ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

Diseño de una nueva planta de producción de productos de pastelería y repostería

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Ingenieros Industriales

Presentado por:

SANTIAGO ISRAEL POMA VARGAS VICTOR MANUEL CRUZ MOSQUERA

GUAYAQUIL - ECUADOR

Año: 2022

DEDICATORIA

Dedico el siguiente proyecto a mi familia, en especial a mi madre que con su carácter me enseñó a ser fuerte y no rendirme a las adversidades que se presenten.

Un viaje de mil millas comienza con el primer paso (Lao - Tsé).

Santiago Poma

Dedico el presente proyecto a mi familia, amigos, y conocidos.

Manuel Cruz.

AGRADECIMIENTOS

Agradezco a mi madre que siempre estuvo con su apoyo a pesar de las dificultades.

A mis hermanos que con sus consejos y apoyo me ayudaron a superarme.

A mis maestros que gracias con sus conocimientos permitieron alcanzar un peldaño a mi preparación académica.

Santiago Poma

Agradezco a mi familia, amigos, conocidos por su apoyo durante todo este proceso de estudio.

Manuel Cruz

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; Santiago Israel Poma Vargas y Victor Manuel Cruz Mosquera y damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Santiago Israel Poma Vargas Victor Manuel Cruz Mosquera

EVALUADORES

María Fernanda López, MSc.Ingrid Adanaqué B., MSc.PROFESOR DE LA MATERIAPROFESOR TUTOR

RESUMEN

En el presente proyecto se realizó el diseño de una planta dedicada a la elaboración de productos de pastelería, debido a incrementos en su demanda y no poseer capacidad física para el crecimiento futuro; para el diseño propuesto se tuvo en consideración la normativa 2393 para cálculo de espacios y la normativa ARCSA 067 BPM para distribución de áreas.

Para conocer y satisfacer los requerimientos del cliente se estableció la metodología QFD el cual por medio de ponderaciones nos permite conocer cuáles son los requerimientos que afectaran al diseño, por medio de técnicas de diseño SPL se diseñaron y evaluaron la distribución de las áreas de 3 opciones de la planta eligiendo la mejor opción la cual se modeló en un software el diseño de un layout de la planta, por medio de una clasificación ABC se estableció que productos tendrán mayor impacto en costos de inventario para la nueva bodega, además se establecieron nuevos puntos de re-orden para el incremento de la materia prima, se realizó un estudio de tiempos para el proceso de producción para finalmente por medio del uso de un software de simulación se obtuvieron proyecciones del nuevo proceso productivo de la planta.

Obteniendo como resultado para el nuevo diseño una mejor distribución de áreas teniendo un flujo continuo de producción evitando una posible contaminación cruzada, se establecieron puntos de desinfección previo al ingreso de área de producción, se establecieron aéreas que se clasificaron como críticas para el proceso y finalmente por medio de la simulación se tiene que el nuevo diseño tendrá un incremento del 90% en la producción en comparación con la empresa actual.

Palabras Claves: Diseño de Planta, Capacidad de Producción, Inversión, Simulación.

ABSTRACT

The present project proposes the design of a plant dedicated to the production of pastry products, due to increases in demand and lack of physical capacity for future growth; For the proposed design, regulations 2393 for space calculation and ARCSA 067 BPM for area distribution are considered.

To know and satisfy the requirements of the client QFD methodology is established which by means of weights allows us what are the requirements that affect the design, by means of SPL design techniques the distribution of the areas of 3 options prior to the design of the plant is evaluated by choosing the best option to establish through design software a layout of the plant, by means of an ABC classification it is established that products will have greater impact on inventory costs for the new winery, new order points are established for the increase of the raw material, a time study is carried out for the production process and finally through the use of simulation software to obtain projections of the new production process of the plant.

Obtaining as a result for the new design a better distribution of areas having a continuous flow of production avoiding a possible cross contamination, disinfection points are established before entering the production area, are established aerial that will be classified as critical for the process and finally by means of the simulation it has to tell you a 90% increase in production compared to the current state.

Keywords: Plant Design, Production Capacity, Investment, Simulation.

ABREVIATURAS

ESPOL Escuela Superior Politécnica del Litoral

QFD Quality Function Deployment

DMAIC Define, Measure, Analyze, Improve and Control

SPL Systematic Layout Planning

TIR Tasa Interna de Retorno

SIPOC Supplier, Inputs, Process, Outputs, Customers

TMAR Tasa mínima aceptable de rendimiento

C/B Costo Beneficio

BPM Buenas Prácticas de Manufactura

SIMBOLOGÍA

m Metro

min Minutos

ÍNDICE GENERAL

RESUMEN.		
ABSTRACT	r	
ABREVIATI	JRAS	
SIMBOLOG	iíA	IV
ÍNDICE GE	NERAL	V
ÍNDICE DE	FIGURAS	VII
ÍNDICE DE	TABLAS	VIII
ÍNDICE DE	PLANOS	X
ÍNDICE DE	ANEXOS	X
CAPÍTULO	1	1
	cción	
1.1 Des	scripción del problema	2
1.1.1	Herramienta 4W+1H	
	tificación del problema	
1.3 Obj	etivos	
1.3.1	Objetivo General	
1.3.2	Objetivos Específicos	
1.4 Mai	rco teórico	
1.4.1	DMAIC	
1.4.2	Indicadores Económicos	
1.4.3	Normativa 067 ARCSA BPM	5
1.4.4	Systematic Plant Layout (SPL)	
	2	
	logia	
2.1 Def	ïne	
2.1.1	Voz del Cliente (VOC)	
2.1.2	Herramienta QFD (Casa de la calidad)	
2.1.3	SIPOC	
2.1.4	Restricciones	
2.1.5	Indicadores de Sostenibilidad	
	DICION	
2.2.1	Diagrama de flujo	15

2.2	.2 Recolección o	de datos	17
2.3	Análisis		22
2.3	1 Datos		22
2.3	.2 Herramienta S	SPL	24
2.3	.3 Propuestas de	e Diseño	26
2.3	.4 Evaluación de	e alternativas	33
2.4	Mejora		39
2.4	.2 Análisis order	n de pedidos y clasificación ABC de insumos	40
2.5	Control		44
2.5	.1 Simulación		44
CAPITU	JLO 3		48
3. Res	sultados y Análisis.		48
3.1	Capacidad de Pro	oducción Teórica	48
3.1	.1 Resultados de	e Simulación	50
3.1	.2 Análisis financ	ciero de propuestas de diseño	50
CAPITU	JLO 4		60
4. Co	nclusiones Y REco	mendaciones	60
4.1	Conclusiones		60
4.2	Recomendaciones	s	61
REFER	ENCIAS		
Anexos			

ÍNDICE DE FIGURAS

Figura 1.1 Método SLP de [Muther Tomado de Kumar, V., & V, N. M. (2022).]	6
Figura 2.1 Relación entre los requerimientos técnicos [Elaboración propia]	12
Figura 2.2 Diagrama de proceso de producción de pasteles [Elaboración propia]16
Figura 2.3 Diagrama de Pareto Materia Prima [Elaboración propia]	20
Figura 2.4 Diagrama de relaciones Figura 1 [Elaboración propia]	27
Figura 2.5 Distribución de área diseño 1 [Elaboración propia]	28
Figura 2.6 Diagrama de relaciones diseño 2 [Elaboración propia]	29
Figura 2.7 Distribución de áreas diseño 2 [Elaboración propia]	30
Figura 2.8 Diagrama de relaciones diseño 3 [Elaboración propia]	31
Figura 2.9 Distribución de áreas diseño 3 [Elaboración propia]	32
Figura 2.10 Diseño seleccionado [Elaboración propia]	38
Figura 2.11 Pareto Clasificación ABC [Elaboración propia]	41
Figura 2.12 Punto de reorden [Elaboración propia]	43
Figura 2.13 Distribución de Probabilidad proceso de Mezclado [EXPERFIT]	44
Figura 2.14 Distribución de Probabilidad tiempo mezclado [EXPERFIT]	45
Figura 2.15 Modelo simulado diseño de planta [FLEXSIM]	46
Figura 2.16 Diseño de planta identificado áreas [FELXSIM]	46
Figura 2.17 Resultados producción simulada [FLEXSIM]	48

ÍNDICE DE TABLAS

Tabla 1.1 Herramienta 4W 1H [Elaboración propia]	2
Tabla 2.1 Necesidades del Cliente [Elaboración propia]	8
Tabla 2.2 Evaluación de los Requerimientos del Cliente [Elaboración propia]	9
Tabla 2.3 Identificación de Competencia [Elaboración propia]	10
Tabla 2.5 Requerimientos Técnicos [Elaboración propia]	11
Tabla 2.6 Tabulación de Relación [Elaboración propia]	13
Tabla 2.7 Relación entre los requerimientos técnicos y los requerimientos del o	cliente
[Elaboración propia]	13
Tabla 2.8 SIPOC [Elaboración propia]	14
Tabla 2.9 Plan de Recolección de Datos [Elaboración propia]	18
Tabla 2.10 Descripción de Datos [Elaboración propia]	19
Tabla 2.11 Lista de Materia Prima [Elaboración propia]	20
Tabla 2.12 Distribución de áreas actual [Elaboración propia]	22
Tabla 2.13 Espacios destinados para las áreas [Elaboración propia]	23
Tabla 2.14 Herramienta From to Chart flujo de personal [Elaboración propia]	24
Tabla 2.15 Herramienta From Between Chart flujo de personal [Elaboración propia	a]24
Tabla 2.16 Relación valorizado	25
Tabla 2.17 Relación de importancia de proximidad [Elaboración propia]	25
Tabla 2.18 Ponderación de diagrama de relaciones [Elaboración propia]	26
Tabla 2.19 Flujo total diseño 1 [Elaboración propia]	33
Tabla 2.20 Eficiencia de contigüidad diseño 1 [Elaboración propia]	34
Tabla 2.21 Flujo total diseño 2 [Elaboración propia]	35
Tabla 2.22 Eficiencia de Contigüidad diseño 2 [Elaboración propia]	35
Tabla 2.23 Flujo Total diseño 3 [Elaboración propia]	36
Tabla 2.24 Eficiencia de contigüidad diseño 3 [Elaboración propia]	36
Tabla 2.25 Resultados de evaluación de diseños [Elaboración propia]	37
Tabla 2.26 Resumen indicadores financieros [Elaboración propia]	38
Tabla 2.27 Clasificación ABC [Elaboración propia]	40
Tabla 2.28 Costo de materia prima [Elaboración propia]	42
Tabla 2.29 Costo Materia Prima Futuro [Elaboración propia]	42
Tabla 2.30 Resumen OTIDA [Elaboración propia]	43
Tabla 3.1 Datos producción iniciales [Elaboración propia]	49

Tabla 3.2 Venta Mensuales [Elaboración propia]	51
Tabla 3.3 Costo Anual 5 años [Elaboración propia]	51
Tabla 3.4 Costos de Maquinaria [Elaboración propia]	51
Tabla 3.5 Costo de Inversión [Elaboración propia]	52
Tabla 3.6 Flujo financiero diseño 1 al 9% [Elaboración propia]	53
Tabla 3.7 Resultados financieros diseño 1 al 9% [Elaboración propia]	53
Tabla 3.8 Flujo financiero diseño 1 al 8% [Elaboración propia]	55
Tabla 3.9 Resultados financieros diseño 1 al 8% [Elaboración propia]	55
Tabla 3.10 Flujo financiero diseño 2 al 9% [Elaboración propia]	56
Tabla 3.11 Resultados financieros diseño 2 al 9% [Elaboración propia]	56
Tabla 3.12 Flujo financiero del diseño 2 al 8% [Elaboración propia]	57
Tabla 3.13 Resultados financieros diseño 2 al 8% [Elaboración propia]	57
Tabla 3.14 Resultados financieros diseño 3 al 9% [Elaboración propia]	58
Tabla 3.15 Resultados financieros diseño 3 al 9% [Elaboración propia]	58
Tabla 3.16 Flujo financiero diseño 3 al 8% [Elaboración propia]	59
Tabla 3.17 Resultados financieros diseño 3 al 8% [Elaboración propia]	59

ÍNDICE DE PLANOS

ÍNDICE DE ANEXOS

ANEXO 1 QFD

ANEXO 2 Estudio de Tiempo

ANEXO 3 Análisis de EOQ

ANEXO 4 Análisis de Distribución de probabilidad de variables

CAPÍTULO 1

1. INTRODUCCIÓN

La industria alimenticia es, sin duda alguna, una de las fuentes de mayor movimiento en el mercado. La alimentación es una necesidad básica del ser humano, por lo que, llama la atención cualquier tema que incluya consumo alimenticio. En el caso de la pastelería y repostería que, a pesar de no ser de consumo diario, tiene su atractivo en el mercado para que sea de consumo masivo.

El tipo de industria a la que pertenece el mercado de la repostería y pastelería es pymes. Las pymes se caracterizan por ser pequeñas empresas que buscan mantenerse en el mercado sin contar con mucha ayuda de la tecnología para ofrecer productos a menor costo y de buena calidad (Peñaherrera et al, 2018).

Las pymes deben mantenerse productivas dentro de sus limitaciones, buscar ser competitivas en el mercado fluctuante. La competitividad implica la eficiencia en la producción, en otras palabras, la manera en manejar los recursos como la materia prima, la mano de obra, los procesos, la parte financiera, y la inversión en la medida de lo posible con pocos recursos de tecnología en comparación con las grandes compañías son los aspectos para considerar si se busca la permanencia en el mercado (Peñaherrera et al, 2018).

Un reporte elaborado por el Instituto Nacional de Estadísticas y Censos (INEC) en el año 2010 clasifica a las compañías en base a la cantidad de trabajadores que tiene, por lo que una microempresa es conformada entre 1 a 9 empleados, pequeñas empresas empleados entre 10 a 49, mientras que de 50 a 100 trabajadores es una mediana empresa, y por último más de 200 colaboradores son las grandes empresas (Yance et al, 2017).

En el año 2011 las pymes aportaban cerca del 13% al Producto Interno Bruto (PIB), además de que representaba cerca del 84.3% del total de organizaciones establecidas en el Ecuador (Yance et al, 2017).

Debido a toda la información que favorece la inversión en el ámbito de la pastelería, además de motivado por la captación de un mayor mercado, una compañía actual de pastelería se encuentra en la realización de ampliar la producción con la creación de una planta.

1.1 Descripción del problema

La oportunidad de que se presenta es que la capacidad de producción actual no satisface el número de órdenes del mercado debido a que la producción se encuentra en su totalidad de espacio para aumentar la capacidad productiva, lo que se ha evidenciado desde marzo del 2022 ya que se ha presentado perdidas en los cumplimientos de pedidos en alrededor de un 30%.

1.1.1 Herramienta 4W+1H

Para declarar el problema se utilizó la herramienta 4W+1H, donde se realizan preguntar claves para indagar sobre la necesidad de la compañía, se detalla en la siguiente tabla 1.1

Tabla 1.1 Herramienta 4W 1H [Elaboración propia]

4W+1H	preguntas	Descripción
¿Que?	¿Cuál es la oportunidad de	La capacidad de producción
	mejora?	actual no satisface la cantidad de
		pedidos del mercado
¿Cuando?	¿Cuándo ocurrió la oportunidad	Desde marzo 2022
	de mejora?	
¿Donde?	¿Dónde se presentó la	En la planta actual
	oportunidad de mejora?	
¿Por qué ?	¿Por qué se presentó la	Producción está en su máxima
	oportunidad de mejora	capacidad
¿Cómo?	¿Cómo lo sé?	El porcentaje de pedidos
		perdidos por no cumplimiento es
		del 30%

1.2 Justificación del problema

El proyecto consiste en proponer un diseño de planta para la producción de productos de pastelería y repostería para suplir la demanda de pedidos que no se cubren con la producción actual de la empresa, además de considerar aumentar la capacidad actual mejorando el flujo de la línea de producción. Se tiene en cuenta la intervención de las normativas "067 ARCSA BPM" para obtener certificaciones de aseguramiento de calidad alimenticia, lo que convierte a la empresa en atractiva para el mercado y responsable con la sociedad.

1.3 Objetivos

1.3.1 Objetivo General

Diseñar una planta para productos de pastelería considerando la capacidad de producción para suplir la demanda de ordenes perdidas, analizando las normativas "067 ARCSA BPM" en un plazo de 4 meses.

