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Abstract

In recent years, there has been an increasing demand for high-resolution images, especially in
the field of security and surveillance. Super-resolution is a technique that can be used
to improve the resolution of an image. Most of these techniques are based on using
a single image or a set of low-resolution images from the visible spectrum, where the
high-resolution image is reconstructed by using a model that considers a degradation process.
Nevertheless, images from the visible spectrum are limited by the atmospheric conditions
and the availability of light.

While human visual perception is limited to the visual-optical spectrum, machine vision
is not. This dissertation presents the use of images from the long-wavelength infrared spectral
band, namely thermal images, for the purpose of super-resolving them. Thermal images are
not affected by atmospheric conditions, and they can be acquired even in low-light conditions.
In order to obtain a high-resolution image from a set of low-resolution thermal images,
deep learning techniques are used, specifically convolutional neural networks. The results
show that improving the thermal images’ resolution is possible while preserving the scene’s
main features. Two main paths are tackled in the present work, the single and multi-image
super-resolution, where a dataset with an extensive collection of images is collected to
address this purpose. One of the main properties of this thesis is to show that thermal image
super-resolution can be tackled by using the proposed architectures and validating them with
the acquired public dataset used in several challenges.

Keywords: super-resolution, deep learning, convolutional neural networks, thermal
images, single-image/multi-image super-resolution, supervised/unsupervised approaches
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Chapter 1

Introduction

1.1 Motivation

The world has seen great software and hardware technology advancements in the past decade.
This has allowed industrial sectors to make use of modern technology to create electronic
devices such as computer systems, smartphones, tablets, and other devices at a relatively low
cost. In addition, the manufacturing methods of camera sensors have been highly developed,
resulting in high-quality digital cameras.

The electromagnetic spectrum is divided into several bands, such as X-rays, ultraviolet,
visible, infrared, and radar, among others. The visual-optical (VIS) spectrum is the range of
wavelengths of reflected light that humans can see. VIS-sensitive cameras can capture this
light in either RGB color images or gray-value images. These cameras are used in computer
vision to automatically process images and videos for various applications. The limitations
of human perception in poor weather or low illumination conditions can be handled through
technological advancements in thermographic imaging. All objects emit infrared radiation by
themselves, independently of any external energy source, and depending on the temperature
they emit a different wavelength in the long-wavelength infrared spectrum (i.e., thermal).

There exist different sub-division schemes for the infrared region in the different scientific
fields, but the common scheme is shown in Fig. 1.1, where it has five regions, the near (NIR:
Near-infrared), short (SWIR: Short-wavelength infrared), middle (MWIR: Mid-wavelength
infrared), long (LWIR: Long-wavelength infrared) and far (FIR: Far-infrared) spectral bands,
where the Long-wavelength infrared is also known as Thermal InfraRed (TIR) [27]. Fig. 1.2
presents images captured from different spectral band of distinct scenarios. The research
work on this thesis is focused on the usage of TIR images, which is motivated by the facts
mentioned below.
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NIR SWIR MWIR LWIR FIR

0.7 1.4 3 8 15 1000 (μm)

Thermal region

Infrared spectrum range

VIS

Fig. 1.1 Overview of the visible and infrared range in the electromagnetic spectrum.

Camera sensors can capture information of the electromagnetic spectrum. Visible cameras
capture visible light and represent it as greyscale or RGB images. Infrared radiation
is not visible to the human eye but can be detected by its effects on heat using an
infrared-sensitive camera. This type of radiation is first discovered in the 1800s by astronomer
Sir William Herschel. In 1929, British scientists leveraged this discovery to develop the
first infrared-sensitive camera. This camera is designed for an anti-aircraft defense system.
Passive sensors, like thermal cameras, can capture the information of the TIR spectral band;
they capture the thermal-infrared radiation emitted by all objects with a temperature above
absolute zero, based on object heat emission. No external illumination is required, such as
natural or artificial lights. Thermal information can provide valuable extra information to the
visible one (i.e., RGB camera), because it can detect objects that are not visible to the human
eye. Furthermore, thermal images are not affected by the presence of artificial lights, such
as streetlights, headlights, or flashlights. Meanwhile visible images can not capture nothing
in total darkness, thermal cameras are not affected by this lack of illumination and do not
depend on any external energy source. Fig. 1.3 shows a clear example of the pro and cons of
thermal images; this figure shows two images from the same scene captured with a visible
spectrum and a thermal camera, where the thermal image is represented as a grayscale image,
with dark pixels for cold spots and the whites one for hot spots. In the figure mentioned
above, a sitting person inside the garage is more distinguished in the thermal image, while in
the visible spectrum, it is almost impossible to distinguish him, but the thermal image has a
resolution lower than the visible image.

In recent years, the infrared imaging field has grown considerably; nowadays, there is a
large set of infrared cameras available in the market (i.e., some of the most well-known brands
are: FLIR1, Axis2, among others) with different technical specifications, lens, and costs.
Innovative use of infrared imaging technology can, therefore, play an essential role in a wide
range of various applications, such as medicine, military defense, surveillance and security,
agriculture, building inspection, fire detection, among others, as well as detection, tracking
and human recognition. However, thermal cameras have poor spatial resolutions compared

1https://www.flir.com
2https://www.axis.com

https://www.flir.com
https://www.axis.com
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(a) X Ray (b) Visible

(c) NIR (d) Thermal (LWIR)

Fig. 1.2 Images captured from different spectral bands.

with RGB cameras, and depending on the thermal camera’s specifications, the cost can vary
between $200 till more than $20000 USD; the latter one is based on active technology with a
cooled detector integrated using a cryocooler, providing better resolution and higher frame
rate. On the contrary, cheap thermal cameras have smaller resolution than commercial RGB
cameras, which can be 160×120 and 1280×1024, respectively. This low-resolution, at a
moderate price, is a big limitation when thermal cameras need to be used for general-purpose
solutions. In order to improve the overall quality of low-resolution images, Super-Resolution
(SR) techniques are commonly used. Lasting research among Computer Vision community
has been focused on SR techniques specifically for thermal images where there has been a
major shift in recent years.

Image SR refers to the estimation of high-resolution (HR) image/video from a
Low-Resolution (LR) of the same scene, in general with the use of digital image processing
and Machine Learning (ML) techniques. SR has also important applications in a wide range
of domains, such as surveillance and security (e.g., [136], [87], [102]), medical imaging (e.g.,
[78], [97],[46]), object detection in scene (e.g., [29]), among others. Actually, the possibility
of obtaining a SR image has been largely exploited in the visible spectrum domain, where
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Fig. 1.3 Visible and thermal images of the same scene at night. (left) captured with a RGB
camera, and (right) captured with a thermal camera. Visible image has higher resolution than
thermal.

different super-resolution approaches have been proposed from a conventional interpolation
(e.g., [22], [52], [122]), but recently the development of deep learning techniques, have
witnessed remarkable progress achieving the performance on various benchmarks of SR.

Learning-based super-resolution methods generally work by down-sampling and adding
both noise and blur to the given images. These noisy and blurred poor quality images,
together with the originally given images, which are considered as the ground truths, are
used in the training process. The training process mentioned above has been chiefly used to
tackle the super-resolution problem. However, there are few recent contributions where the
training process is based on the usage of a pair of images (low and high-resolution images)
obtained from different cameras (e.g., [49]); as mentioned above, the poor resolution of
thermal cameras, due to physical limitations, could be improved by using new algorithms
with learning-based super-resolution methods, allowing to increase image resolution.

Although the use of thermal imaging is not something new, and conventional
super-resolution techniques (i.e., bicubic interpolation) have been used for many years
in the visible spectrum, the use of deep learning techniques for super-resolution is something
that has emerged in recent years, most of them are focused only on the visible spectrum. This
thesis seeks to use deep learning techniques to obtain super-resolution representations in
the thermal spectrum, allowing the use of high-resolution images in any of the applications
mentioned above. In addition to the poor spatial resolution of thermal cameras, there is
another limitation of this technology; this is related to the low frame rate. The 30 fps are
generally used in the visible spectrum in a general blow. This low temporal resolution
is not tackled in the research work of this thesis. It is worth to mention that recover the
temperature measure of the image is also not tackled. In other words, this dissertation is
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focused on the single and multi-image spatial super-resolution problems by proposing novel
deep learning-based approaches.

1.2 Research objectives

This dissertation focuses on images from the long-wavelength infrared spectral band.
Different methods for image super-resolution using deep learning techniques are proposed
and compared to find the most suitable one for this particular subject. The following research
objectives have been formulated to achieve the goals of this thesis:

1. Evaluate architectures of different convolutional networks used for image
super-resolution in the visible spectrum.

2. Design and implement novel deep learning-based architectures to tackle the thermal
image super-resolution problem.

3. Generate datasets for validating the implemented techniques.

4. Validate implemented models and compare them with the state-of-the-art approaches.

1.3 Contributions and outline

The outline and contributions of this dissertation are:

1. Dataset (Chapter 3). For training neural networks in super-resolution, it is crucial
to have a large dataset with high-resolution images in diverse scenarios. Most of the
images available for super-resolution are from the visible spectrum. This chapter,
to go further and use Thermal Cameras, presents in detail the datasets collected in
the long-wavelength infrared spectral band in different resolutions. This setting will
provide deep learning-based models with sufficient data to train and evaluate their
results.

2. Single-Image Super-Resolution (Chapter 4). Once the thermal cameras are used,
restoring a high-resolution image from a low-resolution image is tackled from
different approaches. This chapter describes the uses of supervised and unsupervised
deep-learning techniques. The proposed models make thermal image super-resolution
achieve outstanding results.
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3. Multi-Image Super-Resolution (Chapter 5). In this chapter, multiple low-resolution
images are used to restore a high-resolution image. The main idea is to take several
images from the same scenario (with a little bit of shift, i.e., rotation and translation),
grab the main features of each burst image, and recreate a high-resolution image.
In contrast to single image from Chapter 4, multi-image can capture more critical
information for image restoration. The model is trained with a simulated dataset.

The contributions mentioned above have been presented at conferences and a scientific
journal. More details about these publications can be found in Chapter 6.

The thesis is organized as follows. Chapter 2 summarizes relevant works related to the
proposed approaches into six sub-fields: i) Thermal image application areas, ii) Deep learning,
iii) Datasets, iv) Evaluation metrics, v) Single image super-resolution and vi) multi-image
super-resolution. Chapter 3 describes the acquired thermal dataset using different thermal
cameras. Chapter 4 presents the single image super-resolution (SISR) with the proposed deep
learning-based models using supervised and unsupervised methodologies. It also tackles
multiple challenges in thermal image super-resolution. In Chapter 5, on the contrary to
Chapter 4, a novel deep learning method based on the usage of multiple input images is
proposed. Finally, in Chapter 6, the conclusions of the thesis are given and the future works
presented.



Chapter 2

Literature Review

This chapter starts by reviewing some applications of thermal images. Then, it reviews the
traditional methods used for upsampling. After that, a general overview of deep learning
techniques is given. Then, common datasets and metrics used for training and testing are
reviewed. Single and multi-image super-resolution techniques are then detailed. Finally,
thermal image super-resolution challenge is tackled. Most reviewed approaches are intended
for visible spectrum images while this dissertation’s most relevant methods are for thermal
image super-resolution.

2.1 Application areas

Human visual perception is limited to the visible spectrum. Being able to ’see’ in other parts
of the electromagnetic spectrum (infrared) can provide a lot of information that is currently
hidden. Having access to the temperature of a given scene represents an attractive feature for
many applications (e.g., detection, tracking, medicine, agriculture, among others) since it
provides additional information that is not available in the visible spectrum. Applications
that can benefit from using infrared imagery range from biometrics to surveillance and from
robotics to automotive.

