

Integrantes:

- Jaramillo Nieto Jimmy Marlon
- Sanga Suárez Christian José

ANALISIS HIDROLÓGICO DE LA CUENCA DEL CERRO COLORADO Y SU INTERACCIONICON LA AUTOPISTA TERMINAL TERRESTRE - PASCUALES

Índice

<u>Objetivos</u>

- Capitulo 1.- Descripción de las cuencas
- Capitulo 2.- Estadística de los datos
- Capitulo 3.- Escorrentía Superficial
- Capitulo 4.- Hidráulica de Alcantarillas
- Capitulo 5.- Análisis de Resultado
- Capitulo 6.- Conclusiones y Recomendaciones

Objetivos

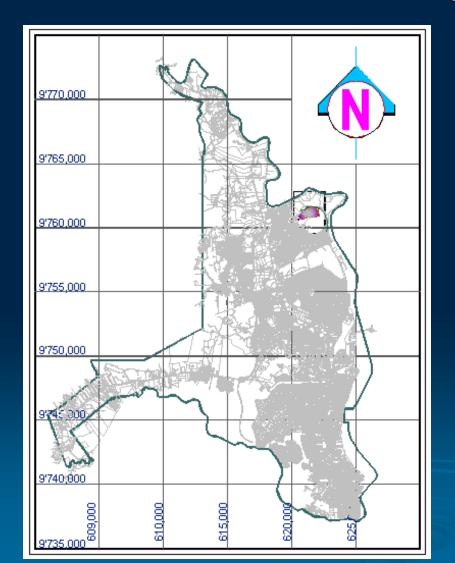
Principal

Analizar el comportamiento de las alcantarillas ante la presencia de eventos lluviosos extremos como el del 13 de diciembre de 1997.

Secundarios

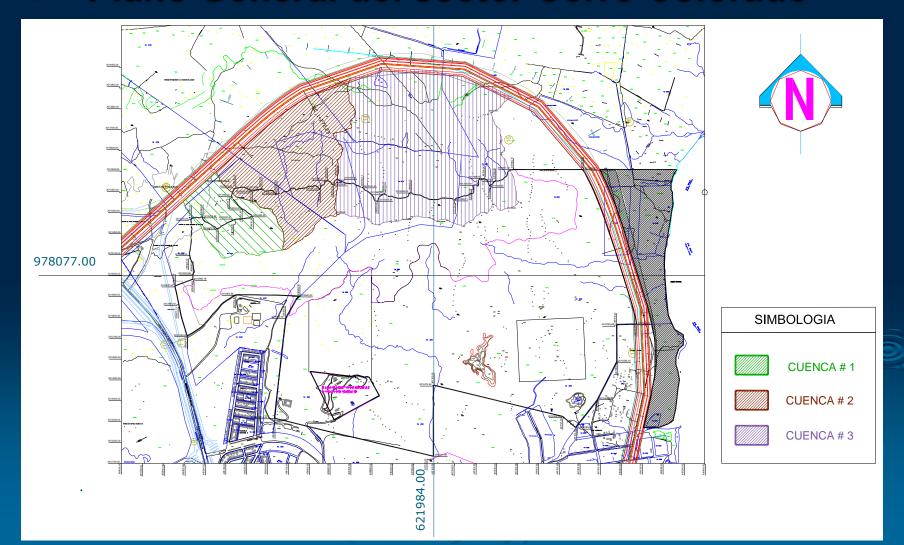
- Caracterizar fisiograficamente la zona de estudio
- Seleccionar la precipitación de diseño con datos de registro pluvográficos en fajas y anuarios
- Estimar el escurrimiento de la cuenca
- Determinar la capacidad hidráulica del sistema de drenaje transversal

Capitulo 1.- Descripción de las cuencas


- Ubicación geográfica y política.
- Descripción Hidrológica.
 - Delimitación
 - Caracterización a través de sus parámetros geomorfológicos
 - Área y Perímetro
 - Forma
 - Sistema de Drenaje
 - Características del relieve
 - Tipos de flujos que se presentan en los cauces
 - Material del lecho