1.3.2 Objetivos Específicos

- 1. Obtener información de los requerimientos y especificaciones de los clientes.
- 2. Determinar y analizar las restricciones de diseño.
- 3. Diseñar alternativas de la distribución de las áreas, considerando las maquinarias y puestos de trabajos.
- 4. Evaluar y seleccionar la mejor alternativa de diseño de planta
- 5. Simular la operación de la planta.

1.4 Marco teórico

1.4.1 **DMAIC**

La metodología DMAIC está basado en el conocimiento del campo de la ingeniería de calidad, incorporando ideas de control estadístico permitiendo la mejora de procesos, por medio del planteamiento de procesos y realización de experimentos nos permite aceptar o rechazar las mismas. Esta metodología consiste en cinco etapas empleando distintas herramientas, las cuales son: Definir, Medir, Analizar, Mejorar y Controlar. (Jeroen de Mast & Joran Lokkerbol, 2012)

1.4.1.1 **Definir**

En esta fase se establece quien es el cliente y cuáles son sus requerimientos y expectativas. En esta etapa se establecen los procesos que serán afectados y el alcance que tendrá el proyecto, utilizando herramientas como el plan de ejecución del proyecto para el diseño de un plan de recolección de datos, Critical to Quality (CTQ) para poder determinar las características que satisficieran los requerimientos del cliente. (Saad A.Shaikh, 2015)

1.4.1.2 Medir

En esta etapa es necesario identificar que variables afectaran el desempeño del proyecto, por lo que se debe de desarrollar un plan de recolección de datos para el proceso, para esta fase se pueden utilizar las siguientes herramientas: recolección de datos SIPOC (Saad A.Shaikh, 2015)

1.4.1.3 Analizar

En esta etapa se analiza datos históricos y actuales para establecer la causa raíz para identificar las posibles mejoras, se pueden utilizar diferentes herramientas como: diagrama de Pareto, Análisis de regresión. (Saad A.Shaikh, 2015)

1.4.1.4 **Mejorar**

Después que los datos recolectados sean validados, se puede desarrollar alternativas de mejora, se pueden utilizar distintos métodos para la generación de propuestas como la lluvia de ideas que luego serán validadas. De los resultados obtenidos deberán de ser las soluciones al problema. (Saad A.Shaikh, 2015)

1.4.1.5 Control

En esta etapa se establecerán las diferentes estrategias para que el proyecto tenga una sostenibilidad en el tiempo, para lo que se puede hacer uso de la implementación de documentos de control. (Saad A.Shaikh, 2015)

1.4.2 Indicadores Económicos

1.4.2.1 Tasa interna de rendimiento (TIR)

La tasa Interna de Retorno (TIR) es uno de los primeros criterios de decisión para aceptar o rechazar un proyecto, cual consiste en que el Valor Actual neto sea igual a cero, es decir que esta tasa iguala a la suma de los flujos descontando la inversión inicial. (Vaca, 2019)

(Aguilera Díaz, 2017) indica que el TIR representa la rentabilidad generada por un proyecto de inversión.

1.4.2.2 Periodo de recuperación descontado (PRD)

Es la cantidad de tiempo que se necesitara para recuperar la inversión inicial. (Aguilera Díaz, 2017)

1.4.2.3 Análisis Costo Beneficio

El análisis costo / Beneficio permite evaluar un determinado proyecto involucrando de manera explícita o implícita el total de costos y beneficios de todas las alternativas para poder seleccionar la más rentable, permitiendo obtener un rendimiento del proyecto mediante una comparación entre los costos, Cuando los costos superan a los beneficios se decide rechazar un proyecto caso contrario se lo acepta. (Aguilera Díaz, 2017)

1.4.3 Normativa 067 ARCSA BPM

Esta normativa tiene como objetivo establecer las condiciones y requisitos que debe poseer un área donde se realicen procesos de fabricación, producción, empacado, comercialización de alimentos para su consumo nacional o internacional, con el objeto de proteger la salud de la población. Esta normativa se apoya en los pilares de los jefes de áreas, recursos humanos y gerencia para la toma de decisiones de cambios en las diferentes áreas o capacitación del personal.

Esta normativa engloba las condiciones que deben de tener las bodegas de materia prima y de producto terminado, la limpieza que deberá de tener cada área, la condición de salud de los trabajadores, así como el flujo de proceso que deberá de ser continuo para evitar la contaminación cruzada.

la Normativa 067 indica los parámetros en los que se debe de basar una empresa para la acreditación de Buenas Prácticas de Manufactura. Las condicionantes serán tanto físicas como de administrativas, por lo que para la validación de las mismas se hará referencia en los artículos que se deberán aplicar en el diseño del plano.

Para las características que debe de tener las instalaciones nos basaremos desde los artículos 73,75,76,77,91 y 125 del capítulo 2, que refieren a condiciones mínima básica, facilidades almacenamiento para diseñar los espacios y la distribución de áreas, evitando que áreas contaminantes estén cerca del área de producción.

1.4.4 Systematic Plant Layout (SPL)

En la actualidad, existe varios métodos para facilitar el diseño de planta en base al flujo de trabajos, materiales, e información. Uno de esos métodos tenemos Systematic Plant Layout (SLP), un método tradicional y efectivo para el diseño de planta. El método SLP puede ser aplicable a cualquier organización de diferentes naturalezas ya que desarrollo en base a criterios cualitativos es de fácil comprensión (Kumar, 2022).

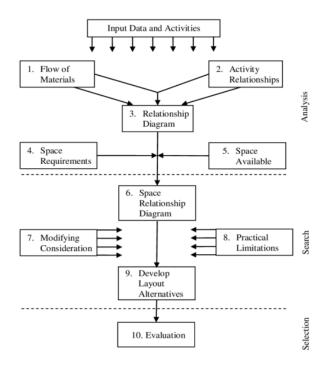


Figura 1.1 Método SLP de [Muther Tomado de Kumar, V., & V, N. M. (2022).]

La metodología se divide en 3 etapas, la primera etapa es el análisis de la información que se dispone, flujo de materiales, relación de actividades, diagramas de relaciones, espacio requerido, luego se tiene la parte de propuesta de diseño en base a diagrama de espacio requerido, además de considerar limitaciones prácticas y modificaciones, por último, tenemos la selección donde se evalúa los diseño y se selecciona el mejor (Kumar, 2022).

CAPÍTULO 2

2. METODOLOGIA

En el presente capitulo se presentará como se desarrolló el proyecto utilizando metodología DMAIC, la cual consiste en Definir, Medir, Analizar, Mejorar y Controlar. Para validar la propuesta de los diseños se usará la herramienta SPL y los respectivos indicadores económicos como TIR y análisis Costo Beneficio.

Este procedimiento será detallado a continuación

2.1 Define

2.1.1 Voz del Cliente (VOC)

¿Quiénes son los involucrados en el problema?, ¿Qué es lo que los involucrados buscan? VOC es una herramienta de mejora que pertenece a la metodología DMAIC, lo primero es identificar quiénes son parte importante de la problemática, luego de manera voluntaria invitar a los involucrados a ser partícipes activos de la investigación de sus necesidades por medio de entrevistas, encuestas, y/o acaparar datos e información proporcionada por la organización, ya sea de manera virtual y/o presencial (McGrath et al, 2019).

2.1.1.1 Identificar a los clientes

Se identifica los clientes del proyecto para indagar sobre lo que se espera del desarrollo del proyecto. Para lograr que un producto se atractivo, el diseño de este se debe idear con base a las especificaciones de los clientes, los cuales estarán a dispuestos a invertir.

2.1.1.2 Identificar necesidades

Para identificar las necesidades y requerimientos de los clientes se realizan entrevistas, encuestas, focus group, entre otras técnicas de recolección de datos. Lo que se busca es determinar y analizar cuáles son las características que tengan mayor valor para los clientes.

Tabla 2.1 Necesidades del Cliente [Elaboración propia]

SEGMENTACION DE CLIENTES					
Gerente de la empresa	Supervisores de Producción	Operarios			
REQUERIMIENTOS/ NECESIDADES					
Aumentar el nivel de producción para cumplir con los pedidos	Tener un mejor manejo de planificar las operaciones de producción	Espacio para realizar mis actividades diarias			
Aumentar la cantidad de pedidos que se puede realizar	Aumentar el nivel de inventario para no quedarse sin producción	Mejor Planificación de las actividades con las herramientas que tenemos que realizar día a día			
Mejorar el marketing en ventas para ser más atractivo en el mercado	Mejorar el manejo de uso de los insumos y materiales	Mejorar el orden de realización de trabajos			
Considerar requerimientos de la industria alimenticia	Capacitaciones constante sobre el orden y el manejo del materiales durante la producción				

2.1.2 Herramienta QFD (Casa de la calidad)

El método QFD es un proceso que sirve para el diseño, rediseño y/o mejora de productos o servicios a través de la consideración de los requerimientos y necesidades de los clientes. El proceso empieza con la herramienta voz del cliente (VOC) donde se recolectó información sobre lo que pensaban de la problemática, luego se analiza las necesidades para convertir en requerimientos técnicos que serán analizados y evaluados para determinar las mejoras a aplicar (Amarilies et al, 2022).

2.1.2.1 Requerimientos de clientes

El primer paso para desarrollar la Casa de la Calidad es interpretar las necesidades del cliente y transcribirlos en requerimientos de ingeniería para que de esta manera se pueda proponer las características que debe tener el producto a desarrollar.

Tabla 2.2 Evaluación de los Requerimientos del Cliente [Elaboración propia]

				Operario	Operario		
No	Requerimientos del cliente	Gerente	Supervisor	1	2	Promedio	Importancia
	Área de Producción que						
1	garantice las calidad del producto	9	9	3	5	6.5	7
2	Mejorar el flujo de producción	1	3	5	1	2.5	1
	Áreas de planta y oficinas						
3	separadas	8	10	10	4	8	10
	Tener un método de planificación						
4	de producción	7	5	1	7	5	4
	Tener espacio suficiente para						
5	inventario	3	7	8	10	7	8
	Cumplir con normativas de						
6	alimentos	10	6	7	8	7.75	9
	Espacio para recibir materia						
	prima y despacho de producto						
7	terminado	5	1	4	2	3	3
	Regular temperaturas en						
8	bodegas materia prima	4	2	9	9	6	5
	Regular temperaturas en el área						
9	de producción	2	4	2	3	2.75	2

En la tabla número 2 tenemos el listado resumido de los requerimientos del cliente que se obtuvieron de las entrevistas realizadas en la herramienta VOC. Además, se requiere conocer el nivel de importancia de cada requerimiento, por lo que se procedió a que los mismos clientes evalúen cuál de todas las necesidades tiene mayor relevancia entre todos, teniendo la calificación de 10 como mayor importancia y 1 de menor importancia, luego se realiza el promedio de las calificaciones y se designa la importancia a cada requerimiento.

2.1.2.2. Análisis de la Competencia

Una vez determinados los requerimientos del cliente, se realiza una breve comparativa con las organizaciones que ofertan el mismo producto en el mercado. Para ello se establece la siguiente tabla número 3 que identifica a cada cliente:

Tabla 2.3 Identificación de Competencia [Elaboración propia]

Competidor	Representación
Competidor 1	
Competidor 2	\Diamond
Competidor 3	

En el Anexo 1 se puede evidenciar la comparativa de los competidores entre sí y entre el diseño a ofrecer en base a la experiencia e investigación de medios digitales. Tenemos que las competencias tienen características entre regulares y buenas, lo que es favorable para el diseño ya que el producto que se oferta tiene características competitivas en el mercado.

2.1.2.3 Requerimientos Técnicos

Los requerimientos técnicos son las características que tendrá el producto en base a las necesidades presentadas por el cliente, es la manera en que se va a desarrollar los requerimientos del cliente (especificaciones de Diseño).

Tabla 2.4 Requerimientos Técnicos [Elaboración propia]

	Tener espacio para flujo de personal acorde a las normativas 2393
	Establecer comunicación entre departamentos, eligiendo el diseño óptimo
	Analizar la logística de despacho para el área de embarque y desembarque para tener un crecimiento del 75%
Requerimientos técnicos	Analizar la demanda del inventario de materia prima para determinar un crecimiento del 30% en tamaños de bodegas
teemees	Determinar el flujo adecuado para la producción
	Usar la normativa 067 ARCSA BPM en la planta
	La gama de pedidos de materias primas tiene un aumento del 25 % en el almacén
	Tener un incremento del 40% en la capacidad de producción

En la tabla se muestra las características que debe tener la nueva planta de pastelería para que inicie su funcionamiento. Algunas de estas características consideran el espacio para el tránsito de personal operativo, así como espacio para los puestos de trabajos y maquinarias, por otro lado, se considera realizar el análisis de demanda e inventario para determinar espacio para bodegas, entre otros requerimientos.

2.1.2.4 Relación entre requerimientos técnicos

Existe la posibilidad de que algunas características se vean afectadas por otras al momento de querer ser aplicada, esto es debido a la naturaleza del requerimiento, por otro lado, puede existir relación positiva entre características, en otras palabras, desarrollar una característica ayuda a que otra se desarrolle con mayor facilidad. Por lo que, se debe realizar un análisis para determinar si existe relación entre los

requerimientos técnicos que puede afectar o beneficiar la aplicación de cada uno de ellos.

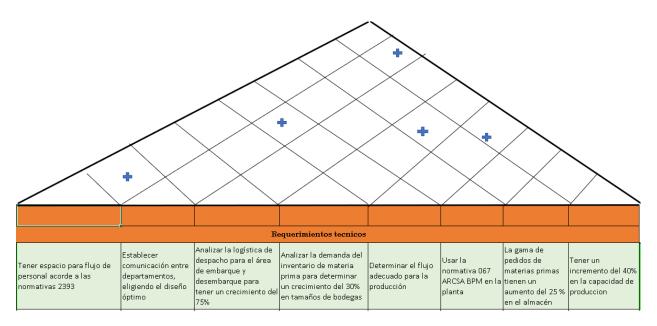


Figura 2.1 Relación entre los requerimientos técnicos [Elaboración propia]

En la ilustración tenemos que existen varias relaciones positivas entre las características, por ejemplo, establecer una comunicación entre departamentos mediante un diseño optimo permite estructurar el espacio para el flujo del personal operativo; además de que es mucho mayor factible determinar un adecuado flujo de producción, entre otros requerimientos que se relacionan positivamente.

2.1.2.5 Relación entre Requerimientos del Cliente y Requerimientos Técnicos

Una vez determinado los requerimientos tanto de los clientes como las características técnicas, se debe establecer la relación entre ambos, para ello se utiliza la siguiente tabla de ponderación:

Tabla 2.5 Tabulación de Relación [Elaboración propia]

RELACIÓN				
Grado de Relación	Valor Numérico Asignado			
Fuerte	9			
Moderada	3			
Débil	1			
Sin Relación	vacío			

Se establece la relación entre los siguientes requerimientos en base a la tabla de ponderación, donde se dice que, si los requerimientos tienen una relación fuerte, su valor será 9, mientras que una relación moderada se tiene el valor de 3, y débil equivale a 1, en el caso donde no se determine relación entre características se omite valor numérico.

Tabla 2.6 Relación entre los requerimientos técnicos y los requerimientos del cliente

[Elaboración propia]									
		Requerimientos tecnicos							
REQUERIMIENTOS DEL CLIENTE	IMPORTANCIA	Tener espacio para flujo de personal acorde a las normativas 2393	Establecer comunicación entre departamentos, eligiendo el diseño óptimo	despacho para el área de embarque y desembarque para tener	prima para determinar un	Determinar el flujo adecuado para la producción	Usar la normativa 067 ARCSA BPM en la planta	La gama de pedidos de materias primas tienen un aumento del 25 % en el almacén	Tener un incremento del 40% en la capacidad de produccion
Area de Producción que garantice las calidad del producto	7	9	9	1			1		
Mejorar el flujo de producción	1	3	9			3	3	3	9
Areas de planta y oficinas separadas	10	9	3	1	3			3	
Tener un metodo de planificación de producción	4	3	3	1		9	1		9
Tener espacio suficiente para inventario	8	1	1	1	9	3			1
Cumplir con normativas de alimentos	9	1	1		1		9	3	
Espacio para recibir materia prima y despacho de producto terminado	3			9				1	
Regular temperaturas en bodegas materia prima	5				9		9		
Regular temperaturas en el area de produccion	2		3	1	1	3	1		3

2.1.2.6 Evaluación de los requerimientos técnicos

Al evaluar los requerimientos técnicos en base al grado de relación entre los requerimientos del cliente y los requerimientos técnicos, además de la ponderación de importancia de los requerimientos del cliente que ubica como prioridad a unos requerimientos en comparación que otros, da como resultado la siguiente tabla de evaluación. Se tiene como prioridad el espacio para bodegas, el análisis de las normativas BPM, y el flujo del personal dentro de la planta.