In the studies of warm-blood wild animals, [11] uses thermal imaging for the disease’s
diagnosis; where depending on blood circulation, temperature distributed over the animal
body changes and can be detected. [130] uses thermal cameras to reveal inflammations in
some part of the animal’s body (e.g., the leg), or also to know the animal’s health (e.g., [42]).
In the food industry, [31] makes uses of thermal images because it is a non-invasive and
non-contact method to measure the temperature of the fruit and vegetable, and get additional
knowledge on information about the quality, such as damage and bruises. Thermal images
in inanimate objects depend on the energy that generates heat on them. In [32], the authors
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Fig. 2.1 Overview of some thermal image applications (security, medical, industrial).

propose to use of thermal images for building inspection, for the detection of heat loss.
Meanwhile, [48] proposes it for industrial applications such as automatic issues detection
in electrical installation or diagnosis for an object. Another application, proposed by [86]
and [86], used for fire detection and military reasons (locating gunfire or hidden people),
respectively. According to [139], thermal images can be also used for fault diagnosis methods
on rotor-bearing systems.

Video surveillance is an application with great diversity. Thermal images are also
widely used in detecting and tracking humans, which is the first step in many surveillance
applications because it allows us to ’see’ at night. In [124], authors propose an intruder
detection system adjusting a thermal camera to detect objects in the human’s temperature
range and then classifying the objects based on their shape. [106] proposes a system of fall
detection using just a low-quality thermal camera. Fig. 2.1 shows three examples of thermal
applications (i.e., surveillance, medicine and driving assistance). It is important to mention
that with higher spatial resolution of a thermal image, better application’s performance.

However, many applications of computer vision still require high-resolution images,
which often exceed the capabilities of HR digital cameras. Optical resolution is a measure of
the ability of a camera system or its component to produce detailed images.

2.2 Upsampling methods

Before mentioning deep learning-based methods, it is worth to understand how traditional
methods work (increasing the resolution of an image by adding more pixels). Over the last
few decades, various interpolation methods have been proposed (e.g., [4, 52]). These methods
have a relatively low complexity, but do not produce good results because they do not take
into account the underlying structure of the image. Typically, it is done by upsampling the
low-resolution image and then using a filter to smooth the appearance.

Interpolation-based methods refer to resizing an image by adding more pixels between
existing pixels. This is done by using an interpolation function that estimates the value of
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new pixels based on the importance of existing pixels. The most widely used interpolation
methods are (see Fig. 2.2):

• Nearest neighbor interpolation is the simplest and fastest interpolation method, it
requires the least processing time. This method just copies available values, not
interpolate; has the effect of simply making each pixel bigger. Still, it does not produce
good results and it should not be used in high resolution zooming.

• Bilinear interpolation is also simple interpolation method, and it works by performing
two linear interpolations and also by using the weighted average of the 4 nearest pixels
to estimate the value of a new pixel. This method makes images look much smoother
than nearest neighbor interpolation. This technique reduces the visual distortion.

• Bicubic interpolation is a more sophisticated interpolation method, as compare to
bilinear interpolation, which takes only 4 pixels (2×2) into account, this interpolation
uses the weighted average of 16 nearest pixels to estimate the value of a new pixel.
This method generates sharper images than the previous two methods, and is the ideal
combination of processing time and output quality.

Fig. 2.2 Illustration of traditional interpolation-based methods.
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Fig. 2.3 The architecture of a typical convolutional neural network.

2.3 Deep learning

Deep Learning (DL) is a sub-class of machine learning that uses artificial neural network to
learn complex relationships among data [14, 37]; its nature is on extracting the features from
different types of data, supervised and unsupervised. DL has been widely used in computer
vision, natural language processing, and many other fields [59, 39, 65].

Convolutional Neural Network (CNN) is a class of deep neural networks, mostly applied
to analyze images. The convolutions layers are the core operations of a CNN; acting as a
feature extractor and consist of a set of learnable kernels. Input images are two-dimensional
data (matrix), where convolutions take advantage of doing a dot product with the kernels,
producing a feature map with the most representative characteristic at some spatial position in
the input. The illustration in Fig. 2.3 represents a typical CNN for classification. Transposed
convolutional layers and sub-pixel convolutional layers are used in deep learning-based
methods. Transposed convolutional layers are used to upsample an image by adding more
pixels between existing pixels. This is done by using a convolutional layer with a stride of 2.
Sub-pixel convolutional layers are used to upsample an image by adding more pixels between
existing pixels. This is done by using a convolutional layer with a stride of 1 and a kernel size
of 3. The down-sampling layer (a.k.a. Pooling Layer) has several non-linear functions that
can be used, the most common is the max pooling; it divides the two-dimension input into
several sub-areas, and for each sub-area, it takes the maximum value. These layers reduce the
spatial dimension, by reducing the number of parameters being reflected in the computational
cost.

Even though, CNN were proposed in the 1980s [26], it was not until 2012 that they
became widely known after the success of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). The ILSVRC is an annual competition organized by the ImageNet
project in which teams compete to correctly classify and detect objects in images. The
competition is based on a subset of the ImageNet dataset [13], which contains 1.2 million
images with 1000 object categories; where AlexNet [40] won the competition by a large
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Fig. 2.4 The architecture of the VGG-16 network [105].

margin, using a deep CNN with 5 convolutional and three fully-connected layers. Since
AlexNet, many CNN architectures have been proposed, such as VGG [105], ResNet [36],
DenseNet [43], U-Net [98], MobileNet [41], among others for different computer vision
applications such as image classification, object detection, edge detection, super-resolution,
and semantic segmentation. Some of them are going to be mentioned below.

The Visual Geometry Group (VGG) proposes six CNN architectures, where VGG-16 and
VGG-19 are the most used in different computer vision tasks. The VGG-16 is composed of
13 convolutional layers and 3 fully connected layers, while the VGG-19 has 16 convolutional
layers and 3 fully connected layers. An illustration of the VGG-16 version can be appreciated
in Fig. 2.4. VGG architecture scored the second place in the ILSVRC 2014 competition
[100].

The Deep Residual Network for Image Recognition (ResNet) is proposed by Kaiming
He et al. in 2015 [36]. As VGG, ResNet approach also has different versions according to
the depth of the network. ResNet-50, ResNet-101, and ResNet-152 are the most used in
different computer vision tasks. ResNet-50, shown in Fig. 2.5, has been frequently used in
the literature. ResNet won the first place in the ILSVRC 2015 competition [100].

U-Net, proposed by Olaf Ronneberger et al. in 2015 [98], is a fully convolutional network
for image segmentation. U-Net is composed with 23 convolutional layers, designed with
an encoder and decoder path. The encoder path is a typical CNN that is used to capture
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Fig. 2.5 The architecture of the ResNet-50 network [36].

the context in the image. The decoder consists of an upsampling process to enable precise
localization. This architecture won the International Symposium of Biomedical Imaging
(ISBI) cell tracking challenge. Google research proposes two CNN architectures that are
widely used, Inception v3 [112] and Xception [10], with 23 and 22 million of parameters,
respectively; both approaches use depthwise separable convolution instead of traditional
convolutional layers.

Deep learning-based methods for image super-resolution (SR) have shown great promise
in recent years. These methods are based on convolutional neural networks that are trained to
map low-resolution images to high-resolution images. The main objective of deep learning is
to develop mathematical models that enable artificial neural networks to learn by processing
counterfeit information and knowledge in the human brain. The learning process on an
artificial neural network is an iterative process that computes the loss function measuring the
distance between the predicted value and the target value.

Convolutional Neural Networks are considered to answer the research questions. This
decision has been made because CNN allows to get good representations of image features,
which is the primary goal of computer vision. It has overcome the limitations of traditional
upsampling methods. DL methods learn the mapping function from a large dataset of images;
this allows them to capture the underlying structure of the image and produce better results.

2.4 Datasets

In order to train and evaluate proposed approaches in the visible spectrum, there are several
public datasets available; the most widely and recently released dataset for visible image
restoration is DIV2K [113], which contains high-quality (2K resolution) images split up
into 800 images for training, 100 for testing, and 100 for validation. Another large-scale
dataset is the Flickr2K dataset, which contains 2K images downloaded from Flickr. Most
of the approaches in the literature use common benchmark datasets for evaluating their
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Dataset Avg. Resolution Amount Format Content
Set5 [2] 313×336 5 PNG baby, bird, butterfly, head, woman

Set14 [133] 492×446 14 PNG humans, animals, insects, flowers...
BSD100 [71] 435×367 100 JPG animal, building, food, landscape...

Urban100 [44] 984×797 100 PNG architecture, city, structure, urban...
DIV2K [113] 1972×1437 1000 PNG environment, flora, fauna, people...

General-100 [21] 435×381 100 BMP animal, daily necessity, food, people...
L20 [114] 3843×2870 20 PNG animal, building, landscape, people...

Manga109 [72] 826×1169 109 PNG manga volume
OutdoorScene [117] 553×440 10624 PNG animal, building, grass, mountain...

T91 [127] 264×204 91 PNG car, flower, fruit, human face...

Table 2.1 List of some public visible image datasets commonly used for super-resolution
training and benchmark.

performance, and all of them focus on the visible spectrum domain. Table 2.1 presents a
list of the most commonly used visible spectrum dataset used by the SR community as a
benchmark on super-resolution. These datasets provide HR images under different categories
(e.g., animal, building, food, landscape, people, flora, fauna, car, etc.) with different images.
Some even include low-resolution (LR) and high-resolution (HR) image pairs, while others
only provide HR images. Some other datasets, intended for other vision task, have been also
employed for SR, such as CelebA [67], VOC2012 [24], ImageNet [13], MS-COCO [66],
BSDS300 [71], BSD500 [1], among others.

Regarding thermal images, in the last years some small-scale datasets have been proposed
in the literature. In [12], a dataset with 284 thermal images is generated, with a resolution
of 360×240. Images in this dataset have been acquired with a Raytheon 300D camera,
images have been taken on their university campus at a walkway and street intersection,
capturing images over several daytime and weather conditions. In [81], a 15224 thermal
image dataset has been proposed, with a resolution of 164×129. This dataset is acquired with
an Indigo Omega imager mounted on a vehicle, driving in outdoors urban scenarios. In [47] a
FLIR-A35 is used to obtain more than 41500 thermal images, with a resolution of 320×256.
In [9] a thermal dataset with 138 images is acquired, referred it as T-138, with a resolution
of 640×480 using a FLIR T640 with a 41mm lens. A HR dataset is presented in [125]; the
dataset contains seven different scenes, most of them collected with a FLIR SC8000, with a
complete resolution of 1024×1024. The dataset consists of 63782 frames with thousands of
recording objects; it is one of the enormous amounts of HR thermal images available. Most
of the thermal image datasets mentioned above are usually designed for object detection and
tracking; some others for applications in the biometric domain or medical applications are
used (e.g., [8], [88]); and just a few of them are intended for super-resolution tasks. Also,
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Fig. 2.6 Illustration of a pixel-wise comparison for metrics evaluation between GT and SR.

most of them contain low-resolution images, and others are from the same scenario, which
gives poor variability.

Additionally, a dataset is proposed and acquired in [108], referred to as PROBA-V; which
is composed of several images taken by the PROBA-V satellite 1. The satellite provides
images in two resolutions with different frequency bands; red visible (RED) and Near IR
(NIR) spectral bands at 300-m (128×128 grayscale image) and 100-m (384×384 grayscale
image) resolution. [75] presents SEN2VENµS, an open-data licensed dataset composed of
10 m and 20 m cloud-free surface reflectance patches, also acquired with a satellite. This
dataset covers 29 locations on earth with a total of 132955 patches of 256×256. Furthermore,
the use of generated noised downsampled images for multiple image super-resolution has
been proposed (e.g., [3, 85]) to tackled the generation of a SR with the iterative process of
multiple LR input images of the same scenario.

2.5 Evaluation metrics

Deep convolutional neural networks need evaluation metrics to learn the end-to-end mapping
between an input and output image, in this case, the mapping of a reconstructed low-resolution
to a high-resolution image or ground truth (Fig. 2.6). Even though there are several metrics,
the most widely used quantitative metrics to evaluate the performance of the super-resolution
methods in the single image super-resolution literature (e.g., [6, 56, 111, 127]) are: i)
Peak Signal-to-Noise Ratio (PSNR) and ii) Structural Similarity Index Metric metrics
(SSIM) [119].

