ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Identificación y Eliminación de restricciones en un Proceso de Ingreso y Salida de Contenedores de un puerto, empleando un Modelo de Simulación"

TESIS DE GRADO

Previo a la obtención del Título de:

INGENIERA INDUSTRIAL

Presentada por:

Gladys Maricela Quirola Molina

GUAYAQUIL - ECUADOR

Año: 2007

AGRADECIMIENTO

A todas las personas que de alguna forma colaboraron con la realización de este trabajo.

Al Ing. Samuel Ramirez y el personal de Naportec por permitirme desarrollar mi tesis en la empresa y al Ing. Marcos Buestán Director de Tesis por su valiosa ayuda.

DEDICATORIA

A Dios,

Mis Padres

Y todas las personas que han contribuido para que esta meta se haga realidad

TRIBUNAL DE GRADUACIÓN

Ing. Eduardo Rivadeneira P. DECANO DE LA FIMCP PRESIDENTE

Ing. Marcos Buestán B. DIRECTOR DE TESIS

Ing. Denisse Rodríguez Z. VOCAL Ing. Jorge Abad M. VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, me corresponden exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL).

Gladys Maricela Quirola Molina

RESUMEN

El presente trabajo ha sido desarrollado en un puerto bananero de la ciudad de Guayaquil, el cual tiene como proceso principal la exportación de fruta al exterior.

Para que este proceso sea llevado a cabo es necesario que los contenedores vacíos salgan a las fincas, donde la fruta es cortada y colocada dentro del contenedor, para luego un transportista traer la carga hasta el puerto y que sea embarcada y exportada.

Los altos tiempos que mantienen los vehículos que desean dejar o recibir un contenedor en el puerto, es causa de reiteradas quejas por parte de los clientes, además de la frecuencia con la que se presentan largas colas fuera de la Terminal, impidiendo el paso de vehículos particulares y obstruyendo en tránsito vehicular a los habitantes del sector.

Es por esto que el presente trabajo se enfoca al proceso de ingreso y salida de contenedores del puerto que permita identificar el cuello de botella del proceso para luego plantear mejoras que ayuden a disminuir o eliminar su acción

Para el desarrollo del análisis de las operaciones e identificación de la operación restrictiva, se ha dividido la tesis en tres etapas:

Toma de tiempos de la Situación Actual, donde la información que se obtenga servirá de input para un modelo de simulación que será elaborado por un experto contratado por la compañía y sirva como herramienta para identificar el cuello de botella.

Desarrollo de un Estudio de Movimientos que permita analizar la operación restrictiva y así establecer medidas correctivas que ayuden a eliminar la restricción identificada o al menos reducir su acción sobre el sistema

Validación de las Mejoras, esta etapa consistirá en incluir las mejoras al modelo de simulación previo para obtener nuevos resultados, que luego serán comparados con los resultados iniciales para finalmente elaborar pruebas de hipótesis que ayuden a comprobar estadísticamente que las mejoras planteadas han ayudado a la reducción de los tiempos y Eliminación del cuello de botella.

Con la aplicación de este estudio se pretende conseguir una mejor atención a los transportistas y clientes del puerto, que en muchas ocasiones se inclinan por una operación eficaz y que en la actualidad marca la diferencia frente a la gran competencia que existe en la ciudad.

ABREVIATURAS

RTG

Rubber Tired Granty - Grúa Pórtica de Llantas de Goma Equipment Interchange Receipt - Recepción e Intercambio de EIR

Equipo Generation Set – Unidad de Generación de Corriente GENSET

ÍNDICE GENERAL

RESUMEN	II
ABREVIATURAS	IV
ÍNDICE GENERAL	V
ÍNDICE DE FIGURAS	VIII
ÍNDICE DE TABLAS	X
INTRODUCCIÓN	1
CAPITULO 1	
1. INTRODUCCIÓN	2
1.1. Antecedentes	2
1.2. Objetivo general de la Tesis	4
1.3. Objetivos Específicos	4
1.4. Metodología	5
CAPITULO 2	
2. PROCESO DE INGRESO Y SALIDA DE CONTENEDORES AL	
PUERTO	7
2.1. Descripción del Proceso de Ingreso de Contenedores Llenos	9
2.2. Descripción del Proceso de Salida de Contenedores Vacíos	15
2.3 Conclusiones	21