La visualización del QFD de manera completa se encuentra en el Anexo 1.

2.1.3 SIPOC

Mediante el uso de esta herramienta podemos realizar un mapeo de los procesos la cual fue recolectada por medio de observación del proceso de producción y entrevistas al jefe de área, conocer cómo se establece el proceso nos permite conocer que áreas estarán relacionadas generando un mejor flujo entre los departamentos. Obteniendo la siguiente tabla.

Tabla 2.7 SIPOC [Elaboración propia]

Proveedores	Entradas	Procesos	Salidas	CLIENTES
Gerencia	Mail o llamadas a	Solicitud de	Inventario de	Bodega
	proveedores	materia prima	materia prima	
Jefe de	Orden de	Planificar	Numero de ítems	Producción
Producción	producción	producción		
Bodegas	Solicitud materia	Recepción de	Materia prima	Producción
	prima	materia prima		
Producción	Especificaciones de	Preparación de	Maquinaria	Producción
	ítem	equipo	calibrada	
Bodega	Materia prima e	Producción	Producto	Área de espera
	insumos		terminado sin	
			envase	
Bodega	Cajas, envases	Envasado	Producto	Bodega producto
	plásticos		terminado	terminado
			envasado	
Departamento	Facturas, notas de	Despacho	Facturas, Nota de	Consumidor final
ventas	remisión		entrega	

Cabe mencionar que este será el proceso general que deberá ser adaptado al nuevo diseño de la planta, por lo que conocer cómo se llevará el flujo de información entre los departamentos será clave para la creación de documentos de control.

2.1.4 Restricciones

Para el presente proyecto se consideran las siguientes restricciones establecidas por parte de la empresa y de los procesos establecidos en la misma:

- Confidencialidad de información.
- Estandarización de los procesos para la gama de productos que se ofertan.
- Ubicación geográfica.

2.1.5 Indicadores de Sostenibilidad

Los indicadores de sostenibilidad es una guía para las organizaciones del presente y futuro, ya que se enfoca en 3 aspectos importantes que una compañía debe considerar para mantener la permanencia en el mercado y en el entorno.

2.1.5.1 Impacto económico

En el ámbito económico se debe considerar el incremento en los ingresos de la empresa, ya que se tendría una mayor cantidad de producción, lo que tiene una relación positiva con el aumento de las ventas.

2.1.5.2 Impacto ambiental

En el ámbito ambiental se debe considerar el uso de empaques biodegradables para aumentar la concienciación en el cuidado del medio ambiente, así como el uso de productos orgánicos.

2.1.5.3 Impacto social

En el ámbito social se toma en consideración el incremento de plazas de trabajos para ciudadanos con residencia cercana a la nueva planta, además de ofertar con mayor facilidad promociones de cumpleaños, matrimonios, entre otros, para la sociedad en general.

2.2 MEDICION

2.2.1 Diagrama de flujo

Se establece el siguiente diagrama de flujo que nos permite tener una comprensión visual del proceso que parte desde la recepción de materia prima hasta el despacho del producto terminado.

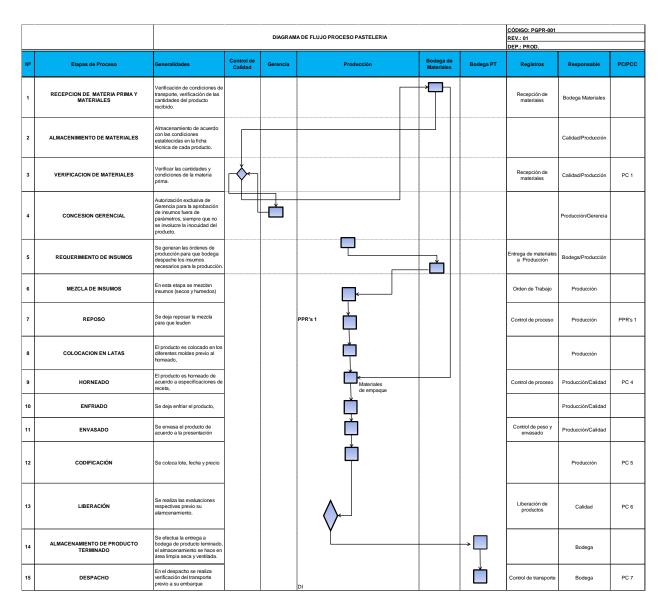


Figura 2.2 Diagrama de proceso de producción de pasteles [Elaboración propia]

Mediante el uso de esta herramienta se puede realizar el mapeo del proceso de producción, conocer cómo se establece el proceso nos permite interpretar que áreas están relacionadas generando un mejor flujo entre departamentos.

2.2.2 Recolección de datos

2.2.2.1 Plan de Recolección de datos

En el plan de recolección de datos se detalla la información que se necesita obtener para llevar a cabo el diseño de la planta, aquella información debe estar registrada, así como la manera de obtener la información, además para cada tipo de dato a recolectar se detalla la relación con los requerimientos del QFD, y también el futuro uso de la información.

Tabla 2.8 Plan de Recolección de Datos [Elaboración propia]

Tabla 2.8 Plan de Recolección de Datos [Elaboración propia]						
No.	Data a recolectar	Tipo	Como medir	Donde obtener la información	Como obtener la información	Furuto uso
1	Dimensiones del Producto	Discreto	Area del producto	Registros confidenciales	ba/ chequear info	despacho de producto
2	Número de Maquinarias	Discreto	La cantidad por cada tipo de maquinaria	Registros confidenciales/ internet	Gemba/ revisar registro informaticos en linea	Distribución de espacio para maquinaria y puestos de trabajo
3	Dimensiones de cada maquinaria	Discreto	El área de cada tipo de maquinaria	Registros confidenciales/ internet	Gemba/ revisar registros informaticos en linea	Distribución de espacio para maquinara y puestos de trabajos
4	Costo estimado de operación	Continuo	La suma de los costos por el numero de maquinaria	Internet	Revisar registros informaticos en linea	Analisis financiero
5	Número promedio de Trabajadores	Discreto	El número promedio de personas por cargo de trabajo	Registros de Gerencia	Gemba	Distribución de espacio para puestos de trabajos, Flujo de personal
6	Costo promedio de capital de trabajo	Continuo	La suma de los salarios multiplicados por el numero promedio de trabajadores	Codigo de trabajo/ registro Seguro IESS/ Registros Salarios sectorial en Ecuador	Revisar registros informaticos en linea	Analisis financiero
7	Cantidad promedio de utensilios de producción	Discreto	Numero promedo por tipo de utensilio	Check de los registros	Gemba/ revisar registros informáticos en línea	Intervención de las normativas BPM
8	Número de areas productivas	Discreto	Numero de areas identificadas	Diagrama de Flujos	Gemba	Distribución de areas de planta
9	Dimensiones de las areas productivas	Discreto	Area de cada area identificada	Registros confidenciales/ Estimaciones de medición	Gemba	Distribución de espacio de areas de la planta
10	Tiempo promedio de producción por proceso	Continuo	Tiempo promedio por actividad	Toma de tiempos	Gemba/ realizar análisis estadístico	Flujo y capacidad de producción
11	Cantidad promedio de materia prima	Discreto	Numero promedio por tipo de materia prima	Registros confidenciales/ Datos con estimaciones estadisticas	Gemba/ realizar analisis estadistico	Analisis de demanda para tamaño de bodega
12	Cantidad promedio de Inventario Final	Discreto	Numero promedio por tipo de Inventario	Registros confidenciales/ Datos con estimaciones estadisticas	Gemba/revisar analisis estadistico	Analisis de demanda para tamaño de bodega

2.2.2.2 Datos

En el Plan de Recolección de Datos se detalla la información que se busca recolectar, en la siguiente tabla se resume los datos recolectados de productos, maquinaria, utensilios de producción y las áreas y puestos de trabajos, además de considerar las mediciones en superficies cuadradas de cada dato.

Tabla 2.9 Descripción de Datos [Elaboración propia]

			-			
Datos a recolect Cantidad	Descripción	Dimensiones				
PRODUCTO						
1	tortas	0.4 m x 0.4 m	0.16 m2			
4	cupcakes	0.4 m x 0.4 m	0.16 m2			
MAQUINARIA						
5	Cocinas	1.45 m x 0.55 m	3.98 m2			
6	Hornos	0.914 m x 1.003	5.500 m2			
6	Dosalyx	0.287 m x 0.563	0.969 m2			
2	Refrigeradores	0.7 m x 0.7 m	0.49 m2			
1	Dolcelyx	0.566 m x 0.67 m	0.379 m2			
2	mezcladora (hoti	0.645 m x 0.426	0.55 m2			
1	Maquina cortado	1 m x 1 m	1 m2			
UTENSILIOS DE PRODUCION	•					
	Ollas					
	Cucharas					
	Cucharones					
	Bandejas	4 m x 4 m	16 m2			
	Moldes					
	Platos					
	Cajas					
	Perchas					
AREAS	. 0.0					
PRODUCCION						
	Bodega de mate	5 m v 8 m	48 m2			
	Área de mezclad		25 m2			
	Área de reposo d		21 m2			
	Área de molde	5 m x 5 m	25 m2			
	Área de hornead		50 m2			
			21 m2			
	Área de enfriamie		21 m2 20 m2			
1	Área de empaque		_			
	Área de etiquetad		16 m2			
	Bodega de produ	3 m x 7 m	21 m2			
COMPLEMENTARIAS	1	14 4	10 0			
1	Lavado	4 m x 4 m	16 m2			
	Mostrador	3 m x 5 m	15 m2			
	Oficinas	3 m x 5 m	90 m2			
	Baños	2 m x 3 m	48 m2			
	Duchas	2 m x 2 m	8 m2			
	Vestidor	4 m x 4 m	16 m2			
	Comedor	4 m x 4 m	16 m2			
l 1	Cuarto de Limpie	2 m x 2 m	4 m2			

En el caso de los productos, se tiene una variedad considerable de productos que la empresa oferta al público, por lo que se procedió a realizar un diagrama de Pareto con la finalidad de determinar los productos estrella y realizar el análisis para esos productos.

Tabla 2.10 Lista de Materia Prima [Elaboración propia]

Producto	Cantidad
torta Chocolate	289
Torta Vainilla	144
cajita de alfajores	9
cajita de trufas	48
mini dulces	36
naked cake frutos rojos	9
Galletas choconieve	34
otros	10

Diagrama de Pareto de Producto 600 100 500 80 400 Porcentaje Cantidad 60 300 40 200 20 100 0 Producto Cantidad 289 48 36 19 15 144 Porcentale 24.6 8.2 3.2 2.6 49.4 6.2 5.8 % acumulado 49.4 74.0 82.2 88.4 94.2 97.4 100.0

Figura 2.3 Diagrama de Pareto Materia Prima [Elaboración propia]

En el diagrama de Pareto se muestra que las tortas de Chocolate junto con la Torta de Vainilla representan cerca del 80% de la producción mensual, por lo que el análisis de la información se focalizara en ambos productos.

2.2.2.3 Descripción de áreas

2.2.2.3.1 Áreas de Producción

Bodega de Materia prima.- En el área de materia prima se encontrará todos los productos que se necesita de primera mano para el proceso productivo, de los cuales tenemos harina, leche, huevos, aceite, grasas, chocolates, entre otros. Para el almacenamiento de los productos se utilizará pallets para sacos y perchas para cajas y demás productos.

Mezclado.- El área de mezclado se destina para el pesaje de los productos de acuerdo con los parámetros establecidos para el mezclado, además se procede a realizar el proceso de mezclado.

Reposo de producto en proceso.- En el área de reposo de producto en proceso estará localizado todo aquel producto complementario para el relleno y cubrimiento de los pasteles, entres estos tenemos a las cremas pasteleras, chocolate, frutas, entre otros.

Molde.- El área de molde trabaja de la mano con el área de mezclado ya que una vez mezclado la masa se procede a colocar en moldes para el horneado.

Horneado.- En el área de horneado estará ubicadas la mayoría de las cocinas y hornos, para mantener la zona de caliente en un solo lugar.

Enfriamiento.- El área de enfriamiento estará relacionado con el área de horno debido a que se tiene que enfriar el producto luego de ser horneado, ya que para colocar los productos complementarios se tienen que colocar con los pasteles fríos.

Empaquetado.- El área de empaquetado se tiene el producto terminado en recipientes para ser almacenados en la bodega de producto terminado para luego ser distribuidos.

Etiquetado.- El área de etiquetado de producto se fusionará con el área de empaquetado.

Bodega de Producto Terminado.- En la bodega de producto terminado se almacena el producto una vez ya empaquetado y etiquetado, se colocará en perchas.

2.2.2.3.2 Complementarias

Lavado.- Se destinará un espacio para el lavado de materiales y herramientas utilizadas durante la producción.

Mostrador.- Se destinará un espacio para mostrar el producto a visitantes o posibles clientes.

Oficinas.- Para la parte administrativa se dispondrá de oficinas.

Baños.- Se destinará un espacio para los baños, separados por sexo.

Comedor.- Dado que la ubicación de la planta es alejada una cierta distancia de la ciudad, se dispondrá de un comedor para el consumo de alimentos.

Duchas.- Se destinará espacio para duchas como complemento de los baños

Vestidor.- Se contará con un espacio para vestidores con casilleros.

Cuarto de Limpieza.- Se necesita almacenar utensilios de limpieza como escobas, trapeadores, desinfectantes entre otros.

2.3 Análisis

En la etapa análisis se examinará los datos recolectados en la etapa medición para poder realizar propuestas de diseño de la planta.

2.3.1 Datos

Se presenta la distribución actual de la empresa del cliente para tener como referencia la información de las áreas y sus dimensiones.

Tabla 2.11 Distribución de áreas actual [Elaboración propia]

SITUACION ACTUAL	
PRODUCCION	DIMENSIONES
Bodega de materia prima	22 m2
Área de mezclado	15 m2
Área de horneado	30 m2
Área de enfriamiento	20 m2
Área de empaquetado y etiquetado	16 m2
Bodega de producto terminado	12 m2
COMPLEMENTARIA	
Lavado	4 m2
Oficinas	15 m2
Baños	8 m2
Vestidor	4 m2
Cuarto de Limpieza	4 m2

En la etapa medición se definió las áreas, sus cantidades y dimensiones en base a la información proporcionada por los clientes, además de la guía del diagrama de flujo presentado.

Tabla 2.12 Espacios destinados para las áreas [Elaboración propia]

			AREAS PRODUCCION	
Dim	ensiones	Cantidad	Descripción	Nomenclatura
5 m x 8 m	48 m2		1 Bodega de materia prima	BDM
5 m x 5 m	25 m2		1 Área de mezclado	AME
3 m x 7 m	21 m2		1 Área de reposo de producto en proceso	ARPP
5 m x 5 m	25 m2		1 Área de molde	AMO
5 m x 10 m	50 m2		1 Área de horneado	AHO
3 m x 7 m	21 m2		1 Área de enfriamiento	AEN
4 m x 5 m	20 m2		1 Área de empaquetado	AEP
4 m x 4 m	16 m2		1 Área de etiquetado	AET
3 m x 7 m	21 m2		1 Bodega de producto terminado	BPT
			AREAS COMPLEMENTARIAS	
4 m x 4 m	16 m2		1 Lavado	LA
3 m x 5 m	15 m2		1 Mostrador	МО
3 m x 5 m	90 m2		6 Oficinas	OF (1-6)
2 m x 3 m	48 m2		8 Baños	BN (1-8)
2 m x 2 m	8 m2		2 Duchas	DU
4 m x 4 m	16 m2		1 Vestidor	VE
4 m x 4 m	16 m2		1 Comedor	CO
2 m x 2 m	4 m2		1 Cuarto de Limpieza	CL

2.3.2 Herramienta SPL

2.3.2.1 From to chart

En la herramienta From to Chart se calcula la cantidad de trabajadores que transitan de un área a otra, y viceversa. Con este análisis se tiene el flujo de personal.