Regarding PSNR metric, it is one of the basic and most popular denoising metrics
and uses reconstruction quality measurement of lossy transformations and it has a higher
correlation with the human perception. Eq. 2.1 show its formulation:

1https://esa.int/Applications/Observing the Earth/Proba-V



2.5 Evaluation metrics 15

MSE =
1
N

N

∑
i=1

(
Ii − Îi
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where I refers to the given ground truth image with N pixels, and Î is the reconstructed image
or the SR output image. MAX equals the highest pixel value of the image in general cases.
MSE corresponds to Mean Square Error operation.

Respecting SSIM metric, as shown in Eq. 2.2, it is a perception-based metric that is based
on the independent comparisons of luminance, contrast, and structure:
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where µI and σI correspond to the luminance and the contrast, both are estimated as the mean
and standard deviation of the image intensity; and C represents constant relaxation terms for
avoiding instability. A higher score of PSNR or SSIM means better restoration fidelity.

Image quality assessments, focused on the perception of human viewers, are avoided
in the current thesis due to these measures are not necessarily consistent in the case of
thermal images. Furthermore, this is an expensive and time-consuming, and these methods
are based on humans’ perception, i.e., how realistic the image looks. Other methods, less
popular SR metrics, for measuring image quality include the Multi-Scale Structural Similarity
(MS-SSIM) [121] and the Feature Similarity Indexing Method (FSIM) [137]. These methods
offer more flexibility than the single-scale SSIM in incorporating the variations of viewing
conditions. Natural Image Quality Evaluator (NIQE) [76] and the Perceptual Quality Index
(PQI) [80] are also proposed to assess the quality of images. NIQE makes use of measurable
deviations from statistical regularities observed in natural images without exposure to
distorted images. PQI uses a combination of human visual system models and machine
learning to predict the perceptual quality of images.

Although there are different evaluation techniques to assess SR results [16], in general,
PSNR and SSIM are considered quantitative metrics to evaluate the performance of different
approaches [73]. Even though PSNR and SSIM are not the best metrics to measure the quality
of the restored thermal images (that are acquired from the LWIR spectral band), these images
are mostly represented in grayscale images so that these measure metrics can be used on
them. Other types of evaluations could be performed to measure the improvements in the
quality of the SR generated images (e.g., visual task-based evaluation metrics in medical
imaging [51]) but these task-based metrics are not tackled in the present work.
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2.6 Super-Resolution

Super-resolution is the process of recovering high-resolution images from low-resolution
images, also known as image up-scaling or image enhancement. Super-resolution can be
used to improve the quality of images or frame rate. Even though super-resolution is a
well-studied problem in the field of image processing, it is still an active area of research
due to the challenges involved in recovering high-resolution images from low-resolution
images. In this process, there are mainly two types of super-resolution methods: single image
super-resolution and multi-image super-resolution which are described in the following
sections.

2.6.1 Single Image Super-Resolution

Although not intended for super-resolution, image enhancement approaches are related in
the sense that these approaches tackle the process of restoring a given image to have a more
suitable representation for the desired application. Generally, image enhancement covers
many techniques to enhance the visual appearance of an original image for machine analysis
or better appearance for humans. The main point of image enhancement is to restore the
image with the same resolution where it has "noise", blurred focuses, and colorless, among
others.

Like in image enhancement, the Single Image Super-resolution (SISR) aims to restore
an image, not necessarily noisy or blurred images, but images with low-resolution being
transformed into a high-resolution image. The SISR has been extensively studied during the
last decades, and in the literature, there are many methods proposed to solve this problem;
recently, different deep learning architectures have been proposed to solve this problems,
obtaining better results than conventional methods.

Super-resolution approaches have different techniques, such as: Linear, Residual,
Recursive, Progressive, Densely Connected, Multi-branch, Attention Based, Generative
Adversarial Networks architecture, where there are mainly four model frameworks based on
the employed upsampling operations for super-resolution:

1. Pre-upsampling SR: This framework first upsamples the low-resolution image using
interpolation methods such as bicubic interpolation or bilinear interpolation. The upsampled
image is then fed into a deep neural network for further processing (Fig. 2.7 ). This framework
is simple and fast, but it does not produce good results.

2. Post-upsampling SR: In order to improve the computational efficiency, this framework
first uses a deep neural network to map the low-resolution image to a high-resolution
feature map. The feature map is then upsampled using interpolation methods such as bicubic
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Fig. 2.7 Pre-upsampling SR illustration [120].

interpolation or bilinear interpolation (Fig. 2.8). This framework is more effective than the
pre-upsampling SR framework because it uses a deep neural network.

Fig. 2.8 Post-upsampling SR illustration [120].

3. Progressive upsampling SR: Even though post-upsampling reduced the computational
cost, it has some overcoming. The upsampling is done in only one step, which increases the
learning difficulty for large scaling factors. Also, it requires training an individual SR model
for each scale, avoiding the multi-scale option. To overcome this drawbacks, a cascade of
convolution layers and progressively reconstructed HR images is proposed (Fig. 2.9). This
reduces the learning difficulty by decomposing it in several tasks.

4. Iterative up-and-down sampling SR: To capture the mutual dependency between
LR-HR image pairs, an iterative back-projection is introduced (Fig. 2.10). This tries to
iteratively apply back-projection refinement exploiting the up-and-down sampling layers,
which connects upsampling and downsampling layers alternately and reconstructs the final
HR result.

The use of convolutional neural networks has shown a great capability to increase
the quality of SR results [129], where several CNN approaches have been implemented
using different architectures. Dong et al. [18], [19] firstly propose a super-resolution using



18 Literature Review

Fig. 2.9 Progressive upsampling SR illustration [120].

Fig. 2.10 Iterative up-and-down Sampling SR illustration [120].

convolutional neural networks (SRCNN) to learn an end-to-end mapping between the
interpolated LR images and their HR counterparts. It uses traditional methods (e.g., bicubic
interpolation) for having the same of HR output image, then deep CNNs are applied on these
images to reconstruct high-quality details, reducing the learning difficulty; this first approach
archives state-of-the-art performance and has become one of the most popular frameworks.
However, using predefined upsampling, traditional methods introduce side effects like noise
amplification and some blurring, and the cost of time and space is much higher than other
frameworks. For better performance and increase the efficiency, a fast super-resolution
convolutional neural network is proposed by [21], which performs a fast SRCNN extracting
feature maps at the low-resolution image and upsample the image at the last layer; the
authors introduce a deconvolution layer at the end of the network and adopt a smaller filter
size but more mapping layers. Inspired by SRCNN, depth networks start to appear, and
the first one is VDSR [54], which proposes a very deep network with 20 layers to extract
features from the low-resolution image. The VDSR network is trained to minimize the MSE
between the HR image and the reconstructed image. Same wise is proposed by [135] using a
ResNet-based architecture to extract features from the low-resolution image and stacking
more convolutional layers with residual learning [36]. A Deep Recursive Convolutional
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Network (DRCN) is proposed by [55], where it applies the same convolution layers multiple
times; the advantage of this method is that the number of parameters remains constant for
more recursions. Another deep CNN is proposed by [70], referred to as RED, which uses
a recurrent neural network to extract features from the low-resolution image. To speed up
most of the training process, [63] proposes an architecture, referred to as EDSR, which
removes the batch-normalization layer and takes advantage of residual learning. Yamanaka
et al. [126] propose a CNN-based approach, where it uses a deep CNN with residual net,
skip connections, and network-in-network and gets a computation complexity of at least ten
times smaller than state-of-the-art (e.g., DRCN) reaching similar results.

Han et al. [35] propose a novel multi-scale spatial and spectral fusion architecture,
taking advantage of the rich spatial context in HR-RGB and the spectral attribute in
LR-HyperSpectral image, with a spatial structure reservation pathway for SR. Regarding
thermal images, a CNN-based approach has been introduced by Choi et al. in [9],
which is inspired by the proposal in [21]. The authors in [9] compare the accuracy of a
network trained in different image spectral bands to find the best representation of thermal
enhancement; concluding that a grayscale trained network provides better enhancement than
the MWIR-based network for thermal image enhancement. On the other hand, Lee et al. [60]
also propose a convolutional neural network based on image enhancement for thermal images.
The authors evaluate four RGB-based domains, namely, gray, lightness, intensity, and V (from
HSV color space) with a residual-learning technique. The approach improves the performance
of enhancement and speed of convergence. The authors conclude that the V representation is
the best for enhancing thermal images. In [64] the authors propose a parallelized 1x1 CNNs,
named Network in Network, to perform image enhancement with a low computational cost
for image reconstruction. In most previous approaches, thermal images are not considered
during the training stage, although intended for thermal image enhancement; proposing to
train a CNN-based approaches using images from the visible spectrum at different color
space representations (e.g., grayscale, HSV). Yang et al. [128] propose a 3D convolution
architecture for hyperspectral image super-resolution using wavelets prediction techniques,
while [61] uses a 3D modify architecture, based for colorization, used in SR task.

Most of the aforementioned CNNs aim at minimizing the mean-square error between
the SR and the ground truth (GT) image, tending to overthrow the high-frequency details
in images. In other words, a supervised training process using a pair of images is followed.
The main drawback of such approaches lies in the need of having pixel-wise registered SR
and GT images to compute the MSE. As mentioned above, in most of the cases, the SR
image is obtained from an image down-sampled from the GT. Since it is difficult to collect
images of the same scene but with different resolutions and to overcome the pixel-wise
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registration limitation between SR and GT images, unsupervised approaches have been
proposed, where unpaired LR-HR images are provided for training. For instance, [104]
proposes a single image super-resolution approach, referred to as SRGAN, which achieves
impressive performance with respect to the state-of-the-art approaches. This approach is
inspired by the seminal Generative Adversarial Network (GAN) presented in [30]; then,
[118] proposes an improved version of SRGAN, denominated ESRGAN, with a better
Residual-in-Residual Dense Block (RRBD), removing the batch-normalization and using
a Relativistic average discriminator (RaGAN). In recent literature, different unsupervised
training processes have been presented for applications such as transferring style [5], image
colorization [74], image enhancement [7], feature estimation [109], among others. All these
approaches are based on two-way GANs (CycleGAN) networks that can learn from unpaired
datasets [140]. CycleGAN can be used to learn how to map images from one domain (source
domain) into another domain (target domain); this functionality makes CycleGAN model
appropriate for image SR estimation when there is not a pixel-wise registration.

The main challenge of SISR is to find the mapping between the LR and HR images, which
is an ill-posed problem, where in the computer vision community this is still an active research
field (e.g., [84], [34], [107], [123]). Several applications in different fields can benefit from
SR representations, for instance security (e.g., [136], [102]), medical imaging (e.g., [78]),
object detection (e.g., [29]), astronomical images (e.g., [68]), among others. In recent years,
long-wavelength infrared (LWIR) images, a.k.a thermal images, have shown to be useful
to efficiently solve problems from different domains (e.g., security monitor [99], medical
imaging [38], car assistance [17], visual inspection [132], human detection [33], among
others) because thermal images have the information of the radiation emitted by the surface
of an object (temperature above zero [28]) captured by thermal cameras. As mentioned above,
thermal cameras play an important role in different areas and have increased during the last
two decades, in particular, thermal imagery, due to the cost reduction and availability of
thermal cameras. Unfortunately, most affordable thermal cameras have poor resolution, and
high-resolution ones are still expensive nowadays. Despite the continuous increase in the
use of thermal cameras, there is still a limitation on image resolution. A possible way to
overcome this limitation could be to develop a CNN-based architecture to generate a HR
representation from a given LR image. Single thermal image super-resolution has become an
active research topic in the computer vision community.