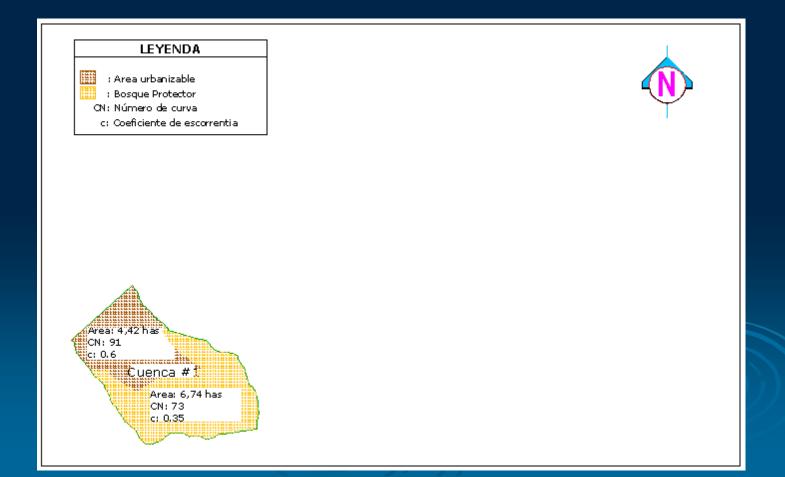
Ubicación Geográfica y Política

Altitud: 104.56 m.s.n.m



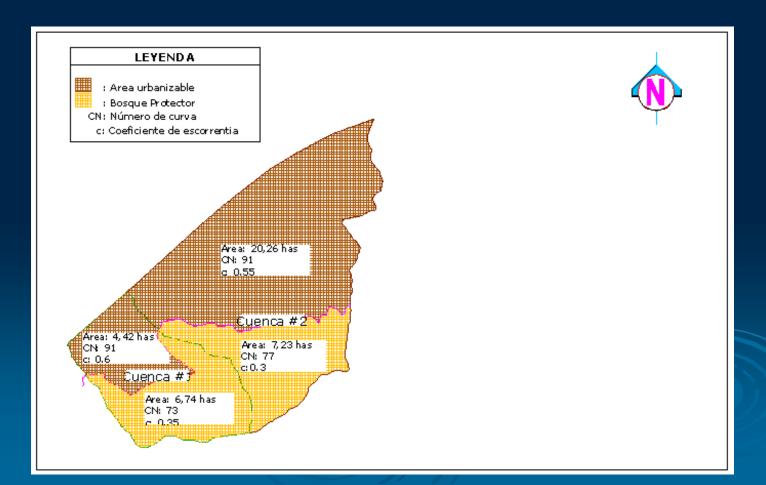
Ubicación Geografica							
Punto	Latitud N	Longitud E					
1	9770685	620801					
2	9770837	620742					
3	9770877	621340					
4	9770881	621034					

Plano General del sector Cerro Colorado



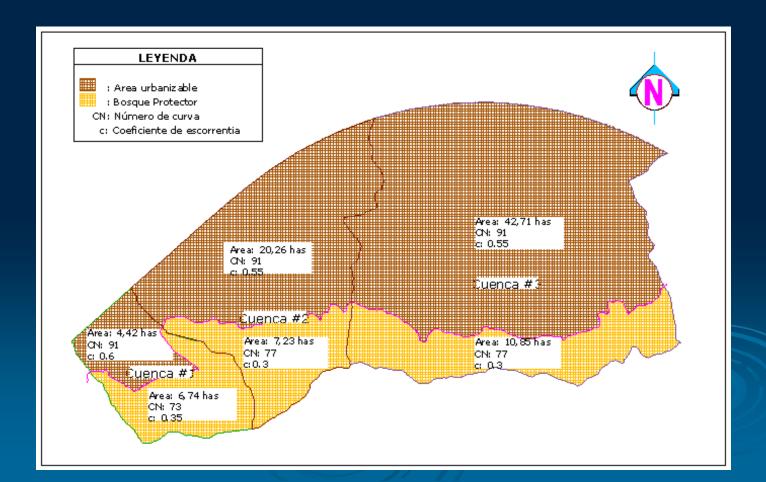
Descripción Hidrológica de las cuencas

Delimitación de las cuencas



Descripción Hidrológica de las cuencas

Delimitación de las cuencas



Descripción Hidrológica de las cuencas

Delimitación de las cuencas

Descripción Hidrológica de las cuencas

- Caracterización de las cuencas a través de sus parámetros geomorfológicos.
 - Área y Perímetro. Mediante planimetrado
 - (Ks) Tendencia a las crecidas
 (Kc) Relacionado con el Tc

Ejemplo Comparativo

• Sistema de drenaje.