Tabla 2.13 Herramienta From to Chart flujo de personal [Elaboración propia]

								FRONT	ТО СНАР	RT: Flujo	de Trab	ajadore	S					
		BDM	AME	ARPP	AMO	AHO	AEN	AEP	AET	BPT	LA	MO	OF (1-	BN (1-	DU	VE	СО	CL
Bodega de materia prima	BDM		2	0	2	0	0	2	2	0	0	1	1	2	2	2	2	1
Area de mezclado	AME	1		4	2	4	1	0	0	0	2	0	0	2	2	2	3	1
Area de reposo de producto en prod	ARPP	0	1		4	1	1	0	0	1	0	0	0	0	0	0	0	0
Area de molde	AMO	0	1	2		4	0	0	0	0	1	0	0	1	0	0	1	0
Area de horneado	AHO	0	1	1	2		4	0	0	0	2	0	0	1	0	0	1	0
Area de enfriamiento	AEN	0	0	1	0	3		3	1	1	0	0	0	0	0	0	0	0
Area de empaquetado	AEP	2	0	0	0	0	2		3	1	0	0	0	1	0	1	1	0
Area de etiquetado	AET	2	0	0	0	0	1	2		3	2	0	1	1	0	1	1	0
Bodega de producto terminado	BPT	1	0	0	0	0	1	2	2		1	2	1	2	0	1	2	1
Lavado	LA	1	1	0	1	1	0	1	1	0		1	1	1	1	1	1	2
Mostrador	MO	1	0	0	0	0	0	0	0	3	0		2	1	1	0	0	0
Oficinas	OF	0	0	0	0	0	0	0	0	2	1	2		4	1	0	1	0
Baños	BN	1	1	0	1	1	0	0	0	1	0	0	1		3	3	1	1
Duchas	DU	0	0	0	0	0	0	0	0	0	0	0	0	2		2	0	0
Vestidor	VE	1	0	0	0	1	1	1	1	1	1	1	0	1	2		0	0
Comedor	CO	1	1	0	1	1	0	1	1	1	1	1	1	2	1	1		0
Cuarto de Limpieza	CL	1	0	0	0	0	0	0	0	1	1	1	2	2	2	1	2	

2.3.2.2 From Between Chart

En la herramienta From Between Chart se Calcula a partir de From to Chart, lo que se realiza es la sumatoria de los movimientos en ambas direcciones entre áreas y se coloca en la parte superior, una vez obtenido el flujo se calcula el flujo total.

Tabla 2.14 Herramienta From Between Chart flujo de personal [Elaboración propia]

								FF	ONT BE	TWEEN	CHART:	Flujo de	Persona	ı					
		BDM	AME	ARPP	AMO	AHO	AEN	AEP	AET	BPT	LA	MO	OF (1-	BN (1-	{DU	VE	СО	CL	Total
Bodega de materia prima	BDM		3	0	2	0	0	4	4	1	1	2	1	3	2	3	3	2	31
Area de mezclado	AME			5	3	5	1	0	0	0	3	0	0	3	2	2	4	1	29
Area de reposo de producto en pr	oc ARPP				6	2	2	0	0	1	0	0	0	0	0	0	0	0	11
Area de molde	AMO					6	0	0	0	0	2	0	0	2	0	0	2	0	12
Area de horneado	AHO						7	0	0	0	3	0	0	2	0	1	2	0	15
Area de enfriamiento	AEN							5	2	2	0	0	0	0	0	1	0	0	10
Area de empaquetado	AEP								5	3	1	0	0	1	0	2	2	0	14
Area de etiquetado	AET									5	3	0	1	1	0	3	3	0	16
Bodega de producto terminado	BPT										1	5	3	3	1	2	3	2	20
Lavado	LA											1	2	1	1	2	2	3	12
Mostrador	MO												4	1	1	1	1	1	9
Oficinas	OFI													5	1	0	2	2	10
Baños	BN														5	4	3	3	15
Duchas	DU															4	1	2	7
Vestidor	VE																1	1	2
Comedor	CO																	2	2
Cuarto de Limpieza	CL																		C
																			215

2.3.2.3 Relación de Proximidad

En la herramienta Relación de proximidad, se establece la relación que debe tener entre las áreas en base a los diagramas de flujo, y el flujo de material e información según la siguiente tabla de ponderación:

Tabla 2.15 Relación valorizado

Valor	Relación
А	Absolutamente Necesario
E	Especialmente Necesario
I	Importante
0	Ordinario
U	No importante
X	No deseable

En la siguiente tabla se muestra la relación de proximidad entre las áreas, por ejemplo, tenemos que el área de bodega de materia prima es absolutamente necesario que está cerca del área de moldeado, ya que allí se intercambia información y materiales. Se realizó ese análisis para todos los pares de áreas que se tiene.

Tabla 2.16 Relación de importancia de

2.3.3 Propuestas de Diseño

Para desarrollar las alternativas de diseño se consideró los resultados de las herramientas From Between Chart y la relación de Proximidad, por lo que se desarrolló un diagrama de relaciones de las áreas con base a la ponderación y especificación de la siguiente tabla:

Tabla 2.17 Ponderación de diagrama de relaciones [Elaboración propia]

Valor	Relación	Color
А	Absolutamente Necesario	
Е	Especialmente Necesario	
I	Importante	
0	Ordinario	Vacío
U	No importante	Vacío
Х	No deseable	

2.3.3.1 Diseño 1

2.3.3.1.1 Diagrama de relaciones

Para mostrar el primer diseño se procura distribuir las áreas de acuerdo para que tenga un flujo de personal considerando los resultados obtenidos en la herramienta From Between Chart, además se considera la relación de las áreas de acuerdo con su proximidad con la que se determina la importancia de tener un área cerca de otra.

En este diseño se consideró un flujo de producción en S, el proceso empieza en la bodega de materia prima, y sigue un lujo en S hasta llegar a la bodega de producto terminado. Las área de apoyo con las oficinas, comedor, baños y entre otros quedan de un solo lado y alejados del proceso productivo.

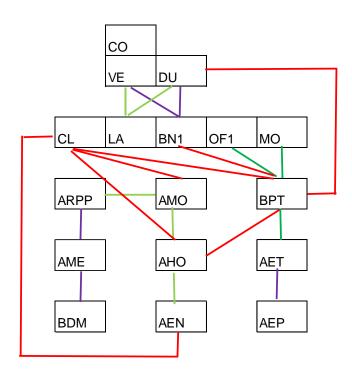


Figura 2.4 Diagrama de relaciones Figura 1

[Elaboración propia]

2.3.3.1.2 Diagrama de relaciones con los espacios establecidos

En la figura 5 se puede apreciar la distribución de área que se espera tener con el primer diseño propuesto, el ancho y el largo total de la empresa se la realiza de acuerdo con la restricción de espacio del terreno.

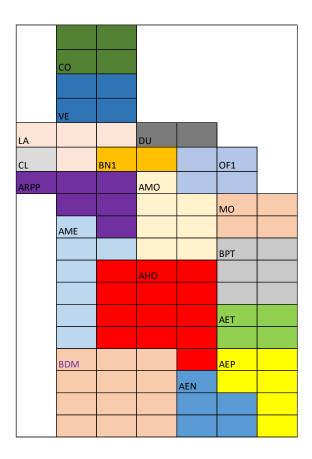


Figura 2.5 Distribución de área diseño 1
[Elaboración propia]

2.3.3.2 Diseño 2

2.3.3.2.1 Diagrama de relaciones

En la propuesta de diseño número dos se tiene que un flujo semejante a flujo en u, con la característica de tener la bodega de materia prima y producto terminado en el mismo en el mismo lado, para considerar compartir espacio de embarque y desembarque de producto.

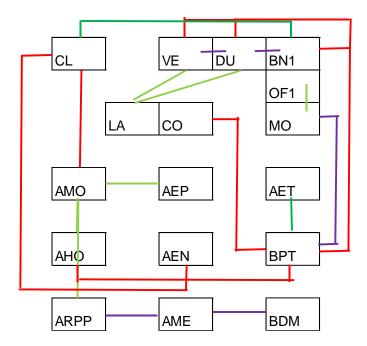


Figura 2.6 Diagrama de relaciones diseño 2 [Elaboración propia]

2.2.2.1.1. Diagrama de relaciones con los espacios establecidos

En el diagrama de relaciones con espacios establecidos del diseño propuesto número 2 se aprecia como se verá la distribución de la nueva planta con las dimensiones aproximadas. Se respeta la restricción de dimensiones del terreno.

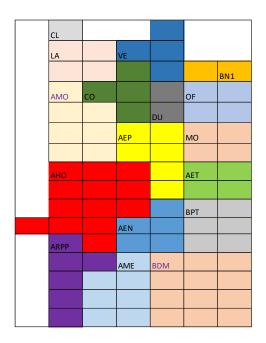


Figura 2.7 Distribución de áreas diseño 2 [Elaboración propia]

2.3.3.3 Diseño 3

2.3.3.3.1 Diagrama de relaciones

En la propuesta de diseño número 3 se tiene un flujo continuo de forma en forma de U y separada las bodega de materia prima y producto terminado.

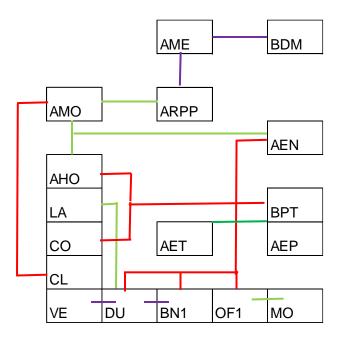


Figura 2.8 Diagrama de relaciones diseño 3 [Elaboración propia]

2.3.3.3.2 Diagrama de relaciones con espacios establecidos

En el diagrama de relaciones se aprecia como se vería la empresa con las distribuciones de espacio. Además, se sigue respetando la restricción del terreno, en los tres diseño se busca determinar parcialmente la misma cantidad de espacio de ancho y largo de la empresa.

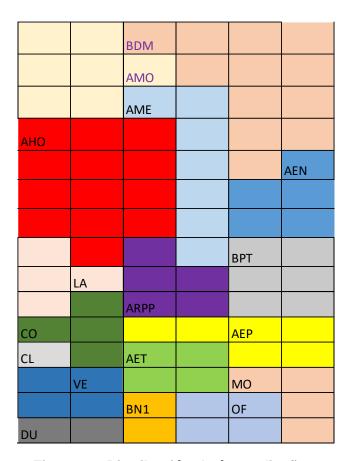


Figura 2.9 Distribución de áreas diseño 3 [Elaboración propia]

2.3.4 Evaluación de alternativas

Para la evaluación del diseño se utilizó las herramientas flujo total y eficiencia de contigüidad.

2.3.4.1. Diseño 1

2.3.4.1.1. Flujo total

La herramienta de flujo total consiste en determinar la cantidad total de distancia que existe entre las áreas, lo que considera a calcular el menor flujo de materiales y personal dentro de la empresa desde una área a todas las áreas. Además, se utiliza los resultados de flujo obtenidos en la herramienta Front Between Chart.

El flujo total del diseño 1 es de 732 según la tabla 19

FRONT BETWEEN CHART: TOTAL FLOW
P AET BPT LA MO OF BDM AME AHO AEN BN CO Γotal BDM AME ARPP AMO AHO AEN AEP AET **BPT** LA МО OF1 DU СО

Tabla 2.18 Flujo total diseño 1 [Elaboración propia]

2.3.4.1.2. Eficiencia de Contigüidad

Para el cálculo de eficiencia de contigüidad se considera la valoriza de 1 de acuerdo si una área se encuentra al lado de otra área, si se encuentra lejanas la valorización es de cero. Además, se considera el flujo obtenido en la herramienta Front Between Chart.

Lo que se busca es determinar la eficiencia de tener la mayor cantidad de departamentos conectados unos con otros y asegurar una mayor comunicación entre departamentos.

La eficiencia del diseño uno es de 36.3% según la tabla 20.

Tabla 2.19 Eficiencia de contigüidad diseño 1 [Elaboración propia]

	FRONT BETWEEN CHART: CONTIGUITY																	
AREA	BDM	AME	ARPP	AMO	AHO	AEN	AEP	AET	BPT	LA	МО	OF1	BN	DU	VE	СО	CL	Total
BDM		3		0			0	0	0	0	0	0	0	0	0	0	0	3
AME			5	3	5	0				0			0	0	0	0	0	13
ARPP				6	0	0			0									6
AMO					6					0						0		6
AHO						7				0			0		0	0		7
AEN							5	0	0						0			5
AEP								5	0	0			0		0	0		5
AET									5	0		0	0		0	0		5
BPT										0	5	0	0	0	0	0	0	5
LA											0	0	1	1	2	0	3	7
MO												4	0	0	0	0	0	4
OF1													5	1		0	0	6
BN														5	0	0	0	5
DU															0	0	0	0
VE																1	0	1
CO																	0	0
CL																		0
																		78
																effic	iency	36.3

2.3.4.2. Diseño 2

2.3.4.2.1. Flujo total

El flujo total del diseño 2 es de 679 según la tabla 21.

Tabla 2.20 Flujo total diseño 2 [Elaboración propia]

	FRONT BETWEEN CHART: TOTAL FLOW																	
AREA	BDM	AME	ARPP	AMO	AHO	AEN	AEP	AET	BPT	LA	MO	OF1	BN	DU	VE	СО	CL	Total
BDM		0		14			12	12	0	11	10	7	27	14	21	24	28	180
AME			0	18	5	0				30			33	16	20	28	13	163
ARPP				24	0	2			3									29
AMO					0					0						0		0
AHO						0				12			12		5	6		35
AEN							0	2	0						6			8
AEP								0	3	3			3		4	0		13
AET									0	21		2	4		15	12		54
BPT										9	10	12	18	5	14	18	24	110
LA											6	6	2	2	0	0	0	16
MO												0	2	1	3	2	8	16
OF1													0	0		2	12	14
BN														5	0	3	15	23
DU															0	0	10	10
VE																0	2	2
CO																	6	6
CL																		0
																		679

2.3.4.2.2. Eficiencia de Contigüidad

La eficiencia de contigüidad del diseño 2 es de 34.9% según resultados de la tabla 22.

Tabla 2.21 Eficiencia de Contigüidad diseño 2 [Elaboración propia]

	FRONT BETWEEN CHART: CONTIGUITY																	
AREA	BDM	AME	ARPP	AMO	AHO	AEN	AEP	AET	BPT	LA	МО	OF1	BN	DU	VE	СО	CL	Total
BDM		3		0			0	0	1	0	0	0	0	0	0	0	0	4
AME			5	0	0	1				0			0	0	0	0	0	6
ARPP				0	2	0			0									2
AMO					6					2						2		10
AHO						7				0			0		0	0		7
AEN							5	0	2						0			7
AEP								5	0	0			0		0	2		7
AET									5	0		0	0		0	0		5
BPT										0	0	0	0	0	0	0	0	0
LA											0	0	0	0	2	2	3	7
MO												4	0	0	0	0	0	4
OF (1-6)													5	1		0	0	6
BN (1-8)														0	4	0	0	4
DU															4	1	0	5
VE																1	0	1
CO																	0	0
CL																		0
																		75
																Efici	encia	34.9

2.3.4.3. Diseño 3

2.3.4.3.1. Flujo total

El flujo total del diseño 3 es de 562 según la tabla 23.

Tabla 2.22 Flujo Total diseño 3 [Elaboración propia]

	FRONT BETWEEN CHART: TOTAL FLOW																	
AREA	BDM	AME	ARPP	AMO	AHO	AEN	AEP	AET	BPT	LA	MO	OF1	BN	DU	VE	СО	CL	Total
BDM		0		0			20	28	0	6	14	8	30	24	30	21	18	199
AME			0	0	0	0				6			18	16	12	12	6	70
ARPP				30	0	4			0									34
AMO					0					8						12		20
AHO						7				0			12		4	2		25
AEN							15	10	0						8			33
AEP								0	0	2			2		4	0		8
AET									10	9		0	0		0	0		19
BPT										2	10	9	15	7	10	6	10	69
LA											6	12	5	5	4	0	3	35
MO												0	2	3	2	3	4	14
OF													0	1		6	8	15
BN														0	0	6	9	15
DU															0	2	4	6
VE																0	0	0
CO																	0	0
CL																		0
																		562

2.3.4.3.2. Eficiencia de Contigüidad

La eficiencia de contigüidad del diseño 3 es de 38.1 según la tabla 24.