2.6.2 Multi-Image Super-Resolution

Most of the approaches mentioned in the previous section expose the use of deep learning
techniques for single image super-resolution and include image restoration and noise
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reduction since there are problems that are intrinsically related to the SR process. However,
another research topic that will be considered in this thesis consists on using a set of
LR images of the same scene with sub-pixel shifts to generate super-resolution images.
Multi-Image Super-Resolution (MISR) involves extracting features from several LR images
from the same scene to reconstruct a HR image [131]. MISR is also referred to as Multi-Frame
Super-Resolution (MFSR). MFSR is typically regarded as a problem that lacks a unique and
stable solution [25], as the HR image is degraded to the LR image by an unknown source. This
unknown source can for instance, be modeled by considering a combination of atmosphere
blur, camera blur, motion effect, and downsampling (Fig. 2.11). MISR approaches must
often address some images inconsistencies that increase the complexity of their registration.
Image registration is the process of aligning two or more images of the same scene. This is
done by finding corresponding points between the images and then transforming them to
be lineup. Image registration can be used for various purposes, such as motion estimation,
image stitching, and super-resolution.
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Fig. 2.11 Illustration model employed in most MISR techniques for multi LR generation.

SR image reconstruction approaches can be categorized into three classes:
frequency-domain, interpolation-based, and regularization-based approaches [53].

• Frequency-domain approaches are based on the Fourier Transform (FT) of the LR
images. The FT of the LR images is multiplied by a filter that is designed to enhance
the high-frequency components. The Inverse Fourier Transform (IFT) is then applied
to the filtered LR images to obtain the HR image.

• Interpolation-based approaches are based on the interpolation of the LR images. The
interpolation is done by using a set of interpolation kernels that are applied to the LR
images. The interpolated LR images are then combined to generate the HR image.

• Regularization-based approaches are based on the minimization of an objective
function that is composed of a data fidelity term and a regularization term. The data
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fidelity term is used to enforce the similarity between the HR image and the LR images.
The regularization term is used to enforce the smoothness of the HR image.

The first work in MISR is proposed by Tsai and Huang [115], based on the frequency
domain; it uses the combination of multiple images with sub-pixel displacements with
frequency-domain techniques to upgrade the spatial resolution. Then, several spatial domain
MISR techniques are considered [23] (e.g., projection onto convex sets, non-uniform
interpolation, sparse coding, regularized methods). In [50], the authors take advantages of
multiple image fusion by learning the low to high-resolution mapping using deep networks,
as shown in Fig. 2.12; where each of LR input image is subject to single-image SR using
ResNet, then these images undergoes to a registration process to determine sub-pixel shifts
between images and finally employ a genetic algorithm to optimize the hyper-parameters and
generate a SR image. Recently, a multi-image super-resolution algorithm applied to thermal
imagery has been proposed by Mandanici et al. in [69]; this approach is tested and applied to
terrestrial thermal imaging to overcome the limitation of the low resolution.

Fig. 2.12 Deep learning proposed for multiple-image super-resolution [50].

Recently, multi-image super-resolution of remotely sensed images using a novel Residual
Feature Attention Deep Neural Networks has been proposed by Salvetti et al. [101]. It
efficiently tackles MISR tasks, simultaneously exploiting spatial and temporal correlations
to combine multiple images. European Space Agency set a recent challenge on MISR to
tackle SR satellite images, where some novel architectures are proposed (e.g., [77] [15]).
Multispectral satellite image datasets (e.g., Sentinel-2, MODIS) are generally used for
tackling MISR; Lanaras et al. [58] infer all the spectral bands of multiresolution sensors in
the highest available resolution of the sensor. Also, Muller et al. [79] propose a method to
train state-of-the-art CNNs using pairs of LR multispectral and HR pan-sharpened image
tiles to create SR representations. With more data available from the multiple observation of
the scene is possible to achieve higher reconstruction accuracy than SISR approaches.
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Fig. 2.13 Proposed evaluations processes for challenges [94].

2.7 Thermal Image Super-Resolution challenges

Three editions of the Thermal Image Super-Resolution (TISR) challenge have been organized
in the Perception Beyond the Visible Spectrum (PBVS) workshop ([89, 95, 94]) of CVPR
conference. The TISR challenge aims to introduce state-of-the-art approaches for the thermal
image SR problem and evaluate and compare different solutions using the previous year
results as benchmark. In computer vision, super-resolution takes a low-resolution image
and turns it into a high-resolution image. Most techniques used for this purpose are deep
learning-based and use a downsampled image from the high-resolution image as input. This
image is then augmented with noise and blur to create a new image that is used to train
the network. This challenge consists of two evaluations using the second acquired dataset
(Th3D-1021) mentioned in Section 3.2.

In the framework of thermal image super-resolution, I have been in charge of these three
challenges in the PBVS workshop. Although it does not represent a scientific contribution
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Team Approach
Evaluation 1 Evaluation 2

×4 ×2 (MR to HR)
PSNR SSIM PSNR SSIM

AIR 34.42 0.9275 20.63 0.7657
ANT GROUP 33.64 0.9263 21.08 0.7803

NJU 34.41 0.9316 20.23 0.7506
NPU-LIFT-LAB 30.19 0.9040 23.00 0.7966

SENSEXDU 33.57 0.9201 22.68 0.7886
SISYPHUS A. 31.95 0.9165 22.34 0.7896

WZ 33.79 0.9228 22.44 0.7912
XDU-JK 34.20 0.9249 21.50 0.7754

Table 2.2 Average results for each evaluation metric of the PBVS-CVPR2022 challenge.
Bold and underline values correspond to the best- and second-best results, respectively [94].
Results from just top teams are depicted.

of this thesis, results of the last challenge are presented here just to show the evolution of
results and the architectures of the state-of-the-art.

2.7.1 Evaluations

Two kinds of evaluations are performed considering PSNR and SSIM as metrics. In
Evaluation 1, a set of 10 noisy and downsampled images obtained from HR camera (FLIR
FC-632O) of the Th3D-1021 dataset is evaluated. Gaussian noise (σ = 10%) is added,
and then the downsampling process is applied by a scale factor of ×4 to the HR image.
Figure 2.13 (a) shows an illustration of this first evaluation process.

For Evaluation 2, the ×2 SR results obtained from the input images of the MR camera
(Axis Q2901-E) are evaluated with respect to the corresponding semi-registered images
obtained from the HR camera (FLIR FC-632O). Somehow this evaluation tackles into
account two problems, first generating the SR images acquired with the MR camera, and then
mapping images from the MR domain (Axis camera) to the HR domain of another camera
(FLIR camera). Figure 2.13 (b) shows an illustration of this second evaluation process.

There were more than 100 teams registered for the challenge on the last edition
(PBVS-CVPR2022), and more than 50 submitted their final results. Top teams with higher
evaluation results are selected; whom submit their corresponding extended abstracts. The
quantitative average results (PSNR and SSIM) for each team in the two evaluations are
shown in Table 2.2 (just top teams are depitected). More quantitative results can be found on
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CodaLab Competition [83] webpage2. Next section presents details of the architectures of the
teams with the best score in each evaluation metrics in last challenge (PBVS-CVPR2022).

2.7.2 Approaches

AIR team, winner of Evaluation 1 (on PSNR); it proposes a Convolution Attached
Transformer Super-resolution Networks (CATS), as shown in Fig. 2.14, which is composed
of convolutional blocks (CBs) and transformer blocks (TBs), allowing the model to take
advantage of both the speed of the CNN-based approach and the restoration performance
of the transformer-based approach. Detail-Fidelity Attention Module (DeFiAM) [45] is
adopted instead of vanilla Residual Channel Attention Block to capture more accurate
low-frequency structures and high-frequency details. Each DeFiAM extracts low-frequency
structure and high-frequency details in a CNN-like manner. The data is then passed through
a step consisting of one Swin TB [62] and a CB, which serves to transmit information
to the subsequent TBs smoothly. The successive Swin TBs achieve high efficiency as it
handles image information that has been refined before. The reconstruction is completed by
increasing the spatial size of the data through the Re-Scale module and passing it through a
convolutional layer that maps the data from the latent space to the image space.

Fig. 2.14 Architecture proposed by AIR team (CATS) [94].

NJU team, winner of Evaluation 1 (on SSIM), proposes to use SwinIR [62] as base
model, a pre-trained model for RGB images, for thermal image super-resolution; increasing
the number of IR image channels and fed it into the SwinIR model. The output of the model
is then averaged along the channels. For the training data, the high-resolution image is added

2https://codalab.lisn.upsaclay.fr/competitions/1990

https://codalab.lisn.upsaclay.fr/competitions/1990
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with Gaussian noise and then simulated the low-resolution image by JPEG compression.
Random rotation and flip are added in training data generation. Finally, the three models are
integrated using L1, PSNR, and MSE as the loss.
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Fig. 2.15 Architecture proposed by NJU team [94].

Fig. 2.16 Architecture proposed by NPU-LIFT-LAB [94].

NPU team, winner of Evaluation 2; it proposes a method to improve the performance
of image super-resolution by leveraging domain adaptation, image alignment, and
super-resolution. The technique is designed to solve the problem of domain shift,
misalignment, and low resolution. The proposed network architecture, as shown in Fig. 2.16,
is composed of a Domain Model module [138] (for generating a domain-adjusted image),
a PWC-Net [110] (leveraged to estimate the optical flow) and a LiteISPNet [138] (to
learn the mapping between the input and the updated label); all these modules can better
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utilize the information from domain adaptation, image alignment, and super-resolution. The
self-ensemble strategy [114] is adopted to increase the model’s performance.

Fig. 2.17 Metrics evolution through all challenge editions [94].

Obtained results show the metrics’ values are getting higher each year, as shown in
Fig. 2.17. The presented approaches are all deep learning-based and use different CNN or
transformer architectures, or combinations of them. The number of participants in the last
edition is higher than in the previous years, and the results obtained from the quantitative
evaluations outperformed the results of the last two years. These results can be used as a
baseline for the following challenges editions.





Chapter 3

Dataset Acquisition

This chapter tackles the thermal camera sensor setup and the image acquisition task for
collecting different datasets that will be used throughout the thesis. Also, it introduces the
types of cameras available in the market and the ones used in this thesis.

3.1 Introduction

Although thermal cameras’ price has decreased over the past years, they are still relatively
expensive. Therefore, the setup of the thermal camera sensor is a crucial step in the image
acquisition process. This camera sensor is a passive sensor that detects the infrared radiation
emitted by objects. Infrared radiation is a type of electromagnetic radiation with a wavelength
longer than visible light. The thermal camera sensor is a non-contact sensor that can estimate
the infrared radiation emitted by objects without touching them. It can be used to measure
the temperature of things cause is related to the amount of infrared radiation emitted by the
objects.

Fig. 3.1 A FLIR A66xx cooled and a FLIR Quark 640 uncooled thermal cameras sensor.

There are many wavelengths thermal imaging camera sensor system choices in the
marketplace. In general, they can be classified into two categories according to the type of
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thermal imaging sensors (as shown in Fig. 3.1): cooled and uncooled. Cooled sensors are
kept at an extremely low temperature, while uncooled sensors operate at ambient temperature.
Cooled sensors are more sensitive and reliable, but expensive than uncooled ones.

The main advantages of uncooled thermal cameras sensor are that they are cheaper and
easier to use than cooled thermal cameras sensor. However, the cooled ones have many
advantages over uncooled cameras, including better image quality, faster speed, and the
ability to see tiny temperature differences. For deciding which type of thermal camera sensor
to use, it is essential to consider the specific needs of the application.

In this thesis, three different datasets have been acquired using uncooled thermal camera
sensor due to the reasons mentioned above.

3.2 Dataset generation

To test the development of the thesis work and try to overcome the limitations mentioned
in Section 2.4, three kinds of datasets have been acquired due to the lack of thermal image
datasets, each one referred to as: ThD1-101, ThD2-200 and ThD3-1021.

Fig. 3.2 Example set of the first dataset acquired using a TAU2 camera (ThD1-101).
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Image Description Brand Camera FOV Focal Length Native Resolution
Low-resolution (LR) Axis Domo P1290 35.4 4mm 160×120
Mid-resolution (MR) Axis Q2901-E 35 9mm 320×240
High-resolution (HR) FC-632O FLIR 32 19mm 640×512*

Table 3.1 Thermal camera specifications (*the HR images have been center crop to 640×480)
for ThD3-1021 dataset acquisition.

