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On detecting viral RNAs, the RNA helicase retinoic acid-inducible
gene I (RIG-I) activates the interferon regulatory factor 3 (IRF3)
signalling pathway to induce type I interferon (IFN) gene
transcription. How this antiviral signalling pathway might be
negatively regulated is poorly understood. Microarray and
bioinformatic analysis indicated that the expression of RIG-I
and that of the tumour suppressor CYLD (cylindromatosis), a
deubiquitinating enzyme that removes Lys 63-linked polyubiquitin
chains, are closely correlated, suggesting a functional association
between the two molecules. Ectopic expression of CYLD inhibits
the IRF3 signalling pathway and IFN production triggered by
RIG-I; conversely, CYLD knockdown enhances the response. CYLD
removes polyubiquitin chains from RIG-I as well as from TANK
binding kinase 1 (TBK1), the kinase that phosphorylates IRF3,
coincident with an inhibition of the IRF3 signalling pathway.
Furthermore, CYLD protein level is reduced in the presence of
tumour necrosis factor and viral infection, concomitant with
enhanced IFN production. These findings show that CYLD is a
negative regulator of RIG-I-mediated innate antiviral response.
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INTRODUCTION
Recognition of virus-derived nucleic acids by the DExD/H-box
RNA helicases, the melanoma differentiation-associated gene 5
(MDA5) protein and the retinoic acid-inducible gene I (RIG-I)
protein (Yoneyama et al, 2005) leads to the production of type I
interferon (IFN) in most cell types. Both RIG-I and MDA5 contain
caspase recruitment domains (CARDs) that interact with the CARD
domain-containing protein interferon-b promoter stimulator 1
(IPS-1), also known as MAVS, VISA or Cardif, which resides on
the outer membrane of mitochondria (McWhirter et al, 2005).
IPS-1, in turn, transduces signals leading to the activation of
interferon regulatory factor 3 (IRF3), nuclear factor-kappaB
(NF-kB) and activator protein 1 (AP-1) transcription factors
(McWhirter et al, 2005). IRF3 has a crucial role in antiviral
response, as IRF3-deficient mouse embryonic fibroblasts
have impaired IFNb production when infected (Sato et al, 2000).
IRF3 phosphorylation is mediated by the kinases TANK (TRAF
family member-associated NFkB activator) binding kinase 1
(TBK1) and inhibitor-kB kinase e (IKKe; Fitzgerald et al, 2003;
Sharma et al, 2003). Precisely how IPS-1 activates TBK1 and IKKe
remains unclear, and other molecules such as TANK, NEMO/IKKg
and TRAF (TNF receptor-associated factor) family members
have also been implicated in the IRF3 signalling cascade
(McWhirter et al, 2005; Saha et al, 2006; Guo & Cheng, 2007;
Zhao et al, 2007).

The mechanism by which the IRF3 pathway is negatively
regulated is poorly understood; however, accumulating evidence
suggests that the attachment and removal of polyubiquitin chains
might be important. Canonical Lys 48-linked polyubiquitination
leads to proteasomal degradation, whereas non-canonical Lys 63-
linked polyubiquitination seems to be crucial for signalling
(Krappmann & Scheidereit, 2005). A20, a molecule with both E3
ubiquitin ligase and deubiquitinase activity, has been shown to
act as a negative regulator of RIG-I-mediated IFNb gene
transcription (Wang et al, 2004; Lin et al, 2006). RIG-I undergoes
Lys 63-linked polyubiquitination (Gack et al, 2007), suggesting
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that post-translational modification by ubiquitination is probably
a crucial mechanism by which the IRF3 pathway can be
regulated. Another known deubiquitinase that removes Lys 63-
linked polyubiquitin chains is CYLD, a tumour suppressor which
was originally identified as a genetic defect in familial cylindro-
matosis (Bignell et al, 2000). CYLD acts as a negative regulator of
NF-kB and Jun N-terminal kinase signalling pathways by
removing Lys 63-linked polyubiquitin from NEMO/IKKg, TRAF2
and BCL3 (B-cell CLL/lymphoma3; Brummelkamp et al,
2003; Kovalenko et al, 2003; Trompouki et al, 2003; Massoumi
et al, 2006). Here, we report that CYLD interacts with components
of the RIG-I pathway to inhibit IRF3 signalling and subsequent
IFNb production.