Tabla 2.23 Eficiencia de contigüidad diseño 3 [Elaboración propia]

	FRONT BETWEEN CHART: CONTIGUITY																	
AREA	BDM	AME	ARPP	AMO	AHO	AEN	AEP	AET	BPT	LA	MO	OF 1	BN	DU	VE	CO	CL	Total
BDM		3		2			0	0	1	0	0	0	0	0	0	0	0	6
AME			5	3	5	1				0			0	0	0	0	0	14
ARPP				0	2	0			1									3
AMO					6					0						0		6
AHO						0				3			0		0	0		3
AEN							0	0	2						0			2
AEP								5	3	0			0		2	2		12
AET									0	0		1	1		3	3		8
BPT										0	0	0	0	0	0	0	0	0
LA											0	0	0	0	0	2	0	2
MO												4	0	0	0	0	0	4
OF1													5	0		0	0	5
BN														5	4	0	0	9
DU															4	0	0	4
VE																1	1	2
CO																	2	2
CL																		0
																		82
																Efic	iencia	38.1

En la tabla se muestra los totales de las evaluaciones de los diseños, para este proyecto este análisis nos indica que la mejor propuesta de diseño es la numero 3 ya que posee un menor flujo total de 562 y una mayor eficiencia de continuidad igual a 38.1%.

Tabla 2.24 Resultados de evaluación de diseños [Elaboración propia]

Diseño	Flujo Total	Continuidad
	(personas)	
1	732	36.3%
2	679	34.9%
3	562	38.1%

2.3.6. Selección de Diseño

En la siguiente tabla tenemos los resultados de los indicadores de cada caso del análisis financiero elaborado en el Capítulo 3.

Tabla 2.25 Resumen indicadores financieros [Elaboración propia]

	Diseño 1		Diseño 2		Diseño 3	
	8%	9%	8%	9%	8%	9%
PRD	-	-	19,48	18,27	12,20	14,89
TIR	5,70%	4,62%	8,17%	9,50%	11,78%	10,90%
C/B	0,83	0,70	1,01	1,04	1,31	1,15

Se puede visualizar que los mejores indicadores están en el diseño 3 por lo que se elegirá este diseño tanto por factor económico como por flujo entre departamentos. Quedando el siguiente diagrama entre departamentos.

Nombre	Codigo
Bodega de materia prima	BDM
Area de mezclado	AME
Area de reposo de producto en proceso	ARPP
Area de molde	AMO
Area de horneado	AHO
Area de enfriamiento	AEN
Area de empaquetado	AEP
Area de etiquetado	AET
Bodega de producto terminado	BPT
Lavado	LA
Mostrador	МО
Oficinas	OF1
Baños	BN
Duchas	DU
Vestidor	VE
Comedor	СО
Cuarto de Limpieza	CL

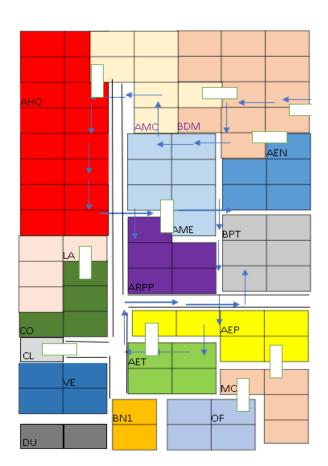


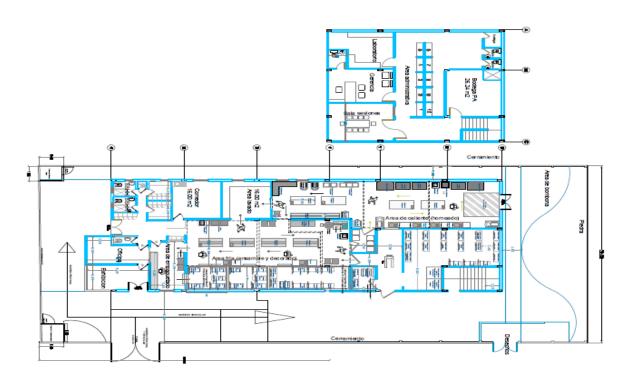
Figura 2.10 Diseño seleccionado [Elaboración propia]

2.4 Mejora

2.4.1 Diseño de layout de Planta de producción

La elaboración de los planos se lo realizo por medio de software de diseño (Autocad), donde se establecieron las áreas que tendrá esta nueva planta de acuerdo con el diseño elegido en la sección anterior (Diseño 3).

Se el área de producción contara con 3 áreas (área caliente, área fría y área de empaquetado), se tendrá una bodega para el almacenamiento de las materias primas y se tendrá un espacio de almacenamiento controlado por temperatura para aquellos productos que no puedan estar en temperatura ambiente, también se incluirá una bodega para el almacenamiento de producto terminado.


Se tendrá áreas de descanso (comedor), y un área de vestidores para que el personal pueda cambiar su ropa de trabajo ubicadas fuera del área de producción. Previo al ingreso del área de producción el personal y las vistas deberán pasar por aduana sanitara, de esta manera se evita el ingreso de algún contaminante del exterior.

El área de empaque es declarada como punto crítico debido por lo que la entrada del personal a esta área será solo para personal autorizado evitando algún riesgo al momento de empaque del producto. Se tendrá una oficina cerca al área de producción para el control del área.

El flujo de trabajo parte desde la recolección de materia prima hasta el empaquetado.

El área de desechos sólidos estará alego del área de producción con una puerta con salida directa para el camión de recolección.

Debido al espacio se establece una 2 planta donde se ubicarán oficinas de gerencia.

Plano 2.1 Diseño plano general [Elaboración propia]

2.4.2 Análisis orden de pedidos y clasificación ABC de insumos

2.4.2.1 Clasificación ABC

Para tener un control del inventario y evitar que los insumos se desperdicien se realizará una clasificación ABC de la materia prima, para este análisis se establece el costo de la materia prima anual quedando los siguientes resultados:

Tabla 2.26 Clasificación ABC [Elaboración propia]

Item 🔻	Total value	% 🚚	% Accumulate	Clacification
Harina	\$5.361.007.680,00	21,64%	21,64%	А
azucar glass	\$4.577.497.920,00	18,48%	40,12%	A
leche condensada	\$3.714.256.926,95	14,99%	55,11%	Α
chocolate pasta	\$3.600.000.000,00	14,53%	69,64%	Α
Azucar	\$2.808.288.000,00	11,34%	80,97%	В
mantequilla	\$2.607.661.963,64	10,53%	91,50%	В
Milk	\$1.151.064.000,00	4,65%	96,15%	С
Cacao	\$620.006.400,00	2,50%	98,65%	С
aceite	\$193.212.800,00	0,78%	99,43%	С
Huevos	\$96.000.000,00	0,39%	99,82%	С
escencia vainilla	\$18.432.000,00	0,07%	99,89%	С
escencia vainilla1	\$18.432.000,00	0,07%	99,96%	С
Polvo Hornear	\$8.112.000,00	0,03%	100,00%	С
vinagre blanco	\$737.280,00	0,00%	100,00%	С
Bicarbonato	\$2.388,00	0,00%	100,00%	С
sal	\$34,56	0,00%	100,00%	С

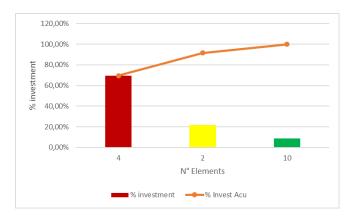


Figura 2.11 Pareto Clasificación ABC [Elaboración propia]

En la tabla 43 se muestran los costos de la materia prima anualmente, se tiene que para la clasificación A donde estarán el 69.94% de los gastos de inventario se tendrán 4 productos, en la clasificación B se tendrán 2 productos representando el 21.84% en la clasificación C se tendrán 10 ítems siendo representando esto 8.50% del costo de inventario de materia prima.

Por lo que se establecerán técnicas de inventario FEFO y FIFO para el control evitando el desperdicio de los insumos.

2.4.2.2 Orden de pedidos

Una vez clasificado los insumos se procede a recalcular la orden de los pedidos. Para este caso utilizaremos un modelo EOQ t para calcular la cantidad de pedido para lo que se utiliza la siguiente formula

$$Q = \sqrt{\frac{2 * K * D}{G}}$$

Donde:

Q= Cantidad de pedido

K= Costo de cada pedido

D= Demanda

G= Costo de almacenar

Se asumirán variables de costo de pedido (2) costo de almacenar será el 10% del valor de compra de cada ítem, quedando la siguiente tabla de valores:

Tabla 2.27 Costo de materia prima [Elaboración propia]

item	Demanda g	Valor articulo	G	EOQ	Costos anuales
Harina	1255,68	\$2.944,57	\$294,46	5	\$502,27
Cacao	156,96	\$4.693,10	\$469,31	4	\$78,48
Polvo Hornear	20,928	\$294,74	\$29,47	2	\$20,93
Bicarbonato	0,654	\$4,34	\$0,43	3	\$0,44
Azucar	1438,8	\$1.431,61	\$143,16	5	\$575,52
Huevos	20,928	\$3.488,00	\$348,80	1	\$41,86
sal	0,218	\$0,13	\$0,01	9	\$0,05
Lece	745,56	\$1.118,34	\$111,83	6	\$248,52
chocolate pasta	654	\$6.540,00	\$654,00	2	\$654,00
vinagre blanco	20,928	\$41,86	\$4,19	5	\$8,37
escencia vainilla	31,392	\$392,40	\$39,24	2	\$31,39
leche condensada	837,12	\$5.271,54	\$527,15	7	\$239,18
aceite	287,76	\$797,73	\$79,77	4	\$143,88
mantequilla	394,144	\$3.493,55	\$349,35	6	\$131,38
azucar glass	967,92	\$2.497,23	\$249,72	4	\$483,96
escencia vainilla	31,392	\$392,40	\$39,24	2	\$31,39

Total \$3.191,61

En la tabla 44 se puede apreciar el punto de reorden de cada artículo y sus respectivos costos anuales dando un resultado de \$3191.61 para la producción anual de 4360 tortas.

Se aplica el mismo procedimiento para el cálculo de la producción futura, dando la siguiente tabla:

Tabla 2.28 Costo Materia Prima Futuro [Elaboración propia]

			-		
item	Demanda g	Valor articulo	G	EOQ	Costos anuales
Harina	1655,928	\$3.883,15	\$388,32	5	\$662,37
Cacao	211,896	\$6.335,69	\$633,57	4	\$105,95
Polvo Hornear	27,7296	\$390,53	\$39,05	2	\$27,73
Bicarbonato	0,8829	\$5,86	\$0,59	3	\$0,59
Azucar	1903,14	\$1.893,62	\$189,36	5	\$761,26
Huevos	27,7296	\$4.621,60	\$462,16	1	\$55,46
sal	0,28994	\$0,17	\$0,02	9	\$0,06
Lece	985,578	\$1.478,37	\$147,84	6	\$328,53
chocolate pasta	882,9	\$8.829,00	\$882,90	2	\$882,90
vinagre blanco	28,2528	\$56,51	\$5,65	5	\$11,30
escencia vainilla	41,3328	\$516,66	\$51,67	2	\$41,33
leche condensada	1130,112	\$7.116,57	\$711,66	7	\$322,89
aceite	388,476	\$1.076,94	\$107,69	4	\$194,24
mantequilla	512,3872	\$4.541,61	\$454,16	6	\$170,80
azucar glass	1258,296	\$3.246,40	\$324,64	4	\$629,15
escencia vainilla	41,3328	\$516,66	\$51,67	2	\$41,33

total \$4.235,88

En la tabla se tiene que para una producción anual de 5799 tortas se tiene un costo de inventario de \$4235.88, los puntos de reorden no cambian debido a que se mantiene los parámetros anteriores.

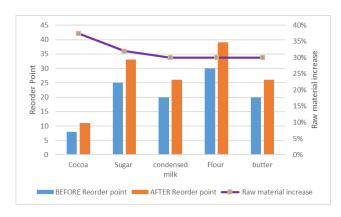


Figura 2.12 Punto de reorden [Elaboración propia]

Realizando un análisis de los escenarios se tiene que existe un aumento de la materia prima por encima del 30%, esta información se encuentra en Anexo 3.

2.4.3 Toma de Tiempo

Para realizar la simulación se realizan un estudio de los tiempos de producción, donde se realizan una toma de 10 muestras por cada proceso, quedando los siguientes resultados:

Tabla 2.29 Resumen OTIDA [Elaboración propia]

RESUMEN					
Simbolo	Descripción	Total de operaciones	Tiempo (min)		
	Operación	14	36,907		
	Transporte	5	0,22		
	Actividad combinada	2	1,991		
	Demora	2	51,61		
	Almacenamiento	2	0		
	Inspeccion	0	0		
	Total	25	90,728		

Como se puede visualizar en la tabla se tiene un total de 25 operaciones, en el cual la categoría de demora incluye el proceso de horneado y descanso de la torta como

se muestra en Anexo 2, quedando un tiempo de ciclo de 90.728 min equivalen a 1h30min.

La demanda que se tiene semanalmente es de 1090 porciones de pastel que serán aproximadamente 91 pasteles, por lo que la demanda diaria será de 18.16 pasteles, se opta por redondear este valor por lo que se trabajará para la comparación con 19 pasteles diarios.

2.5 Control

2.5.1 Simulación

2.5.1.1 Distribución de Probabilidades en la Simulación

Para representar el funcionamiento productivo de la nueva planta se utiliza el programa FLEXSIM, el cual permite ingresar los tiempos de procesos como distribuciones de probabilidad. Por lo que, para poder tener valores de producción cercanos a valores de la realidad se utiliza la herramienta EXPERFIT, complemento de FLEXSIM, para determinar las distribuciones de probabilidad de diferentes procesos.

El procedimiento se basa en ingresar las muestras de una variable en la herramienta EXPERFIT, luego se calcula todas las distribuciones de probabilidad que describan el comportamiento de los datos.

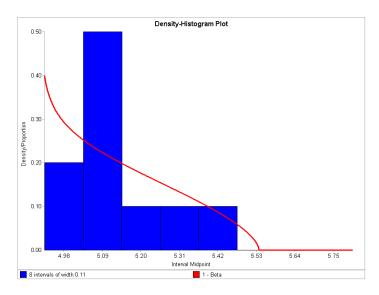


Figura 2.13 Distribución de Probabilidad proceso de Mezclado [EXPERFIT]

En la figura 13 se puede apreciar las muestras de tiempo tomadas del proceso de mezclado, la herramienta EXPERFIT identifica las distribuciones de probabilidades, luego se elige la distribución de mejor resultados, en este caso para la variable de tiempo de mezclado se ha elegido a la distribución Beta.

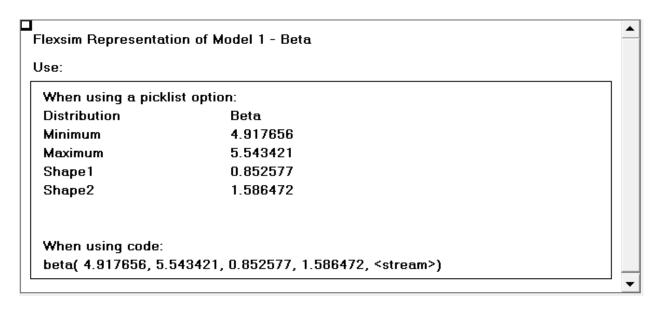


Figura 2.14 Distribución de Probabilidad tiempo mezclado [EXPERFIT]

Luego se selecciona la opción para mostrar la manera que se debe ingresar la distribución Beta con sus parámetros incluidos en el programa FLEXSIM, lo que ayuda a que el proceso de producción sea más cercano a la realidad.

Se realizó el mismo proceso para varias variables obtenidas de la toma de tiempos, las cuales se evidencia en el apartado de Anexo 4.

2.5.1.2 Modelado

Una vez obtenido las distribuciones y los tiempos de los procesos para el área productiva se utilizan FLEXSIM para simular la producción.

Figura 2.15 Modelo simulado diseño de planta [FLEXSIM]

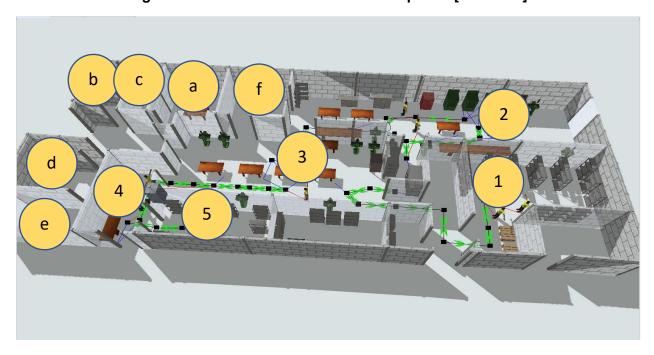


Figura 2.16 Diseño de planta identificado áreas [FELXSIM]

En la figura 2.15 se ha identificado las áreas para captar el funcionamiento de la empresa:

Primero se tiene el proceso de producción que va desde el área 1 al área 5.