3.2.1 Single sensor

The first thermal dataset (ThD1-101) [96] has been acquired using a single TAU21 thermal
camera with a 13mm lens (45◦ HFOV) with a native resolution of 640×512 pixels, in indoor
and outdoor scenarios, in the morning, day and night time; containing multiple objects and
people. Using the controller GUI software of the TAU2 camera with the default values, a set
of 101 images (PNG format with a depth of 8 bits) has been acquired; Fig. 3.2 shows some
images of this dataset. This dataset is used to train CNNs following the traditional method of
down-sampling the images to have a registered image between SR and GT images. The idea
of this first contribution is to provide to the thermal image dataset community, with a new
dataset for the thermal image super-resolution problem.

3.2.2 Cross-spectral sensors

For cross-spectral image processing, where one spectral band guides or supplements another
to solve a particular task, it is essential to have a dataset that contains images of the same
scene acquired in different spectral bands. A second thermal dataset (ThD2-200) is acquired
to tackle this problem by opening more robust solutions. It consists of visible and thermal
pair images of the same scene caught in daylight conditions. They are all good quality images
with clear edges with various scenarios, this makes it very suitable for the SR training. The
main idea is to use a HR visible image as a guide for the LR thermal image to generate a SR
thermal image.

This dataset has been acquired using Balser and TAU2 camera (Fig. 3.3) with a native
resolution of 1080×1024 (using a 13mm lens) and 640×480 (using a 8mm lens) respectively.
The dataset is composed of 200 pairs of images. The dataset is split up into training, validation,
and testing sets. The training set contains 160 pairs of images, while the validation set contains
40 pairs of images and 20 pairs for testing. Examples of this dataset are depicted in Fig. 3.4.

The challenge of using thermal and visible images together is that it can be difficult to
register the two images, especially if the overlap between the images is large. This registration

1https://www.flir.com/products/tau-2/

https://www.flir.com/products/tau-2/
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Fig. 3.3 TAU2 (top) and Balser (bottom) cameras mounted one over the other.

Fig. 3.4 Illustrations of ThD2-200 dataset, thermal and visible images of the same scenario.

problem is traditionally solved by matching descriptors, but this method depends on the
quality of the representation. Ensuring that features are dense and uniformly distributed is not
guaranteed. Recently, machine learning methods have addressed the issue of visible-to-visible
matching, but just a few approaches address the multi-modality setting. The registration of
this stereo images is not tackled in the present thesis.

3.2.3 Multiple sensors

Regarding the third and last thermal dataset (ThD3-1021) [90], unlike the first datasets, the
main goal is to have three semi-registered thermal images, using three different thermal
camera sensors of an outdoor scenario (that contains different objects such as buildings, cars,
people, vegetation, among other) at different daytime. For this, the cameras are physically
mounted on a panel, as shown in Fig. 3.5; this structure has been placed on a mobile platform
to simultaneously capture different scenarios using a multi-thread developed script. Each
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Fig. 3.5 Panel with the cameras for the second dataset: a) Axis Domo P1290 (LR); b) Axis
Q2901-E (MR); c) FC-6320 FLIR (HR); d) Basler visible spectrum camera, which is not
used in the current work.

camera has different resolution (low-, mid-, high- resolution) with 160×120, 320×240 and
640×480 pixels respectively, as shown in Table 3.1 and depicted in Fig. 3.6; Fig. 3.7 shows a
mosaic build up with the three different resolutions. This dataset is acquired using an Axis
Domo P1290, Axis Q2901-E, and FC-6320 FLIR thermal cameras, labeled as LR, MR, and
HR, respectively. A set of 1021 images per camera is generated, split up into 951 images for
training, 50 for validation, and 20 for testing.

Acquired images are saved in one channel, in PNG format with a depth of 8 bits and
without compression. The idea of this dataset is to develop an architecture able to transform
a real low-resolution image into a high-resolution image and with a semi-paired image to
be able to have real GT images to be compared. Despite the effort during the camera setup,
captured images have slightly different regions from the scene (Fig. 3.8); this is caused by
the camera baseline between the optical center and the different intrinsic parameters of the
cameras. Keeping in mind these limitations, a set of 10 images per each resolution (LR, MR,
HR) is selected and registered to be used for testing any SR network approach, as shown in
Fig. 3.9.

In all acquired datasets, thermal images are represented in grayscale, where hot and
cold spots are represented with white and black pixels, respectively. Data augmentation
process can be performed to have more variability and avoid the overfitting of any network
implementation. This has been demonstrated to improve networks training results [103] [82].
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Fig. 3.6 Examples of thermal images acquired by each camera of the second thermal dataset
(ThD3-1021). (le f t) LR image with 160×120 native resolution from Axis Domo P1290.
(middle) MR image with 320×240 native resolution from Axis Q2901-E. (right) HR image
with 640×480 resolution from FC-6320 FLIR (native resolution 640×512).

Fig. 3.7 Mosaic with three different resolution thermal images from ThD3-1021 dataset for a
visual comparison: (le f t) crop from a LR image; (middle) crop from a MR image; (right)
crop from a HR image.

3.3 Summary

Thermal images offer great potential for many applications (e.g., security, medical, industrial
applications) due to their ability to provide information about the temperature of an object
in the scene. However, there is a lack of publicly available datasets that can be used to
train and test algorithms for thermal image analysis and thermal image super-resolution.
This chapter presents three new datasets that can be used for this purpose. The first
dataset (ThD1-101) is a collection of over 101 thermal images of indoor and outdoor
scenarios taken under various conditions. The second dataset (ThD2-200) that uses a
visible camera and a thermal camera, contains 200 stereo images. And the third dataset



3.3 Summary 35

Fig. 3.8 ThD3-1021 dataset examples, thermal images of each camera and their slightly
different regions of the scene. (top− row) LR images from Axis Domo P1290. (middle−
row) MR images from Axis Q2901-E. (bottom− row) HR images from FC-6320 FLIR.

Fig. 3.9 Image registration results. (top) From left to right: LR image; MR image; and image
resulting from the registration of MR image with the results of SRLR image. (bottom) From
left to right: MR image; HR image; and image resulting from the registration of HR image
with the results of SRMR image.

(ThD3-1021) uses three different thermal cameras to collect 1021 thermal images per camera
of various scenarios during different daytime. Data augmentation process can be applied to
these acquired datasets. All these acquired datasets are available and free to download at
https://github.com/rafariva/ThermalDatasets.





Chapter 4

Single Image Super-Resolution

This chapter presents two kinds of techniques for single image super-resolution (SISR). The
first approach follows a supervised scheme while the second one is an unsupervised method.
Both approaches mainly consist of taking a single low-resolution (LR) image as input and
generating a high-resolution (HR) one.

4.1 Introduction

As mentioned in Section 2.6, SISR is a classical and challenging ill-posed problem in
computer vision that tries to infer a HR image from a single LR input image. This problem
is ill-posed because there are an infinite number of possible HR images that could have
generated the given LR image. The solution to this problem is usually not unique and it is
often necessary to make assumptions or use some kind of prior knowledge in order to find a
solution. A common approach for solving the SISR problem is to use a training set of HR/LR
image pairs in order to learn the mapping between the LR and HR images. This mapping
is then used to generate a HR image from a given LR image. This approach is known as
example-based super-resolution, and it is effective in many cases. However, it requires a
training set of HR/LR image pairs, which can be difficult to obtain.

An alternative approach is to use a generative model that can generate HR images
from LR images. This approach is known as generative super-resolution, and it does not
require a training set of HR/LR image pairs. Most of the proposed approaches presented
in the state-of-the-art are focus on visible spectrum. One of the main contribution of this
dissertation is to present several approaches to tackle thermal image SR within two techniques
presented below. This chapter, focuses on two different generative super-resolution methods:
a supervised method based on deep convolutional neural networks and an unsupervised
method based on generative adversarial networks on thermal images.
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4.2 Supervised method

One of the most relevant and first approach for supervised image enhancement has been
presented in SRCNN [20]; the approach is based on a CNN, where the architecture is trained
to learn how to get a high-resolution image from an image with a lower resolution. The
authors explore the performance by using different color space representations; concluding
that the best option is obtained by using the Y-channel from the YCbCr color space.

Fig. 4.1 Proposed supervised approach using CNN architecture (TISR-DCNN).

In most SR approaches, thermal images have not been considered during the training
stage, although intended for thermal image enhancement. Most of them train the CNN-based
techniques using images from the visible spectrum at different color space representations.
On the contrary to all of them, in this chapter, thermal images are considered for training
the proposed CNN architecture. This section presents a supervised CNN model designed for
images of the thermal spectrum.

4.2.1 Proposed approach

This section presents a deep CNN architecture with a residual net and dense connections
referred to as TISR-DCNN [96]. The architecture, presented in Fig. 4.1, has a part of
the architecture dedicated to obtain the high-level features of the image, and another part,
to perform the reconstitution of the image. All layers have dropouts and use parametric
ReLU as an activator (preventing from learning a large negative bias term and getting
better performance). Additionally, based on the work of [126], after concatenating all of
the features, parallelized CNNs are used to reconstruct the image, and finally the generated
image is estimated by typically adding these outputs with the bicubic interpolation to enhance
the network’s output.
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For training this network, three datasets are considered. ThD1-101 [96] and T-138 [9]
from thermal spectrum and BSD300 [71] from visible spectrum. Data augmentation process
is performed to increase the number of training images.

Fig. 4.2 Training process of TISR-DCNN network, which generate two strategies for the
testing process.

This architecture is used to obtain the thermal image SR contrary to the state-of-the-art
approaches, where most CNN-based architectures are trained with visible spectrum images
and used with thermal images. This approach is trained with thermal images in order to
obtain better results. The latter hypothesis is validated by training the networks twice, one
with visible spectrum images and one with thermal spectrum images. This training process
results in two models (see Fig. 4.2), which are finally validated with thermal images. More
details are given in the following subsection.

4.2.2 Experimental result

The proposed architecture consists of a dense network, with the bicubic image interpolation
generated to improve image details. For feature extraction, dropout and ReLU operations
are used. A learning rate of 0.002 is applied to the model using MSE as a loss function
to measure the difference between the ground truth and the output. The model uses Adam
Optimizer, an adaptive learning rate method, which computes individual learning rates for
different parameters. Its name is derived from adaptive moment estimation, and the reason
it’s called that is that Adam uses estimations of the first and second moments of the gradient
to adapt the learning rate for each weight of the neural network. Each epoch is trained with a
batch of 100000 patches for a total of 63 epochs.
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Fig. 4.3 Resulting images at ×2 scale obtained with different strategies.

From ThD1-101 dataset, 77 images are for training, 18 images for validation and the
remaining 6 thermal images for testing (referred to as Thermal6). In order to increase the
number of training images, a data augmentation process is performed, rotating and flipping
from top to bottom, from left to right all images. The quality and resolution of the images is
maintained. The 77 training thermal images from Th-101 dataset and 138 from T-138 dataset,
mixed with data augmentation, giving a total of 1720 thermal images. From the 300 visible
images from BSD300 dataset, with data augmentation, gives a total of 2400 visible images.

As presented above, in order to evaluate the proposed approach, the same architecture
is trained with the two different datasets; the 1720 thermal images are split up into 48×48
patches with 25 pixels overlapping adjacent patches, having a whole batch of 185760 patches.
The 2400 visible images also are split up into 48×48 patches with 25 pixels overlapping,
having a batch of 108000 patches (note that although there are more visible than thermal
images, the number of thermal patches is more significant since thermal images have a larger
resolution. The patches obtained above are used as ground truth, while the input patches are
obtained by resizing them to half their original resolution. In this approach, there is no noise
added to the input image.
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The training is performed in Windows Server 2012, with a dual 2.50GHz CPU E5-2640,
using one GPU K20m of 4GB. Each training consumes approximately 5GB of RAM and
takes about 25 hours. This architecture is implemented using Tensorflow and Python. For
a fair comparison, the two models are trained using the same infrastructure with the same
number of batches per epoch, and hyperparameters are used.