RESULTS AND DISCUSSION
CYLD interacts with RIG-I
Owing to the crucial role of RIG-I in the antiviral response, a
search for RIG-I-interacting molecules was performed to uncover
regulatory components of the pathway. In particular, molecules
that regulate ubiquitination are of interest because of increasing
evidence that this post-translational modification has a crucial
role in signalling and immune responses (Liu et al, 2005).
Bioinformatic approaches were initially used to conduct the
search. By using gene expression data from 79 human tissues
(PMID: 15075390), we examined the tissue- and cell-type
expression profiles of 47 genes encoding deubiquitinating
enzymes (PMID: 12917690) and 31 genes encoding CARD-
containing proteins. Interestingly, both CYLD and RIG-I (also
known as DDX58) show a similar expression profile across the 79
tissues and are significantly enriched in immune cells (Po0.0007 and
Po0.0002, respectively, using the Wilcoxon rank-sum test; Fig 1A),
suggesting a possible functional association in immune pathways.
Furthermore, the analysis of networks constructed from protein
interaction data places CYLD and RIG-I within a functional cluster
that is important for tumour necrosis factor (TNF) signalling
(supplementary Fig 1 online). This computational approach provides
a discovery tool to find physical and functional associations between
signalling molecules in antiviral responses that have not been
previously appreciated.

To confirm the in silico analysis, Flag-tagged RIG-I and Myc-
tagged CYLD were transfected into 293 Epstein–Barrvirus nuclear
antigen (EBNA) cells, and a co-immunoprecipitation experiment
was performed (Fig 1B). Myc-tagged CYLD was detected in the
anti-Flag immunoprecipitation from cells co-transfected with
Flag-RIG-I, but not with a negative control Flag-tagged protein.
This observation substantiates the bioinformatics analysis and
establishes an interaction between RIG-I and CYLD. To test
whether this interaction has functional relevance, the effect of
CYLD expression on RIG-I-mediated response was tested by using
a synthetic reporter consisting of multimerized PRDI (positive
regulatory domain 1) sites derived from the IFNb promoter that
responds to IRF3 activation (Yoneyama et al, 1996). Ectopic
expression of RIG-I was sufficient to activate the IRF3 reporter,
and this response was inhibited by coexpression of CYLD but not
of a control protein (Fig 1C). We also observed interaction
between endogenous CYLD and RIG-I after infection of 293 EBNA
cells with Sendai virus Cantell (SeV; Fig 1D). These data indicate a
physical interaction between the two molecules and suggest that
CYLD negatively regulates RIG-I and the antiviral response.

CYLD inhibits SeV-induced IFNb production
To test the above hypothesis, we investigated whether CYLD can
modulate the response to SeV infection, which has been shown to
trigger IFNb production in a RIG-I-dependent manner (Kato et al,
2005). In control transfected cells, SeV infection induces a robust
activation of the IRF3 reporter, but this effect was significantly
inhibited in CYLD-transfected cells (Fig 2A). A similar effect of
CYLD was observed with a luciferase reporter containing the
proximal promoter of IFNb with binding sites for IRF3, NF-kB and
AP-1 (Thanos & Maniatis, 1992; Fig 2A). These reporter assays
suggest that CYLD might inhibit IFNb gene transcription in
response to virus infection, which was confirmed by quantitative
PCR analysis of IFNb messenger RNA (Fig 2B). Finally, culture
supernatants from infected cells were tested for IFN activity by
using a bioassay that measures the ability of IFN to block
replication of a green fluorescent protein (GFP)-tagged Newcastle
disease virus (NDV). The supernatant from CYLD transfectants
infected with SeV inhibited NDV-GFP replication to a lesser
extent than the supernatant collected from control transfectants
(Fig 2C; supplementary Fig 2A,B online). This indicated that there
was less IFN in the CYLD transfectants, which is consistent with
the hypothesis that CYLD inhibits RIG-I-mediated IFN production.
As a positive control, transfection of the Ebola virus VP35 gene
also inhibited SeV-induced IFN production, as previously reported
(Cardenas et al, 2006). Cells transfected with CYLD also
showed decreased SeV-induced IRF3 and I-kBa phosphorylation
(supplementary Fig 2C,D online).

