RESUMEN

El presente trabajo desarrolla un sistema que ayudará a personas que prescinden de sus extremidades inferiores o de su movimiento, a trasladarse a diversos lugares de una forma más independiente.

En este proyecto se describe el diseño de un mecanismo que les permita conducir autos automáticos, partiendo de factores humanos en razón al diseño de los elementos para la conducción de este tipo de autos.

Para ello se revisarán los fundamentos teóricos necesarios para el diseño y selección de cada una de las partes del mecanismo, se incluirá también información sobre las fuerzas que puede ejercer el cuerpo humano, defiriéndome exclusivamente a sus extremidades, resultando al final, un sistema cómodo, sencillo y de excelente presentación al conductor.

ÍNDICE GENERAL

	Pág.
RESUMEN	II
ÍNDICE GENERAL	III
ABREVIATURAS	IV
SIMBOLOGÍA	V
ÍNDICE DE FIGURAS	VI
ÍNDICE DE TABLAS	VII
ÍNDICE DE PLANOS	VIII
INTRODUCCIÓN	1
CAPITULO 1	
1. INFORMACIÓN GENERAL	3
1.1. Determinación de la características técnicas para factores	
humanos determinados	3
1.2. Justificación del proyecto	4

CAPITULO 2

2. FUNDAMENTOS TEÓRICOS DE LAS PARTES CONSTITUYENTES	;
DEL SISTEMA	5
2.1.Columnas	5
2.2. Articulaciones de rótula	11
2.3. Resortes	17
2.3.1. Resortes de torsión helicoidales	22
2.4. Antropometría y factores humanos	26
CAPITULO 3	
3. DISEÑO DEL MECANISMO	34
3.1. Diseño de forma. Determinación de fuerzas	34
3.2. Selección de materiales. Matriz decisión	36
3.3. Cálculo para la selección de barra al freno y aceleración	36
3.4. Cálculo para selección de rótulas	42
3.5. Cálculo para la selección del resorte	44
CAPITULO 4	
4. COSTOS	45
4.1. Apólicis de costes	15

CAPITULO 5	
5. CONCLUSIONES Y RECOMENDACIONES46	
APÉNDICES	
BIBLIOGRAFÍA	

APÉNDICE A DATOS GENERALES DE TUBOS ESTÁNDAR COMERCIALES (1)

(1) Manual del Ingeniero Mecánico, Novena Edición. Volumen No. 1, pág 8-162.

APÉNDICE B DIMENSIONES GENERALES DE RÓTULAS

CORTE G G1 Н1 Ξ Н

⁽²⁾ RODAMIENTOS FAG, Catálogo de rodamientos, Tercera Edición. Volumen No. 1, pág 366.

APÉNDICE C ARTICULACIONES DE RÓTULA CON VÁSTAGO ACERO CON ACERO.(2)

												Capacidad de carg		d de carga
d	d1	Α	В	С	G	G1	Н	H1	N	N1	r1	Angulo de inclinación	dinamica	estatica
mm													С	Со
6	10	21	6	5	M6	11	30		9	11	0.5	13	0.93	10.2
	10	21	6	5	M6	16	36				0.5	13	0.93	1.2
8	13	24	8	6	M8	15	36		11	13	0.5	15	1.53	13.7
	13	24	8	6	M8	21	42				0.5	15	1.53	13.7
10	16	29	9	7	M10	15	43	11	14	16	0.8	12	2.16	20
	16	29	9	7	M10	26	48				0.8	12	2.16	20
12	18	34	10	8	M12	18	50	12	17	19	0.8	11	29	27
	18	34	10	8	M12	28	54				0.8	11	2.9	27
15	22	40	12	10	M14	21	61	14	19	22	0.8	9	4.65	32
	22	40	12	10	M14	34	63				0.8	9	4.65	32
17	25	46	14	11	M16	24	67	15	22	25	0.8	10	5.85	39
	25	46	14	11	M16	36	69				0.8	10	5.85	39
20	29	53	16	13	M20x1.5	30	77	16	24	28	0.8	9	8.15	57
	29	53	16	13	M20x1.5	43	78				0.8	9	8.15	57
25	35.5	64	20	17	M24x2	36	94	18	30	35	0.8	8	13.4	86.5
	35.5	64	20	17	M24x2	53	94				0.8	8	13.4	86.5
30	40.7	73	22	19	M30x2	45	110	19	36	42	0.8	6	17.3	104
	40.7	73	22	19	M30x2	65	110				0.8	6	17.3	104

⁽²⁾ RODAMIENTOS FAG, Catálogo de rodamientos, Tercera Edición. Volumen No. 1, pag 366.

