinito de resortes, el coeficiente de reacción del subsuelo  $(k_s)$  ayuda a cuantificar la carga necesaria para deformar el suelo un cierto valor.

En la Figura 3.16 podemos observar las fuerzas axiales y momentos que se transmiten de la estructura hacia la cimentación.

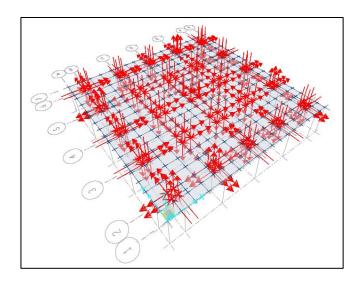



Figura 3.16. Fuerzas transmitidas hacia la cimentación.

Como resultados finales podemos aprecias en las Figuras 3.17 y 3.18, la carga transferida hacia el suelo y los asentamientos producidos por dichas cargas respectivamente.

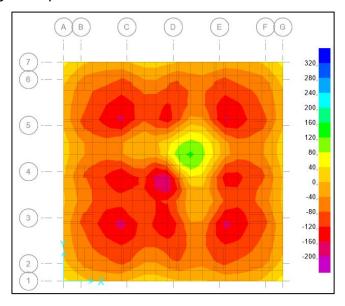



Figura 3.17. Fuerzas transmitidas hacia la cimentación.

Fuente: Sebastián Suarez y Rafael Barcenes

En la Figura 3.15 se observa la carga transmitida al suelo en KN/m², donde podemos a preciar que la carga máxima resulta ser de 200 KN/m², que corresponde a 20.4 ton/m².

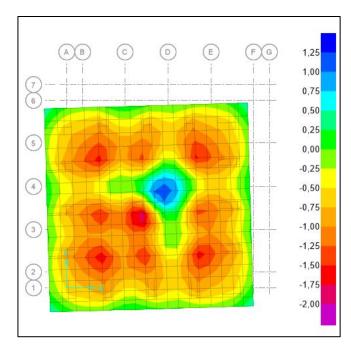



Figura 3.18. Asentamientos resultantes.

En la Figura 3.18 se aprecia el asentamiento causados por la carga de la estructura en mm. El asentamiento máximo resultante es de 1.25 mm.

Braja M. Das (2011), recomienda que los asentamientos máximos para una losa de cimentación no superen el valor de 50 mm. Por otra parte la normativa NEC-SE-GS en la tabla 7, establece un asentamiento máximo de:

$$\Delta_{\text{max}} = L/1000$$

Donde *L* representa el lado más corto de la cimentación y este asentamiento máximo debe ser cumplido en estructuras susceptibles a dañarse con asentamientos menores. El asentamiento máximo resultante para la losa de cimentación resulto de:

$$\Delta_{\text{max}} = 16/1000 = 0.016 \, m \cong 16 mm$$

Se puede evidenciar que el asentamiento resultante de 1.25 mm cumple con ambas recomendaciones expuestas.

## 3.1.5 Capacidad de carga del suelo

# 3.1.5.1 Teoría de capacidad de carga – Terzaghi (1943)

Carga Última:

$$\begin{split} q_{ult} &= 1.3c'N_c + \sigma_{zD}'N_q + 0.4\gamma'BN_\gamma \\ q_{ult} &= 1.3(2250~kg/m^2)(25.86) + (1817.5~kg/m^3)(2.5~m)(13.27) \\ &+ 0.4(1817.5kg/m^2)(16~m)(9.77) \\ q_{ult} &= 249600~kg/m^2 = 249.6~ton/m^2 \end{split}$$

Carga neta:

$$\begin{aligned} q_{ult(net)} &= q_{ult} - \sigma'_{zD} \\ q_{ult(net)} &= 249600 \text{ kg/m}^2 - (1817.5 \text{ kg/m}^3)(2.5 \text{ m}) \\ q_{ult(net)} &= 245056 \text{ kg/m}^2 = 245.1 \text{ ton/m}^2 \end{aligned}$$

Carga admisible:

$$q_{adm(net)} = \frac{q_{ult(net)}}{FS}$$

$$q_{adm(net)} = \frac{245.1 \text{ ton/m}^2}{3}$$

$$q_{adm(net)} = 81.7 \text{ ton/m}^2$$

# 3.1.5.2 Ecuación general de la capacidad de carga – Meyerhof (1963)

Capacidad de carga:

$$q_{ult} = c' N_c S_c d_c i_c + \sigma'_{zD} N_q S_q d_q i_q + \frac{1}{2} \gamma B N_\gamma S_\gamma d_\gamma i_\gamma$$

$$q_{ult} = (2250 \text{ kg/m}^2)(21.3)(1.50)(1.05)(1)$$

$$+ (1817.5 \text{ kg/m}^3)(2.5 \text{ m})(11.11)(1.25)(1.02)(1)$$

$$+ (1/2)(1817.5 \text{ kg/m}^3)(16 \text{ m})(7.24)(1.25)(1.02)(1)$$

$$q_{ult} = 274945.9 \text{ kg/m}^2 = 275 \text{ ton/m}^2$$

Carga neta:

$$\begin{split} q_{ult(net)} &= q_{ult} - \sigma'_{zD} \\ q_{ult(net)} &= 274945.9 \text{ kg/m}^2 - (1817.5 \text{ kg/m}^3)(2.5 \text{ m}) \\ q_{ult(net)} &= 270402.15 \text{ kg/m}^2 = 270.4 \text{ ton/m}^2 \end{split}$$

Carga admisible:

$$q_{adm(net)} = \frac{q_{ult(net)}}{FS}$$
 
$$q_{adm(net)} = \frac{270.4 \text{ ton/m}^2}{3}$$
 
$$q_{adm(net)} = 90.13 \text{ ton/m}^2$$

## 3.1.5.3 Resultado de la capacidad de carga del suelo

Braja M. Das (2011, pg. 297), indica que la ecuación general desarrollada por Meyerhof es aplicable para el cálculo de la capacidad de carga del suelo para una losa de cimentación. Por este motivo se optó utilizar el valor de:

$$q_{adm(net)} = 90.13 \text{ ton/m}^2$$

La carga máxima transmitida al suelo por la losa de cimentación en la Alternativa 2 resulto de:

$$q = 20.4 \text{ ton/m}^2$$

Este mismo valor resulta ser menor que la carga admisible, por consiguiente, el modelo elegido cumple con la carga máxima admisible que se puede ejercer al suelo donde será colocada la losa de cimentación.

#### 3.1.6 Cálculo de refuerzo de acero

El refuerzo de acero en el hormigón armado sirve para mejorar la resistencia a tracción y flexión de los elementos de hormigón. La cantidad de acero influye directamente en la ductilidad que dichos elementos y es

fundamental diseñar el hormigón armado con la cantidad justo para que cumpla con las cargas de edificio y en caso de falla se produzca una falla dúctil, evitando que los edificios colapsen sin previo aviso.

Por estos motivos la NEC-SE-HM recomienda el procedimiento del ACI 318-19 para los cálculos de las cuantías de hormigón para cada elemento estructural. A continuación se resumirán los cálculos efectuados y las cuantías resultantes para cada elemento estructural en el proyecto.

## 3.1.6.1 Losa superior

En la losa se requiere calcular el refuerzo para momentos negativos que se producen en las conexiones columnas – losa y el momento positivo en el centro de los claros de los paños de losas existentes. Mediante el modelo estructural podemos obtener ambos valores como podemos observar en las Figuras 3.19 y 3.20.

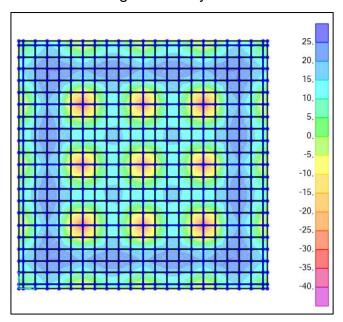



Figura 3.19. Momentos negativos máximos.

Fuente: Sebastián Suarez y Rafael Barcenes

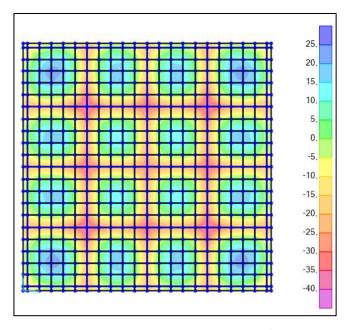



Figura 3.20. Momentos positivos máximos.

El momento positivo máximo resulto ser el valor de 33.89 KN-m y el momento negativo máximo resulto de 59.77 KN-m. A continuación se detallará el procedimiento y las normativas ocupadas para el cálculo del refuerzo de acero de la losa maciza propuesta para soportar las cargas del monumento.

En la Figura 3.21 se puede apreciar las variables iniciales que se deben definir para el diseño del refuerzo de la losa.

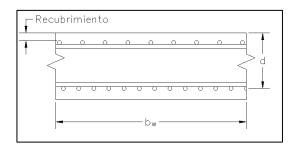



Figura 3.21. Dimensiones preliminares.

Fuente: Sebastián Suarez y Rafael Barcenes

En este caso el recubrimiento adoptado es de 4 cm, suficiente para proteger al acero del medio. El valor d corresponde al espesor de la

losa menos el recubrimiento y la mitad del diámetro de la varilla. El valor de  $b_w$  corresponde a 1 m de ancho para el diseño de losas. Con estas medidas definidas se procede a calcular el área de acero requerida para la losa  $A_s$  (cuantía de acero para la sección de hormigón), con las siguientes ecuaciones que cumplen con los criterios de diseño requeridos en el ACI 318-19 capítulo 22.3 para el refuerzo de acero.

$$\frac{M_u}{\varnothing*(f_c'*b_w*d^2)} = \omega*(1-0.59*\omega)$$
 Ecuación 3.1 
$$\omega = \rho*\frac{f_y}{f_c'}$$
 Ecuación 3.2 
$$A_s = \rho*b_w*d$$
 Ecuación 3.3

En la Ecuación 3.1 se remplazan los valores conocidos y como resultado se obtiene una ecuación cuadrática, donde la única incógnita a resolver es el valor de  $\omega$ . A continuación, se calcula el refuerzo requerido para el momento positivo.

## Datos iniciales:

$$b_w = 100 \ cm$$
  $rec = 5 \ cm$   $d = 30 \ cm - 5 \ cm = 25 \ cm$   $f_c' = 27 \ 458.6 \ KN/m^2$   $M_u = 33.89 \ KN - m$   $\emptyset = 0.9$  ACI 318-19, tabla 21.2.2 "Refuerzo en tensión"  $f_v = 413 \ 686 \ KN/m^2$ 

## Calculo de refuerzo para momento positive:

$$\frac{M_u}{\emptyset * (f_c' * b_w * d^2)} = \omega * (1 - 0.59 * \omega)$$

$$\frac{33.89}{0.9 * (33.89 * \frac{100}{100} * \frac{25}{100})} = \omega * (1 - 0.59 * \omega)$$

$$\omega * (1 - 0.59 * \omega) = 0.044$$

$$0.59 * \omega^{2} - \omega + 0.044 = 0$$

$$\omega = \frac{1 + \sqrt{-1^{2} - 4 * 0.59 * 0.044}}{2 * 0.59} = 0.045$$

$$\omega = \rho * \frac{f_{y}}{f_{c}'} \rightarrow \rho = \omega * \frac{f_{c}'}{f_{y}}$$

$$\rho = 0.045 * \frac{27 458.6}{413 686} = 0.003$$

Antes de realizar el cálculo del área de acero requerida  $(A_s)$ , primero se debe comprobar que la cuantía de acero  $(\rho)$  cumpla con los establecido por la NEC-SE-HM, en el capítulo 4.3.3. "Cuantía máxima de refuerzo longitudinal":

$$0.01 \le \rho \le 0.03 \rightarrow 0.01 \le 0.003 \le 0.03$$
 NO CUMPLE

Como la cuantía resultante no cumple, se corrige el valor de  $\rho$  por el valor mínimo recomendado de 0.01.

$$A_s = \rho * b_w * d$$
  
 $A_s = 0.01 * 100 * 25 = 25 cm^2$ 

La última comprobación se realiza para verificar si la losa requiere refuerzo para los esfuerzos cortantes, aplicando la siguiente ecuación:

$$V_c = 1.33 * \lambda * \sqrt{f_c'} * b_w * d$$
 ACI 318-19, 22.5.1.1 
$$V_c = 1.33 * 1 * \sqrt{280} * 100 * 25 = 55.6 \ ton - m$$
 
$$V_c = 554.4 \ KN$$

Entonces la resistencia al cortante que aporta el hormigón ( $V_c$ ) debe resultar mayor a la fuerza de corte resultante ( $V_u$ ) en la losa por las combinaciones de cargas aplicadas en el modelo estructural.

$$\emptyset V_c > V_u$$

En la figura 3.22 se puede determinar que el esfuerzo contante máximo en la losa es de 80 KN.

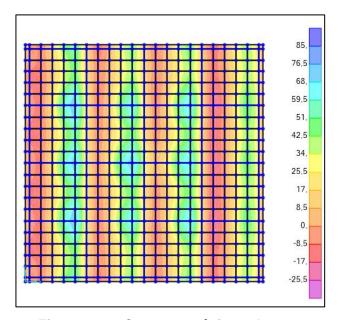



Figura 3.22. Cortante máximo - Losa.

Fuente: Sebastián Suarez y Rafael Barcenes

 $0.6 * 554.4 \ KN > 80 \ KN$   $\rightarrow$  332.6  $KN > 80 \ KN$  SI CUMPLE

Como  $V_c$  resulto ser mayor que  $V_u$ , la losa no requiere de refuerzo a cortante y se procede a definir el tamaño y números de varillas necesarias para el refuerzo contra el momento positivo. En la Tabla 3.8 se observa todas las configuraciones de varillas posibles para el área de acero requerido  $(A_s)$ .

Tabla 3.8. Determinación de diámetro de varilla - Losa.

| Diámetro<br>[mm] | Radio<br>[mm] | Área<br>[mm2] | # Varillas<br>requeridas | Espaciamiento entre varillas [cm] |
|------------------|---------------|---------------|--------------------------|-----------------------------------|
| 8                | 4             | 50.265        | 49.7                     | 1.22                              |
| 10               | 5             | 78.540        | 31.8                     | 2.19                              |
| 12               | 6             | 113.097       | 22.1                     | 3.29                              |
| 14               | 7             | 153.938       | 16.2                     | 4.76                              |
| 16               | 8             | 201.062       | 12.4                     | 6.60                              |
| 18               | 9             | 254.469       | 9.8                      | 9.11                              |
| 20               | 10            | 314.159       | 8.0                      | 12.00                             |
| 22               | 11            | 380.133       | 6.6                      | 14.10                             |
| 25               | 12.5          | 490.874       | 5.1                      | 17.00                             |
| 28               | 14            | 615.752       | 4.1                      | 21.50                             |
| 32               | 16            | 804.248       | 3.1                      | 29.07                             |
| 36               | 18            | 1017.876      | 2.5                      | 44.60                             |

Se optó utilizar varillas de 20 mm, con un espaciamiento entre varillas de 12 cm y un espaciamiento de centro a centro de varillas de 14 cm. El espaciamiento mínimo debe cumplir con lo dictado por el ACI 318-19, capítulo 25.2.1:

$$\begin{split} S_{min} &= \max[1~in, d_b] & \rightarrow & \max\left[2.54~cm~, 2~cm\right] \\ S_{min} &< S & \rightarrow & 2.54~cm < 14~cm \quad SI~CUMPLE \end{split}$$

En la Tabla 3.9 se resume los resultados para el cálculo del refuerzo con respecto al momento negativo de la losa.

Tabla 3.9. Resultados refuerzo – momento negativo.

| Momento | ρ          | As [cm2]   | Diámetro | # Varillas | Espaciamiento |
|---------|------------|------------|----------|------------|---------------|
| (-)     |            |            | varilla  | requeridas | [cm]          |
| [KN*m]  |            |            | [mm]     |            |               |
| 215     | 0.01015633 | 25.3908177 | 20       | 8.1        | 12            |

Fuente: Sebastián Suarez y Rafael Barcenes

## 3.1.6.2 Vigas

En el modelo estructural es posible definir el número de vigas que se deben diseñar, en total existen 40 vigas en la alternativa analizada. Pero de las 40 vigas se pueden identificar 5 tipos de vigas generales, esto producto de la geometría simétrica de la distribución de vigas y de la carga uniforme en toda la losa superior.

A continuación, se detallará el procedimiento de cálculo del refuerzo longitudinal y transversal de un tipo de viga y al final se resumirá en una tabla los resultados de los 4 tipos restantes.

Primero se debe identificar los momentos en las conexiones de la viga y en su centro, tanto los momentos positivos y negativos son requeridos por cada tipo de viga. Estos momentos son extraídos revisando el diagrama de momentos de la viga. En la Figura 3.23 se puede observar el diagrama de momentos y de cortante de la viga tipo 1.



Figura 3.23. Diagrama de momento y cortante - Viga tipo 1.

Fuente: Sebastián Suarez y Rafael Barcenes

También se requiere conocer las dimensiones de lavigas, esta información se encuentra en el pre-dimensionamiento de los elementos, en este caso para las vigas se optó por una sección transversal de 30 cm x 50 cm cumpliendo con las recomendaciones del ACI 318-19.

El siguiente paso es calcular el acero mínimo requerido por el área de la sección, en el código ACI 318-19, Apartado 9.6.1.2 dicta que el  $A_{s-min}$  debe ser el mayor de los siguientes valores:

a) 
$$\frac{0.25\sqrt{f_c'}}{f_y}b_wd = \frac{0.25*\sqrt{27.46}}{413.68}300*(500-40) = 437.02 \, mm^2$$

$$b)\frac{1.4}{f_y}b_wd = \frac{1.4}{413.68}300*(500-40) = 467.03 \ mm^2$$

Entonces el área mínima de acero requerida resulta ser 467.03 mm², el siguiente paso es determinar el número de varillas que cumplan con el área mínima y si el momento nominal cumple con el momento ultimo de diseño. En base a las distribuciones de varillas existentes y el espaciamiento resultante, se eligió utilizar 3 varillas de 16 mm de diámetro.

Con el tamaño y número de varillas requeridas determinados, se debe calcular el momento nominal y verificar que cumple la siguiente igualdad:

$$\begin{split} & \emptyset M_n > M_u \\ & \emptyset M_n = \emptyset * A_s * f_y * \left(\frac{d-a}{2}\right) \\ & a = \frac{A_s * f_y}{\emptyset * f_c' * b_w} = \frac{\left(3 * \pi * \left(\frac{16mm}{2}\right)^2\right) * 413.68MPa}{0.85 * 27.46MPa * 300mm} = 35.64 mm \\ & \emptyset M_n = 0.85 * 603.19mm^2 * 413.68MPa * \left(\frac{460mm - 35.64mm}{2}\right) \\ & \emptyset M_n = 99.30 \ KN - m \end{split}$$

El momento último de diseño se obtiene mirando el diagrama de momento de la Figura 3.22 en este caso vamos a analizar el momento negativo del extremo izquierdo de la viga. El mismo que resulta ser de 86 KN-m. Entonces:

$$\emptyset M_n > M_u$$
  $\rightarrow$  99.30  $KN - m$   
> 86  $KN - m$  SI CUMPLE

El siguiente paso es verificar que la cuantía seleccionada no sobre pase la cuantía máxima que recomienda el ACI 318-19 en el apartado 18.6.3.1.

$$\frac{A_{smin}}{b_w * d} < \frac{A_s}{b_w * d} < 2.5$$

$$0.0034 < 0.0044 < 2.5$$
SI CUMPLE

Con el refuerzo a flexión calculado se procede a determinar la cantidad y distribución adecuada del refuerzo transversal para el cortante de la viga. El ACI 318-19 en el apartado 18.6.4.4 recomienda una separación máxima entre estribos del menor de los siguientes resultados:

$$a)\frac{d}{4} = \frac{500}{4} = 125 \ mm$$

b) 
$$6 in = 152.4 mm$$

$$c) 6 * d_b = 6 * 14mm = 84 mm$$

El ACI 318-19 en el apartado 18.6.4.1 especifica que la longitud de confinamiento requerida para el refuerzo a cortante con el espaciamiento calculado de 84 mm entre estribos corresponde a la longitud de dos veces el peralte de la viga (2\*h=2\*500mm=1000mm), en este caso la longitud de confinamiento es de 1 metro a cada extremo de la viga.

Con el espaciamiento máximo definido de 84 mm, se opta por un espaciamiento de 80 mm respetando el espaciamiento máximo. Ahora se procede a calcular el cortante producido por los momentos probables mencionados en el ACI 318-19, apartado 18.6.5.1:

$$\begin{split} M_{pr} &= 1.25 * A_s * f_y * \left(\frac{d-a}{2}\right) \\ a &= \frac{1.25 * A_s * f_y}{\emptyset * f_c' * b_w} = \frac{1.25 * \left(3 * \pi * \left(\frac{16mm}{2}\right)^2\right) * 413.68MPa}{0.85 * 27.46MPa * 300mm} \\ &= 44.55 mm \\ M_{pr} &= 1.25 * 603.19mm^2 * 413.68MPa * \left(\frac{460mm - 44.55mm}{2}\right) \\ M_{pr} &= 136.53 KN - m \end{split}$$

Se calcula todos los momentos probables para cada viga, en total existen 4 momentos probables con 2 en cada extremo de la viga. En la tabla 3.9 se resume los momentos probables calculados para la viga tipo 1.

| Tipo de momento                | $M_{pr}$ |
|--------------------------------|----------|
| Extremo derecho (+)            | 136.53   |
| Extremo derecho (-)            | 136.53   |
| Extremo izquierdo (+)          | 136.53   |
| Extremo izquierdo negativo (-) | 136.53   |

Tabla 3.9. Momentos probables de la viga tipo 1.

Fuente: Sebastián Suarez y Rafael Barcenes

En este caso el momento probable en la viga resulta igual porque el refuerzo longitudinal es constante en esta viga. Entonces el cortante sísmico de la viga se calcula de la siguiente manera:

$$V_{sismo} = \frac{\max\left(M_{pr-der(+)}, M_{pr-der(-)}\right) + \max\left(M_{pr-izq(+)}, M_{pr-izq(-)}\right)}{l_n}$$

Donde  $l_n$  es la luz de la viga analizada, en nuestro proyecto todas las vigas tienen una luz aproximada de 2.9 m.

$$V_{sismo} = \frac{136.53 + 136.53}{2.9} = 94.16 \, KN$$

El cortante último de diseño se calcula mediante la siguiente ecuación:

$$V_u = V_{sismo} + V_{dead}$$

Donde  $V_{dead}$  es el valor del cortante producido por las cargas muertas de la estructura, este valor puede ser obtenido de los diagramas de cortante para la combinación 4 en el modelo estructural, como se observa en la Figura 3.24

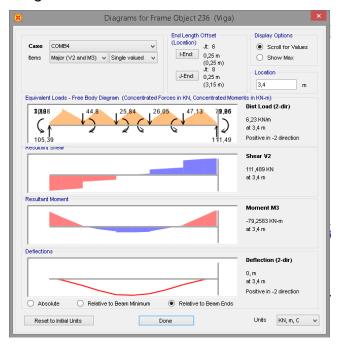



Figura 3.24. Diagrama de momento y cortante - Viga tipo 1- COMB4.

Fuente: Sebastián Suarez y Rafael Barcenes

El valor del cortante producido por las cargas muertas, resulto ser de 112 KN. Entonces:

$$V_{y} = 94.16 + 112 = 206.16 \, KN$$

Ahora siguiendo las recomendaciones del ACI 318-19 apartado 18.6.5.2 se calcula la resistencia al corte que aporta la sección de hormigón la viga, tomando en cuenta las siguientes condiciones:

a) si 
$$V_{sismo} \ge 0.5 * V_u$$
  $\rightarrow$   $V_c = 0$ 

b) 
$$si V_{sismo} < 0.5 * V_u \rightarrow 0.17 * \sqrt{f_c'} * b_w * d$$

#### **Entonces:**

$$94.16KN \ge 0.5 * 206.16KN \rightarrow 94.16KN$$
  
  $\ge 103.08KN \quad NO \ CUMPLE$ 

Como no se cumple la condición a, se procede a calcular  $V_c$  con la condición b.

$$V_c = 0.17 * \sqrt{f_c'} * b_w * d$$
  
 $V_c = 0.17 * \sqrt{27.46} * 300mm * 460mm = 123 KN$ 

Con  $V_u$  y  $V_c$  definidos, se procede a calcular la resistencia requerida  $V_s$  que debe aportar el acero de refuerzo transversal:

$$V_s = V_u - V_c = 206.16KN - 123KN = 83.16KN$$

El siguiente paso es determinar el área de acero de refuerzo transversal requerido para cumplir con la resistencia  $V_s$ , se calcula despejando la ecuación del ACI 318-19 apartado 22.5.8.5.3.

$$V_S = \frac{A_v * f_{yt} * d}{S}$$
  $\rightarrow$   $A_v = \frac{V_s * S}{f_{yt} * d}$ 

$$A_v = \frac{83.16KN * 80mm}{413.68MPA * 460mm} = 63.88mm^2$$

Se requiere verificar que el área de acero calculado  $A_v$  cumple con el área de acero transversal mínimo  $A_{v-min}$  que recomienda el ACI 318-19 Tabla 9.6.3.4, donde se debe elegir el mayor de los siguientes casos:

a) 
$$0.062 * \sqrt{f_c'} * \frac{b_w * S}{f_{yt}} \rightarrow 0.062 * \sqrt{27.45} * \frac{300 * 80}{413.68}$$
  

$$= 18.85 \ mm^2$$
b)  $0.35 * \frac{b_w * S}{f_{yt}} \rightarrow 0.35 * \frac{300 * 80}{413.68} = 20.31 \ mm^2$ 

Entonces se debe cumplir la siguiente desigualdad:

$$A_{v-min} < A_v \rightarrow 20.31 mm^2 < 63.88 mm^2$$
 SI CUMPLE

Finalmente Definimos el espaciamiento para el tramo central de la viga, tomando en cuenta el espaciamiento máximo recomendado por el ACI 318-19 apartado 18.6.4.6

$$S_{centro} = \frac{d}{2} = \frac{460 \ mm}{2} = 230 \ mm$$

A continuación en la Tabla 3.10 se observa los resultados del refuerzo para los 5 tipos de vigas existentes en el proyecto.

Tabla 3.10. Resumen de refuerzos - Vigas.

| Vigo          | Refuerzo longitudinal |           | Refuerzo transversal   |                   |  |
|---------------|-----------------------|-----------|------------------------|-------------------|--|
| Viga Superior |                       | Inferior  | Tramo de confinamiento | Tramos central    |  |
| Tipo 1        | 3 φ 16 mm             | 3 φ 16 mm | ф 14 mm c/ 80 mm       | ф 14 mm c/ 230 mm |  |
| Tipo 2        | 3 φ 16 mm             | 3 φ 16 mm | ф 14 mm c/ 80 mm       | ф 14 mm c/ 230 mm |  |
| Tipo 3        | 3 φ 22 mm             | 3 φ 18 mm | ф 14 mm c/ 80 mm       | ф 14 mm c/ 230 mm |  |
| Tipo 4        | 3 φ 18 mm             | 3 ф 22 mm | ф 14 mm c/ 80 mm       | ф 14 mm c/ 230 mm |  |
| Tipo 5        | 3 φ 18 mm             | 3 φ 25 mm | ф 16 mm c/ 80 mm       | ф 16 mm c/ 230 mm |  |

Fuente: Sebastián Suarez y Rafael Barcenes

## 3.1.6.3 Columnas

En la alternativa 2 existen un total de 25 columnas, de las cuales se pueden clasificar en 6 tipos, que dependen del tamaño de la sección transversal de las columnas y de la fuerza axial y momentos flectores soportados.

Para el cálculo de refuerzo en las columnas primero se debe exportar las fuerzas axiales y momentos flectores resultantes en la parte superior – centro –parte inferior de las columnas. En la Tabla 3.11

podemos observas las reacciones descritas para cada combinación de carga aplicada a la modelación estructural de la columna Tipo 1.

Tabla 3.11. Reacciones – Columna Tipo 1.

| Columna | Pu       | Mu22s   | Mu33s   | Mu22i    | Mu33i    |
|---------|----------|---------|---------|----------|----------|
| Tipo 1  | KN       | KN*m    | KN*m    | KN*m     | KN*m     |
| Comb1   | -286.957 | 59.502  | 59.502  | -28.583  | -28.583  |
| Comb2   | -253.173 | 52.729  | 52.729  | -25.329- | -25.329  |
| Comb3   | -269.032 | 56.531  | 56.531  | -27.155  | -27.155  |
| Comb4   | -253.173 | 52.729  | 52.729  | -25.329  | -25.329  |
| Comb5xa | -197.797 | 21.893  | -39.212 | 13.790   | 95.950   |
| Comb5xb | -226.682 | 77.212  | -36.269 | -58.819  | 93.763   |
| Comb5xc | -294.081 | 31.702  | 145.184 | 6.499    | -146.083 |
| Comb5xd | -322.966 | 87.021  | 148.127 | -66.110  | -148.270 |
| Comb5ya | -197.797 | -39.212 | 21.893  | 95.950   | 13.790   |
| Comb5yb | -226.682 | -36.269 | 77.212  | 93.763   | -58.819  |
| Comb5yc | -294.081 | 145.184 | 31.702  | -146.083 | 6.499    |
| Comb5yd | -322.966 | 148.127 | 87.021  | -148.270 | -66.110  |
| Comb6xa | -184.473 | 38.251  | 38.251  | -18.374  | -18.374  |
| Comb6xb | -121.888 | 5.687   | -55.418 | 21.575   | 103.735  |
| Comb6xc | -150.773 | 61.006  | -52.475 | -51.034  | 101.548  |
| Comb6xd | -218.172 | 15.496  | 128.978 | 14.284   | -138.298 |
| Comb6ya | -247.057 | 70.815  | 131.921 | -58.325  | -140.485 |
| Comb6yb | -121.888 | -55.418 | 5.687   | 103.735  | 21.575   |
| Comb6yc | -150.773 | -52.475 | 61.006  | 101.548  | -51.034  |
| Comb6yd | -218.172 | 128.978 | 15.496  | -138.298 | 14.284   |
| Comb7   | -247.057 | 131.921 | 70.815  | -140.485 | -58.325  |

Tabla 3.11. Reacciones – Columna Tipo 1.

Fuente: Sebastián Suarez y Rafael Barcenes

A continuación, se detallará el procedimiento de cálculo para determinar el refuerzo longitudinal y transversal de la columna Tipo 1, al final se presentará una tabla con los resultados de los 7 tipos de columnas restantes.

El primer paso es realizar el diagrama de interacción de las columnas y el acero longitudinal que se pretende colocar, como se puede observar en la Figura 3.25.

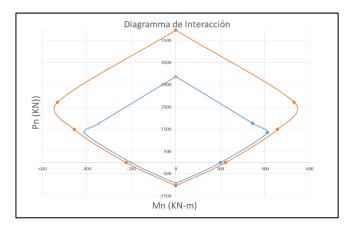



Figura 3.25. Diagrama de Interacción – Columna tipo 1.

En este caso el diagrama de interacción corresponde a una columna con las características de la Figura 3.26.

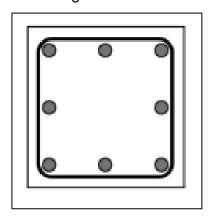



Figura 3.26. Diagrama de Interacción - Columna tipo 1.

Fuente: Sebastián Suarez y Rafael Barcenes

Donde la sección transversal corresponde a 0.5 m x 0.5 m y tiene 8 varillas de diámetro de 20 mm, ubicadas en la distribución observada. Después en el diagrama de interacción se grafican las coordenadas de la Tabla 3.11, que corresponde a las reacciones resultantes del modelado estructural de todas las combinaciones de carga. Y estos puntos deben caer dentro de la curva a azul que vendría a ser la curva factorizada según las especificaciones del ACI 318-19.

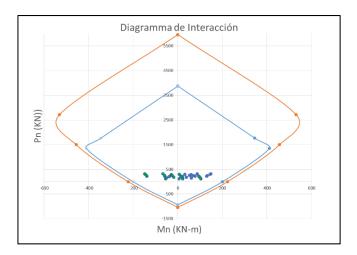



Figura 3.27. Diagrama de Interacción – Columna tipo 1.

Si todos los puntos caen dentro de la curva factorizada como se puede observar en la Figura 3.27, significa que la sección de la columna con el acero longitudinal propuesto cumple con las cargas de diseño. Finalmente se procede a comprobar que la cuantía del acero no exceda el máximo ni sea menor que el mínimo. Siguiendo las indicaciones del ACI 318-19, apartado 10.6.1.1:

$$0.01A_g < A_s < 0.08A_g$$
 
$$0.01*500mm*500mm < 8*\pi*\left(\frac{20mm}{2}\right)^2 < 0.08*500mm*500mm$$
 
$$2500mm^2 < 2513.27mm^2 < 20000mm^2$$
 SI CUMPLE

El siguiente paso es determinar el refuerzo transversal requerido y la distribución del mismo en toda la longitud de la columna. Primero se debe definir la longitud de confinamiento en cada extremo de la columna como lo dicta el ACI 318-19 apartado 18.7.5.1, donde dicha longitud debe ser el mayor de las siguientes condiciones:

a) longitud de un lado de la seccion transversal de la columna 
$$= 500 \text{ mm}$$

b) 
$$\frac{1}{6}$$
 \* longitud libre de la columna =  $\frac{1}{6}$  \*  $4m = 667 mm$ 

c) 
$$18 in = 457.2 mm$$

Para definir el espaciamiento requerido, seguimos las indicaciones del ACI 318-19 apartado 18.7.5.3, donde nos indica utilizar un espaciamiento de al menos el menor de las siguientes condiciones:

a) 
$$\frac{1}{4}$$
 \* lado de la seccion transversal de la columna =  $\frac{1}{4}$  \* 500 mm = 125 mm

$$b) 6 * d_b = 6 * 20mm = 120 mm$$

c) 
$$4 + \left(\frac{14 - h_x}{3}\right) = 4 + \left(\frac{14 - 6.85}{3}\right) = 6.38 \text{ in} = 162 \text{ mm}$$

Donde podemos definir que el espaciamiento máximo resulta ser de 120 mm, entonces se adopta el valor de 80 mm para la longitud de confinamiento y 120 mm en el tramo central de la columna, utilizando refuerzo transversal de varillas de 16 mm.

En la Tabla 3.12, podemos encontrar un resumen del acero longitudinal y transversal calculado para los 6 tipos de columnas existentes.

Tabla 3.12. Reacciones - Columna Tipo 1.

|         | Dimensiones   | Refuerzo     | Refuerzo transversal   |                |  |
|---------|---------------|--------------|------------------------|----------------|--|
| Columna | transversales | longitudinal | Tramo de confinamiento | Tramo central  |  |
|         |               |              |                        | φ 16 mm c/ 120 |  |
| Tipo 1  | 0.5 m x 0.5 m | 8 ф 20 mm    | φ 16 mm c/ 80 mm       | mm             |  |
|         |               |              |                        | φ 16 mm c/ 120 |  |
| Tipo 2  | 0.5 m x 0.5 m | 8 ф 20 mm    | φ 16 mm c/ 80 mm       | mm             |  |
|         |               |              |                        | φ 16 mm c/ 120 |  |
| Tipo 3  | 0.5 m x 0.5 m | 8 ф 20 mm    | φ 16 mm c/ 80 mm       | mm             |  |
|         |               |              |                        | φ 16 mm c/ 150 |  |
| Tipo 4  | 0.8 m x 0.8 m | 12 φ 28 mm   | φ 16 mm c/ 80 mm       | mm             |  |
|         |               |              |                        | φ 16 mm c/ 150 |  |
| Tipo 5  | 0.8 m x 0.8 m | 12 φ 28 mm   | φ 16 mm c/ 80 mm       | mm             |  |
|         |               |              |                        | φ 18 mm c/ 150 |  |
| Tipo 6  | 1 m x 1 m     | 12 φ 36 mm   | φ 18 mm c/ 80 mm       | mm             |  |

## 3.1.6.4 Losa de cimentación

En la losa de cimentación se requiere calcular el refuerzo para momentos negativos y momentos positivos resultantes de las cargas transferidas de la superestructura. Mediante el modelo de la cimentación podemos obtener ambos valores como podemos observar en las Figuras 3.28 y 3.29.

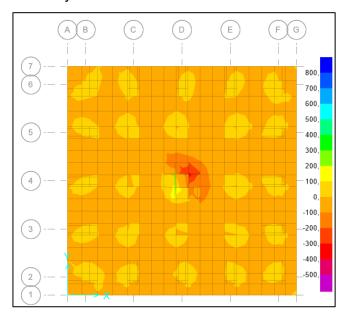



Figura 3.28. Momentos negativos máximos.

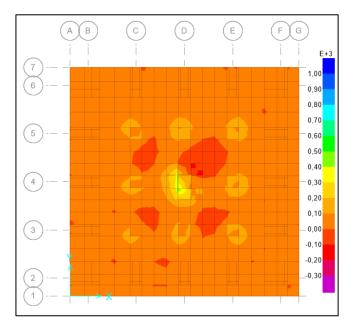



Figura 3.29. Momentos positivos máximos.

Fuente: Sebastián Suarez y Rafael Barcenes

El momento positivo máximo resulto ser el valor de 400 KN-m y el momento negativo máximo resulto de 300 KN-m. A continuación, se detallará el procedimiento y las normativas ocupadas para el cálculo del refuerzo de acero de la losa maciza propuesta para soportar las cargas de la superestructura.

En la Figura 3.30 se puede apreciar las variables iniciales que se deben definir para el diseño del refuerzo de la losa.

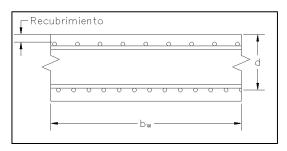



Figura 3.30. Dimensiones preliminares.

Fuente: Sebastián Suarez y Rafael Barcenes

En este caso el recubrimiento adoptado es de 5 cm, suficiente para proteger al acero del medio. El valor d corresponde al espesor de la losa menos el recubrimiento y la mitad del diámetro de la varilla. El valor de  $b_w$  corresponde a 1 m de ancho para el diseño de losas. Con estas medidas definidas se procede a calcular el área de acero requerida para la losa  $A_s$  (cuantía de acero para la sección de hormigón), con las siguientes ecuaciones que cumplen con los criterios de diseño requeridos en el ACI 318-19 capítulo 22.3 para el refuerzo de acero.

$$\frac{M_u}{\varnothing*(f_c'*b_w*d^2)} = \omega*(1-0.59*\omega)$$
 Ecuación 3.1 
$$\omega = \rho*\frac{f_y}{f_c'}$$
 Ecuación 3.2 
$$A_s = \rho*b_w*d$$
 Ecuación 3.3

En la Ecuación 3.1 se remplazan los valores conocidos y como resultado se obtiene una ecuación cuadrática, donde la única incógnita a resolver es el valor de  $\omega$ . A continuación, se calcula el refuerzo requerido para el momento positivo.

## **Datos iniciales:**

$$b_w = 100 \ cm$$
  $rec = 5 \ cm$   $d = 35 \ cm - 5 \ cm = 30 \ cm$   $f_c' = 27 \ 458.6 \ KN/m^2$   $M_u = 400 \ KN - m$   $\emptyset = 0.9$  ACI 318-19, tabla 21.2.2 "Refuerzo en tensión"  $f_v = 413 \ 686 \ KN/m^2$ 

## Cálculo de refuerzo para momento positive:

$$\frac{M_u}{\emptyset * (f_c' * b_w * d^2)} = \omega * (1 - 0.59 * \omega)$$

$$\frac{400}{0.9 * (33.89 * \frac{100}{100} * \frac{30}{100})} = \omega * (1 - 0.59 * \omega)$$

$$\omega * (1 - 0.59 * \omega) = 0.18$$

$$0.59 * \omega^2 - \omega + 0.18 = 0$$

$$\omega = \frac{1 + \sqrt{-1^2 - 4 * 0.59 * 0.18}}{2 * 0.59} = 0.205$$

$$\omega = \rho * \frac{f_y}{f_c'} \rightarrow \rho = \omega * \frac{f_c'}{f_y}$$

$$\rho = 0.205 * \frac{27 458.6}{413.686} = 0.0136$$

Antes de realizar el cálculo del área de acero requerida  $(A_s)$ , primero se debe comprobar que la cuantía de acero  $(\rho)$  cumpla con los establecido por la NEC-SE-HM, en el capítulo 4.3.3. "Cuantía máxima de refuerzo longitudinal":

$$0.01 \le \rho \le 0.03 \rightarrow 0.01 \le 0.0136 \le 0.03$$
 SI CUMPLE

Como la cuantía resultante si cumple se procede al cálculo del área de acero requerido:

$$A_s = \rho * b_w * d$$
  
 $A_s = 0.0136 * 100 * 30 = 40.73 cm^2$ 

La última comprobación se realiza para verificar si la losa requiere refuerzo para los esfuerzos cortantes, aplicando la siguiente ecuación:

$$V_c = 1.33 * \lambda * \sqrt{f_c'} * b_w * d$$
 ACI 318-19, 22.5.1.1   
  $V_c = 1.33 * 1 * \sqrt{280} * 100 * 30 = 66.76 ton - m$    
  $V_c = 665.2 \ KN$ 

Entonces la resistencia al cortante que aporta el hormigón ( $V_c$ ) debe resultar mayor a la fuerza de corte resultante ( $V_u$ ) en la losa por las combinaciones de cargas aplicadas en el modelo estructural.

 $\emptyset V_c > V_u$ 

En la figura 3.31 se puede determinar que el esfuerzo contante máximo en la losa es de 320 KN.

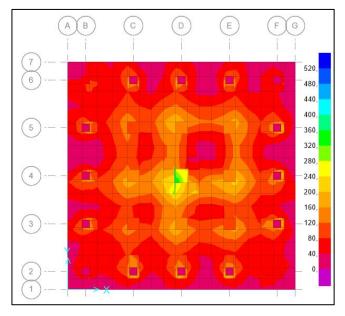



Figura 3.31. Cortante máximo – Losa de cimentación.

Fuente: Sebastián Suarez y Rafael Barcenes

$$0.6 * 665.2 \text{ KN} > 320 \text{ KN} \rightarrow 399.12 \text{ KN}$$
  
> 320 KN SI CUMPLE

Como  $V_c$  resulto ser mayor que  $V_u$ , la losa no requiere de refuerzo a cortante y se procede a definir el tamaño y números de varillas necesarias para el refuerzo contra el momento positivo. En la Tabla 3.13 se observa todas las configuraciones de varillas posibles para el área de acero requerido  $(A_s)$ .

Tabla 3.13. Determinación de diámetro de varilla.

| Diámetro [mm] | Radio [mm] | Área   | # Varillas | Espaciamiento |
|---------------|------------|--------|------------|---------------|
|               |            | [mm2]  | requeridas | [cm]          |
| 8             | 4          | 50.265 | 81.0       | 0.42          |
| 10            | 5          | 78.540 | 51.9       | 0.94          |

| 12 | 6    | 113.097  | 36.0 | 1.54  |
|----|------|----------|------|-------|
| 14 | 7    | 153.938  | 26.5 | 2.39  |
| 16 | 8    | 201.062  | 20.3 | 3.32  |
| 18 | 9    | 254.469  | 16.0 | 4.34  |
| 20 | 10   | 314.159  | 13.0 | 6.17  |
| 22 | 11   | 380.133  | 10.7 | 7.58  |
| 25 | 12.5 | 490.874  | 8.3  | 9.69  |
| 28 | 14   | 615.752  | 6.6  | 13.40 |
| 32 | 16   | 804.248  | 5.1  | 16.16 |
| 36 | 18   | 1017.876 | 4.0  | 20.50 |

Se optó utilizar varillas de 20 mm, con un espaciamiento entre varillas de 6.17 cm y un espaciamiento de centro a centro de varillas de 8 cm. El espaciamiento mínimo debe cumplir con lo dictado por el ACI 318-19, capítulo 25.2.1:

$$S_{min} = \max[1 \ in, d_b] \rightarrow \max[2.54 \ cm \ , 2 \ cm]$$
   
  $S_{min} < S \rightarrow 2.54 \ cm < 8 \ cm \quad SI \ CUMPLE$ 

En la Tabla 3.14 se resume los resultados para el cálculo del refuerzo con respecto al momento negativo de la losa.

Tabla 3.14. Resultados refuerzo - momento negativo.

| Momento (-)<br>[KN*m] | ρ    | As [cm2] | Diámetro<br>varilla [mm] | # Varillas<br>requeridas | Espaciamiento [cm] |
|-----------------------|------|----------|--------------------------|--------------------------|--------------------|
| 300                   | 0.01 | 30       | 20                       | 20                       | 12                 |

Fuente: Sebastián Suarez y Rafael Barcenes

## 3.1.7 Solución estabilizadora

De acuerdo a los análisis realizados se estableció, que para las características geotécnicas de la roca encontrada, al aplicarse las cargas producía deformaciones del orden de 9.3 mm. Por esta razón se propone

construir una solución geotécnica estabilizadora consistente en la construcción de una pantalla confinante conformada por anclajes continuos inyectados.

Cada anclaje continuo, inyectado consiste en una perforación de 15 cm de diámetro y que avanza a una profundidad de 12 m. De esta forma se asegura que la cimentación se apoye en los niveles más profundos de la roca donde se va a tener indudablemente mejores propiedades geo mecánicas de resistencia tanto al corte como a la compresión.

La solución de los anclajes continuos inyectados involucra un proceso de inyección en la roca meteorizada, de tal manera de lograr su consolidación. Dado que las inyecciones son a presión se va a lograr conformar un bulbo de inyecciones el cual se traslapa (ver Figura 3.11) con el taladro o perforación de inyección vecina. De esta manera se logra conformar una pantalla que formaría un confinamiento prismático cuadrado.

Con esta solución se logrará el confinamiento de la masa de roca meteorizada evitando de esta forma, que al aplicar las cargas no se produzcan deformaciones laterales (en dirección a los barrancos del cerro), de esta forma se evitarían los asentamientos y el terreno debidamente consolidado ofrecerá mucha mayor resistencia a la compresión. De esta forma se garantizará que el monumento tenga gran estabilidad.

Es importante señalar que los anclajes continuos inyectados van ligados estructuralmente a la losa de cimentación, por lo que esta se apoya en estas soluciones geotécnicas que como se ha señalado llegan hasta 12 m de profundidad a niveles rocosos seguramente de mejor calidad geo mecánica.

#### 3.2 Diseño de vía

#### 3.2.1 Tráfico

El estudio del tráfico es necesario para el diseño de la carretera, ya que por medio de este estudio podemos determinar el volumen de tráfico, que se mide por medio del TPDA que es el parámetro inicial para determinar el tipo de carretera que se dispondrá en el proyecto.

Para determinar el TPDA es necesario llevar a cabo un aforo de tránsito, el cual nos permite determinar el número y el tipo de vehículo que circula en determinada hora del día.

Debido a que es un proyecto nuevo, realizamos el aforo en la vía tal como se muestra en la figura 3.32. El aforo se hizo por 3 días en las fechas comprendidas desde el 19 al 21 de noviembre, correspondiente a los días jueves, viernes y sábado, tal como se indica en la tabla 3.15.



Figura 3.32 Carretera aforada para el estudio de un nuevo proyecto

Fuente: Google Earth

Tabla 3.15 Resumen de aforo de tránsito

| Tipo de vehículo | Promedio de 3 días |
|------------------|--------------------|
| Auto             | 594.67             |
| Camioneta        | 522.33             |
| Moto             | 220.00             |
| Buses            | 20.00              |
| camion 2D        | 55.00              |
| camion 2DA       | 36.67              |
| Volqueta         | 24.67              |
| Mula             | 58.00              |
| Trailer          | 8.33               |

Al ser un proyecto nuevo se considera un porcentaje del aforo medido, para este caso se considera un 15%, considerando el tipo de proyecto que se va a llevar a cabo y un nivel de aceptación estimado por parte de la comunidad de Zaruma

Tabla 3.16. Tabla de aforo considerando el 15% del tráfico de vías adyacentes

| Tipo de vehículo | Promedio de 3<br>días | Proyecto 15% |
|------------------|-----------------------|--------------|
| Auto             | 594.67                | 89.20        |
| Camioneta        | 522.33                | 78.35        |
| Moto             | 220.00                | 33.00        |
| Buses            | 20.00                 | 3.00         |
| camion 2D        | 55.00                 | 8.25         |
| camion 2DA       | 36.67                 | 5.50         |
| Volqueta         | 24.67                 | 3.70         |
| mula             | 58.00                 | 8.70         |
| trailer          | 8.33                  | 1.25         |

Fuente: Sebastián Suarez y Rafael Barcenes

Se usa un factor de conversión para transforma el tránsito en vehículo de diseño.

Tabla 3.17. Factor aplicado para transformar el tránsito a vehículo de diseño

| Vehículo    | Veh/día | factor | V-dis/día |         |
|-------------|---------|--------|-----------|---------|
| Motocicleta | 33.00   | 0.5    | 16.5      |         |
| Auto        | 89.20   | 1      | 89.20     | Liviano |
| Camioneta   | 78.35   | 1      | 78.35     | 184.05  |
| Buses       | 3.00    | 1.5    | 4.5       |         |
| camion 2D   | 8.25    | 2      | 16.5      |         |
| camion 2DA  | 5.50    | 2      | 11        | Pesado  |
| Volqueta    | 3.70    | 2      | 7.4       | 69.25   |
| Mula        | 8.70    | 3      | 26.1      |         |
| Trailer     | 1.25    | 3      | 3.75      |         |
|             |         |        | total     | 253.30  |

Analizamos el 50% del aforo, debido a que se consideró ambos sentidos de la vía para el conteo de vehículos, de tal manera que el trafico actual considerado para el diseño será 127 veh/día.

## a) Tráfico futuro

Es el tráfico proyectado para un periodo de tiempo de 15 a 20 años, el cual depende del tráfico actual. Puede ser usado como un indicativo para saber cuando será necesario mejorar la capa de rodadura. Depende del tráfico actual y de la tasa de crecimiento vehicular, sin embargo, la norma permite usar la tasa de crecimiento poblacional en caso de no contar con dicha información. En el caso del cantón Zaruma la tasa de crecimiento poblacional durante el periodo 2001 al 2010, según datos del INEC, es de 1.11%. Para el proyecto en cuestión, vamos asumir que la tasa de crecimiento poblacional se mantiene constante, considerando el hecho de que en la década anterior a la mencionada, el cantón Zaruma tuvo una tasa de crecimiento negativa. según el censo de población y vivienda del año 2010.

$$T_f = T_a * (1+i)^n$$

 $T_a$ : Tráfico actual (127)

i: Tasa de crecimiento (poblacional para este caso)

n: ano de proyeccion (20 años)

## b) Tráfico desarrollado

El tráfico desarrollado es el que se genera debido a mejores en zonas cercanas, en caso de que la construcción o mejoras en la carretera no se hubiera presentado. A diferencia del tráfico futuro o proyectado, este se sigue generando por muchos años una vez que las mejoras viales ya se han realizado.

$$T_D = T_a * (1+i)^{n-3}$$

 $T_a$ : Trafico actual (127)

i: Tasa de crecimiento (poblacional para este caso)

n: ano de proyeccion (20 años)

## c) Tráfico generado

El tráfico generado se produce aproximadamente a los 2 años de la terminación de las mejoras o construcción de una carretera, comprende el número de viajes que se da en función de las mejoras propuestas en la carretera. Depende del tráfico proyectado y del tráfico desarrollado.

$$T_q = 0.25 * (T_f + T_D)$$

 $T_f$ : Trafico futuro

 $T_D$ : Trafico desarrollado

## d) Tráfico desviado

Es el tráfico proveniente de carreteras colindantes a la carretera nueva, una vez que esta entra en servicio.

$$T_d = 0.20 * (T_f + T_D)$$

 $T_f$ : Tráfico futuro

 $T_D$ : Tráfico desarrollado

Finalmente, el TPDA se calcula por medio de la siguiente expresión:

$$TPDA = T_f + T_D + T_g + T_d$$

Tabla 3.18. Cálculo de TPDA

| Tra | áfico Actual | T <sub>f</sub>        | T <sub>D</sub>            | Tg                         | T <sub>d</sub>             | TDDA   |
|-----|--------------|-----------------------|---------------------------|----------------------------|----------------------------|--------|
| Та  | 127          | $T_f = T_a * (1+i)^n$ | $T_D = T_a * (1+i)^{n-3}$ | $T_g = 0.20 * (T_f + T_D)$ | $T_g = 0.20 * (T_f + T_D)$ | TPDA   |
| 2   | 020-2040     |                       |                           |                            |                            |        |
| n   | 20 años      | 158                   | 153                       | 77.90                      | 62.32                      | 298.59 |
| i   | 1.11 %       |                       |                           |                            |                            |        |

Fuente: Sebastián Suarez y Rafael Barcenes

Entonces, para el TPDA calculado la norma establece los tipos de carretera, que para este caso sería una carretera de clase IV.

Tabla 3.19. Tabla de clasificación de carreteras de acuerdo al TPDA

| CLASIFICACION DE CARRETERAS EN FUNCION DEL<br>TRAFICO PROYECTADO                                                                                                                                                                                                                                                                                                                      |              |   |       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|-------|--|
| Clase de Carretera Tráfico Proyectado TPDA *                                                                                                                                                                                                                                                                                                                                          |              |   |       |  |
| R-I o R-II                                                                                                                                                                                                                                                                                                                                                                            | Más de 8.000 |   |       |  |
| I                                                                                                                                                                                                                                                                                                                                                                                     | De 3.000     | a | 8.000 |  |
| II                                                                                                                                                                                                                                                                                                                                                                                    | De 1.000     | a | 3.000 |  |
| III                                                                                                                                                                                                                                                                                                                                                                                   | De 300       | a | 1.000 |  |
| IV                                                                                                                                                                                                                                                                                                                                                                                    | De 100       | a | 300   |  |
| V                                                                                                                                                                                                                                                                                                                                                                                     | Menos de     |   | 100   |  |
| * El TPDA indicado es el volumen de tráfico promedio diario anual proyectado a 15 o 20 años. Cuando el pronóstico de tráfico para el año 10 sobrepasa los 7.000 vehículos debe investigarse la posibilidad de construir una autopista. Para la determinación de la capacidad de una carretera, cuando se efectúa el diseño definitivo, debe usarse tráfico en vehículos equivalentes. |              |   |       |  |

Fuente: MTOP, Manual de Diseño Geométrico de Carreteras 2003

## 3.2.2 Velocidad

Una carretera es evaluada por los viajeros en términos de seguridad, confort al manejar y tiempo de recorrido para llegar al lugar de destino, esto hace que la velocidad sea una los factores más importantes a tener en cuenta en el diseño. Es aquí donde entra el concepto de velocidad de diseño el cual se define como aquella velocidad máxima con la que un vehículo puede circular de manera segura y depende de las condiciones físicas y topográficas del terreno, importancia del camino, volúmen de tránsito y uso de tierra (MTOP, 2003, pág. 26)

Debido a condiciones del terreno, puede que la velocidad de diseño varíe, sin embargo, es necesario que dicha transición no se tan abrupta, es por esto que la norma específica que en tramos contiguos la diferencia entre velocidades de diseño sea máximo de 20 Km/h.

El concepto de velocidad de circulación también es importante, ya que es la velocidad real con la que el vehículo se moviliza a lo largo de un tramo especifico en la carretera. Es una medida que se relaciona con la velocidad de diseño por medio del volumen de tránsito, si este es tiene un nivel alto, medio o bajo, y nos permite tener una noción con la que los vehículos se movilizaran a lo largo de la carretera. El MTOP establece una relación entre la velocidad de diseño y la velocidad de circulación por medio de un ábaco cuyos resultados se ilustran en la tabla 3.20.

Tabla 3.20. Relación entre la velocidad de diseño y la velocidad de circulación en función de la intensidad del volumen de tránsito

| Velocidad         | Velocidad de circulación en<br>Km/h |                                 |                                |  |  |
|-------------------|-------------------------------------|---------------------------------|--------------------------------|--|--|
| de diseño<br>Km/h | Volúmen<br>de tránsito<br>bajo      | Volúmen<br>de tránsito<br>medio | Volúmen<br>de tránsito<br>alto |  |  |
| 25                | 24                                  | 23                              | 22                             |  |  |
| 30                | 28                                  | 27                              | 26                             |  |  |
| 40                | 37                                  | 35                              | 34                             |  |  |
| 50                | 46                                  | 44                              | 42                             |  |  |
| 60                | 55                                  | 51                              | 48                             |  |  |
| 70                | 63                                  | 59                              | 53                             |  |  |
| 80                | 71                                  | 66                              | 57                             |  |  |
| 90                | 79                                  | 73                              | 59                             |  |  |
| 100               | 86                                  | 79                              | 60                             |  |  |
| 110               | 92                                  | 85                              | 61                             |  |  |

Fuente: MTOP, Manual de Diseño Geométrico de Carreteras 2003

## 3.2.3 Diseño horizontal

En función del TPDA y basado en los establecido por el MTOP, se indicia el ancho de calzada del pavimento el cual tendrá una distancia de 6 metros, adicional a esto se considerará que ira en el borde cercano al precipicio con un ancho de 0.5 m, a pesar de que lo establecido por el MTOP me indica un valor de 0.6, pero debido a las condiciones topográficas del terreno optamos por dicho valor.