Next, we tested the effect of CYLD loss-of-function using RNA
interference. CYLD expression was efficiently knocked down by using
a pool of four RNA duplexes (si-CYLD) when compared with control
non-silencing oligonucleotides (si-NS; supplementary Fig 3A online).
Loss of CYLD expression led to an enhancement in SeV-triggered IRF3
and IFNb reporters (Fig 2D), phosphorylation of IRF3 and IkBa
(supplementary Fig 3C online), and IFNb mRNA level (Fig 2E). Finally,
CYLD knockdown led to enhanced SeV-induced IFN secretion (Fig 2F;
supplementary Fig 3B online). Owing to the possibility of off-target
effects mediated by the si-CYLD Smartpool duplexes, we used an
siRNA duplex that targets the 30 untranslated region (UTR) of the
CYLD mRNA (si-CYLD UTR). The si-CYLD UTR had the same effect
as the si-CYLD Smartpool on IFNb promoter activity, and the effect of
the si-CYLD UTR was reversed by co-transfection of the CYLD open
reading frame (supplementary Fig 3D online), indicating that the effect
of the si-CYLD is not due to an off-target effect. Taken together, these
results support the hypothesis that CYLD is a negative regulator of the
RIG-I-mediated antiviral response.

CYLD interacts with IPS-1, TBK1 and IKKe
Next, we examined whether CYLD can also interact with other
molecules in the RIG-I signalling pathway, as this was suggested
from network analysis (supplementary Fig 1 online). Co-immuno-
precipitation experiments were performed with the previously
identified pathway components IPS-1, TBK1 and IKKe. Myc-
tagged CYLD and Flag-tagged RIG-I, IPS-1, TBK1 or IKKe were
co-transfected into 293 EBNA cells and, as shown in Fig 3A, CYLD
interacted with all of the pathway components tested. Interestingly,
the CYLD that coprecipitated with TBK1 and IKKe migrated as a
doublet, suggesting that these kinases might be phosphorylating
CYLD. However, when the stringency of the immunoprecipited
wash buffer was increased from 250 to 500 mM NaCl, the
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interaction of TBK1 or IKKe with CYLD was no longer observed,
suggesting that their interaction with CYLD is weaker than that of
RIG-I and IPS-1. To establish a functional role for the observed
interactions, we performed an epistasis experiment using the IRF3
and IFNb luciferase reporters (supplementary Fig 4A–D online).
The activation of both reporters by the constitutively active CARD
of RIG-I (RIG-IN), IPS-1 and TBK1 was decreased by CYLD in a

dosage-dependent manner. However, CYLD did not inhibit the
IRF3 response induced by IKKe and seemed to be enhancing it,
indicating that CYLD does not globally inhibit all IRF3 response.
Similarly, IRF3 phosphorylation induced by overexpression of
RIG-IN, IPS-1 and TBK1, but not IKKe, was also blocked by CYLD
(Fig 3B). Conversely, CYLD knockdown enhanced the activation
of the IRF3 and IFNb reporters induced by RIG-IN, IPS-1 and TBK1
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(Po0.0007 and Po0.0002, respectively). (B) A derivative of the 293 EBNA cell line was transfected with 5mg each of Flag-RIG-I or Flag-A20ZF1-4 as a

negative control, and empty vector or Myc-CYLD. Flag immunoprecipitations were performed and sequentially blotted with anti-Myc and anti-Flag.