APÉNDICE D HOJA DE CÁCULO PARA SELECCIÓN DE RESORTE.(3)

DATOS							
E =	3.00E+07	Lb/pla 2					
_ A =	186 Kpsi						
d =	0.7874		asumido/aleatorio				
m =	0.163	1 3					
N =		vueltas					
F=	5.68	Nt	aplica la mano al vo	lante			
L=	340	mm	•				
Di =	30	mm	asumido				
d	Sut	Sy=0.78Sut	M=F*r/1000	М	D	С	Ki
plg	Kpsi	Kpsi	Nt - m	Lb - plg	plg		
0.78740	193.38953	150.84383	1.93120	17.06830	1.96850	2.50000	1.43333
	(. 11	k'	n	0	Di'	Di'
	p	olg	Lb - plg	espiras	grados	plg	mm
	0.1	1821	361622.18723	0.00005	0.017	1.18107	29.99906
d	Sut	Sy=0.78Sut	M=F*r/1000	M	D	С	Ki
plg	Kpsi	Kpsi	Nt - m	Lb - plg	plg		
0.11821	193.38953	150.84383	1.93120	17.06830	1.29932	10.99120	1.07279
	·	d1	k'	n	0	Di'	Di'
	р	olg	Lb - plg	espiras	grados	plg	mm
	0.10	0733	278.33710	0.06132	22.07606	1.13471	28.82172
d	Sut	Sy=0.78Sut	M=F*r/1000	M	D	С	Ki
plg	Kpsi	Kpsi	Nt - m	Lb - plg	plg		
0.10733	193.38953	150.84383	1.93120	17.06830	1.28843	12.00428	1.06626
	(d1	k'	n	0	Di'	Di'
	p	olg	Lb - plg	espiras	grados	plg	mm
	0.10	0711	190.74238	0.08948	32.21406	1.11461	28.31108
d	Sut	Sy=0.78Sut	M=F*r/1000	M	D	С	Ki
plg	Kpsi	Kpsi	Nt - m	Lb - plg	plg		
0.02540	193.38953	150.84383	1.93120	17.06830	1.20650	47.50009	1.01602
	(1 1	k'	n	0	Di'	Di'
	plg		Lb - plg	espiras	grados	plg	mm
	0.10	0540	0.63887	26.71636	9617.88792	0.06279	1.59482

⁽³⁾ JOSEPH EDWARD SHIGLEY, Diseño en Ingeniería Mecánica, Quinta Edición. Cuarta Edición en español, Capítulo 10 pag 496 - 501.

APÉNDICE E HOJA DE COSTOS DEL MECANISMO EN ACERO INOXIDABLE

	DESCRIPCION DE LA	ESPESOR	PESO	COSTO DEL	UNIDAD	COSTO
				MATERIAL		TOTAL DEL
CANT						SISTEMA EN
				INOXIDABLE		MATERIAL
	PIEZA	(mm)	TOTAL (Kg)	POR Kg		INOXIDABLE
4	ROTULAS DE 10 mm			36,000.00	Sucres/unidad	144,000.00
1	TUBO DE D. 1/8" C.40			80,000.00	Sucres/mt	64,000.00
1	EJE		1.27	45,000.00	Sucres/Kg	57,035.95
1	BARRA	60.00	3.60	45,000.00	Sucres/Kg	162,000.00
1	PLACA	5.00	0.09	45,000.00	Sucres/Kg	4,218.75
1	BARRA	12.00	0.12		Sucres/Kg	5,346.00
1	VARILLA		0.01	45,000.00	Sucres/Kg	399.52
	COSTO TOTAL DEL MA	ATERIAL				437,000.22
	COSTO MANODE OBR	A POR 5 DIA	AS LABORAB	LES		500,000.00
	SUMA DE COSTOS					937,000.22

ÍNDICE DE PLANOS

Plano SA-00-00 Sistema adaptable a autos automáticos para que conduzcan inválidos.

Plano SA-01-00 Rótula.

Plano SA-02-00 Brazo de empuje al acelerador.

Plano SA-03-00 Barra al acelerador.

Plano SA-04-00 Barra de empuje al acelerador.

Plano SA-05-00 Barra al freno.

Plano SA-06-00 Sujeción del sistema.

Plano SA-07-00 Posición y ubicación del sistema.

