ÍNDICE DE FIGURAS

- ; - , ,		Pág.
Figura 2.1	Evolucion de los materiales	13
Figura 2.2	Particulas de arcilla y de nanoarcilla	16
Figura 2.3	Comparación de la permeabilidad con respecto al tipo	47
	de relienos: a (nanoarcilias) y b (relienos normales)	17
Figura 2.4	Vista microscopica utilizando un TEM (Transmission	40
	Electron Microscopy)	18
Figura 2.5	Proceso de transformación de arcilla sodica a nanoarcilla	04
Figure 2.6	Depresentación de la estructura de una areilla compactita	
Figura 2.6	Representación de la estructura de una arcilla esmectita	22
Figure 2.7	lipo monimoniioniia	ZZ
Figura 2.1	do www.nonoclov.com)	21
Figuro 2.8	Depresentación osquemática del tratamiente de superficie	
rigura 2.0	de la arcilla	30
Figura 2.0	Estructura de cuatro láminas cristalinas de arcilla tipo	
rigula 2.5	montmorillonita	33
Figura 2.10	Estructura idealizada de la montmorillonita mostrando el	00
i igura zirio	arregio de láminas tipo 2.1 (2 capas de silicato y un	
	núcleo metálico)	35
Figura 2.11	Representación esquemática en 2 dimensiones del curado	
91 1	de una resina epóxica termoestable durante todas sus	
	fases (a, b, c, d).	40
Figura 2.12	Niveles de dispersión de partículas (líneas) en un	
0	nanocompuesto de matriz epóxica.	48
Figura 2.13	Imágenes TEM de un nanocompuesto delaminado de	
	epóxico-nannoarcilla. (izq.) nanocompuesto preparado	
	por Giannelis, (der) nanocompuesto preparado por	
	Pinnavaia	49
Figura 2.14	Camino tortuoso de las moléculas a través del	
	nanocompuesto	52
Figura 2.15	Modelo del camino de la difusión de un gas a través de un	
	nanocompuesto de polímero – nanoarcilla exfoliado	53

Figura 3.1	Estructura química de la resina epóxica	66
Figura 3.2	Estructura química del curador Jeffamine D-230	70
Figura 3.3	Agente curador Jeffamine D-230	71
Figura 3.4	Estructura química de la nanoarcilla Cloisite 20A (donde HT	•
J	es el cebo hidrogenado: hydrogenated tallow)	72
Figura 3.5	Nanoarcilla Cloisite 20A	73
Figura 3.6	Estructura química de la nanoarcilla Cloisite 30B (donde	
-	T es el cebo: tallow)	74
Figura 3.7	Nanoarcilla Cloisite 30B	75
Figura 3.8	Desecante silica gel	76
Figura 3.9	Paneles de acero rolado en frío	77
Figura 3.10	Parafina de uso histológico	78
Figura 3.11	Matraz kitasato	79
Figura 3.12	Higrómetro digital	79
Figura 3.13	Balanza analítica digital	80
Figura 3.14	Agitador magnético	80
Figura 3.15	Recipiente hermético con silica gel	81
Figura 3.16	Agitador ultrasónico	82
Figura 3.17	Selladora de polímeros	82
Figura 3.18	Aplicador de película de pintura	83
Figura 3.19	Procedimiento para preparación de placas de acero rolado	
	en frío para ser pintadas	86
Figura 3.20	Procedimiento para fabricar compuesto de resina epóxica	
	y agente curador DC-010	87
Figura 3.21	Procedimiento para aplicar el compuesto: (superior)	
	placas de acero, (inferior) láminas de polietileno	88
Figura 3.22	Esquema del proceso de fabricación de	
	nanocompuestos	90
Figura 3.23	Procedimiento para fabricar nanocompuestos de resinas	
	epóxicas y anoarcillas	92
Figura 3.24	Prueba de impacto ASTM D 2794	.100
Figura 3.25	Prueba de dureza al lápiz INEN 1001	103
Figura 3.26	Prueba de flexibilidad ASTM D 522	106
Figura 3.27	Prueba de transmision de vapor de agua ASTM D 1653	113
Figura 3.28	Prueba de absorcion de agua ASTM D 570	116
Figura 3.29	Ensayo de corrosion en camara salina ASTM B 117 &	400
		120
Figura 4.1	Grafico "Q vs t" del compuesto C 1	132
Figura 4.2		133
Figure 4.3	Grafico Q VS T del nanocompuesto NC4	134
Figura 4.4		135
rigura 4.5	Granco Q vs t del nanocompuesto NC5	130
Figura 4.6	Granco Q vs t del nanocompuesto NU6	131
rigura 4.7	Proceso de inspección de las placas	146

Figura 4.8	Fotos de falla placas P1 (72 h), P2 (96 h) y P3 (216 h)	
	recubiertas con el compuesto C1	148
Figura 4.9	Fotos de falla placas P1 (144 h), P2 (144 h) y P3 (288 h)	
	recubiertas con el nanocompuesto NC3	148
Figura 4.10	Fotos de falla placas P1 (120 h), P2 (96 h) y P3 (336 h)	
	recubiertas con el nanocompuesto NC4	149
Figura 4.11	Fotos de falla placas P1 (24 h), p2 (24 h) y p3 (72 h)	
	recubiertas con el compuesto C2	150
Figura 4.12	Fotos de falla placas P1 (96 h), P2 (96 h) y P3 (120 h)	
	recubiertas con el nanocompuesto NC5	151
Figura 4.13	Fotos de falla placas P1 (96 h), P2 (72 h) y P3 (120 h)	
	recubiertas con el nanocompuesto NC6	151
Figura 4.14	Esquema de barras de resistencia promedio a la corrosió	n 155
Figura 4.15	Relación entre propiedades para los compuestos fabricado	os
	con agente curador DC-010	159
Figura 4.16	Relación entre propiedades para los compuestos fabricado	os
	con agente curador Jeffamine D-230	160