(C) IRF3 reporter activity in 293 EBNA cells co-transfected with 100 ng RIG-I and 2 mg of a plasmid encoding CYLD or GST as a negative control. The

results are expressed as mean±s.d. (n¼ 3; **Po0.01 by Student’s t-test). (D) 293 EBNA cells were infected with SeV at an MOI of 10 for 24 h. Control

IgG or anti-CYLD immunoprecipitations were performed and sequentially blotted with anti-RIG-I and anti-CYLD. CARD, Caspase recruitment domain;
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overexpression, but not by IKKe (supplementary Fig 5 online). The
difference in the sensitivity of TBK1 and IKKe to CYLD inhibition is
notable in the light of recent studies showing that IKKe is not
required for the initial IFNb induction by virus infection, but is
required for the subsequent induction of antiviral genes by IFNb
(Tenoever et al, 2007). Thus, these observations are consistent with
the idea that several molecules in the pathway, including RIG-I and
TBK1, are targets of negative regulation by CYLD.

CYLD deubiquitinates RIG-I, TBK1 and IKKe
The removal of Lys 63-linked polyubiquitin chains from TRAFs
and NEMO/IKKg by CYLD has been shown to inactivate the IKK

complex that phosphorylates IkBa (Brummelkamp et al, 2003;
Kovalenko et al, 2003; Trompouki et al, 2003). As CYLD inhibits
IRF3 signalling induced by RIG-I signalling components, we tested
whether these components are targets for CYLD-mediated
deubiquitination. 293 EBNA cells were transfected with full-
length RIG-I, RIG-IN, IPS-1, TBK1 or IKKe in conjunction with a
ubiquitin mutant with only one lysine at position 63 available for
conjugation (K63-Ub). Both full-length RIG-I and RIG-IN under-
went Lys 63-linked polyubiquitination. TBK1 and IKKe were also
modified but to a lesser extent, whereas IPS-1 did not undergo
ubiquitination on ectopic expression (Fig 3C). Ubiquitination of
RIG-I, RIG-IN, TBK1 and IKKe was abrogated by coexpression of
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CYLD. A cell-free deubiquitination assay using immuno-affinity-
purified Lys 63-polyubiquitinated Flag-RIG-I and CYLD showed
that CYLD could directly remove Lys 63 polyubiquitin chains from
RIG-I (supplementary Fig 6 online). CYLD inhibits IRF3 signalling
induced by RIG-I, IPS-1 and TBK1 (supplementary Fig 4 online),
suggesting that ubiquitination is required for RIG-I and TBK1 to
activate the IFN response, and that removal of ubiquitin by CYLD
inhibits this. Recently, Lys 63-linked ubiquitination of Lys 172 of
human RIG-I was reported to be required for RIG-I to associate
with IPS-1 to induce IFN (Gack et al, 2007); the removal of this
modification from RIG-I by CYLD might attenuate the response.
The observations that CYLD can deubiquitinate TBK1 and inhibit
the IRF3 response induced by TBK1 expression suggest that
ubiquitination is also crucial for TBK1 function; however, it is
unclear at present how attachment or removal of ubiquitin
regulates the enzymatic activity of TBK1. Surprisingly, CYLD
consistently reduced the amount of TBK1 protein and, to a
lesser extent, that of full-length RIG-I and RIG-IN, whereas
levels of IPS-1 and IKKe proteins were relatively unchanged.
These observations suggest that the removal of Lys 63-linked

polyubiquitin from RIG-I and TBK1 by CYLD might destabilize
these molecules, and that this might be another mechanism by
which CYLD downmodulates the IFN response.

Regulation of CYLD during infection
Negative regulatory proteins can function as negative feedback
molecules to attenuate the response or they can function as
‘brakes’ that are removed to allow the response to be enhanced.
To investigate which of the above mechanisms applies to CYLD,
we analysed the CYLD expression level in response to virus
infection alone or in conjunction with TNF stimulation. We
focused on TNF as a co-stimulus, as the network analysis
suggested that TNF is in close proximity to CYLD and RIG-I
(supplementary Fig 1 online), and it is known to potentiate IFNb
production triggered by influenza infection (Matikainen et al,
2006). TNF alone had no effect on CYLD protein level (Fig 4), in
contrast to that reported previously (Jono et al, 2004). This
discrepancy might be due to a difference in the cell lines used and
stimulating conditions. SeV infection alone also had no effect, but
infection in the presence of TNF markedly reduced the amount of
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CYLD protein (Fig 4), coincident with enhanced IRF3 signalling
(supplementary Fig 7 online) and IFNb production (Fig 4). This
suggests that CYLD might be reduced as a mechanism to
potentiate IFNb production during viral infection.