- 1.- Es el área de bodega de materia prima donde se tiene las perchas, los pallets, aquí ingresa los productos por la puerta y se cuenta con un espacio para maniobra de la transpaleta manual para la movilización de los productos.
- 2.- Es el área caliente, donde se tiene las cocinas, los hornos, las mezcladoras para realizar el proceso de cocción de los pasteles.
- 3.- Es el área fría, donde se realiza el proceso de decorado y ensamblado de los productos, además de conectar directamente con el área de enfriamiento de los aditivos usados para el decorado que deben permanecer a bajas temperaturas.
- 4.- Es el área de Empaquetado, donde se coloca en los respectivos recipientes para pasar al área de bodega de producto terminado.
- 5.- El área de bodega de producto terminado se tiene perchas para almacenar el producto a distribuir.

Segundo se tiene las áreas de apoyo identificadas por letras:

- a.- Es el área de comedor para los operarios.
- b.- Es el área de los baños y las duchas, separados por sexo.
- c.- Es el área de vestuarios para los operarios.
- d.- Estará ubicado las oficinas
- e.- Es el área de mostrador donde se atenderá a visitantes e clientes interesados en el producto.
- f.- Es el área de lavado de los materiales utilizados en el proceso productivo.

2.5.1.3 Simulación

Para conocer el rango de producción que se obtendrá en la simulación se realiza por medio de EXPERIMENTER, donde se considera una muestra de 20 corridas entregando los siguientes resultados:

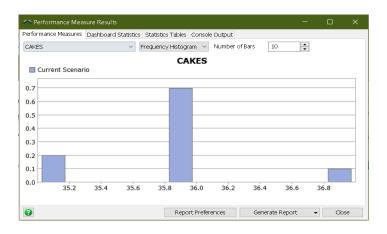


Figura 2.17 Resultados producción simulada [FLEXSIM]

En el figura 2.17 se muestra que para un periodo de tiempo de producción de 3 horas se tendrá en promedio 36 pasteles diarios, dando un total de 2160 porciones semanales.

CAPITULO 3

3. RESULTADOS Y ANÁLISIS

3.1 Capacidad de Producción Teórica

Para realizar una comparación de los resultados obtenidos en la simulación se obtiene datos teóricos sobre la producción que se espera tener con las mejoras propuestas

Tabla 3.1 Datos producción iniciales [Elaboración propia]

	Datos de Producción		
	Actual Propuesto		
Tiempo (H)	1.5	1.5	
Hornos	1	3	
Tortas	8	24	

En las condiciones iniciales, la producción actual produce cerca de 8 tortas en un promedio de una hora con treinta minutos utilizando un horno.

En las condiciones propuesta, la producción que se espera seria de 24 tortas en el mismo tiempo de una hora treinta minutos, ya que se considera aumentar a 3 hornos de trabajo.

Para empezar, se calcula la producción de una unidad con las condiciones propuestas

$$Producir\ una\ unidad = \frac{Tiempo}{Cantidad}$$

$$Producir\ una\ unidad = \frac{90\ minutos}{24\ unidades}$$

$$Producir\ una\ unidad = 3.75\ minutos$$

Luego se considera un día de trabajo de ocho horas menos una hora de descanso y almuerzo, además, por consideraciones prácticas se considera una eficiencia de tiempo trabajo del 85% por motivos de descanso propios del proceso productivo.

Tiempo efectivo de trabajo =
$$(480 - 60)$$
minutos * 85%
Tiempo efectivo de trabajo = 357 minutos

La capacidad diaria para producir el producto que se ha simulado se calcula dividiendo el tiempo efectivo de trabajo para el tiempo de producir una unidad del producto.

$$\label{eq:capacidad} \begin{aligned} \textit{Capacidad diaria} &= \frac{\textit{Tiempo efecitvo de trabajo}}{\textit{Producir una unidad}} \\ \textit{Capacidad diaria} &= \frac{357 \textit{ minutos}}{3.75 \textit{ minutos}} \\ \textit{Capacidad diaria} &= 95 \textit{ unidades} \end{aligned}$$

Debido a que la empresa produce varios productos, se ha destinado 3 horas de trabajo para la producción de esta línea de trabajo. Por lo que para obtener el valor teórico se considera cual es la producción diaria del producto en 3 horas de trabajo

Cantidad producida en 3 horas = 46 unidades

3.1.1 Resultados de Simulación

El valor teórico obtenido en el cálculo de capacidad de producción se tiene que se puede llegar a producir 46 unidades en tres horas de trabajo, la simulación dio como resultado que la producción diaria en tres horas de trabajo llegaría entre 35 a 37 unidades.

Se acepta los resultados obtenidos en la simulación, dado que en el valor teórico no se ha considerado variables que son parte del proceso en la nueva planta, como lo es el tiempo de movimiento de trabajadores, el tiempo de producir una mayor cantidad de masa para los productos. Por lo que se concluye que la simulación tiene resultados de simulación cercanos a la vida real en comparación con los valores teóricos.

Además, se determina el incremento de producción con los resultados obtenidos en la simulación

$$Incremento\ de\ produccion = \left(\frac{Resultado\ de\ simulacion\ -valor\ actual}{valor\ actual}\right)*100$$

$$Incremento\ de\ produccion = \left(\frac{36\ -19}{19}\right)*100$$

$$Incremento\ de\ produccion = 89.47\%$$

Como resultado tenemos que con la nueva planta se tendría un incremento en la producción cerca de un 90%.

3.1.2 Análisis financiero de propuestas de diseño

Una vez obtenido las áreas necesarias en metros cuadrados de las diferentes propuestas de diseño, se utilizará diferentes indicadores económicos para elegir la mejor propuesta, estos será TIR y análisis C/B.

Para realizar este análisis se establecen dos casos con distintas tasas en un periodo determinado, para lo que será necesario establecer un flujo de efectivo neto en este periodo para lo que se asume lo siguiente

- Tasa de interés de 8% y 9%
- Periodo de inversión 20 años
- Recuperación del 30% de ventas en el primer año
- Para el periodo 2 y 4 aumento del 10% y para los periodos 3 y 5 mismos valores que los periodos anteriores

Partimos de las ventas mensuales actuales, en la siguiente tabla 26 se establecen los ítems más vendidos y su precio de venta al público dando un total mensual de \$16.350

Tabla 3.2 Venta Mensuales [Elaboración propia]

ITEM	WEEKLY UNIT	RSP	WEEKLY TOTAL	TOTAL MENSUAL
chocolate	600	\$3,75	\$2.250,00	\$9.000,00
vanilla	490	\$3,75	\$1.837,50	\$7.350,00
	•		•	
				\$16.350,00

En la tabla de costo anual tenemos las ventas anuales, su costo de producción y su ganancia neta, con esta información obtenemos las entradas de la empresa por parte de estos ítems.

Tabla 3.3 Costo Anual 5 años [Elaboración propia]

Costo Anual	0	1	2	3	4	5
ventas	\$196.200,00	\$255.060,00	\$280.566,00	\$280.566,00	\$308.622,60	\$308.622,60
Costo de producción	\$117.720,00	\$153.036,00	\$168.339,60	\$168.339,60	\$185.173,56	\$185.173,56
Ganacia	\$78.480,00	\$102.024,00	\$112.226,40	\$112.226,40	\$123.449,04	\$123.449,04
Costo administrativo	\$39.900,00	\$41.400,00	\$44.400,00	\$44.400,00	\$44.400,00	\$44.400,00
Gastos Totales	\$39.900,00	\$41.400,00	\$44.400,00	\$44.400,00	\$44.400,00	\$44.400,00
Ganancia Operativa	\$38.580,00	\$60.624,00	\$67.826,40	\$67.826,40	\$79.049,04	\$79.049,04
Impuestos		\$7.274,88	\$8.139,17	\$8.139,17	\$9.485,88	\$9.485,88
Ganacia Neta	\$38.580,00	\$53.349,12	\$59.687,23	\$59.687,23	\$69.563,16	\$69.563,16

Para establecer los precios de los equipos necesarios por el cliente se realizó una investigación de campo obteniendo estos precios de un distribuidor local de Guayaquil Ecuador dando u total de \$55709.78

Tabla 3.4 Costos de Maquinaria [Elaboración propia]

EQUIPOS	PRECIO (DOLARES)	UNIDADES	TOTAL
BATIDORA	\$3.238,70	5	\$16.193,50
LICUADORA	\$6.024,54	1	\$6.024,54
DOSIFICADORA	\$1.251,30	6	\$7.507,80
REFRIGERADOR	\$3.082,06	2	\$6.164,12
HORNO	\$4.775,28	4	\$19.101,12
BANDEJAS	\$71,87	10	\$718,70
		TOTAL	ĆEE 700 70

TOTAL

\$55.709,78

El costo del terreno se establece de \$600 por m², dependiendo la opción de diseño el costo total de es detallado en la siguiente tabla.

Tabla 3.5 Costo de Inversión [Elaboración propia]

Diseño	Área (m²)	Costo por área (\$*m²)	TOTAL de Inversión
1	480	\$288.000,00	\$343.709,78
2	384	\$230.400,00	\$286.109,78
3	360	\$216.000,00	\$271.709,78

Una vez establecido estos valores se puede determinar el FEN para cada uno de los diseños. Para lo que se hará uso de las de las fórmulas de TIR, C/B

Donde

FEN: Flujo de Efectivo Neto

• n: Periodo

• Vp: Valor presente

Formula TIR

$$0 = I_0 + \sum_{i=1}^{n} \frac{FEN_j}{(1 + TIR)^j}$$

Formula C/B

$$\frac{C}{B} = \frac{\sum Vp(FEN)}{I_0}$$

Formula Vp

$$Vp = \frac{FEN_n}{(1+i)^n}$$

2.3.4.4. Diseño 1

Con una tasa de interés al 9% el pago anual será de \$3765.19, quedando el flujo mostrado en la siguiente tabla.

Tabla 3.6 Flujo financiero diseño 1 al 9% [Elaboración propia]

AÑO	entrada	salida	FEN	VA	VA.ACUM
0		\$343.709,78	\$-343.709,78		
1	\$53.349,12	\$-37.652,19	\$15.696,93	\$14.400,85	\$14.400,85
2	\$59.687,23	\$-37.652,19	\$22.035,04	\$18.546,45	\$32.947,30
3	\$59.687,23	\$-37.652,19	\$22.035,04	\$17.015,09	\$49.962,39
4	\$69.563,16	\$-37.652,19	\$31.910,96	\$22.606,53	\$72.568,92
5	\$69.563,16	\$-37.652,19	\$31.910,96	\$20.739,93	\$93.308,85
6	\$69.563,16	\$-37.652,19	\$31.910,96	\$19.027,46	\$112.336,32
7	\$59.687,23	\$-37.652,19	\$22.035,04	\$12.053,92	\$124.390,24
8	\$59.687,23	\$-37.652,19	\$22.035,04	\$11.058,64	\$135.448,88
9	\$69.563,16	\$-37.652,19	\$31.910,96	\$14.692,69	\$150.141,57
10	\$69.563,16	\$-37.652,19	\$31.910,96	\$13.479,53	\$163.621,11
11	\$69.563,16	\$-37.652,19	\$31.910,96	\$12.366,55	\$175.987,65
12	\$59.687,23	\$-37.652,19	\$22.035,04	\$7.834,22	\$183.821,87
13	\$59.687,23	\$-37.652,19	\$22.035,04	\$7.187,36	\$191.009,23
14	\$69.563,16	\$-37.652,19	\$31.910,96	\$9.549,24	\$200.558,47
15	\$69.563,16	\$-37.652,19	\$31.910,96	\$8.760,77	\$209.319,25
16	\$69.563,16	\$-37.652,19	\$31.910,96	\$8.037,41	\$217.356,65
17	\$69.563,16	\$-37.652,19	\$31.910,96	\$7.373,77	\$224.730,42
18	\$59.687,23	\$-37.652,19	\$22.035,04	\$4.671,29	\$229.401,71
19	\$59.687,23	\$-37.652,19	\$22.035,04	\$4.285,59	\$233.687,30
20	\$69.563,16	\$-37.652,19	\$31.910,96	\$5.693,90	\$239.381,20

Realizando los cálculos correspondientes quedarían los siguientes resultados

Tabla 3.7 Resultados financieros diseño 1 al 9% [Elaboración propia]

TMAR	9%
PRD	0,00
TIR	4,62%
C/B	0,70

Los indicadores señalan que para esta opción de diseño no sería económicamente viable ya que tanto el TIR es inferior al TMAR y el C/B es inferior a 1

Se aplica el mismo procedimiento para una tasa de interés al 8%, quedando para el diseño 1 la siguiente tabla.

Tabla 3.8 Flujo financiero diseño 1 al 8% [Elaboración propia]

AÑO	entrada	salida	FEN	VA	VA.ACUM
0		\$343.709,78	\$-343.709,78		
1	\$53.349,12	\$-35.007,60	\$18.341,52	\$16.982,89	\$16.982,89
2	\$59.687,23	\$-35.007,60	\$24.679,63	\$21.158,81	\$38.141,69
3	\$59.687,23	\$-35.007,60	\$24.679,63	\$19.591,49	\$57.733,18
4	\$69.563,16	\$-35.007,60	\$34.555,55	\$25.399,36	\$83.132,55
5	\$69.563,16	\$-35.007,60	\$34.555,55	\$23.517,93	\$106.650,48
6	\$69.563,16	\$-35.007,60	\$34.555,55	\$21.775,86	\$128.426,34
7	\$59.687,23	\$-35.007,60	\$24.679,63	\$14.400,33	\$142.826,67
8	\$59.687,23	\$-35.007,60	\$24.679,63	\$13.333,64	\$156.160,30
9	\$69.563,16	\$-35.007,60	\$34.555,55	\$17.286,38	\$173.446,68
10	\$69.563,16	\$-35.007,60	\$34.555,55	\$16.005,91	\$189.452,59
11	\$69.563,16	\$-35.007,60	\$34.555,55	\$14.820,29	\$204.272,88
12	\$59.687,23	\$-35.007,60	\$24.679,63	\$9.800,62	\$214.073,50
13	\$59.687,23	\$-35.007,60	\$24.679,63	\$9.074,65	\$223.148,15
14	\$69.563,16	\$-35.007,60	\$34.555,55	\$11.764,82	\$234.912,97
15	\$69.563,16	\$-35.007,60	\$34.555,55	\$10.893,35	\$245.806,32
16	\$69.563,16	\$-35.007,60	\$34.555,55	\$10.086,44	\$255.892,76
17	\$69.563,16	\$-35.007,60	\$34.555,55	\$9.339,29	\$265.232,05
18	\$59.687,23	\$-35.007,60	\$24.679,63	\$6.176,05	\$271.408,10
19	\$59.687,23	\$-35.007,60	\$24.679,63	\$5.718,57	\$277.126,67
20	\$69.563,16	\$-35.007,60	\$34.555,55	\$7.413,83	\$284.540,51

Realizando los cálculos correspondientes quedarían los siguientes resultados

Tabla 3.9 Resultados financieros diseño 1 al 8% [Elaboración propia]

TMAR	8%
PRD	-
TIR	5,70%
C/B	0,83

Los indicadores señalan que para esta opción de diseño no sería económicamente viable ya que tanto el TIR es inferior al TMAR y el C/B es inferior a 1.

2.3.4.5. Diseño 2

Con una tasa de interés al 9% el pago anual será de \$31342.32, quedando el flujo mostrado en la siguiente tabla.