De igual manera, según los establecido por el MTOP se considera un bombeo a lo largo de la carretera del 2%, sin embargo, para el espaldón se adopta por norma general un bombeo del 4%

Tabla 3.21. Anchos de carriles en función de la clase de carretera

| Clase de carretera     | Ancho de Calzada [m] |          |  |
|------------------------|----------------------|----------|--|
| Clase de Carretera     | Recomendable         | Absoluto |  |
| R-I o R-II > 800 TPDA  | 7,3                  | 7,30     |  |
| I 3000 a 8000 TPDA     | 7,3                  | 7,30     |  |
| II 1000 a 3000 TPDA    | 7,3                  | 6,50     |  |
| III 300 a 1000 TPDA    | 6,70                 | 6,00     |  |
| IV 100 a 300 TPDA      | 6,00                 | 6,00     |  |
| V Menos de 100<br>TPDA | 4,00                 | 4,00     |  |

Fuente: MTOP, Manual de Diseño Geométrico de Carreteras 2003

Tabla 3.22. Ancho de espaldones en función de la clase de carretera

| VALORES DE DISEÑO PARA EL ANCHO DE ESPALDONES (Metros)                                                                                             |                   |                 |               |                |               |               |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|---------------|----------------|---------------|---------------|--|
| Clase de Carretera Ancho de Espaldones (m)                                                                                                         |                   |                 |               |                |               |               |  |
|                                                                                                                                                    | Recom             | endable         |               | Absoluto       |               |               |  |
|                                                                                                                                                    | L                 | 0               | М             | L              | 0             | M             |  |
|                                                                                                                                                    | (1,2)             | (1,2)           | (1,2)         | (1,2)          | (1,2)         | (1,2)         |  |
| R-I o R-II > 8000 TPDA                                                                                                                             | 3,0 *             | 3,0 *           | 2,5 *         | 3              | 3,0 *         | 2,0 *         |  |
| I 3000 a 8000 TPDA                                                                                                                                 | 2,5 *             | 2,5 *           | 2,0 *         | 2,5 **         | 2,0 **        | 1,5 **        |  |
| II 1000 a 3000 TPDA                                                                                                                                | 2,5 *             | 2,5 *           | 1,5 *         | 2,5            | 2,0           | 1,5           |  |
| III 300 a 1000 TPDA                                                                                                                                | 2,0 **            | 1,5 **          | 1,0 *         | 1,5            | 1,0           | 0,5           |  |
| IV 100 a 300 TPDA                                                                                                                                  | 0,6               | 0,6             | 0,6           | 0,6            | 0,6           | 0,6           |  |
| V Menos de 100 TPDA Una parte del soporte lateral está incorporado en el ancho de la superficie de rodadura (no se considera el espaldón como tal) |                   |                 |               |                |               |               |  |
| L = Terreno Llano O = Terreno Ondulado M = Terreno Montañoso                                                                                       |                   |                 |               |                |               |               |  |
| <ul> <li>La cifra en paréntesis es la m</li> </ul>                                                                                                 | nedida del espalo | dón interior de | e cada calzad | a y la otra es | para el espal | dón exterior. |  |

Los dos espaldones deben pavimentarse con concreto asfáltico

Fuente: MTOP, Manual de Diseño Geométrico de Carreteras 2003

El diseño horizontal consiste en la proyección del eje de la carretera en un plano y de curvas horizontales, las cuales se obtienen por medio del trazado de tangentes que indican la posición del eje, y la intersección de estas

<sup>\*\*</sup> Se recomienda que el espaldón debe pavimentarse con el mismo material de la capa de rodadura del camino correspondiente. (ver nota <u>5/</u> del cuadro general de calificación)

resulta en un punto de inflexión que indica la ubicación posible de la curva. Dichas curvas pueden ser simples, compuesta o espirales.

Para el diseño de una curva simple, es necesario conocer la velocidad de diseño del proyecto, ya que en base a este parámetro podemos determinar el radio mínimo de giro establecido por la norma. (ver tabla 3.23). Además, también es necesario conocer el ángulo de deflexión de las tangentes, por medio del cual se pueden obtener de más parámetros como el espaldón, longitud de curva, flecha, tangente (Ver figura 3.33).

Debido a que el proyecto se encuentra en un terreno montañoso, la norma indica los siguientes valores de velocidad de diseño y radio mínimo de curvatura, según el tipo de carretera I, II, III, IV, o V.

Tabla 3.23. Radio mínimo y velocidad de diseño de acuerdo a la clase de carretera para un terreno montañoso

|       | Velocidad de<br>diseño |          | Radio mínimo |          |  |
|-------|------------------------|----------|--------------|----------|--|
| Clase | Recom.                 | Absoluto | Recom.       | Absoluto |  |
| l     | 80                     | 60       | 210          | 110      |  |
| II    | 70                     | 50       | 160          | 75       |  |
| III   | 60                     | 40       | 110          | 42       |  |
| IV    | 50                     | 25       | 75           | 20       |  |
| ٧     | 42                     | 25       | 75           | 20       |  |

Fuente: MTOP, Manual de Diseño Geométrico de Carreteras 2003

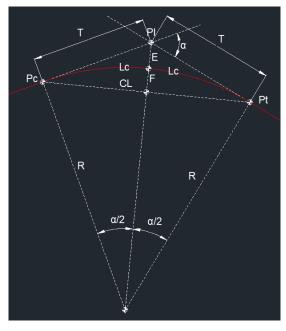



Figura 3.33. Elemento de una curva simple

T: Tangente

E: External

Lc: Longitud de curva

R: Radio

F: Flecha

CL: Longitud de cuerda

α: Angulo de deflexión

PI: Punto de inflexión

Pc: Principio de curva

Pt: Fin de curva

En caso de emplearse curvas compuestas, se debe tener cuidado que el radio mayor no exceda en 1.5 veces el radio menor. (MTOP)

A partir de un radio y ángulo de deflexión conocidos, se especifican las siguientes ecuaciones para el cálculo de los parámetros mencionados.

$$L_{c} = \frac{\pi \alpha R}{180}$$

$$T = R * \tan\left(\frac{\alpha}{2}\right)$$

$$E = R * \left(\sec\left(\frac{\alpha}{2}\right) - 1\right)$$

$$CL = 2 * R * \sec\left(\frac{\alpha}{2}\right)$$

$$F = T * \sec\left(\frac{\alpha}{2}\right) - E$$

Se adjunta una tabla de resultados del cálculo de curvas simples. Ver en anexos los resultados del replanteo de la curva.

Adicionalmente se tener, las siguientes consideraciones para el diseño horizontal:

- a) Las curvas reversas resultan cuando una curva empieza inmediatamente después del final de otra, dichas curvas deben evitarse en lo posible por seguridad del conductor
- b) Para evitar que se generen curvas reversas, en lo posible el diseñador de disponer los puntos de inflexión de tal manera que estén separados el uno del otro una distancia mayor a 50 m
- c) Es recomendable que se diseñe la vía con radios grandes con el fin de evitar en lo posible los valores mínimos especificados para velocidades de diseño, salvo en condiciones criticas
- d) Cuando se tiene un ángulo de deflexión pequeño, se debe considerar tramos de curva grandes con el fin de evitar una transición abrupta en el cambio de dirección del vehículo
- e) Se deben evitar tangentes cortas cuando la curva siguiente tiene la misma dirección que la curva anterior

Se adjunta una tabla de resultados, con los parámetros geométricos de las curvas horizontales en anexo B.

## 3.2.4 Diseño Vertical

El diseño vertical de la carretera, están importante como el horizontal. Este va a depender de la velocidad de diseño, pendientes y condiciones del terreno. Bajo ningún concepto se debe alterar el diseño vertical con el fin de obtener buenos alineamientos verticales, es por esto que es necesario que los diseños no sean independientes el uno del otro y se hagan de manera simultánea, considerando condiciones como:

- a) La superposición entre una curva vertical y horizontal, resultan en una carretera más seguro y confortable para el usuario. Los cambios de pendiente longitudinal no combinados con la curva horizontal pueden conllevar a una serie de depresiones que resultan incomodas y no visibles para el conductor
- b) Es preferible con comenzar o terminar una curva horizontal cerca del punto más alto o más bajo de la curva vertical
- c) La curva horizontal debe ser mayor que la curva vertical

Para el diseño del alineamiento vertical es necesario en primer lugar, establecer la gradiente longitudinal máxima según la clase de carretera y el tipo de terreno, para este caso tenemos una carretera clase IV, por lo que la gradiente máxima longitudinal será de 8% el valor recomendado y de 12% el valor absoluto, sin embargo, debido a la complejidad del terreno se usó pendientes mayores considerando en lo posible las recomendaciones de las normas, las cuales consisten en lo siguiente:

- a) Cuando se empleen pendientes mayores al 10%, será necesario prolongar la longitud de ese tramo una distancia máxima recomendable de 180 m
- b) En curvas cuyas longitudes excedan los 50 m, se debe evitar pendientes no mayores a un 8%
- c) Cuando el ascenso es continuo y la pendiente es mayor al 5%, será necesario implementar tramos de descanso de aproximadamente 2% con longitudes no menores a 500 m

A pesar de que trató de tomarse en cuenta todas estas consideraciones, debido a la topografía resulto difícil implementar dichas recomendaciones, resultando una pendiente máxima de hasta 16% con una longitud de 99 metros.

Tabla 3.24. Valores de diseño de las gradientes longitudinales máximas

# VALORES DE DISEÑO DE LAS GRADIENTES LONGITUDINALES MAXIMAS

(Porcentaje)

|                    |       |    |       |      | Valor |        | Valor |     |              |    |
|--------------------|-------|----|-------|------|-------|--------|-------|-----|--------------|----|
|                    |       |    |       |      | Reco  | omenda | able  | Abs | soluto       |    |
| Clase de Carretera |       |    |       | L    | O     | M      | L     | O   | $\mathbf{M}$ |    |
| R—Io               | R—II  | >  | 8.000 | TPDA | 2     | 3      | 4     | 3   | 4            | 6  |
| 1                  | 3.000 | a  | 8.000 | TPDA | 3     | 4      | 6     | 3   | 5            | 7  |
| II                 | 1.000 | a  | 3.000 | TPDA | 3     | 4      | 7     | 4   | 6            | 8  |
| III                | 300   | a  | 1.000 | TPDA | 4     | 6      | 7     | 6   | 7            | 9  |
| IV                 | 100   | a  | 300   | TPDA | 5     | 6      | 8     | 6   | 8            | 12 |
| V                  | Menos | de | 100   | TPDA | 5     | 6      | 8     | 6   | 8            | 14 |

Fuente: MTOP, Manual de Diseño Geométrico de Carreteras 2003

Las curvas verticales pueden ser cóncavas o convexas, y deben garantizar la visibilidad de parada, frenado, drenaje, comodidad y seguridad al usuario. Para el cálculo de la curva vertical es necesario el cálculo previo de la distancia de visibilidad de frenado que corresponde a la distancia que recorre el vehículo durante el tiempo de reacción del conductor y de la distancia del vehículo durante su recorrido en el frenado, es decir:

$$d = d1 + d2$$

Dicha ecuación se descompone de la siguiente manera:

$$d_1 = \frac{V_d t}{3.6}$$

Vd sería la velocidad de diseño, y t sería el tiempo de reacción, que según lo establecido por un estudio llevado a cabo por la AASHTO, se considera de 2.5 segundos

$$d_2 = \frac{{V_d}^2}{254 * f}$$

Donde f es coeficiente de fricción longitudinal, el cual se lo puede obtener en base a valores proporcionado por el MTOP. Para el diseño se va a ocupar el valor de velocidad de diseño mínimo recomendado por la norma según la clase de carretera, para este caso 50 Km/h

Tabla 3.25. Coeficiente de fricción longitudinal en función de la velocidad de diseño

| Velocidad<br>de diseño<br>Km/h | Coeficiente<br>de fricción<br>longitudinal<br>f |
|--------------------------------|-------------------------------------------------|
| 25                             | 0.443                                           |
| 30                             | 0.423                                           |
| 35                             | 0.403                                           |
| 40                             | 0.389                                           |
| 45                             | 0.375                                           |
| 50                             | 0.365                                           |
| 60                             | 0.345                                           |
| 70                             | 0.332                                           |
| 80                             | 0.32                                            |
| 90                             | 0.31                                            |
| 100                            | 0.302                                           |
| 110                            | 0.296                                           |

Fuente: MTOP, Manual de Diseño Geométrico de Carreteras 2003

Sin embargo, para considerar el efecto de la gradiente longitudinal, se aplica una corrección a esta última ecuación, de tal manera que

$$d_2 = \frac{{V_d}^2}{254 * (f \pm G)}$$

Entonces, de manera general la ecuación inicial se reescribe de la siguiente manera:

$$d_{vp} = 0.7V_d + \frac{{V_d}^2}{254 * (f \pm G)}$$

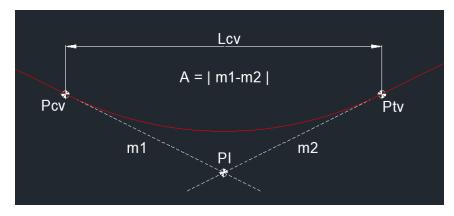



Figura 3.34. Curva Cóncava

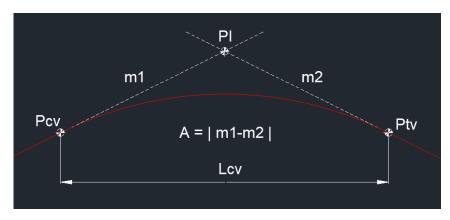



Figura 3.35. Curva Convexa

Fuente: Sebastián Suarez y Rafael Barcenes

Lcv: Longitud de curva vertical

m1: Pendiente de entrada

m2: Pendiente de salida

A: Diferencia de gradientes en valor absoluto

PI: Punto de inflexión

Pcv: Punto de inicio de curva vertical

Ptv: Punto final de curva vertical

Determinar la distancia de visibilidad de parada es un parámetro necesario debido a que la longitud de curva calculada no puede ser menor que dicha distancia la cual depende de la pendiente, entonces, si al calcular la longitud de curva resulta menor que la distancia de visibilidad de parada, tomamos dicha distancia para establecer la longitud de curva

La ecuación que describe la longitud de curva, la cual depende de si esta es cóncava o convexa, de tal manera que:

Cóncava: 
$$L_{cv} = \frac{AS^2}{122 + 2.5S}$$

Convexa: 
$$L_{cv} = \frac{AS^2}{426}$$

El parámetro S es la máxima distancia de visibilidad de parada calculada.

Para el cálculo de la cota de cualquier punto sobre la curva vertical, nos podemos valer de la figura 3.36. El valor de "y" a una distancia x del punto de inicio o fin de la curva, se calcula por medio de:

$$y = \frac{Ax^2}{200L_{cx}}$$

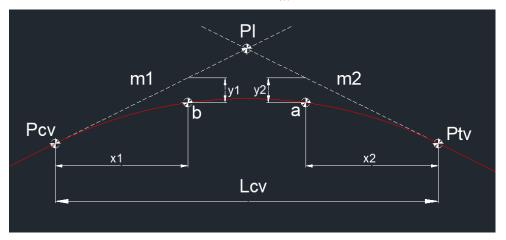



Figura 3.36. Posición de un punto sobre la curva vertical

Fuente: Sebastián Suarez y Rafael Barcenes

A continuación, se muestra la de resultados para las curvas verticales diseñadas en el proyecto

Tabla 3.26. Cotas a lo largo de curva vertical 1.

| ABSCISA  | G% | х     | COTA DE<br>PROYECTO | Y     | COTA<br>SOBRE<br>CURVA |
|----------|----|-------|---------------------|-------|------------------------|
| 0+171.75 | 14 | 0     | 1208.67             | 0.000 | 1208.67                |
| 0+180    | 14 | 8.25  | 1209.83             | 0.009 | 1209.82                |
| 0+190    | 14 | 18.25 | 1211.23             | 0.042 | 1211.18                |
| 0+200    | 14 | 28.25 | 1212.63             | 0.100 | 1212.53                |
| 0+210    | 14 | 38.25 | 1214.03             | 0.183 | 1213.84                |
| 0+211.75 | 14 | 39.5  | 1214.27             | 0.195 | 1214.07                |
| 0+220    | 12 | 31.75 | 1210.46             | 0.126 | 1210.33                |
| 0+230    | 12 | 21.75 | 1216.46             | 0.059 | 1216.40                |
| 0+240    | 12 | 11.75 | 1212.86             | 0.017 | 1212.84                |
| 0+250    | 12 | 1.75  | 1214.06             | 0.000 | 1214.06                |
| 0+251.75 | 12 | 0     | 1219.07             | 0.000 | 1219.07                |

Vd = 50 Km/hf = 0.365G1=14% G2=12%

Lcx = 80 m

Pc = 0+171.75 PI = 0+211.75

Pt = 0+251.75

Fuente: Sebastián Suarez y Rafael Barcenes

Tabla 3.27. Cotas a lo largo de curva vertical 2.

| ABSCISA                                    | G% | х     | COTA DE<br>PROYECTO | Υ     | COTA<br>SOBRE<br>CURVA |
|--------------------------------------------|----|-------|---------------------|-------|------------------------|
| 0+332.02                                   | 12 | 0     | 1228.7              | 0.000 | 1228.70                |
| 0+340                                      | 12 | 7.98  | 1229.66             | 0.015 | 1229.67                |
| 0+350                                      | 12 | 17.98 | 1230.86             | 0.076 | 1230.93                |
| 0+360                                      | 12 | 27.98 | 1232.06             | 0.184 | 1232.24                |
| 0+370                                      | 12 | 37.98 | 1233.26             | 0.339 | 1233.60                |
| 0+374.53                                   | 12 | 42.01 | 1233.8              | 0.415 | 1234.22                |
| 0+380                                      | 16 | 37.02 | 1234.69             | 0.322 | 1235.01                |
| 0+390                                      | 16 | 27.02 | 1236.29             | 0.172 | 1236.46                |
| 0+400                                      | 16 | 17.02 | 1237.89             | 0.068 | 1237.95                |
| 0+410                                      | 16 | 7.02  | 1239.49             | 0.012 | 1239.50                |
| 0+417.02                                   | 16 | 0     | 1240.61             | 0.000 | 1240.61                |
| Fuenta, Cobactión Sueroz y Defect Persones |    |       |                     |       |                        |

Fuente: Sebastián Suarez y Rafael Barcenes

Vd = 50 Km/hf = 0.365G1=12% G2=16% Lcx = 85 mPc = 0+332.02PI = 0+374.53Pt = 0+417.02

Tabla 3.28. Cotas a lo largo de curva vertical 3.

| ABSCISA  | G% | х     | COTA DE<br>PROYECTO | Y     | COTA<br>SOBRE<br>CURVA |
|----------|----|-------|---------------------|-------|------------------------|
| 0+430.89 | 16 | 0     | 1242.83             | 0.000 | 1242.83                |
| 0+440    | 16 | 9.11  | 1244.29             | 0.010 | 1244.28                |
| 0+450    | 16 | 19.11 | 1245.89             | 0.043 | 1245.84                |
| 0+460    | 16 | 29.11 | 1247.49             | 0.100 | 1247.39                |
| 0+470    | 16 | 39.11 | 1249.09             | 0.180 | 1248.91                |
| 0+473.39 | 16 | 42.6  | 1249.63             | 0.214 | 1249.42                |
| 0+480    | 14 | 35.89 | 1250.56             | 0.152 | 1250.40                |
| 0+490    | 14 | 25.89 | 1251.96             | 0.079 | 1251.88                |
| 0+500    | 14 | 15.89 | 1253.36             | 0.030 | 1253.33                |
| 0+510    | 14 | 5.89  | 1254.76             | 0.004 | 1254.75                |
| 0+515.89 | 14 | 0     | 1255.58             | 0.000 | 1255.58                |

Vd = 50 Km/h f = 0.365 G1=16% G2=14% Lcx = 85 m Pc = 0+430.89 Pl = 0+473.39

Pt = 0+515.89

Fuente: Sebastián Suarez y Rafael Barcenes

## 3.2.5 Desarrollo de Peralte

Cuando un vehículo transita a lo largo de una curva horizontal, por cuestiones relacionadas a la física se genera una fuerza centrípeta, la cual hace que el vehículo no se mantenga en la curva, pero a su hay un efecto de "fuerza centrífuga" que en realidad resulta por efecto de la primera ley de newton que consiste en la propiedad de los cuerpos de oponerse al movimiento, dicha fuerza actúa contrariamente a la acción de la fuerza centrípeta, haciendo que el vehículo se desvié por la tangente. Es por esta razón que por motivos de seguridad es necesario incorporar un peralte el cual es una ligera inclinación transversal en la carretera.

Se debe tomar en cuenta que la incorporación del peralte a lo largo de la curva no debe tener una transición abrupta, debe desarrollarse a lo largo de una longitud la cual es calculada en base a ecuaciones descritas posteriormente.

El peralte debe ser calculado por medio de:

$$e = \frac{{V_d}^2}{127R} - f$$

Vd: Velocidad de diseño

R: Radio mínimo

f: coeficiente de fricción lateral

Otro parámetro importante a tener en cuenta es el gradiente longitudinal "i" cuyos valores son proporcionados por el MTOP

Tabla 3.29. Coeficiente de fricción lateral en función de la velocidad de diseño.

| Velocidad<br>de diseño<br>Km/h | Coeficiente<br>de fricción<br>lateral f | i %  |
|--------------------------------|-----------------------------------------|------|
| 30                             | 0.1712                                  | 0.75 |
| 40                             | 0.165                                   | 0.7  |
| 50                             | 0.159                                   | 0.65 |
| 60                             | 0.152                                   | 0.6  |
| 70                             | 0.146                                   | 0.55 |
| 80                             | 0.14                                    | 0.5  |
| 90                             | 0.0134                                  | 0.47 |
| 100                            | 0.127                                   | 0.43 |
| 110                            | 0.121                                   | 0.4  |

Fuente: Sebastián Suarez y Rafael Barcenes

Es necesario determinar ciertos puntos que caen dentro y fuera de la curva, los cuales permiten una transición adecuada del peralte a lo largo de la curva. Para determinar la ubicación de dichos puntos es necesario conocer los puntos de inicio y fin de la curva horizontal. Además, necesitamos calcular ciertos parámetros que se describen a continuación

$$L_p = \frac{ea}{2i} \qquad \quad x = \frac{ba}{2i}$$

e: peralte calculado

a: ancho de calzada

i: gradiente longitudinal

b: bombeo (2% para el proyecto en cuestión)

Es necesario identificar los puntos de comienzo y fin de la curva, ya que la que la longitud de peralte se ubica a 2/3 en la alineación recta y 1/3 se ubica dentro de la curva. La figura 3.37 es un esquema que nos permite visualizar mejor la situación y la ubicación de los puntos que permiten la transición de peralte.

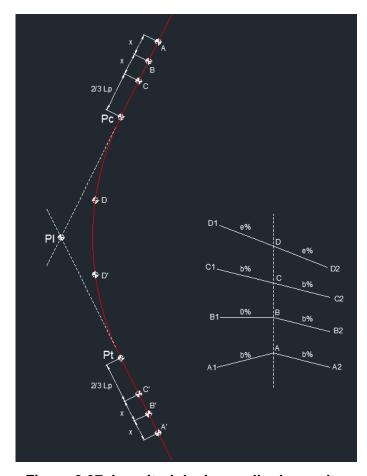



Figura 3.37. Longitud de desarrollo de peralte

Fuente: Sebastián Suarez y Rafael Barcenes

Una vez que obtenemos los puntos de transición y sabemos las pendientes que van a tener en dicha sección, podemos calcular las cotas en cada punto y proporcionar una libreta con la que el topógrafo se va a guiar al momento de revisar las cotas a lo largo de la vía en el momento de la ejecución de la obra.

A veces se presenta la situación en la que los puntos de transición de cada curva se traslapan entre sí, en estos casos se recomienda promediar las cotas de los puntos que se traslapan.

Los resultados se muestran en la sección de anexos sección c.

### 3.2.6 Drenaje

# 3.2.6.1 Estudio hidrológico

Para el drenaje se realizó un análisis hidrológico, el cual se sustentó en los datos proporcionados por las estaciones pluviométricas del INAMHI, sin embargo los datos usados para la estimación de la intensidad de lluvia, comprenden los registros históricos de precipitación desde 1990 hasta el 2011, sin contar los años 2006, 2007, 2008, 2009 y 2010 debido a la falta de información.

\*datos de precipitación obtenidos del INAMHI\*

Nos apoyamos en la hoja de cálculo propuesta por el Ing. Jordi Oliveras, para el cálculo de precipitación e intensidad de lluvia

Tabla 3.30. Registro Pluviométrico de la estación Zaruma

Fuente: INAMHI

| Año  | Ene. | Feb. | Mar. | Abr. | May. | Jun. | Jul. | Ago. | Sep. | Oct. | Nov. | Dic. | Máx  | imo  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1990 | 34.4 | 41.3 | 36.1 | 53.0 | 56.2 | 5.1  | 5.5  | 0.0  | 6.0  | 9.6  | 12.0 | 22.8 | 56.2 | may  |
| 1991 | 21.2 | 36.3 | 91.2 | 29.4 | 18.5 | 9.0  | 6.0  | 0.0  | 1.1  | 12.6 | 13.3 | 48.0 | 91.2 | mar  |
| 1992 | 62.4 | 74.4 | 0.0  | 45.8 | 34.2 | 0.0  | 1.3  | 1.6  | 14.8 | 1.0  | 4.1  | 18.2 | 74.4 | feb  |
| 1993 | 39.7 | 80.3 | 51.2 | 90.6 | 29.0 | 1.9  | 5.7  | 0.3  | 1.8  | 12.6 | 7.6  | 25.0 | 90.6 | abr  |
| 1994 | 71.4 | 59.6 | 29.0 | 95.0 | 42.2 | 3.5  | 0.8  | 0.0  | 8.1  | 1.6  | 13.8 | 21.4 | 95.0 | abr  |
| 1995 | 33.6 | 52.4 | 47.3 | 38.0 | 41.1 | 3.6  | 3.2  | 0.6  | 2.4  | 4.5  | 23.3 | 65.5 | 65.5 | dic  |
| 1996 | 57.4 | 57.8 | 84.5 | 48.0 | 17.3 | 12.4 | 0.4  | 0.0  | 0.0  | 29.1 | 3.4  | 11.4 | 84.5 | marz |
| 1997 |      | 88.3 | 48.2 | 65.2 | 17.4 | 58.5 | 0.1  | 0.0  | 29.4 | 34.0 | 38.7 | 53.3 | 88.3 | feb  |
| 1998 | 28.0 | 51.0 | 43.1 | 55.5 | 35.8 | 2.7  | 0.7  | 1.8  | 7.4  | 11.3 | 8.4  | 17.7 | 55.5 | abr  |
| 1999 | 41.1 | 35.3 | 64.6 | 43.3 | 18.3 | 25.2 | 5.6  | 0.3  | 20.4 | 6.8  | 23.9 | 28.6 | 64.6 | marz |
| 2000 | 38.0 | 38.2 | 57.7 | 42.9 | 34.0 | 8.8  | 0.0  | 0.2  | 6.9  | 0.3  | 3.0  | 22.1 | 57.7 | marz |
| 2001 | 48.6 | 60.1 | 0.0  | 35.1 | 50.0 | 0.5  | 0.0  | 0.0  | 0.4  | 1.1  | 0.0  | 15.1 | 60.1 | feb  |
| 2002 | 23.4 | 0.0  | 63.5 | 31.5 | 0.0  | 2.8  | 1.0  | 0.0  | 0.0  | 4.8  | 14.6 | 0.0  | 63.5 | marz |
| 2003 | 0.0  | 0.0  | 72.0 | 50.1 | 25.0 | 4.3  | 2.6  | 0.0  | 0.0  | 0.0  | 0.0  | 26.7 | 72.0 | marz |
| 2004 | 48.3 | 44.4 | 40.0 | 58.2 | 34.4 | 4.6  | 1.2  |      | 16.3 | 6.9  | 0.0  | 7.3  | 58.2 | abr  |
| 2005 | 36.3 | 57.2 | 66.9 | 26.3 | 8.0  | 6.3  | 0.0  | 0.1  | 0.0  | 0.0  | 0.0  | 0.0  | 66.9 | marz |
| 2011 |      | 52.4 | 33.4 | 48.2 | 9.2  | 0.0  | 37.9 | 1.3  | 3.6  | 0.0  | 9.3  | 0.0  | 52.4 | feb  |
| Max. | 71.4 | 88.3 | 91.2 | 95.0 | 56.2 | 58.5 | 37.9 | 1.8  | 29.4 | 34.0 | 38.7 | 65.5 | 95   | 5.0  |

En la tabla 3.30 Podemos ver los valores máximos de precipitación de cada año. Para el análisis de una serie de valores extremos se pueden usar varias distribuciones, en este caso, vamos a optar por hacer el análisis por medio de la distribución de Gumbel debido a su simplicidad.

$$F(x) = e^{-e^{\frac{-(x-u)}{\alpha}}}$$

Siendo:

$$\alpha = \frac{S_x}{\sigma_y}$$
 ;  $u = \bar{x} - u_y \cdot \alpha$ 

F(x): Probabilidad que se presente un valor igual o menor a x

e: Constante de Euler

 $\bar{x}$ : Media aritmética

 $S_x$ : Desviación estándar

 $\sigma_y$ ,  $u_y$ : Variables que dependen del número de datos

Se va a considerar valores de 0.5772 y 1.1682 para  $u_y$  y  $\sigma_y$  respectivamente, usar esto valores implica considerar un numero de datos infinitos, es una opción usada por diversos autores.

Tabla 3.31. Precipitación máxima mensual

|    |      | Mes             | Precipita | ación (mm)               |
|----|------|-----------------|-----------|--------------------------|
| Nº | Año  | Max.<br>Precip. | Xi        | $(x_i - \overline{x})^2$ |
| 1  | 1990 | Mayo            | 56.20     | 201.31                   |
| 2  | 1991 | Marzo           | 91.20     | 433.13                   |
| 3  | 1992 | Ferbero         | 74.40     | 16.09                    |
| 4  | 1993 | Abril           | 90.60     | 408.52                   |
| 5  | 1994 | Abril           | 95.00     | 605.74                   |
| 6  | 1995 | Diciembre       | 65.50     | 23.89                    |
| 7  | 1996 | Marzo           | 84.50     | 199.14                   |
| 8  | 1997 | Febrero         | 88.30     | 320.83                   |
| 9  | 1998 | Abril           | 55.50     | 221.66                   |
| 10 | 1999 | Marzo           | 64.60     | 33.50                    |
| 11 | 2000 | Marzo           | 57.70     | 160.99                   |
| 12 | 2001 | Febrero         | 60.10     | 105.85                   |
| 13 | 2002 | Marzo           | 63.50     | 47.45                    |
| 14 | 2003 | Marzo           | 72.00     | 2.60                     |
| 15 | 2004 | Abril           | 58.20     | 148.55                   |
| 16 | 2005 | Marzo           | 66.90     | 12.17                    |
| 17 | 2011 | Ferbrero        | 52.40     | 323.58                   |
|    |      | Suma            | 1196.6    | 3265.0                   |

Fuente: Sebastian Suárez y Rafael Bárcenes

$$\bar{x} = \frac{\sum x_i}{n} = 70.4 \ mm$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}} = 14.3 \ mm$$

$$\alpha = \frac{\sqrt{6}}{\pi} \cdot S = 11.1 \ mm$$

$$u = \bar{x} - 0.5772 \cdot \alpha = 64$$

Si F(x) es la probabilidad de que se presenta un valor menor o igual a x, el caso inverso se describiría por medio de la siguiente expresión:

$$x = -\ln\left(-\ln(F(x))\right) \cdot \alpha + u$$

Se aplica un facto de corrección al valor de x de 1.13 en base al intervalo fijo de observación, esto lo estableció L.L. Weiss al encontrar que los resultados de un análisis probabilístico de lluvias máximas anuales tomadas en un intervalo de 24 horas, al ser incrementados un 13% resultaban en magnitudes mas aproximadas a las obtenidas con lluvias máximas verdaderas. (Real Sociedad Española de Fisica).

Tabla 3.32. Valor de precipitación corregido.

| Periodo<br>Retorno | Precip.<br>(mm) | Prob. de ocurrencia | Corrección<br>intervalo fijo |
|--------------------|-----------------|---------------------|------------------------------|
| Años               | X'(mm)          | F(x)                | X (mm)                       |
| 2                  | 68.0            | 0.5000              | 76.8870                      |
| 5                  | 80.7            | 0.8000              | 91.1523                      |
| 10                 | 89.0            | 0.9000              | 100.5971                     |
| 25                 | 99.6            | 0.9600              | 112.5307                     |
| 50                 | 107.4           | 0.9800              | 121.3837                     |
| 100                | 115.2           | 0.9900              | 130.1713                     |
| 500                | 133.2           | 0.9980              | 150.4782                     |

Fuente: Sebastian Suárez y Rafael Bárcenes

Para determinar la precipitación máxima de acuerdo al tiempo de duración empleamos los siguientes coeficientes:

Tabla 3.33. Coeficientes según el tiempo de duración.

|      | Duraciones, en horas |      |      |      |      |      |      |      |      |
|------|----------------------|------|------|------|------|------|------|------|------|
| 1    | 2                    | 3    | 4    | 5    | 6    | 8    | 12   | 18   | 24   |
| 0.30 | 0.39                 | 0.46 | 0.52 | 0.57 | 0.61 | 0.68 | 0.80 | 0.91 | 1.00 |

Feuntes: D.F. CAMPOS A, 1978

Tabla 3.34. Precipitación máxima según el tiempo de duración.

| Tiempo         | Precipitación máxima por tiempos de duración |           |            |            |            |             |             |  |  |
|----------------|----------------------------------------------|-----------|------------|------------|------------|-------------|-------------|--|--|
| de<br>Duración | 2<br>años                                    | 5<br>años | 10<br>años | 25<br>años | 50<br>años | 100<br>años | 500<br>años |  |  |
| 24 hr          | 76.9                                         | 91.2      | 100.6      | 112.5      | 121.4      | 130.2       | 150.5       |  |  |
| 18 hr          | 70.0                                         | 82.9      | 91.5       | 90.0       | 110.5      | 118.5       | 136.9       |  |  |
| 12 hr          | 61.5                                         | 72.9      | 80.5       | 90.0       | 97.1       | 104.1       | 120.4       |  |  |
| 8 hr           | 52.3                                         | 62.0      | 68.4       | 76.5       | 82.5       | 88.5        | 102.3       |  |  |
| 6 hr           | 46.9                                         | 55.6      | 61.4       | 68.6       | 74.0       | 79.4        | 91.8        |  |  |
| 5 hr           | 43.8                                         | 52.0      | 57.3       | 64.1       | 69.2       | 74.2        | 85.8        |  |  |
| 4 hr           | 40.0                                         | 47.4      | 52.3       | 58.5       | 63.1       | 67.7        | 78.2        |  |  |
| 3 hr           | 35.4                                         | 41.9      | 46.3       | 51.8       | 55.8       | 59.9        | 69.2        |  |  |
| 2 hr           | 30.0                                         | 35.5      | 39.2       | 43.9       | 47.3       | 50.8        | 58.7        |  |  |
| 1 hr           | 23.1                                         | 27.3      | 30.2       | 33.8       | 36.4       | 39.1        | 45.1        |  |  |

Fuente: Sebastian Suárez y Rafael Bárcenes

Para determinar la intensidad de lluvia de acuerdo a las precipitaciones máximas según el tiempo de duración, procedemos con la ecuación descrita a continuación:

$$I = \frac{P}{t} \left[ \frac{mm}{h} \right]$$

Tabla 3.35. Intensidad de lluvia según el periodo de retorno

| Tiempo de duración | Inten   | sidad de l | a Iluvia (m | ım /hr) seg | jún el Peri | odo de Re   | torno       |
|--------------------|---------|------------|-------------|-------------|-------------|-------------|-------------|
| Horas              | 2 años  | 5 años     | 10<br>años  | 25<br>años  | 50<br>años  | 100<br>años | 500<br>años |
| 24                 | 3.2036  | 3.7980     | 4.1915      | 4.6888      | 5.0577      | 5.4238      | 6.2699      |
| 18                 | 3.8871  | 4.6083     | 5.0857      | 5.0014      | 6.1366      | 6.5809      | 7.6075      |
| 12                 | 5.1258  | 6.0768     | 6.7065      | 7.5020      | 8.0922      | 8.6781      | 10.0319     |
| 8                  | 6.5354  | 7.7479     | 8.5508      | 9.5651      | 10.3176     | 11.0646     | 12.7906     |
| 6                  | 7.8168  | 9.2671     | 10.2274     | 11.4406     | 12.3407     | 13.2341     | 15.2986     |
| 5                  | 8.7651  | 10.3914    | 11.4681     | 12.8285     | 13.8377     | 14.8395     | 17.1545     |
| 4                  | 9.9953  | 11.8498    | 13.0776     | 14.6290     | 15.7799     | 16.9223     | 19.5622     |
| 3                  | 11.7893 | 13.9767    | 15.4249     | 17.2547     | 18.6122     | 19.9596     | 23.0733     |
| 2                  | 14.9930 | 17.7747    | 19.6164     | 21.9435     | 23.6698     | 25.3834     | 29.3432     |
| 1                  | 23.0661 | 27.3457    | 30.1791     | 33.7592     | 36.4151     | 39.0514     | 45.1435     |

Fuente: Sebastian Suárez y Rafael Bárcenes

#### 3.2.6.2 Cunetas

Por norma se diseñará la cuneta para un periodo de retorno de 100 años, considerando una lluvia con una duración de 20 a 30 minutos. Para este proyecto se empleará un tiempo de duración de 30 minutos Según la tabla 3.35. Por extrapolación se puede obtener la intensidad de lluvia para una duración de 30 minutos es de 45.885  $\left[\frac{mm}{hr}\right]$ 

Por el Método Racional, el cual da buenos resultados para áreas inferiores a  $20 \ Km^2$ , asume que la intensidad de lluvia se mantiene constante y cae de forma homogénea sobre la cuenca en cuestión, de manera que el caudal generado se determina por medio de:

$$Q = \frac{C \cdot I \cdot A}{3.6}$$

C: Coeficiente de escorrentía

I: Intensidad de Iluvia

A: Área de aportación

Para el área de aportación se considerará el área de la cuenca, además del área de la vía que se pretende construir. El área de aportación de la cuenca se tiene con la ayuda del programa Civil3D, el cual, por medio

de la distribución de las curvas de nivel generadas, se determinó que dicha área es de  $0.01861~Km^2$ . El área de aportación de la vía se la determina de manera aproximada, considerando un rectángulo de 630 m (longitud de la vía) y un ancho de 7 metros, lo que da un área de  $0.00441~Km^2$ 

El coeficiente de escorrentía según V.T. Chow, para un pavimento flexible y un periodo de retorno de 100 años será de 0.95

$$Q = \frac{C \cdot I \cdot A}{3.6} = \frac{0.95 * 45.885 * 0.02302}{3.6} = 0.279 \frac{m^3}{s}$$

Se plantea la siguiente geometría para la cuneta.

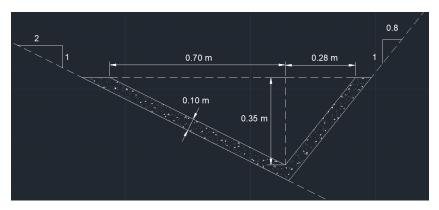



Figura 3.38. Sección de cuneta triangular

Fuente: Sebastián Suárez y Rafael Bárcenes

El talud de corte para un tipo de roca dura se puede considerar un talud V:H = 1:0.8

Tirante 
$$\rightarrow T = (Z_a + Z_b) \cdot h = (2 + 0.8) * 0.35 = 0.98 m$$

Area: 
$$A = (Z_a + Z_b) \cdot \frac{h^2}{2} = (2 + 0.8) \cdot \frac{0.35^2}{2} = 0.17 \ m^2$$

Perímetro mojado: 
$$\rightarrow P = \left(\sqrt{1 + Z_a^2} + \sqrt{1 + Z_b^2}\right) \cdot h = \left(\sqrt{1 + 2^2} + \sqrt{1 + 0.8^2}\right) * 0.35 = 1.23 \ m$$

Radio hidráulico:  $\rightarrow R = \frac{1}{2} * \left(\frac{(Z_a + Z_b) \cdot h}{\sqrt{1 + Z_a^2} + \sqrt{1 + Z_b^2}}\right) = \frac{1}{2} * \left(\frac{(2 + 0.8) * 0.35}{\sqrt{1 + 2^2} + \sqrt{1 + 0.8^2}}\right) = 0.139 \ m$ 

De acuerdo a la ecuación propuesta por Manning, el caudal en función de la pendiente, la rugosidad y el radio hidráulico, está definida por:

$$Q = \frac{1}{n} \cdot A \cdot R^{2/3} \cdot S^{1/2}$$

La rugosidad será de 0.013 de acuerdo a los coeficientes propuestos por V.T. Chow

$$Para \ S = 0.16 \ o \ Q = 1.40 \ \frac{m^3}{s} \ > \ 0.279 \ \frac{m^3}{s}$$
 $Para \ S = 0.14 \ o \ Q = 1.31 \ \frac{m^3}{s} \ > \ 0.279 \ \frac{m^3}{s}$ 
 $Para \ S = 0.12 \ o \ Q = 1.22 \ \frac{m^3}{s} \ > \ 0.279 \ \frac{m^3}{s}$ 

### 3.2.6.3 Tuberías de alcantarillado

A lo largo de la carretera es necesario implementar tuberías de alcantarillado, las cuales se disponen de manera transversal a esta, en aquellos puntos de captación de agua que puedan erosionar el terraplén, de tal manera que el agua se puede drenar por debajo de la estructura del pavimento sin causar daños en la mismo.

Por medio del análisis de la distribución de las curvas de nivel, se ubicaron aquellos puntos donde el escurrimiento del agua pueda causar daños en la vía. Para el diseño de estas tuberías se determinó el área de aportación y el caudal generado por medio del método racional.

$$Q = \frac{C \cdot I \cdot A}{3.6}$$

El área de captación donde escurrirá el agua que será drenada por las tuberías se las determinó por medio del programa civil 3D

El diseño de las tuberías de alcantarillado, se resume en la tabla 3.36. El diámetro fue calculado por medio de expresiones basadas en la ecuación de Manning.

$$Q = 0.3117 \cdot \frac{1}{n} \cdot D^{\frac{8}{3}} \cdot S^{\frac{1}{2}} \longrightarrow D = \left[ \frac{Q \cdot n}{0.3117 \cdot S^{1/2}} \right]^{3/8}$$

Se considera que el diámetro mínimo, según la norma NEVI, indica que para caminos vecinales se debe ocupar un diámetro mínimo de 1m.

Tabla 3.36 Diseño de tuberías de alcantarillado

| Alcantarilla | A [km2] | С    | l<br>[mm/hr] | Q<br>[m3/s] | m<br>% | n     | Diámetro<br>diseño<br>[m] | Diámetro<br>mínimo<br>[m] | Longitud<br>[m] |
|--------------|---------|------|--------------|-------------|--------|-------|---------------------------|---------------------------|-----------------|
| 1            | 0.0008  | 0.52 | 45.885       | 0.0053      | 2      | 0.012 | 0.09                      | 1                         | 15              |
| 2            | 0.009   | 0.52 | 45.885       | 0.0597      | 2      | 0.012 | 0.21                      | 1                         | 12              |
| 3            | 0.0075  | 0.52 | 45.885       | 0.0497      | 2      | 0.012 | 0.20                      | 1                         | 13              |
| 4            | 0.00071 | 0.52 | 45.885       | 0.0047      | 2      | 0.012 | 0.08                      | 1                         | 17              |

Fuente: Sebastián Suárez y Rafael Bárcenes

#### 3.3 Diseño de Pavimento Flexible

#### 3.3.1 Sub rasante

Son segmentos de la carretera que están conformados por material proveniente corte o préstamo, que se encarga de soportar el peso del pavimento y de las capas que los componen, por esta razón es necesario hacer un adecuado estudio de suelo, del cual se podrá determinar si el terreno es de buena o mala calidad, ya que de esta información se vale el proyectista para llevar a cabo el diseño del pavimento

Se definen 4 zonas en el terraplén:

- a) Coronación.- Compone la parte superior del terraplén y tienen un espesor de 50 cm.
- b) Núcleo.- Parte del terraplén comprendido entre la coronación y la cimentación.
- c) Espaldón.- Es la parte exterior del terraplén y conforman sus taludes.
- d) Cimentación.- Es la parte inferior del terraplén que esta en contacto directo con la superficie y tiene un espesor de 1 metro.

Según la zona, la norma especifica lo siguiente:

Tabla 3.37. Características del terraplén de acuerdo a la zona

| Zona        | Característica |
|-------------|----------------|
| Coronación  | CBR > 5%       |
| Núcleo      | CBR > 3%       |
| Cimentación | CBR > 3%       |

Fuente: MTOP

### 3.3.2 Subbase

Es la capa comprendida entre la base granular y la subrasante. La norma especifica los siguientes estándares que debe cumplir dicho material:

Tabla 3.38. Características que debe cumplir un material subbase

| Parámetro          | MTOP                 |  |  |
|--------------------|----------------------|--|--|
|                    | Máximo de 50% de     |  |  |
| Coeficiente de     | acuerdo al ensayo de |  |  |
| desgaste           | Abrasión de los      |  |  |
|                    | Ángeles              |  |  |
| Decembe to main 40 | IP menor a 6         |  |  |
| Pasante tamiz 40   | LL máximo de 25      |  |  |
| CBR                | Mayor igual a 30%    |  |  |

Fuente: MTOP

La subbase puede clasificarse en 3 clases, las cuales, según su graduación serán clase 1, 2 o 3.

Tabla 3.39. Clasificación de material subbase de acuerdo a su granulometría

| Tamiz     |          | SUBBASE CLASE 1 |      | SUBBAS | E CLASE 2 | SUBBASE CLASE 3 |      |  |
|-----------|----------|-----------------|------|--------|-----------|-----------------|------|--|
|           | IdiliiZ  | min.            | max. | min.   | max.      | min.            | max. |  |
| 3''       | 76.2 mm  | -               | -    | -      | -         | -               | 100  |  |
| 2''       | 50.4 mm  | -               | -    | -      | 100       | -               | -    |  |
| 1<br>1/2" | 38.1 mm  | -               | 100  | 70     | 100       | -               | -    |  |
| #4        | 4.75 mm  | 30              | 70   | 30     | 70        | 30              | 70   |  |
| #40       | 0.425 mm | 10              | 35   | 15     | 40        | -               | -    |  |
| #200      | 0.075 mm | 0               | 15   | 0      | 20        | 0               | 20   |  |

FUENTE: MTOP

Cuando se dispone este material sobre el terreno, debe ser compactado por capas mediante un rodillo liso de 8 a 12 toneladas de peso, rodillos vibratorios de fuerza de compactación u otro tipo de compactadora aprobados.

Para el proyecto en cuestión proponemos el uso de subbase clase 3.

### 3.3.3 Base

Es un material granular que se dispone sobre la subbase, o a veces se dispone directamente sobre la subrasante. Este material está conformado por materiales triturados total o parcialmente y complementados con agregado fino proveniente de la trituración.

La norma especifica el tipo de base a usarse en función del TPDA, de esta manera tenemos que para una carretera clase 4, se tiene un base clase 4.

Tabla 3.40. Tipo de base de acuerdo al TPDA

| Material especificado | Tipo de carretera                                                                                      | # carriles      | TPDA           |
|-----------------------|--------------------------------------------------------------------------------------------------------|-----------------|----------------|
| Base clase 1          | Para uso principalmente<br>en aeropuertos y<br>carreteras con intenso<br>nivel de trafico              | 8 a 12 carriles | >50.000        |
| Base clase 2          | Carreteras de 2 hasta 6 carriles, con un ancho mínimo de 3.65. Se incluye franja central desde 2 a 4 m | 2 a 6           | 8.000 a 50.000 |
| Base clase 3          | Vías internas de<br>urbanizaciones con bajo<br>nivel de trafico                                        | 2 a 4           | 1.000 a 8.000  |
| Base clase 4          | Caminos vecinales                                                                                      | 2               | < 1.000        |

FUENTE: MTOP

La norma también específica los requisitos que debe cumplir un material base:

Tabla 3.41. Propiedades características de un material base

| Parámetro                  | МТОР                                                                   |
|----------------------------|------------------------------------------------------------------------|
| Coeficiente de<br>desgaste | Máximo de 40% de<br>acuerdo al ensayo de<br>Abrasión de los<br>Ángeles |
| Pasante tamiz 40           | IP menor a 6                                                           |
| rasante tamiz 40           | LL máximo de 25                                                        |
| CBR                        | Mayor igual a 80%                                                      |

FUENTE: MTOP

De igual manera, según su graduación y procesos de trituración la base se clasifica en 1,2,3 o 4 y la norma también establece la granulometría que caracteriza cada una de estas clases.

Tabla 3.42. Clasificación de material base de acuerdo a su granulometría

|         |          |     | BASE CLASE 1  |     |         | BASE |         | BASE |         | BASE |     |
|---------|----------|-----|---------------|-----|---------|------|---------|------|---------|------|-----|
| Ta      | Tamiz    |     | Tipo A Tipo B |     | CLASE 2 |      | CLASE 3 |      | CLASE 4 |      |     |
|         |          | min | max           | min | max     | min  | max     | min  | max     | min  | max |
| 2"      | 50 mm    | -   | 100           | -   | 100     | ı    | 100     | -    | 100     | ı    | 100 |
| 1 1/2 " | 37.5 mm  | 70  | 100           | 70  | 100     | 70   | 100     | -    | -       | ı    | -   |
| 1''     | 25 mm    | 55  | 85            | 60  | 90      | 55   | 85      | 70   | 100     | 60   | 90  |
| 3/4''   | 19 mm    | 50  | 80            | 45  | 75      | 47   | 75      | 60   | 90      | -    | -   |
| 3/8''   | 9.5 mm   | 35  | 60            | 30  | 60      | 35   | 65      | 40   | 75      | -    | -   |
| Nº 4    | 4.75 mm  | 25  | 50            | 20  | 50      | 25   | 55      | 30   | 60      | 20   | 50  |
| Nº 10   | 2 mm     | 20  | 40            | 10  | 25      | 15   | 45      | 15   | 45      | -    | -   |
| Nº 40   | 0.425 mm | 10  | 25            | 2   | 12      | 5    | 25      | 10   | 30      | -    | -   |
| Nº 200  | 0.075 mm | 2   | 12            | -   | -       | 0    | 10      | 0    | 15      | 0    | 15  |

FUENTE: MTOP

# 3.3.4 Descripción de las muestra del terreno

La muestra fue tomada a partir del material extraído de la segunda calicata, ubicada en la abscisa 0+320 m, está conformada por arena arcillosa con grava y fue sometida a ensayos de granulometría, límites de Atterberg,

Proctor y CBR. A continuación se presentan los resultados obtenidos a partir de los ensayos de laboratorio pertinentes. Cabe mencionar, que los ensayos fueron realizados por el personal de LEMCO.

# a) Granulometría

Tabla 3.43. Pasante acumulado de ensayo granulométrico

|              | Tamiz | PESO    | %        | %RETENIDO | %PASANTE  |
|--------------|-------|---------|----------|-----------|-----------|
| TAMIZ        | mm    | PARCIAL | RETENIDO | ACUMULADO | ACUMULADO |
| 4"           | 100   | 0       | 0,00     | 0,00      | 100,00    |
| 3"           | 75    | 0       | 0,00     | 0,00      | 100,00    |
| 2 1/2 "      | 63    | 0       | 0,00     | 0,00      | 100,00    |
| 2"           | 50    | 449     | 8,98     | 8,98      | 91,02     |
| 1 1/2"       | 38,1  | 176     | 3,52     | 12,50     | 87,50     |
| 1"           | 25    | 144     | 2,88     | 15,38     | 84,62     |
| 3/4"         | 19    | 68      | 1,36     | 16,74     | 83,26     |
| 1/2"         | 12,5  | 157     | 3,14     | 19,88     | 80,12     |
| 3/8"         | 9,5   | 147     | 2,94     | 22,82     | 77,18     |
| 1/4"         | 6,4   | 289     | 5,78     | 28,60     | 71,40     |
| No. 4        | 4,75  | 231     | 4,62     | 33,22     | 66,78     |
| No.10        | 2     | 698     | 13,96    | 47,18     | 52,82     |
| No. 16       | 1,18  | 449     | 8,98     | 56,16     | 43,84     |
| No. 40       | 0,425 | 536     | 10,72    | 66,88     | 33,12     |
| No. 100      | 0,15  | 421     | 8,42     | 75,30     | 24,70     |
| No. 200      | 0,075 | 67      | 1,34     | 76,64     | 23,36     |
| <b>FONDO</b> |       | 1168    | 23,36    | 100,00    | 0,00      |
| TOTAL        |       | 5000,00 | 100,00   |           |           |

Fuente: Elaborado por LEMCO

**CURVA GRANULOMETRICA** 100 90 80 70 % QUE PASA 60 50 40 30 20 10 0 100 10 0,1 0,01 TAMAÑO DE PARTICULAS EN MM

Figura 3.39. Curva Granulométrica

Fuente: Elaborado por LEMCO

# b) Límites de Atterberg

Tabla 3.44. Contenido de humedad de la muestra

|                   | Paso Nº                  |    | 1     | 2     | 3     | 4 | 5 | 6 | 7 | 8 | 9     |
|-------------------|--------------------------|----|-------|-------|-------|---|---|---|---|---|-------|
|                   | Recipiente №             |    | bx20  | bx30  | bx33  |   |   |   |   |   |       |
|                   | Recipiente + peso humedo |    | 26,69 | 26,63 | 26,53 |   |   |   |   |   |       |
| en<br>os          | Recipeinte + peso seco   |    | 24,22 | 23,57 | 23,52 |   |   |   |   |   |       |
| peso en<br>gramos | Agua                     | Ww | 2,47  | 3,06  | 3,01  |   |   |   |   |   |       |
| <u>8</u> <u>5</u> | Recipiente               |    | 17,78 | 15,85 | 16,30 |   |   |   |   |   |       |
|                   | Peso Seco                | Ws | 6,44  | 7,72  | 7,22  |   |   |   |   |   |       |
|                   | Contenido de agua        | W  | 38,35 | 39,64 | 41,69 |   |   |   |   |   | 39,64 |
|                   | Número de golpes         |    | 36    | 25    | 14    |   |   |   |   |   | 25    |

Fuente: Elaborado por LEMCO

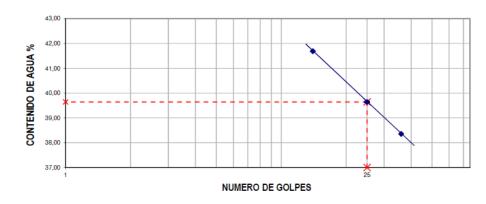



Figura 3.40. Gráfico de límite líquido a los 25 golpes

Fuente: Elaborado por LEMCO

Tabla 3.45. Ensayo de Límite Plástico

|                 | Paso Nº                  |    | 1     | 2     | 3     |
|-----------------|--------------------------|----|-------|-------|-------|
|                 | Recipiente Nº            |    | vx3   | vx35  |       |
| SOL             | Recipiente + peso humedo |    | 9,49  | 10,40 | 9,79  |
| ram             | Recipeinte + peso seco   |    | 9,34  | 10,25 | 9,64  |
| pe so en gramos | Agua                     | Ww | 0,15  | 0,15  | 0,15  |
| 80 6            | Recipiente               |    | 8,68  | 9,61  | 9,01  |
| 8               | Peso Seco                | Ws | 0,66  | 0,64  | 0,63  |
|                 | Contenido de agua        | W  | 22,73 | 23,44 | 23,81 |

Fuente: Elaborado por LEMCO

Tabla 3.46. Límite líquido, Límite Plástico e Indice de plasticidad

| Límite Líquido (WL)        | 39.64 |
|----------------------------|-------|
| Límite Plástico (WP)       | 23.32 |
| Indice de Plasticidad (IP) | 16.32 |

Fuente: Elaborado por LEMCO

### 3.3.5 Método de diseño y consideraciones

Es necesario en primer lugar hallar el total de ejes de equivalentes para un periodo de 10 a 20 años, por este motivo es necesario hacer un estudio adecuado del tráfico.