Nº de Orden. <Tributario >infiltración

Densidad de drenaje. (0.5-4)Km./Km²

Relieve.

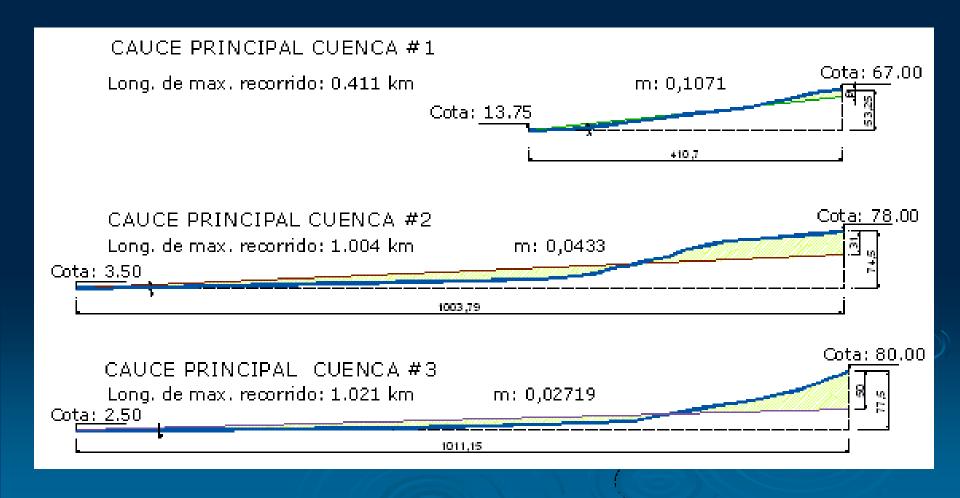
Pendiente de la cuenca
Pendiente del cause principal
Longitud de Máx.. Recorrido
Longitud del centroide
Tiempo de concentración

Descripción Hidrológica de las cuencas

- Caracterización de las cuencas a través de sus parámetros geomorfológicos.
 - Área y Perímetro.- Mediante planimetrado
 - (Ks) Tendencia a las crecidas
 - Forma. (Kc) Relacionado con el Tc

Ejemplo Comparativo

Parámetros Geomorfológicos								
	Área y	Perímetro	Forma de la cuenca					
Cuenca	Área (Has)	Perímetro (m)	Factor de forma (Ks)	Índice de compacidad (Kc)	Clasificación			
1	11,16	1418,16	0.66	1.19	Casi redonda a oval - redonda (1,00-1,25)			
2	27,49	2470,52	0.27	1.32	Oval redonda a oval oblonga (1,26-1,50)			
3	53,56	3202,91	0.51	1.23	Oval redonda a oval oblonga (1,26-1,50)			

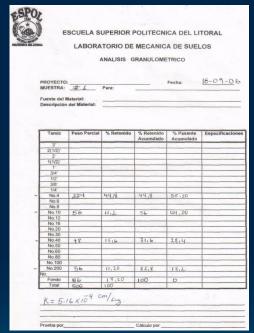


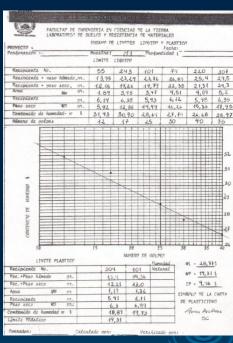
Parámetros Geomorfológicos							
Sistema de drenaje				e relieve	Tiempe de		
Cuence	Orden de	Densidad de		Tipo do	Tiempo de concentración		
Cuenca	cuenca	Drenaje	Pendiente	Tipo de relieve			
	(N)	(Dd)		relieve	(min.)		
1	2	2.78	0.246	Accidentado	4.74		
2	2	3.65	0.217	(P4)	13.37		
3	3	1.91	0.224	(P4)	16.21		