ÍNDICE DE FIGURAS

		Pág.
Figura 2.1.	Factores que intervienen en la excentricidad de las cargas en las	
	columnas	6
Figura 2.2.	Columna con extremos articulados	8
Figura 2.3.	Efecto de n en el valor de la carga	8
Figura 2.4.	Esfuerzo de trabajo para columnas (especificaciones AISC) de	
	diferentes tipos de acero	11
Figura 2.5.	Tipos de rótula	12
Figura 2.6.	Tipos de resortes	19
Figura 2.7.	Tipos de resortes de torsión	22
Figura 2.8.	Posiciones óptimas de la pierna y el pie en la posición sentado	28
Figura 2.9.	Esfuerzo de las piernas y resistencia de los pedales	29
Figura 2.10.	Esfuerzo de los brazos y niveles de resistencia	32
Figura A.1.	Diseño de forma	35

ÍNDICE DE TABLAS

		Pág.
Tabla I	Valores de longitud efectiva según las condiciones de sujeción	9
Tabla II	Valores de X y Y para los cálculos de carga dinámica	14
Tabla III	Valores de K ₁ , K _T y s	16
Tabla IV	Especificaciones de materiales de resortes	20
Tabla V	Constantes para calcular resistencias de tensión mínimas de los	
	aceros comunes para resortes	21
Tabla VI	Datos para cálculos de resortes según la teoría de distorsión	25
Tabla VII	Matriz decisión	36
Tabla VIII	Selección de columna (barra de aceleración)	40
Tabla IX	Equivalente hueco (barra de aceleración	40
Tabla X	Selección de columna (barra del freno)	41
	Tabla XI Equivalente hueco (ba	
	freno)	42

ABREVIATURAS

 cm^4 Centímetro a la cuarta

Pie

ft ft² Pie cuadrado Kilogramo Libra Kg Lb Metro

 $\frac{m}{m_{\perp}^2}$ Metro cuadrado m^4 Metro a la cuarta

mm Milímetro Newton Nt Pulgada

plg pulg² PTFE Pulgada Cuadrada Politetrafluoretileno

SIMBOLOGÍA

A	Área				
C	Carga dinámica y subíndice del resorte				
Cc	Relación de esbeltez				
Co	Capacidad de carga estática				
D	Diámetro medio				
D_{i}	Diámetro interior del resorte sin carga				
D'	Diámetro interior cuando está con carga				
E	Módulo de Elasticidad				
F_s	Factor de seguridad				
I	Momento de Inercia				
k'	Módulo del resorte				
K	Factor de concentración del esfuerzo				
\mathbf{K}_1	Factor para la dirección de la carga,				
K_{T}	Factor para la temperatura de servicio				
L	Longitud				
Le	Longitud efectiva				
M	Momento				
n	Número de espiras				
N	Número de vueltas o espiras en el resorte sin carga				
N'	Número de espiras cuando está cargado				
P	Carga crítica				
P_{o}	Carga estática equivalente				
r	Radio de giro				
S	Factor para la relubricación.				
S_{ut}	Resistencia a la tensión				
S_{yt}	Resistencia a la fluencia				
Z	Duración de servicio				
Oflexión	Esfuerzo de flexión				
σ _{proporcionalidad} Es fuerzo de proporcionalidad					
σ_{pc}	Esfuerzo en el punto de Cedencia				
σ_{T}	Esfuerzo de trabajo				

Deformación angular

θ

DEDICATORIA

A MI MADRE, a quien debo todo lo que he logrado y alcanzado en mi vida.

A MI HERMANO, quien siempre me apoyó y sentí como a un padre.

A MIS TÍOS, quienes colaboraron siempre para la culminación de mis estudios.

AGRADECIMIENTO

A todas las personas

que de uno u otro

modo colaboraron en

la realización de este

trabajo y

especialmente al

ING. FREDDY

CEVALLOS Director

de Tesis, por su

invaluable ayuda.

TRIBUNAL DE GRADUACIÓN

Ing. Mario Patiño A. PRESIDENTE	Ing. Freddy Cevallos B. DIRECTOR DE TESIS
In Manual Halanan C	Les Edouards Villa & M (1)
Ing. Manuel Helguero G. VOCAL	Ing. Edmundo Villacís M. (+) VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, me corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL".

(Reglamento de Graduación ESPOL).

Jenny Vicuña F.

BIBLIOGRAFÍA

- 1. JOSEPH EDWARD SHIGLEY, Diseño en Ingeniería Mecánica, Quinta Edición.
- MARKS, Manual del Ingeniero Mecánico, Novena Edición. Grupo Editorial McGraw-Hill.
- FERDINAND L. SINGER, Resistencia de materiales, Tercera Edición. Grupo Editorial Harla.
- EDGOR P. POPOV, Introducción a la Mecánica de Sólidos, Primera Edición.
 Grupo Editorial Limusa.
- 5. Catálogo de rodamientos FAG, Capítulo 15, pág 342.
- WILLIAM F. H. PURCELL, Factor Humano y Diseño de Equipo Industrial.
 Publicado por la Sociedad Americana de Ingenieros de Agricultura.