Dataset Scale Bicubic Visible Model Thermal Model
Thermal6 ×2 39.59 40.88 41.24

×3 37.68 39.14 39.62
×4 34.98 37.17 37.85

SET5 ×2 33.64 37.69 37.46
×3 30.37 34.01 33.74
×4 28.41 31.69 31.25

Table 4.1 Average result of PSNR with proposed supervised architecture (TISR-DCNN).

As shown in Fig. 4.2, two strategies using the same network have been trained with
different datasets; each trained network is validated with a set of six thermal images
(Thermal6) and five RGB images (SET5), obtaining a visible and thermal model. Table 4.1
shows that with Thermal6, the trained thermal model shows a PSNR average value higher
than the PSNR average value obtained with the visible trained model. Also, it indicates that
SET5 got better PSNR values in the visible model than in the thermal model. A qualitative
comparison can be appreciated in Fig. 4.3, where the SR images obtained with the two
strategies and the images with the bicubic interpolation are depicted. Additionally, in this
figure, the ground truth is presented (values in brackets correspond to the average PSNR
presented in Table 4.1)

In this supervised approach, the usage of the proposed network has been considered to
obtain thermal image SR. Two models have been obtained by training the same network
with two different datasets to seek the best options when thermal images are considered.
The experimental results indicate that the network model trained with the thermal image
dataset is better than using the visible image dataset. The proposed method has the potential
to increase the quality of thermal images, which is important for many applications such as
surveillance, night vision, among others.

4.3 Unsupervised methods

Recently, unsupervised super-resolution approaches have been proposed to leverage unpaired
images to overcome the limitation of having a pixel-wise registration without any assumption
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on the degradation model. The Cycle Generative Adversarial Network (CycleGAN) [140],
widely used for mapping features from one domain to another domain for image-to-image
translation tasks in the absence of paired examples images, is used in the approaches proposed
in this thesis. This framework is used to learn a mapping from the low-resolution to the
high-resolution domain solving the SR problem. This is a recursive process where the
mapping functions try to generate images with a similar distribution at each domain.

In the development of this thesis three different unsupervised approaches have been
proposed, all mentioned in this section, which can be assumed as an evolution and an
increment improvement from each other—published in [90, 91, 93].

4.3.1 Proposed approaches

The first unsupervised approach, referred to as TISR-US-1 [90], tackles the SR problem
by using images from different cameras, which have been acquired at different resolutions,
as mentioned in Chapter 3. The proposed approach is based on the usage of a CycleGAN,
an unsupervised learning approach which is able to map information from one domain
(low-resolution image) to another domain (high-resolution image). Figure 4.4 presents an
illustration of the CycleGAN architecture proposed in this first approach. It consists of two
generators (GL−H and GH−L) and two discriminators (DH and DL).

In the generators a ResNet with 6 residual blocks (ResNet-6), to avoid degradation
of the optimization during the training process, are considered. Each residual block has
(Conv -> InstaNorm -> Conv -> InstaNorm -> Relu), with skip connections. Regarding the
discriminators, a PatchGAN-based architecture is considered. Each block in the discriminator
has (Conv -> Conv -> InstaNorm -> Conv -> InstaNorm -> Conv -> LeakyReLU). The
shape of the output after last layer is (batch_size, 30, 30, 1), each 30×30 of the output
classifies a 70×70 portion of the input images. The discriminator receives two inputs,
the target image (classified as a real image) and the generated image (which should be
discriminated as a real or fake image by the discriminator).

The proposed architecture uses a combination of different loss functions: adversarial loss
LAdversarial , cycle loss LCycle, identity loss LIdentity, and structural similarity loss LSSIM,
which are detailed bellow.

The second approach [91], referred to as TISR-US-2, also uses a CycleGAN framework
to tackle the SR problem. This time just by mapping information from the mid-resolution
(MR) to the high-resolution (HR) domain (low-resolution domain is not considered). As
shown in Fig. 4.5, the proposed approach consists of two generators (MR to HR and
HR to MR), with their corresponding discriminators (DISC MR and DISC HR) that
validate the generated images. As generators, a ResNet with 6 residual blocks (ResNet-6)
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Fig. 4.4 First unsupervised proposed approach (TISR-US-1) illustration, based on a
CycleGAN architecture; GL−H and GH−L represent generators from lower to higher and
from higher to lower resolution, respectively. DH and DL represent the discriminator for each
resolution.

is considered. It uses optimization to avoid degradation in the training phase. The residual
blocks have convolutional layers, with instant normalization, ReLu, and skip connections. As
discriminators, a patchGAN architecture is considered; the generated image and a non-paired
GT image are used to validate if the output is real or not. In order to improve the results
obtained with the first approach, a novel loss term based on edge information has been
designed. It is based on the usage Sobel. This loss function helps in the training process to
archive better results.

The same loss functions combination is used: i) adversarial loss LAdversarial , ii) cycle
loss LCycle, iii) identity loss LIdentity, and iv) structural similarity loss LSSIM; additionally,
a new loss function is proposed, Sobel loss LSobel . This new loss consists in applying Sobel
filter edge detector [57] to the input image, and the cycled generated image, getting the mean
square difference between both images, helping to evaluate the contour consistency between
the two images. Details on each of these loss terms are given below—Fig. 4.5 illustrates how
these terms are computed.

The third and last unsupervised approach [93], referred to as TISR-US-3, accepted
and published in Sensors Journal, is an extension of the first two proposed unsupervised
approaches mentioned above. It uses the same Sobel cycle loss function. This time an
Attention Module (AM) in the bottleneck in between the encoder and decoder of the generator
in the GAN is proposed. Also, two datasets (Th3D-1021 and FLIR ADAS) are used, each
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Fig. 4.5 Second unsupervised proposed approach (TISR-US-2) illustration, based on a
CycleGAN architecture for MR to HR generator and for HR to MR; with cycled + sobel
losses and identity + SSIM losses, and its respective discriminators.

one separately and also mixed together, for training the network. This unsupervised approach
achieves results better than those obtained in the second evaluation of the PBVS-CVPR2021
challenge at the moment of the experimental results. This approach takes into consideration
the gap between the generated and real HR images.

The proposed approach, shown in Fig. 4.6, consists of the same two generators, from
the LR domain to the HR domain and vice versa. Each has its corresponding discriminator
that validates the generated images. The generators are a ResNet with 6 residual blocks
(ResNet-6). The residual blocks have convolutional layers, with instance normalization and
ReLu activation with skip connections. Inspired in [134], an AM is added after the ResNet
Encoder step (at the bottleneck of the generator), as shown in Fig. 4.7, which consists of the
operation of three weight matrix obtained from a convolution operation of the last output
layer in the encoder. A patchGAN architecture is also considered as a discriminator, and for
validation, the same non-paired GT image and the generated image are used to validate if the
output is real or not. The AM is a scaled dot-product as proposed in [116], and is computed
as follows:

Attention(Q,K,V ) = so f tmax
(

QKT
√

dk

)
V, (4.1)
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where Q, K, and V are the input matrices that contain the feature representation of the encoder,
and dk is a scaled-down factor. The scaling is done so that so f tmax function’s arguments do
not become excessively large with a higher dimension.

LR'b

LR x2 bicubic 
interpolation

B losses

A lossesLRb GEN.

LR to HR

GEN.

HR to LR

LR''b

B losses

HR''

LR'b HR

HR
DISC.

LR
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is
LR?

is
HR?

HR'

A losses

HR'

Fig. 4.6 Third unsupervised proposed approach (TISR-US-3) illustration, based on a
CycleGAN architecture (for LR to HR and vice versa); A losses represents the Sobel and
cycled losses, and B losses are SSIM and identity losses. Each cycle has its respective
discriminators.

Following the first two unsupervised approaches mentioned above (TISR-US-1 and
TISR-US-2), for this third approach (TISR-US-3) the combination of all different loss
functions is used: i) adversarial loss LAdversarial , ii) cycle loss LCycle, iii) identity loss
LIdentity, iv) structural similarity loss LSSIM; and Sobel loss LSobel .

The loss functions mentioned above, which have been used for the three proposed
approaches in this thesis are detailed next. The adversarial loss is designed to minimize the
cross-entropy to improve the texture loss:

LAdversarial =−∑
i

logD(GL2H(IL), IH), (4.2)

where D is the discriminator, GL2H(IL) is the generated image, IL and IH are the low and
high-resolution images, respectively. The cycled loss (LCycled) is used to determinate the
consistency between input and cycled output; it is defined as:

LCycled =
1
N ∑

i
||GH2L(GL2H(IL))− IL||, (4.3)
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Fig. 4.7 Generator defined by: ResNet-6 as encoder, followed by the scaled dot-product
attention module [116] and then the decoder.

where GL2H and GH2L are the generators that go from one domain to the other domain. The
identity loss (LIdentity) is used for maintaining the consistency between input and output; it
is defined as:

LIdentity =
1
N ∑

i
||GH2L(IL)− IL||, (4.4)

where G is the generated image and I is the input image. The structural similarity loss
(LSSIM) for a pixel P is defined as:

LSSIM =
1

NM

P

∑
p=1

1−SSIM(p), (4.5)

where SSIM(p) is the Structural Similarity Index (see [119] for more details) centered in
pixel p of the patch (P). The Sobel loss (LSobel), considered for the two last approaches, is
used to determinate the edge consistency between input and cycled output; it is defined as:

LSobel =
1
N ∑

i
||Sobel(GH2L(GL2H(IL)))−Sobel(IL)||, (4.6)

where GL2H and GH2L are the generators that go from one domain to the other domain, and
Sobel gets the edges of each of the objects in the images. The total loss function (Ltotal)
used in this work is the weighted sum of the individual loss function terms:

Ltotal = λ1LAdversarial +λ2LCycled +λ3LIdentity +λ4LSSIM +λ5LSobel, (4.7)



4.3 Unsupervised methods 47

where λi parameters for Adversarial, Cycled, and Identity losses are maintained as originally
proposed CycleGAN. For SSIM and Sobel losses, λi are set empirically according to best
results of the experiments; Cycled, and SSIM losses are sets with higher values.

Fig. 4.8 Examples of thermal images acquired in [89]: (top) MR images from Axis
Q2901-E (320×240), used in TISR-US-2 and TISR-US-3 approaches as LR images; (bottom)
HR images from FC-6320 FLIR (640×480) [89]; (middle) enlargements to show the
miss-registration between the images.

4.3.2 Experimental results

All these proposed unsupervised approaches have been trained with ThD3-1021 dataset
mentioned in Chapter 3, which has images acquired with three different cameras at different
resolutions; each resolution set has 951 images, and 50 images are left for validation. Just
for TISR-US-2 and TISR-US-3 approaches, only mid-resolution images (referred to as LR
inputs in these approaches) and high-resolution images are considered. It is worth noticing
that the input images (LR and HR) are from different cameras and they are not pixel-wise
registered, Figure 4.8 shows some illustrations of this dataset.

For TISR-US-2 and TISR-US-3 another thermal dataset is considered. It consists of a
video sequence with 8862 thermal images from FREE FLIR Thermal Dataset for Algorithm
Training (FLIR-ADAS)1; where just 985 images are selected (one out of nine images) to
have a more variance scenario, Figure 4.9 shows some illustrations of this FLIR-ADAS

1https://www.flir.com/adasdataset/
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Fig. 4.9 Examples of the FLIR-ADAS dataset.

dataset. Images from both datasets (ThD3-1021 and FLIR-ADAS) have a native resolution
of 640×512. To exactly have ×2 size resolution on LR images, both datasets are centered
cropped to 640×480 with the same format (8 bits in jpg format) but are acquired in different
places and conditions.

The evaluation is the same as the PBVS-CVPR challenges (referred to as Evaluation 2),
mentioned in Section 2.7.1; the quantitative evaluation of the presented approach is performed
by means of the average PSNR and SSIM measures between the generated SR image and the
semi-registered HR counterpart obtained from the other camera; this evaluation is illustrated
in Fig. 2.13(b). Due to the camera baseline, the information in the images is not the same;
hence, just a ROI of 80% of the image size, centered at each image, is considered.