- Tipo de flujo
 - Perenne
 - Intermitente
 - Efímero

- Material del Lecho
 - Litología
 - Suelo

Descripción Hidrológica de las cuencas


Material del Lecho


Suelo

Ensayo en laboratorio:

- ✓ Análisis granulométrico
- ✓Ensayo de límite líquido y plástico
- ✓ Permeabilidad

Basándose en el pasante del tamiz No 200 predominan los finos, tomamos la carta de plasticidad (limite liquido, plástico, índice plástico) se considera a los suelos arcillosos limosos y arenosos limosos. De acuerdo a esta clasificación se puede concluir que es tipo C en la SCS

Capitulo 2.- Estadística de datos

- Periodo de Retorno
 - Ajuste de datos a una distribución de probabilidades
 - Distribución Gumbel Tipo I
 - Distribución Normal
 - Distribución Pearson Tipo III
 - Prueba de Bondad de Ajuste
 - Prueba X2
 - Prueba Kolmogorov Smirnov
 - Cálculo del periodo de retorno
- Análisis de intensidades máximas.
- Curvas Intensidad-Duración-Frecuencia (IDF)

Periodo de Retorno Diseño y Planificación optima

Dirección de aviación civil (DAC)

Instituto Nacional de Meteorología e Hidrológica (INAMHI)

Instituto Oceanográfico de la Armada (INOCAR)

Precipitación Máxima Diaria-Estación Radio Sonda						
Año	Precipitación (mm.)	Fecha				
1992	113,6	19 de Marzo				
1993	75,7	10 de Febrero				
1994	130,6	19 de Diciembre				
1995	79	17 de Febrero				
1996	104,3	1 de Febrero				
1997	185,5	13 de Diciembre				
1998	221,8	18 de Abril				
1999	60,4	26 de Abril				

Ajuste a una distribución de probabilidades

Gumbel Tipo I

Normal

Pearson Tipo III

Log-normal

Media:121.36

Varianza:56.36

Coef. Sesgo:1.1738

Distribución de Probabilidad								
D	atos	Parámetros						
			(Gumbe	l Tipo I			
V	185,50 Mm.	α	43,94	μ		96		
		Normal						
X _T		μ	121,36	σ	56,36			
		Pearson Tipo III						
		β	1.25	λ	50.4	ξ	58.35	
Log (V.)	2.27 Mm.			Log-no	ormal			
Log (X _T)		μ_{v}	2.05	σ_{v}		0.19		

Prueba de Bondad del Ajuste

Prueba X²

$$D \leq X^{2}_{1-\alpha,k-1-m}$$

Aprobación de Hipótesis								
Función de Distribución	D	ν	χ ² 0,95, ν	Но				
Normal	4.04		7.81	se acepta				
Log-normal	2.47	3	7.81	se acepta				
Gumbel	9.34		7.81	se rechaza				
Pearson	1.98	2	5.99	se acepta				

Prueba de Bondad del Ajuste

Prueba Kolmogorov-Smirnov

$$D < d(n, \alpha)$$

Aprobación de Hipótesis							
Función de Distribución	D	d	Но				
Normal	0.1871	0.43	Se acepta				
Log-normal	0.1214	0.43	Se acepta				
Pearson	0.1103	0.43	Se acepta				
Gumbel	0.1040	0.43	Se acepta				

Prueba de Bondad del Ajuste Resumen

Selección de la función de Distribución						
Función de Distribución	χ^2	Kolmogorov				
Normal	3	4				
Log-normal	2	3				
Pearson	1	2				
Gumbel	se rechaza	1				