La metodología para el diseño del pavimento flexible, se basar en el método de la AASHTO, el cual es muy similar al método CBR, con la diferencia que aquí se considera un factor regional que depende de la precipitación media anual del sector en estudio.

Para aplicar el método en cuestión, es necesario conocer el CBR a lo largo de la via donde va ir posteriormente la carrera. Para el proyecto en cuestión, tenemos una via de 630 m de longitud aproximadamente, se tomó una única muestra a partir de una calicata ubicada en la abscisa 0+173 m. De esta muestra se determina el CBR con Proctor modificado al 95%. Una vez que sabemos el CBR de diseño y el total de eje equivalentes hallamos el numero estructural en base a los nomogramas presentados en la figura aa., sin embargo este número estructural debe ser corregido en base al factor regional, el cual ajusta el número estructural a las condiciones climáticas y ambientales bajo las cuales el pavimento va a trabajar, en base a esto se determina el numero estructural real que representa el espesor total del pavimento, a partir del cual se determinar los espesores de las capas que componen el pavimento, es decir, capa de rodadura, subbase y base.

Tabla 3.47. Resumen de aforo de tránsito

| Tipo de vehículo | Promedio de 3<br>días | Proyecto<br>Nuevo 15% |
|------------------|-----------------------|-----------------------|
| Auto             | 594.67                | 89.20                 |
| Camioneta        | 522.33                | 78.35                 |
| Moto             | 220.00                | 33.00                 |
| Buses            | 20.00                 | 3.00                  |
| camion 2D        | 55.00                 | 8.25                  |
| camion 2DA       | 36.67                 | 5.50                  |
| Volqueta         | 24.67                 | 3.70                  |
| mula             | 58.00                 | 8.70                  |
| trailer          | 8.33                  | 1.25                  |

En base a la tabla 3.47 se determina tráfico pesado futuro, por motivo que los ejes equivalentes futuros están basados en la influencia del peso del tráfico pesado, para esto tenemos que:

$$T_f = T_a * (1+i)^n$$
;  $T_a = 1.25 * T_e$ 

 $T_e$ : Tráfico existente (69.25)

 $T_a$ : Tráfico actual (86.56)

i: Tasa de crecimiento (poblacional para este caso)

n: año de proyeccion (20 — 10 años)

$$Para\ n = 20\ a \| os \ ; \ T_f = 86.56*(1+0.0111)^{20} = 107.94\ veh.$$
  $Para\ n = 10\ a \| os \ ; \ T_f = 86.56*(1+0.0111)^{10} = 96.66\ veh.$ 

Para hallar el facto equivalente, vamos a iniciar asumiendo un índice de servicio de 2.5 para condición de pavimento bueno o regular y un número de estructural de 4, también se asume que los vehículos que circulan van con la siguiente distribución:

a) Liviano: 40% vacíos; 60% cargados

b) Buses: 15% vacíos; 85% cargados

c) Camión de 2 ejes: 80% vacíos; 20% cargados

d) Camión de 3 ejes: 40% vacíos ; 60% cargados

e) Volqueta: 40% vacíos ; 60% cargados

f) Mula: 40% vacíos; 60% cargados

g) Trailer: 35% vacíos; 65% cargados

Tabla 3.48. Cálculo de ejes equivalentes

| Tipo de<br>vehículo | Tráfico    |       | % # de | e eje | Carga x<br>Eje [Kg] | Factor<br>Equivalente   | Eje<br>Equivalente |
|---------------------|------------|-------|--------|-------|---------------------|-------------------------|--------------------|
|                     |            |       | V      | 67    | 1600                | 0.0024                  | 0.1608             |
| Livianos            | 168        | 40    | V      | 67    | 3300                | 0.029                   | 1.943              |
| LIVIAIIUS           | 100        |       | С      | 101   | 2080                | 0.005                   | 0.505              |
|                     |            |       | С      | 101   | 4290                | 0.0831                  | 8.3931             |
|                     |            |       | V      | 0.45  | 4200                | 0.0772                  | 0.03474            |
| Ducce               | 2          | 15    | V      | 0.45  | 7000                | 0.4211                  | 0.189495           |
| Buses               | 3          |       | С      | 3     | 5460                | 0.2107                  | 0.6321             |
|                     |            | 85    | С      | 3     | 10790               | 2.6953                  | 8.0859             |
|                     |            |       | V      | 6     | 2500                | 0.0083                  | 0.0498             |
| Camion 2            | 8          | 80    | V      | 6     | 6000                | 0.2751                  | 1.6506             |
| ejes                | 0          |       | С      | 2     | 6000                | 0.2751                  | 0.5502             |
|                     |            | 20    | С      | 2     | 14500               | 8.75                    | 17.5               |
|                     | 6          |       | V      | 2     | 2500                | 0.0083                  | 0.0166             |
| Camion 3            |            | 40    | V*     | 2     | 8000                | 0.084                   | 0.168              |
| ejes                |            |       | С      | 4     | 8000                | 0.93                    | 3.72               |
|                     |            | 60    | C*     | 4     | 18200               | 2.3309                  | 9.3236             |
|                     | 4          |       | V      | 2     | 2500                | 0.0083                  | 0.0166             |
| Volqueta            |            | 40    | V      | 2     | 6000                | 0.2751                  | 0.5502             |
| (V2DB)              |            |       | С      | 2     | 6000                | 0.2751                  | 0.5502             |
|                     |            | 60    | С      | 2     | 14500               | 8.75                    | 17.5               |
|                     |            |       | V      | 4     | 2500                | 0.0083                  | 0.0332             |
| Mula                | 9          | 40    | V      | 4     | 8000                | 0.084                   | 0.336              |
| (V3A)               | 9          |       | С      | 5     | 8000                | 0.93                    | 4.65               |
|                     |            | 60    | С      | 5     | 18200               | 2.3309                  | 11.6545            |
|                     |            | 35    | V      | 0.35  | 4000                | 0.064                   | 0.0224             |
|                     |            |       | V*     | 0.35  | 6000                | 0.026                   | 0.0091             |
| Trailer             | 1          |       | V*     | 0.35  | 6000                | 0.026                   | 0.0091             |
| (H3S2)              | 1          | 65    | С      | 0.65  | 9200                | 1.5449                  | 1.004185           |
|                     |            |       | C*     | 0.65  | 18400               | 2.3532                  | 1.52958            |
|                     |            |       | C*     | 0.65  | 18400               | 2.3532                  | 1.52958            |
| (*) Hace            | referencia | a los |        |       |                     | E.E<br>/ Rafael Bárcene | 92.31758           |

Fuente: Sebastián Suárez y Rafael Bárcenes

Tabla 3.49. Total de ejes equivalente para un periodo de 20 años

| Total de e                     | Total de ejes equivalentes (T.E.E) en n = 20 años                                                                |  |  |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Tráfico pesado diario<br>(tdp) | $tdp = \frac{ta + tp}{2} = \frac{86.56 + 107.94}{2} = 97.25 \ vehic.$                                            |  |  |  |  |
| Total de eje<br>equivalente    | $T.E.E = tdp * (20 \ a\tilde{n}os) * \left(\frac{365 \ d\tilde{a}s}{a\tilde{n}o}\right) * 0.6 * \frac{E.E}{t_e}$ |  |  |  |  |
| T.E.E (20)                     | 567843.10                                                                                                        |  |  |  |  |

Fuente: Sebastián Suárez y Rafael Bárcenes

Tabla 3.50. Total de ejes equivalente para un periodo de 10 años

| Total de ejes equivalentes (T.E.E) en n = 10 años |                                                                                                               |  |  |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Tráfico pesado diario<br>(tdp)                    | $tdp = \frac{ta + tp}{2} = \frac{86.56 + 107.94}{2} = 97.25 \ vehic.$                                         |  |  |  |  |
| Total de eje<br>equivalente                       | $T.E.E = tdp * (10 a\tilde{n}os) * \left(\frac{365 d\tilde{n}as}{a\tilde{n}o}\right) * 0.6 * \frac{E.E}{t_e}$ |  |  |  |  |
| T.E.E (10)                                        | 283921.55                                                                                                     |  |  |  |  |

Fuente: Sebastián Suárez y Rafael Bárcenes

El factor regional se considera de acuerdo a la zona, para este caso Zaruma presenta una precipitación entre 1000 a 2000 mm por lo que el factor regional seria 1.5.

Tabla 3.51. Factor regional de acuerdo a la precipitación

| Precipitación<br>pluviométrica<br>(mm) | Fr   |
|----------------------------------------|------|
| menor a 250                            | 0.25 |
| 250 - 500                              | 0.5  |
| 500 - 1000                             | 1    |
| 1000 - 2000                            | 1.5  |
| 2000 - 3000                            | 1.75 |
| mayor a 3000                           | 2    |

Fuente: Sebastián Suárez y Rafael Bárcenes

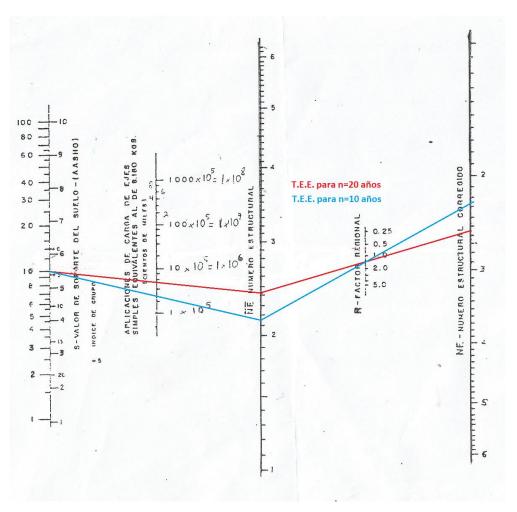



Figura 3.41. Nomograma para diseño de pavimento flexible

Según el nomograma de la figura 3.41 podemos notar que para un periodo de 20 años, el numero estructural corregido por el factor regional será de 2.55, mientras que para un periodo de 10 años será de 2.27.



Figura 3.42. Esquema gráfico para la ecuación del número estructural

Fuente: Sebastián Suárez y Rafael Bárcenes

$$NE = a_1 \cdot h_1 + a_2 \cdot h_2 + a_3 \cdot h_3$$

La ecuación mostrada anteriormente indica la relación entre el número estructural y el espesor de cada capa, en la que los coeficientes a1, a2 y a3 representa la resistencia relativa del material. Se establece que para la capa de rodadura a1=0.173, para la base a2=0.055 y para la subbase a3=0.043.

Tabla 3.52. Número estructural calculado

|                     | Coeficiente estructural | espesor<br>[cm]         | NE    |
|---------------------|-------------------------|-------------------------|-------|
| Capa de<br>rodadura | 0.173                   | 5                       | 0.865 |
| Base                | 0.055                   | 10                      | 0.55  |
| Sub-base            | 0.043                   | 20                      | 0.86  |
|                     |                         | $NE_{\text{calculado}}$ | 2.275 |

T.E.E <sub>(20)</sub> NE 2.55 T.E.E <sub>(10)</sub> NE 2.27

Fuente: Sebastián Suárez y Rafael Bárcenes

Si hacer el valor del número estructural para un periodo de 20 años, los costos del pavimento serian mayores, debido a que el espesor de las capas aumenta. Por este motivo nos quedamos con los valores establecidos en la tabla 3.52

Es importante resaltar, que por motivos de presupuesto el diseño del pavimento se lo hizo a partir de una sola muestra, por lo que el CBR de diseño usado no resulta muy representativo, es por esto que se recomienda hacer un nuevo diseño en el que se tome en cuenta por lo menos 2 muestras más. De los ensayos de CBR realizados en laboratorio de 12-25-56 golpes se grafica la curva de los CBR y según el total de los ejes equivalentes se escoge un porcentaje para determinar el CBR de diseño real.

En anexos sección F se adjunta los resultados de los ensayos de Proctor y CBR de la muestra analizada.

# **CAPITULO 4**

### 4. IMPACTO AMBIENTAL

### 4.1 Objetivos

Describir los impactos ambientales que pueden producirse por la construcción o implantación del proyecto en el cerro Zaruma Urcu de Zaruma.

### 4.2 Descripción del Proyecto

El proyecto consiste en el análisis de estabilidad de taludes y propiedades del suelo sobre el cual se va a cimentar una estructura (monumento) de aproximadamente 1000 toneladas de peso y una altura de 40 metros, además de eso se realizará el diseño de una vía de acceso de aproximadamente 640 metros de longitud con pavimento flexible desde la entrada principal hasta la cima del cerro.

En la actualidad el terreno donde se construirá el proyecto es privado, pero a futuro cuando se empieza a construir se buscará que se vuela libre para el acceso público.

### 4.3 Áreas de Influencia Directa e Indirectas

# 4.3.1 Definición de las Áreas de Influencia del Proyecto

La denotación de un área de influencia ayuda a determinar los sectores donde se requieren estudios, análisis y evaluación de los posibles impactos ambientales que puede producir el proyecto. En este caso el área de influencia viene a ser el cerro Zaruma-Urcu, ubicado en el cantón Zaruma de la provincia de El Oro. Posteriormente se identificarán los posibles

factores que repercutan en el ambiente por la implantación del monumento en la cima del cerro, así como también de la construcción de su vía de acceso.

A continuación, en la Figura 4.1 podemos observar la ubicación de los tres niveles de áreas de influencia que serán detallados posteriormente.

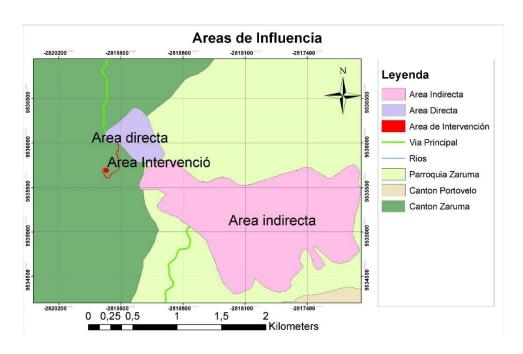



Figura 4.1. Ubicación geográfica de las áreas de intervención, directa e indirecta

Fuente: Sebastián Suárez y Rafael Bárcenes

### 4.3.2 Área de intervención

El Área de Intervención corresponde a un terreno de 422.4 m2, ubicado en la cima del cerro, donde se realizará la implantación del monumento. También se considera la vía de acceso a la cima que tiene una longitud de 635.3 m y un área total de 2 683.3 m2.

La delimitación del Área de Intervención se llevó a cabo a partir de:

- 1.- Del diseño arquitectónico proporcionado por el cliente para la implantación de la cimentación del monumento.
- 2.- Del diseño vial propuesto para la vía de acceso.

### 4.3.3 Área de influencia directa

En este caso el área donde se manifestarán los impactos directamente, vendría a ser los terrenos aledaños al cerro ya que se pueden generar impactos inmediatos después de la ejecución de las actividades de construcción del proyecto. Esta área comprende un espacio de 18.4 hectáreas, donde se ubican alrededor de un total de 50 viviendas.

### 4.3.4 Área de Influencia Indirecta

El área que se verá afectada indirectamente, correspondería a las zonas cercanas donde ocurrirían los impactos, pero con un tiempo diferido y no exactamente cuando se produce una acción. En este caso se considerará a la ciudad de Zaruma como el área de influencia indirecta y sus alrededores.

### 4.4 Línea Base Ambiental

# 4.4.1 Descripción del Medio Físico

#### 4.4.1.1 Clima.

Para la descripción del clima del sector se ubicó la estación meteorológica del Instituto Nacional de Meteorología en Hidrología (INAMHI) más cercana al área de intervención. La estación con código M0180 es la única relativamente cercana al sitio del proyecto que tiene datos meteorológicos completos del año más actualizado que vendría a ser el año 2011.

La distancia entre la estación M0180 y el lugar de intervención del proyecto es de aproximadamente 2.5 kilómetros, tal y como se puede observar en la Figura 4.2.

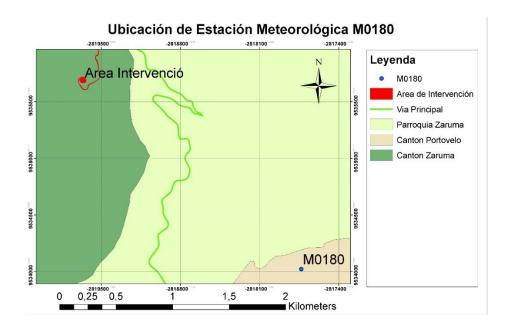



Figura 4.2. Mapa georreferenciado con la ubicación de la estación M0180 con respecto al área de intervención del proyecto

Fuente: Sebastián Suárez y Rafael Bárcenes

Los datos meteorológicos que serán ocupados en este proyecto serán extraídos del anuario meteorológico de la estación M0180, tales podemos observar a continuación en la Tabla 4.1.

Tabla 4.1. Temperaturas y precipitaciones en la estación meteorológica M0180 del INAMHI del año 2011

| Mes        | Temperatu | Precipitación<br>(mm) |         |         |
|------------|-----------|-----------------------|---------|---------|
| ivies      |           | Medias                |         | Suma    |
|            | Máxima    | Mínima                | Mensual | Mensual |
| Enero      | 27.8      | 16.7                  | 21.0    | 330.3   |
| Febrero    | 28.3      | 16.7                  | 21.2    | 269.9   |
| Marzo      | 28.9      | 17.2                  | 21.7    | 192.2   |
| Abril      | 28.1      | 17.6                  | 21.6    | 328.4   |
| Mayo       | 29.2      | 17.5                  | 21.9    | 34.6    |
| Junio      | 28.6      | 17.4                  | 21.5    | 66.5    |
| Julio      | 28.4      | 16.7                  | 21.1    | 57.2    |
| Agosto     | 30.9      | 16.1                  | 21.5    | 1.4     |
| Septiembre | 31.9      | 16.4                  | 22.1    | 5.4     |
| Octubre    | 31.6      | 16.3                  | 21.8    | 31.5    |
| Noviembre  | 30.9      | 16.6                  | 21.9    | 45.3    |
| Diciembre  | 28.1      | 17.1                  | 20.9    | 206.6   |

# 4.4.1.2 Tipos de Suelo y Geología.

Por medio de un total de 4 calicatas, separadas aproximadamente 150 metros entre sí a lo largo de la vía, se pudo constatar los estratos de suelo que se encuentran a un profundidad de 1 m, estando conformado el terreno por estrato de lo que parece ser una capa de un suelo con basuras y no apta como subsuelo de la vía de aproximadamente 15 cm como se puede observar en la Figura 4.3, y los estratos posteriores

estaban conformados por suelos arcillosos duros con roca meteorizada de difícil penetración.



Figura 4.3. Fotografía de una calicata ubicada en la cima del cerro

Fuente: Sebastián Suárez y Rafael Bárcenes

Nota. En la fotografía se puede observar una capa superficial de color gris-café que vendría a ser la capa con elementos orgánicos no apta para un subsuelo de una carreta, luego se observa otra capa de suelo pero de color anaranjado opaco, este puede ser caracterizado como un suelo arcilloso-limoso con presencia de riolita meteorizada.

En la zona donde se construirá la cimentación del monumento se realizaron 2 excavaciones con un alcance en profundidad de aproximadamente 3 metros. Con esta excavación se pudo constatar que a dicha profundidad existe un estrato de riolita meteorizada continua, a diferencia de la capa superficial que era esporádico.



Figura 4.4. Excavación de calicatas con una abertura de 2 m x 2m, con la ayuda de una retroexcavadora

Fuente: Sebastián Suárez y Rafael Bárcenes

# 4.4.1.3 Hidrología superficial.

En el área de intervención no existe ningún cuerpo de agua, dicho lo anterior lo ríos más cercanos al cerro Zaruma Urcu están ubicados en los cantones de Piñas y Portovelo. En la Figura 4.5 podemos observar la ubicación de estos ríos con respecto al cerro Zaruma Urcu.

Los ríos son conocidos como el Rio Calera que pasa por Piñas y el Rio Amarrillo que pasa por Portovelo, ambos ríos se encuentran a una distancia aproximada de 3 km y 4 km respectivamente.



Figura 4.5. Ubicación de los ríos Calera y Amarrillo con respecto al cerro Zaruma Urcu

Fuente: Sebastián Suárez y Rafael Bárcenes

Cabe mencionar que tanto el Rio Calera y el Rio Amarillo presentan una contaminación causada por la actividad de minería proveniente de los cantones de Zaruma y Portovelo. Los ríos presentan altos contenidos de arsénico y mercurio, dado que existe una falta de control por parte de las autoridades pertinentes a los desechos que produce el procesamiento y extracción del oro. (Romero V., 2014)

# 4.4.2 Descripción del Medio Biótico

### 4.4.2.1 Flora.

En general el tipo de bosque se encuentra en Zaruma es un bosque húmedo pre montano, el mismo que tiene la característica de tener neblinas muy fuertes en las mañanas y lluvias torrenciales en los meses de invierno por las tardes. Por lo tanto, existen especies de plantas y árboles representativos de la zona que son "pomarrosa, zapote,

aguacate, mango, plátano, café, naranja, papayo, limón, yuca, caña de azúcar. Así como una variedad de plantas ornamentales como: rosas, orquídeas, cucardas entre otros arbustos que son productores de flores". (Mora S., 2017, pg. 8)

Existen también 6 especies endémicas de la zona, las mismas que son:
Mauria birringo, Ocotea floribunda, Nectandra reticulata, Pasiflora
tuberosa, Pasiflora pergrandis y Piper dodsoni. (Mora S., 2017)
Existen áreas protegidas establecidas por la Ordenanza municipal 2020
– 2030: Determinaciones para el Uso y Ocupación del Suelo, en el cual
especifica áreas naturales de conservación y recuperación forestal. En

las Figuras 4.6, 4.7 y 4.8 podemos observar que nuestra área de

implantación para el proyecto no se ubica en ninguna zona protegida.

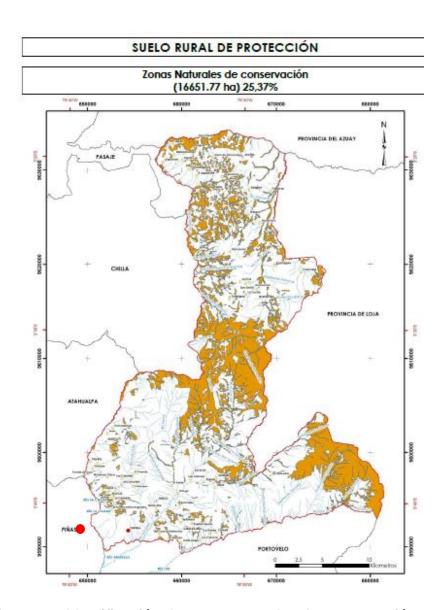



Figura 4.6. Identificación de zonas naturales de conservación en el cantón Zaruma

Nota. En el mapa podemos observar que no existe ninguna zona de protección en lado izquierdo de punto rojo que representa a la ciudad de Zaruma, el mismo que es la ubicación del cerro Zaruma Urcu. Las áreas anaranjadas representan las zonas sujetas a protección de la naturaleza. (Gad Municipal del Cantón Zaruma, 2020, pg. 42)

En cuanto a la flora que posee el área de implantación del proyecto, no se evidencia gran variedad de especies por el hecho de que el terreno fue quemado para su limpieza por parte de los dueños. En algunos sectores no se encuentra quemado, pero si limpio ya que solo se observa césped, además existen solo 2 árboles de los cuales 1 ya está totalmente seco (muerto) y el segundo no será removido y se encuentra en buenas condiciones.

### 4.4.2.2 Fauna.

En las Tablas 4.2, 4.3 y 4.4 podemos observar un listado de las especies más representativas del cantón Zaruma, también se procedió a evaluar en qué estado se encuentra la especie en una lista de animales en peligro de extinción.

Tabla 4.2. Avifauna representativa del Cantón Zaruma

| Especie      |                         | Riesgo de extinción |
|--------------|-------------------------|---------------------|
| Nombre común | Nombre científico       |                     |
| Colibrí      | Trochilidae             | Alto                |
| Pericos      | Melopsittacus undulatus | Bajo                |
| Palomas      | Columba livia           | Bajo                |
| Tordos       | Molothrus bonariensis   | Bajo                |
| Azulejos     | Thraupis episcopus      | Estable             |
| Carpinteros  | Picidae                 | Desconocido         |
| Gallinazos   | Coragyps atratus        | Bajo                |
| Lechuzas     | Tyto alba               | Estable             |
| Perdices     | Alectoris rufa          | Alto                |
| Golandrinas  | Hirundo rustica         | Alto                |

Nota. En total existe aproximadamente 24 familias y 46 especies de aves en Zaruma, en esta tabla se expusieron más representativas de la zona. (Mora S., 2017, pg.9)

Tabla 4.3. Mamíferos silvestres representativos del Cantón Zaruma

| Especie          |                         | Riesgo de extinción |
|------------------|-------------------------|---------------------|
| Nombre común     | Nombre científico       |                     |
| Guanta           | Cuniculus paca          | Estable             |
| Venado rojizo    | Cervus elaphus          | Bajo                |
| Armadillo        | Dasypodidae             | Desconocido         |
| Raposa           | Didelphimorphia         | Desconocido         |
| Conejo           | Oryctolagus cuniculus   | Bajo                |
| Oso hormiguero   | Myrmecophaga tridactyla | Alto                |
| Conejo del monte | Sylvilagus cunicularius | Alto                |

| Chucurillo | Mustela frenata  | Estable |
|------------|------------------|---------|
| Ardillas   | Sciurus vulgaris | Bajo    |
| Shushano   | Nasua nasua      | Alto    |
| Zorro      | Vulpes vulpes    | Alto    |

Nota. En el caso de los mamíferos existen algunas especies como la guanta que aparece estable en la lista global de especies en extinción, pero localmente en Zaruma se acercan a la extinción por la casa discriminada. (Mora S., 2017, pg.9)

Tabla 4.4. Herpetofauna representativa del Cantón Zaruma

| Especie             |                     | Riesgo de extinción |
|---------------------|---------------------|---------------------|
| Nombre común        | Nombre científico   |                     |
| Iguana              | Iguanidae           | Desconocido         |
| Lagartija           | Lacertilia          | Desconocido         |
| Serpiente X         | Bothrops atrox      | Desconocido         |
| Serpiente coral     | Micrurus fulvius    | Estable             |
| Gusano              | Acanthophis pyrrhus | Bajo                |
| Serpiente sobrecama | Boa constrictor     | Bajo                |
| Minera              | Geophis omiltemanus | Estable             |

Nota. En total existen 6 especies de anfibios y 46 especies de reptiles en el cantón de Zaruma. (Mora s., 2017, pg.9)

En el área de implantación del proyecto no se observó ninguna especie de anfibios, reptil o mamífero, en cuanto a avistamientos de aves se pudo observar: gallinazos, golondrinas, pericos y azulejos.

Toda la información con respecto al estado de extinción de las especies expuestas en las 3 tablas, fue obtenida mediante la consulta por medio de los nombres científicos en el RED LIST, la misma que es una página web donde están la mayoría de especies. (RED LIST, 2020).

# 4.4.3 Descripción del Medio Socio Económico-Cultural

# 4.4.3.1 Impacto al nivel de empleo.

En el cantón Zaruma no existe datos específicos de desempleo por lo que se utilizó los datos disponibles de la provincia del oro, según el último censo nacional del 2010, existe un porcentaje de desempleo de aproximadamente 42 %, el mismo que se desglosa como se muestran en las Gráficas 4.1 y 4.2.

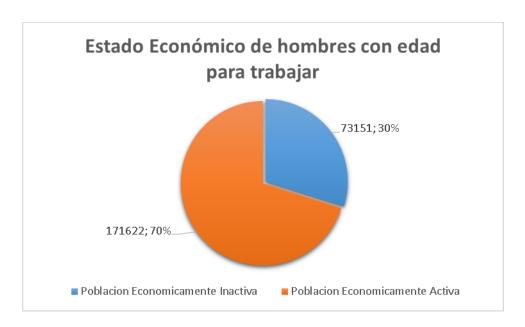



Gráfico 4.1. Estructura de la población con edad para trabajar de género masculino – Cantón Zaruma

Nota. Según los resultados del censo del 2010, 30% de la población masculina con edad para trabajar se encuentra sin empleo. (INEC, 2010)

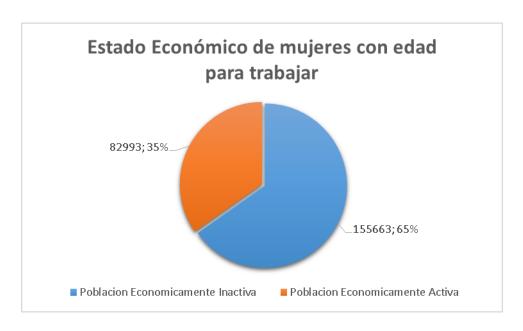



Gráfico 4.2. Estructura de la población con edad para trabajar de género femenino – Cantón Zaruma

Nota. Según los resultados del censo del 2010, 65% de la población femenina con edad para trabajar se encuentra sin empleo. (INEC, 2010)

Uno de los motivos para la desigualdad de género en cuanto a los porcentajes de desempleo del cantón puede ser por el hecho de que la mayoría de ofertas de trabajos disponibles son para mano de obra forzada. Con la implementación del proyecto se busca generar un impacto positivo en el medio socio económico-cultural para producir un aumento en el turismo y aumentar las ofertas de trabajo en Zaruma, tanto para mano de obra femenina o masculina. Resultando de esta manera en una alternativa para las mujeres del cantón en poder conseguir un empleo sin tener que realizar mano de obra forzada.

# 4.4.3.2 Religiosidad

En cuanto a la religiosidad se realizó una encuesta para verificar si el monumento de la Virgen que se plantes colocar en la cima del cerro Zaruma Urcu tendría acogida por la población de la parroquia Zaruma. En el Grafico 4.3 se puede observar los resultados de la encuesta.



Gráfico 4.3. Resultados del porcentaje de habitantes estimado de religión católica

Nota. El 94% de los habitantes de Zaruma se declaran creyentes de la religión católica y comentan ser devotos a la Virgen del Carmen que denominan como patrona de Zaruma. El 6 % restante pertenecen a otras religiones tales como evangelistas o testigos de jehová.

El porcentaje de católicos que existe en la parroquia de Zaruma, indica que no existirá oposición significativa por la colocación de un monumento de la Virgen en la cima del cerro Zaruma Urcu. Adicionalmente se encuesto también la aceptabilidad de dicho monumento con un porcentaje de aceptación resultante del 100%, esto con el motivo de que los pobladores esperan que un monumento

religioso puede aumentar el turismo en la parroquia y abrir nuevas plazas de trabajo.

#### 4.4.3.3 Turismo

Zaruma es una parroquia donde existen varias tiendas de productos artesanales, por lo que un aumento en el turismo podría significar un aumento en locales comerciales y en ventas de productos artesanales. Según el INEC (INEC, 2010), el 30% de trabajos en Zaruma vienen vinculados a vendedores comerciales, servicios de comida o hotel y trabajos artesanales. Adicionalmente existen algunos destinos turísticos, entre los cuales se distinguen la Mina del Sexmo, la Cruz del cerro Calvario (mirador) y el Museo Magner Turner.

El proyecto busco incrementar un destino turístico único a la parroquia de Zaruma, el mismo consistirá de una Virgen de 40 metros de altura encima del cerro, adicionando un mirador más al atractivo turístico de la zona. Adicionalmente es importante mencionar que en Zaruma una de sus principales atracciones es el paisajismo, ya sea en el centro de la ciudad o encima de un cerro, Zaruma por tener una configuración urbana tan distinguida, llama la atención de los turistas.

### 4.5 Actividades del proyecto

#### 4.5.1 Actividades durante la Fase de Construcción

 Limpieza y desbroce: La limpieza y desbroce se destinada solo para el área de implantación de la cimentación del monumento y de la vía a diseñar. Consiste en remover toda la vegetación de estas áreas y basuras existentes en estas áreas, así también como suelo no adecuado para el asentamiento de infraestructuras civiles.

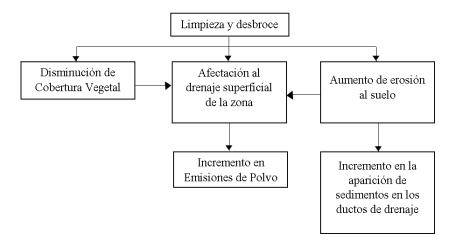
- Instalación de campamento y sitio de acopio: Se construirá un campamento en la cima del cerro y uno más pequeño en la entrada principal, los mismos que servirán para registrar los materiales de entrada y salida, como también para almacenar las herramientas, materiales de construcción y servir como un cuarto temporal para el guardia que cuidara de todo en turnos nocturnos.
- Movimiento de tierra: Se efectuará movimiento de tierras en el suelo que se requiere remover para el asentamiento de la losa de cimentación sobre un subsuelo que pueda soportar las cargas del monumento y también existirá movimiento de tierra en corta a los taludes para la construcción de la vía.
- Explotación de canteras: Por la alta actividad minera en Zaruma, existe varias canteras que resultan como los desperdicios de la minería o de roca sin metales extraíbles. El transporte del material será de máximo de 10 Km, pero producirá un aumento en la circulación de vehículos pesados en la parroquia Zaruma y como consecuencia aumentando el riesgo de accidentes de tránsito.
- Preparación de la cimentación (compactación): Para la preparación del suelo donde se asentará la losa de cimentación, así también la preparación del suelo vial, se requiere realizar una compactación

mediante la aplicación de apisonadores y rodillos de tambor respectivamente.

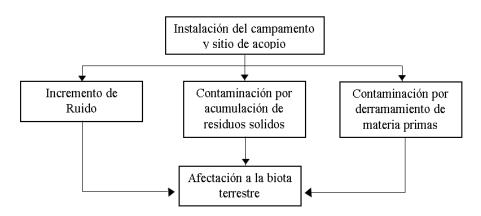
• Construcción de la infraestructura: Para la construcción de la infraestructura se contratarán mixers de hormigón por lo que existirá un aumento en la circulación de vehículos pesados. Para el pavimento flexible se utilizará la maquina especializada de pavimento flexible y después será compacta la capa de pavimento con rodillos tipo tambor.

# 4.5.2 Actividades durante la Fase de Operación

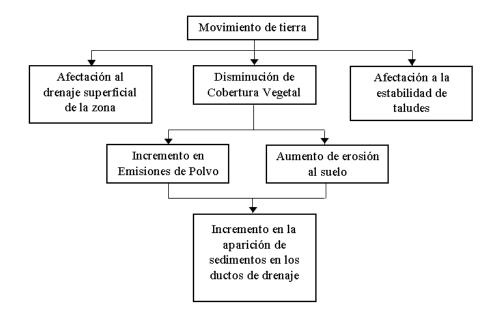
- Tránsito de Visitantes (monumento): Puede producir un incremento en la contaminación ambiental en forma de basura no desechada correctamente por parte de los peatones, en los alrededores del monumento.
- Transito vehiculas (vía): Al aumento de tránsito vehicular puede ser significativo en estaciones propensas a un aumento en el turismo, así también para fechas religiosas pueden ocurrir peregrinaciones hacia la virgen aumentando de esta manera el tráfico en Zaruma.
- Mantenimiento de infraestructura: Revisiones periódicas de la vía para corregir alguna imperfección causada por el tránsito vehicular.


# 4.6 Identificación de Impactos Ambientales

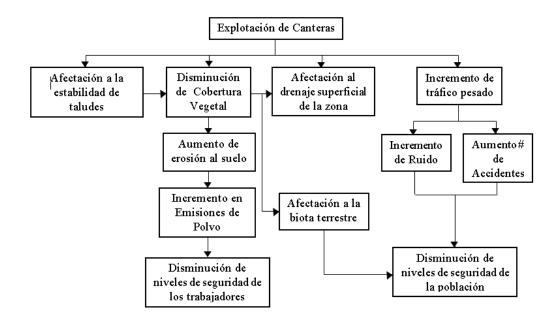
Se opta realizar la identificación de impactos ambientales por medio de la metodología de diagrama de redes, la misma que consiste en identificar todos


los componentes ambientales que se verán afectados por las actividades a realizarse en el proyecto.

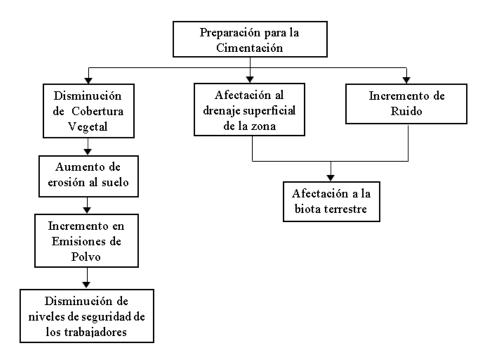
A continuación, se procede a mostrar los diagramas de redes por cada actividad descrita del proyecto:


# 4.6.1 Impacto Producido por la Limpieza y Desbroce

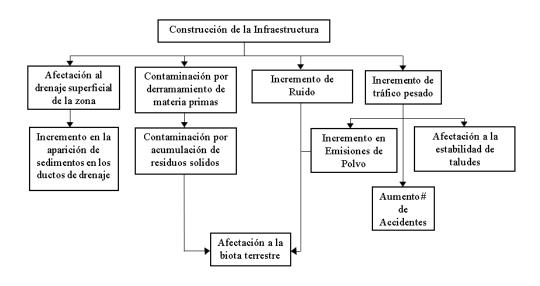



# 4.6.2 Impacto Producido por la Instalación del campamento y sitio de acopio

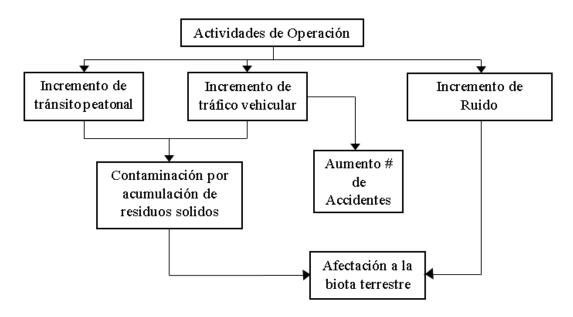



# 4.6.3 Impacto Producido por el Movimiento de tierra




# 4.6.4 Impacto Producido para la Explotación de Canteras




# 4.6.5 Impacto Producido por la Preparación para la Cimentación



# 4.6.6 Impacto Producido por la Construcción de la Infraestructura



# 4.6.7 Impacto Producido por las Actividades de Operación



# 4.7 Valoración de Impactos Ambientales

Para la valoración de los Impactos Ambientales es necesario evaluar cuantitativa mente el impacto que pueden producir las actividades del proyecto. Por ende, para la determinación cuantitativa se utilizó el método simplificado (Secretaria nacional de gestión de riesgos, 2010), basado en la metodología de Criterios Relevantes Integrados (Buroz, 1998).

Dicha metodología propone 7 parámetros iniciales que se deben evaluar antes de obtener la evaluación del impacto del proyecto general, los mismos se describen brevemente a continuación:

1.- Carácter del Impacto o Signo (+/-): En este parámetro se determina el signo según el tipo de impacto positivo (+) o negativo (-), en caso de no tener ningún impacto se deja sin signo.

- 2.- Intensidad del Impacto (I): La intensidad representa un valor numérico comprendido entre 1 y 10, donde 1 define un impacto insignificante y 10 un impacto muy significativo.
- 3.- Extensión o Influencia Espacial del Impacto (E): Este parámetro depende del área de influencia al cual puede afectar el impacto. A continuación, se describe los valores predeterminados según el área de influencia que abarcaría el impacto:

Tabla 4.5. Valores de influencia espacial del impacto

| Extensión                     | Valor |
|-------------------------------|-------|
| Puntual (impactos afectan     | 1     |
| solo el sitio de implantación |       |
| del proyecto)                 |       |
| Local (impactos afectan       | 5     |
| zonas en los alrededores del  |       |
| proyecto)                     |       |
| Regional (impactos afectan    | 10    |
| zonas alejadas al sitio del   |       |
| proyecto)                     |       |

Nota. La tabla 4.5 fue extraída del documento referenciado (Secretaria nacional de gestión de riesgos, 2010).

**4.- Duración del Impacto Ambiental (D):** En este parámetro se evalúa según el tiempo que afectara dicho impacto, a continuación se presenta algunas valoraciones según ciertas condiciones:

Tabla 4.6. Valores según la duración del impacto

| Duración                                           | Valor |
|----------------------------------------------------|-------|
| Instantáneo (efectos del impacto desaparecen       |       |
| inmediatamente)                                    | 1     |
| Temporal (efectos del impacto se producen          |       |
| solamente por un periodo fijo de tiempo y después  | 2.5   |
| desaparecen)                                       |       |
| Periódico (efectos del impacto aparecen con cierta | 5     |
| frecuencia mientras dure la acción que lo produce) | 3     |
| Permanente (efectos del impacto no desaparecen)    | 10    |

Nota. La tabla 4.6 fue extraída del documento referenciado (Secretaria nacional de gestión de riesgos, 2010).

5.- Magnitud del Impacto ambiental (M): En este parámetro se realiza el siguiente cálculo:

$$M = \pm [(IxF_I) + (ExF_E) + (DxF_D)]$$
 Ecuación 4.1

Los valores de las variables I, E y D ya fueron evaluadas previamente, en cuanto a los Factores F multiplicados a cada uno la Secretaria Nacional de riesgo recomienda utilizar 1/3 de los valores de la siguiente tabla:

Tabla 4.7. Factores de peso para los distintos parámetros del impacto

| Factores de Peso | Valor |
|------------------|-------|
| $F_I$            | 0.4   |
| $F_E$            | 0.2   |
| $F_D$            | 0.4   |

Nota. La tabla 4.7 fue extraída del documento referenciado (Secretaria nacional de gestión de riesgos, 2010).

6.- Reversibilidad (RV): En este parámetro se evalúa la capacidad de mitigar el impacto una vez terminada la acción que lo genera, a continuación en la Tabla 4.8 podemos observar algunos valores según ciertas condiciones:

Tabla 4.8. Valores de Reversibilidad del impacto

| Reversibilidad                                                   | Valor |
|------------------------------------------------------------------|-------|
| Completamente reversibles (el entorno sí puede regresar a sus    | 1     |
| condiciones originales una vez que la acción cesó)               | 1     |
| Parcialmente reversibles (el entorno no regresa totalmente a las | 5     |
| condiciones originales una vez que la acción cesó)               | 5     |
| Irreversibles (el entorno no puede regresar a sus condiciones    | 10    |
| originales una vez que la acción cesó)                           | 10    |

Nota. La tabla 4.8 fue extraída del documento referenciado (Secretaria nacional de gestión de riesgos, 2010).

7.- Riesgo o probabilidad del suceso (RG): Este parámetro es para evaluar la probabilidad que ocurra el impacto sobre el componente ambiental analizado, a continuación se presenta en la Tabla 4.9 valores de la probabilidad según ciertas condiciones:

Tabla 4.9. Valores de probabilidad de ocurrencia

| Probabilidad de Ocurrencia                          | Valor |
|-----------------------------------------------------|-------|
| Alta (existe más de un 50 % de probabilidad de que  | 10    |
| el impacto ocurra)                                  | 10    |
| Media (existe entre un 10 a 50 % de probabilidad de | 5     |
| que el impacto ocurra)                              | 5     |
| Baja (existe menos del 10% de probabilidad de que   | 1     |
| el impacto ocurra)                                  | ı     |

Nota. La tabla 4.9 fue extraída del documento referenciado (Secretaria nacional de gestión de riesgos, 2010).

Finalmente, cuando los 7 parámetros estén evaluados, se procede al cálculo del Índice Ambiental (VIA), mediante la Ecuación 4.2:

$$VIA = RV^{FRV} * RG^{FRG} * |M|^{FM}$$
 Ecuación 4.2

En la Ecuación 4.2 los factores FRV, FRG y FM, son factores adimensionales que en total deben sumar el valor de 1. En este caso se decidió escoger los siguientes valores para dichos factores, tal como se puede observar en la Tabla 4.10:

Tabla 4.10. Factores de peso Ecuación 4.2

| Factor de Peso | Valor |
|----------------|-------|
| FRV            | 1/3   |
| FRG            | 1/3   |
| FM             | 1/3   |

Nota. La tabla 4.10 fue extraída del documento referenciado (Secretaria nacional de gestión de riesgos, 2010).

Por último, se clasifica los resultados del VIA de cada actividad con sus respectivos componentes ambientales por medio de una serie de colores para diferencia de una manera más didáctica los impactos ambientales más negativos y positivos. A continuación, se presente la Tabla 4.11, explicando la clasificación según su color:

Tabla 4.11. Clasificación de los valores de VIA según su tipo de Impacto y su valor

| Valor del VIA | Significancia del<br>Impacto |  |
|---------------|------------------------------|--|
| 10 – 7        | (+) Alta                     |  |
| 7 – 3         | (+) Media                    |  |
| 3 – 0         | (+) Baja                     |  |
| 03            | (-) Baja                     |  |
| -37           | (-) Media                    |  |
| -710          | (-) Alta                     |  |

Nota. La tabla 4.11 fue elaborada basada en la del documento referenciado (Secretaria nacional de gestión de riesgos, 2010).

## 4.7.1 Matrices de Valoraciones de Impacto ambiental

En el anexo D. se visualizarán todas las matrices calculadas para determina el VIA en la última matriz. Esta metodología ayuda a identificar a los impactos negativos altos que necesitaran la aplicación de una medida de mitigación para asegurar la viabilidad del proyecto.

En el anexo D, Tabla D8, podemos observar la evaluación de impacto final por medio del método simplificado de la metodología de Criterios Relevantes Integrados (Secretaria nacional de gestión de riesgos, 2010). Donde no se evidencia una actividad que cause un impacto alto a ninguna componente ambiental.

En la suma de las filas y columnas podemos identificar la actividad que produce un mayor impacto comparado con las demás actividades o también el componente ambiental que sufre el mayor impacto por causa de

todas las actividades. Estas dos situaciones se ven resaltadas con amarrillo en la tabla, y nos pueden servir para poder enfocarnos en tomar medidas de mitigación con estas dos actividades.

# 4.8 Medidas de Prevención/Mitigación

Basándonos en la evaluación del impacto ambiental existen dos problemas principales en que enfocarse para dar una medida de prevención o mitigación, los mismos son:

- 1.- Prevenir o mitigar el impacto ambiental negativo que generan las actividades del proyecto a la cobertura vegetal.
- 2.- Prevenir o mitigar que la explotación de canteras genere un impacto ambiental significativo.

En este caso tratar de crear una propuesta para mitigar o prevenir la explotación en la cantera no está en nuestro poder, por lo cual se buscará mitigar el impacto ambiental negativo que generan las actividades del proyecto a la cobertura vegetal. A continuación, se detallarán algunas medidas propuestas para mitigar el impacto al componente ambiental en las actividades del proyecto:

A).- Reforestación de áreas afectadas con plantas nativas o endémicas del sector: En esta propuesta se elegirían plantas endémicas de Zaruma para reforestar toda la cobertura vegetal afectada por el proceso de construcción.

- **B).- Proceso de humectación:** La humectación en las actividades de limpieza y desbroce, compactación y movimiento de tierras disminuirá el impacto generado a la contaminación del aire y los riesgos que puede generar a la seguridad laboral de los trabajadores.
- C) Señalización de vía de acceso al cerro: La correcta señalización puede disminuir la cantidad de accidentes que pueden ocurrir por parte del transporte pesado que transportara materiales a la obra.
- **D)** Equipos de protección personal para trabajadores: Asegurar que los trabajadores dispongan y utilicen los equipos de protección personal, garantizara que no existan accidentes laborales graves.
- *E) Establecer límites de velocidad:* Establecer límites de velocidad a los transportistas de la obra disminuirá la posibilidad de que se produzcan accidentes de tránsito en el transporte de los materiales a obra.
- F) Cubrir con telas los materiales al transportarlos: En el caso de las volquetas, al transportar los materiales de la cantera, se debe cubrir con tela para disminuir la contaminación que se genera al volatilizar el polvo presente en el material.

#### 4.9 Conclusiones

 En el aspecto socio económico – cultural, se puede concluir que existe una buena aceptación por parte de la comunidad al proyecto, por el propósito de identificación religiosa con el monumento y el deseo de que exista un aumento al turismo a Zaruma.

- Se pudo corroborar que en el área de implantación del proyecto no existen flora o fauna endémica de Zaruma y tampoco ninguna especie en peligro de extinción.
- Después de realizar la evaluación del impacto ambiental y debido que la obra es de pequeñas dimensiones, se pudo observar que el impacto ambiental que se obtiene en este proyecto es de características de tipo medio. Es decir, no existen impactos altos, sin embargo, el plan de manejo de prevención o mitigación se centra en minimizar la mayor parte de impactos producidos por las actividades, para que el proyecto cumpla con la reglamentación ambiental pertinente.

# **CAPÍTULO 5**

# 5. PRESUPUESTO

# 5.1 Descripción de rubros

Existen dos componentes principales en el proyecto, los mismos que son la estructura de soporte del monumento y la vía de acceso a la cima del cerro. En la Tabla 5.1 se puede observar el desglose de los rubros de ambos componentes.

Tabla 5.1. Rubros del Proyecto:

| Componente de cimentación   |                                           |  |  |  |
|-----------------------------|-------------------------------------------|--|--|--|
| 1                           | Actividades preliminares                  |  |  |  |
| 1.1                         | Limpieza y desbroce                       |  |  |  |
| 1.2                         | Replanteo y nivelación                    |  |  |  |
| 1.3                         | Excavación de cimientos                   |  |  |  |
| 1.4                         | Relleno compactado con material importado |  |  |  |
| 2                           | Losa de cimentación                       |  |  |  |
| 2.0                         | Anclajes continuos inyectados             |  |  |  |
| 2.1                         | Encofrado con tabla de monte              |  |  |  |
| 2.2                         | Hormigón f'c= 280 Kg/cm <sup>2</sup>      |  |  |  |
| 2.3                         | Acero de refuerzo                         |  |  |  |
| 2.4                         | Desencofrado                              |  |  |  |
| 3                           | Columnas                                  |  |  |  |
| 3.1                         | Encofrado con tabla de monte              |  |  |  |
| 3.2                         | Hormigón f'c= 280 Kg/cm <sup>2</sup>      |  |  |  |
| 3.3                         | Acero de refuerzo                         |  |  |  |
| 3.4                         | Desencofrado                              |  |  |  |
| 4                           | Vigas                                     |  |  |  |
| 4.1                         | Encofrado con tabla de monte              |  |  |  |
| 4.2                         | Hormigón f'c= 280 Kg/cm <sup>2</sup>      |  |  |  |
| 4.3                         | Acero de refuerzo                         |  |  |  |
| 4.4                         | Desencofrado                              |  |  |  |
| 5                           | Losa superior                             |  |  |  |
| 5.1                         | Encofrado con tabla de monte              |  |  |  |
| 5.2                         | Hormigón f'c= 280 Kg/cm <sup>2</sup>      |  |  |  |
| 5.3                         | Acero de refuerzo                         |  |  |  |
| 5.4                         | Desencofrado                              |  |  |  |
| Componente de vía de acceso |                                           |  |  |  |

| 6   | Actividades preliminares                |
|-----|-----------------------------------------|
| 6.1 | Limpieza y desbroce vía de acceso       |
| 6.2 | Replanteo y nivelación vía de acceso    |
| 6.3 | Excavación de corte                     |
| 6.4 | Excavación de zanja para tubería        |
| 6.5 | Desalojo de escombros                   |
| 6.6 | Relleno y compactación                  |
| 7   | Obra vial                               |
| 7.1 | Base clase 4                            |
| 7.2 | Subbase clase 3                         |
| 7.3 | Carpeta asfáltica (incluye imprimación) |
| 8   | Señalización                            |
| 8.1 | Señalización horizontal                 |
| 8.2 | Señalización vertical                   |
| 8.3 | Barandas de seguridad                   |

# 5.2 Análisis de costos unitarios

Para realizar el análisis de precios unitarios (APUS) de cada rubro, se utilizaron precios referenciados de la cámara de construcción de Guayaquil 2019.

Tabla 5.2. Limpieza y desbroce.

| RUBRO: Limpieza y des | sbroce |          |             |              |           |  |  |
|-----------------------|--------|----------|-------------|--------------|-----------|--|--|
| UNIDAD: m2            |        | <u>R</u> | ENDIMIENTO: | 800          |           |  |  |
| EQUIPOS               |        |          |             |              |           |  |  |
| Descripción           | Unidad | Cantidad | Rendimiento | Precio Unit. | Costo     |  |  |
|                       |        | Α        | R           | В            | D=(A/R)*B |  |  |
| Retroexcavadora 75 HP | hr     | 1        | 100         | 35.00        | 0.35      |  |  |
| Subtotal M            |        |          |             |              | \$ 0.35   |  |  |
| MANO DE OBRA          |        |          |             |              |           |  |  |
| Descripción           | Unidad | Cantidad | Rendimiento | Precio Unit. | Costo     |  |  |
| Peón (ESTRUC. OCUP.   |        | А        | R           | В            | D=(A/R)*B |  |  |
| E2)                   | hr     | 1        | 4.54        | 3.62         | 0.80      |  |  |
| Subtotal N            |        |          |             |              | \$ 0.80   |  |  |

| MATERIALES            |                          |          |             |              |           |      |
|-----------------------|--------------------------|----------|-------------|--------------|-----------|------|
| Descripción           | Unidad                   | Cantidad | Rendimiento | Precio Unit. | Costo     |      |
|                       |                          | А        | R           | В            | D=(A/R)*B |      |
| Agua                  | m3                       | 1        | 33.34       | 0.85         |           | 0.03 |
| Subtotal O            |                          |          |             |              | \$        | 0.03 |
| TRANSPORTE            |                          |          |             |              |           |      |
| Descripción           | Unidad                   | Cantidad | Rendimiento | Precio Unit. | Costo     |      |
|                       |                          | Α        | R           | В            | D=A*B     |      |
| Camión (hasta 10 ton) | m3                       | 0.11     | -           | 55.08        |           | 6.06 |
| SUBTOTAL P =          |                          |          |             |              | \$        | 6.06 |
|                       | Total de costos directos |          |             |              |           |      |
|                       | X=(M+N+O+P)              |          | \$          | 7.23         |           |      |
| Costo total del rubro |                          | \$       | 7.23        |              |           |      |
| Valor ofertado        |                          |          | \$          | 7.23         |           |      |

En los APUS se consideró los equipos, manos de obra, materiales y transporte de los recursos requeridos por cada rubro. El APUS representa los costos directos del proyecto en lo que sería el desarrollo constructivo y en la Tabla 5.2 se muestra el APUS del rubro con código 1.1 Limpieza y desbroce del área de implantación.

Los demás APUS de cada rubro se encuentran en el anexo G.

## 5.3 Descripción de cantidades de obra

Las cantidades de cada rubro se calcularon en base a los planos finales y según el rubro. Por ejemplo para el rubro con código 1.1 Limpieza y desbroce correspondiente a las actividades preliminares de la estructura del monumento, el APUS es realizado analizando el costo por m² para realizar dicha actividad para el área de implantación de la cimentación. Entonces la cantidad requerida para valorar dicho rubro corresponde al área total de la losa de cimentación adicionando los dos metros a cada lado de dicha área (mencionado en las especificaciones técnicas del rubro).

En la Tabla 5.3 se especifican las cantidades de cada rubro.