Tabla 3.10 Flujo financiero diseño 2 al 9% [Elaboración propia]

AÑO	entrada	salida	FEN	VA	VA.ACUM
0		\$286.109,78	\$-286.109,78		
1	\$53.349,12	\$-31.342,32	\$22.006,80	\$20.189,73	\$20.189,73
2	\$59.687,23	\$-31.342,32	\$28.344,91	\$23.857,35	\$44.047,07
3	\$59.687,23	\$-31.342,32	\$28.344,91	\$21.887,47	\$65.934,55
4	\$69.563,16	\$-31.342,32	\$38.220,84	\$27.076,60	\$93.011,15
5	\$69.563,16	\$-31.342,32	\$38.220,84	\$24.840,92	\$117.852,07
6	\$69.563,16	\$-31.342,32	\$38.220,84	\$22.789,84	\$140.641,91
7	\$59.687,23	\$-31.342,32	\$28.344,91	\$15.505,64	\$156.147,55
8	\$59.687,23	\$-31.342,32	\$28.344,91	\$14.225,36	\$170.372,91
9	\$69.563,16	\$-31.342,32	\$38.220,84	\$17.597,94	\$187.970,84
10	\$69.563,16	\$-31.342,32	\$38.220,84	\$16.144,89	\$204.115,74
11	\$69.563,16	\$-31.342,32	\$38.220,84	\$14.811,83	\$218.927,57
12	\$59.687,23	\$-31.342,32	\$28.344,91	\$10.077,60	\$229.005,17
13	\$59.687,23	\$-31.342,32	\$28.344,91	\$9.245,51	\$238.250,67
14	\$69.563,16	\$-31.342,32	\$38.220,84	\$11.437,45	\$249.688,12
15	\$69.563,16	\$-31.342,32	\$38.220,84	\$10.493,07	\$260.181,20
16	\$69.563,16	\$-31.342,32	\$38.220,84	\$9.626,67	\$269.807,87
17	\$69.563,16	\$-31.342,32	\$38.220,84	\$8.831,81	\$278.639,68
18	\$59.687,23	\$-31.342,32	\$28.344,91	\$6.008,94	\$284.648,63
19	\$59.687,23	\$-31.342,32	\$28.344,91	\$5.512,79	\$290.161,42
20	\$69.563,16	\$-31.342,32	\$38.220,84	\$6.819,78	\$296.981,20

Realizando los cálculos correspondientes quedarían los siguientes resultados

Tabla 3.11 Resultados financieros diseño 2 al 9% [Elaboración propia]

TMAR	9%
PRD	18,27
TIR	9,5%
C/B	1,04

Los indicadores señalan que para esta opción de diseño si fuera económicamente viable ya que tanto el TIR es superior al TMAR y el C/B es superior a 1, teniendo un retorno de la inversión a mediados del año 18.

Se aplica el mismo procedimiento para una tasa de interés al 8%, quedando para el diseño 2 la siguiente tabla.

Tabla 3.12 Flujo financiero del diseño 2 al 8% [Elaboración propia]

AÑO	entrada	salida	FEN	VA	VA.ACUM
0		\$286.109,78	\$-286.109,78		
1	\$53.349,12	\$-29.140,91	\$24.208,21	\$22.415,01	\$22.415,01
2	\$59.687,23	\$-35.007,60	\$24.679,63	\$21.158,81	\$43.573,81
3	\$59.687,23	\$-35.007,60	\$24.679,63	\$19.591,49	\$63.165,30
4	\$69.563,16	\$-35.007,60	\$34.555,55	\$25.399,36	\$88.564,66
5	\$69.563,16	\$-35.007,60	\$34.555,55	\$23.517,93	\$112.082,59
6	\$69.563,16	\$-35.007,60	\$34.555,55	\$21.775,86	\$133.858,46
7	\$59.687,23	\$-35.007,60	\$24.679,63	\$14.400,33	\$148.258,78
8	\$59.687,23	\$-35.007,60	\$24.679,63	\$13.333,64	\$161.592,42
9	\$69.563,16	\$-35.007,60	\$34.555,55	\$17.286,38	\$178.878,80
10	\$69.563,16	\$-35.007,60	\$34.555,55	\$16.005,91	\$194.884,71
11	\$69.563,16	\$-35.007,60	\$34.555,55	\$14.820,29	\$209.704,99
12	\$59.687,23	\$-35.007,60	\$24.679,63	\$9.800,62	\$219.505,62
13	\$59.687,23	\$-35.007,60	\$24.679,63	\$9.074,65	\$228.580,27
14	\$69.563,16	\$-35.007,60	\$34.555,55	\$11.764,82	\$240.345,09
15	\$69.563,16	\$-35.007,60	\$34.555,55	\$10.893,35	\$251.238,44
16	\$69.563,16	\$-35.007,60	\$34.555,55	\$10.086,44	\$261.324,87
17	\$69.563,16	\$-35.007,60	\$34.555,55	\$9.339,29	\$270.664,17
18	\$59.687,23	\$-35.007,60	\$24.679,63	\$6.176,05	\$276.840,22
19	\$59.687,23	\$-35.007,60	\$24.679,63	\$5.718,57	\$282.558,79
20	\$69.563,16	\$-35.007,60	\$34.555,55	\$7.413,83	\$289.972,62

Realizando los cálculos correspondientes quedarían los siguientes resultados

Tabla 3.13 Resultados financieros diseño 2 al 8% [Elaboración propia]

TMAR	8,00%
PRD	19,48
TIR	8,2%
C/B	1,01

Los indicadores señalan que para esta opción de diseño si fuera económicamente viable ya que tanto el TIR es superior al TMAR y el C/B es superior a 1, teniendo un retorno de la inversión a mediados del año 19.

2.3.4.6. Diseño 3

Con una tasa de interés al 9% el pago anual será de \$29764.85, quedando el flujo mostrado en la siguiente tabla.

Tabla 3.14 Resultados financieros diseño 3 al 9% [Elaboración propia]

				-	
AÑO	entrada	salida	FEN	VA	VA.ACUM
0		\$271.709,78	\$-271.709,78		
1	\$53.349,12	\$-29.764,85	\$23.584,27	\$21.636,95	\$21.636,95
2	\$59.687,23	\$-29.764,85	\$29.922,38	\$25.185,07	\$46.822,02
3	\$59.687,23	\$-29.764,85	\$29.922,38	\$23.105,57	\$69.927,59
4	\$69.563,16	\$-29.764,85	\$39.798,31	\$28.194,12	\$98.121,71
5	\$69.563,16	\$-29.764,85	\$39.798,31	\$25.866,17	\$123.987,88
6	\$69.563,16	\$-29.764,85	\$39.798,31	\$23.730,43	\$147.718,31
7	\$59.687,23	\$-29.764,85	\$29.922,38	\$16.368,57	\$164.086,88
8	\$59.687,23	\$-29.764,85	\$29.922,38	\$15.017,04	\$179.103,91
9	\$69.563,16	\$-29.764,85	\$39.798,31	\$18.324,25	\$197.428,16
10	\$69.563,16	\$-29.764,85	\$39.798,31	\$16.811,23	\$214.239,39
11	\$69.563,16	\$-29.764,85	\$39.798,31	\$15.423,15	\$229.662,55
12	\$59.687,23	\$-29.764,85	\$29.922,38	\$10.638,45	\$240.300,99
13	\$59.687,23	\$-29.764,85	\$29.922,38	\$9.760,04	\$250.061,03
14	\$69.563,16	\$-29.764,85	\$39.798,31	\$11.909,50	\$261.970,54
15	\$69.563,16	\$-29.764,85	\$39.798,31	\$10.926,15	\$272.896,69
16	\$69.563,16	\$-29.764,85	\$39.798,31	\$10.023,99	\$282.920,68
17	\$69.563,16	\$-29.764,85	\$39.798,31	\$9.196,32	\$292.117,00
18	\$59.687,23	\$-29.764,85	\$29.922,38	\$6.343,36	\$298.460,36
19	\$59.687,23	\$-29.764,85	\$29.922,38	\$5.819,59	\$304.279,95
20	\$69.563,16	\$-29.764,85	\$39.798,31	\$7.101 <u>,</u> 25	\$311.381,20

Realizando los cálculos correspondientes quedarían los siguientes resultados

Tabla 3.15 Resultados financieros diseño 3 al 9% [Elaboración propia]

TMAR	9%
PRD	14,89
TIR	10,9%
C/B	1,15

Los indicadores señalan que para esta opción de diseño si sería económicamente viable ya que tanto el TIR es superior al TMAR y el C/B es superior a 1, teniendo un retorno de la inversión a mediados del año 14.

Se aplica el mismo procedimiento para una tasa de interés al 8%, quedando para el diseño 3 la siguiente tabla.

Tabla 3.16 Flujo financiero diseño 3 al 8% [Elaboración propia]

AÑO	entrada	salida	FEN	VA	VA.ACUM
0		\$271.709,78	\$-271.709,78		
1	\$53.349,12	\$-27.674,24	\$25.674,88	\$23.773,04	\$23.773,04
2	\$59.687,23	\$-27.674,24	\$32.012,99	\$27.445,98	\$51.219,02
3	\$59.687,23	\$-27.674,24	\$32.012,99	\$25.412,94	\$76.631,96
4	\$69.563,16	\$-27.674,24	\$41.888,91	\$30.789,60	\$107.421,56
5	\$69.563,16	\$-27.674,24	\$41.888,91	\$28.508,89	\$135.930,45
6	\$69.563,16	\$-27.674,24	\$41.888,91	\$26.397,12	\$162.327,57
7	\$59.687,23	\$-27.674,24	\$32.012,99	\$18.679,27	\$181.006,85
8	\$59.687,23	\$-27.674,24	\$32.012,99	\$17.295,62	\$198.302,47
9	\$69.563,16	\$-27.674,24	\$41.888,91	\$20.954,89	\$219.257,36
10	\$69.563,16	\$-27.674,24	\$41.888,91	\$19.402,67	\$238.660,03
11	\$69.563,16	\$-27.674,24	\$41.888,91	\$17.965,44	\$256.625,47
12	\$59.687,23	\$-27.674,24	\$32.012,99	\$12.712,80	\$269.338,26
13	\$59.687,23	\$-27.674,24	\$32.012,99	\$11.771,11	\$281.109,37
14	\$69.563,16	\$-27.674,24	\$41.888,91	\$14.261,54	\$295.370,92
15	\$69.563,16	\$-27.674,24	\$41.888,91	\$13.205,13	\$308.576,05
16	\$69.563,16	\$-27.674,24	\$41.888,91	\$12.226,97	\$320.803,02
17	\$69.563,16	\$-27.674,24	\$41.888,91	\$11.321,27	\$332.124,30
18	\$59.687,23	\$-27.674,24	\$32.012,99	\$8.011,22	\$340.135,52
19	\$59.687,23	\$-27.674,24	\$32.012,99	\$7.417,80	\$347.553,31
20	\$69.563,16	\$-27.674,24	\$41.888,91	\$8.987,19	\$356.540,51

Realizando los cálculos correspondientes quedarían los siguientes resultados

Tabla 3.17 Resultados financieros diseño 3 al 8% [Elaboración propia]

TMAR	8,00%
PRD	12,20
TIR	11,8%
C/B	1,31

Los indicadores señalan que para esta opción de diseño si fuera económicamente viable ya que tanto el TIR es superior al TMAR y el C/B es superior a 1, teniendo un retorno de la inversión a mediados del año 12.

CAPITULO 4

4. CONCLUSIONES Y RECOMENDACIONES

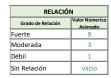
4.1 Conclusiones

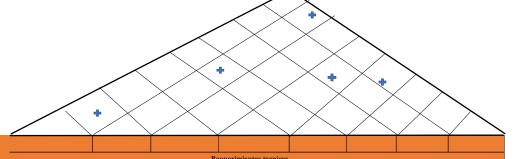
Una vez recolectado y analizado la información, partiendo desde los requerimientos del cliente hasta la simulación del diseño de la planta se tienen los siguientes resultados.

- La nueva planta tendrá una capacidad de producción de 2160 porciones de torta, lo que implica un incremento del 89.47% en la producción de los productos analizados.
- El diseño de la planta fue realizado tomando en consideración el reglamento 2393 y se tomó en consideración para la distribución de las áreas dentro de la planta la Normativa ARCSA 067 BPM Capitulo 2.
- Se establece como área critica para el proceso el área de envasado del producto, por lo que el ingreso a esta área solo será para personal autorizado.
- Se establece una aduana sanitaria previo al ingreso al área de producción.
- Existe un incremento en la materia prima, sin embargo, los puntos de reorden se mantienen en la misma cantidad, se decide establecer políticas de control FEFO y FIFO para las bodegas.
- La simulación permite apreciar la distribución de las áreas y que el flujo de producción es continúo reduciendo el riesgo de contaminación.
- Se establecen en el diseño cuatro áreas de producción y una aduana sanitaria para el ingreso del personal y visitas previo al ingreso al área de producción.
- Los nuevos espacios de personal dentro de la planta permitirán el flujo de máximo de 26 personas.
- Los indicadores económicos TIR y B/C indican que el proyecto es económicamente factible a un plazo de 20 años teniendo un retorno de inversión a mediados del año 12.

4.2 Recomendaciones

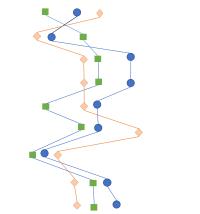
Como recomendaciones finales se tiene los siguientes puntos


- Realizar un nuevo plan maestro de producción para los productos que se realizan con materia prima clase A.
- Todo personal o visita que ingrese al área de producción deberá de pasar por la aduana sanitaria.
- Las puertas de acceso al área de producción deberán de estar cerradas.
- Establecer cortinas de aire en los puntos de acceso donde se necesite abrir las puertas para retirar o ingresar mercadería.
- Establecer sistemas de control de temperatura para los productos del proceso productivo que necesiten refrigeración.


REFERENCIAS

- Aguilera Díaz, A. (2017). SciELO. Obtenido de El costo-beneficio como herramienta de decisión en la inversión en actividades científicas: http://scielo.sld.cu/scielo.php?pid=S2073-60612017000200022&script=sci_arttext&tlng=en
- 2) Jeroen de Mast, & Joran Lokkerbol. (2012). International Journal of Production Economics. Obtenido de An analysis of the Six Sigma DMAIC method from the perspective of problem solving: https://www.sciencedirect.com/science/article/pii/S0925527312002277
- 3) Saad A.Shaikh, J. K. (Febrero de 2015). International Journal Of Modern Engineering Research. Obtenido de A Review on Six Sigma (DMAIC) Methodology: http://ir.aiktclibrary.org:8080/xmlui/bitstream/handle/123456789/1765/Review%20on%20 Six%20Slgma%20Methodology.pdf?sequence=1&isAllowed=y
- 4) Vaca, L. M. (2019). VALOR ACTUValor actual neto y tasa interna de retorno como parámetros de evaluación de las inversiones. INVESTIGACION OPERACIONAL VOL. 40, 469-474. Obtenido de VALOR ACTUAL NETO Y TASA INTERNA DE RETORNO COMO PARÁMETROS DE EVALUACIÓN DE LAS INVERSIONES. Peñaherrera, I., Guillén S., Meneses, I., Rendón, D., & Pizarro, L. (2018): "Análisis de iniciativas públicas y privadas para mejorar la productividad de las Mipymes del sector pastelero de la ciudad de Guayaquil Ecuador", Revista Contribuciones a las Ciencias Sociales, (mayo 2018). En línea: https://www.eumed.net/rev/cccss/2018/05/productividad-mipymes-ecuador.html
- 5) McGrath, K., Casserly, M., O'mara, F., Mulsow, J., Shields, C., Staunton, O., . . . Ward, M. (2019). Zap it track it: The application of lean six sigma methods to improve the screening system of low-grade mucinous neoplasms of the appendix in an acute hospital setting. *International Journal for Quality in Health Care : Journal of the International Society for Quality in Health Care*, 31(1), 35-44. doi:10.1093/intqhc/mzz075
- 6) Amarilies, H., Sukarno, I., Sari, A., & Nursanto, E. (2022). Selection of liquid organic fertilizer packaging by applying the concept of reverse logistics using quality function deployment (QFD) method. IOP Conference Series. Earth and Environmental Science, 1034(1), 012060. doi:https://doi.org/10.1088/1755-1315/1034/1/012060
- 7) Carlos Yance Carvajal, Luis Solís Granda, Ivonne Burgos Villamar y Lia Hermida (2017): "La importancia de las PYMES en el Ecuador", Revista Observatorio de la Economía Latinoamericana, Ecuador, (junio 2017). En línea: http://www.eumed.net/cursecon/ecolat/ec/2017/pymes-ecuador.html
- 8) Kumar, V., & V, N. M. (2022). *Improvement of facility layout design using systematic layout planning methodology*. Journal of Physics: Conference Series, 2312(1), 012089. https://doi.org/10.1088/1742-6596/2312/1/012089
- 9) V., & V, N. M. (2022). Improvement of facility layout design using systematic layout planning methodology. Journal of Physics: Conference Series, 2312(1), 012089. https://doi.org/10.1088/1742-6596/2312/1/012089