Cálculo del periodo de retorno

Distribución : Gumbel tipo I, X(T): 185.5mm

Determinar el factor de frecuencia muestral

$$K_{T-muestral} = \frac{X_T - \overline{x}}{S}$$

Realizar tanteo para determinar el factor de frecuencia a partir de las Ecuaciones (Kite)

$$z = w - \frac{2.51557 + 0.802853 w + 0.010328 w^{2}}{1 + 1.432788 w + 0.189269 w^{2} + 0.001308 w^{3}}$$

$$k = C_S/6$$

$$w = \left[\ln\left(\frac{1}{p^2}\right)\right]^{1/2}; p = 1/T$$

Se escoge una probabilidad aleatoria

$$K_T = z + (z^2 - 1)k + \frac{1}{3}(z^3 - 6z)k^2 - (z^2 - 1)k^3 - zk^4 + \frac{1}{3}k^5$$

Resulta	Resultados					
FACTOR DE FRECUENCIA [k _T]	1,138					
PERIODO DE RETORNO	8,59 años					

Análisis de intensidades máximas

Los métodos para el cálculo de escorrentía no utiliza la cantidad de agua precipitada sino la intensidad con que el evento se presenta.

La elección del evento para el diseño de una obra hidráulica, no obedece al criterio de una sola persona sino a la extrapolación de datos característicos del medio que previamente se ajustan a una función de probabilidades.

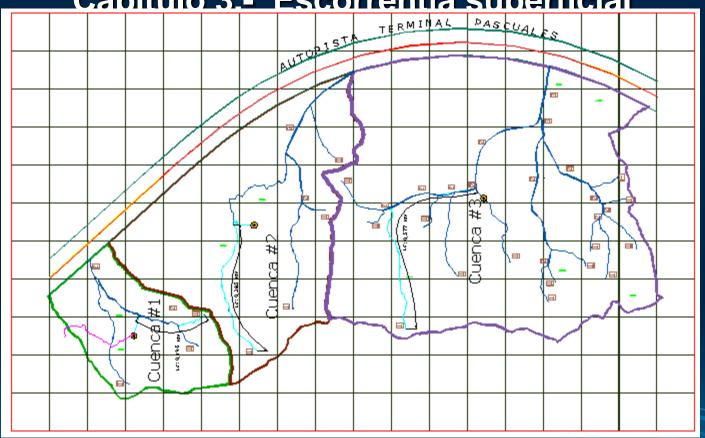
Periodo de retorno

12 de Abril d	de 1997	16h30				
TIEMPO	LLUV	IA		DURA	CION	
	Acumulada	Parcial	10	20	30	1
min.	mm	mm	min.	min.	min.	hora
0	0,1	0,1				
10	3,0	2,9	2,9			
20	7,7	4,7	4,7	7,6		
30	8,6	0,9	0,9	5,6	8,5	
40	9,0	0,4	0,4	1,3	6,0	
50	9,2	0,2	0,2	0,6	1,5	
60	9,4	0,2	0,2	0,4	0,8	9,3
PROFUNDIDAD MAXIMA (min.)		4,7	7,6	8,5	9,3	
INTENSIDAD	MAXIMA (mm /hc	ora)	28,2	22,8	17,0	9,3