Tabla 5.3. Cantidad por rubro del proyecto.

|     | Componente de cimentación                 |          |                |  |  |
|-----|-------------------------------------------|----------|----------------|--|--|
| 1   | Actividades preliminares                  | Cantidad | Unidad         |  |  |
| 1.1 | Limpieza y desbroce                       | 400      | m <sup>2</sup> |  |  |
| 1.2 | Replanteo y nivelación                    | 256      | m <sup>2</sup> |  |  |
| 1.3 | Excavación de cimientos                   | 1053     | $m^3$          |  |  |
| 1.4 | Relleno compactado con material importado | 256      | $m^2$          |  |  |
| 2   | Losa de cimentación                       | Cantidad | Unidad         |  |  |
| 2.0 | Anclajes continuos inyectados             | 72       | u              |  |  |
| 2.1 | Encofrado con tabla de monte              | 25.6     | $m^2$          |  |  |
| 2.2 | Hormigón                                  | 90       | $m^3$          |  |  |
| 2.3 | Armado de acero                           | 26200    | Kg             |  |  |
| 2.4 | Desencofrado                              | 25.6     | $m^2$          |  |  |
| 3   | Columnas                                  | Cantidad | Unidad         |  |  |
| 3.1 | Encofrado con tabla de monte              | 246.4    | $m^2$          |  |  |
| 3.2 | Hormigón                                  | 40.5     | $m^3$          |  |  |
| 3.3 | Armado de acero                           | 8309     | Kg             |  |  |
| 3.4 | Desencofrado                              | 246.4    | $m^2$          |  |  |
| 4   | Vigas                                     | Cantidad | Unidad         |  |  |
| 4.1 | Encofrado con tabla de monte              | 160      | $m^2$          |  |  |
| 4.2 | Hormigón                                  | 21       | $m^3$          |  |  |
| 4.3 | Armado de acero                           | 4298.4   | Kg             |  |  |
| 4.4 | Desencofrado                              | 160      | m <sup>2</sup> |  |  |
| 5   | Losa superior                             | Cantidad | Unidad         |  |  |
| 5.1 | Encofrado con tabla de monte              | 196      | $m^2$          |  |  |
| 5.2 | Hormigón                                  | 46.2     | $m^3$          |  |  |
| 5.3 | Armado de acero                           | 14984    | Kg             |  |  |
| 5.4 | Desencofrado                              | 196      | $m^2$          |  |  |
|     | Componente de vía de acceso               |          |                |  |  |
| 6   | Actividades preliminares                  | Cantidad | Unidad         |  |  |
| 6.1 | Desbroce y limpieza                       | 4404.43  | $m^2$          |  |  |
| 6.2 | Replanteo y nivelación                    | 4404.43  | $m^2$          |  |  |
| 6.3 | Excavación de corte                       | 13550    | $m^3$          |  |  |
| 6.4 | Excavación de zanja para tubería          | 342      | $m^3$          |  |  |
| 6.5 | Desalojo de escombros                     | 11700    | $m^3$          |  |  |
| 6.6 | Relleno y compactación                    | 1850     | $m^3$          |  |  |
| 7   | Obra vial                                 | Cantidad | Unidad         |  |  |
| 7.1 | Base clase 4                              | 440.44   | $m^3$          |  |  |

| 7.2 | Subbase clase 3                         | 880.89   | $m^3$  |
|-----|-----------------------------------------|----------|--------|
| 7.3 | Carpeta asfáltica (incluye imprimación) | 4404.43  | $m^2$  |
| 8   | Señalización                            | Cantidad | Unidad |
| 8.1 | Señalización horizontal                 | 1512     | ml     |
| 8.2 | Señalización vertical                   | 48       | u      |
| 8.3 | Barandas de seguridad                   | 630      | ml     |

# 5.4 Valoración integral del costo del proyecto incluyendo las medidas de prevención y mitigación del impacto ambiental

Los costos de las medidas de prevención y mitigación del impacto ambiental fueron considerados en los costos directos e indirectos de los rubros analizados. En la Tabla 5.4 se detallan los costos directos por cada rubro.

Tabla 5.4. Costos directos del proyecto.

|     | Componente de cimentación |          |        |            |       |           |  |  |  |  |
|-----|---------------------------|----------|--------|------------|-------|-----------|--|--|--|--|
|     |                           |          |        | Precio     |       |           |  |  |  |  |
| 1   | Actividades preliminares  | Cantidad | Unidad | Unitario   | Total |           |  |  |  |  |
| 1.1 | Limpieza y desbroce       | 400      | m2     | 7.23       |       | 2892      |  |  |  |  |
| 1.2 | Replanteo y nivelación    | 256      | m2     | 2.16       |       | 552.96    |  |  |  |  |
| 1.3 | Excavación de cimientos   | 1053     | m3     | 8.81       |       | 9276.93   |  |  |  |  |
|     | Relleno compactado con    |          |        |            |       |           |  |  |  |  |
| 1.4 | material importado        | 256      | m2     | 24.81      |       | 6351.36   |  |  |  |  |
|     |                           |          |        | Subtotal = | \$    | 19,073.25 |  |  |  |  |
|     |                           |          |        | Precio     |       |           |  |  |  |  |
| 2   | Losa de cimentación       | Cantidad | Unidad | Unitario   | Total |           |  |  |  |  |
|     | Anclajes continuos        |          |        |            |       |           |  |  |  |  |
| 2.0 | inyectados                | 72       | u      | 104.49     |       | 7523.28   |  |  |  |  |
|     | Encofrado con tabla de    |          |        |            |       |           |  |  |  |  |
| 2.1 | monte                     | 25.6     | m2     | 30.74      |       | 786.94    |  |  |  |  |
| 2.2 | Hormigón f'c = 280 Kg/cm2 | 90       | m3     | 121.45     |       | 10930.50  |  |  |  |  |
| 2.3 | Acero de refuerzo         | 26200    | Kg     | 1.55       |       | 40610.00  |  |  |  |  |
| 2.4 | desencofrado              | 25.6     | m2     | 10.66      |       | 272.90    |  |  |  |  |
|     |                           |          |        | Subtotal = | \$    | 60,123.62 |  |  |  |  |
|     |                           |          |        | Precio     |       |           |  |  |  |  |
| 3   | Columnas                  | Cantidad | Unidad | Unitario   | Total |           |  |  |  |  |
|     | Encofrado con tabla de    |          |        |            |       |           |  |  |  |  |
| 3.1 | monte                     | 246.4    | m2     | 30.74      |       | 7574.34   |  |  |  |  |

|                             |                                              | _         |            |                    |       |                       |  |  |
|-----------------------------|----------------------------------------------|-----------|------------|--------------------|-------|-----------------------|--|--|
| 3.2                         | Hormigón f'c = 280 Kg/cm2                    | 40.5      | m3         | 121.45             |       | 4918.73               |  |  |
| 3.3                         | Acero de refuerzo                            | 8309      | Kg         | 1.55               |       | 12878.95              |  |  |
| 3.4                         | desencofrado                                 | 246.4     | m2         | 10.66              |       | 2626.62               |  |  |
|                             |                                              |           |            | Subtotal =         | \$    | 27,998.64             |  |  |
|                             |                                              |           |            | Precio             |       |                       |  |  |
| 4                           | Vigas                                        | Cantidad  | Unidad     | Unitario           | Total |                       |  |  |
| 4.4                         | Encofrado con tabla de                       | 400       | O          | 20.74              |       | 4049.40               |  |  |
| 4.1                         | monte                                        | 160<br>21 | m2<br>m3   | 30.74<br>121.45    |       | 4918.40<br>2550.45    |  |  |
|                             | Hormigón f'c = 280 Kg/cm2                    |           |            |                    |       |                       |  |  |
|                             | Acero de refuerzo                            | 4298.4    |            | 1.55               |       | 6662.52               |  |  |
| 4.4                         | desencofrado                                 | 160       | m2         | 10.66              | Φ.    | 1705.60               |  |  |
|                             |                                              |           |            | Subtotal = Precio  | \$    | 15,836.97             |  |  |
| 5                           | Losa superior                                | Cantidad  | Unidad     | Unitario           | Total |                       |  |  |
|                             | Encofrado con tabla de                       |           | 0111010101 |                    |       |                       |  |  |
| 5.1                         | monte                                        | 196       | m2         | 30.74              |       | 6025.04               |  |  |
| 5.2                         | Hormigón f'c = 280 Kg/cm2                    | 46.2      | m3         | 121.45             |       | 5610.99               |  |  |
| 5.3                         | Acero de refuerzo                            | 14984     | Kg         | 1.55               |       | 23225.20              |  |  |
| 5.4                         | desencofrado                                 | 196       | m2         | 10.66              |       | 2089.36               |  |  |
|                             |                                              |           |            | Subtotal =         | \$    | 36,950.59             |  |  |
| Componente de vía de acceso |                                              |           |            |                    |       |                       |  |  |
|                             |                                              |           |            | Precio             |       |                       |  |  |
| 6                           | Actividades preliminares                     | Cantidad  | Unidad     | Unitario           | Total |                       |  |  |
| 6.1                         | Desbroce y limpieza                          | 4404.43   | m2         | 2.04               |       | 8985.0372             |  |  |
| 6.0                         | Replanteo y nivelación de                    | 4404 40   |            | 5.40               |       | 22014 0474            |  |  |
|                             | la vía                                       | 4404.43   |            | 5.18               |       | 22814.9474            |  |  |
| 6.3                         | Excavación de corte Excavación de zanja para | 13550     | m3         | 18.76              |       | 254198                |  |  |
| 6.4                         | tubería                                      | 342       | m3         | 6.74               |       | 2305.08               |  |  |
|                             | Desalojo de escombros                        | 11700     |            | 4.14               |       | 48438                 |  |  |
|                             | Relleno y compactación                       | 1850      |            | 3.48               |       | 6438                  |  |  |
|                             | , ,                                          |           |            | Subtotal =         | \$    | 343,179.06            |  |  |
|                             |                                              |           |            | Precio             | *     |                       |  |  |
| 7                           | Obra vial                                    | Cantidad  | Unidad     | Unitario           | Total |                       |  |  |
| 7.1                         | Base clase 4                                 | 440.44    | m3         | 15.15              |       | 6672.666              |  |  |
| 7.2                         | Subbase clase 3                              | 880.89    | m3         | 13.52              |       | 11909.6328            |  |  |
|                             | Carpeta asfáltica (incluye                   |           |            |                    |       |                       |  |  |
| 7.3                         | imprimación)                                 | 4404.43   | m2         | 38.82              |       | 70979.9726            |  |  |
|                             |                                              |           |            | Subtotal =         | \$    | 189,562.27            |  |  |
| 8                           | Señalización                                 | Cantidad  | Unidad     | Precio<br>Unitario | Total |                       |  |  |
| 8.1                         | Señalización horizontal                      | 1512      | ml         | 22.87              | Total | 34579.44              |  |  |
| 8.2                         | Señalización vertical                        | 48        | u          | 86.27              |       | 4140.96               |  |  |
| 8.3                         | Barandas de seguridad                        | 630       | ml         | 8.42               |       | 5304.6                |  |  |
| 0.5                         | Darandas de Segundad                         | 1 030     | 11111      | Subtotal =         | \$    | 44,025.00             |  |  |
|                             |                                              |           |            | วนมเบเลเ =         | Ψ     | <del>11</del> ,025.00 |  |  |

En cuanto a los costos indirectos se debe calcular el porcentaje que estos influyen en los APUS, para lo cual se subdivide dichos costos en costos administrativos, consumibles, costo de equipos y costos indirectos de operación. En la Tabla 5.5 se realiza la cuantificación de los costos indirectos producidos en el proyectó.

Tabla 5.5. Costos indirectos del proyecto.

| Costos administrativos     |         |           |                 |       |           |  |  |  |
|----------------------------|---------|-----------|-----------------|-------|-----------|--|--|--|
|                            | Sueldo  |           | Porcentaje de   |       |           |  |  |  |
| Personal                   | mensual | Tiempo    | participación   |       | total     |  |  |  |
| Director de                |         |           |                 |       |           |  |  |  |
| proyecto                   | 3000    | 11        | 100%            | \$    | 33,000.00 |  |  |  |
| Ingeniero vial             | 2500    | 8         | 50%             | \$    | 10,000.00 |  |  |  |
| Ingeniero Geólogo          | 2000    | 4         | 50%             | \$    | 4,000.00  |  |  |  |
| Oficina                    | 950     | 11        | 15%             | \$    | 1,567.50  |  |  |  |
| Ingeniero<br>Ambiental     | 1500    | 11        | 15%             | \$    | 2,475.00  |  |  |  |
|                            |         | 11        |                 | \$    |           |  |  |  |
| contador                   | 950     |           | 15%             | Ф     | 1,567.50  |  |  |  |
|                            |         |           | les consumibles |       |           |  |  |  |
| Papelería y útiles         | 100     | 11        |                 | \$    | 1,100.00  |  |  |  |
|                            | C       | ostos de  | equipos         |       |           |  |  |  |
| Mascarilla                 | 50      | 11        |                 | \$    | 550.00    |  |  |  |
| Casco de                   |         |           |                 |       |           |  |  |  |
| protección                 | 100     | 11        |                 | \$    | 1,100.00  |  |  |  |
| Guantes                    | 40      | 11        |                 | \$    | 440.00    |  |  |  |
| Protector de oídos         | 20      | 11        |                 | \$    | 220.00    |  |  |  |
|                            | _       | 4.4       |                 | \$    |           |  |  |  |
| Equipos de oficina         | 5       | 11        | ,               | 55.00 |           |  |  |  |
|                            |         |           | s de operación  |       |           |  |  |  |
|                            | I       | Costos té | ecnicos         |       |           |  |  |  |
| Residente de obra x2       | 1400    | 11        | 100%            | \$    | 15,400.00 |  |  |  |
| Equipamiento de oficina    | 40      | 11        |                 | \$    | 440.00    |  |  |  |
| Guardia de<br>seguridad x2 | 2000    | 11        | 100%            | \$    | 22,000.00 |  |  |  |
| Baño portátil x3           | 600     | 11        | 130,0           | \$    | 6,600.00  |  |  |  |

| SUBTOTAL           | \$<br>100,515.00 |
|--------------------|------------------|
| UTILIDAD 5%        | \$<br>5,025.75   |
| <b>IMPREVISTOS</b> |                  |
| 1%                 | \$<br>1,005.15   |
| TOTAL              | \$<br>106,545.90 |

Como resultado se puede apreciar en la Tabla 5.6 que los costos indirectos del proyecto corresponden a un 12.55% con respecto al costo total.

Tabla 5.6 Porcentaje correspondiente a los costos indirectos del proyecto.

| Total costos directos:              | \$<br>736,749.40 |
|-------------------------------------|------------------|
| Total costos indirectos:            | \$<br>106,545.90 |
| Suma total:                         | \$<br>843,295.30 |
| Porcentaje correspondiente a costos |                  |
| indirectos:                         | 12.6 %           |

Fuente: Sebastián Suarez y Rafael Barcenes

# 5.5 Cronograma valorado

El cronograma valorado fue realizado siguiendo la metodología de diagrama de Gantt donde la duración de las actividades que corresponden a los rubros expuestos, fue calculada según el rendimiento de cada rubro. El cronograma valorado se lo adjunta en el anexo E

# **CAPÍTULO 6**

## 6. CONCLUSIONES Y RECOMENDACIONES

#### Conclusiones

Los resultados de laboratorio provenientes de las muestras de suelo ensayadas, determinaron que el suelo sobre el cual se asentara la losa de cimentación propuesta, tiene una baja resistencia al corte. Por lo cual resulto fundamental implementar los anclajes continuos inyectados para mejorar las propiedades geo mecánicas del suelo y prevenir posibles deslizamientos de la cimentación.

A pesar de que se propuso dos tipos de sistemas estructurales para la estructura de hormigón armado que resistirá las cargas de servicio del monumento, solo la segunda alternativa resulto viable en la magnitud de las reacciones producidas en la estructura.

La capacidad de carga admisible del suelo no representa ni el 40% de la carga ultima de diseño de la estructura, produciendo asentamientos mínimos y la certeza de cumplir con los requerimientos de la estructura.

El impacto ambiental efectuado demostró que en general los impactos negativos son mínimos, esto como resultado de la delimitada área de implantación del proyecto y la falta de flora y fauna en el situ.

El proyecto se desarrolla en el cerro Zaruma Urcu que desde la carretera a Zaruma tiene una altura de 90 m y cuya cima está en la cota 1270. Esta característica física le permite una visibilidad en un amplio horizonte.

El cerro estudiado es un macizo rocoso de riolita que superficialmente está bien meteorizado y que presenta gruesas capas de suelo en las faldas más bajas.

Tanto la topografía como los estudios geotécnicos realizados permitieron diseñar las soluciones técnicas a aplicarse en la construcción de las obras requeridas para el desarrollo urbanístico.

Si bien las laderas son bien empinadas y con la constitución geológica ya mencionada, fue posible diseñar una vía de dos carriles, de pavimento flexible que llega a la corona del cerro.

La estructura diseñada para soportar el monumento a la Virgen María, tiene soluciones que garantizan su seguridad y estabilidad.

El costo de construcción de la vía es de \$649.438,89

Las obras de estabilización y la solución en la estructura soportante del monumento tiene un costo de \$180.140,94

#### Recomendaciones

Se recomiendo realizar más ensayos sobre muestras del suelo de la cimentación, x-distantes entre ellas para corroborar los resultados geo mecánicos.

También es recomendable realizar ensayos con muestras inalteradas del suelo, ya que por dificultadas presentadas no se pudo estudiar dichas muestras.

Adicionalmente también se debería realizar un ensayo de compresibilidad del suelo para la determinación del módulo de la subrasante y obtener un valor más aproximado.

Se recomienda hacer un nuevo diseño del pavimento, considerando por lo menos 3 muestras, debido a que por motivos de presupuesto el CBR de diseño se obtuvo a partir de una sola muestra, lo cual no resulta representativo.

Debido a la escasez del tiempo disponible para realizar el presente trabajo no se efectuaron estudios de obras complementarias del proyecto, tal es el caso del drenaje de aguas lluvias en la terraza elevada. Se recomienda realizar dichos diseños, debido a que se podrían dar procesos erosivos en las laderas.

Para garantizar la buena estabilidad del monumento es conveniente que esta gran carga sea instalada al menos dos meses después de construidas las soluciones de cimentación, para lograr que la lechada de inyección este bien fraguada.

# **BIBLIOGRAFÍA**

- ACI 318-19 (2019). Building Code Requirments for Structural Concrete. Farmington Estados Unidos, American Concrete Institute.
- Arcentales C., Rivera J. (2017). Estudios y diseños de pre factibilidad del nuevo acceso hacia el puerto pesquero del cantón balao, considerando la reubicación de las nuevas instalaciones portuarias. Guayaquil Ecuador, Escuela Superior Politécnica del Litoral.
- ASCE 7-16 (2016). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Virginia Estados Unidos, American Society of Civil Engineers.
- Braja M. Das. (2011). Fundamentos de ingeniería de cimentaciones. México D.F., Cengage Learnign.
- Buroz E. (1998) La gestión ambiental: Marco de referencia para las evaluaciones de impacto ambiental. Caracas Venezuela, Fundación Polar.
- Camara de la construccion de Guayaquil. Accedido el 1 de febrero, 2021, desde <a href="http://www.cconstruccion.net/precios.html">http://www.cconstruccion.net/precios.html</a>.
- Coronel A., Falconi S. (2006). Estudios y diseños de alternativas para la rehabilitación del tramo de vía: Lago-Intersección con vía principal ESPOL. Solución y reubicación de la tubería de agua potable existente. Guayaquil Ecuador, Escuela Superior Politécnica del Litoral.
- GAD Municipal del Cantón Zaruma (2020). Ordenanza que sanciona la actualización del plan de desarrollo y ordenamiento territorial del Cantón Zaruma 2020-2030: Determinaciones para el uso y ocupación del suelo. Zaruma— Ecuador.
- GAD Municipal del Cantón Zaruma (2014). Estudio socio económico ambiental del área de impacto de los bordillos y cunetas en calles de la ciudad de Zaruma. Zaruma— Ecuador.
- INAMHI (2014). Anuario Meteorológico № 51-2011. Quito Ecuador.
- INEC (2010). Resultados del Censo 2010 de población y vivienda en el Ecuador-Fascículo provincial El Oro. Quito – Ecuador.
- Mora S. (2017). Rehabilitación del Cerro Zaruma Urcu mediante el diseño de un sendero mirador y complejo turístico para la parroquia urbana Zaruma. Quito Ecuador, Universidad Central del Ecuador.

- NEC-SE-CG (2014). Cargas (No sísmicas). Quito Ecuador, Norma Ecuatoriana de la Construcción.
- NEC-SE-DS (2014). Peligro Sísmico Diseño sismo resistente. Quito Ecuador, Norma Ecuatoriana de la Construcción.
- NEC-SE-HM (2014). Estructuras de Hormigón Armado. Quito Ecuador, Norma Ecuatoriana de la Construcción.
- NEVI-12 (2013). Volumen N°2 Libro A: Norma para estudios y diseños viales. Quito Ecuador, Ministerio de transporte y obras público del ecuador.
- RED LIST: The IUCN red list of threatened species. Accedido el 6 de enero, 2021, desde https://www.iucnredlist.org/.
- Romero V. (2014). La Ley de Minería del Ecuador y su aplicación en los ríos Pache y rio Amarillo, por la explotación minera en los cantones Portovelo y Zaruma de la provincial del Oro Ecuador. Quito Ecuador, Universidad Central del Ecuador.
- Secretaria Nacional de Gestión de Riesgos. (2010). Estudios y diseños de las obras de protección y recuperación de la playa de la isla Jambelí, Cantón Santa Rosa provincia de el Oro. Guayaquil Ecuador.
- T.A.M.S. ASTEC (2003). Normas de diseño geométrico de carreteras, Quito Ecuador, PROCTECVIA CIA. LTDA.
- Braja M. Das. (2011). Fundamentos de ingeniería de cimentaciones. Mexico D.F., Cengage Learnign.
- NEC-SE-HM (2014). Estructuras de Hormigón Armado. Quito Ecuador, Norma Ecuatoriana de la Construcción.

# **PLANOS Y ANEXOS**

# A. PLAN DE TRABAJO

| Fecha                                       | Actividad                                                                |
|---------------------------------------------|--------------------------------------------------------------------------|
| 25 de<br>Noviembre al<br>15 de<br>Diciembre | Finalización de ensayos<br>de laboratorio                                |
| 1-5 de<br>Diciembre                         | Estudio<br>hidrológico/hidráulico<br>para el drenaje de la vía           |
| 1-15 de<br>Diciembre                        | Finalización de diseño<br>de vía con pavimento<br>flexible               |
| 15 de<br>Diciembre al 1<br>de Enero         | Análisis de alternativas y diseño de cimentación                         |
| 1 de Enero al<br>10 de Enero                | Realización de<br>presupuestos                                           |
| 10 al 15 de<br>Enero                        | Revisiones finales de planos y finalización de especificaciones técnicas |
| 15 al 20 de<br>Enero                        | Revisión y correcciones<br>finales al documento de<br>la tesis           |

Tabla A.1 Plan de trabajo

# B. PARAMETROS GEOMÉTRICOS DE LAS CURVAS HORIZONTALES

Tabla B.1. Parámetros geométricos de las curvas empleadas en el proyecto

|     | a          | 2          |            | A          |            | a 0        | curva 9    |            |            |            |            |
|-----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|     | curva 1    | curva 2    | curva 3    | curva 4    | curva 5    | curva 6    | curva 7    | curva 8    | curva 9.1  | curva 9.2  | curva 10   |
| Plx | 652649.82  | 652687.11  | 652695.98  | 652664.34  | 652685.07  | 652698.97  | 652656.24  | 652612.88  | 652595.73  | 652565.38  | 652517.77  |
| Ply | 9592835.61 | 9592836.13 | 9592768.36 | 9592735.93 | 9592688.21 | 9592584.05 | 9592546.22 | 9592527.91 | 9592493.44 | 9592490.11 | 9592572.83 |
| Pc  | 0+010.34   | 0+038.85   | 0+106.36   | 0+148.72   | 0+200.49   | 0+305.24   | 0+358.96   | 0+401.42   | 0+444.25   | 0+464.25   | 0+548.90   |
| Pt  | 0+029.92   | 0+067.94   | 0+128.94   | 0+172.35   | 0+221.27   | 0+324.82   | 0+383.31   | 0+433.33   | 0+464.25   | 0+498.99   | 0+585.44   |
| α   | 53°26'00"  | 83°19'40"  | 51°44'48"  | 67°46'08'' | 15°52'32"  | 56°05'40"  | 18°36'00'' | 40°37'42"  | 57°16'22"  | 66°20'28"  | 104°40'24" |
| α/2 | 26°43'00"  | 41°39'50"  | 25°52'24"  | 33°53'04"  | 7°56'16"   | 28°02'50"  | 9°18'00"   | 20°18'51"  | 28°38'11"  | 33°10'14"  | 52°20'12"  |
| R   | 21.00      | 20.00      | 25.00      | 20.00      | 75.00      | 20.00      | 75.00      | 45.00      | 20.00      | 30.00      | 20.00      |
| Т   | 10.57      | 17.80      | 12.12      | 13.43      | 10.46      | 10.66      | 12.28      | 16.66      | 10.92      | 19.61      | 25.91      |
| E   | 2.51       | 6.77       | 2.79       | 4.09       | 0.73       | 2.66       | 1.00       | 2.98       | 2.79       | 5.84       | 12.73      |
| F   | 2.24       | 5.06       | 2.51       | 3.40       | 0.72       | 2.35       | 0.99       | 2.80       | 2.45       | 4.89       | 7.78       |
| Lc  | 19.58      | 29.09      | 22.58      | 23.66      | 20.78      | 19.58      | 24.35      | 31.91      | 19.99      | 34.74      | 36.54      |

# **C. RESULTADOS DE PERALTES**

## **PERALTE**

|          |          | ILIMALIL |         |         |                      |
|----------|----------|----------|---------|---------|----------------------|
| punto    | abscisa  | borde    | eje     | borde   | fmax = 0.17          |
|          |          | ext.     | _       | int.    |                      |
| Α        | 0-014.02 |          | -       |         | i = 0.8              |
| В        | 0-006.28 |          | -       |         | a = 6 m              |
| С        | 0+001.48 | 1184.88  | 1184.82 | 1184.76 | b = 2 %              |
|          | 0+010    | 1186.13  | 1186.02 | 1185.89 | e = 6 %              |
| D        | 0+018.64 | 1187.31  | 1187.22 | 1187.10 | Lp = 24.91 m         |
|          | 0+020    | 1187.51  | 1187.42 | 1187.30 | 2/3Lp = 16.51 m      |
| D'       | 0+021.62 | 1187.74  | 1187.64 | 1187.52 | 1/3 Lp = 8.30 m      |
|          | 0+030    | 1188.92  | 1188.82 | 1188.72 | x = 7.74 m           |
| C'       | 0+038.78 | 1190.16  | 1190.05 | 1189.94 | Pc = 0+010.34        |
|          | 0+040    | 1190.33  | 1190.22 | 1190.11 | Pt = 0+029.92        |
| B'       | 0+046.53 | 1191.24  | 1191.13 | 1190.99 |                      |
|          | 0+050    | 1191.73  | 1191.62 | 1191.47 |                      |
| A'       | 0+054.27 | 1192.30  | 1192.21 | 1192.06 |                      |
| -1-1- 04 | 0-1      |          |         | - 1 11  | la lawara da la acco |

Tabla C.1. Cota de puntos de transición del peralte a lo largo de la curva 1

Fuente: Sebastián Suárez y Rafael Bárcenes

#### **PERALTE**

|       |          |               |         |               | _               |
|-------|----------|---------------|---------|---------------|-----------------|
| punto | abscisa  | borde<br>ext. | eje     | borde<br>int. | fmax = 0.17     |
| Α     | 0+011.48 | 1186.26       | 1186.23 | 1186.13       | i = 0.8         |
| В     | 0+019.22 | 1187.40       | 1187.31 | 1187.19       | a = 6 m         |
|       | 0+020    | 1187.51       | 1187.42 | 1187.30       | b = 2 %         |
| С     | 0+026.96 | 1188.49       | 1188.39 | 1188.29       | e = 8 %         |
|       | 0+030    | 1188.92       | 1188.82 | 1188.72       | Lp = 29.44 m    |
|       | 0+040    | 1190.33       | 1190.22 | 1190.11       | 2/3Lp = 19.63 m |
| D     | 0+048.66 | 1191.54       | 1191.43 | 1191.28       | 1/3 Lp = 9.81 m |
|       | 0+050    | 1191.73       | 1191.62 | 1191.47       | x = 7.74 m      |
| D'    | 0+058.13 | 1193.00       | 1192.76 | 1192.52       | Pc = 0+038.85   |
|       | 0+060    | 1193.25       | 1193.02 | 1192.80       | Pt = 0+067.94   |
|       | 0+070    | 1194.56       | 1194.42 | 1194.28       |                 |
| C'    | 0+079.83 | 1195.86       | 1195.80 | 1195.74       |                 |
|       | 0+080    | 1195.88       | 1195.82 | 1195.76       |                 |
| B'    | 0+087.57 | 1196.88       | 1196.88 | 1196.82       |                 |
|       | 0+090    | 1197.20       | 1197.22 | 1197.16       |                 |
| A'    | 0+095.31 | 1197.92       | 1197.97 | 1197.91       |                 |
|       |          |               |         |               |                 |

Tabla C.2. Cota de puntos de transición del peralte a lo largo de la curva 2

|       |          |               |         |               | _               |
|-------|----------|---------------|---------|---------------|-----------------|
| punto | abscisa  | borde<br>ext. | eje     | borde<br>int. | fmax = 0.17     |
| Α     | 0+091.69 | 1197.41       | 1197.46 | 1197.40       | i = 0.8         |
| В     | 0+099.43 | 1198.54       | 1198.54 | 1198.48       | a = 6 m         |
|       | 0+100    | 1198.62       | 1198.62 | 1198.56       | b = 2 %         |
| С     | 0+107.17 | 1199.69       | 1199.63 | 1199.57       | e = 3 %         |
| D     | 0+109.82 | 1200.09       | 1200.00 | 1199.91       | Lp = 10.39 m    |
|       | 0+110    | 1200.11       | 1200.02 | 1199.93       | 2/3Lp = 6.93 m  |
|       | 0+120    | 1201.51       | 1201.42 | 1201.33       | 1/3 Lp = 3.46 m |
| D'    | 0+125.48 | 1202.22       | 1202.19 | 1202.12       | x = 7.74 m      |
| C'    | 0+128.13 | 1202.59       | 1202.56 | 1202.50       | Pc = 0+106.36   |
|       | 0+130    | 1202.85       | 1202.82 | 1202.76       | Pt = 0+128.94   |
| B'    | 0+135.87 | 1203.67       | 1203.65 | 1203.59       |                 |
|       | 0+140    | 1204.25       | 1204.22 | 1204.16       |                 |
| A'    | 0+143.61 | 1204.76       | 1204.73 | 1204.64       |                 |
|       |          |               |         |               |                 |

Tabla C.3. Cota de puntos de transición del peralte a lo largo de la curva 3

Fuente: Sebastián Suárez y Rafael Bárcenes

#### **PERALTE**

| punto | abscisa  | borde<br>ext. | eje     | borde<br>int. | fmax = 0.17     |
|-------|----------|---------------|---------|---------------|-----------------|
| Α     | 0+121.35 | 1201.63       | 1201.61 | 1201.54       | i = 0.8         |
| В     | 0+128.09 | 1202.59       | 1202.56 | 1202.50       | a = 6 m         |
|       | 0+130    | 1202.85       | 1202.82 | 1202.76       | b = 2 %         |
| С     | 0+136.83 | 1203.81       | 1203.78 | 1203.72       | e = 8 %         |
|       | 0+140    | 1204.25       | 1204.22 | 1204.16       | Lp = 29.44 m    |
|       | 0+150    | 1205.78       | 1205.62 | 1205.46       | 2/3Lp = 19.63 m |
| D     | 0+158.53 | 1207.06       | 1206.82 | 1206.58       | 1/3 Lp = 9.81 m |
|       | 0+160    | 1207.26       | 1207.02 | 1206.78       | x = 7.74 m      |
| D'    | 0+162.54 | 1207.62       | 1207.38 | 1207.14       | Pc = 0+148.72   |
|       | 0+170    | 1208.59       | 1208.42 | 1208.24       | Pt = 0+172.35   |
|       | 0+180    | 1209.82       | 1209.82 | 1209.71       |                 |
| C'    | 0+184.24 | 1210.4        | 1210.39 | 1210.31       |                 |
|       | 0+190    | 1211.18       | 1211.18 | 1211.09       |                 |
| B'    | 0+191.98 | 1211.45       | 1211.45 | 1211.36       |                 |
| A'    | 0+199.72 | 1212.48       | 1212.48 | 1212.39       |                 |

Tabla C.4. Cota de puntos de transición del peralte a lo largo de la curva 4

|       |          |               |         |               | _               |
|-------|----------|---------------|---------|---------------|-----------------|
| punto | abscisa  | borde<br>ext. | eje     | borde<br>int. | fmax = 0.17     |
| Α     | 0+175.08 | 1209.16       | 1209.12 | 1209.02       | i = 0.7         |
|       | 0+180    | 1209.82       | 1209.82 | 1209.71       | a = 6 m         |
| В     | 0+184.31 | 1210.41       | 1210.36 | 1210.32       | b = 2 %         |
|       | 0+190    | 1211.18       | 1211.18 | 1211.09       | e = 5 %         |
| С     | 0+193.54 | 1211.66       | 1211.61 | 1211.57       | Lp = 24.28 m    |
|       | 0+200    | 1212.59       | 1212.53 | 1212.39       | 2/3Lp = 16.18 m |
| D     | 0+208.58 | 1213.81       | 1213.66 | 1213.51       | 1/3 Lp = 8.09 m |
|       | 0+210    | 1213.99       | 1213.84 | 1213.69       | x = 9.23 m      |
| D'    | 0+213.18 | 1214.33       | 1214.18 | 1214.03       | Pc = 0+200.49   |
|       | 0+220    | 1215.20       | 1215.13 | 1217.98       | Pt = 0+221.27   |
| C'    | 0+228.22 | 1216.24       | 1216.18 | 1216.12       |                 |
|       | 0+230    | 1216.45       | 1216.40 | 1216.34       |                 |
| B'    | 0+237.45 | 1217.33       | 1217.33 | 1217.27       |                 |
|       | 0+240    | 1217.63       | 1217.64 | 1217.58       |                 |
| A'    | 0+246.68 | 1218.40       | 1218.46 | 1218.40       |                 |
|       | _        |               |         |               |                 |

Tabla C.5. Cota de puntos de transición del peralte a lo largo de la curva 5

Fuente: Sebastián Suárez y Rafael Bárcenes

### **PERALTE**

| punto | abscisa  | borde<br>ext. | eje     | borde<br>int. | fmax = 0.17     |
|-------|----------|---------------|---------|---------------|-----------------|
| Α     | 0+277.87 | 1222.09       | 1222.15 | 1222.09       | i = 0.8         |
|       | 0+280    | 1222.38       | 1222.46 | 1222.36       | a = 6 m         |
| В     | 0+285.61 | 1223.13       | 1223.13 | 1223.07       | b = 2 %         |
|       | 0+290    | 1223.69       | 1223.66 | 1223.60       | e = 8 %         |
| С     | 0+293.35 | 1224.12       | 1224.06 | 1224.00       | Lp = 29.44 m    |
|       | 0+300    | 1224.98       | 1224.86 | 1224.74       | 2/3Lp = 19.63 m |
|       | 0+310    | 1226.26       | 1226.06 | 1225.86       | 1/3 Lp = 9.81 m |
| D     | 0+315.05 | 1226.91       | 1226.67 | 1226.43       | x = 7.74 m      |
| D'    | 0+315.01 | 1226.9        | 1226.66 | 1226.42       | Pc = 0+305.24   |
|       | 0+320    | 1227.46       | 1227.26 | 1227.06       | Pt = 0+324.82   |
|       | 0+330    | 1228.59       | 1228.46 | 1228.35       |                 |
| C'    | 0+336.71 | 1229.29       | 1229.28 | 1229.22       |                 |
|       | 0+340    | 1229.69       | 1229.68 | 1229.62       |                 |
| B'    | 0+344.45 | 1230.24       | 1230.24 | 1230.18       |                 |
|       | 0+350    | 1230.94       | 1230.94 | 1230.88       |                 |
| A'    | 0+352.19 | 1231.22       | 1231.22 | 1231.16       |                 |

Tabla C.6. Cota de puntos de transición del peralte a lo largo de la curva 6

|       |          |               |         |               | _               |
|-------|----------|---------------|---------|---------------|-----------------|
| punto | abscisa  | borde<br>ext. | eje     | borde<br>int. | fmax = 0.17     |
| Α     | 0+333.55 | 1228.91       | 1228.89 | 1228.81       | i = 0.7         |
|       | 0+340    | 1229.69       | 1229.68 | 1229.62       | a = 6 m         |
| В     | 0+342.78 | 1230.09       | 1230.02 | 1229.97       | b = 2 %         |
|       | 0+350    | 1230.94       | 1230.94 | 1230.88       | e = 5 %         |
| С     | 0+352.01 | 1231.20       | 1231.20 | 1231.14       | Lp = 24.28 m    |
|       | 0+360    | 1232.37       | 1232.25 | 1232.15       | 2/3Lp = 16.18 m |
| D     | 0+367.05 | 1233.35       | 1233.20 | 1233.05       | 1/3 Lp = 8.09 m |
|       | 0+370    | 1233.75       | 1233.60 | 1233.45       | x = 9.23 m      |
| D'    | 0+375.22 | 1234.48       | 1234.33 | 1234.18       | Pc = 0+358.96   |
|       | 0+380    | 1235.14       | 1235.00 | 1234.90       | Pt = 0+383.31   |
|       | 0+390    | 1236.47       | 1235.45 | 1236.39       |                 |
| C'    | 0+390.26 | 1236.51       | 1236.49 | 1236.43       |                 |
| B'    | 0+399.49 | 1237.90       | 1237.87 | 1237.81       |                 |
|       | 0+400    | 1237.97       | 1237.95 | 1237.89       |                 |
| A'    | 0+408.72 | 1239.31       | 1239.29 | 1239.22       |                 |
|       |          |               |         |               |                 |

Tabla C.7. Cota de puntos de transición del peralte a lo largo de la curva 7

Fuente: Sebastián Suárez y Rafael Bárcenes

## **PERALTE**

|       | 1        |               |         | 1             | 1               |
|-------|----------|---------------|---------|---------------|-----------------|
| punto | abscisa  | borde<br>ext. | eje     | borde<br>int. | fmax = 0.17     |
| Α     | 0+385.94 | 1235.88       | 1235.86 | 1235.79       | i = 0.8         |
|       | 0+390    | 1236.47       | 1236.45 | 1236.39       | a = 6 m         |
| В     | 0+393.68 | 1237.02       | 1237.00 | 1236.94       | b = 2 %         |
|       | 0+400    | 1237.97       | 1237.95 | 1237.89       | e = 3 %         |
| С     | 0+401.42 | 1238.19       | 1238.17 | 1238.11       | Lp = 11.61 m    |
| D     | 0+405.29 | 1238.79       | 1238.76 | 1238.69       | 2/3Lp = 7.74 m  |
|       | 0+410    | 1239.60       | 1239.49 | 1239.42       | 1/3 Lp = 3.87 m |
|       | 0+420    | 1241.11       | 1241.08 | 1241.00       | x = 7.74 m      |
| D'    | 0+429.46 | 1242.66       | 1242.60 | 1242.52       | Pc = 0+401.42   |
|       | 0+430    | 1242.75       | 1242.68 | 1242.61       | Pt = 0+433.33   |
| C'    | 0+433.33 | 1243.28       | 1243.21 | 1243.15       |                 |
|       | 0+440    | 1244.33       | 1244.27 | 1244.17       |                 |
| B'    | 0+441.07 | 1244.50       | 1244.43 | 1244.33       |                 |
| A'    | 0+448.81 | 1245.72       | 1245.65 | 1245.52       |                 |

Tabla C.8. Cota de puntos de transición del peralte a lo largo de la curva 8

|       |             | FLIVALIL        |         |               | -               |
|-------|-------------|-----------------|---------|---------------|-----------------|
| punto | abscisa     | borde           | eje     | borde<br>int. | fmax = 0.17     |
| Α     | 0+416.88    | ext.<br>1240.60 | 1240.58 | 1240.51       | i = 0.8         |
|       | 0+410.88    | 1240.00         | 1240.38 | 1240.97       | a = 6 m         |
| В     | 0+424.62    | 1241.17         | 1241.82 | 1240.37       | b = 2 %         |
| В     | 0+424.02    | 1242.75         | 1241.62 | 1241.73       | e = 8 %         |
| С     | 0+432.36    | 1242.73         | 1242.06 | 1242.01       | Lp = 29.44 m    |
| C     |             | 1243.12         |         | 1244.17       | 2/3Lp = 19.63 m |
|       | 0+440       |                 | 1244.27 |               | -               |
|       | 0+450       | 1245.91         | 1245.84 | 1245.70       | 1/3 Lp = 9.81 m |
| D     | 0+454.06    | 1246.58         | 1246.47 | 1246.32       | x = 7.74 m      |
| D'    | 0+454.44    | 1246.65         | 1246.54 | 1246.38       | Pc = 0+444.25   |
|       | 0+460       | 1247.50         | 1247.39 | 1247.26       | Pt = 0+464.25   |
|       | 0+470       | 1249.01         | 1248.92 | 1248.82       |                 |
| C'    | 0+475.16    | 1249.78         | 1249.70 | 1249.63       |                 |
|       | 0+480       | 1250.48         | 1250.43 | 1250.35       |                 |
| В'    | 0+483.90    | 1251.05         | 1251.00 | 1250.93       |                 |
|       | 0+490       | 1251.93         | 1251.91 | 1251.83       |                 |
| A'    | 0+491.64    | 1252.17         | 1252.15 | 1252.08       |                 |
|       | ,           |                 | ļ       |               |                 |
| Α     | 0+448.77    | 1245.71         | 1245.65 | 1245.52       | fmax = 0.17     |
|       | 0+450       | 1245.91         | 1245.84 | 1245.70       | i = 0.8         |
| В     | 0+456.51    | 1246.96         | 1246.85 | 1246.71       | a = 6 m         |
|       | 0+460       | 1247.5          | 1247.39 | 1247.261      | b = 2 %         |
| С     | 0+464.25    | 1248.15         | 1248.04 | 1247.93       | e = 3 %         |
| D     | 0+468.12    | 1248.72         | 1248.63 | 1248.52       | Lp = 11.61 m    |
|       | 0+470       | 1248.76         | 1248.92 | 1248.56       | 2/3Lp = 7.74 m  |
|       | 0+480       | 1250.47         | 1250.43 | 1250.34       | 1/3 Lp = 3.87 m |
|       | 0+490       | 1251.92         | 1251.91 | 1251.83       | x = 7.74 m      |
| D'    | 0+495.12    | 1252.75         | 1252.66 | 1252.57       | Pc = 0+464.25   |
| C'    | 0+498.99    | 1253.29         | 1253.23 | 1253.17       | Pt = 0+498.99   |
|       | 0+500       | 1253.43         | 1253.37 | 1253.32       |                 |
| B'    | 0+506.73    | 1254.35         | 1254.35 | 1254.29       |                 |
|       | 0+510       | 1254.79         | 1254.82 | 1254.75       |                 |
| A'    | 0+514.47    | 1255.39         | 1255.45 | 1255.39       |                 |
|       | <del></del> |                 |         |               | 1               |

Tabla C.9. Cota de puntos de transición del peralte a lo largo de la curva 9

# **PERALTE**

| punto | abscisa  | borde   | eje     | borde   | fmax = 0.17     |
|-------|----------|---------|---------|---------|-----------------|
|       |          | ext.    | -,-     | int.    |                 |
| Α     | 0+521.53 | 1256.31 | 1256.37 | 1256.31 | i = 0.8         |
| В     | 0+529.27 | 1257.31 | 1257.31 | 1257.25 | a = 6 m         |
|       | 0+530    | 1257.44 | 1257.66 | 1257.38 | b = 2 %         |
| С     | 0+537.01 | 1258.71 | 1258.65 | 1258.59 | e = 8 %         |
|       | 0+540    | 1259.14 | 1259.08 | 1258.97 | Lp = 29.44 m    |
|       | 0+550    | 1260.57 | 1260.5  | 1260.23 | 2/3Lp = 19.63 m |
| D     | 0+558.71 | 1261.81 | 1261.57 | 1261.33 | 1/3 Lp = 9.81 m |
|       | 0+560    | 1262.15 | 1261.91 | 1261.67 | x = 7.74 m      |
|       | 0+570    | 1263.57 | 1263.33 | 1263.09 | Pc = 0+548.90   |
| D'    | 0+575.63 | 1264.18 | 1263.94 | 1263.70 | Pt = 0+585.44   |
|       | 0+580    | 1264.76 | 1264.75 | 1264.35 |                 |
|       | 0+590    | 1266.07 | 1266.17 | 1265.83 |                 |
| C'    | 0+597.33 | 1267.04 | 1266.98 | 1266.92 |                 |
|       | 0+600    | 1267.39 | 1267.59 | 1267.29 |                 |
| B'    | 0+605.07 | 1268.06 | 1268.06 | 1268.00 |                 |
|       | 0+610    | 1268.72 | 1269.01 | 1268.69 |                 |
| A'    | 0+612.82 | 1269.09 | 1269.15 | 1269.09 |                 |
|       |          |         |         | •       |                 |

Tabla C.10. Cota de puntos de transición del peralte a lo largo de la curva 10

# D. MATRICES DE VALORACION DE IMPACTO AMBIENTAL

Tabla D.1. Matriz de valoración del Signo del Impacto Ambiental

|                        |                                                                           | A 1.             | <b>-</b>       | 40                            |                                | 0                      |                     | _                 | BIG               |                 | _                 | 200                       | 10.5              | -00                  | NÁN                                 | 4100                      |         |
|------------------------|---------------------------------------------------------------------------|------------------|----------------|-------------------------------|--------------------------------|------------------------|---------------------|-------------------|-------------------|-----------------|-------------------|---------------------------|-------------------|----------------------|-------------------------------------|---------------------------|---------|
|                        | Componentes                                                               | All              | KE             | AG                            | UA                             | 5                      | UEL                 | U                 | F                 | ١               |                   |                           | IO-E              | CO                   | NON                                 | /IICC                     | )       |
|                        | Ambientales                                                               |                  |                |                               |                                |                        |                     |                   |                   |                 |                   |                           |                   |                      | gión                                |                           |         |
|                        | Afectados                                                                 |                  |                | <del></del>                   | λ                              |                        |                     |                   |                   |                 |                   |                           |                   |                      | la re                               |                           |         |
| Actividade Acciones of | lel                                                                       | Calidad del aire | Nivel de ruido | Patrón de Drenaje Superficial | Calidad del agua superficial y | Estabilidad de Taludes | Procesos de Erosión | Calidad del Suelo | Cobertura Vegetal | Biota Terrestre | Seguridad Laboral | Seguridad de la Población | Tráfico vehicular | Vías de comunicación | Actividades Económicas de la región | Servicios en la Comunidad | Turismo |
|                        | Limpieza y desbroce                                                       | -1               | -1             | -1                            | 0                              | 0                      | -1                  | -1                | -1                | -1              | 0                 | 0                         | 0                 | 0                    | 0                                   | 0                         | 0       |
|                        | Instalación de campamento y sitio de acopio                               | 0                | -1             | 0                             | 0                              | 0                      | 0                   | 0                 | -1                | 0               | 1                 | 0                         | 0                 | 0                    | 0                                   | 0                         | 0       |
| Actividades            | Movimiento de tierra                                                      | -1               | -1             | -1                            | 0                              | -1                     | -1                  | -1                | -1                | -1              | 0                 | -1                        | 1                 | 0                    | 0                                   | 0                         | 0       |
| en fase de construcció | Explotación de canteras                                                   | -1               | -1             | -1                            | -1                             | -1                     | -1                  | -1                | -1                | -1              | 0                 | -1                        | -1                | -1                   | 0                                   | 0                         | 0       |
| n                      | Preparación<br>de la<br>cimentación<br>(compactación<br>)<br>Construcción | 0                | -1             | 0                             | 0                              | 0                      | 1                   | 1                 | 0                 | 0               | 0                 | -1                        | -1                | -1                   | 0                                   | 0                         | 0       |
|                        | de la<br>infraestructura                                                  | -1               | -1             | 1                             | 0                              | 0                      | 0                   | -1                | -1                | -1              | -1                | -1                        | -1                | -1                   | 0                                   | 0                         | 0       |
| Actividades            | de Operación                                                              | 0                | 0              | 0                             | 0                              | 0                      | 0                   | 0                 | 0                 | 0               | 0                 | 0                         | 0                 | 0                    | 1                                   | 1                         | 1       |

Tabla D.2. Matriz de Intensidad de Impacto

|                         |                                                            | All              | RE             | AC                            | SUA                                           | S                      | UEL                 | О                 | BIC               | ТА              | ,                 | SO                        | CIO-E             | CON                  | IÓMI                                | CO                        |         |
|-------------------------|------------------------------------------------------------|------------------|----------------|-------------------------------|-----------------------------------------------|------------------------|---------------------|-------------------|-------------------|-----------------|-------------------|---------------------------|-------------------|----------------------|-------------------------------------|---------------------------|---------|
| Accio                   | Componentes Ambientales Afectados  idades / ones del yecto | Calidad del aire | Nivel de ruido | Patrón de Drenaje Superficial | Calidad del agua superficial y<br>subterránea | Estabilidad de Taludes | Procesos de Erosión | Calidad del Suelo | Cobertura Vegetal | Biota Terrestre | Seguridad Laboral | Seguridad de la Población | Tráfico vehicular | Vías de comunicación | Actividades Económicas de la región | Servicios en la Comunidad | Turismo |
|                         | Limpieza y desbroce                                        | 6                | 5              | 8                             | 0                                             | 0                      | 8                   | 4                 | 10                | 10              | 0                 | 0                         | 0                 | 0                    | 0                                   | 0                         | 0       |
|                         | Instalación de campamento y sitio de acopio                | 0                | 5              | 0                             | 0                                             | 0                      | 0                   | 0                 | 10                | 0               | 7                 | 0                         | 0                 | 0                    | 0                                   | 0                         | 0       |
| Actividades             | Movimiento de tierra                                       | 4                | 6              | 8                             | 0                                             | 9                      | 8                   | 5                 | 8                 | 8               | 0                 | 7                         | 7                 | 0                    | 0                                   | 0                         | 0       |
| en fase de construcción | Explotación de canteras                                    | 3                | 4              | 7                             | 8                                             | 8                      | 7                   | 5                 | 8                 | 8               | 0                 | 5                         | 7                 | 8                    | 0                                   | 0                         | 0       |
| 33.13.1 4001011         | Preparación de la cimentación (compactación)               | 0                | 5              | 0                             | 0                                             | 0                      | 6                   | 5                 | 0                 | 0               | 0                 | 4                         | 6                 | 6                    | 0                                   | 0                         | 0       |
|                         | Construcción de la infraestructura                         | 6                | 7              | 6                             | 0                                             | 0                      | 0                   | 7                 | 6                 | 6               | 5                 | 3                         | 5                 | 3                    | 0                                   | 0                         | 0       |
|                         | Actividades de Operación                                   | 0                | 0              | 0                             | 0                                             | 0                      | 0                   | 0                 | 0                 | 0               | 0                 | 0                         | 0                 | 0                    | 6                                   | 8                         | 9       |

Tabla D.3. Matriz de Extensión o Influencia Espacial del Impacto

|                                  |                                              | All              | RE             | AC                            | SUA                                         | S                      | UEL                 | С                 | BIC               | OTA             |                   | SOC                       | CIO-E             | CON                  | IÓMI                      | СО                        |         |
|----------------------------------|----------------------------------------------|------------------|----------------|-------------------------------|---------------------------------------------|------------------------|---------------------|-------------------|-------------------|-----------------|-------------------|---------------------------|-------------------|----------------------|---------------------------|---------------------------|---------|
|                                  | Componentes                                  |                  |                |                               |                                             |                        |                     |                   |                   |                 |                   |                           |                   |                      | ,C                        |                           |         |
|                                  | Ambientales                                  |                  |                |                               |                                             |                        |                     |                   |                   |                 |                   |                           |                   |                      | región                    |                           |         |
|                                  | Afectados                                    |                  |                | ial                           | k<br>V                                      |                        |                     |                   |                   |                 |                   |                           |                   |                      | <u>a</u>                  |                           |         |
| Actividad<br>Acciones<br>proyect | del                                          | Calidad del aire | Nivel de ruido | Patrón de Drenaje Superficial | Calidad del agua superficial<br>subterránea | Estabilidad de Taludes | Procesos de Erosión | Calidad del Suelo | Cobertura Vegetal | Biota Terrestre | Seguridad Laboral | Seguridad de la Población | Tráfico vehicular | Vías de comunicación | Actividades Económicas de | Servicios en la Comunidad | Turismo |
|                                  | Limpieza y desbroce                          | 5                | 1              | 1                             | 0                                           | 0                      | 1                   | 1                 | 1                 | 1               | 0                 | 0                         | 0                 | 0                    | 0                         | 0                         | 0       |
| A = (5 - 5 - 11                  | Instalación de campamento y sitio de acopio  | 0                | 1              | 0                             | 0                                           | 0                      | 0                   | 0                 | 1                 | 0               | 1                 | 0                         | 0                 | 0                    | 0                         | 0                         | 0       |
| Actividades en fase de           | Movimiento de tierra                         | 5                | 5              | 1                             | 0                                           | 1                      | 1                   | 1                 | 1                 | 1               | 0                 | 5                         | 5                 | 0                    | 0                         | 0                         | 0       |
| construcción                     | Explotación de canteras                      | 1                | 1              | 1                             | 5                                           | 1                      | 1                   | 1                 | 1                 | 1               | 0                 | 1                         | 5                 | 5                    | 0                         | 0                         | 0       |
| 23.131.4331011                   | Preparación de la cimentación (compactación) | 0                | 1              | 0                             | 0                                           | 0                      | 1                   | 1                 | 0                 | 0               | 0                 | 5                         | 5                 | 5                    | 0                         | 0                         | 0       |
|                                  | Construcción de la infraestructura           | 5                | 5              | 1                             | 0                                           | 0                      | 0                   | 1                 | 1                 | 1               | 1                 | 5                         | 5                 | 5                    | 0                         | 0                         | 0       |
|                                  | Actividades de Operación                     | 0                | 0              | 0                             | 0                                           | 0                      | 0                   | 0                 | 0                 | 0               | 0                 | 0                         | 0                 | 0                    | 5                         | 5                         | 5       |