The proposed architectures have been trained in a NVIDIA Titan X mounted in a
workstation with 128GB of RAM. Python programming language and Tensorflow 2.0 with
Keras library are used. Only ThD3-1021 and FLIR ADAS datasets are considered. No
data-augmentation process has been applied to the given input data. CycleGAN transfer
domain needs images at the same resolution; hence, the LR input images are up-sampled by
bicubic interpolation and normalized in a [-1,1] range. The training process is done for 100
epochs without dropout (the model does not present overfitting). During the training, the input
images are randomly selected in each epoch according to the batch size. The learning rate
is set to 0.0002 for both generator and discriminator networks; epsilon=1e-05; exponential
decay rate for the 1st momentum, 0.5 for the discriminator, and 0.4 for the generator. The λi

values that weigh each loss function used in all approaches are set as follows: LCycled=10,
LIdentity=5, LSSIM=5 and LSobel=10 in order to reach the best results, where the Cycled and
Sobel losses have higher values for the importance in their corresponding loss functions.

Even though these images are from the thermal spectrum domain, they are represented like
grayscale images, so PSNR and SSIM metrics are used for the evaluations and comparison
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of the results. Quantitative results obtained with the first proposed CycleGAN architecture
(TISR-US-1), for both evaluations, from LR to MR and from MR to HR, are shown in
Table 4.2 and Table 4.3 respectively, together with the results obtained with the proposed
supervised approach (TISR-DCNN) [96] and with the bicubic interpolation, which is used as
a baseline. As can be appreciated, the proposed architecture achieves a better performance
than both the previous publication and the bicubic interpolation.

Fig. 4.10 SR results of TISR-US-1 approach on real-world LR images with a ×2 scale
factor—these illustrations correspond to the 80% centered area cropped from the images.
(top− row) Bicubic interpolation image, (middle− row) Super-resolution results (SRLR),
(bottom− row) Ground truth MR image.

Qualitative comparisons, for both evaluations, are depicted in Fig. 4.10 and Fig. 4.11.
The results have shown that using this architecture it is possible to go from a lower resolution
to a higher resolution representation, even though the network is trained with images from
different cameras where there is not a perfect registration.

Approachs’ PSNR SSIM
Bicubic Interpolation 16.46 0.6695

TISR-DCNN [96] 17.01 0.6704
TISR-US-1 [90] 21.50 0.7218

Table 4.2 Results from TISR-US-1 approach on LR set in a ×2 scale factor, compared with
its MR registered testing set.

For the second unsupervised approach (TISR-US-2), the quantitative results obtained for
each training, and comparisons with previous work (TISR-US-1) and other approaches from
the PBVS-CVPR2020 challenge are shown in Table 4.4 using PSNR and SSIM measures
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Fig. 4.11 SR results of TISR-US-1 on real-world MR images with a ×2 scale factor—these
illustrations correspond to the 80% centered area cropped from the images. (top− row)
Bicubic interpolation image, (middle− row) Super-resolution results (SRMR), (bottom−
row) Ground truth HR image.

Approachs’ PSNR SSIM
Bicubic Interpolation 20.17 0.7553

TISR-DCNN [96] 20.24 0.7492
TISR-US-1 [90] 22.42 0.7989

Table 4.3 Results from TISR-US-1 approach on MR set in a ×2 scale factor, compared with
its HR registered testing set.

comparison. The best results are highlighted in bold, and the second-best result is underlined.
As can be appreciated, this second approach achieves better results than other works. Using
just one dataset (Th3D-1021) gets seven-tenths better PSNR results than using both datasets
together (Th3D-1021 and FLIR ADAS). SSIM measure gets higher results using both datasets
but just by one-thousandth. These results show that using just the ThD3-1021 dataset, the
proposed approach archives better results, meaning that this dataset is varied enough to
train a network and that it is possible to do a single thermal image super-resolution between
two different domains using images acquired with different camera resolutions and without
registration.

Regarding the quality of the obtained results, Fig. 4.12 shows the worst and best
super-resolution results from the testing set. The worst resulting image gets 20.11/0.6464
PSNR and SSIM measures, respectively; it should be mentioned that although it is the
worst resulting image from the whole validation set, it is considerably better than the results
obtained with a bicubic interpolation: 17.36/0.6193 PSNR and SSIM, respectively. In the case
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Approachs’ PSNR SSIM
Bicubic Interpolation 20.24 0.7515

TISR-US-1 [90] 22.42 0.7989

MLVC-Lab∗ [89] 20.02 0.7452

COUGER AI∗ [89] 20.36 0.7595

TISR-US-2 (a) [91] 22.98 0.8032

TISR-US-2 (b) [91] 22.27 0.8045

Table 4.4 Results from TISR-US-2 approach. (∗) Best approaches at the PBVS-CVPR2020
challenge. For TISR-US-2: (a) uses just ThD3-1021 dataset; (b) uses ThD3-1021 and
FLIR-ADAS datasets. Bold and underline values correspond to the first and second best
results, respectively.

of the best resulting image, 26.06/0.8651 PSNR and SSIM measures respectively are obtained;
in this case, the bicubic interpolation reaches 19.41/0.8021 PSNR and SSIM, respectively. In
conclusion, it could be stated that the most challenging scenarios are those with objects at
different depths and complex textures. On the contrary, it can be appreciated that scenes with
planar surfaces are more simple to obtain their corresponding super-resolution representation.

For the third approach (TISR-US-3), the proposed architecture has been trained four
times, once with just ThD3-1021 dataset and once with ThD3-1021 and FLIR-ADAS datasets
together, then once more for each but with and without the AM, referred to as TISR-US-3 (a,
b, c, d) as an ablation study. FLIR-ADAS dataset are frame images from a video sequence,
and for having more variability and the images of a balanced number than ThD3-1021 dataset,
one out of nine frames are selected. As mentioned above, the testing is done with the same
set of images used in the PBVS-CVPR2021 challenge [95] to compare this third approach
with the most recent results in the state-of-the-art literature at the time.

Quantitative results of each training are compared with the best three approaches from
the PBVS-CVPR2021 challenge. Table 4.5 depicts PSNR and SSIM measures for the
comparisons. The best result is highlighted in bold, and the second-best result is underlined.
Qualitative results are depicted in Fig. 4.13. As can be appreciated, the approach that reaches
the best result in the PSNR metric (TISR-US-3 (c)) uses the AM; it gets the second-best
result in SSIM. This approach has been trained with just ThD3-1021 dataset. The approach
with attention module and trained with ThD3-1021 and FLIR-ADAS datasets (TISR-US-3
(d)) preserves the structural information (SSIM) better than other methods. The usage of just
ThD3-1021 dataset shows a good performance; as TISR-US-2, this show that ThD3-1021
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Fig. 4.12 Examples quality results from TISR-SR-2 approach. (top) from left to right, MR
image (input), HR image, worst generated result. (bottom) best generated result.

dataset has a large enough variability to train a network to perform a single thermal image
super-resolution between two different domains.

Regarding the first approach (TISR-SR-1), the last approach (TISR-SR-3) shows betters
results by adding and adjusting loss functions’ variations and, better yet, with the attention
module. The use of both datasets (without the attention module) increases the SSIM measure
(reaching the best result in this measure), but with the attention module using just the
ThD3-1021 dataset, overcoming the best result in the PSNR measure and better SSIM than
previous work. With some changes from previous work, quantitative measures overcome
previous results and the best approaches from PBVS-CVPR2021 challenge (Evaluation 2).

Fig. 4.13 Visual comparison of SR results obtained using TISR-US-3 (a, b, c and d) variations,
respectively.

The main differences between the three unsupervised approaches mentioned above that
make use of CycleGAN architecture are the usage of different datasets and loss functions
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Approachs’ PSNR SSIM
TISR-SR-1 [90] 22.42 0.7989

NPU-MPI-LAB∗ [95] 21.96 0.7618

SVNIT_NTNU-2∗ [95] 21.44 0.7758

ULB-LISA∗ [95] 22.32 0.7899

TISR-US-3 (a) 22.98 0.7991

TISR-US-3 (b) 21.93 0.8117

TISR-US-3 (c) 23.19 0.8023

TISR-US-3 (d) 21.23 0.8167

Table 4.5 Results from TISR-US-3 approach [93]. (∗) Best approaches at the
PBVS-CVPR2021 challenge (Evaluation 2). For TISR-US-3, (a) is trained just with
ThD3-1021 dataset and without AM; (b) is trained using ThD3-1021 and FLIR-ADAS
datasets without AM. (c) is trained with just ThD3-1021 dataset with AM. (d) is trained
using ThD3-1021 and FLIR-ADAS datasets with AM. Bold and underline values correspond
to the first and second best results, respectively.

for the two last approaches, and the last approach makes use of an attention module in the
bottleneck of the generator. According to the results, the last approach (TISR-US-3) presents
higher results an improvement concerning previous works.

4.4 Summary

Single image super-resolution is a well-studied problem in the computer vision community
and has shown great success in the past few years, where most of them are focused on the
visible spectrum. However, the problem remains largely unexplored in the thermal infrared
(TIR) spectrum. This chapter reviews the supervised and unsupervised deep learning-based
methods for single image super-resolution in the TIR spectrum. The methods are evaluated
and compared using the two public datasets mentioned in Chapter 3. The results show that the
proposed methods can increase the resolution of TIR images by a large margin concerning
state-of-the-art methods.





Chapter 5

Multi-Image Super-Resolution

This chapter presents a deep learning-based method for multi-image super-resolution of
thermal images [92]. This method takes a set of low-resolution images as input and generates
a single high-resolution image as output. The main idea behind the proposed method is to
use a deep convolutional neural network to learn the mapping between the low-resolution
(LR) images and the HR image. This mapping is then used to generate the high-resolution
(HR) image from the set of LR images. For this, a synthetic dataset is generates, shifting and
downsampling the HR images to create the LR set of images.

5.1 Introduction

Image Super-resolution (SR) is the problem of reconstructing a HR image from one or more
LR images of the same scene. HR images provide supplementary information that makes
the problem widely studied with several practical applications. Most of the super-resolution
community has focused on the single image super-resolution (SISR) problem, which estimates
the HR image just from a single LR input.

On the contrary, multi-image super-resolution (MISR) reconstructs a HR image using
multiple LR images of the same scenes. It is possible to apply this concept to thermal
images, which would require several LR images from the same scene as input. In the current
work, a dataset with synthesized images is generated due to the lack of a benchmark of
multi-thermal image datasets. This dataset contains several LR images of a given scene
by down-sampling, adding noise and blur, and randomly shifting (X and Y coordinates) to
simulate being captured by a burst of input images. The main idea of this approach is to
combine information from multiple frames to obtain a more detailed reconstruction of the
HR image. As far as we know, a few approaches in the literature use a multi-image scheme
to generate HR thermal images.
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5.2 Proposed approach

The current approach, referred to as TISR-MI, takes as an input a sequence of multiple noisy,
RAW, LR thermal images and combines their features to generate a SR image. As shown
in Fig. 5.1, it consists of two main paths, a 2D Attention Path and a 3D Attention Path,
where both paths use Residual Attention Blocks, which are the core of the model that focuses
on the images’ High-Frequency (HF) features. For SR generation, HF features have more
valuable information. The up-sampling operation is done at the end of each path for better
computational performance. In the end, the results from both paths are added to generate the
SR image.
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Fig. 5.1 Proposed multi-image thermal super-resolution architecture using a 2D and 3D
attention blocks.

The 2D Attention Path allows the network to generate a simple super-resolution solution
for up-sampling a set of multi-LR images. This attention path consists of: 2DConv -> ReLU
-> 2DConv -> GlobalPoll -> 2DConv -> ReLU -> 2DConv -> Sigmoid, with respective
skip connection, followed by 2DConv -> UpSampling.