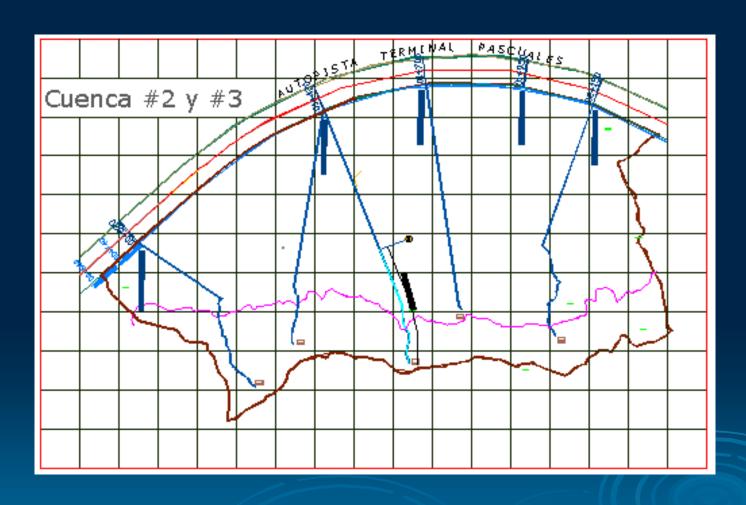
Intensidad máxima (mm./h)									
		D	URACIO	N					
ABRIL	10	20	30	1	2	FECHA	HORA		
	min.	min.	min.	hora	hora				
ALTURA MAX (min.)	4,7	7,6	8,5	9,3	0	12 de Abril de 1997	16h30		
INTENSIDAD MAX (mm/hora)	28,2	22,8	17	9,3	0	12 de Abili de 1997	101130		
ALTURA MAX (min.)	5,9	1,5	2,1	2,4	3,4	13 de Abril de 1997	19h05		
INTENSIDAD MAX (mm/hora)	35,4	4,5	4,2	2,4	1,7	14 de Abril de 1997	191103		
ALTURA MAX (min.)	2,6	4,6	4,7	4,7	5,9	14 de Abril de 1997	19h50		
INTENSIDAD MAX (mm/hora)	15,6	13,8	9,4	4,7	2,95	15 de Abril de 1997	19050		
ALTURA MAX (min.)	7	12,5	14,9	16,2	19,3	17 de Abril de 1997	19h28		
INTENSIDAD MAX (mm/hora)	42	37,5	29,8	16,2	9,65	17 de Abili de 1997			
ALTURA MAX (min.)	4,3	6,3	7,5	11,1	19,9	18 de Abril de 1997	19h00		
INTENSIDAD MAX (mm/hora)	25,8	18,9	15	11,1	9,95	19 de Abril de 1997	191100		
ALTURA MAX (min.)	3,4	6,6	9,2	13,3	18	21 de Abril de 1997	01h10		
INTENSIDAD MAX (mm/hora)	20,4	19,8	18,4	13,3	9	21 de Abili de 1997	011110		
ALTURA MAX (min.)	2,5	4,2	5	8,5	12,9	21 de Abril de 1997	21h00		
INTENSIDAD MAX (mm/hora)	15	12,6	10	8,5	6,45	21 de Abili de 1997	211100		
ALTURA MAX (min.)	6,5	9,5	10,9	20,7	24,2	28 de Abril de 1997	19h20		
INTENSIDAD MAX (mm/hora)	39	28,5	21,8	20,7	12,1	20 de Abril de 1997	18h30		
ALTURA MAX (min.)	3,8	4,3	4,4	5,3	6	30 de Abril de 1997	19500		
INTENSIDAD MAX (mm/hora)	22,8	12,9	8,8	5,3	3	30 de Abili de 1997	18h00		