Tabla D.4. Matriz de Duración del Impacto Ambiental

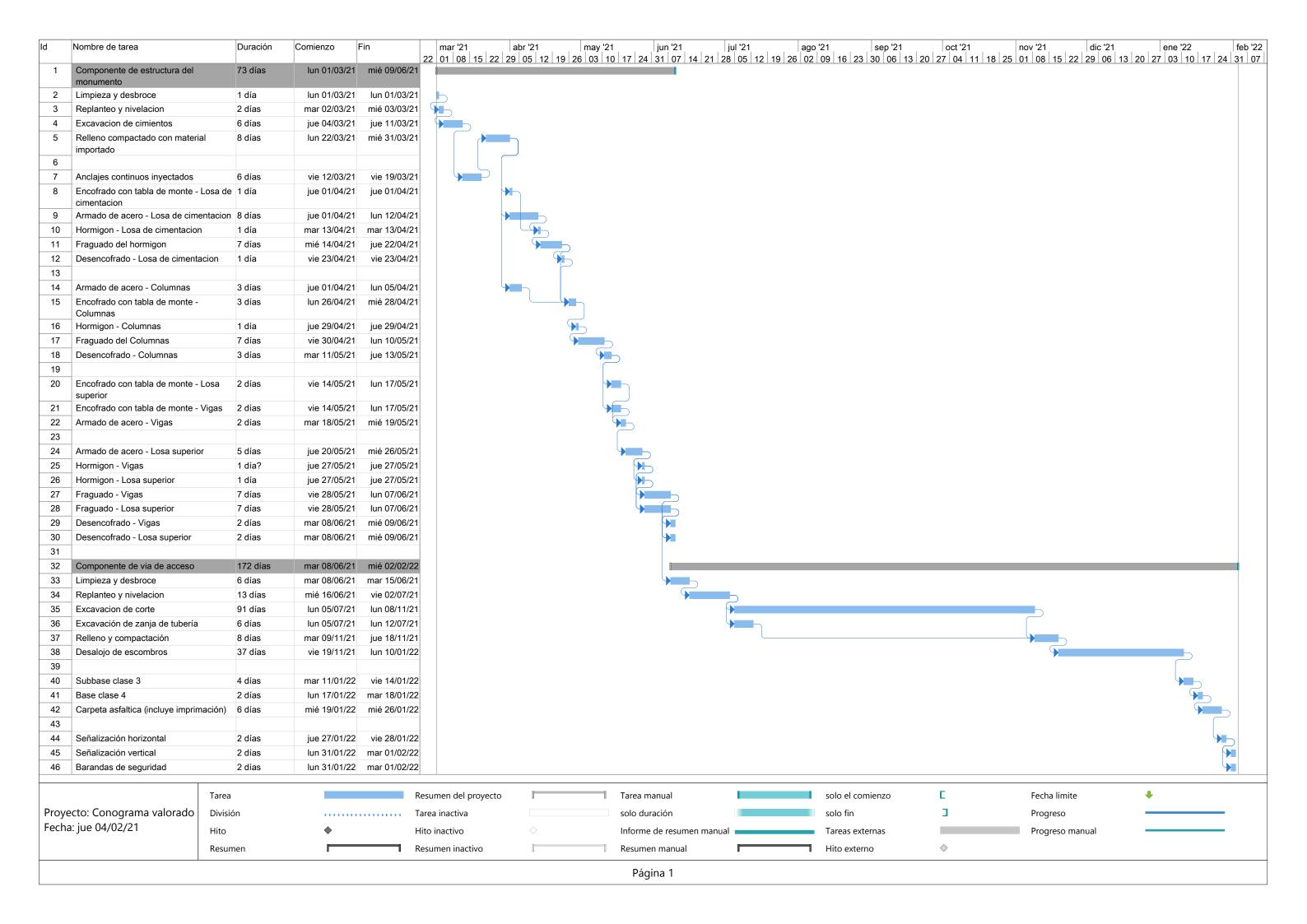
|                        |                                              | Alf              | RE             | AG                | UA                              |                   | SUEI            | _0                | BIC               | ATC             | (                 | SOCI            | O-E               | CON                  | ÓМІС                    | CO                |         |
|------------------------|----------------------------------------------|------------------|----------------|-------------------|---------------------------------|-------------------|-----------------|-------------------|-------------------|-----------------|-------------------|-----------------|-------------------|----------------------|-------------------------|-------------------|---------|
| Activi                 | Componentes Ambientales Afectados            |                  |                | ıje Superficial   | a superficial y                 | aludes            | Erosión         | 0                 | ral               |                 | ıa                | Población       |                   | ación                | Económicas de la región | Comunidad         |         |
| Accion                 | dades / nes del vecto                        | Calidad del aire | Nivel de ruido | Patrón de Drenaje | Calidad del agua<br>subterránea | Estabilidad de Ta | Procesos de Ero | Calidad del Suelo | Cobertura Vegetal | Biota Terrestre | Seguridad Laboral | Seguridad de la | Tráfico vehicular | Vías de comunicación | Actividades Ecor        | Servicios en la C | Turismo |
|                        | Limpieza y desbroce                          | 1                | 1              | 2.5               | 0                               | 0                 | 2.5             | 2.5               | 2.5               | 2.5             | 0                 | 0               | 0                 | 0                    | 0                       | 0                 | 0       |
| A ativida de e         | Instalación de campamento y sitio de acopio  | 0                | 1              | 0                 | 0                               | 0                 | 0               | 0                 | 2.5               | 0               | 2.5               | 0               | 0                 | 0                    | 0                       | 0                 | 0       |
| Actividades en fase de | Movimiento de tierra                         | 1                | 1              | 10                | 0                               | 10                | 10              | 2.5               | 2.5               | 10              | 0                 | 2.5             | 2.5               | 0                    | 0                       | 0                 | 0       |
| construcción           | Explotación de canteras                      | 1                | 1              | 10                | 10                              | 10                | 10              | 2.5               | 2.5               | 2.5             | 0                 | 2.5             | 2.5               | 2.5                  | 0                       | 0                 | 0       |
|                        | Preparación de la cimentación (compactación) | 0                | 1              | 0                 | 0                               | 0                 | 1               | 1                 | 0                 | 0               | 0                 | 2.5             | 2.5               | 2.5                  | 0                       | 0                 | 0       |
|                        | Construcción de la infraestructura           | 2.5              | 1              | 10                | 0                               | 0                 | 0               | 2.5               | 2.5               | 2.5             | 2.5               | 2.5             | 2.5               | 2.5                  | 0                       | 0                 | 0       |
|                        | Actividades de Operación                     | 0                | 0              | 0                 | 0                               | 0                 | 0               | 0                 | 0                 | 0               | 0                 | 0               | 0                 | 0                    | 10                      | 10                | 10      |

Tabla D.5. Matriz de Magnitud de Impacto Ambiental

|                 |                                                          | All              | RE             | AG                            | UA                                            | S                      | SUELC               | )                 | BIC               | ТА              |                   | SC                        | OCIO-             | ECON                 | IÓMIC                               | CO                        |         |
|-----------------|----------------------------------------------------------|------------------|----------------|-------------------------------|-----------------------------------------------|------------------------|---------------------|-------------------|-------------------|-----------------|-------------------|---------------------------|-------------------|----------------------|-------------------------------------|---------------------------|---------|
| Accio           | Componentes Ambientales Afectados  dades / nes del yecto | Calidad del aire | Nivel de ruido | Patrón de Drenaje Superficial | Calidad del agua superficial y<br>subterránea | Estabilidad de Taludes | Procesos de Erosión | Calidad del Suelo | Cobertura Vegetal | Biota Terrestre | Seguridad Laboral | Seguridad de la Población | Tráfico vehicular | Vías de comunicación | Actividades Económicas de la región | Servicios en la Comunidad | Turismo |
|                 | Limpieza y desbroce                                      | -1.3             | -0.7           | -1.1                          | 0                                             | 0                      | -1.1                | -0.6              | -1.4              | -1.4            | 0                 | 0                         | 0                 | 0                    | 0                                   | 0                         | 0       |
| Actividade      | Instalación de campamento y sitio de acopio              | 0                | -0.7           | 0                             | 0                                             | 0                      | 0                   | 0                 | -1.4              | 0               | 1.0               | 0                         | 0                 | 0                    | 0                                   | 0                         | 0       |
| s en fase<br>de | Movimiento de tierra                                     | -0.9             | -1.1           | -1.1                          | 0                                             | -1.3                   | -1.1                | -0.7              | -1.1              | -1.1            | 0                 | -1.3                      | 1.3               | 0                    | 0                                   | 0                         | 0       |
| construcció     | Explotación de canteras                                  | -0.5             | -0.6           | -1                            | -1.4                                          | -1.1                   | -1                  | -0.7              | -1.1              | -1.1            | 0                 | -0.7                      | -1.3              | -1.4                 | 0                                   | 0                         | 0       |
| n               | Preparación de la cimentación (compactación)             | 0                | -0.7           | 0                             | 0                                             | 0                      | 0.9                 | 0.7               | 0                 | 0               | 0                 | -0.9                      | -1.1              | -1.1                 | 0                                   | 0                         | 0       |
|                 | Construcción de la infraestructura                       | -1.1             | -1.3           | 0.9                           | 0                                             | 0                      | 0                   | -1                | -0.9              | -0.9            | -0.7              | -0.7                      | -1.0              | -0.7                 | 0                                   | 0                         | 0       |
|                 | Actividades de Operación                                 | 0                | 0              | 0                             | 0                                             | 0                      | 0                   | 0                 | 0                 | 0               | 0                 | 0                         | 0                 | 0                    | 1.1                                 | 1.4                       | 1.5     |

Tabla D.6. Matriz de Reversibilidad

|                        |                                                               | All              | RE             | AC                            | SUA                                           | S                      | UEL                 | С                 | BIC               | PΤΑ             |                   | S                         | OCIC              | )-EC                 | NÒNC                                | 1ICO                      |         |
|------------------------|---------------------------------------------------------------|------------------|----------------|-------------------------------|-----------------------------------------------|------------------------|---------------------|-------------------|-------------------|-----------------|-------------------|---------------------------|-------------------|----------------------|-------------------------------------|---------------------------|---------|
| Acci                   | Componentes Ambientales Afectados  vidades / iones del oyecto | Calidad del aire | Nivel de ruido | Patrón de Drenaje Superficial | Calidad del agua superficial y<br>subterránea | Estabilidad de Taludes | Procesos de Erosión | Calidad del Suelo | Cobertura Vegetal | Biota Terrestre | Seguridad Laboral | Seguridad de la Población | Tráfico vehicular | Vías de comunicación | Actividades Económicas de la región | Servicios en la Comunidad | Turismo |
|                        | Limpieza y desbroce                                           | 1                | 1              | 5                             | 0                                             | 0                      | 1                   | 1                 | 5                 | 5               | 0                 | 0                         | 0                 | 0                    | 0                                   | 0                         | 0       |
| A - Cod al - al        | Instalación de campamento y sitio de acopio                   | 0                | 1              | 0                             | 0                                             | 0                      | 0                   | 0                 | 5                 | 0               | 1                 | 0                         | 0                 | 0                    | 0                                   | 0                         | 0       |
| Actividades en fase de | Movimiento de tierra                                          | 1                | 1              | 5                             | 0                                             | 1                      | 5                   | 1                 | 5                 | 10              | 0                 | 1                         | 1                 | 0                    | 0                                   | 0                         | 0       |
| construcción           | Explotación de canteras                                       | 5                | 1              | 5                             | 10                                            | 1                      | 5                   | 5                 | 5                 | 5               | 0                 | 1                         | 5                 | 1                    | 0                                   | 0                         | 0       |
|                        | Preparación de la cimentación (compactación)                  | 0                | 1              | 0                             | 0                                             | 0                      | 1                   | 1                 | 0                 | 0               | 0                 | 1                         | 1                 | 1                    | 0                                   | 0                         | 0       |
|                        | Construcción de la infraestructura                            | 1                | 1              | 5                             | 0                                             | 0                      | 0                   | 5                 | 5                 | 5               | 1                 | 1                         | 1                 | 1                    | 0                                   | 0                         | 0       |
|                        | Actividades de Operación                                      | 0                | 0              | 0                             | 0                                             | 0                      | 0                   | 0                 | 0                 | 0               | 0                 | 0                         | 0                 | 0                    | 10                                  | 10                        | 10      |


Tabla D.7. Matriz de Riesgo o de Probabilidad del Suceso

|                              |                                                                  | Al               | RE             | AG                    | UA                              | S                      | UELO                |                   | BIC               | OTA             |                   | S                         | OCIC              | )-EC(                | DNÓMI                  | СО                        |         |
|------------------------------|------------------------------------------------------------------|------------------|----------------|-----------------------|---------------------------------|------------------------|---------------------|-------------------|-------------------|-----------------|-------------------|---------------------------|-------------------|----------------------|------------------------|---------------------------|---------|
|                              | Componentes  Ambientales  Afectados                              |                  |                | Superficial           | superficial y                   |                        |                     |                   |                   |                 |                   | ijón                      |                   |                      | is de la región        | dad                       |         |
| Activida<br>Accione<br>proye | es del                                                           | Calidad del aire | Nivel de ruido | Patrón de Drenaje Sup | Calidad del agua<br>subterránea | Estabilidad de Taludes | Procesos de Erosión | Calidad del Suelo | Cobertura Vegetal | Biota Terrestre | Seguridad Laboral | Seguridad de la Población | Tráfico vehicular | Vías de comunicación | Actividades Económicas | Servicios en la Comunidad | Turismo |
|                              | Limpieza y desbroce                                              | 5                | 10             | 5                     | 0                               | 0                      | 10                  | 5                 | 10                | 10              | 0                 | 0                         | 0                 | 0                    | 0                      | 0                         | 0       |
|                              | Instalación de campamento y sitio de acopio                      | 0                | 5              | 0                     | 0                               | 0                      | 0                   | 0                 | 10                | 0               | 10                | 0                         | 0                 | 0                    | 0                      | 0                         | 0       |
| Actividades                  | Movimiento de tierra                                             | 5                | 10             | 10                    | 0                               | 10                     | 10                  | 5                 | 10                | 10              | 0                 | 1                         | 5                 | 0                    | 0                      | 0                         | 0       |
| en fase de                   | Explotación de canteras                                          | 5                | 10             | 10                    | 10                              | 10                     | 10                  | 5                 | 10                | 10              | 0                 | 5                         | 5                 | 5                    | 0                      | 0                         | 0       |
| construcción                 | Preparación de la cimentación (compactación)  Construcción de la | 0                | 5              | 0                     | 0                               | 0                      | 5                   | 5                 | 0                 | 0               | 0                 | 5                         | 5                 | 5                    | 0                      | 0                         | 0       |
|                              | infraestructura                                                  | 5                | 10             | 5                     | 0                               | 0                      | 0                   | 5                 | 5                 | 5               | 5                 | 5                         | 5                 | 5                    | 0                      | 0                         | 0       |
| Ac                           | tividades de Operación                                           | 0                | 0              | 0                     | 0                               | 0                      | 0                   | 0                 | 0                 | 0               | 0                 | 0                         | 0                 | 0                    | 10                     | 10                        | 10      |

Tabla D.8. Matriz de valoración del Índice Ambiental

|                              | Componentes                                  | А                | IRE            | AG                            | UA                                            | S                      | UELO                | )                 | BIC               | ТА              |                   | SOC                       | CIO-E             | CON                  | ÓMIC                                   | Ю                         |         |           |
|------------------------------|----------------------------------------------|------------------|----------------|-------------------------------|-----------------------------------------------|------------------------|---------------------|-------------------|-------------------|-----------------|-------------------|---------------------------|-------------------|----------------------|----------------------------------------|---------------------------|---------|-----------|
| Activida<br>Accione<br>proye | Ambientales Afectados  ades / es del         | Calidad del aire | Nivel de ruido | Patrón de Drenaje Superficial | Calidad del agua superficial y<br>subterránea | Estabilidad de Taludes | Procesos de Erosión | Calidad del Suelo | Cobertura Vegetal | Biota Terrestre | Seguridad Laboral | Seguridad de la Población | Tráfico vehicular | Vías de comunicación | Actividades Económicas de la<br>región | Servicios en la Comunidad | Turismo | Total     |
|                              | Limpieza y desbroce                          | 1.8              | -1.9           | -3.0                          | 0                                             | 0                      | 2.2                 | -1.4              | -4.12             | -4.1            | 0                 | 0                         | 0                 | 0                    | 0                                      | 0                         | 0       | -<br>18.8 |
|                              | Instalación de campamento y sitio de acopio  | 0                | -1.5           | 0                             | 0                                             | 0                      | 0                   | 0                 | -4.12             | 0               | 2.2               | 0                         | 0                 | 0                    | 0                                      | 0                         | 0       |           |
| Fase de                      | Movimiento de tierra                         | 1.6              | -2.2           | -3.8                          | 0                                             | 2.33                   | 3.8                 | -1.5              | -3.84             | -4.8            | 0                 | -1.08                     | 1.8               | 0                    | 0                                      | 0                         | 0       | -         |
| construc<br>ción             | Explotación de canteras                      | 2.3              | -1.8           | -3.7                          | -<br>5.2                                      | 2.25                   | 3.7                 | -2.6              | -3.84             | -3.8            | 0                 | -1.5                      | 3.2               | 1.9                  | 0                                      | 0                         | 0       | -         |
|                              | Preparación de la cimentación (compactación) | 0                | -1.5           | 0                             | 0                                             | 0                      | 1.6                 | 1.5               | 0                 | 0               | 0                 | -1.6                      | 1.8               | 1.8                  | 0                                      | 0                         | 0       | -3.6      |
|                              | Construcción de la infraestructura           | 1.8              | -2.3           | 2.8                           | 0                                             | 0                      | 0                   | -2.9              | -2.79             | -2.8            | -1.5              | -1.5                      | 1.7               | 1.5                  | 0                                      | 0                         | 0       | 16.2      |
| Acti                         | vidades de Operación                         | 0                | 0              | 0                             | 0                                             | 0                      | 0                   | 0                 | 0                 | 0               | 0                 | 0                         | 0                 | 0                    | 4.8                                    | 5.2                       | 5.4     | 15.4      |
|                              | Total                                        | 7.5              | -11.4          | -7.8                          | 5.2                                           | -4.6                   | -<br>8.1            | -7                | -18.7             | -15.6           | 0.6               | -5.8                      | 4.8               | 5.2                  | 4.8                                    | 5.2                       | 5.4     |           |

# E. CRONOGRAMA VALORIZADO

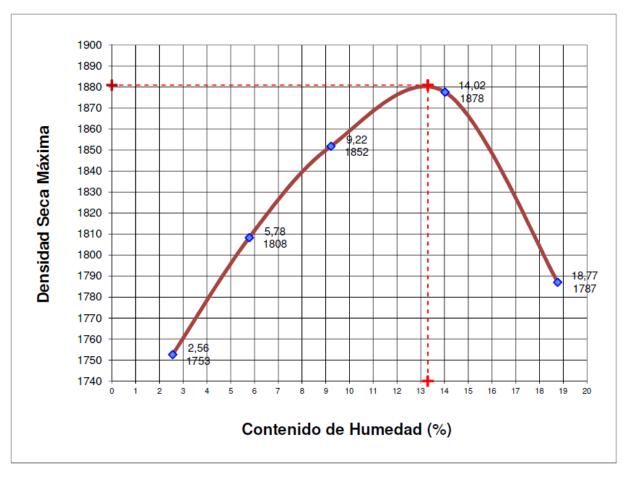


# F. RESULTADOS DE ENSAYOS PROCTOR Y CBR

### **ENSAYO PROCTOR**

Proyecto: Diseño de Vía

Ordena: Sr. Sebastián Suárez - Espol Tech EP Fecha: 12 de Diciembre de 2020


Lugar:ZarumaMuestra: AFuente del Material:Calicata 1Material: 1

Descripción del Material: Arena arcillosa con grava

Norma aplicada: AASHTO T-180 Número de capas: 5

Volumen del cilindro: 2123 Número de golpes por capa: 56 Peso del cilindro (gr): 6389

| E<br># | Cantidad de agua | Recipiente<br>Nº | Ph +<br>Recp | Ps +<br>Reco | Peso<br>Recp | Peso<br>agua | Ps     | W     | Ph +<br>cilindro | PH   | 1 + w/100 | Ps    | Densidad seca |
|--------|------------------|------------------|--------------|--------------|--------------|--------------|--------|-------|------------------|------|-----------|-------|---------------|
|        | agaa             |                  | 11000        | 11000        | Hoop         | agaa         |        |       | ominaro          |      |           |       |               |
| 1      | 0                | ax23             | 205,48       | 201,11       | 30,10        | 4,37         | 171,01 | 2,56  | 10205            | 3816 | 1,026     | 1,797 | 1753          |
| 2      | 200              | ax26             | 206,51       | 196,91       | 30,85        | 9,60         | 166,06 | 5,78  | 10450            | 4061 | 1,058     | 1,913 | 1808          |
| 3      | 400              | cx10             | 253,40       | 235,00       | 35,44        | 18,40        | 199,56 | 9,22  | 10683            | 4294 | 1,092     | 2,023 | 1852          |
| 4      | 600              | cx19             | 266,04       | 237,32       | 32,44        | 28,72        | 204,88 | 14,02 | 10934            | 4545 | 1,140     | 2,141 | 1878          |
| 5      | 800              | cx21             | 228,49       | 197,40       | 31,74        | 31,09        | 165,66 | 18,77 | 10895            | 4506 | 1,188     | 2,122 | 1787          |
| 6      |                  |                  |              |              |              |              |        |       |                  |      |           |       |               |
| 7      |                  |                  |              |              |              |              |        |       |                  |      |           |       |               |
| 8      |                  |                  |              |              |              |              |        |       |                  |      |           |       |               |



**CBR** 

| Nº de   | Golpes por capa          | 56          | 25     | 12     |
|---------|--------------------------|-------------|--------|--------|
|         | ANTES DE L               | A INMERSION |        |        |
|         | Nº Recipiente            | XX          | cx5    | cx2    |
| 0       | Recipiente + Peso humedo | 184,06      | 250,27 | 247,73 |
| )A[     | Recipiente + Peso seco   | 166,58      | 225,87 | 223,22 |
| ΨE      | Agua                     | 17,48       | 24,40  | 24,51  |
| НОМЕБАБ | Recipiente               | 30,56       | 36,51  | 32,66  |
| I       | Peso seco                | 136,02      | 189,36 | 190,56 |
|         | Contenido de agua (%)    | 12,85       | 12,89  | 12,86  |
| Nº Mo   | olde                     | 4           | 8      | 2      |
| Molde   | + Suelo humedo           | 11867       | 11610  | 10439  |
| Molde   | gr.                      | 6967        | 6957   | 6005   |
| Suelo   | humedo                   | 4900        | 4653   | 4434   |
| Suelo   | seco = 100xW(100+w)      | 4342        | 4122   | 3929   |
| Conte   | nido de Agua w           | 12,85       | 12,89  | 12,86  |
| Densi   | dad humeda               | 2116        | 2009   | 1915   |
| Densi   | dad Seca                 | 1875        | 1780   | 1696   |
|         | DESPUES DE               | LA INMERSIO | N      |        |
|         | Nº Recipiente            | ax15        | cx7    | ax26   |
|         | Recipiente + Peso humedo | 196,85      | 232,35 | 203,79 |
| НОМЕБАБ | Recipiente + Peso seco   | 166,29      | 196,63 | 170,02 |
| ME      | Agua                     | 30,56       | 35,72  | 33,77  |
| ₽       | Recipiente               | 29,94       | 34,89  | 30,82  |
| _       | Peso seco                | 136,35      | 161,74 | 139,20 |
|         | Contenido de agua (%)    | 22,41       | 22,08  | 24,26  |
| Nº Mo   |                          | 4           | 8      | 2      |
|         | + Suelo humedo           | 12149       | 11933  | 10829  |
| Molde   | -                        | 6967        | 6957   | 6005   |
|         | humedo                   | 5182        | 4976   | 4824   |
| Suelo   | seco = 100xW(100+w)      | 4233        | 4076   | 3882   |
| Conte   | nido de Agua w           | 22,41       | 22,08  | 24,26  |
|         | dad humeda               | 2237        | 2149   | 2083   |
| Densi   | dad Seca                 | 1828        | 1760   | 1676   |
|         | ANTES DE L               | A INMERSION | l .    |        |
|         | Lectura Inicial          | 0,020       | 0,020  | 0,020  |
|         | 24 horas                 | 0,070       | 0,065  | 0,045  |
|         | 48 horas                 | 0,095       | 0,080  | 0,058  |
|         | 72 horas                 | 0,115       | 0,100  | 0,070  |
|         | 96 horas                 | 0,120       | 0,110  | 0,075  |

**D.S.M:** 1881 Kg/m3 **H.OP:** 13,30%

# **C.B.R PENETRACION**

| ARED  | TURA  |        | NUM                    | ERO DE GO | LPES POR ( | CAPA        |          |
|-------|-------|--------|------------------------|-----------|------------|-------------|----------|
| ADEN  | TUNA  | 56     | 25                     | 12        | 56         | 25          | 12       |
| mm    | pulgs |        | E PENETRA<br>(ILOGRAMO |           | CARGA L    | JNITARIA EN | N KG/CM2 |
| 0,00  | 0,00  | 0,00   | 0,00                   | 0,00      | 0,00       | 0,00        | 0,00     |
| 1,27  | 0,05  | 99,80  | 92,54                  | 36,29     | 5,16       | 4,78        | 1,88     |
| 2,54  | 0,10  | 172,37 | 127,01                 | 54,43     | 8,91       | 6,56        | 2,81     |
| 3,81  | 0,15  | 206,40 | 147,43                 | 63,51     | 10,67      | 7,62        | 3,28     |
| 5,08  | 0,20  | 231,34 | 163,30                 | 72,58     | 11,96      | 8,44        | 3,75     |
| 7,62  | 0,30  | 272,17 | 192,79                 | 89,82     | 14,07      | 9,96        | 4,64     |
| 10,16 | 0,40  | 317,53 | 224,54                 | 107,96    | 16,41      | 11,60       | 5,58     |
| 12,70 | 0,50  | 362,89 | 254,03                 | 125,65    | 18,75      | 13,13       | 6,49     |



| C.B.R. de penetración (%) = | 12,67 |
|-----------------------------|-------|
| HINCHAMIENTO (%) =          | 2,00  |



| C.B.R. de penetración (%) = | 4,00 |
|-----------------------------|------|
| HINCHAMIENTO (%) =          | 1,50 |



| C.B.R. de penetración (%) = | 9,34 |
|-----------------------------|------|
| HINCHAMIENTO (%) =          | 1,80 |

### **DETERMINACION DEL C.B.R.**

100 % D.S.M. (Proctor Modificado): 1881 Kg/m395% D.S.M. (Proctor Modificado): 1787 Kg/m3

| C.B.R. 100 % = | 13 |
|----------------|----|
| C.B.R. 95 % =  | 10 |

# G. APUS

# a) Componente cimentación

**RUBRO:** Limpieza y desbroce **RENDIMIENTO:** 800

| UNIDAD: IIIZ            |                       |                |                    |              |            |
|-------------------------|-----------------------|----------------|--------------------|--------------|------------|
| EQUIPOS                 |                       |                |                    |              |            |
| Descripción             | Unidad                | Cantidad       | Rendimiento        | Precio Unit. | Costo      |
|                         |                       | А              | R                  | В            | D=(A/R)*B  |
| Retroescavadora 75 HP   | hr                    | 1              | 100                | 35.00        | 0.35       |
|                         |                       |                |                    |              | \$         |
| Subtotal M              |                       |                |                    |              | 0.35       |
| MANO DE OBRA            |                       |                |                    |              |            |
| Descripción             | Unidad                | Cantidad       | Rendimiento        | Precio Unit. | Costo      |
|                         |                       | А              | R                  | В            | D=(A/R)*B  |
| Peón (ESTRUC. OCUP. E2) | hr                    | 1              | 4.54               | 3.62         | 0.80       |
|                         |                       |                |                    |              | \$         |
| Subtotal N              |                       |                |                    |              | 0.80       |
| MATERIALES              |                       |                |                    |              |            |
| Descripción             | Unidad                | Cantidad       | Rendimiento        | Precio Unit. | Costo      |
|                         |                       | Α              | R                  | В            | D=(A/R)*B  |
| Agua                    | m3                    | 1              | 33.34              | 0.85         | 0.03       |
|                         |                       |                |                    |              | \$         |
| Subtotal O              |                       |                |                    |              | 0.03       |
| TRANSPORTE              |                       | 1              |                    | 1            |            |
| Descripción             | Unidad                | Cantidad       | Rendimiento        | Precio Unit. | Costo      |
|                         |                       | А              | R                  | В            | D=A*B      |
| Camion (hasta 10 ton)   | m3                    | 0.11           | -                  | 55.08        | 6.06       |
|                         |                       |                |                    |              | \$         |
| SUBTOTAL P              |                       |                |                    |              | 6.06       |
|                         |                       | Total de costo | s directos X=(M+N+ | O+P)         | \$<br>7.23 |
|                         |                       |                |                    |              |            |
|                         | Costo total del rubro |                |                    |              |            |
|                         |                       |                |                    |              |            |
| Valor ofertado          |                       |                |                    |              | \$         |
|                         |                       |                |                    |              | 7.23       |

RUBRO: Replanteo y nivelación RENDIMIENTO: 171.4

| UNIDAD. IIIZ                         | <u> </u> |          |             |              |           |  |
|--------------------------------------|----------|----------|-------------|--------------|-----------|--|
| EQUIPOS                              |          |          |             |              |           |  |
| Descripción                          | Unidad   | Cantidad | Rendimiento | Precio Unit. | Costo     |  |
|                                      |          | А        | R           | В            | D=(A/R)*B |  |
| Teodolito                            | hr       | 1        | 5           | 1.45         | 0.29      |  |
| Subtotal M                           |          |          |             |              | 0.29      |  |
| MANO DE OBRA                         |          |          |             |              |           |  |
| Descripción                          | Unidad   | Cantidad | Rendimiento | Precio Unit. | Costo     |  |
|                                      |          | Α        | R           | В            | D=(A/R)*B |  |
| Cadenero (ESTRUC.<br>OCUP. D2)       | hr       | 2        | 7.14        | 3.62         | 1.01      |  |
| Topografo (ESTRUC. OCUP. C1)         | hr       | 1        | 7.14        | 4.01         | 0.56      |  |
| Subtotal N                           |          |          |             |              | 1.58      |  |
| MATERIALES                           |          |          |             |              |           |  |
| Descripción                          | Unidad   | Cantidad | Rendimiento | Precio Unit. | Costo     |  |
|                                      |          | Α        | R           | В            | D=(A/R)*B |  |
| Tiras                                | u        | 1        | 5           | 1.45         | 0.29      |  |
| Subtotal O                           |          |          |             |              | 0.29      |  |
| TRANSPORTE                           |          |          |             |              |           |  |
| Descripción                          | Unidad   | Cantidad | Rendimiento | Precio Unit. | Costo     |  |
|                                      |          | А        | R           | В            | D=(A/R)*B |  |
|                                      |          |          |             |              |           |  |
| Subtotal P                           |          |          |             |              | 0.00      |  |
| Total de costos directos X=(M+N+O+P) |          |          |             |              |           |  |
| Costo total del rubro                |          |          |             |              |           |  |
| Valor ofertado                       |          |          |             |              |           |  |

**RUBRO**: Excavación de cimientos **RENDIMIENTO**: 200

| UNIDAD: m3                   |        |                                         |             |              |           |  |
|------------------------------|--------|-----------------------------------------|-------------|--------------|-----------|--|
| EQUIPOS                      |        |                                         |             |              |           |  |
| Descripción                  | Unidad | Cantidad                                | Rendimiento | Precio Unit. | Costo     |  |
|                              |        | A                                       | R           | В            | D=(A/R)*B |  |
| Retroescavadora 75<br>HP     | hr     | 1                                       | 20.00       | 35.00        | 1.75      |  |
| herramientas (5.00% MO)      |        |                                         |             |              | 0.05      |  |
| Subtotal M                   |        |                                         |             |              | 1.80      |  |
| MANO DE OBRA                 |        |                                         |             |              |           |  |
| Descripción                  | Unidad | Cantidad                                | Rendimiento | Precio Unit. | Costo     |  |
|                              |        | A                                       | R           | В            | D=(A/R)*B |  |
| Peón E2                      | hr     | 1                                       | 5.00        | 3.62         | 0.72      |  |
| Operador Equipo<br>Pesado G1 | hr     | 1                                       | 20.00       | 4.06         | 0.20      |  |
| Subtotal N                   |        |                                         |             |              | 0.93      |  |
| MATERIALES                   |        |                                         |             |              |           |  |
| Descripción                  | Unidad | Cantidad                                | Rendimiento | Precio Unit. | Costo     |  |
|                              |        | A                                       | R           | В            | D=(A/R)*B |  |
| Agua                         | m3     | 1                                       | 33.34       | 0.85         | 0.03      |  |
| Subtotal O                   |        |                                         |             |              | 0.03      |  |
| TRANSPORTE                   |        |                                         |             |              |           |  |
| Descripción                  | Unidad | Cantidad                                | Rendimiento | Precio Unit. | Costo     |  |
|                              |        | A                                       | R           | В            | D=A*B     |  |
| Camion (hasta 10 ton)        | m3     | 0.11                                    | -           | 55.08        | 6.06      |  |
| Subtotal P                   |        |                                         |             |              | 6.06      |  |
|                              |        | Total de costos directos<br>X=(M+N+O+P) |             |              | 8.81      |  |
|                              |        | Costo total del rubro                   |             |              | 8.81      |  |
|                              |        | Valor ofertado                          |             |              |           |  |

RUBRO: Relleno compactado con material importado RENDIMIENTO: 34.6

| EQUIPOS                       |        |                                      |                |              |           |  |  |
|-------------------------------|--------|--------------------------------------|----------------|--------------|-----------|--|--|
| Descripción                   | Unidad | Cantidad                             | Rendimiento    | Precio Unit. | Costo     |  |  |
| •                             |        | A                                    | R              | В            | D=(A/R)*B |  |  |
| Plancha vibroapisanadora      | hr     | 1                                    | 1.89           | 7.00         | 3.70      |  |  |
| Herramientas<br>(5.00% MO)    |        |                                      |                |              | 0.87      |  |  |
| Subtotal M                    |        |                                      |                |              | 0.87      |  |  |
| MANO DE OBRA                  |        |                                      |                |              |           |  |  |
| Descripción                   | Unidad | Cantidad                             | Rendimiento    | Precio Unit. | Costo     |  |  |
|                               |        | A                                    | R              | В            | D=(A/R)*B |  |  |
| Maestro de Obra<br>C1         | hr     | 1                                    | 1.22           | 4.06         | 3.33      |  |  |
| Operador Equipo<br>Liviano C1 | hr     | 1                                    | 1.89           | 4.06         | 2.15      |  |  |
| Peón E2                       | hr     | 2                                    | 0.61           | 3.62         | 11.87     |  |  |
| Subtotal N                    |        |                                      |                | 17.34        |           |  |  |
| MATERIALES                    |        |                                      |                |              |           |  |  |
| Descripción                   | Unidad | Cantidad                             | Rendimiento    | Precio Unit. | Costo     |  |  |
|                               |        | A                                    | R              | В            | D=(A/R)*B |  |  |
| Ripio (e = 3 cm)              | m3     | 0.03                                 | 1              | 18.00        | 0.54      |  |  |
| Subtotal O                    |        |                                      |                |              | 0.54      |  |  |
| TRANSPORTE                    |        |                                      |                |              |           |  |  |
| Descripción                   | Unidad | Cantidad                             | Rendimiento    | Precio Unit. | Costo     |  |  |
|                               |        | A                                    | R              | В            | D=A*B     |  |  |
| Camion (hasta 10 ton)         | m3     | 0.11                                 | -              | 55.08        | 6.06      |  |  |
| Subtotal P                    |        |                                      |                |              | 6.06      |  |  |
|                               |        | Total de costos directos X=(M+N+O+P) |                |              | 24.81     |  |  |
|                               |        | Costo total del rubro                | 24.81          |              |           |  |  |
|                               |        | Valor ofertado                       | Valor ofertado |              |           |  |  |

RUBRO: Encofrado RENDIMIENTO: 110

| UNIDAD. IIIZ                   |        |                                      |              |                           |           |
|--------------------------------|--------|--------------------------------------|--------------|---------------------------|-----------|
| EQUIPOS                        | ı      |                                      |              |                           | 1         |
| Descripción                    | Unidad | Cantidad                             | Rendimiento  | Precio Unit.              | Costo     |
|                                |        | А                                    | R            | В                         | D=(A/R)*B |
| Herramientas (5.00% MO)        |        |                                      |              |                           | 0.51      |
| Subtotal M                     |        |                                      |              |                           | 0.51      |
| MANO DE OBRA                   |        |                                      |              |                           |           |
| Descripción                    | Unidad | Cantidad                             | Rendimiento  | Precio Unit.              | Costo     |
|                                |        | Α                                    | R            | В                         | D=(A/R)*B |
| Carpintero D2                  | hr     | 2                                    | 5.00         | 3.66                      | 1.46      |
| Peón E2                        | hr     | 3                                    | 1.25         | 3.62                      | 8.69      |
| Subtotal N                     |        |                                      |              |                           | 10.15     |
| MATERIALES                     | l e    |                                      |              |                           |           |
| Descripción                    | Unidad | Cantidad                             | Rendimiento  | Precio Unit.              | Costo     |
|                                |        | А                                    | R            | В                         | D=(A/R)*B |
| Alfajia 7 x 7 x 250 mm         | u      | 1                                    | 0.22         | 3.00                      | 13.64     |
| Aceite quemado                 | gl     | 1                                    | 16.67        | 0.44                      | 0.03      |
| Tabla de monte ancho 25 cm     | m      | 1                                    | 0.60         | 3.34                      | 5.57      |
| Clavos 2", 2 1/2", 3 ", 3 1/2" | Kg     | 1                                    | 2.50         | 2.13                      | 0.85      |
| Subtotal O                     |        |                                      |              |                           | 20.08     |
| TRANSPORTE                     | l      |                                      |              |                           |           |
| Descripción                    | Unidad | Cantidad                             | Rendimiento  | Precio Unit.              | Costo     |
|                                |        | Α                                    | R            | В                         | D=A*B     |
|                                |        |                                      |              |                           |           |
| Subtotal P                     |        |                                      |              | ( (1 1 1 5 <del>-</del> ) | 0.00      |
|                                |        | Total de costos directos X=(M+N+O+P) |              |                           | 30.74     |
|                                |        |                                      | ıl del rubro |                           | 30.74     |
|                                |        | Valor ofer                           | tado         |                           | 30.74     |

RUBRO: HORMIGÓN fc = 280 kg/cm2 RENDIMIENTO: 98.6

| UNIDAD.                        | <u> </u>         |             |             |              |           |
|--------------------------------|------------------|-------------|-------------|--------------|-----------|
| EQUIPOS                        |                  |             |             |              |           |
| Descripción                    | Unidad           | Cantidad    | Rendimiento | Precio Unit. | Costo     |
|                                |                  | А           | R           | В            | D=(A/R)*B |
| Concretera 1 saco              | hr               | 2           | 2.38        | 4.48         | 3.76      |
| Vibrador de manguera           | hr               | 4           | 2.38        | 4.06         | 6.82      |
| Subtotal M                     |                  |             |             |              | 3.76      |
| MANO DE OBRA                   |                  |             |             |              |           |
| Descripción                    | Unidad           | Cantidad    | Rendimiento | Precio Unit. | Costo     |
|                                |                  | Α           | R           | В            | D=(A/R)*B |
| Albañil D2                     | hr               | 2           | 1.37        | 3.66         | 5.34      |
| Operador de equipo liviano D2  | hr               | 3           | 1.37        | 4.06         | 8.89      |
| Maestro de Obra C1             | hr               | 1           | 1.37        | 3.86         | 2.82      |
| Peón E2                        | hr               | 4           | 1.37        | 3.62         | 10.57     |
| Subtotal N                     |                  |             |             |              | 27.62     |
| MATERIALES                     |                  |             |             |              |           |
| Descripción                    | Unidad           | Cantidad    | Rendimiento | Precio Unit. | Costo     |
|                                |                  | А           | R           | В            | D=(A/R)*B |
| Cemento Fuerte Tipo GU Saco 50 |                  |             |             |              |           |
| Kg                             | u                | 1           | 0.12        | 7.68         | 64.00     |
| Arena                          | m3               | 1           | 1.54        | 13.50        | 8.77      |
| Ripio                          | m3               | 1           | 1.05        | 18.00        | 17.14     |
| Agua                           | m3               | 1           | 5.56        | 0.85         | 0.15      |
| Subtotal O                     |                  |             |             |              | 90.06     |
| TRANSPORTE                     |                  | T           |             |              |           |
| Descripción                    | Unidad           | Cantidad    | Rendimiento | Precio Unit. | Costo     |
|                                |                  | Α           | R           | В            | D=A*B     |
|                                |                  |             |             |              |           |
| Subtotal P                     |                  |             |             |              | 0.00      |
|                                | ostos directos X | (=(M+N+O+P) | 121.45      |              |           |
| Costo total del rubro          |                  |             |             |              | 121.45    |
|                                |                  | Valor ofer  | tado        |              | 121.45    |

RUBRO: Acero de refuerzo (figurado y colocado) RENDIMIENTO: 3466

UNIDAD: Kg

| ONIDAD. Ng                           |           |              |             |              |           |
|--------------------------------------|-----------|--------------|-------------|--------------|-----------|
| EQUIPOS                              |           |              |             |              |           |
| Descripción                          | Unidad    | Cantidad     | Rendimiento | Precio Unit. | Costo     |
|                                      |           | А            | R           | В            | D=(A/R)*B |
| Cortadora dobladora de hierro        | hr        | 1            | 33.33       | 0.51         | 0.02      |
| Subtotal M                           |           |              |             |              | 0.02      |
| MANO DE OBRA                         |           |              |             |              |           |
| Descripción                          | Unidad    | Cantidad     | Rendimiento | Precio Unit. | Costo     |
|                                      |           | Α            | R           | В            | D=(A/R)*B |
| Maestro de Obra C1                   | hr        | 2            | 100.00      | 4.06         | 0.08      |
| Fierrero D2                          | hr        | 1            | 100.00      | 3.66         | 0.04      |
| Peón E2                              | hr        | 4            | 33.33       | 3.62         | 0.43      |
| Subtotal N                           |           |              |             |              | 0.55      |
| MATERIALES                           |           |              |             |              |           |
| Descripción                          | Unidad    | Cantidad     | Rendimiento | Precio Unit. | Costo     |
|                                      |           | Α            | R           | В            | D=(A/R)*B |
| Alambra galvanizado No. 18           | Kg        | 1            | 20          | 2.54         | 0.13      |
| Acero de reuferzo<br>fc=4200kg/cm2   | Kg        | 1            | 0.95        | 0.81         | 0.85      |
| Subtotal O                           |           |              |             |              | 0.98      |
| TRANSPORTE                           |           |              |             |              |           |
| Descripción                          | Unidad    | Cantidad     | Rendimiento | Precio Unit. | Costo     |
|                                      |           | А            | R           | В            | D=A*B     |
|                                      |           |              |             |              |           |
| Subtotal P                           |           |              |             |              | 0.00      |
| Total de costos directos X=(M+N+O+P) |           |              |             |              | 1.55      |
|                                      | del rubro |              | 1.55        |              |           |
|                                      |           | Valor oferta | do          |              | 1.55      |

RUBRO: Encofrado RENDIMIENTO: 110

| EQUIPOS                              |        |          |             |              |           |  |  |
|--------------------------------------|--------|----------|-------------|--------------|-----------|--|--|
| Descripción                          | Unidad | Cantidad | Rendimiento | Precio Unit. | Costo     |  |  |
|                                      |        | Α        | R           | В            | D=(A/R)*B |  |  |
| Herramientas (5.00% MO)              |        |          |             |              | 0.51      |  |  |
| Subtotal M                           |        |          |             |              | 0.51      |  |  |
| MANO DE OBRA                         |        |          |             |              |           |  |  |
| Descripción                          | Unidad | Cantidad | Rendimiento | Precio Unit. | Costo     |  |  |
|                                      |        | Α        | R           | В            | D=(A/R)*B |  |  |
| Carpintero D2                        | hr     | 2        | 5.00        | 3.66         | 1.46      |  |  |
| Peón ESTRUC. OCUP. E2                | hr     | 3        | 1.25        | 3.62         | 8.69      |  |  |
| Subtotal N                           |        |          |             |              | 10.15     |  |  |
| MATERIALES                           |        |          |             |              |           |  |  |
| Descripción                          | Unidad | Cantidad | Rendimiento | Precio Unit. | Costo     |  |  |
|                                      |        | Α        | R           | В            | D=(A/R)*B |  |  |
|                                      |        |          |             |              |           |  |  |
| Subtotal O                           |        |          |             |              | 0.00      |  |  |
| TRANSPORTE                           |        |          |             |              |           |  |  |
| Descripción                          | Unidad | Cantidad | Rendimiento | Precio Unit. | Costo     |  |  |
|                                      |        | Α        | R           | В            | D=A*B     |  |  |
|                                      |        |          |             |              |           |  |  |
| Subtotal P                           |        |          |             |              | 0.00      |  |  |
| Total de costos directos X=(M+N+O+P) |        |          |             |              |           |  |  |
| Costo total del rubro                |        |          |             |              |           |  |  |
| Valor ofertado                       |        |          |             |              |           |  |  |

RUBRO: Anclajes continuos inyectados, 12 m Barra de acero 33 mm RENDIMIENTO: 14

UNIDAD: u

| EQUIPOS                            | -       |          |                   |              |              |
|------------------------------------|---------|----------|-------------------|--------------|--------------|
| Descripción                        | Unidad  | Cantidad | Rendimiento       | Precio Unit. | Costo        |
| ·                                  |         | А        | R                 | В            | D=(A/R)*B    |
| Compresor 750 CFM                  | hr      | 1        | 1.75              | 47.00        | 26.86        |
| Perforadora de roca                |         |          |                   |              |              |
| neumática 0.5-0.7 Mpa              | hr      | 1        | 1.75              | 60.00        | 34.29        |
| Inyectora de baja presión          | hr      | 1        | 1.75              | 9.34         | 5.34         |
| Mezcladora de lechada              | hr      | 1        | 1.75              | 1.50         | 0.86         |
| manual (2 sacos)                   | TH      | 1        | 1.75              | 1.50         | 0.86<br>0.73 |
| Herramientas (5.00% MO) Subtotal M |         |          |                   |              | 68.07        |
| MANO DE OBRA                       |         |          |                   |              | 00.07        |
| Descripción                        | Unidad  | Cantidad | Rendimiento       | Precio Unit. | Costo        |
| Descripcion                        | Officac |          |                   |              |              |
| Operador equipo de                 |         | A        | R                 | В            | D=(A/R)*B    |
| perforacion C2                     | hr      | 1        | 1.75              | 3.82         | 2.18         |
| Operador equipos livianos          |         |          | -                 |              |              |
| D2                                 | hr      | 1        | 1.75              | 3.82         | 2.18         |
| Ayudante de perforador C2          | hr      | 1        | 1.75              | 3.62         | 2.07         |
| Peón E2                            | hr      | 4        | 1.75              | 3.58         | 8.18         |
| Subtotal N                         |         |          |                   |              | 14.62        |
| MATERIALES                         |         |          |                   |              |              |
| Descripción                        | Unidad  | Cantidad | Rendimiento       | Precio Unit. | Costo        |
|                                    |         | Α        | R                 | В            | D=(A/R)*B    |
| Cemento tipo I(50 Kg)              | u       | 1        | 1.67              | 7.80         | 4.68         |
| Sikament N100                      | Kg      | 1        | 2.50              | 1.45         | 0.58         |
| Agua                               | $m^3$   | 1        | 50.00             | 1.50         | 0.03         |
| Acero de refuerzo fy=4200          |         |          |                   |              |              |
| kg/cm <sup>2</sup>                 | Kg      | 1        | 0.13              | 1.20         | 9.23         |
| Brocas de perforacion 4"           | u       | 1        | 0.50              | 0.33         | 0.66         |
| Bentonita gruesa                   | Kg      | 1        | 0.12              | 0.41         | 3.42         |
| Diesel                             | gal     | 1        | 0.33              | 1.04         | 3.20         |
| Subtotal O                         |         |          |                   |              | 21.80        |
| TRANSPORTE                         |         |          |                   |              |              |
| Descripción                        | Unidad  | Cantidad | Rendimiento       | Precio Unit. | Costo        |
|                                    |         | Α        | R                 | В            | D=A*B        |
|                                    |         |          |                   |              |              |
| Subtotal P                         |         |          |                   |              | 0.00         |
|                                    |         |          | costos directos 2 | X=(M+N+O+P)  | 104.49       |
| Costo total del rubro              |         |          |                   |              |              |
|                                    |         | Valor of | ertado            |              | 104.49       |

# b) Componente vial

RUBRO: Limpieza y desbroce de la vía RENDIMIENTO: 800

| UNIDAD: m2                   |        |              |                    |              |           |  |  |  |  |
|------------------------------|--------|--------------|--------------------|--------------|-----------|--|--|--|--|
| EQUIPOS                      |        |              |                    |              |           |  |  |  |  |
| Descripción                  | Unidad | Cantidad     | Rendimiento        | Precio Unit. | Costo     |  |  |  |  |
|                              |        | Α            | R                  | В            | D=(A/R)*B |  |  |  |  |
| Retroescavadora 75 HP        | hr     | 1            | 100                | 35.00        | 0.35      |  |  |  |  |
| Subtotal M                   |        |              |                    |              | 0.35      |  |  |  |  |
|                              |        | MANO DE      | E OBRA             |              |           |  |  |  |  |
| Descripción                  | Unidad | Cantidad     | Rendimiento        | Precio Unit. | Costo     |  |  |  |  |
|                              |        | А            | R                  | В            | D=(A/R)*B |  |  |  |  |
| Peón E2                      | hr     | 1            | 4.54               | 3.62         | 0.80      |  |  |  |  |
| Operador Equipo<br>Pesado G1 | hr     | 1            | 4.54               | 4.06         | 0.89      |  |  |  |  |
| Subtotal N                   |        |              |                    |              | 1.69      |  |  |  |  |
|                              |        | MATER        | IALES              |              |           |  |  |  |  |
| Descripción                  | Unidad | Cantidad     | Rendimiento        | Precio Unit. | Costo     |  |  |  |  |
|                              |        | А            | R                  | В            | D=(A/R)*B |  |  |  |  |
|                              |        |              |                    |              |           |  |  |  |  |
| Subtotal O                   |        |              |                    |              | 0.00      |  |  |  |  |
|                              |        | TRANSF       | PORTE              |              |           |  |  |  |  |
| Descripción                  | Unidad | Cantidad     | Rendimiento        | Precio Unit. | Costo     |  |  |  |  |
|                              |        | Α            | R                  | В            | D=A*B     |  |  |  |  |
|                              |        |              |                    |              |           |  |  |  |  |
| SUBTOTAL P                   |        |              |                    |              | 0.00      |  |  |  |  |
|                              |        |              | stos directos X=(M | 1+N+O+P)     | 2.04      |  |  |  |  |
|                              |        | Costo total  |                    |              | 2.04      |  |  |  |  |
|                              |        | Valor oferta | do                 |              | 2.04      |  |  |  |  |

Replanteo y nivelación m2 RENDIMIENTO: 343

RUBRO: UNIDAD:

| UNIDAD: IIIZ |        |              |                      |              |           |
|--------------|--------|--------------|----------------------|--------------|-----------|
| EQUIPOS      |        |              |                      |              |           |
| Descripción  | Unidad | Cantidad     | Rendimiento          | Precio Unit. | Costo     |
|              |        | А            | R                    | В            | D=(A/R)*B |
| Teodolito    | hr     | 2            | 5                    | 1.45         | 0.58      |
| Subtotal M   |        |              |                      |              | 0.58      |
| MANO DE OBR  | Α      |              |                      |              |           |
| Descripción  | Unidad | Cantidad     | Rendimiento          | Precio Unit. | Costo     |
|              |        | А            | R                    | В            | D=(A/R)*B |
| Cadenero D2  | hr     | 4            | 7.14                 | 3.62         | 2.03      |
| Topografo C1 | hr     | 2            | 7.14                 | 4.01         | 1.12      |
| Subtotal N   |        |              |                      |              | 3.15      |
| MATERIALES   |        |              |                      |              |           |
| Descripción  | Unidad | Cantidad     | Rendimiento          | Precio Unit. | Costo     |
|              |        | А            | R                    | В            | D=A*B     |
| Tiras        | u      | 1            |                      | 1.45         | 1.45      |
| Subtotal O   |        |              |                      |              | 1.45      |
| TRANSPORTE   |        |              |                      |              |           |
| Descripción  | Unidad | Cantidad     | Rendimiento          | Precio Unit. | Costo     |
|              |        | Α            | R                    | В            | D=(A/R)*B |
|              |        |              |                      |              |           |
| Subtotal P   |        |              |                      |              | 0.00      |
|              |        |              | stos directos X=(M+I | N+O+P)       | 5.18      |
|              |        | Costo total  |                      |              | 5.18      |
|              |        | Valor oferta | do                   |              | 5.18      |

**RUBRO:** Excavación de corte de terreno y roca **RENDIMIENTO:** 150

| EQUIPOS                      |        |               |                    |              |           |
|------------------------------|--------|---------------|--------------------|--------------|-----------|
| Descripción                  | Unidad | Cantidad      | Rendimiento        | Precio Unit. | Costo     |
|                              |        | Α             | R                  | В            | D=(A/R)*B |
| Retroescavadora 75 HP        | hr     | 2             | 6.25               | 35.00        | 11.2      |
| Retroescavadora con martillo | hr     | 1             | 6.25               | 35.00        | 5.6       |
|                              |        |               |                    |              | 0.09      |
| Subtotal M                   |        |               |                    |              | 16.89     |
| MANO DE OBRA                 |        |               |                    |              |           |
| Descripción                  | Unidad | Cantidad      | Rendimiento        | Precio Unit. | Costo     |
|                              |        | Α             | R                  | В            | D=(A/R)*B |
| Peón E2                      | hr     | 1             | 3.13               | 3.62         | 1.16      |
| Operador Equipo<br>Pesado G1 | hr     | 1             | 6.25               | 4.06         | 0.65      |
| Subtotal N                   |        |               |                    |              | 1.81      |
| MATERIALES                   |        |               |                    |              |           |
| Descripción                  | Unidad | Cantidad      | Rendimiento        | Precio Unit. | Costo     |
|                              |        | Α             | R                  | В            | D=(A/R)*B |
|                              |        |               |                    |              |           |
| Subtotal O                   |        |               |                    |              | 0.00      |
| TRANSPORTE                   |        |               |                    |              |           |
| Descripción                  | Unidad | Cantidad      | Rendimiento        | Precio Unit. | Costo     |
|                              |        | Α             | R                  | В            | D=A*B     |
|                              |        |               |                    |              |           |
| Subtotal P                   |        |               |                    |              | 0.00      |
|                              |        |               | tos directos X=(M+ | +N+O+P)      | 18.70     |
|                              |        | Costo total o |                    |              | 18.70     |
|                              |        | Valor ofertac | do                 |              | 18.70     |

Excavación para zanjas en tuberías **RENDIMIENTO:** 61.52

RUBRO: UNIDAD: m2

| ONIDAD.                          | _      |          |                  |              |           |
|----------------------------------|--------|----------|------------------|--------------|-----------|
| EQUIPOS                          |        |          |                  |              |           |
| Descripción                      | Unidad | Cantidad | Rendimiento      | Precio Unit. | Costo     |
|                                  |        | А        | R                | В            | D=(A/R)*B |
| Retroexcavadora 75 HP            | hr     | 1        | 7.69             | 35.00        | 4.55      |
| Compresor                        | hr     | 1        | 4                | 0.75         | 0.19      |
| Subtotal M                       |        |          |                  |              | 4.74      |
| MANO DE OBRA                     |        |          |                  |              |           |
| Descripción                      | Unidad | Cantidad | Rendimiento      | Precio Unit. | Costo     |
|                                  |        | А        | R                | В            | D=(A/R)*B |
| Operador Equipo Pesado C1.<br>G1 | hr     | 1        | 7.69             | 4.06         | 0.53      |
| Operador Equipo Liviano D2       | hr     | 1        | 7.69             | 4.06         | 0.53      |
| Peón E2                          | hr     | 2        | 7.69             | 3.62         | 0.94      |
| Subtotal N                       |        |          |                  |              | 2.00      |
| MATERIALES                       |        |          |                  |              |           |
| Descripción                      | Unidad | Cantidad | Rendimiento      | Precio Unit. | Costo     |
|                                  |        | Α        | R                | В            | D=(A/R)*B |
|                                  |        |          |                  |              |           |
| Subtotal O                       |        |          |                  |              | 0.00      |
| TRANSPORTE                       |        | l        |                  |              |           |
| Descripción                      | Unidad | Cantidad | Rendimiento      | Precio Unit. | Costo     |
|                                  |        | Α        | R                | В            | D=A*B     |
|                                  |        |          |                  |              |           |
| Subtotal P                       |        |          |                  |              | 0.00      |
|                                  |        |          | ostos directos > | K=(M+N+O+P)  | 6.74      |
|                                  |        |          | al del rubro     |              | 6.74      |
| Valor ofertado                   |        |          |                  |              |           |

RUBRO: Desalojo de escombros RENDIMIENTO: 320

| EQUIPOS                          |        |            |                  |              |           |
|----------------------------------|--------|------------|------------------|--------------|-----------|
| Descripción                      | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                  |        | А          | R                | В            | D=(A/R)*B |
| Cargadora frontal                | hr     | 1          | 20               | 35.20        | 1.76      |
| Volqueta 8m3                     | hr     | 1          | 20               | 30           | 1.50      |
| Subtotal M                       |        |            |                  |              | 3.26      |
| MANO DE OBRA                     |        |            |                  |              |           |
| Descripción                      | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                  |        | А          | R                | В            | D=(A/R)*B |
| Maestro de obra C1               | hr     | 1          | 20.00            | 4.04         | 0.20      |
| Operador de equipo pesado C1     | hr     | 1          | 20.00            | 4.04         | 0.20      |
| Chofer profesional licencia E C1 | hr     | 1          | 20               | 5.29         | 0.26      |
| Engrasador                       | hr     | 1          | 20               | 3.65         | 0.18      |
| Subtotal N                       |        |            |                  |              | 0.85      |
| MATERIALES                       |        |            |                  |              | _         |
| Descripción                      | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                  |        | А          | R                | В            | D=(A/R)*B |
| Agua                             | m3     | 0.03       |                  | 0.85         | 0.03      |
| Subtotal O                       |        |            |                  |              | 0.03      |
| TRANSPORTE                       |        |            |                  |              |           |
| Descripción                      | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                  |        | А          | R                | В            | D=A*B     |
| Agua                             | m3     | 0.03       |                  | 0.08         | 0.0024    |
| Subtotal P                       |        |            |                  |              | 0.00      |
|                                  |        |            | ostos directos > | (=(M+N+O+P)  | 4.14      |
| Costo total del rubro            |        |            |                  |              |           |
|                                  |        | Valor ofer | tado             |              | 4.14      |