In summary, we have shown the inhibitory role of CYLD in
regulating type I IFN production during the RIG-I-mediated
antiviral response. As IFN upregulates numerous IFN-stimulated
genes (ISGs) crucial for antiviral defence, such as ISG15 and
ISG56, CYLD probably attenuates the establishment of an antiviral
state. The transient inhibition of the activity of CYLD by
pharmacological agents might therefore provide a strategy to
enhance antiviral responses.

METHODS
Analysis of gene expression across 79 tissues. Microarray data
files were obtained from the Novartis GNF human expression atlas
version 2 resource (PMID: 15075390), and expression values of
33,689 probe sets from the HG-U133A (Affymetrix, Santa Clara,
CA, USA) platform and the GNF1H custom chip were analysed.
The data set was normalized by using global median scaling and
we filtered the data by excluding from the analysis probe sets with
100% ‘absent’ calls (MAS 5.0 algorithm) across all 79 tissues. The
data set was further filtered by setting a minimum threshold value
420 in at least one sample for each probe set and a maximum
mean expression value 4100. Hierarchical clustering (complete
linkage method) was performed with Cluster 3.0 using Pearson’s
correlation as the similarity metric. Z-score transformation was
applied to each probe set across all arrays before generating
‘heatmaps’ for visualization using TreeView.
Interferon bioassay. The IFN bioassay was performed as des-
cribed previously (Cardenas et al, 2006). Conditioned super-
natants (100 ml) from SeV-infected cells were subjected to
ultraviolet irradiation to inactivate infectious SeV and overlaid
onto Vero cells seeded in a 96-well black microtitre plate
(Costar, Cambridge, MA, USA). After 24 h, the Vero cells were
infected with the IFN-sensitive virus NDV-GFP for 1 h at an MOI
(multiplicity of infection) of 6 in serum-free media. At 24 h
after infection, GFP fluorescence was quantified in a FLUOstar
OPTIMA plate reader (BMG Labtechnologies, Offenburg,

Germany) set with excitation and emission wavelengths at
485 and 530 nm, respectively. The relative GFP unit for
each sample was calculated using the formula (value of
sample�value of background)/(value of highest sample�value of
background)� 100.
Co-immunoprecipitation of endogenous proteins. A total of
1� 108 293 EBNA cells per sample were mock or SeV
infected for 24 h and then lysed in an ice-cold buffer
containing 1% CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate), 50 mM Tris, 150 mM NaCl, 5 mM MgCl2,
pH 7.5 supplemented with protease inhibitors. Lysates were
clarified by centrifugation at 10,000g at 4 1C and incubated for
2 h with 1 mg of CYLD antibody or normal mouse IgG.
Immune complexes were precipitated for 30 min at 4 1C with
2.5 ml of protein A/G beads pre-blocked with BSA. Beads
were washed three times with 1% CHAPS lysis buffer and
then boiled in SDS sample buffer. Samples were resolved on
SDS–PAGE and analysed by sequential blotting with anti-RIG-I
and anti-CYLD.
In vivo deubiquitination assay. Flag-tagged RIG-I signalling
molecules were co-transfected with haemagglutinin-tagged
Lys 63-Ub, and either vector or Myc-CYLD. After 24 h, cells were
incubated with 25 mM MG132 for 4 h and then lysed in Triton lysis
buffer. Lysates were denatured with 1% SDS at 100 1C for 5 min,
immunoprecipitated with anti-Flag beads, eluted with Flag
peptide and immunoblotted.

Additional methods are described in the supplementary
information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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