The 3D Attention Path uses 3D convolutions residual-based blocks to extract spatial
correlations from the pool of inputs LR images. This path is the main branch of the approach.
First, a 3D convolution layer is applied to extract shallow features from the LR input images.
After this, a cascade of N concatenations, 3D Attention Blocks are applied for higher
extractions of features exploiting the spatial and local, and non-local correlations. A long skip
connection is used for redundant low-frequency signals and several short skip connections
inside each block. Finally, the up-sample operation is done. In summary, this attention path
consists of 12 times: 3DConv -> ReLU -> 3DConv -> GlobalPoll -> 3DConv -> ReLU ->
3DConv -> Sigmoid, with respective skip connection, and a long skip connection, followed
by 3DConv -> UpSampling.
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The multi-image super-resolution approach can be summarized as follow:

SR =U (2DattB(LRt))+U ([3DattB(LRt)]
N) (5.1)

where U represents the up-sampling operation, 2D and 3D are each attention block paths,
and N is the number of times the 3D path repeats. LRt represents the multi-image set from
the same scene, and SR represents the generated super-resolution image.

5.3 Experimental results

The results of the MISR proposed approach, training it on a synthesized dataset and
comparing its performance with state-of-the-art SISR algorithms are presented in this section.

SR reconstruction is highly dependent on the degradation model. Several factors such as
relative motion (handshake), atmospheric variation (haze), optical blurring, and preprocessing
are used to generate a simulated burst of multi-LR thermal images. The thermal dataset used
to evaluate the proposed model is ThD3-1021; it consists of 1021 thermal images (951 for
training, 50 validating, and 20 for testing). Assuming all thermal LR images are generated
under the same condition, the degradation model can be formulated as:

Yt = (X +Gt)∗St ∗Dt ; t = 1,2, ...,T, (5.2)

where X , Yt represent the tth HR image and LR image respectively. Gt is the additional Gauss
noise to Yt . St and Dt represents the random u and v shift and downsampled factor by 4,
respectively; ten LR images (T = 10) per each given image are generated. When the random
shift is done, reflect padding is performed to fill the gap of the shift. The degradation process
is illustrated in Fig. 5.2. Random Gauss−noise with a value of 2 std. Random le f t − right
shift ±4, up−down shift ± 3, and bicubic−downsampled method. No rotation is applied
in this degradation method.

HR image Add Noise

(T images)

Random u/v Shift

(T images)

Downsampled

(T images)

Fig. 5.2 Illustration of the model used as degradation prepossessing and synthesized data set
generation.



58 Multi-Image Super-Resolution

Fig. 5.3 Examples of the patch image registration process. (top− rows) represent different
generated LR patches—synthesized images. (bottom− row) show the corresponding HR
image patch.

To complete the synthesized multi-image, each T-generated image is registered using
the first image as a reference, which has no shift. The registration is done using an efficient
sub-pixel image translation by cross-correlation to have real simulated sub-pixel shifts with
respect to each other, as it would be generated due to, e.g., camera motion, providing different
LR samplings of the underlying scene, registered patch examples are depicted in Fig. 5.3.
Reflect padding is used to complete the dismissed pixels. The synthesized dataset is saved in
npy files to be loaded during the training process. The data format of the images is in uinit8,
and each image is normalized between [-1,1] at the beginning, and after passing the network,
they are denormalized. No extra data augmentation is used.

5.3.1 Training

In all convolutional layers, on both paths of the network, 32 filters with a kernel size of 3×3
are set. The reduction factor in the attention blocks is set to 8. The number of times that 3D
Attention Block is repeated has been set to 12 (lower value causes a loss of performance, a
higher value increases the number of parameters unnecessarily). In total, the network has
less than 750K parameters.

For training, patches of 32×32 pixels, with an overlap of 22 pixels, are extracted from
each LR image, giving more than 23K patches for training and 1.2K for validation. An initial
learning rate of 0.0005 and Adam loss function optimization are used. To learn the end-to-end
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Approachs’ PSNR SSIM
SVNIT_NTNU-1 30.70 0.9290
SVNIT_NTNU-2 30.69 0.9288
SVNIT_NTNU-3 30.59 0.9254

ISESL-CSIO 30.39 0.8992
CVS 29.21 0.9032

TISR-MI 32.99 0.9236

Table 5.1 Results from TISR/MI approach, and state-of-the-art SISR approaches from PBVS
2021 challenge [95].

mapping process, L1 and SSIM losses are considered by minimizing their values between
the generated and the ground truth images. The proposed architecture has been trained in
a NVIDIA Titan X mounted in a workstation with 128GB of RAM. Python programming
language and Tensorflow 2.0 library are used. The model is trained for 50 epochs, taking less
than 24 hours.

5.3.2 Results

The standard fidelity-based metrics PSNR and SSIM measures are used for testing and
validating the proposed model, which consists in evaluating the SR generated from the
multi-noisy down-sampled image with the corresponding HR image, as shown below:

R =
1
N

N

∑
1

eval (HR,SR(LRt)) , (5.3)

where eval is PSNR and SSIM measures metrics separately calculated, SR is the
super-resolution generated image from the t multi-image LR noise inputs, and HR represents
the corresponding GT image. N is the number of validation images.

The metrics mentioned above to evaluate the results are: i) Peak Signal-to-Noise
Ratio (PSNR), which is commonly used to measure the reconstruction quality of lossy
transformations; and ii) Structural Similarity Index Metric (SSIM) [119], which is based on
the independent comparisons of luminance, contrast, and structure. Due to thermal images
being represented in grayscale, these metrics can also be used.

Quantitative results obtained with this proposed architecture are shown in Table 5.1,
together with the SISR results of the state-of-the-art approaches from PBVS 2021 challenge
[95]. As it can be appreciated, the proposed architecture achieves a better performance in
PSNR with 32.99dB and is highly good on SSIM metrics (just 0.0054 below the best results,
SVNIT_NTNU team achieves slightly better results). The SVNIT_NTNU-1 team uses an
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Fig. 5.4 SR results with a ×4 scale factor: (top− row) results from bicubic interpolation;
(bottom− row) results from the proposed approach.

effective design of ResBlock, that preserves the HF details with fewer parameters and uses
channel attention modules; using an exponential linear unit (ELU) activation function to
improve learning performance at each layer in an efficient manner. The SVNIT_NTNU-2
team uses a cascade of convolution with layer attention, including Residual Blocks, using
a self-assemble technique to generate the SR result. Finally, the SVNIT_NTNU-3 team
proposes several residual groups to learn complex and rich features from the LR observation,
using subpixel convolutions in the up-sampling block with local and long skip connections.

Qualitative comparisons between bicubic interpolations and results from the proposed
approach are depicted in Fig. 5.4. Enlarged patches are provided for a closed inspection
showing that the obtained results are sharper and less noisy than bicubic interpolation. This
comparison shows that using this architecture to go from a multi-LR to a HR image on the
thermal spectrum is possible, even though the network is trained with synthesized images.

5.4 Summary

A multi-image super-resolution architecture for thermal images exploits recent deep learning
advancements. In this case, two attention paths are proposed, a 2D and a 3D attentions
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block mechanisms, that are used to train the network to perform SR at a ×4 scale. To train
the proposed architecture, synthesized RAW burst noisy LR images are generated. As loss
functions, L1 and SSIM are considered. At the moment of the experiments, results obtained
with the proposed MISR approach reach the state-of-the-art SISR approaches presented in
the PBVS-CVPR2021 challenge when SSIM is considered; on the contrary, when PSNR
is considered, results from the proposed approach considerably overcome results from the
state-of-the-art approaches.





Chapter 6

Conclusions and Future Work

This dissertation has made several significant contributions, summarized in this final chapter.
Additionally, future work and possible research lines identified during the development of
this dissertation are presented.

6.1 Conclusions

This dissertation presents works focused on the processing of low-resolution thermal images
acquired by cheap thermal cameras. These cameras can capture the long-wavelength infrared
band (temperature of an object) in a single shot but with a low spatial resolution. Most of
the images acquired with these thermal cameras are in low-resolution because of the use
of a low-cost camera sensor. To face this problem, the following contributions have been
proposed.

One contribution is the creation of three datasets (ThD1-101, ThD2-200 and Th3D-1021)
with high-resolution thermal images to be used for training and evaluation deep learning
based approaches. These datasets are composed of images acquired in different scenarios
and with different objects. Other contributions are the design of deep learning-based
architectures for single image super-resolution (SISR) and multi-image super-resolution
(MISR). For SISR, two methods are considered, supervised (TISR-DCNN) and unsupervised
(TISR-US-1, TISR-US-2, TISR-US-3) proposed approaches. For MISR, the use of multi
low-resolution input images is considered and TISR-MI network is proposed. All these
architectures are based on the use of a deep convolutional neural network, using several
features, such as skip connection, generation modules, attention modules, loss’s function,
among others. The proposed architectures are able to achieve state-of-the-art results in the
super-resolution of thermal images. Finally, even it does not represent a scientific contribution
to this thesis, thermal images super-resolution challenges are presented (PBVS-CVPR2020,
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PBVS-CVPR2021, PBVS-CVPR2022), which I have been in charge of the organization,
showing the evolution of the state-of-the-art.

List of Contributions:
This dissertation has led to the following publications, in chronological order:

• Rivadeneira, R. E., Suárez, P. L., Sappa, A. D., & Vintimilla, B. X. (2019, August).
Thermal image superresolution through deep convolutional neural network. In
International conference on image analysis and recognition (pp. 417-426). Springer,
Cham [96].

• Rivadeneira, R. E., Sappa, A. D., & Vintimilla, B. X. (2020, February). Thermal Image
Super-resolution: A Novel Architecture and Dataset. In VISIGRAPP (4: VISAPP) (pp.
111-119) [90].

• Rivadeneira, R. E., Sappa, A. D., & Vintimilla, B. X. (2020, February). Thermal
Image Super-Resolution: A Novel Unsupervised Approach. In International Joint
Conference on Computer Vision, Imaging and Computer Graphics (pp. 495-506).
Springer, Cham. Chapter Book [91].

• Rivadeneira, R. E., Sappa, A. D., Vintimilla, B. X., Almasri, F., . . . & Debeir, O
et al. (2020, June). Thermal Image Super-Resolution Challenge - PBVS 2020. In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW) (pp. 432-439) [89].

• Rivadeneira, R. E., Sappa, A. D., Vintimilla, B. X., Nathan, S., Kansal, P., Mehri,
A., . . . . & Beksi, W. J. (2021). Thermal image Super-Resolution Challenge - PBVS
2021. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 4359-4367) [95].

• Rivadeneira, R. E., Sappa, A. D., Vintimilla, B. X., Kim, J., Kim, D., . . . & Jiang,
J. (2022). Thermal Image Super-Resolution Challenge Results - PBVS 2022. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (pp. 418-426) [94].

• Rivadeneira, R. E., Sappa, A. D., & Vintimilla, B. X. (2022). Multi-Image
Super-Resolution for Thermal Images. In VISIGRAPP (4: VISAPP) (pp. 635-642)
[92].
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• Rivadeneira, R. E., Sappa, A. D., Vintimilla, B. X., & Hammoud, R. (2022). A Novel
Domain Transfer-Based Approach for Unsupervised Thermal Image Super-Resolution.
Sensors, 22 (6), 2254. Journal [93].

6.2 Future work

Regarding thermal image super-resolution, despite of the recent advances, there is still some
work to be done. The most important one is to have more and more high-quality datasets
to train and validate different models. The other one is to develop unsupervised methods
for this problem. Several possible further research lines could be pursued in relation to the
algorithms proposed in this dissertation in order to increase their performance. Some of the
most direct areas of improvement are describe below:

• Improve the unsupervised thermal image super-resolution by designing new loss
functions such as the content loss or the style loss, could also help to increase the
performance of the proposed models.

• The use of GANs for data augmentation to increase the amount of data available for
training the proposed models.

• Use of transfer learning of models pre-trained on other datasets could help to improve
the performance of the proposed models, especially in the case of the unsupervised
approach.

• Guided super-resolution to increase the performance of the unsupervised methods; the
use of a guidance image (e.g. a HR visible spectrum image) could be explored.

• Implementation of new metrics for the evaluation of the obtained results.

• Evaluate the proposed methods in some specific application.
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