RUBRO: Relleno RENDIMIENTO: 240

| EQUIPOS                             |        |            |                  |              |           |
|-------------------------------------|--------|------------|------------------|--------------|-----------|
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | А          | R                | В            | D=(A/R)*B |
| motoniveladora 135 HP               | hr     | 1          | 30               | 55.17        | 1.84      |
| Rodillo 8 ton                       | hr     | 1          | 30               | 28.40        | 0.95      |
| Camion cisterna                     | hr     | 1          | 30               | 18           | 0.60      |
| Subtotal M                          |        |            |                  |              | 3.39      |
| MANO DE OBRA                        |        |            |                  |              |           |
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | А          | R                | В            | D=(A/R)*B |
| Operador de equipo pesado<br>C1     | hr     | 1          | 30               | 3.82         | 0.13      |
| Operador de equipo pesado<br>C2     | hr     | 1          | 30               | 3.82         | 0.13      |
| Chofer profesional licencia E<br>C1 | hr     | 1          | 30               | 5            | 0.17      |
| Subtotal N                          |        |            |                  |              | 0.07      |
| MATERIALES                          |        |            |                  |              |           |
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | А          | R                | В            | D=A*B     |
| Agua                                | m3     | 0.03       |                  | 0.85         | 0.03      |
| Subtotal O                          |        |            |                  |              | 0.03      |
| TRANSPORTE                          |        |            |                  |              |           |
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | А          | R                | В            | D=A*B     |
| Agua                                | m3     | 0.03       |                  | 0.08         | 0.0024    |
| Subtotal P                          |        |            |                  |              | 0.00      |
|                                     |        |            | ostos directos > | (=(M+N+O+P)  | 3.48      |
|                                     |        |            | ıl del rubro     |              | 3.48      |
|                                     |        | Valor ofer | tado             |              | 3.48      |

RUBRO: Base clase 4 RENDIMIENTO: 240

| EQUIPOS                             |        |            |                  |              |           |
|-------------------------------------|--------|------------|------------------|--------------|-----------|
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | А          | R                | В            | D=(A/R)*B |
| motoniveladora 135 HP               | hr     | 1          | 30               | 55.17        | 1.84      |
| Rodillo 8 ton                       | hr     | 1          | 30               | 28.40        | 0.95      |
| Camion cisterna                     | hr     | 1          | 30               | 18           | 0.60      |
| Subtotal M                          |        |            |                  |              | 3.39      |
| MANO DE OBRA                        |        |            |                  |              |           |
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | А          | R                | В            | D=(A/R)*B |
| Operador de equipo pesado<br>C1     | hr     | 2          | 30               | 3.82         | 0.25      |
| Operador de equipo pesado<br>C2     | hr     | 1          | 30               | 3.82         | 0.13      |
| Chofer profesional licencia E<br>C1 | hr     | 4          | 30               | 5            | 0.67      |
| Subtotal N                          |        |            |                  |              | 1.05      |
| MATERIALES                          |        |            |                  |              |           |
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | А          | R                | В            | D=A*B     |
| Base clase 4                        | m3     | 1          |                  | 7.50         | 7.50      |
| Agua                                | m3     | 0.03       |                  | 0.85         | 0.03      |
| Subtotal O                          |        |            |                  |              | 7.53      |
| TRANSPORTE                          |        |            |                  |              |           |
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | А          | R                | В            | D=A*B     |
| Base clase 4                        | m3     | 1          |                  | 3.19         | 3.19      |
| Agua                                | m3     | 0.03       |                  | 0.08         | 0.0024    |
| Subtotal P                          |        |            |                  |              | 3.19      |
|                                     |        |            | ostos directos > | <=(M+N+O+P)  | 15.15     |
|                                     |        |            | ll del rubro     |              | 15.15     |
|                                     |        | Valor ofer | tado             |              | 15.15     |

### SUBBASE CLASE 3

RUBRO: RENDIMIENTO: 240

| ONIDAD.                             |        |            |                  |              |           |
|-------------------------------------|--------|------------|------------------|--------------|-----------|
| EQUIPOS                             |        |            |                  |              |           |
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | А          | R                | В            | D=(A/R)*B |
| motoniveladora 135 HP               | hr     | 1          | 30               | 55.17        | 1.84      |
| Rodillo 8 ton                       | hr     | 1          | 30               | 28.40        | 0.95      |
| Camion cisterna                     | hr     | 1          | 30               | 18           | 0.60      |
| Subtotal M                          |        |            |                  |              | 3.39      |
| MANO DE OBRA                        |        |            |                  |              |           |
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | А          | R                | В            | D=(A/R)*B |
| Operador de equipo pesado<br>C1     | hr     | 1          | 30               | 3.82         | 0.13      |
| Operador de equipo pesado<br>C2     | hr     | 1          | 30               | 3.82         | 0.13      |
| Chofer profesional licencia E<br>C1 | hr     | 1          | 30               | 5            | 0.17      |
| Subtotal N                          |        |            |                  |              | 0.42      |
| MATERIALES                          |        |            |                  |              |           |
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | А          | R                | В            | D=A*B     |
| subbase clase 4                     | m3     | 1          |                  | 6.50         | 6.50      |
| Agua                                | m3     | 0.03       |                  | 0.85         | 0.03      |
| Subtotal O                          |        |            |                  |              | 6.53      |
| TRANSPORTE                          |        |            |                  |              |           |
| Descripción                         | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                                     |        | Α          | R                | В            | D=A*B     |
| subbase clase 4                     | m3     | 1          |                  | 3.19         | 3.19      |
| Agua                                | m3     | 0.03       |                  | 0.08         | 0.0024    |
| Subtotal P                          |        |            |                  |              | 3.19      |
|                                     |        |            | ostos directos > | K=(M+N+O+P)  | 13.52     |
| Costo total del rubro               |        |            |                  |              |           |
|                                     |        | Valor ofer | tado             |              | 13.52     |

RUBRO: Señalización horizontal RENDIMIENTO: 800

| UNIDAD:                   |        |            |                  |              |           |
|---------------------------|--------|------------|------------------|--------------|-----------|
| EQUIPOS                   |        |            |                  |              |           |
| Descripción               | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                           |        | А          | R                | В            | D=(A/R)*B |
| Herramienta menor (5% MO) |        |            |                  |              | 0.01      |
| Franjadora                | hr     | 1          | 100              | 0.66         | 0.01      |
| Camioneta                 | hr     | 1          | 100              | 1.6          | 0.02      |
| Camion mediano            | hr     | 1          | 100              | 1.6          | 0.02      |
| Subtotal M                |        |            |                  |              | 0.06      |
| MANO DE OBRA              |        |            |                  |              |           |
| Descripción               | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                           |        | Α          | R                | В            | D=(A/R)*B |
| Maestro de Obra C1        | hr     | 1          | 100.00           | 4.04         | 0.04      |
| Chofer profesional C1     | hr     | 1          | 100.00           | 5            | 0.05      |
| Peón E2                   | hr     | 1          | 100.00           | 3.62         | 0.04      |
| Subtotal N                |        |            |                  |              | 0.13      |
| MATERIALES                |        |            |                  |              |           |
| Descripción               | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                           |        | Α          | R                | В            | D=A*B     |
| pintura de señalizacion   | gl     | 1          |                  | 19.88        | 19.88     |
| microesferas de vidrio    | kg     | 1          |                  | 2.80         | 2.80      |
| Subtotal O                |        |            |                  |              | 22.68     |
| TRANSPORTE                |        |            | ,                |              |           |
| Descripción               | Unidad | Cantidad   | Rendimiento      | Precio Unit. | Costo     |
|                           |        | Α          | R                | В            | D=A*B     |
|                           |        |            |                  |              |           |
| Subtotal P                |        |            |                  |              | 0.00      |
|                           |        |            | ostos directos X | =(M+N+O+P)   | 22.87     |
|                           |        |            | ıl del rubro     |              | 22.87     |
|                           |        | Valor ofer | tado             |              | 22.87     |

RUBRO: Señalización vertical RENDIMIENTO: 40

RUBRO: Se UNIDAD: U

| idad | Cantidad<br>A            | Rendimiento                                                                                                                                               | Precio Unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Costo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                          |                                                                                                                                                           | Precio Unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Costo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| nr   | Α                        |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| nr   |                          | R                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D=(A/R)*B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ٦r   |                          |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •    | 1                        | 100                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                          |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nr   | 1                        | 100                                                                                                                                                       | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                          |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                          |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| idad | Cantidad                 | Rendimiento                                                                                                                                               | Precio Unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Costo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Α                        | R                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D=(A/R)*B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nr   | 1                        | 5.00                                                                                                                                                      | 4.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nr   | 1                        | 5.00                                                                                                                                                      | 3.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nr   | 1                        | 5.00                                                                                                                                                      | 3.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nr   | 1                        | 5.00                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                          |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                          |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| idad | Cantidad                 | Rendimiento                                                                                                                                               | Precio Unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Costo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | А                        | R                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D=A*B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| gl   | 1                        |                                                                                                                                                           | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ιg   | 1                        |                                                                                                                                                           | 10.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ո2   | 0.3                      |                                                                                                                                                           | 32.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| า3   | 1                        |                                                                                                                                                           | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| g    | 1                        |                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| า3   | 1                        |                                                                                                                                                           | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| П    | 1                        |                                                                                                                                                           | 3.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ո2   | 0.3                      |                                                                                                                                                           | 78.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ո2   | 0.3                      |                                                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                          |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                          |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| idad | Cantidad                 | Rendimiento                                                                                                                                               | Precio Unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Costo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | А                        | R                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D=A*B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                          |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                          |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | Total de c               | ostos directos >                                                                                                                                          | (=(M+N+O+P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 86.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                          |                                                                                                                                                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Valor ofer               | tado                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | idad gl n2 n3 n3 n n2 n2 | idad Cantidad  A  nr 1  nr 1  nr 1  idad Cantidad  A  gl 1  kg 1  n2 0.3  n3 1  kg 1  n3 1  m 1  n2 0.3  n2 0.3  idad Cantidad  A  Total de c  Costo tota | idad Cantidad Rendimiento  A R  nr 1 5.00  nr 1 5.00  nr 1 5.00  idad Cantidad Rendimiento  A R  gl 1  ng 1 | idad         Cantidad         Rendimiento         Precio Unit.           A         R         B           nr         1         5.00         4.04           nr         1         5.00         3.62           nr         1         5.00         5           idad         Cantidad         Rendimiento         Precio Unit.           A         R         B           gl         1         1.60           kg         1         10.64           n2         0.3         32.61           n3         1         2.74           kg         1         0.2           n3         1         22           m         1         3.65           n2         0.3         78.9           n2         0.3         28    Total de costos directos X=(M+N+O+P)  Costo total del rubro |

Carpeta asfaltica e= 5 cm RENDIMIENTO: 800

RUBRO: UNIDAD: m2

| UNIDAD.                         |        |             |                   |              |           |
|---------------------------------|--------|-------------|-------------------|--------------|-----------|
| EQUIPOS                         |        |             |                   |              |           |
| Descripción                     | Unidad | Cantidad    | Rendimiento       | Precio Unit. | Costo     |
|                                 |        | А           | R                 | В            | D=(A/R)*B |
| Rodillo compactador             | hr     | 1           | 100               | 30           | 0.3       |
| Rodillo vibratorio doble tambor | hr     | 1           | 100               | 30           | 0.3       |
| Volqueta 8 m3                   | hr     | 1           | 20                | 30           | 1.5       |
| Pavimentadora                   | hr     | 1           | 100               | 52.8         | 0.528     |
| Planta de asfalto               | hr     | 1           | 100               | 88           | 0.88      |
| Tractor                         | hr     | 1           | 100               | 35           | 0.35      |
| Subtotal M                      |        |             |                   |              | 3.86      |
| MANO DE OBRA                    |        |             |                   |              |           |
| Descripción                     | Unidad | Cantidad    | Rendimiento       | Precio Unit. | Costo     |
|                                 |        | А           | R                 | В            | D=(A/R)*B |
| Operador de equipo pesado C1    | hr     | 1           | 100.00            | 3.82         | 0.04      |
| Operador de equipo pesado C2    | hr     | 1           | 100.00            | 3.82         | 0.04      |
| Peón E2                         | hr     | 1           | 100.00            | 3.62         | 0.04      |
| Chofer profesional C1           | hr     | 1           | 100.00            | 5            | 0.05      |
| Subtotal N                      |        |             |                   |              | 0.17      |
| MATERIALES                      |        |             |                   |              |           |
| Descripción                     | Unidad | Cantidad    | Rendimiento       | Precio Unit. | Costo     |
|                                 |        | А           | R                 | В            | D=A*B     |
| Asfalto RC2                     | lt     | 1           |                   | 2.77         | 2.77      |
| Diesel                          | gl     | 1           |                   | 2.02         | 2.02      |
| AGREGADO Tipo 1 D<5/8"          | m3     | 1           |                   | 14           | 14.00     |
| AGREGADO TIPO 2. D<1/4"         | m3     | 1           |                   | 16           | 16.00     |
| Subtotal O                      |        |             |                   |              | 34.79     |
| TRANSPORTE                      |        |             |                   |              |           |
| Descripción                     | Unidad | Cantidad    | Rendimiento       | Precio Unit. | Costo     |
|                                 |        | А           | R                 | В            | D=A*B     |
| Subtotal P                      |        |             |                   |              | 0.00      |
|                                 |        |             | ostos directos X= | (M+N+O+P)    | 38.82     |
|                                 |        | Costo tota  |                   |              | 38.82     |
|                                 |        | Valor ofert | ado               |              | 38.82     |

# H. ESPECIFICACIONES TÉCNICAS (ESTRUCTURA DE MONUMENTO)

#### LIMPIEZA Y DESBROCE

#### Definición:

El estado inicial del área de implantación del Proyecto requiere realizar una limpieza del material orgánico existente en su superficie y realizar un desbroce del exceso de tierra superficial que existe en forma de lomas.

### **Especificaciones:**

Como la primera actividad del proceso constructivo se requiere realizar una limpieza y desbroce del área y hasta el nivel especificado en los planos. Se utilizara una retroexcavadora para aumentar el tiempo requerido para dicha actividad y se asegurara de hidratar el suelo para evitar la volatilización de partículas finas producidas por la limpieza y desbroce. El agua será transportada al sitio y se consideró una distancia de máximo 10 km para su obtención.

Unidad: m<sup>2</sup>

Materiales mínimos: Agua

Equipos mínimos: Retroexcavadora 75 HP

Mano de obra mínima: ESTRUC. OCUP. E2 – Peón

**Medición y pago:** Este rubro será medido y pagado por m², el área que abarca corresponde a toda el área de implantación de la cimentación más 2 metros en cada

lado.

#### **REPLANTEO Y NIVELACIÓN:**

#### Definición:

Se ejecuta con el objetivo de ubicar el área de implantación donde será ubicada la cimentación. También se detallan los ejes de las columnas mediante piolas y se nivelan dichas piolas para medir efectivamente la profundidad requerida de excavación. Para el replanteo se utilizaran los planos estructurales adjuntos para ubicar las distancias especificadas.

### **Especificaciones:**

El replanteo y nivelación debe ser realizado con personal capacitado y los equipos adecuados. Se requiere una precisión de  $\pm$  3 mm de error en todas las medidas especificadas en el plano. El fiscalizador debe asegurar que el replanteo sea efectuado correctamente, utilizando los equipos correctamente calibrados y necesarios para cumplir con las especificaciones del proyecto.

Unidad: m<sup>2</sup>

Materiales mínimos: Estacas, piolas, clavos.

Equipos mínimos: Teodolito.

Mano de obra mínima: ESTRUC. OCUP. C1-Topógrafo y D2 – Cadenero.

**Medición y pago:** Este rubro será medido y pagado en m<sup>2</sup>, el área de replanteo

corresponde a la ubicación de la losa de cimentación y 1 metro a cado lado.

### **EXCAVACIÓN DE CIMIENTOS**

### Definición:

Con el replanteo realizado, se procede a realizar la excavación definida por los planos estructurales hasta la profundidad especificada.

### **Especificaciones:**

Se debe verificar con el fiscalizador que el replanteo este correcto y que se pueda proseguir con la excavación de la cimentación. La excavación será realizada hasta la profundidad establecida en los planos estructurales. Como medida adicional será requerido el esparcimiento de agua sobre la tierra escavada para disminuir la volatilización de partículas finas.

**Unidad:** m<sup>2</sup>

Materiales mínimos: Agua.

**Equipos mínimos:** Retroexcavadora 75 HP, herramientas manuales básicas.

Mano de obra mínima: ETRUC. OCUP. CA G1 – Operador equipo pesado, E2 – Peón. Medición y pago: Este rubro será medido y pagado en m³ y se considerara un factor de capaciamiento de 0.3

esponjamiento de 0.3.

### RELLENO COMPACTADO CON MATERIAL IMPORTADO

### Definición:

Posterior a la excavación de cimientos se debe proceder a rellenar y compactar una capa superficial de agregado grueso (ripio) sobre toda el área donde ira asentada la losa de cimentación.

### **Especificaciones:**

Se utilizara material importado y la capa debe tener un espesor de 3 cm en toda la superficie. Se debe compactar adecuadamente la capa de relleno con la maquinaria adecuada y asegurar una superficie nivelada para el armado y fundición de la losa de cimentación.

Unidad: m<sup>2</sup>

**Materiales mínimos:** Material importado (ripio)

Equipos mínimos: Plancha vibro apisonadora, herramientas manuales básicas.

**Mano de obra mínima:** ETRUC. OPCUPACIONAL. E2 – Peón, C1 – Maestro de Obra, C1 – Operado de equipo liviano.

**Medición y pago:** La medición y pago se realizara por m<sup>2</sup>, en cuanto al material importado se ha considerado una distancia máxima de transporte de 10 Km.

### **ENCOFRADO CON TABLA DE MONTE**

### Definición:

Se requiere utilizar encofrado en todos los elementos estructurales para su respectiva fundición in situ. El encofrado debe estar correctamente asegurados y acorde a las dimensiones requeridas para cada elemento estructural.

### **Especificaciones:**

Se debe utilizar aceito quemado en las superficies interiores de los encofrados para el desencofrado. Los encofrados serán realizados con madera y de un solo uso, a continuación se detallan algunas consideraciones por cada elemento estructural que requiere de un encofrado:

<u>Losa de cimentación.-</u> requiere un encofrado en todo el perímetro de la losa, dicho encofrado debe ser apuntalado para prevenir de formación en el mismo al momento de la fundición. La altura del encofrado debe ser como mínima 35 cm que es el espesor de losa adoptado, se recomienda una altura de 40 cm. El área aproximada de encofrado requerido es de 25.6 m<sup>2</sup>.

Columnas.- Existen 3 tipos de secciones transversales de columnas (0.5m x 0.5m, 0.8m x 0.8m, 1m x 1m) por lo que el fiscalizador debe verificar que se realice el encofrado correcto según la ubicación de las mismas en el plano estructural. La altura de todas las columnas corresponde a 4m, lo cual requiere un correcto apuntalamiento en todos los frentes para prevenir desviaciones al momento de la fundición. El encofrado no debe estar en contacto con el armado del acero de refuerzo al interior de la columna. El fiscalizador debe verificar que el encofrado de las columnas estén correcto ubicadas y totalmente verticales sin desviación en ningún sentido. El área aproximada de encofrado requerido es de 246.4 m².

<u>Vigas.</u>- El encofrado de las vigas debe ser realizado conjuntamente con el encofrado de la losa superior. Se debe verificar que el armado de refuerzo al interior no entre en contacto con el encofrado y respete la distancia de recubrimiento especificados en los planos estructurales. El apuntalamiento inferior de las vigas debe ser en tramos de máximo 1 metro para que soporte el peso en fundición de las vigas. El área aproximada de encofrado requerido es de 160 m².

<u>Losa superior.</u>- El único encofrado requerido es el inferior, ya que la losa está rodeada por el encofrado de las vigas, el apuntalamiento debe poder soportar el peso total de la losa maciza. El fiscalizador debe verifica que se cumple con las cotas expuestas en el plano estructural para la cara inferior de la losa. El área aproximada de encofrado requerido es de 196 m².

Unidad: m<sup>2</sup>

Materiales mínimos: Aceite quemado, Tablas de monte, clavos. Alfajías

Equipos mínimos: Herramientas manuales básicas.

Mano de obra mínima: ESTRUC. OCUP. D2 – Carpintero. E2 – Peón.

**Medición y pago:** La medición y pago de este rubro será en m<sup>2</sup>.

### HORMIGÓN f'c= 280 Kg/cm<sup>2</sup>

### Definición:

Toda la estructura del monumento que consiste en la losa de cimentación, columnas, vigas y losa superior, serán construidas con hormigón armado. Por lo tanto se requiere utilizar las regulaciones de la normativa INEN para la ejecución de los elementos estructurales.

### **Especificaciones:**

Se utilizar un hormigón con una capacidad de f'c = 280 kg/cm² en todos los elementos estructurales. También se realizaran las respectivos ensayos en situ para determinar las características de trabajabilidad, porcentaje de vacíos y pruebas de compresión a muestras del hormigón utilizado. En la etapa de colocación o fundido de los elementos estructurales con hormigón, se deben realizar un proceso de vibrado adecuado y respetar una altura máxima de caída de un metro para evitar la segregación. A continuación se detallan la cantidad requerida por elemento estructural:

<u>Losa de cimentación.-</u> Se requieren aproximadamente 90 m³ para la fundición de la losa de cimentación.

<u>Columnas.</u>- Se requieren aproximadamente 40.5 m³ para la fundición de todas las columnas.

<u>Vigas.-</u> Se requieren aproximadamente 21 m³ para la fundición de todas las vigas.

<u>Losa superior.</u>- Se requieren aproximadamente 46.2 m³ para la fundición de toda la losa superior.

Unidad: m<sup>3</sup>

**Materiales mínimos:** Cemento Fuerte tipo GU saco 50 kg, Arena, Agregado grueso (ripio), Agua.

**Equipos mínimos:** Concretara 1 saco, Vibrador de manguera.

**Mano de obra mínima:** ESTRUC. OCUP. D2 – Albañil. E2 – Peón, C1 – Maestro de obra, D2 – Operador de equipo liviano.

**Medición y pago:** La medición y pago de este rubro será en m<sup>3</sup>.

### **ACERO DE REFUERZO**

### Definición:

Todos los elementos estructurales consiste de hormigón armado, para dichos elementos se empleara un acero con un límite de fluencia no menor de 4200 kg/cm<sup>2</sup>. Para acero utilizado en trabajos de mampostería se puede emplear acero de refuerzo con una fluencia mínima de 2800 kg/cm<sup>2</sup>.

### **Especificaciones:**

Se deben seguir los detallamientos del acero de refuerzo disponible en los planos estructurales para cada elemento estructural. Donde se consideró el acero de refuerzo requerido para resistir momentos flectores y fuerzas cortantes producidas por las cargas empleadas. Las longitudes de anclaje y radios mínimos de doblado para el refuerzo también deben ser respetados según detallen los planos estructurales. A continuación se realiza un aproximado de la cantidad de acero requerido en Kg por elemento estructural.

<u>Losa de cimentación:</u> Se requiere aproximadamente 26 200 Kg de acero de refuerzo con un diámetro de 20 mm (886 varillas de 12 m con un diámetro de 20 mm).

<u>Columnas:</u> Se requiere aproximadamente 3 535 Kg de acero de refuerzo con un diámetro de 16 mm (187 varillas de 12 m), 1 974Kg de acero de refuerzo con un diámetro de 20 mm (67 varillas de 12 m), 2 320 Kg de acero de refuerzo con un diámetro de 28 mm (40 varillas de 12 m) y 480 Kg de acero de refuerzo con un diámetro de 36 mm (5 varillas de 12 m).

<u>Vigas:</u> Se requiere aproximadamente 1 801.6 Kg de acero de refuerzo con un diámetro de 14 mm (125 varillas de 12 m), 1 392 Kg de acero de refuerzo con un diámetro de 16 mm (74 varillas de 12 m), 112 Kg de acero de refuerzo con un diámetro de 18 mm (5 varillas de 12 m), 668.8 Kg de acero de refuerzo con un diámetro de 22 mm (19 varillas de 12 m) y 324 Kg de acero de refuerzo con un diámetro de 25 mm (7 varillas de 12 m). <u>Losa superior:</u> Se requiere aproximadamente 14 984 Kg de acero de refuerzo con un diámetro de 20 mm (507 varillas de 12 m)

**Unidad:** Kg

**Materiales mínimos:** Alambre galvanizado No. 18, Acero de refuerzo fc=4200kg/cm<sup>2</sup>.

Equipos mínimos: Cortadora dobladora de hierro.

Mano de obra mínima: ESTRUC. OCUP. D2 – Fierrero, E2 – Peón, C1 – Maestro de

obra.

**Medición y pago:** La medición y pago de este rubro será en kg.

### **DESENCOFRADO**

### Definición:

Se requiere realizar el desencofrado de cada elemento estructural después de que el hormigón haya fraguado correctamente.

### **Especificaciones:**

En esta etapa se requiere que el fiscalizador compruebe que los elementos estructurales desencofrados no presenten ratoneras o que la varilla se visible en la superficie del hormigón. En caso de que se cumpla una de las situaciones descritas el fiscalizador deberá decidir si la estructura debe ser demolida o que dicha imperfección no afectara con el funcionamiento del elemento estructural. A continuación se detalla las áreas de desencofrado por tipo de elemento estructural:

Losa de cimentación.- El área aproximada de desencofrado es de 25.6 m<sup>2</sup>.

Columnas.- El área aproximada de desencofrado es de 246.4 m<sup>2</sup>.

Vigas.- El área aproximada de desencofrado es de 160 m<sup>2</sup>.

Losa superior.- El área aproximada de desencofrado es de 256 m<sup>2</sup>.

**Unidad:** m<sup>2</sup>

Materiales mínimos: ninguno.

Equipos mínimos: Herramientas manuales básicas.

Mano de obra mínima: ESTRUC. OCUP. D2 – Carpintero. E2 – Peón.

**Medición y pago:** La medición y pago de este rubro será en m<sup>2</sup>.

### **ANCLAJES CONTINUOS INYECTADOS**

### Definición:

Los anclajes continuos inyectados representan una solución estabilizadora adicional para garantizar que no existen asentamientos excesivos o un deslizamiento de la cimentación propuesta. Consiste de barras de acero de 33 mm introducidas en huecos perforados en el suelo de 15 cm de diámetro y rellenos de un hormigón especial.

### **Especificaciones:**

En la elaboración de los anclajes se requiere la presencia de un ingeniero especialista y con experiencia en la implementación de anclajes continuos inyectados. Es sumamente importante construir los anclajes correctamente o no se aprovecharía al cien por ciento la solución propuesta. En el APU de los anclajes se estimó el costo considerando el costo de uno de los anclajes, en total se requieren de 72 anclajes continuos inyectados.

Unidad: unidad

**Materiales mínimos:** Cemento tipo I (50 kg), Sikament N100, Agua, Acero de refuerzo fy=4200 Kg/cm², Brocas de perforación 4", Bentonita gruesa, Diésel.

**Equipos mínimos:** Herramientas manuales básicas, Compresor 750 CFM, Perforadora de roca neumática 0.5-0.7 MPa, Inyectora de baja presión, Mezcladora de lechada manual (2 sacos).

**Mano de obra mínima:** ESTRUC. OCUP. D2 – Operador equipos livianos. E2 – Peón, C2 ayudante de perforadora, C2 Operador equipos de perforación.

**Medición y pago:** La medición y pago de este rubro será por unidad, es decir por cada anclaje de 12 m requerido

### I. ESPECIFICACIONES TENCIAS (CARRETERA)

### LIMPIEZA Y DESBROCE VÍA DE ACCESO

### Descripción

Consiste en la limpieza del terreno sobre el cual se va a ubicar el proyecto, esto implica la remoción de todo material que represente un obstáculo para la ejecución de la obra incluyendo cualquier tipo de vegetación en general, así como la eliminación total o parcial de edificaciones y estructuras menores.

Es necesario delimitar, sólo lo estrictamente necesario, el área que se va a intervenir de acuerdo con los planos de diseño.

### **Especificaciones**

Bajo indicaciones del fiscalizador, el constructor deberá agrupar y almacenar cualquier material encontrado en el sitio en zonas designadas por el fiscalizador hasta su nueva instalación. La mallas de alambre encontradas en el sitio deberán recuperarse haciendo rollos de las mismas. Las edificaciones y estructuras menores dentro de los predios afectados que consten en los planos, serán removidas por el constructor con el fin de facilitar la ejecución y continuidad de la obra. El desbroce de vegetación existente deberá efectuarse de manera manual o con maquinaria, según convenga, dentro de los limites previstos para la construcción.

Las zanjas, fosas u hoyos existentes o resultantes del trabajo se limpiarán o rellenarán, según sea el caso, de acuerdo a las instrucciones del fiscalizador.

Los trabajos de desbroce y limpieza se realizarán en aquellas zonas indicadas por el fiscalizador y deberá respetarse sus instrucciones en cuanto la conservación de las especies vegetales existentes.

Unidad: m2

### Equipo mínimo:

Será necesario el uso de equipo en función de la densidad y el tipo de vegetación presentes en la zona, además de ser necesario servicios manuales y explosivos.

Mano de obra mínima: Peón E2, Operador de equipo pesado G1

### Medición y pago

Los trabajos de desbroce y limpieza serán medidos por la cantidad de metros cuadrados de terreno que sean intervenidos para la ejecución del rubro en cuestión. El pago incluye la mano de obra, equipo y herramientas necesarias para realizar el trabajo

### REPLANTEO Y NIVELACIÓN VIA DE ACCESO

### Definición:

Consiste en la ubicación en el de terreno de los puntos de control del proyecto, lo cual es necesario para la realización de la obra

### **Especificaciones:**

El constructor y el fiscalizador deberán definir el trazado de los ejes según la información mostrada en los planos del proyecto. Sera necesario la colocación de un hito de hormigón que permita comprobar la ubicación y elevaciones de la obra. Este trabajo va a ser realizado por medio de un topógrafo, el cual se va a valer de instrumentos de precisión y herramientas menores

Unidad: m2.

Materiales mínimos: Estacas, martillo de goma, pintura.

Equipo mínimo: Herramientas menores, estación total

Mano de obra mínima: Cadenero D2, Topógrafo C1

Medición y pago: Se realizará por m2 de terreno después de que el nivelado y el

replanteo haya sido aprobado por el fiscalizador

### **EXCAVACIÓN DE CORTE Y ROCA**

### Definición:

Las excavaciones comprenden el remover o quitar volúmenes en el terreno natural, a lo largo del eje y de acuerdo al alineamiento, pendientes y dimensiones acorde a la información presentada en los planos de diseño del proyecto. También comprende la excavación de cunetas y capas superficiales de mala calidad.

### **Especificaciones:**

Las excavaciones se realizarán en aquellas zonas especificadas en los planos del diseño y deberán ejecutarse acorde con el alineamiento, pendientes, rasantes y dimensiones tal como se indican en el plano. Es preferible que el constructor se valga de instrumentación mecánica con el fin que las superficies excavadas resulten mas uniformes, mientras que la excavación manual se empleará en aquellos casos donde la excavación con maquinaria pueda afectar las condiciones del suelo, para conformar el fondo de las excavaciones con maquina o cada vez que el fiscalizador así lo disponga.

Cuando la excavación se tenga que realizar en zonas con material rocoso en los que la maquinaria resulte insuficiente, será necesario el uso de explosivos controlados, martillos mecánicos, cuña u otros similares para remover dicho material. El material rocoso que se encuentre dentro de los límites de excavación que haya sido aflojado por las voladuras, tendrá el contratista que removerla y su volumen se incluirá en los volúmenes de excavación.

En zonas donde sea necesaria la presencia de taludes de corte, será necesario que estos queden relativamente lisos y uniformes en sus superficies, de tal manera que las inclinaciones se ajusten a lo establecido en el proyecto. Algún cambio en la inclinación de estos deberá ser autorizada por el fiscalizador. Cuando los taludes sean muy altos, se vera la necesidad de implementar banquetas escalonadas con su respectiva pendiente para el drenaje, tal como se indica en el proyecto

No se podrá llevar a cabo este trabajo mientras que las actividades de desbroce y limpieza de las áreas especificadas por el fiscalizador hayan culminado.

Unidad: m3.

### **Equipos mínimos:**

La excavación de cortes se verá condicionado al uso racional de los equipos adecuados. Podrá usarse tractores de orugas con topadora, con escarificador, volquetas, retroexcavadoras, camiones regadores y otros necesarios para la ejecución de los trabajos.

Mano de obra mínimo: Peón E2, Operador de equipo pesado G1

**Medición y pago:** Será medido y pagado por metro cubico. Las excavaciones que fueron hechas fuera del proyecto no serán consideradas, ni la remoción de derrumbes originados por conductas imputables del conductor. Las sobre excavaciones serán tomadas en cuenta solo si estas son aprobadas y autorizadas por el fiscalizador

La distancia de transporte será medida en proyección horizontal entre los centros de gravedad de las masas, siguiendo el menor recorrido a criterio del INGENIERO. En caso de transporte a lo largo del eje de la carretera (cortes), ésta distancia será la correspondiente a la medida considerando el eje del diseño.

### **EXCAVACIÓN DE ZANJAS PARA TUBERÍAS**

### Descripción:

La excavación de zanjas se refiere a la acción de remover, quitar la tierra y otros materiales, para conformar las zanjas, de acuerdo a lo establecido en el proyecto.

### **Especificaciones:**

Las excavaciones de zanjas para las tuberías seguirán los lineamientos de lo especificado en los planos de diseño, respetando las dimensiones, pendientes y alineaciones indicadas en los planos. La excavación se deberá encargar de la remoción de materiales que obstaculicen la colocación de las tuberías.

El fondo de la zanja deberá tener el ancho suficiente para que los obreros encargados de la colocación de la tubería tengan el suficiente espacio para trabajar. El ancho del fondo de la zanja se dará bajo la autorización del fiscalizador

La maquinaria no debe excavar a una profundidad tal que el terreno en el que se va a asentar la tubería sea aflojada o removida, de manera que las ultimas capas serán removidas con pico y pala.

Unidad: m3.

**Equipo mínimo:** Herramienta menor.

**Mano de obra mínima:** Peón E2, Operador de equipo pesado G1, Operador de equipo liviano D2

### Medición y pago:

La excavación será medida en m3. Las excavaciones hechas fuera del proyecto, las remociones hechas por conductas imputables del conductor no serán tomadas en cuenta.

Las sobre excavaciones serán consideradas siempre y cuando sean autorizadas por el fiscalizador

### DESALOJO DE ESCOMBROS Y/O MATERIAL EXCAVADO

### Definición:

El material sobrante producto de las excavaciones, deberá ser movilizado a un lugar previamente establecido que servirá de depósito de los mismos

### **Especificaciones:**

El material en exceso deberá ser removido por el constructor fuera de los limites designados para el proyecto, en sitios que no causen algún tipo de obstrucción a obras aledañas y no afecte la apariencia de las áreas vecinas, este material no debe ser arrojado cerca propiedades adyacentes a los límites de la construcción sin la autorización de los dueños de dichas propiedades.

Unidad: m3.

**Equipo mínimo:** Herramienta menor.

**Mano de obra mínima:** Maestro de obra C1, Operador de equipo pesado C1, Chofer profesional licencia E C1

### Medición y pago:

Este rubro se medirá y se pagará por "metro cúbico" (m3) de material desalojado desde la construcción hasta el lugar escogido por el contratista

### **RELLENOS**

### Definición:

Es la acción de rellenar aquellas zonas con ausencia de material y necesiten ser rellenadas según las especificaciones del diseño. Ningún punto de la sección terminada puede tener una diferencia mayor de 10 cm con respecto a la sección del proyecto

### **Especificaciones:**

Se procederá a realizar los rellenos ya sea con material de mejoramiento y/o con material producto de la propia excavación

El material que se usará para los rellenos debe estar libre de troncos, vegetación, basura y de toda materia orgánica. El fiscalizador será encargado de aprobar el material que se dispondrá para la conformación del terraplén.

En las capas superiores, aproximadamente 50 cm, su índice CBR debe cumplir que al menos el 5% y tener un hinchamiento máximo del 3%. Para la sección que comprende el terraplén, a partir de los 50 cm de profundidad, el índice CBR como mínimo debe ser mayor al 3% y tener un hinchamiento del 3% como máximo

El relleno será colocado en capas sucesivas no mayores a 20 cm de espesor, una vez que haya sido hidratado y compactado, se tendrán capas sucesivas hasta alcanzar el relleno establecido en los planos

Unidad: m3.

**Equipo mínimo:** El relleno se usarán equipos tales como tractores de orugas con topadora, con escarificador, volquetas, retroexcavadoras, camiones regadores y otros necesarios para la ejecución de los trabajos.

**Mano de obra mínimo:** Operador de equipo pesado C1, Operador de equipo pesado C2, Chofer profesional C1

### Medición y pago:

Los trabajos hechos serán medidos y pagados en metros cúbicos de terraplén compactado y aceptado, de acuerdo con las secciones transversales del diseño, por el método de la "media de las áreas". La distancia de transporte será medida de manera horizontal en Km y se deberá descontar la distancia libre de transporte de 300 m. La ruta será trazada a criterio del fiscalizador.

### **BASE CLASE CUATRO**

### Descripción

Es una capa granular que se ubica sobre una capa de subbase compactada que en casos especiales se dispone directamente sobre la subrasante. Se verifica que se disponga de tal manera que se acople al alineamiento y pendientes del diseño vial. El material base clase cuatro debe tener una granulometría tal como se indica en la tabla 404-1.5 del volumen 3 de la norma NEVI.

### **Especificaciones**

Cuando el material de la planta central este listo, este deberá cargarse en volquetas de tal manera que se evite la segregación y una vez en sitio, el material deberá será regado sobre el terreno de manera uniforme de tal forma que cubra el ancho de la via. Acto seguido se procederá con la conformación y la compactación del material

Previo a la colocación del material, el constructor tendrá que haber finalizado el montaje de la subbase, esto incluye que debe estar compactado y con las pendientes tal como se estipula en los planos. La superficie del material subrasante deberá estar libre de materiales extraños. El material subbase debe ser cargado en volquetas, de tal manera que evite la segregación y llegue al sitio para ser esparcido de manera uniforme y cubra la superficie según la sección transversal que abarque. Inmediatamente se procederá con la hidratación para la posterior compactación.

Cuando se haya terminado con el tendido y la conformación de cada capa subbase, se procederá con la compactación a través de rodillos de 8 a 12 toneladas o cualquier otro equipo aprobado por el fiscalizador. La compactación se dará de manera uniforme, en capas de 20 cm o menos, comenzando desde los bordes para después hacer la compactación en el tramo central. Entre tramo y tramo de material compactado debe haber un traslape del material para proceder con el tramo contiguo. Una vez finalizado el proceso de compactación el fiscalizador deberá revisar el grado de compactación y las pendientes.

Unidad: metro cúbico (m3).

Equipo mínimo: Herramienta menor, compactador manual.

Mano de obra mínima calificada: Peón (Estr. Oc. E2), Albañil (Estr. Oc. D2), Maestro Mayor Ejecución de Obra Civil (Estr. Oc.C1).

### SUBBASE CLASE TRES

### Descripción

Capa granular que se localiza entre la subrasante y la capa base en los pavimentos flexibles y debe tener una granulometría tal como se especifica en la tabla 403-1.1 del volumen 3 de la NEVI.

### **Especificaciones**

Previo a la colocación del material, el constructor tendrá que haber finalizado el montaje de la subrasante, esto incluye que debe estar compactado y con las pendientes tal como se estipula en los planos. La superficie del material subrasante deberá estar libre de materiales extraños. El material subbase debe ser cargado en volquetas, de tal manera que evite la segregación y llegue al sitio para ser esparcido de manera uniforme y cubra la superficie según la sección transversal que abarque. Inmediatamente se procederá con la hidratación para la posterior compactación.

Cuando se haya terminado con el tendido y la conformación de cada capa subbase, se procederá con la compactación a través de rodillos de 8 a 12 toneladas o cualquier otro equipo aprobado por el fiscalizador. La compactación se dará de manera uniforme, en capas de 20 cm o menos, comenzando desde los bordes para después hacer la compactación en el tramo central. Entre tramo y tramo de material compactado debe haber un traslape del material para proceder con el tramo contiguo. Una vez finalizado el proceso de compactación el fiscalizador deberá revisar el grado de compactación y las pendientes.

Unidad: metro cúbico (m3).

**Equipo mínimo**: Herramienta menor, compactador manual.

Mano de obra mínima calificada: Peón (Estr. Oc. E2), Albañil (Estr. Oc. D2), Maestro Mayor Ejecución de Obra Civil (Estr. Oc.C1).

### CARPETA ASFÁLTICA (INCLUYE IMPRIMACIÓN)

### Descripción

Su principal función es la de proteger la capa base actuando como un permeabilizante, con el fin de evitar posibles infiltraciones de agua lluvia, también evita el desgaste o que se desintegre la capa base a causa del tránsito

### **Especificaciones**

Se aplicará un tratamiento superficial de doble riego, para este necesitamos que la capa base ya compactada, se le limpie el material suelto y el exceso de polvo que quede sobre la superficie e inmediatamente después se realiza un riego de imprimación asfaltico de fraguado medio a razón de 1.5 litros/m2 y se espera 2 días para que dicho material penetre y seque.

Sobre la base ya compactada, imprimada y seca, se hace un riego de producto asfaltico tipo RC2 a razón de 2 litros/m2 e inmediatamente se cubre con material pétreo clasificado entre la malla de ½ a ¼ de pulgada a razón de 12 a 14 litro/m2, se compacta con un rodillo entre 5 a 8 toneladas y después de 2 a 3 días, que es el tiempo aproximado de secado, se barre el material suelto y dispone otra capa de producto asfaltico tipo RC2 a razón de 1.5 a 2 litros/m2 y se vuelve a cubrir con material pétreo clasificado esta vez entre las mallas ¼ y Nº8, se vuelve a compacta por medio de un rodillo entre 5 a 8 toneladas y tres días después puede abrirse el tránsito.

### Equipo

Tanquero, cargadora, herramientas menores

Mano de obra mínima

Operador de equipo pesado C2, peón E2, preparador de mezcla de materia prima

### Medición y Pago

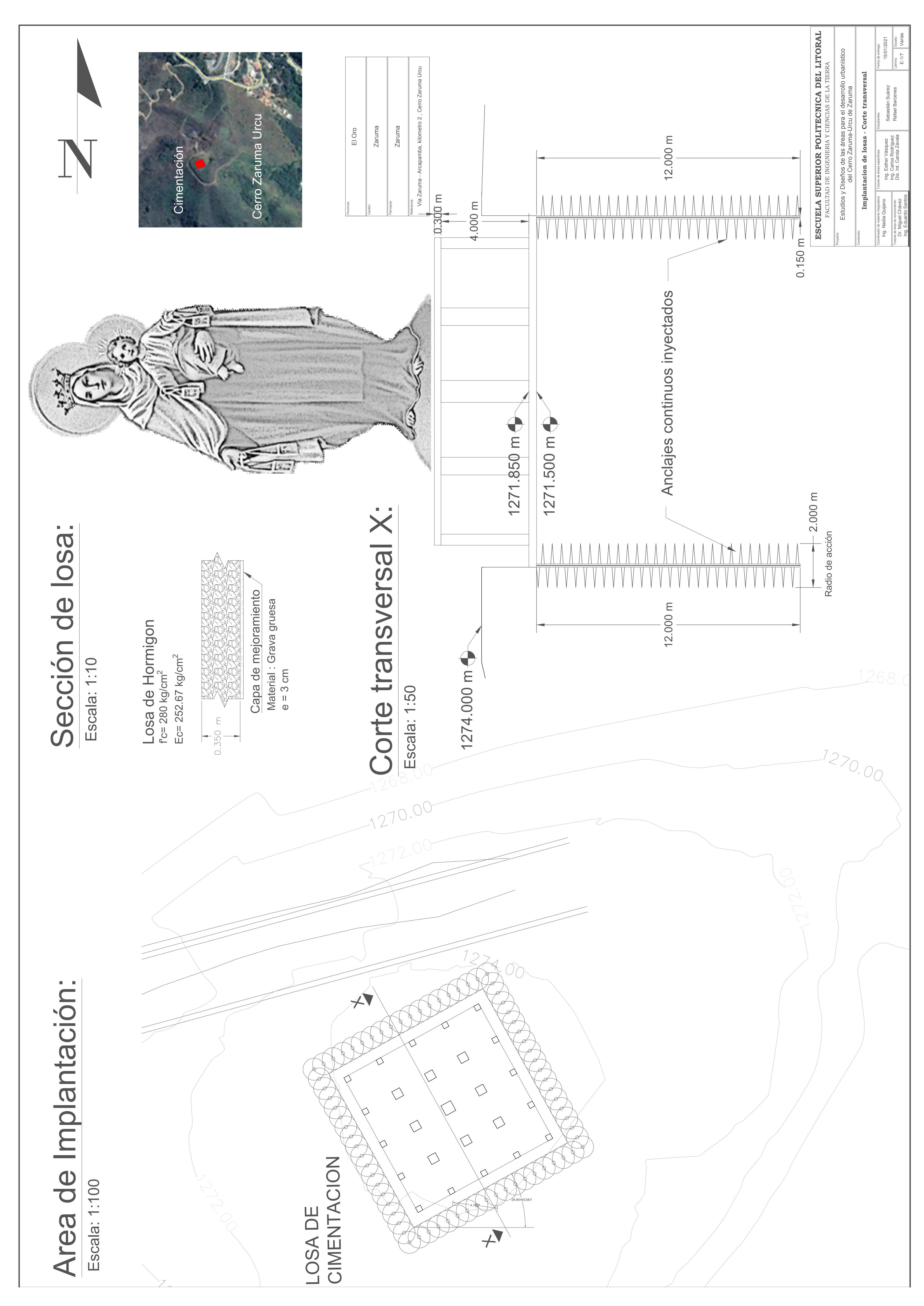
Las cantidades a pagarse por el trabajo de construcción de pavimento asfaltico, serán las cantidades por m2 debidamente ejecutadas y aprobadas por el fiscalizador.

### **SEÑALIZACIÓN**

### Descripción

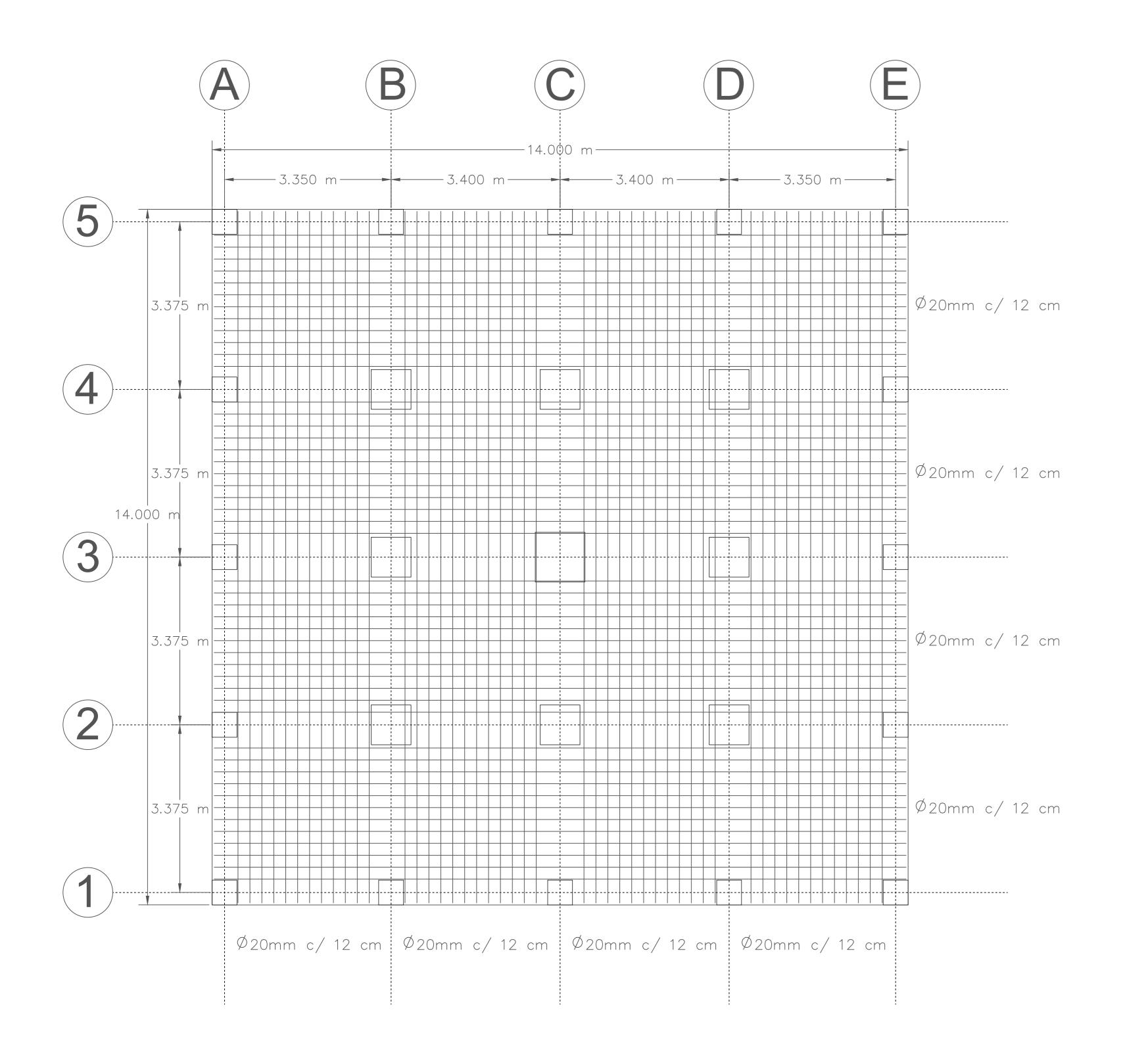
Por medio de la señalización vial, se brinda al usuario seguridad al momento de transitar por medio de caminos, calles, pistas o carreteras. Se puede descomponer en señalización horizontal, la cual comprende el uso de pinturas para dejar señales a lo largo de la carretera, mientras que la señalización vertical comprende la instalación de placas, o planchas fijados a postes cuya ubicación va acorde al diseño.

### **Especificaciones**


- a) Señalización vertical: Se debe considerar que las estructuras que sirvan de sostén a las señales, ya sean estas planchas o placas, deberán disponerse de manera que se mantengan fijas y resistan las condiciones ambientales que se presenten al estar a la intemperie.
- b) Señalización horizontal: Para la señalización horizontal se debe considerar que, el personal encargado de hacer los trabajos sean competentes y los materiales, método y equipos usados sean aprobados por el fiscalizador. Los materiales usados deben cumplir con estándares ASTM de pinturas designadas para el tráfico, durabilidad, visibilidad, fijación, tiempo de secado. El color implementado puede ser blanco o amarillo y debe incorporarse micro esferas de vidrio que de tal manera que aseguren adhesión, refracción y reflexión.

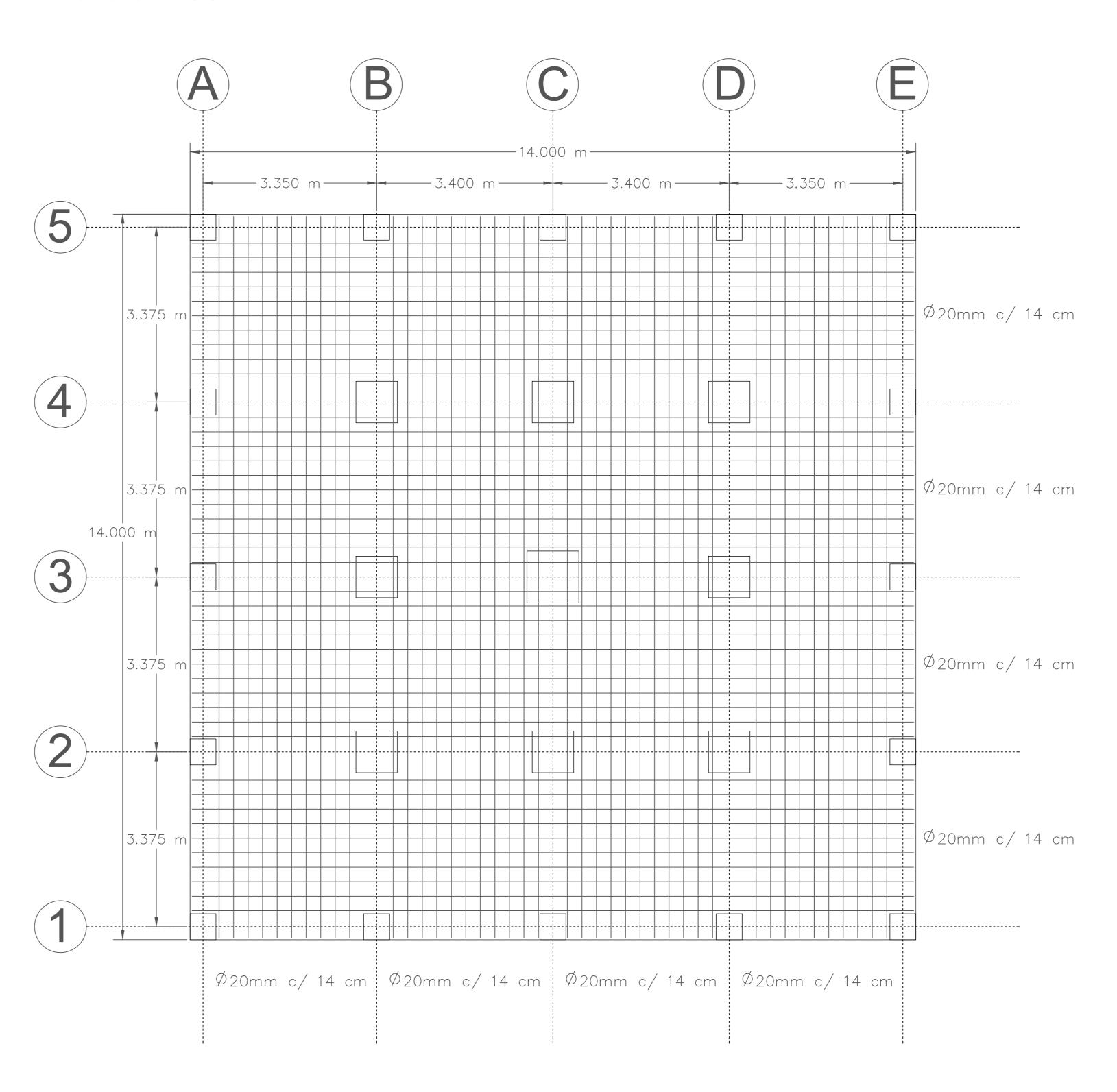
### **Equipo**

El equipo usado para este trabajo deberá estar en óptimas condiciones y debe contar con la aprobación del fiscalizador.