ANEXOS


ANEXO 1 QFD

Competidor 1	
Competidor 2	*
Competidor 3	

										EVALUACIÓN COMPETITIVA					
				Re	equerimientos tecnicos							EVALU	ACIÓN COMP	ETITIVA	
REQUERIMIENTOS DEL CLIENTE	IMPORTANCIA	personal acorde a las normativas 2393	comunicación entre departamentos, eligiendo el diseño	despacho para el área de embarque y	prima para determinar un	adecuado para la	Usar la normativa 067 ARCSA BPM en la planta	materias primas tienen un aumento	produccion	REQUERIMIENTOS DEL CLIENTE	MALO	REGULAR	BUENO	MUY BUENO	EXCELENTE
Area de Producción que garantice las calidad del producto	7	9	9	1			1			Area de Producción que garantice las calidad del producto			•		
Mejorar el flujo de producción	1	3	9			3	3	3		Mejorar el flujo de producción					
Areas de planta y oficinas separadas	10	9	3	1	3			3		Areas de planta y oficinas separadas					
Tener un metodo de planificación de producción	4	3	3	1		9	1		9	Tener un metodo de planificación de producción					
Tener espacio suficiente para inventario	8	1	1	1	9	3				Tener espacio suficiente para inventario					
Cumplir con normativas de alimentos	9	1	1		1		9	3		Cumplir con normativas de alimentos					
Espacio para recibir materia prima y despacho de producto terminado	3			9				1		Espacio para recibir materia prima y despacho de producto terminado					
Regular temperaturas en bodegas materia prima	5				9		9			Regular temperaturas en bodegas materia prima			-		
Regular temperaturas en el area de produccion	2		3	1	1	3	1			Regular temperaturas en el area de produccion					
EVALUACIÓN DE IMPORTANCIA EVALUACIÓN		185			158	69	142	63	59	071					
RELATIVA		21.24	15.73	6.66	18.14	7.92	16.30	7.23	6.77	100.00					
										5 4					

Evaluación con la competencia

		EV	ALUACIÓN CO	MPETITIVA	
REQUERIMIENTOS DEL CLIENTE	MALO	REGULAR	BUENO	MUY BUENO	EXCELENTE
Área de Producción que garantice las calidad del producto			•		
Mejorar el flujo de producción					
Áreas de planta y oficinas separadas					
Tener un método de planificación de producción					
Tener espacio suficiente para inventario					
Cumplir con normativas de alimentos					
Espacio para recibir materia prima y despacho de producto terminado					
Regular temperaturas en bodegas materia prima		•			
Regular temperaturas en el área de producción					

ANEXO 2 Estudio de Tiempo

			RESUMEN	•		•		•		
Simbolo	Descripción	Tota	l de operac	iones		Tien	npo (mii	n)		
	Operación		14			3	6,907			
	Transporte		5		0,22					
	Actividad combinada		2	1,991						
	Demora		2				51,61			
	Almacenamiento		2				0			
	Inspeccion		0				0			
	Total		25			q	0,728			
_			23							
Desc	ripción de Actividad							Tiempo (min)		
Almacenamie	nto de materia prima					Х		0		
Seleccción de	ingredientes	Х						1,683		
Pesaje de ingr	edientes	Χ						3,839		
Transporte de	ingredientes a area de									
produccion			Х					0		
Encender hori	no	Χ						0,473		
Mezclar ingre		Χ						5,379		
Selección de n	nolde	Χ						0,154		
Engrasar el m		Χ						0,2475		
Verter mezcla	en molde	Х						1,175		
	e molde al horno		Х					0		
Meter molde	a horno	Х						0,29		
cocina de tort					X			40,5		
	ngredientes (relleno y									
cubierta)	(- 11 - 2 - 11 - 1	X						0,9515		
	entes (Relleno & cubierta)	Х						1,397		
1 '	gredientes al area de									
producción			Х					0		
	dientes del relleno y cubierta	X						4,367		
verificación de				Х				0,176		
Sacado de tor		Х						0,264		
Dejar enfriar t					Х			11,11		
	rea de decoración		Х					0,22		
Relleno de tor		X						6,677		
	Cubierta de torta							10,01		
	e producto final			Х				1,815		
	ea de refrigeracion		Х					0		
Almacenamie	nto					Х		0		

Selección y pesaje de materia prima

	SELECCIÓN Y PESAJE MATERIA PRIMA													
PROCESO	# de Ciclos												Tiempo	Tiempo
PROCESO	1	2	3	4	5	6	7	8	9	10	real	Factor	normal	estandar
Selección MP	1,5	1,6	1,8	1,7	1	1,5	1,9	1,1	1,5	1,7	15,3	1	1,53	1,683
Pesaje MP	2,8	3,5	4	3,4	3,6	3,5	3,8	3,2	3,7	3,4	34,9	1	3,49	3,839
Obs												Suma tiempo		
												normal	5,02	
												% Suplementos	0,1	
												Tiempo		
N/A												estandar	5,522	

Encendido Horno

	Encendido Horno													
DDOCECO	PROCESO 1 2 3 4 5 6 7 8 9 10 real										Total Tiempo	Footor	Tiempo	Tiempo
PROCESO											real	Factor	normal	estandar
Encendero Horno	0,5	0,3	0,6	0,4	0,5	0,4	0,6	0,3	0,4	0,3	4,3	1	0,43	0,473
											0	1	0	0
Obs												Suma tiempo		
												normal	0,43	
												% Suplementos	0,1	
	Tiempo													
N/A												estandar	0,473	

Mezcla MP

	Mezcla MP													
PROCESO	# de Ciclos												Tiempo	Tiempo
PROCESO	1	2	3	4	5	6	7	8	9	10	real	Factor	normal	estandar
Mezcla MP	4,8	5,2	4,7	4,8	4,7	4,9	5,1	5	4,9	4,8	48,9	1	4,89	5,379
											0	1	0	0
Obs												Suma tiempo		
	•											normal	4,89	
												% Suplementos	0,1	0,489
												Tiempo		
N/A												estandar	5,379	

Selección y Preparación de Molde

Selección & Preparacion de Molde														
PROCESO	macro # de Ciclos											Factor	Tiempo	Tiempo
PROCESO	1	2	3	4	5	6	7	8	9	10	real	Factor	normal	estandar
Selección	0,1	0,1	0,2	0,1	0,2	0,2	0,1	0,2	0,1	0,1	1,4	1	0,14	0,154
Preparación	0,2	0,1	0,3	0,2	0,3	0,2	0,3	0,2	0,3	0,15	2,25	1	0,225	0,2475
Obs			•	•							•	Suma tiempo		
												normal	0,365	
												% Suplementos	0,1	0,0365
												Tiempo		
N/A												estandar	0,4015	

Verter masa en molde & Ingreso de molde en Horno y Cocción

	Verter masa en molde													
PROCESO				Total Tiempo	Factor	Tiempo	Tiempo							
PROCESO	1	2	3	4	5	6	7	8	9	10	real	Factor	normal	estandar
Verter masa	1	1,2	1,1	1,1	1,2	0,95	1,5	1,3	1,4	1	11,75	1	1,175	1,175
Ingreso de molde en Horno	0,2	0,3	0,4	0,3	0,2	0,4	0,3	0,2	0,4	0,2	2,9	1	0,29	0,29
Cocción	45	40	40	40	40	40	40	40	40	40	405	1	40,5	40,5
Obs												Suma tiempo		
												normal	41,965	
												% Suplementos	0,1	4,1965
												Tiempo		
N/A												estandar	46,1615	

Selección y Pesaje MP (Relleno/ Cubierta)

	Selección & Pesaje MP (Relleno/ Cubierta)													
PROCESO	PROCESO #de Ciclos Total Tiempo Factor Tiempo												Tiempo	
PROCESO	1	2	3	4	5	6	7	8	9	10	real	i actor	normal	estandar
Selección	0,9	0,8	0,8	1	0,9	0,8	1	0,8	0,9	0,75	8,65	1	0,865	0,9515
Pesaje MP	1,3	1,2	1,1	1,2	1,4	1,2	1,3	1,5	1,4	1,1	12,7	1	1,27	1,397
Obs												Suma tiempo		
												normal	2,135	
												% Suplementos	0,1	0,2135
	Tiempo													
N/A												estandar	2,3485	

Mezcla MP (Relleno)

						Mezcla M	P (Relleno)							
PROCESO				Total Tiempo	Factor	Tiempo	Tiempo							
FROCESO	1	2	3	4	5	6	7	8	9	10	real	ractor	normal	estandar
Mezcla	3,5	4,1	4	3,9	4,1	3,5	4,2	4,1	4,3	4	39,7	1	3,97	4,367
		Veri∯cacion de cocción & sacado de Torta 0										1	0	0
Obs PROCESO					# d	le Ciclos					Total Tiempo	Suma tiempo Factor normal	Tiempo	Tiempo
PROCESO		1	2	3	4	5	6	7	8	9 1	0 real	normal	r%o,9n7hal	estandar
verifición	(0,1	,2 0	,4 0,	1 0	,1 0,	2 0,	.1 0,	2 0,	1 0,	1 1,6	% Suplementos	00,,116	00,319776
sacado de Tor	rta (0,3	,2 0	,2 0	2 0	,3 0,	2 0,	.3 0,	3 0,	2 0,	2 2,4	Tiempo 1	0,24	0,264
NQ/tas												Sestartitanpo	4,367	
												normal	0,4	
												% Suplementos	0,1	0,04
												Tiempo		
N/A												estandar	0,44	

Verificación de cocción & sacado de Torta

Enfriamiento & transporte área decorado

Relleno & Cubierta

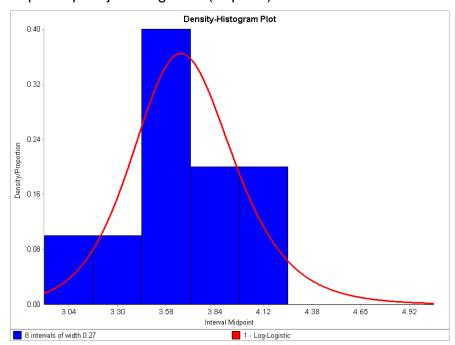
	Relleno & Cubierta																		
PROCESO	# de Ciclos Total Tiempo											F	Tiempo	Tiempo					
PROCESO		1	2	3		4	5		6	7		8	9	10	real	real Factor		normal	estandar
Relleno	5	5,8	5,9	5,7		6,3	6;#	riamiento&t	ansporte	area B e	orado	6	6,2	6,2		60,7	1	6,07	6,677
Cubierta PROCE	- 9	9,3	9,9	8,3		8,4	9,6	# de Ciclo	9,1	8,9		9,3	9,5	8,7	Total	Tie911pc	1	Tiemp8,1	Tiem 0001
Obs	SU		1	2	3	4		5	6	õ	7		8	9	10 r	eal	Suma tiempo	normal	estandar
Enfriamiento			10	10	10	10)	10	10)	10		11	10	10	10	1 normal 1	15,17 10,1	11,11
transporte area	a decorado		0,2	0,2	0,2	0,1		0,2	0,3	3	0,2		0,2	0,2	0,2	9	Suplementos 1	0012	1,522
Obs																	Strengtiempo		
N/A																	estantmal	16 .16 8 3	j
																	% Suplemento	9 0,1	1,03
																	Tiempo		
N/A																	estandar	11.33	

Verificación

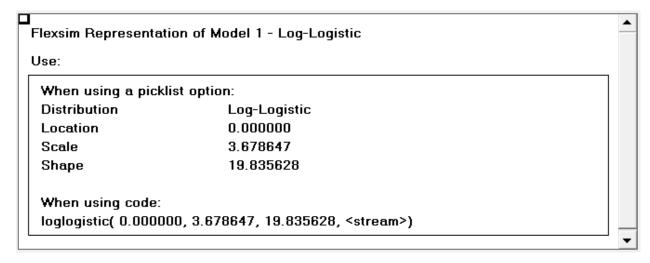
	Verificación													
PROCESO	# de Ciclos Total Tiempo												Tiempo	Tiempo
PROCESO	1	2	3	4	5	6	7	8	9	10	real	Factor	normal	estandar
Verificación	1,9	1,5	1,4	1,6	1,5	1,9	1,7	1,5	1,7	1,8	16,5	1	1,65	1,815
														0
Obs												Suma tiempo		
												normal	1,65	
												% Suplementos	0,1	0,165
												Tiempo		
N/A												estandar	1,815	

ANEXO 3 Análisis de EOQ

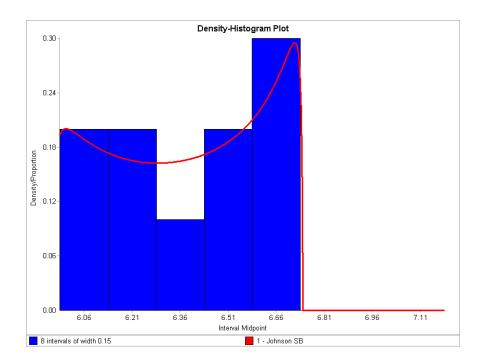
Inicial

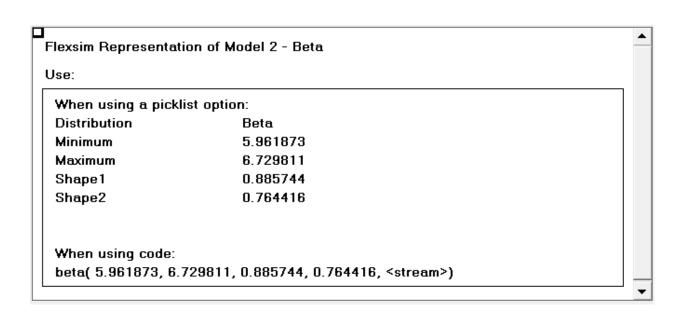

items	cantidad solicitada	und	Cantidad Gr	minimo	maximo	punto de reorden	necesidad para llegar a max
Cacao	8	Cajas	84000	4	12	4	8
Azucar	25	fardos	500000	5	30	5	25
leche condensada	20	Pomas	100000	7	27	7	20
Harina	30	sacos	300000	5	35	5	30
mantequilla	20	tachos	60000	6	26	6	20

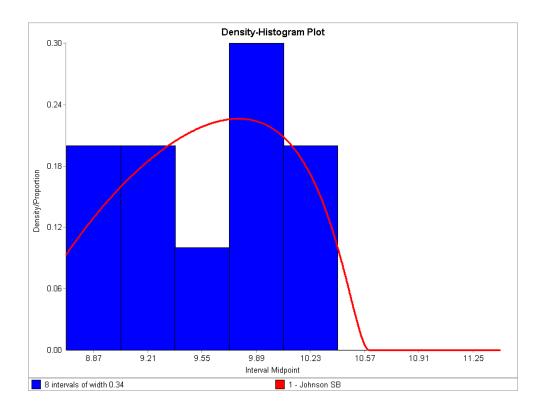
Mejora propuesta

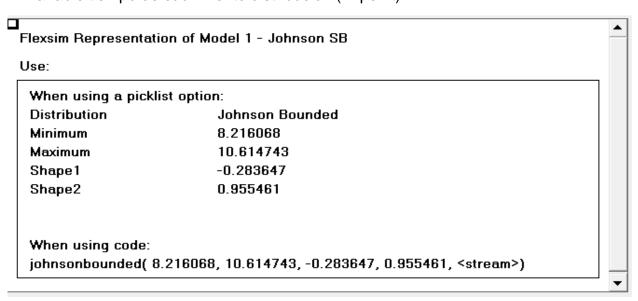

items	cantidad solicitada	und	Cantidad Gr	minimo	maximo	punto de reorden	necesidad para llegar a max	incremento de materia prima
Cacao	11	Cajas	115500	6	17	6	11	38%
Azucar	33	fardos	660000	7	40	7	33	32%
leche condensada	26	Pomas	130000	10	36	10	26	30%
Harina	39	sacos	390000	7	46	7	39	30%
mantequilla	26	tachos	260000	8	34	8	26	30%

ANEXO 4 Análisis de Distribución de probabilidad de variables


Variable tiempo de pesaje histograma (Experfit)


Variable tiempo de pesaje distribución (Experfit)


Variable tiempo de llenado histograma (Experfit)


Variable tiempo de llenado distribución (Experfit)

Variable tiempo de cubrimiento histograma (experfit)

Variable tiempo de cubrimiento distribución (Experfit)