CAPITULO 3

3.	ANÁLISIS DE LA SITUACIÓN ACTUAL	22
	3.1. Preparación para la toma de tiempos	23
	3.2. Resultados de la toma de tiempos	25
	3.2.1. Resultados del Ingreso de Contenedores Llenos	26
	3.2.2. Resultados de la Salida de Contenedores vacíos	27
	3.3. Descripción del Modelo de Simulación elaborado previamente	29
	3.3.1. Descripción de la Herramienta de Simulación	29
	3.3.2. Descripción del Modelo	31
	3.4. Establecimiento del número de réplicas	33
	3.4.1. Identificación de Indicadores y Estadísticos	36
	3.4.2. Cálculo del número de réplicas	38
	3.5. Análisis de los Resultados	40
	3.6. Conclusiones	48
CA	APITULO 4	
4.	ANÁLISIS DEL CUELLO DE BOTELLA	50
	4.1. Descripción Detallada del Proceso de Atención de las Garitas	51
	4.2. Análisis de Tiempos y Movimientos de la Situación Actual	55
	4.2.1. Turnos del Personal	57
	4.2.2. Documentos utilizados	57
	4.3. Propuestas de Mejora	63

	4.4. Análisis de Tiempos y Movimientos de la Situación propuesta		
	4.5. Conclusiones	70	
C/	APÍTULO 5		
5.	5. EVALUACIÓN DEL IMPACTO DE LAS MEJORAS, EMPLEANDO		
	UN MODELO DE SIMULACIÓN	71	
	5.1. Aplicación de cambios en el Modelo de Simulación	72	
	5.1.1. Análisis de las Distribuciones de Probabilidad del		
	Tiempo de Servicio en la Garita de Ingreso	72	
	5.2. Establecimiento del número de réplicas para el Modelo		
	propuesto	74	
	5.3. Aplicación del Modelo y Análisis de los Resultados	76	
	5.4. Comparación entre el modelo actual y el propuesto	84	
	5.5. Conclusiones	93	
6.	CONCLUSIONES Y RECOMENDACIONES	95	
	6.1. Conclusiones	95	
	6.2. Recomendaciones	97	
ΑF	PÉNDICES		

BIBLIOGRAFÍA

ÍNDICE DE FIGURAS

Figura 2.1	Diagrama de Flujo del Proceso de Ingreso de Contenedores Llenos	9
Figura 2.2	Almacenamiento en Stacking	13
Figura 2.2	Almacenamiento sobre Chasis	14
Figura 2.3	Diagrama de Flujo del Proceso de Salida de Banano	15
Figura 2.4	Diagrama de Flujo del Proceso de Salida de Carga	13
i igula 2.5	General	16
Figura 2.6	Diagrama de Recorrido para el Ingreso de Contenedores	
	Cargados	20
Figura 3.1.	Gráfico del Modelo de Simulación Previo	32
Figura 3.2.	Gráfico de Concentración de Tiempos para el Escenario	
	Con Buque – Día	41
Figura 3.3.	Gráfico de Concentración de Tiempos para el Escenario	
	Con Buque – Noche	43
Figura 3.4.	Gráfico de Concentración de Tiempos para el Escenario	
	Sin Buque – Día	45
Figura 3.5.	Gráfico de Concentración de Tiempos para el Escenario	
	Sin Buque – Día	47
Figura 4.1.	Vista desde el exterior del puerto	51
Figura 4.2.	Diagrama de flujo del Micro-Proceso de atención de las	
	garitas	54
Figura 4.3.	Diagrama de Actividades Simultáneas	56
Figura 4.4.	Formato Actual de EIR	59
Figura 4.5.	Formato de Hoja de Ruta	61
Figura 4.6.	Formato de Manifiesto de Producción	62
Figura 4.7.	Plano de Estaciones de Trabajo Actual y Propuesta	64
Figura 4.8.	Formato EIR Propuesto	66
Figura 4.9.	Frecuencia de arribos de contenedores al puerto	69
Figura 5.1.	Distribución de Probabilidad de la Atención de Garita de	70
=: = 0	Entrada en el Turno de Día	73
Figura 5.2.	Distribución de Probabilidad de la Atención de Garita de	70
Fi	Entrada en el Turno de Noche	73
Figura 5.3.	Nuevo Gráfico de Concentración de Tiempos para el	
E:	Escenario Con Buque – Día	77
Figura 5.4.	Nuevo Gráfico de Concentración de Tiempos para el	٦.
F:	Escenario Con Buque – Noche	79
Figura 5.5.	Nuevo Gráfico de Concentración de Tiempos para el	0.4
	Escenario Sin Buque – Día	81