### Medición y Pago

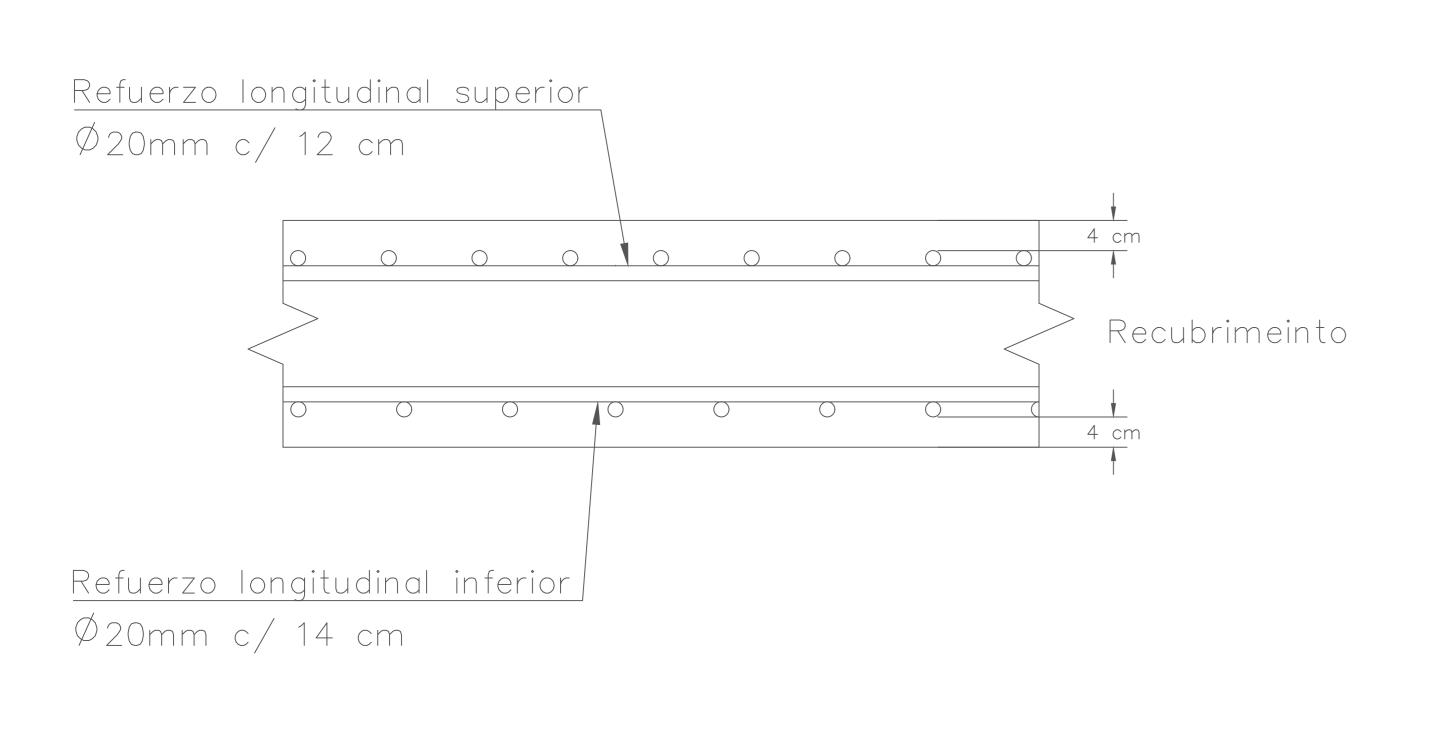
La señalización vertical será medida por unidad, mientras que la señalización horizontal será medida por metro lineal




# Refuerzo longitudinal superior

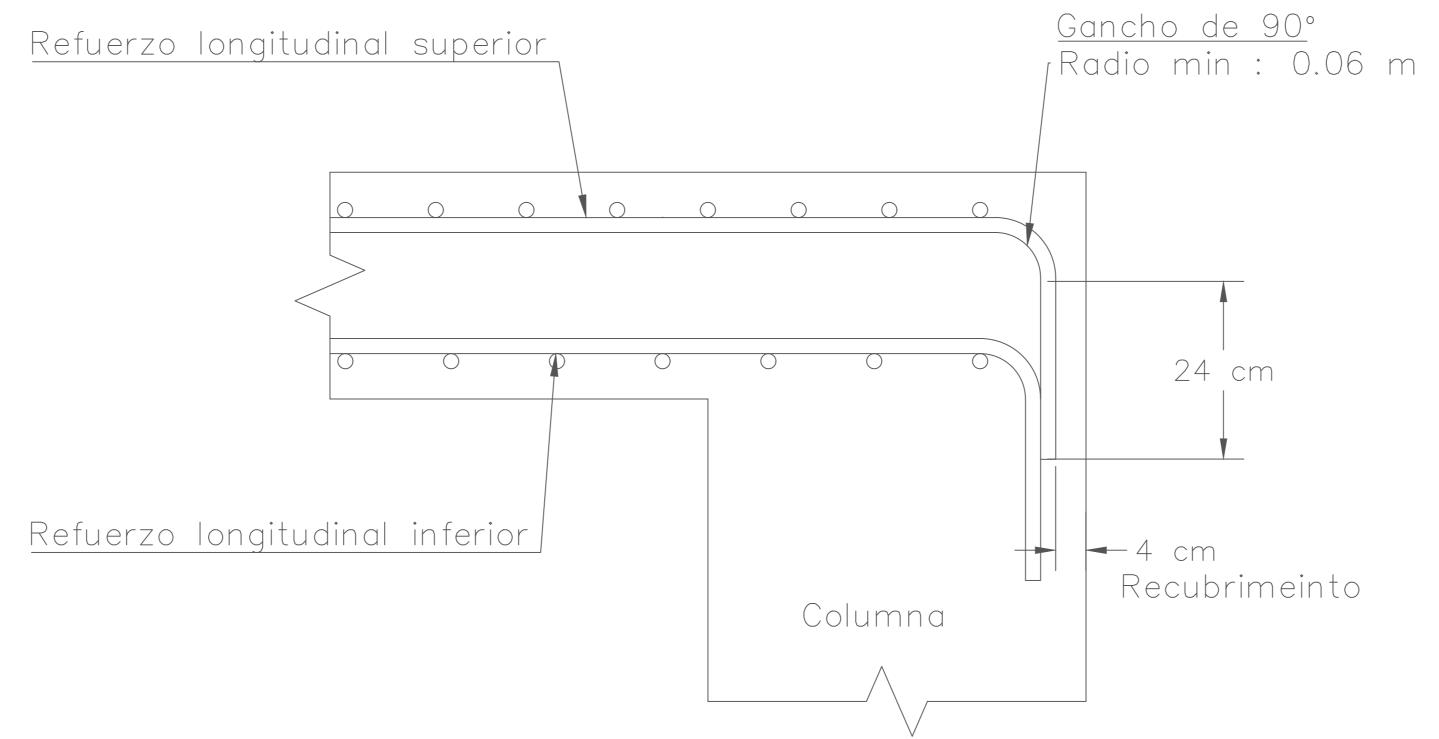
Escala 1:50



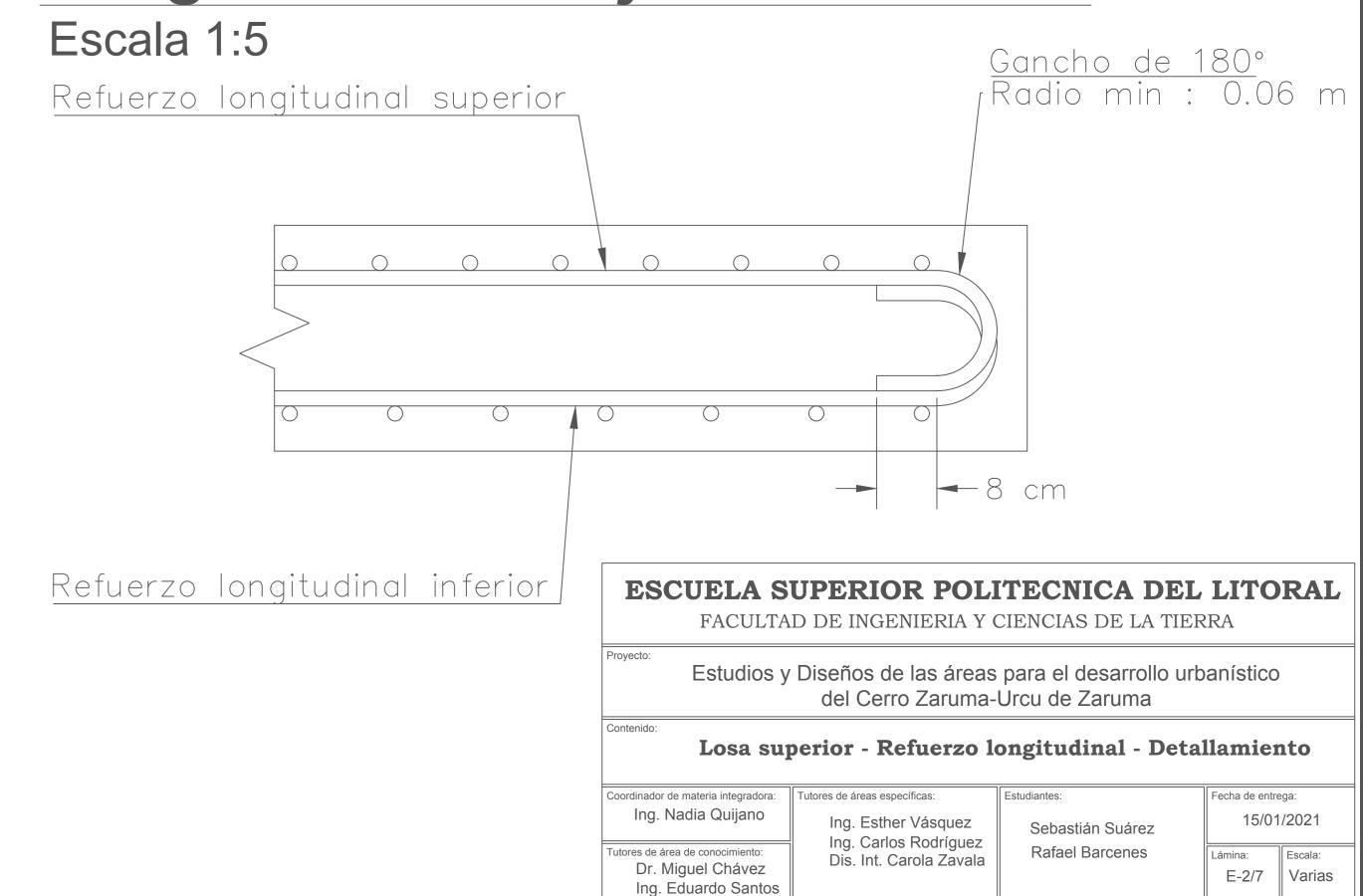

### Refuerzo longitudinal inferior

Escala 1:50



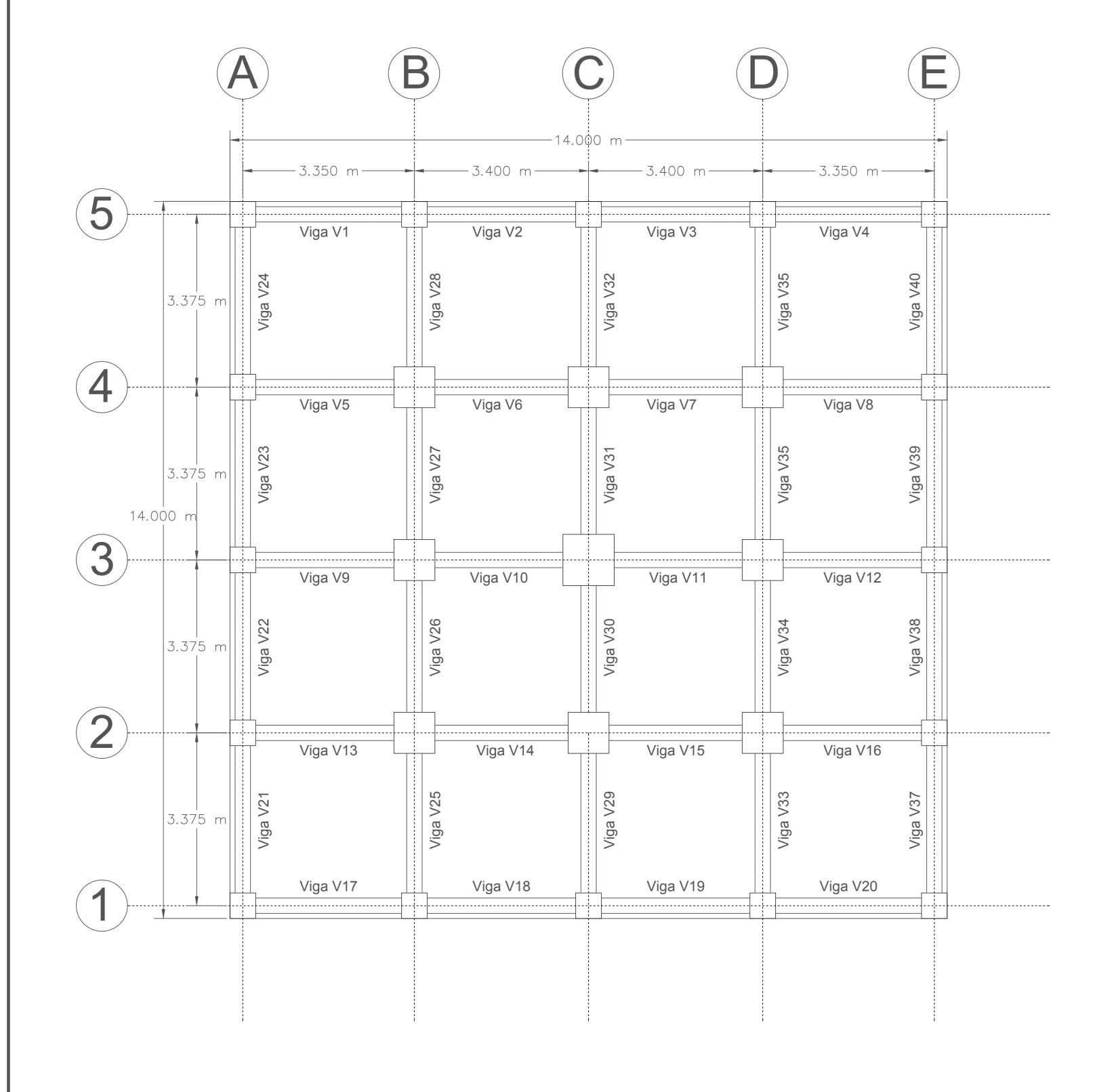

### Segmento de losa

Escala 1:5



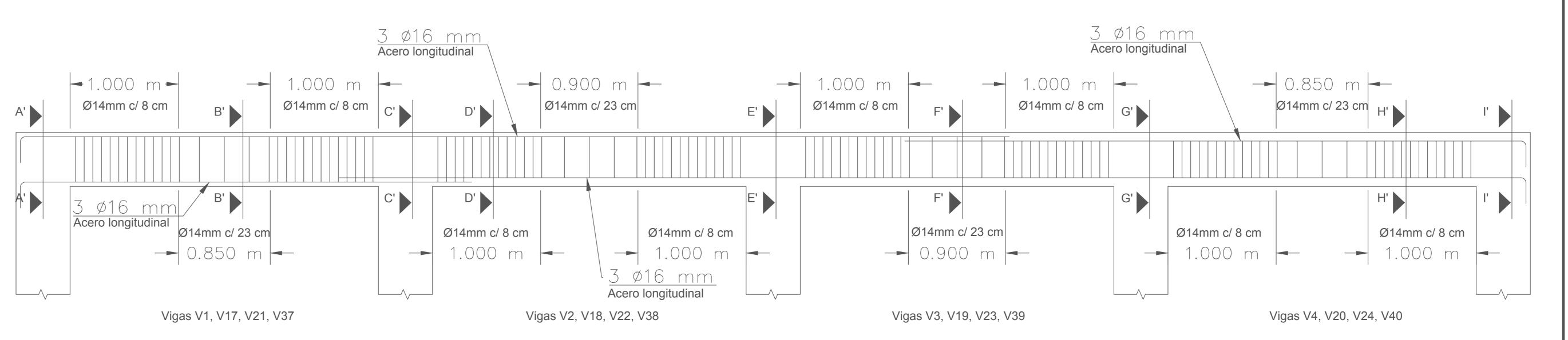

### Longitud de anclaje con columna

Escala 1:5



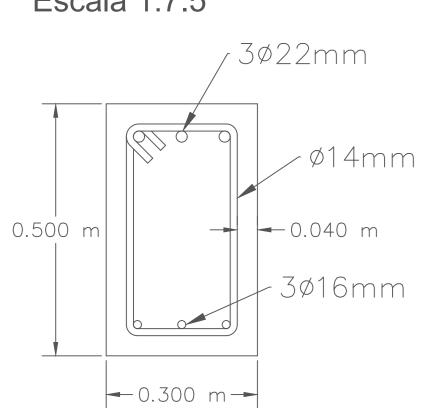

### Longitud de anclaje sin columna



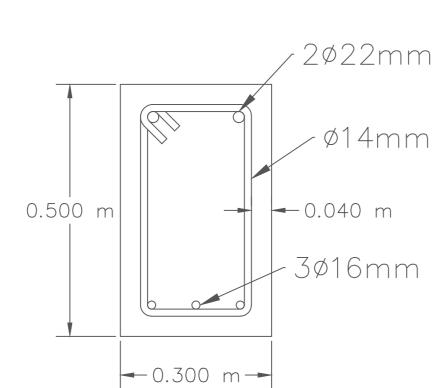

### Vista superior de Vigas

Escala 1:50




# Refuerzo longitudinal y transversal (Eje 5 - Eje 1 - Eje A - Eje E)

Escala 1:20





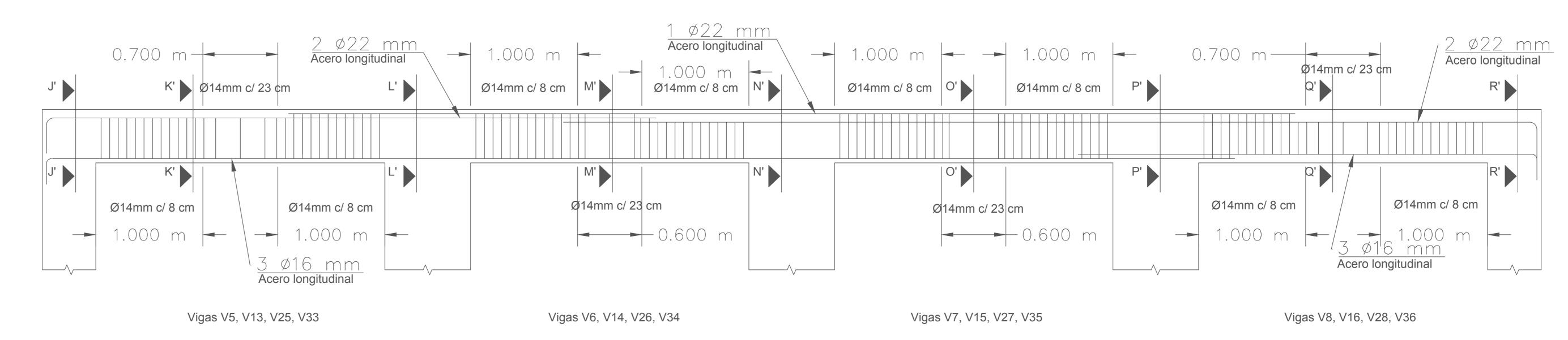

### Corte L'-N'-O'-Q' Escala 1:7.5



### Corte J'-K'-R' Escala 1:7.5






**→** 0.300 m →

Corte P' Escala 1:7.5



# Refuerzo longitudinal y transversal (Eje 4 - Eje 2 - Eje B - Eje D)

Escala 1:20



ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERIA Y CIENCIAS DE LA TIERRA Estudios y Diseños de las áreas para el desarrollo urbanístico del Cerro Zaruma-Urcu de Zaruma Losa superior - Refuerzo Vigas

Rafael Barcenes

15/01/2021

E-3/7 Varias

Lámina: Escala:

Ing. Nadia Quijano Ing. Esther Vásquez Sebastián Suárez Ing. Carlos Rodríguez

Dr. Miguel Chávez

Ing. Eduardo Santos

Dis. Int. Carola Zavala

### Refuerzo longitudinal y transversal (Eje 3 - Eje C) Escala 1:20 Ø16mm c/ 23 cm Ø16mm c/ 8 cm Vigas V1, V17, V21, V37 Vigas V2, V18, V22, V38 Vigas V3, V19, V23, V39 Vigas V4, V20, V24, V40 Corte S'- Ñ' Corte V'-W'-X' Corte T'-Y'-Z' Corte U' Escala 1:7.5 Escala 1:7.5 Escala 1:7.5 Escala 1:7.5 Zona de traslape / 3ø25mm Zona de traslape / 3ø25mm /3Ø25mm / Ø16mm / Ø14mm / Ø14mm / Ø14mm -0.040 m 0.500 m -0.040 m 0.500 0.500 m - 0.040 m -0.040 m 0.500 m -2ø18mm -2ø18mm 4ø18mm 2ø18mm **→** 0.300 m → **-**0.300 m → **-**0.300 m → **→** 0.300 m → Traslapes (Eje 5 - Eje 1 - Eje A - Eje E) Longitud de anclaje Ø16mm Escala 1:20 Escala 1:5 <u>Gancho de 90º</u> Refuerzo longitudinal Radio min: 0.048 m → 0.966 m **→** 19.2 cm 3 Ø16 mm Acero longitudinal 3 Ø16 mm Acero longitudinal -- 0.363 m 0.363 m — Vigas V1, V17, V21, V37 Vigas V2, V18, V22, V38 Vigas V3, V19, V23, V39 Vigas V4, V20, V24, V40 Refuerzo longitudinal Columna Recubrimeinto ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERIA Y CIENCIAS DE LA TIERRA Estudios y Diseños de las áreas para el desarrollo urbanístico del Cerro Zaruma-Urcu de Zaruma

Refuerzo Vigas - Traslapes Vigas - Longitud de anclaje

Sebastián Suárez

Rafael Barcenes

Ing. Esther Vásquez

Ing. Carlos Rodríguez

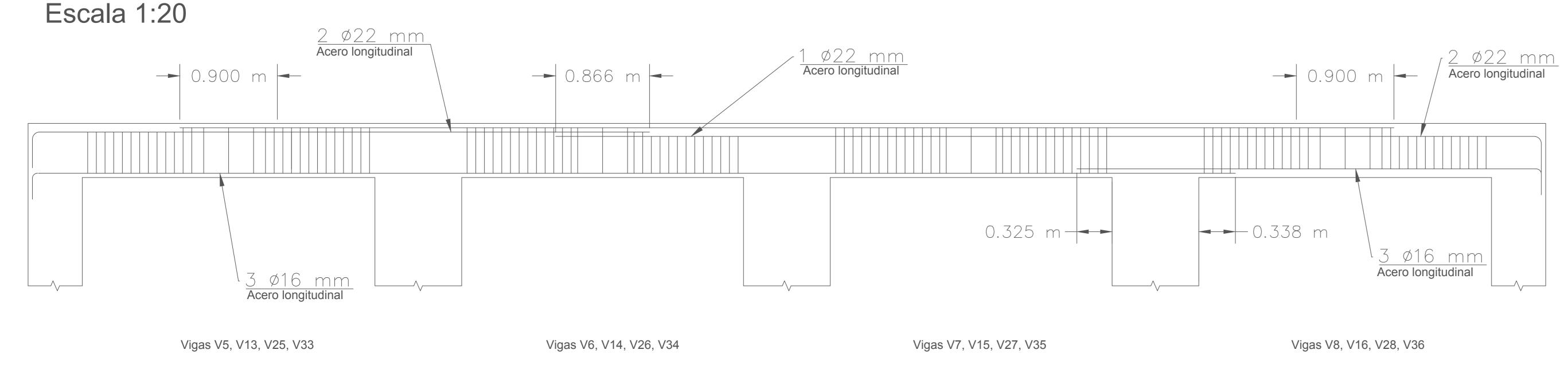
Dis. Int. Carola Zavala

15/01/2021

E-4/7 Varias

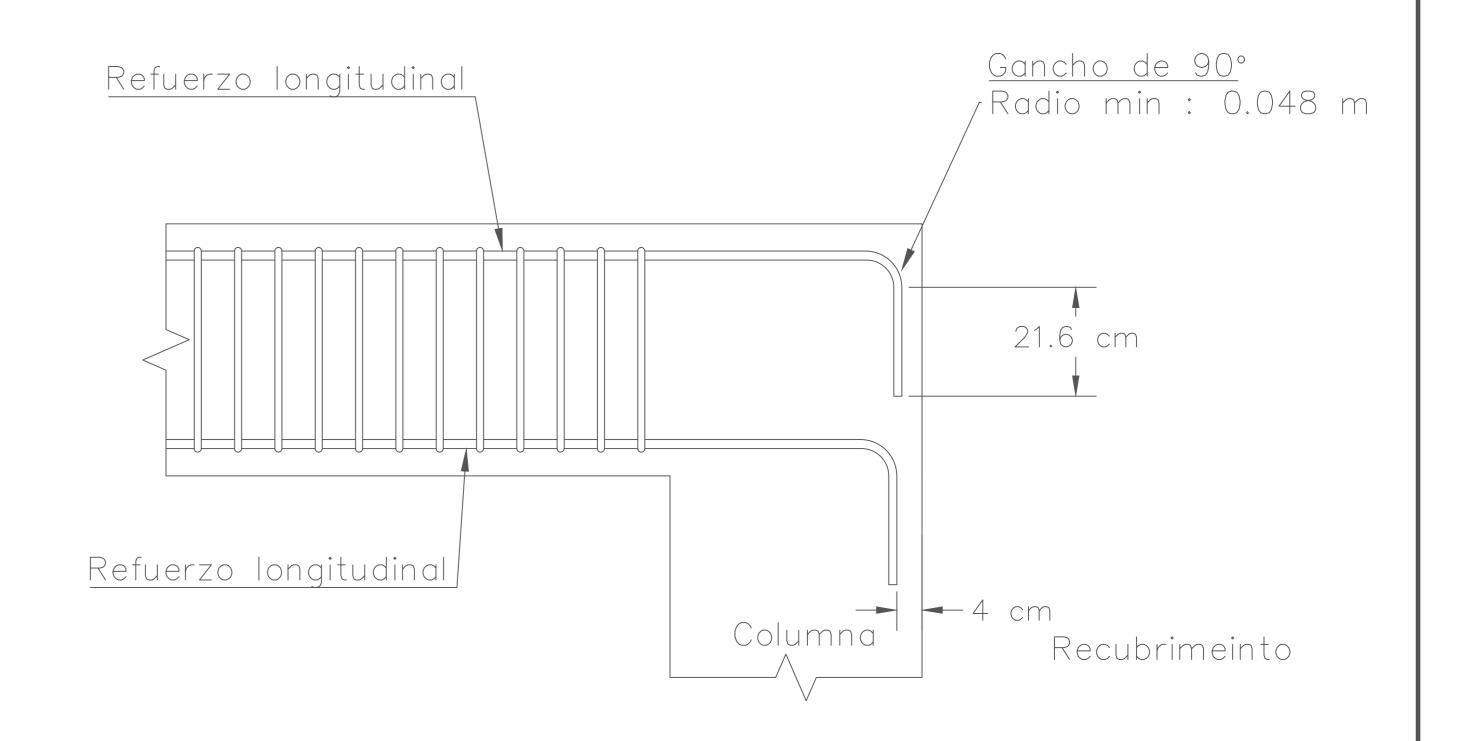
Lámina: Escala:

Coordinador de materia integradora: Tutores de áreas específicas:

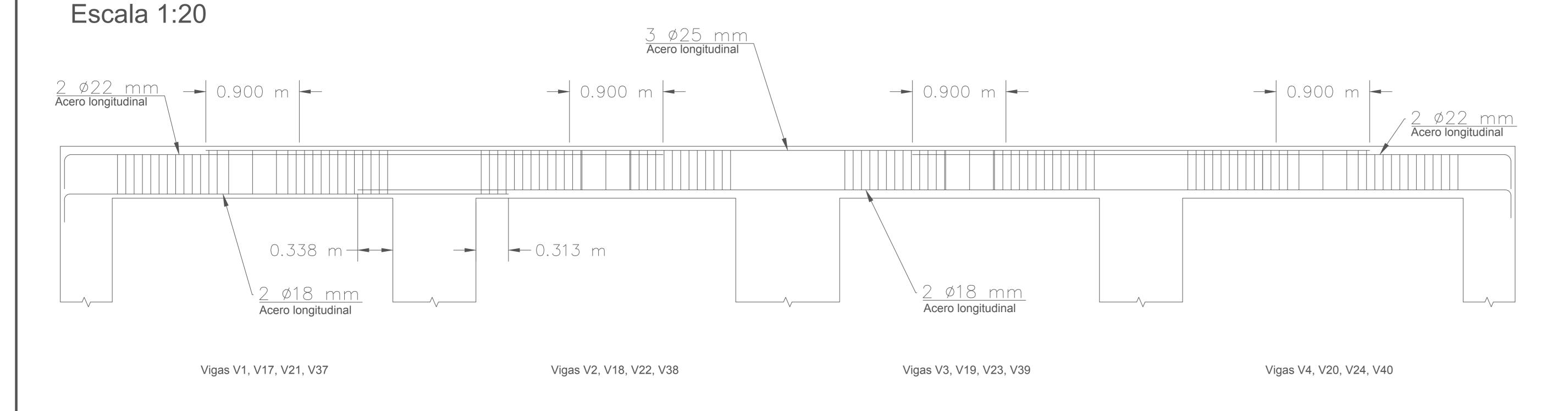

Ing. Nadia Quijano

Dr. Miguel Chávez

Ing. Eduardo Santos

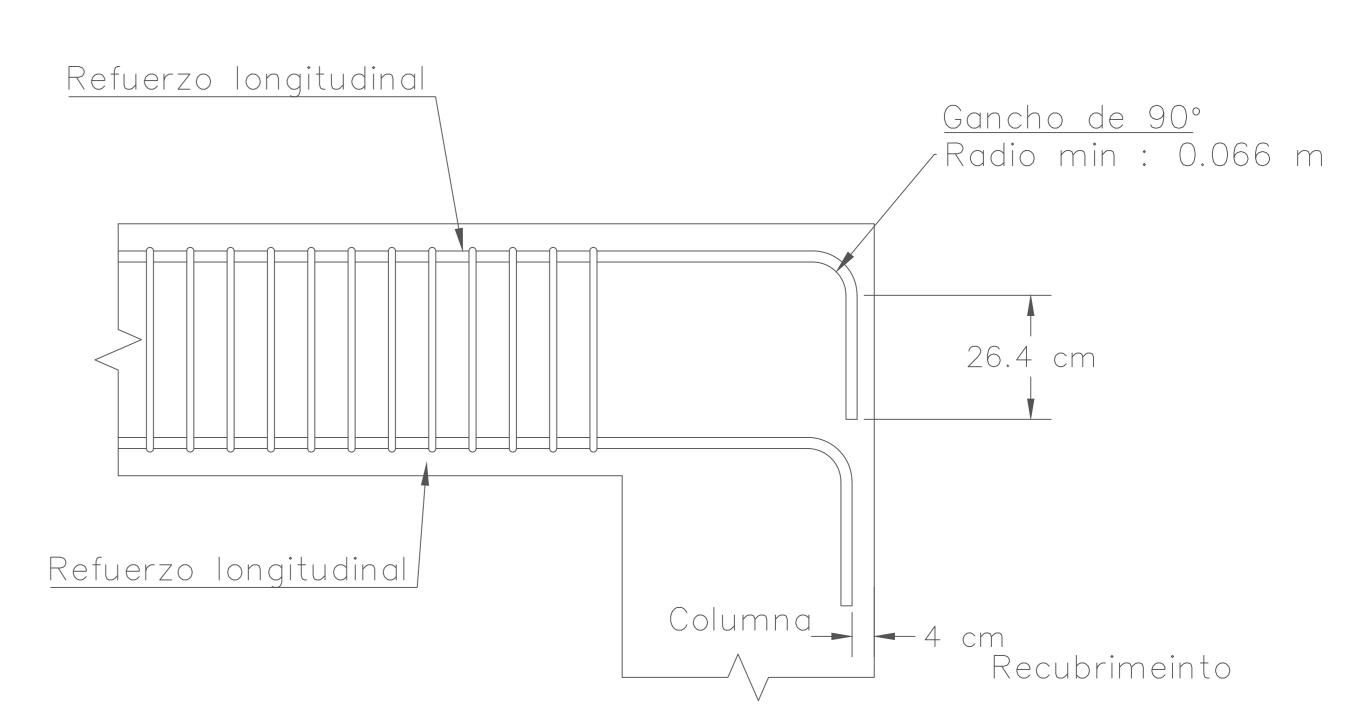

Tutores de área de conocimiento:

# Refuerzo longitudinal y transversal (Eje 4 - Eje 2 - Eje B - Eje D)



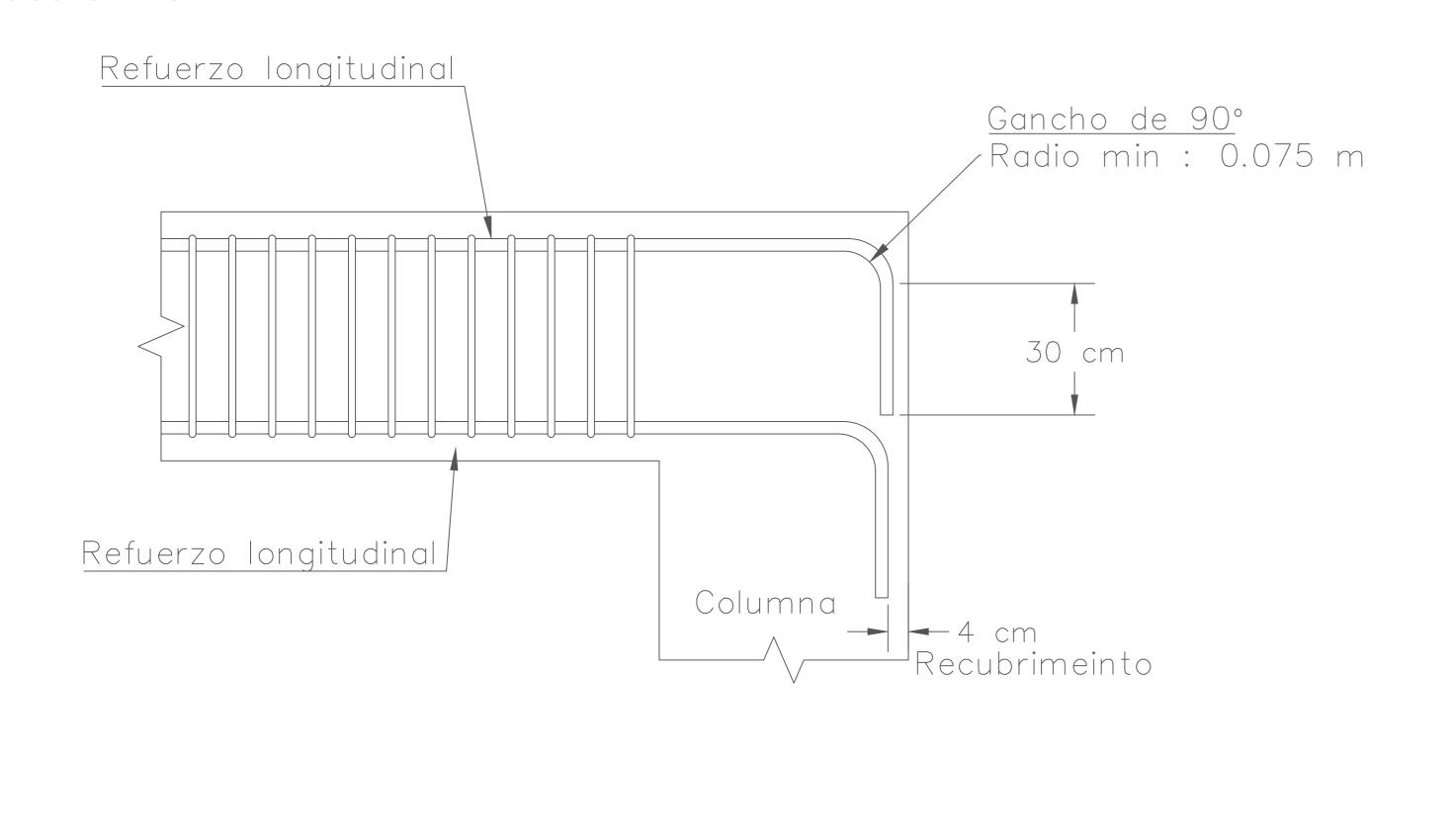

### Longitud de anclaje Ø18mm

Escala 1:5




### Refuerzo longitudinal y transversal (Eje 3 - Eje C)




### Longitud de anclaje Ø22mm

Escala 1:5



### Longitud de anclaje Ø25mm

Escala 1:5



# ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERIA Y CIENCIAS DE LA TIERRA Proyecto: Estudios y Diseños de las áreas para el desarrollo urbanístico del Cerro Zaruma-Urcu de Zaruma

Traslapes Vigas - Longitud de anclaje

| Coordinador de materia integradora:                                    | Tutores de áreas específicas:                | Estudiantes: |
|------------------------------------------------------------------------|----------------------------------------------|--------------|
| Ing. Nadia Quijano                                                     | Ing. Esther Vásquez<br>Ing. Carlos Rodríguez | Seba         |
| Tutores de área de conocimiento: Dr. Miguel Chávez Ing. Eduardo Santos | Dis. Int. Carola Zavala                      | Rafa         |

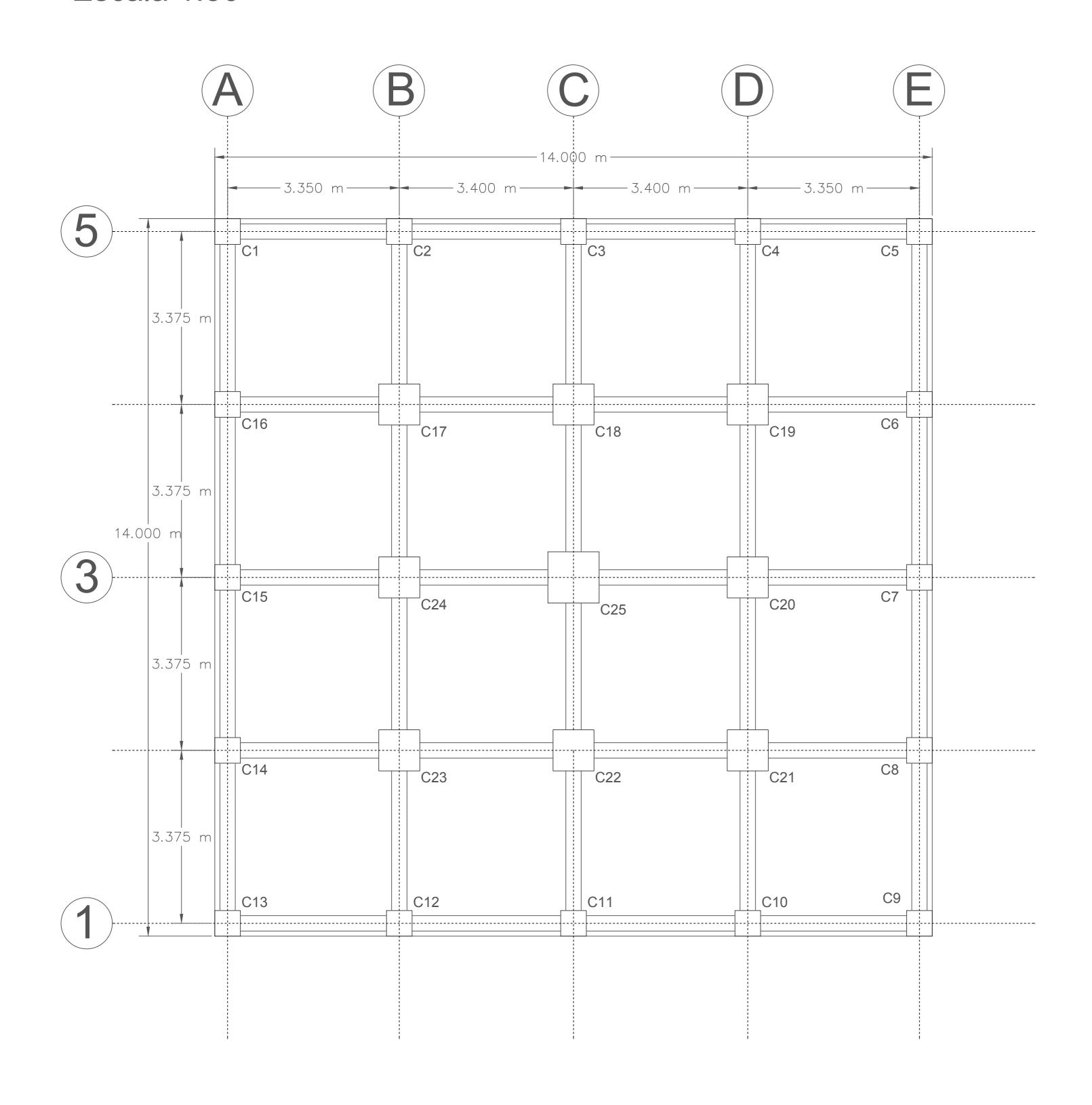
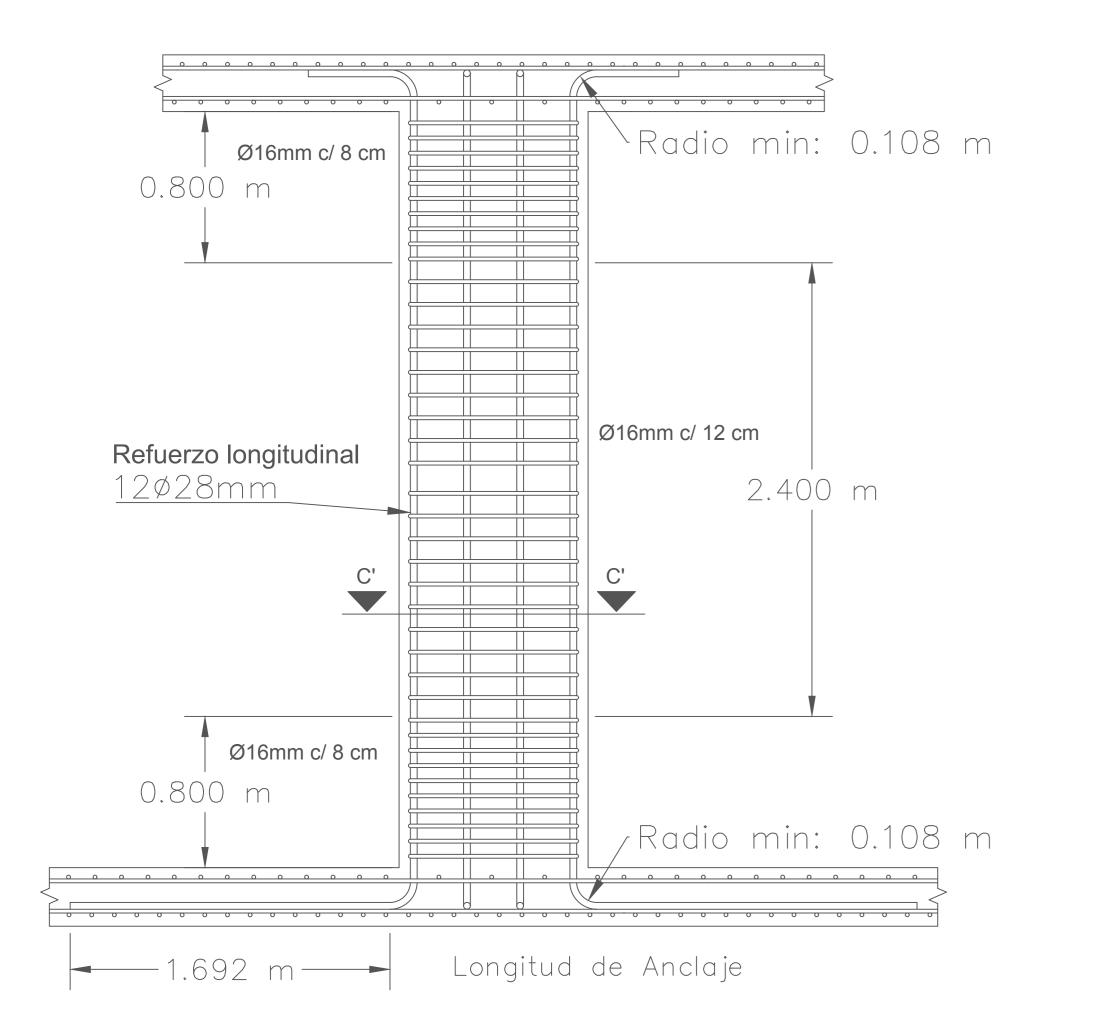
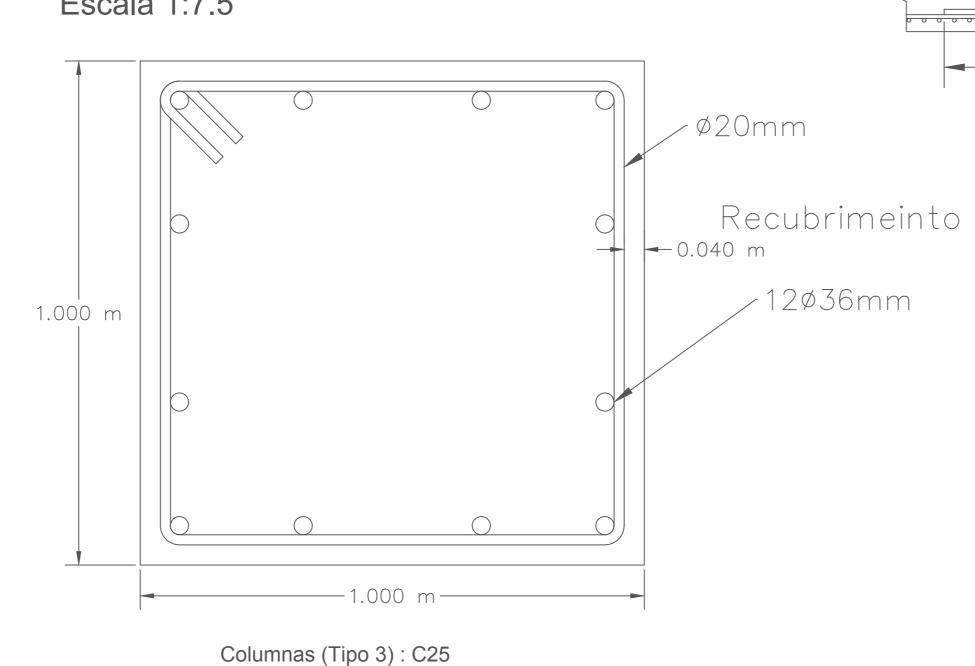

Sebastián Suárez
Rafael Barcenes

Lámina:
E-5/7

Rafael Barcenes


### Vista superior de columnas

Escala 1:50

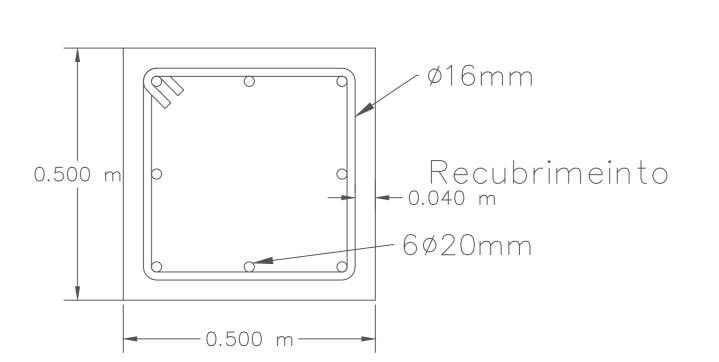



# Refuerzo longitudinal y transversal (Columna Tipo 3)

Escala 1:20



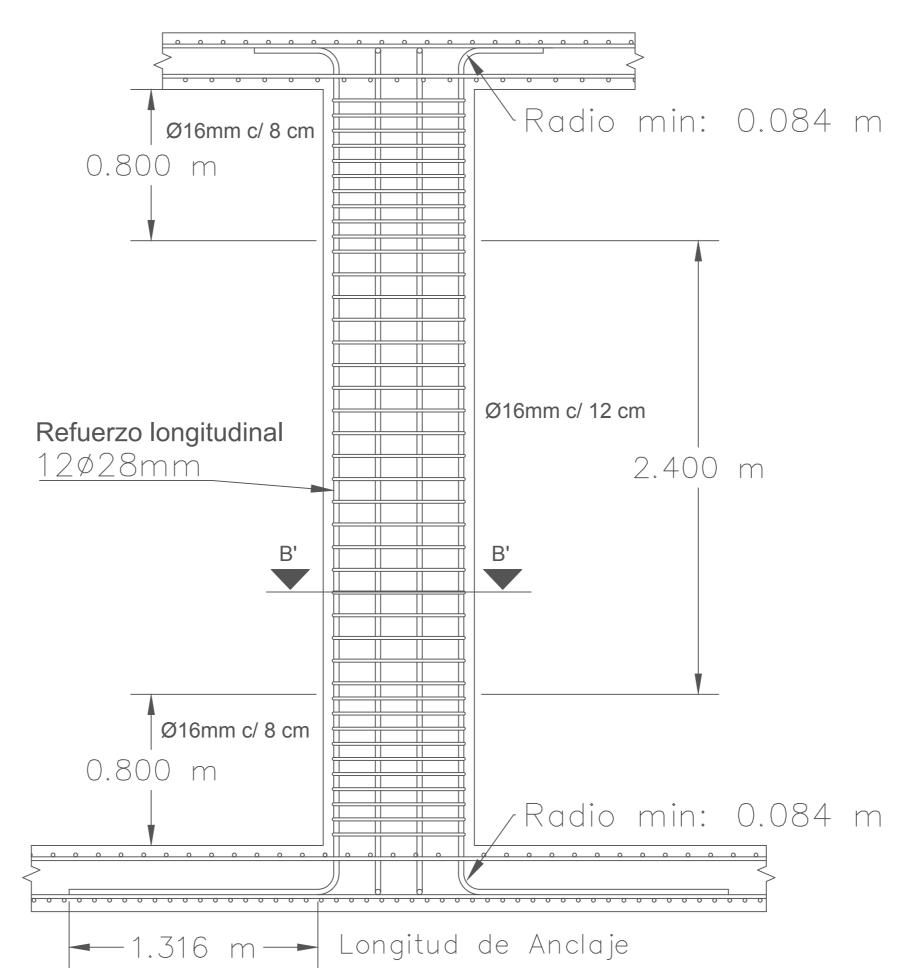
### Corte C' Escala 1:7.5




# Refuerzo longitudinal y transversal (Columna Tipo 1)

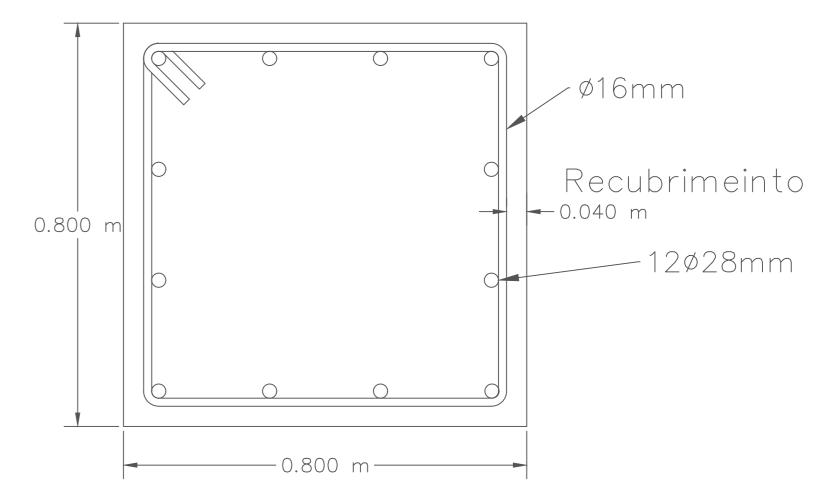
Escala 1:20




### Corte A' Escala 1:7.5



Columnas (Tipo 1): C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16.