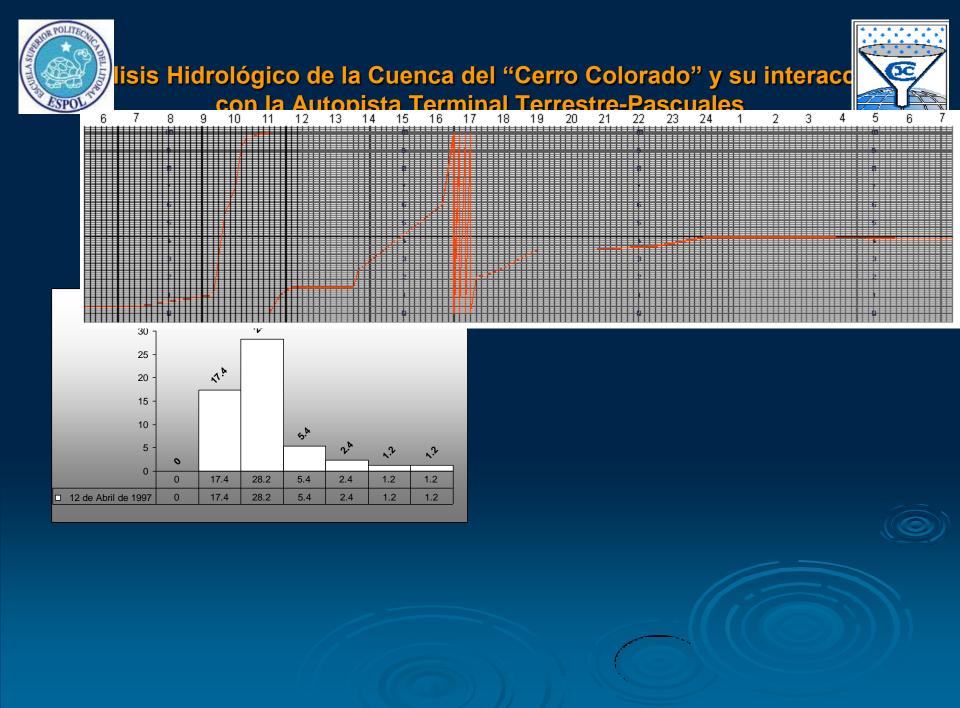
Periodo de retorno

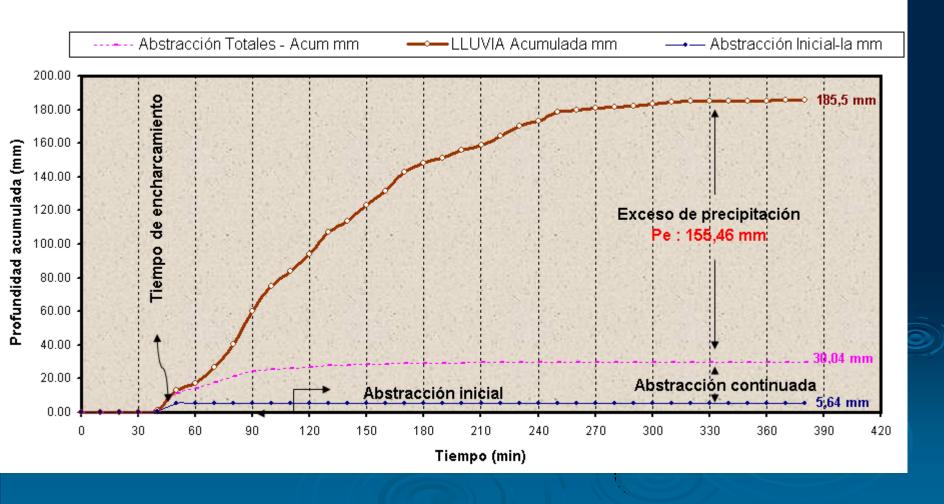
MAXIMAS INTENSIDADES PRESENTADAS EN EL AÑO 1997								
	Fecha				Duración	1		
Año			10	20	30	1	2	
Allo	Mes	Día	min.	min.	min.	hora	hora	
	Marzo	25	93	81	69	65	55,9	
	Abril	17	42	38	30	-	-	
		28	-	-	-	20,7	12,1	
1997	Noviembre	17	69	66	-	-	-	
		14	-	-	58	36,4	-	
		23	-	-	-	-	31,9	
	Diciembre	13	117	103,5	96	80	65,25	

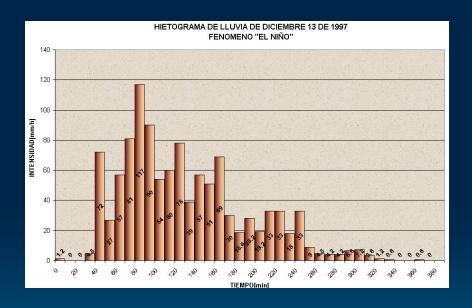

Capitulo 3.- Escorrentía superficial

- Escurrimiento por el método de las abstracciones de la Soil Conservation Service SCS
 - Estimación del numero de curva de escorrentía
 - Determinación del número de curva de escorrentía para la cuenca del cerro colorado
 - Determinación de la precipitación efectiva
- Hidrograma unitario sintético del soil conservation service, SCS
- Método racional
 - Descripción y aplicaciones del método racional.
 - Tiempo de concentración.
 - Intensidad de la lluvia en un periodo igual al tiempo de concentración.
 - Coeficiente de escorrentía.
 - Aplicación de la formula básica.
- Método de chow
- Caudales de aguas residuales









PLUVIOGRAMA DE LA LLUVIA DE DICIEMBRE 13 DE 1997 FENOMENO "EL NIÑO"