Figura 5.6.	Nuevo Gráfico de Concentración de Tiempos para el	
_	Escenario Sin Buque – Noche	83
Figura 6.1.	Vista Superior de Garitas Actual	91
Figura 6.2.	Vista Superior de Garitas Propuesta	99

ÍNDICE DE TABLAS

Tabla 3.1. Tabla 3.2.	Escenarios Planteados para el ModeloTiempos de Ciclo del Ingreso de Contenedores, Escenario Sin Buque	2626
Tabla 3.3.	Tiempos de Ciclo del Ingreso de Contenedores Escenario Con Buque	27
Tabla 3.4.	Tiempos de Ciclo del Proceso de Salida de Contenedores Escenario Con Buque	28
Tabla 3.5. Tabla 3.6.	Tiempos de Ciclo del Proceso de Salida de Contenedores Escenario Sin Buque Desviación Estándar por Escenario	28 39
Tabla 3.7.	Número de Réplicas por Escenario	39
Tabla 3.8.	Tiempos Promedio por Actividad del Escenario Con Buque Día	41
Tabla 3.9.	Porcentaje de Utilización de la Operación para el Escenario Con Buque Día	42
Tabla 3.10.	Tiempos Promedio por Actividad del Escenario Con Buque Noche	43
Tabla 3.11.	Porcentaje de Utilización de la Operación para el Escenario Con Buque Noche	44
Tabla 3.12.	Tiempos Promedio por Actividad del Escenario Sin Buque Día	45
Tabla 3.13.	Porcentaje de Utilización de la Operación para el Escenario Con Buque Noche	46
Tabla 3.14.	Tiempos Promedio por Actividad del Escenario Sin Buque Día	47
Tabla 3.15.	Porcentaje de Utilización de la Operación para el Escenario Con Buque Noche	48
Tabla 4.1. Tabla 4.2.	Distribución del Personal por Turnos Distribución de Actividades por Digitador	57 63
Tabla 4.3.	Resultados de la segunda Toma de Tiempos	67
Tabla 4.4	Distribución Propuesta del Personal por Turnos	70
Tabla 5.1.	Nueva Desviación Estándar por Escenario	75

Tabla 5.2.	Nuevo Número de Réplicas por Escenario	76
Tabla 5.3.	Nuevos Tiempos Promedio por Actividad del Escenario Con Buque Día	77
Tabla 5.4.	Nuevo Porcentaje de Utilización de la Operación para el Escenario Con Buque Día	78
Tabla 5.5.	Nuevos Tiempos Promedio por Actividad del Escenario Con Buque Noche	79
Tabla 5.6.	Nuevo Porcentaje de Utilización de la Operación para el Escenario Con Buque Noche	80
Tabla 5.7.	Nuevos Tiempos Promedio por Actividad del Escenario Sin Buque Día	81
Tabla 5.8.	Nuevo Porcentaje de Utilización de la Operación para el Escenario Sin Buque Día	82
Tabla 5.9.	Nuevos Tiempos Promedio por Actividad del Escenario Sin Buque Noche	83
Tabla 5.10.	Nuevo Porcentaje de Utilización de la Operación para el Escenario Sin Buque Noche	84
Tabla 5.11.	Comparación de Tiempos entre el Modelo Actual y Propuestos del Escenario Con Buque Día	85
Tabla 5.12.	Comparación de Tiempos entre el Modelo Actual y Propuesto del Escenario Con Buque Noche	86
Tabla 5.13.	Comparación de Tiempos entre el Modelo Actual y Propuesto del Escenario Sin Buque Día	87
Tabla 5.14.	Comparación de Tiempos entre el Modelo Actual y Propuesto del Escenario Sin Buque Noche	. 88
Tabla 5.15.	Diferencias entre Modelo Anterior y Propuesto	89
Tabla 5.16.	Resultados de la Prueba de Hipótesis del Escenario Con Buque Día	90
Tabla 5.17.	Resultados de la Prueba de Hipótesis del Escenario Con Buque Noche	91
Tabla 5.18.	Resultados de la Prueba de Hipótesis del Escenario Sin Buque Día	91
Tabla 5.19.	Resultados de la Prueba de Hipótesis del Escenario Sin Buque Noche	92
Tabla 5.20.	Diferencia de Tiempos entre Modelo Actual y Propuesto	94