### Refuerzo longitudinal y transversal (Columna Tipo 2)

Escala 1:20



Corte B'

Escala 1:7.5



Columnas (Tipo 2): C17, C18, C19, C20, C21, C22, C23, C24

# ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERIA Y CIENCIAS DE LA TIERRA Proyecto:

Estudios y Diseños de las áreas para el desarrollo urbanístico del Cerro Zaruma-Urcu de Zaruma

Losa de cimentacion - Refuerzo Columnas -Corte transversal

ordinador de materia integradora: Ing. Nadia Quijano

Ing. Fether Vásquez

Ochartica Outros

15/01/2021

Ing. Nadia Quijano

Ing. Esther Vásquez
Ing. Carlos Rodríguez
Dis. Int. Carola Zavala

Ra

Tutores de área de conocimiento:
Dr. Miguel Chávez
Ing. Esther Vásquez
Se
Ra

Sebastián Suárez

Rafael Barcenes

Escala:

E-6/7

Fecha de entrega:

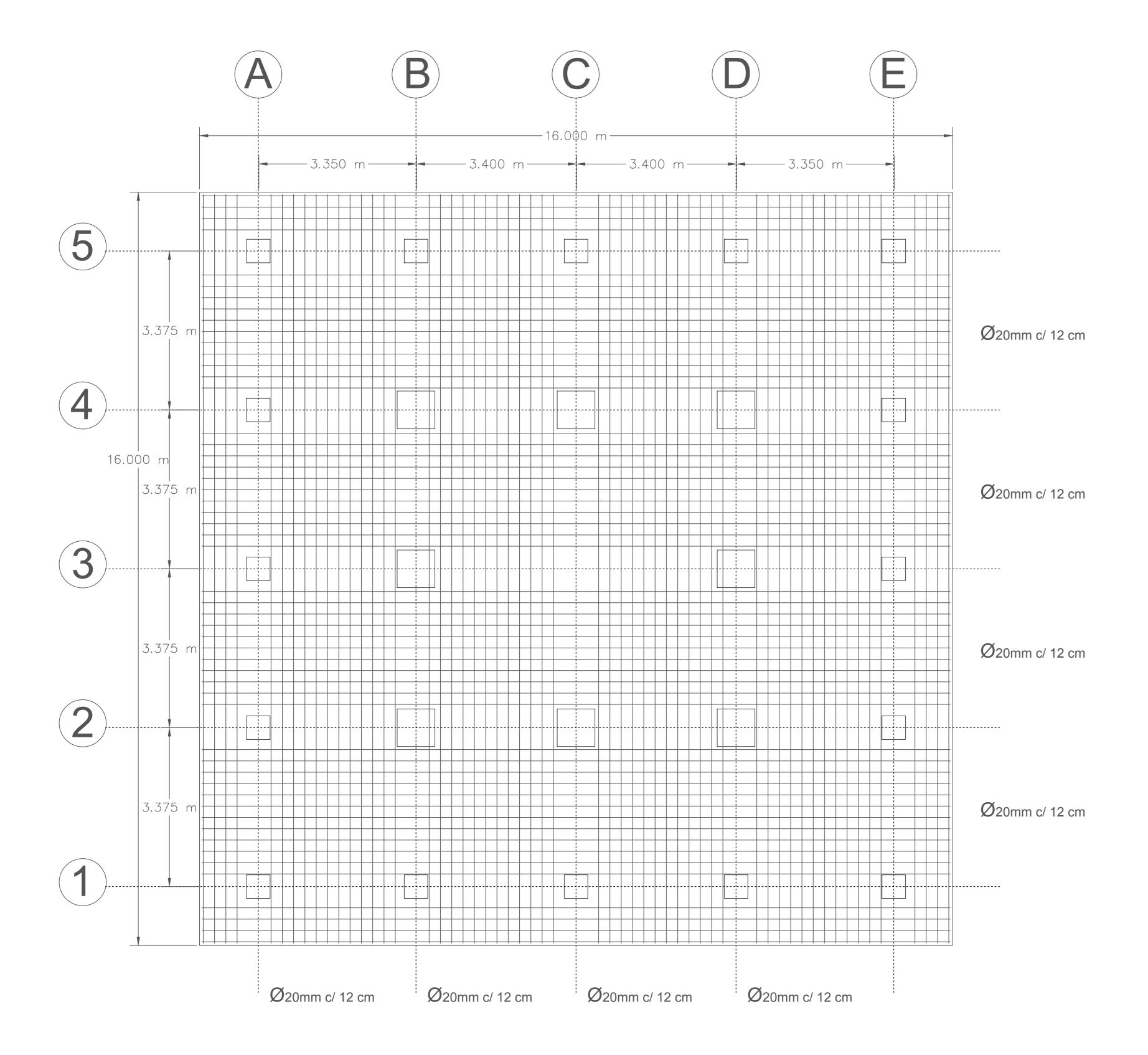
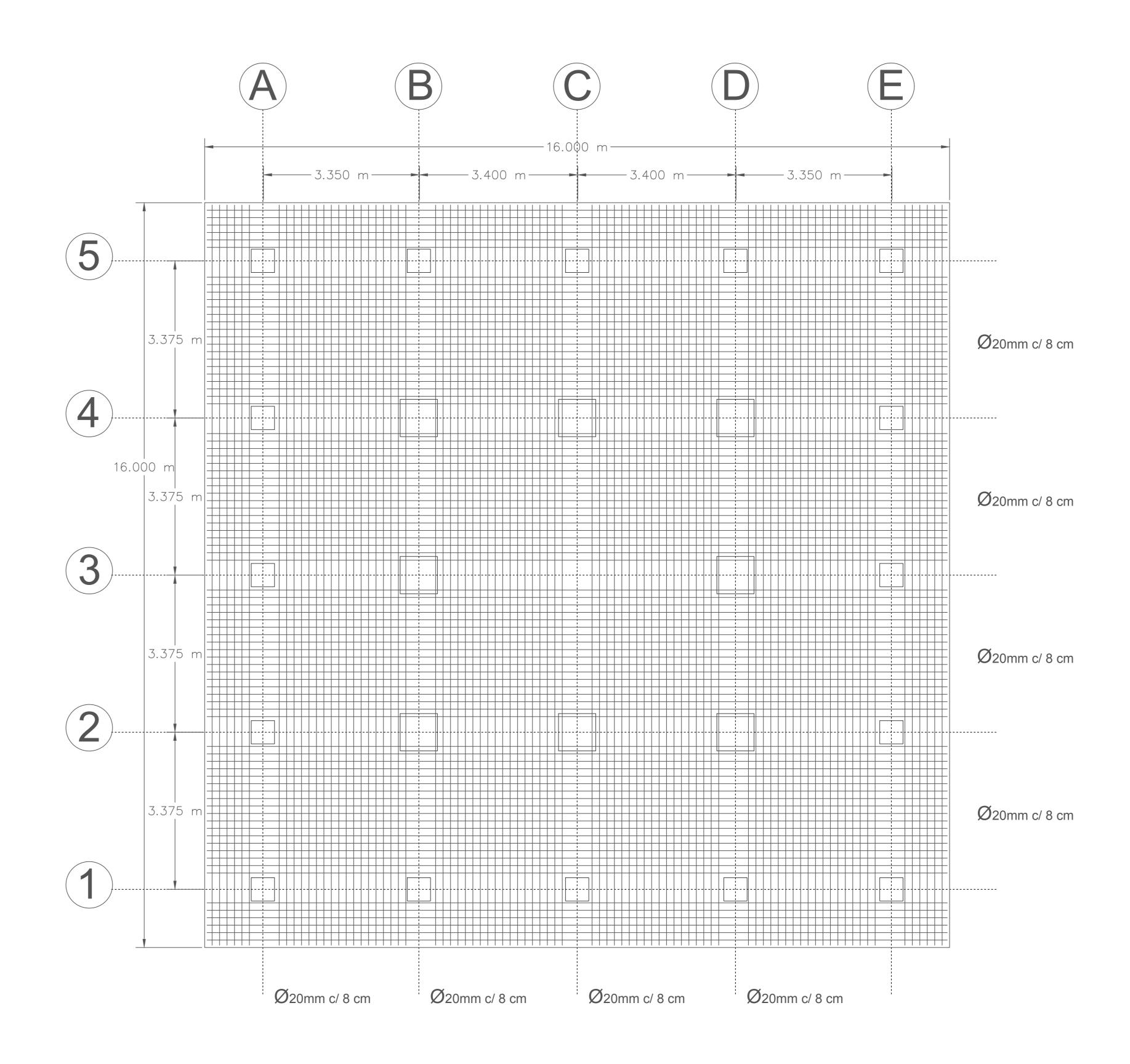

15/01/2021

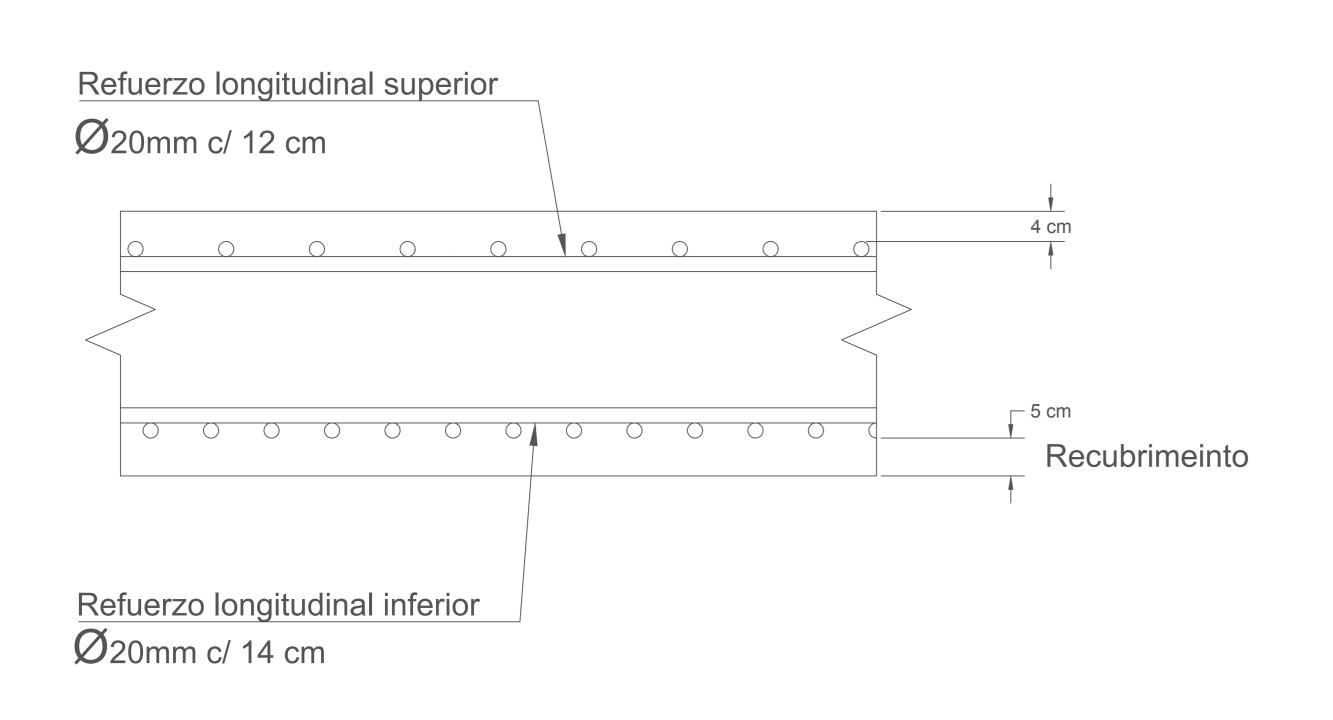
Lámina:
E-6/7

Varias


### Refuerzo longitudinal superior

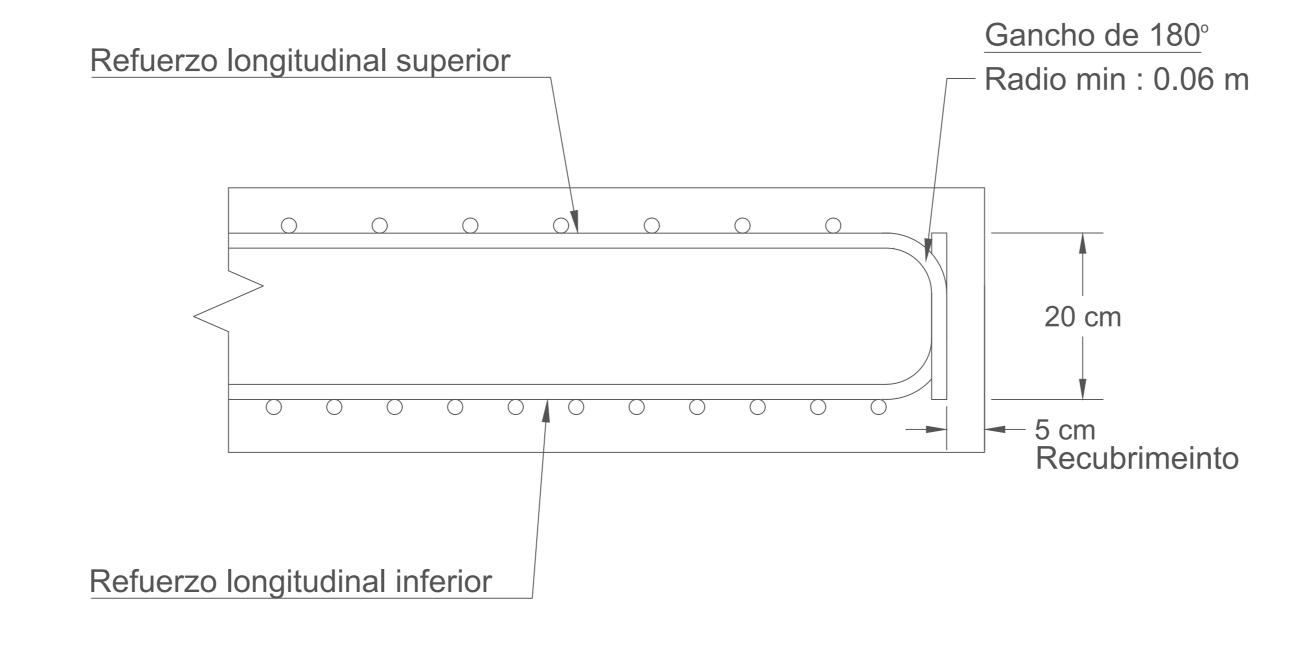
Escala 1:50




### Refuerzo longitudinal inferior

Escala 1:50




# Segmento de losa

Escala 1:5



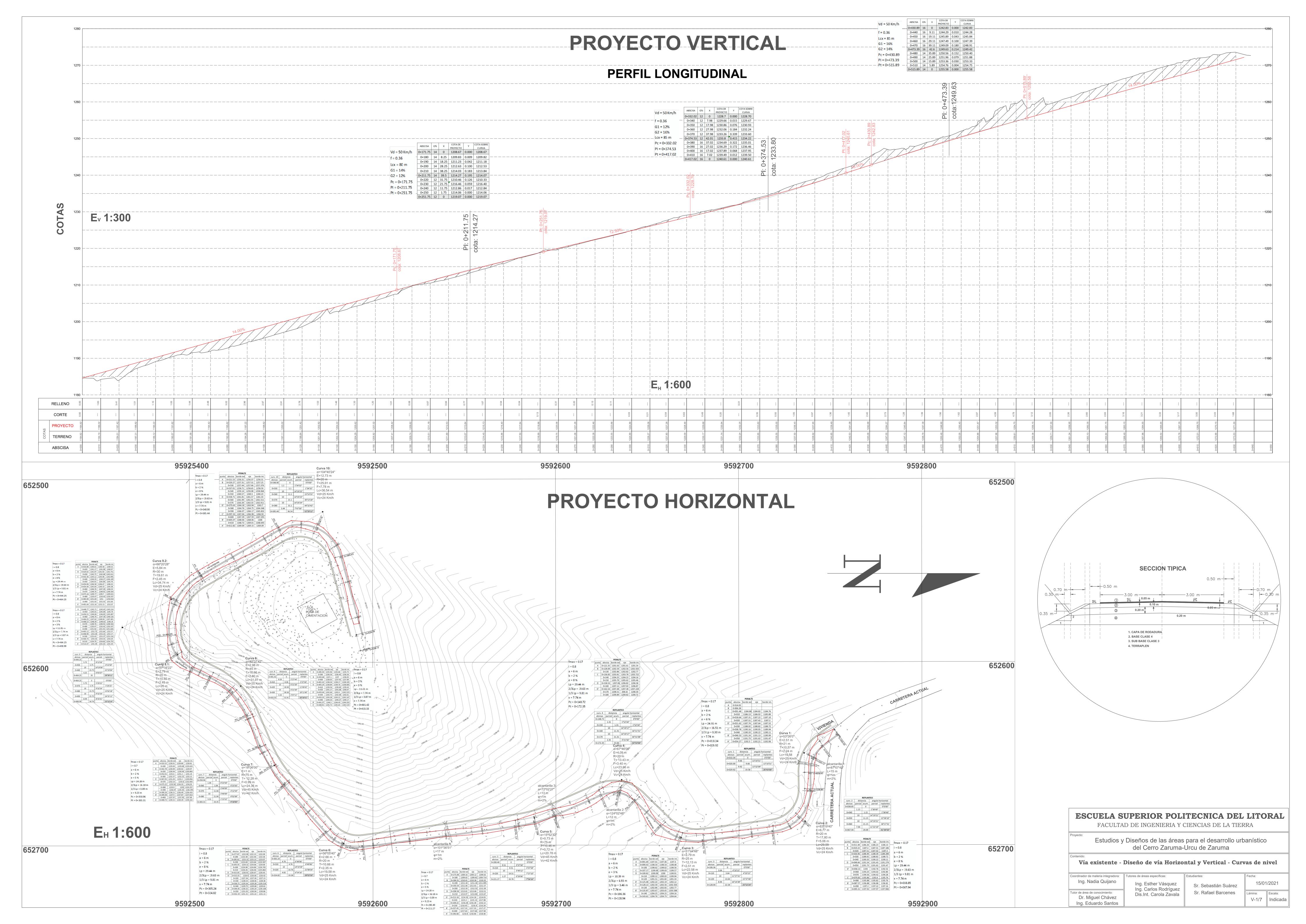
# Longitud de anclaje sin columna

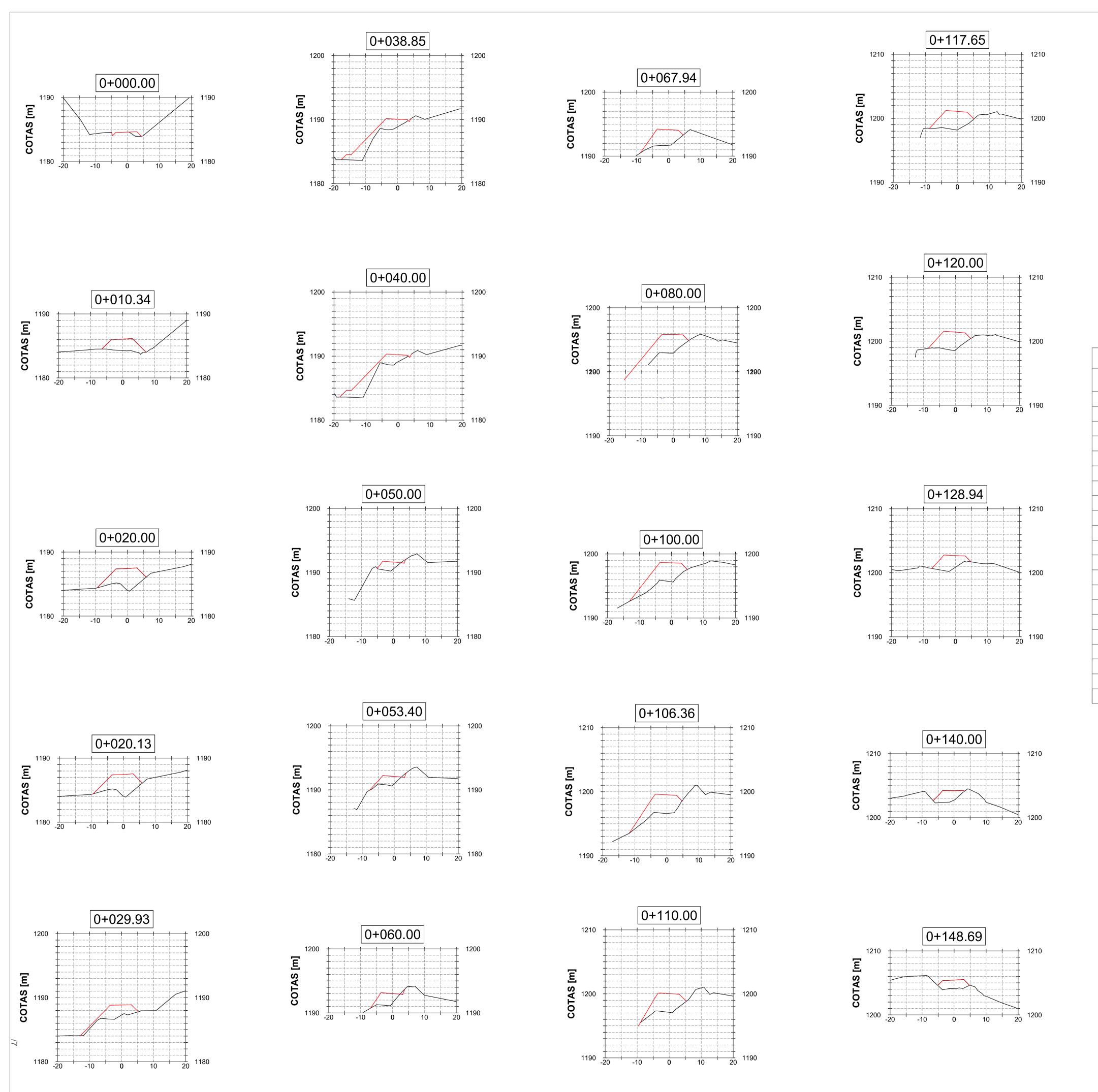
Escala 1:5



ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERIA Y CIENCIAS DE LA TIERRA

Estudios y Diseños de las áreas para el desarrollo urbanístico del Cerro Zaruma-Urcu de Zaruma


Losa de cimentacion - Refuerzo longitudinal - Detallamiento


Coordinador de materia integradora: Tutores de áreas específicas: Ing. Nadia Quijano Ing. Esther Vásquez Ing. Carlos Rodríguez Tutores de área de conocimiento: Dis. Int. Carola Zavala Dr. Miguel Chávez

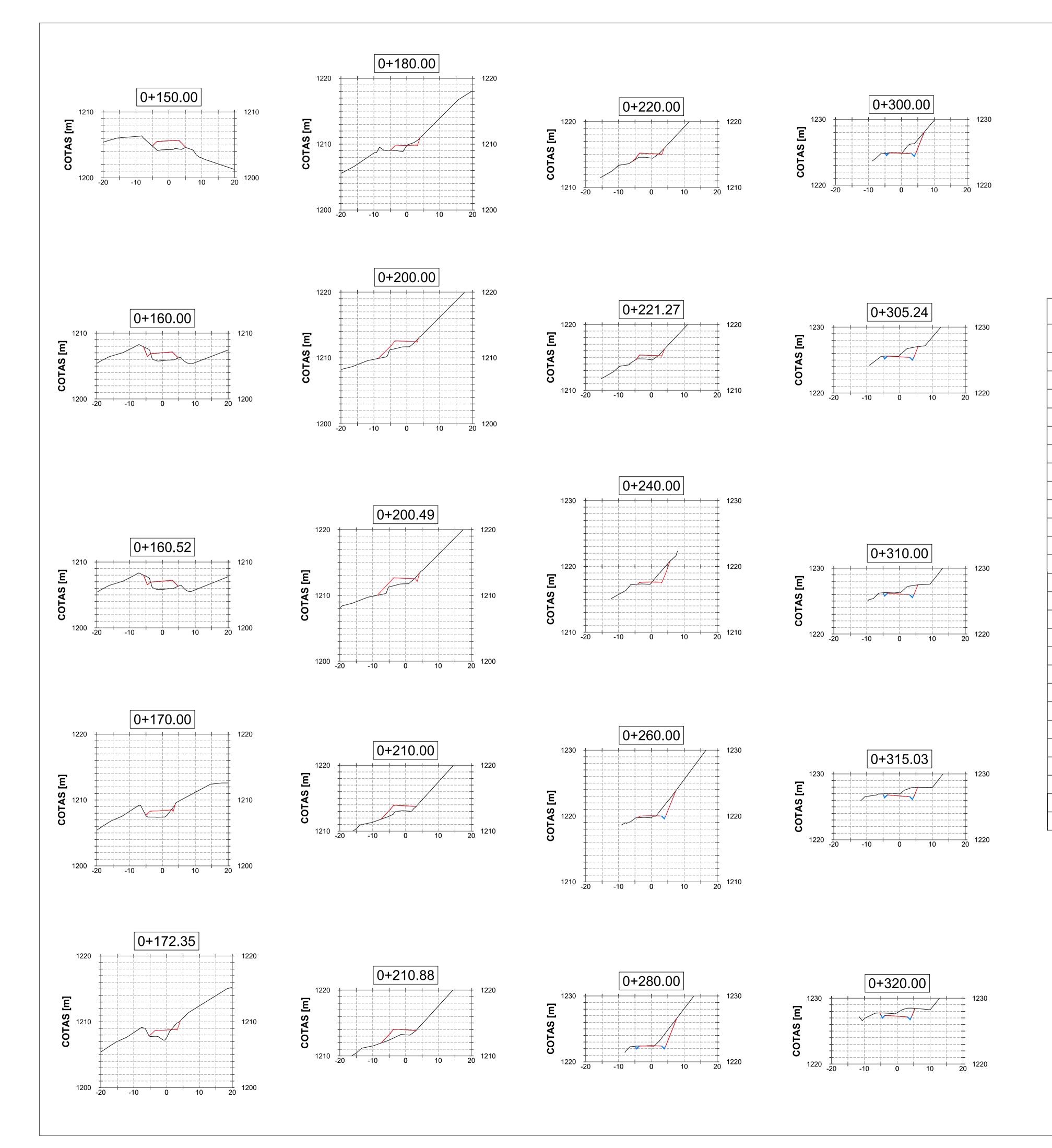
Ing. Eduardo Santos

Sebastián Suárez Rafael Barcenes

15/01/2021 E-7/7 Varias






| Tabla de Volúmen Totales |                 |               |                    |                  |                                 |                               |  |  |
|--------------------------|-----------------|---------------|--------------------|------------------|---------------------------------|-------------------------------|--|--|
| Abscisa                  | Area de Relleno | Area de Corte | Volúmen de Relleno | Volúmen de Corte | Volumen de Relleno<br>Acumulado | Volúmen de Corte<br>Acumulado |  |  |
| 0+000.00                 | 1.56            | 0.44          | 0.00               | 0.00             | 0.00                            | 0.00                          |  |  |
| 0+010.34                 | 18.65           | 0.00          | 104.49             | 2.30             | 104.49                          | 2.30                          |  |  |
| 0+020.00                 | 29.16           | 0.00          | 228.19             | 0.00             | 332.67                          | 2.30                          |  |  |
| 0+020.13                 | 29.12           | 0.00          | 3.87               | 0.00             | 336.54                          | 2.30                          |  |  |
| 0+025.14                 | 25.39           | 0.00          | 132.64             | 0.00             | 469.18                          | 2.30                          |  |  |
| 0+029.93                 | 19.08           | 0.00          | 100.49             | 0.00             | 569.67                          | 2.30                          |  |  |
| 0+038.85                 | 25.11           | 0.00          | 197.21             | 0.00             | 766.89                          | 2.30                          |  |  |
| 0+040.00                 | 27.62           | 0.00          | 42.13              | 0.00             | 809.02                          | 2.30                          |  |  |
| 0+050.00                 | 6.71            | 0.45          | 230.94             | 2.12             | 1039.96                         | 4.42                          |  |  |
| 0+053.40                 | 8.15            | 0.35          | 27.63              | 1.22             | 1067.58                         | 5.64                          |  |  |
| 0+060.00                 | 9.94            | 0.38          | 65.43              | 2.03             | 1133.01                         | 7.67                          |  |  |
| 0+067.94                 | 18.43           | 0.00          | 118.72             | 1.27             | 1251.73                         | 8.93                          |  |  |
| 0+080.00                 | 20.87           | 0.00          | 236.94             | 0.00             | 1488.67                         | 8.93                          |  |  |
| 0+100.00                 | 21.71           | 0.00          | 425.80             | 0.00             | 1914.47                         | 8.93                          |  |  |
| 0+106.36                 | 23.10           | 0.00          | 142.61             | 0.00             | 2057.08                         | 8.93                          |  |  |
| 0+110.00                 | 22.37           | 0.00          | 83.81              | 0.00             | 2140.89                         | 8.93                          |  |  |
| 0+117.65                 | 26.14           | 0.00          | 191.82             | 0.00             | 2332.70                         | 8.93                          |  |  |
| 0+120.00                 | 23.80           | 0.00          | 61.90              | 0.00             | 2394.61                         | 8.93                          |  |  |
| 0+128.94                 | 17.43           | 0.00          | 195.94             | 0.00             | 2590.54                         | 8.93                          |  |  |
| 0+140.00                 | 11.97           | 0.00          | 162.54             | 0.00             | 2753.09                         | 8.93                          |  |  |
| 0+148.69                 | 11.11           | 0.00          | 100.33             | 0.00             | 2853.42                         | 8.93                          |  |  |

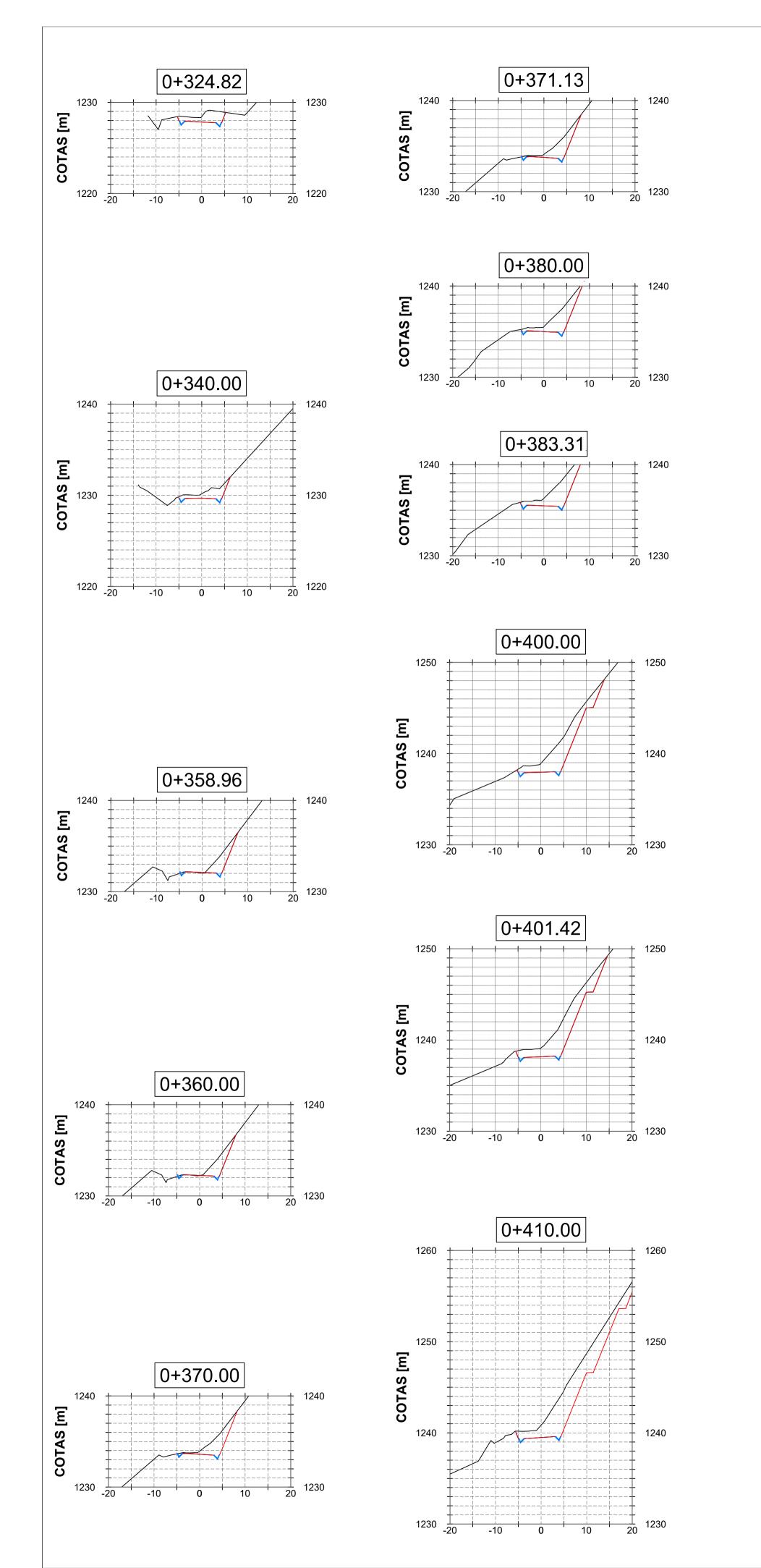


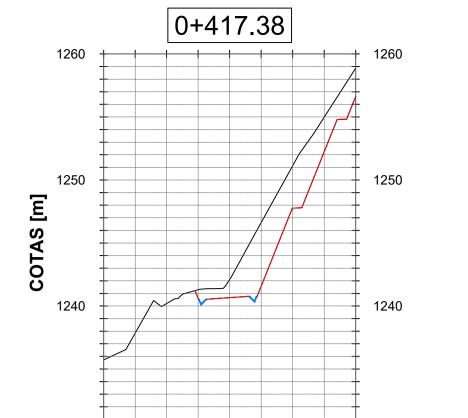
| Proyecto:                                     | Estudios y | / Diseños de las áro<br>del Cerro Zarur | eas para el desarr<br>na-Urcu de Zarum |  |  |  |  |
|-----------------------------------------------|------------|-----------------------------------------|----------------------------------------|--|--|--|--|
| Secciones trasnversales desde 0+000- 0+148.69 |            |                                         |                                        |  |  |  |  |

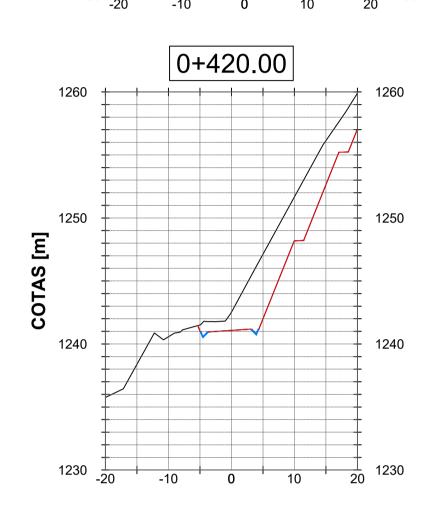
ESCUELA SUPERIOR POLITECNICA DEL LITORAL

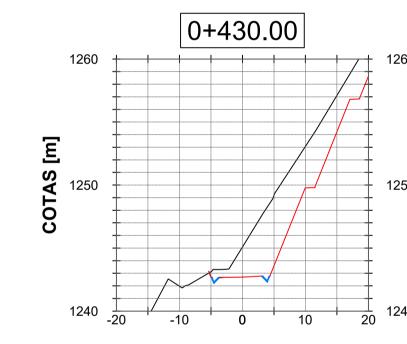
| Coordinador de materia integradora:                                        | Tutores de áreas específicas:                                          | Estudiantes:         | Fecha de entrega: |                     |
|----------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------|-------------------|---------------------|
| Ing. Nadia Quijano                                                         | Ing. Esther Vásquez<br>Ing. Carlos Rodríguez<br>Dis. Int Carola Zavala | Sr. Sebastián Suárez | 15/01/2021        |                     |
| Tutor de área de conocimiento:<br>Dr. Miguel Chávez<br>Ing. Eduardo Santos |                                                                        | Sr. Rafael Barcenes  | Lámina:<br>V-2/7  | Escala:<br>Indicada |

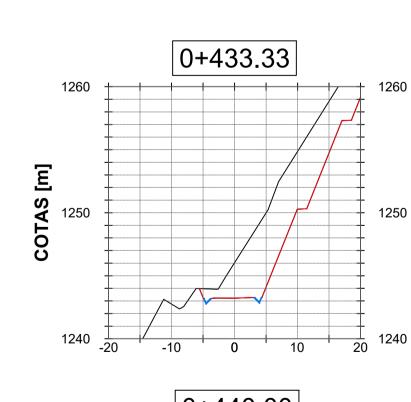


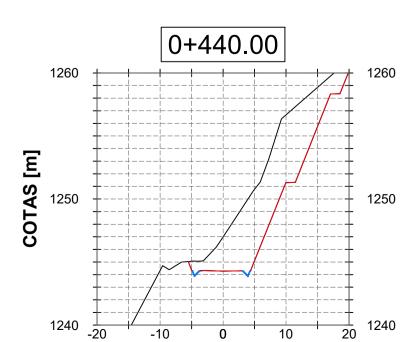

| Tabla de Volúmen Totales |                 |               |                    |                  |                                 |                               |  |  |  |
|--------------------------|-----------------|---------------|--------------------|------------------|---------------------------------|-------------------------------|--|--|--|
| Abscisa                  | Area de Relleno | Area de Corte | Volúmen de Relleno | Volúmen de Corte | Volumen de Relleno<br>Acumulado | Volúmen de Corte<br>Acumulado |  |  |  |
| 0+150.00                 | 11.29           | 0.00          | 14.50              | 0.00             | 2867.91                         | 8.94                          |  |  |  |
| 0+158.63                 | 8.41            | 1.48          | 85.63              | 4.91             | 2953.54                         | 13.84                         |  |  |  |
| 0+160.00                 | 8.42            | 1.48          | 11.81              | 1.56             | 2965.34                         | 15.40                         |  |  |  |
| 0+160.52                 | 8.61            | 1.45          | 4.56               | 0.59             | 2969.90                         | 15.99                         |  |  |  |
| 0+170.00                 | 6.14            | 0.11          | 69.08              | 5.88             | 3038.98                         | 21.87                         |  |  |  |
| 0+172.35                 | 5.73            | 1.36          | 12.94              | 1.97             | 3051.92                         | 23.84                         |  |  |  |
| 0+180.00                 | 2.91            | 1.30          | 33.03              | 10.16            | 3084.95                         | 33.99                         |  |  |  |
| 0+200.00                 | 8.18            | 0.15          | 110.94             | 14.48            | 3195.90                         | 48.47                         |  |  |  |
| 0+200.49                 | 8.17            | 0.12          | 4.03               | 0.07             | 3199.93                         | 48.54                         |  |  |  |
| 0+210.00                 | 7.45            | 0.00          | 76.66              | 0.54             | 3276.59                         | 49.08                         |  |  |  |
| 0+210.88                 | 7.45            | 0.00          | 6.58               | 0.00             | 3283.17                         | 49.08                         |  |  |  |
| 0+220.00                 | 3.66            | 0.41          | 51.97              | 1.78             | 3335.14                         | 50.86                         |  |  |  |
| 0+200.49                 | 8.17            | 0.12          | 4.03               | 0.07             | 3199.93                         | 48.54                         |  |  |  |
| 0+210.00                 | 7.45            | 0.00          | 76.66              | 0.54             | 3276.59                         | 49.08                         |  |  |  |
| 0+210.88                 | 7.45            | 0.00          | 6.58               | 0.00             | 3283.17                         | 49.08                         |  |  |  |
| 0+220.00                 | 3.66            | 0.41          | 51.97              | 1.78             | 3335.14                         | 50.86                         |  |  |  |
| 0+221.27                 | 3.20            | 0.53          | 4.37               | 0.60             | 3339.50                         | 51.46                         |  |  |  |
| 0+240.00                 | 1.12            | 7.04          | 40.48              | 70.91            | 3379.98                         | 122.37                        |  |  |  |
| 0+259.26                 | 1.81            | 5.60          | 28.24              | 121.75           | 3408.22                         | 244.11                        |  |  |  |
| 0+260.00                 | 1.80            | 5.54          | 1.33               | 4.12             | 3409.56                         | 248.23                        |  |  |  |
| 0+280.00                 | 0.18            | 6.68          | 19.83              | 122.18           | 3429.39                         | 370.42                        |  |  |  |
| 0+300.00                 | 0.05            | 7.00          | 2.35               | 136.75           | 3431.73                         | 507.17                        |  |  |  |
| 0+305.24                 | 0.00            | 6.02          | 0.15               | 34.09            | 3431.88                         | 541.26                        |  |  |  |
| 0+310.00                 | 0.00            | 6.24          | 0.00               | 25.41            | 3431.88                         | 566.67                        |  |  |  |
| 0+315.03                 | 0.00            | 6.63          | 0.00               | 29.04            | 3431.88                         | 595.71                        |  |  |  |
| 0+320.00                 | 0.00            | 7.37          | 0.00               | 32.11            | 3431.88                         | 627.82                        |  |  |  |

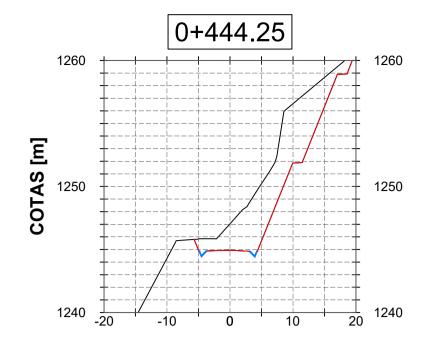


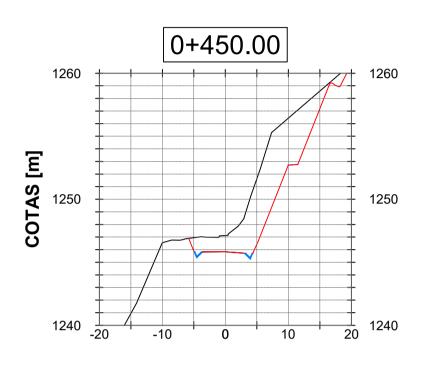



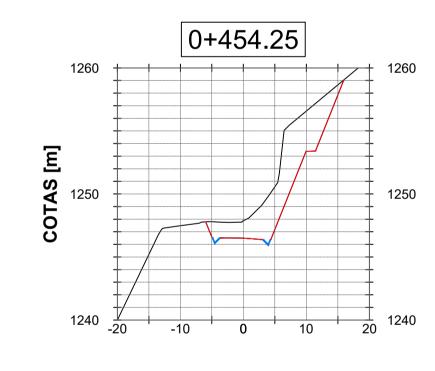


| contonido. | Secciones | trasnversales | desde | 0+150- 0+320 |   |
|------------|-----------|---------------|-------|--------------|---|
|            |           |               |       |              | 1 |

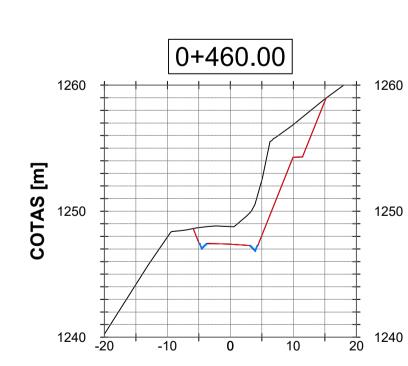

| Coordinador de materia integradora:                                  | Tutores de áreas específicas:                | Fecha de entrega:    |                  |                     |
|----------------------------------------------------------------------|----------------------------------------------|----------------------|------------------|---------------------|
| Ing. Nadia Quijano                                                   | Ing. Esther Vásquez<br>Ing. Carlos Rodríguez | Sr. Sebastián Suárez | 15/01/2021       |                     |
| Tutor de área de conocimiento: Dr. Miguel Chávez Ing. Eduardo Santos | Dis. Int Carola Zavala                       | Sr. Rafael Barcenes  | Lámina:<br>V-3/7 | Escala:<br>Indicada |









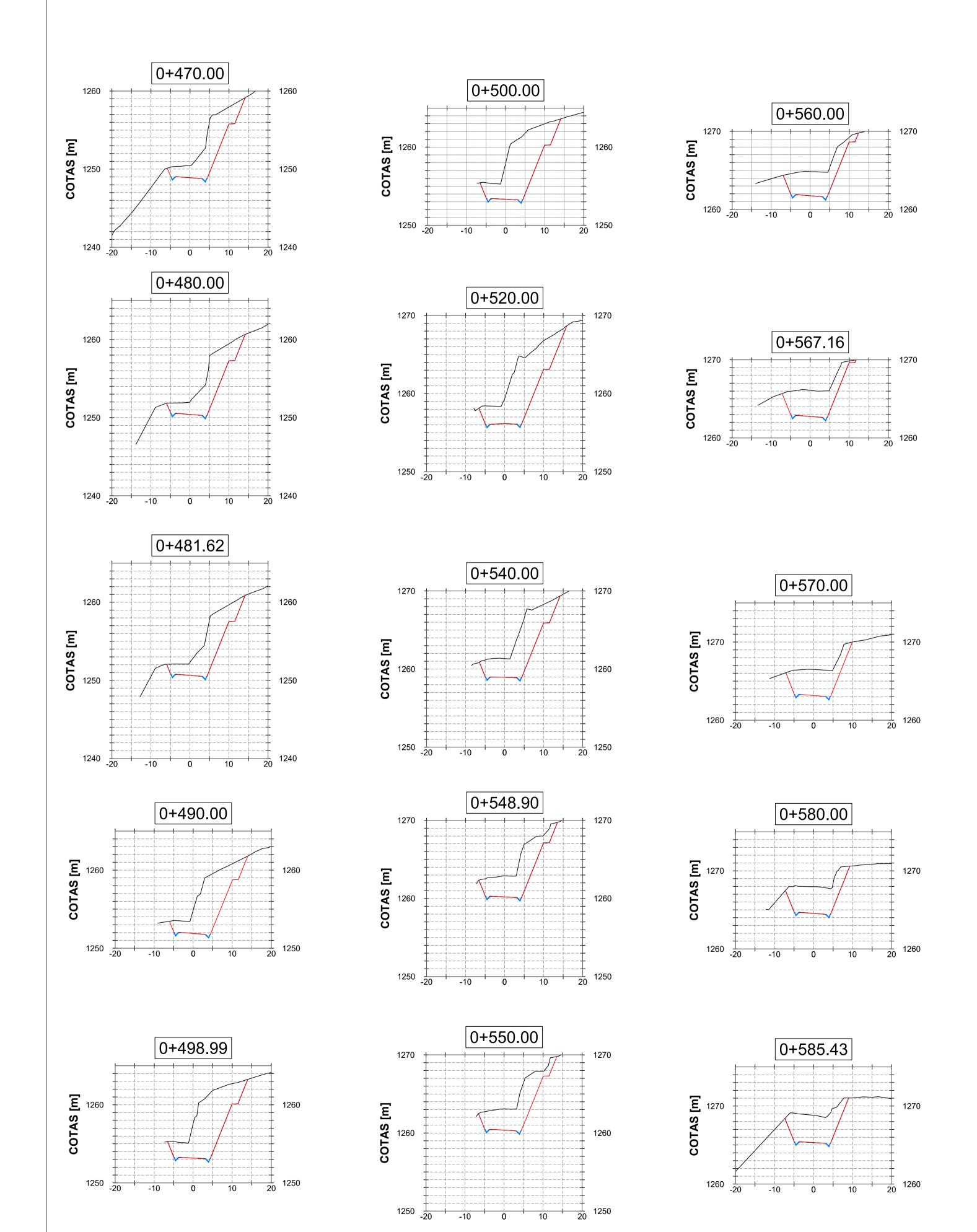


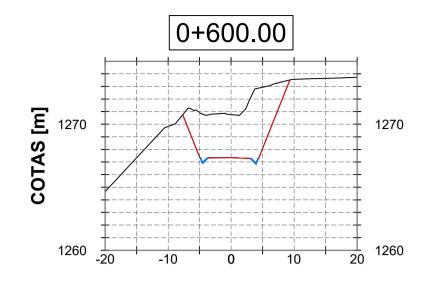


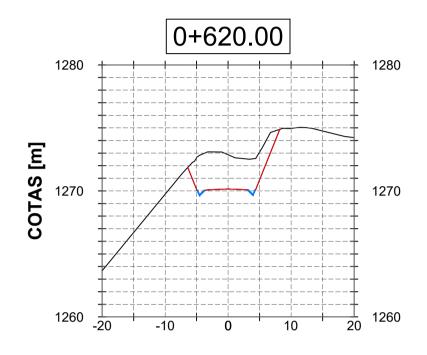

| Tabla de Volúmen Totales |                 |               |                    |                  |                                 |                               |  |  |
|--------------------------|-----------------|---------------|--------------------|------------------|---------------------------------|-------------------------------|--|--|
| Abscisa                  | Area de Relleno | Area de Corte | Volúmen de Relleno | Volúmen de Corte | Volumen de Relleno<br>Acumulado | Volúmen de Corte<br>Acumulado |  |  |
| 0+324.82                 | 0.00            | 8.28          | 0.00               | 35.56            | 3431.88                         | 663.38                        |  |  |
| 0+340.00                 | 0.00            | 7.41          | 0.00               | 119.07           | 3431.88                         | 782.45                        |  |  |
| 0+358.96                 | 0.26            | 7.66          | 2.42               | 142.81           | 3434.31                         | 925.25                        |  |  |
| 0+360.00                 | 0.23            | 7.87          | 0.25               | 8.08             | 3434.56                         | 933.34                        |  |  |
| 0+370.00                 | 0.02            | 10.59         | 1.28               | 87.30            | 3435.84                         | 1020.64                       |  |  |
| 0+371.13                 | 0.01            | 10.50         | 0.02               | 11.94            | 3435.86                         | 1032.58                       |  |  |
| 0+380.00                 | 0.00            | 15.30         | 0.06               | 108.97           | 3435.92                         | 1141.55                       |  |  |
| 0+383.31                 | 0.00            | 18.59         | 0.00               | 53.53            | 3435.92                         | 1195.08                       |  |  |
| 0+400.00                 | 0.00            | 28.63         | 0.00               | 394.11           | 3435.92                         | 1589.19                       |  |  |
| 0+401.42                 | 0.00            | 32.92         | 0.00               | 43.76            | 3435.92                         | 1632.95                       |  |  |
| 0+410.00                 | 0.00            | 53.69         | 0.00               | 426.01           | 3435.92                         | 2058.96                       |  |  |
| 0+417.38                 | 0.00            | 73.57         | 0.00               | 554.32           | 3435.92                         | 2613.29                       |  |  |
| 0+420.00                 | 0.00            | 79.83         | 0.00               | 240.85           | 3435.92                         | 2854.14                       |  |  |
| 0+428.83                 | 0.00            | 81.04         | 0.01               | 850.01           | 3435.93                         | 3704.15                       |  |  |
| 0+430.00                 | 0.01            | 80.17         | 0.00               | 112.32           | 3435.93                         | 3816.47                       |  |  |
| 0+433.33                 | 0.00            | 100.48        | 0.01               | 358.32           | 3435.94                         | 4174.80                       |  |  |
| 0+440.00                 | 0.00            | 90.50         | 0.00               | 636.79           | 3435.94                         | 4811.59                       |  |  |
| 0+444.25                 | 0.00            | 72.67         | 0.00               | 346.82           | 3435.94                         | 5158.40                       |  |  |
| 0+450.00                 | 0.00            | 65.48         | 0.00               | 251.13           | 3435.94                         | 5409.53                       |  |  |
| 0+454.25                 | 0.00            | 57.01         | 0.00               | 170.65           | 3435.94                         | 5580.18                       |  |  |
| 0+460.00                 | 0.00            | 52.01         | 0.00               | 216.34           | 3435.94                         | 5796.52                       |  |  |

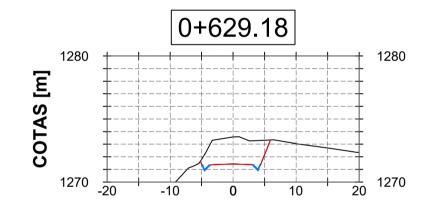
Ev 1:300

Ен 1:600


| ESCUELA SUPERIOR POLITECNICA DEL LITORAL       |  |  |  |  |  |
|------------------------------------------------|--|--|--|--|--|
| FACULTAD DE INGENIERIA Y CIENCIAS DE LA TIERRA |  |  |  |  |  |
| Provecto:                                      |  |  |  |  |  |


Estudios y Diseños de las áreas para el desarrollo urbanístico del Cerro Zaruma-Urcu de Zaruma


Secciones trasnversales desde 0+324.82- 0+460

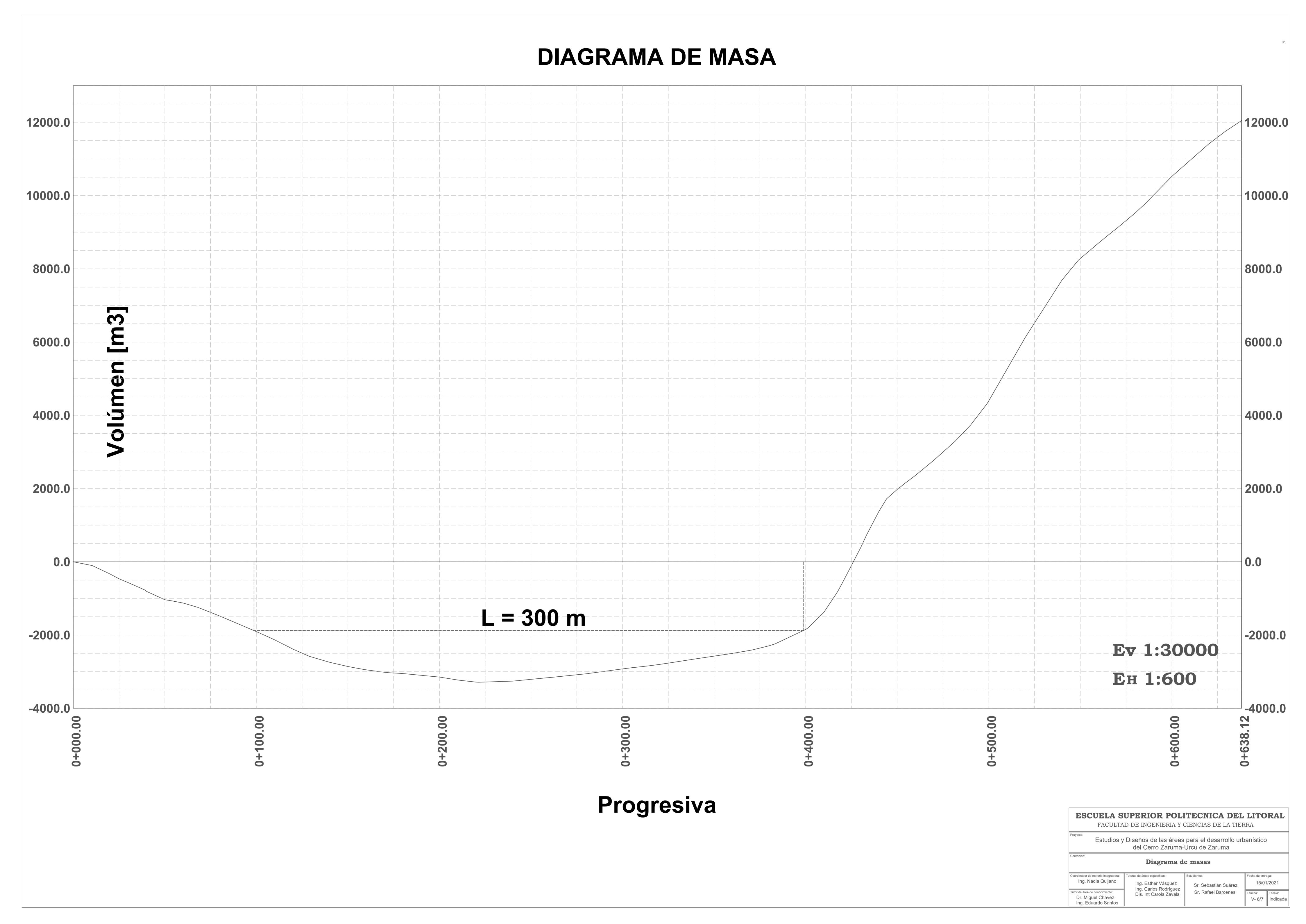

Coordinador de materia integradora:
Ing. Nadia Quijano
Ing. Esther Vásquez
Ing. Carlos Rodríguez
Dr. Miguel Chávez
Ing. Eduardo Santos
Ing. Esther Vásquez
Ing. Carlos Rodríguez
Dis. Int Carola Zavala
Ing. Esther Vásquez
Ing. Carlos Rodríguez
Dis. Int Carola Zavala
Ing. Estudiantes:

Sr. Sebastián Suárez
Sr. Rafael Barcenes
Idmina:
V-4/7
Indicada

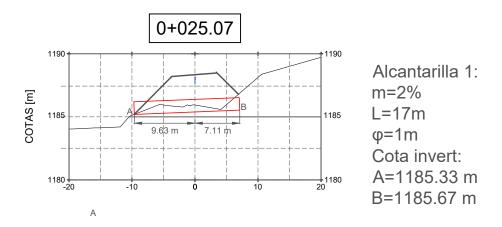


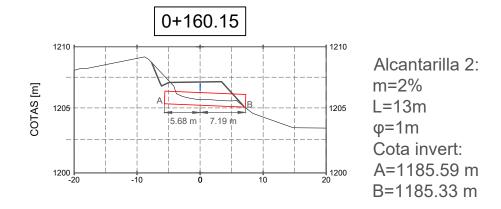






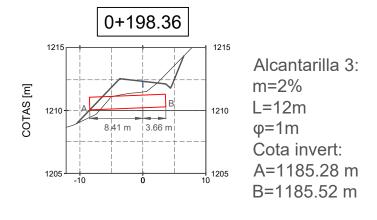

| Tabla de Volúmen Totales |                 |               |                    |                  |                                 |                               |
|--------------------------|-----------------|---------------|--------------------|------------------|---------------------------------|-------------------------------|
| Abscisa                  | Area de Relleno | Area de Corte | Volúmen de Relleno | Volúmen de Corte | Volumen de Relleno<br>Acumulado | Volúmen de Corte<br>Acumulado |
| 0+470.00                 | 0.00            | 53.43         | 0.00               | 412.11           | 3435.94                         | 6208.63                       |
| 0+480.00                 | 0.00            | 53.77         | 0.00               | 445.90           | 3435.94                         | 6654.54                       |
| 0+481.62                 | 0.00            | 54.59         | 0.00               | 72.98            | 3435.94                         | 6727.52                       |
| 0+490.00                 | 0.00            | 68.39         | 0.02               | 435.86           | 3435.96                         | 7163.38                       |
| 0+498.99                 | 0.00            | 82.26         | 0.02               | 581.98           | 3435.97                         | 7745.36                       |
| 0+500.00                 | 0.00            | 84.11         | 0.00               | 84.43            | 3435.97                         | 7829.79                       |
| 0+520.00                 | 0.00            | 89.54         | 0.00               | 1736.58          | 3435.97                         | 9566.37                       |
| 0+540.00                 | 0.00            | 66.63         | 0.00               | 1561.77          | 3435.97                         | 11128.14                      |
| 0+548.90                 | 0.00            | 54.59         | 0.00               | 539.20           | 3435.97                         | 11667.35                      |
| 0+550.00                 | 0.00            | 52.03         | 0.00               | 48.92            | 3435.97                         | 11716.27                      |
| 0+560.00                 | 0.00            | 46.00         | 0.00               | 424.99           | 3435.97                         | 12141.26                      |
| 0+567.16                 | 0.00            | 43.56         | 0.00               | 291.02           | 3435.97                         | 12432.28                      |
| 0+570.00                 | 0.00            | 43.34         | 0.00               | 111.08           | 3435.97                         | 12543.36                      |
| 0+580.00                 | 0.00            | 47.20         | 0.00               | 419.69           | 3435.97                         | 12963.05                      |
| 0+585.43                 | 0.00            | 47.72         | 0.00               | 249.45           | 3435.97                         | 13212.50                      |
| 0+600.00                 | 0.00            | 54.90         | 0.00               | 747.36           | 3435.97                         | 13959.85                      |
| 0+620.00                 | 0.00            | 32.97         | 0.00               | 878.65           | 3435.97                         | 14838.50                      |
| 0+629.18                 | 0.00            | 19.01         | 0.00               | 238.63           | 3435.97                         | 15077.14                      |
| 0+638.12                 | 0.00            | 0.00          | 0.00               | 84.93            | 3435.97                         | 15162.06                      |

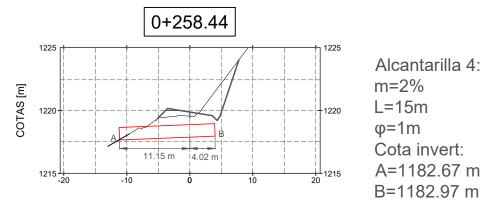

Ev 1:300


Ен 1:600

| ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERIA Y CIENCIAS DE LA TIERRA           |                                                                        |                                             |                   |  |  |  |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------|-------------------|--|--|--|--|
| Estudios y Diseños de las áreas para el desarrollo urbanístico<br>del Cerro Zaruma-Urcu de Zaruma |                                                                        |                                             |                   |  |  |  |  |
| Seccione                                                                                          | Secciones trasnversales desde 0+470 - 0+629.18                         |                                             |                   |  |  |  |  |
| Coordinador de materia integradora: Ing. Nadia Quijano                                            | Tutores de áreas específicas: Ing. Esther Vásquez                      | Estudiantes:                                | Fecha de entrega: |  |  |  |  |
| Tutor de área de conocimiento: Dr. Miguel Chávez Ing. Eduardo Santos                              | Ing. Estrei Vasquez<br>Ing. Carlos Rodríguez<br>Dis. Int Carola Zavala | Sr. Sebastián Suárez<br>Sr. Rafael Barcenes |                   |  |  |  |  |




### Disposición de tuberias de alcantarillado






### Nota técnica:

Captación de agua por medio de sumideros





|                                                                                                   |                                                                         | ITECNICA DEL<br>CIENCIAS DE LA TIER  |                              | RAL              |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|------------------------------|------------------|--|--|
| Estudios y Diseños de las áreas para el desarrollo urbanístico<br>del Cerro Zaruma-Urcu de Zaruma |                                                                         |                                      |                              |                  |  |  |
| Contenido:                                                                                        | bicación de tubería                                                     | as de alcantarillad                  | 0                            |                  |  |  |
| Coordinador de materia integradora:<br>Ing. Nadia Quijano                                         | Tutores de áreas específicas: Ing. Esther Vásquez Ing. Carlos Rodríguez | Estudiantes:<br>Sr. Sebastián Suárez | Fecha de entrega: 22/01/2021 |                  |  |  |
| Tutor de área de conocimiento:<br>Dr. Miguel Chávez<br>Ing. Eduardo Santos                        | Dis. Int. Carola Zavala                                                 | Sr. Rafael Barcenes                  | Lámina:<br>V-7/7             | Escala:<br>1:600 |  |  |