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Abstract. In this paper we study how shape information encoded in contour 
energy components values can be used for detection of microscopic organisms 
in population images. We proposed features based on shape and geometrical 
statistical data obtained from samples of optimized contour lines integrated in 
the framework of Bayesian inference for recognition of individual specimens. 
Compared with common geometric features the results show that patterns 
present in the image allow better detection of a considerable amount of 
individuals even in cluttered regions when sufficient shape information is 
retained. Therefore providing an alternative to building a specific shape model 
or imposing specific constrains on the interaction of overlapping objects.  
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1   Introduction 

An important tool for biotechnology research and development is the study of 
populations at molecular, biochemical and microbiological levels. However, to track 
their development and evolution non-destructive protocols are required to keep 
individuals in a suitable environment. The right conditions allow continuous 
examination and data collection that from a statistically meaningful number of 
specimens provide support for a wide variety of experiments. The length, width and 
location of microscopic specimens in a sample are strongly related to population 
parameters such as feeding behavior, rate of growth, biomass, maturity index and 
other time-related metrics. 

Population images characterized by sample variation, structural noise and clutter  
pose a challenging problem for recognition algorithms [1]. These issues alter negatively 
the estimated measurements, for instance when parts of the detected object are out of 
focus, two or more individuals can be mistakenly counted as one or artifacts in the 
sample resembles the shape of specimens of interest. A similar condition occurs in 
tracking applications when continuous identification of a given individual, while 
interacting with others of the same or different phylum is required. Nevertheless the 
increasing amount of digital image data in micro-biological studies prompts the need of 
reliable image analysis systems to produce precise and reproducible quantitative results.  
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The nematodes are one of the most common family of animals; they are ubiquitous 
in fresh water, marine and terrestrial eco-systems. As a result nematodes populations 
had become useful bio-indicator for environmental evaluation, disease expressions in 
crops, pesticide treatments, etc. A member of the specie, the C. Elegants nematode is 
widely applied in research in genetics, agriculture and marine biology. This 
microorganism has complete digestive and nervous systems, a known genome 
sequence and is sensitive to variable environmental conditions.  

Intensity thresholding and binary skeletonization followed by contour curvature 
pattern matching were used in images containing a single nematode to identify the 
head and tail of the specimen [2]. To classify C.Elegans behavioral phenotypes in [3] 
motion patterns are identified by means of a one-nematode tracking system, 
morphological operators and geometrical related features. The advantages of scale 
space principles were demonstrated on nematode populations in [4] and anisotropic 
diffusion is proposed to improve the response of a line detection algorithm; but 
recognition of single specimens was not performed. 

In [8] nematode population analysis relies on well-known image processing 
techniques namely intensity thresholding followed by filling, drawing and measuring 
operations in a semi-automatic fashion. However sample preparation was carefully 
done to place specimens apart from each other to prevent overlapping. Combining 
several image processing techniques when dealing with biological populations 
specimens increase the complexity of finding a set of good parameters and 
consequently reduce the scope of possible applications.  

Daily lab work is mostly manual, after the sample image is captured a biologist 
define points along the specimen, then line segments are drawn and measurement 
taken. User friendly approaches like live-wire [5] can ease the process as while 
pointing over the nematode surface a line segment is pulled towards the nematode 
centerline. Though in cluttered regions line evidence vanishes and manual corrections 
are eventually required. Considering that a data set usually consists of massive 
amounts of image data with easily hundreds of specimens, such repetitive task entails 
high probabilities of inter-observer variations and consequently unreliable data.  

Given the characteristics of these images, extracting reliable shape information for 
object identification with a restricted amount of image data, overlapping, and 
structural noise pose a difficult task. Certainly, the need of high-throughput screening 
of bio-images to fully describe biological processes on a quantitative level is still very 
much in demand [6]. Unless effective recognition takes place before any post-
processing procedure the utilization of artificial vision software for estimating 
statistical data from population samples [7] will not be able to provide with accurate 
measurements to scientists.  

As an alternative to past efforts focused at deriving shape models from a set of 
single object images using evenly distributed feature points [14]. We propose recover 
shape information by examining the energies of sample optimized active contours 
from a population image. In order to assert the efficiency of such approach we 
compare them with geometrical measurements. Our aim is to prove that patterns 
extracted from sample contours can lead to recognition of individual specimens in 
still images even in the presence of the aforementioned problems. 
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This paper is organized as follows. In section 2 the active contour approach is 
discussed. Shape features of detected nematodes are proposed and used for 
classification in Section 3. Comparative results are shown in Section 4; finally 
conclusions and future work is presented in Section 5. 

2   Segmentation Using Active Contours 

Nematodes are elongated structures of slightly varying thickness along their length, 
wide in the center and narrow near both ends.  Contrary to one might think its simple 
shape makes segmentation process a complex task in population images because 
nematodes interact with the culture medium and other specimens in the sample. 
Nematodes lie freely on agar substrate and explore their surroundings by bending 
their body. While foraging, nematodes run over different parts of the image, crawl on 
top of each other and occasionally dive into the substrate. This behaviour leads to 
potential issues in segmentation because substantial variations in shape and 
appearance are observed in population images. 

Nematodes exhibit different intensity level distributions either between individuals 
or groups when image background is non-homogeneous. Darker areas appear every 
time internal organs become visible or at junctions when two or more specimens 
overlap. Some parts get blurred as they get temporarily out of focus when diving into 
the sustrate. Regarding shape, the lack of contour features and complex motion 
patterns prevent using simple shape descriptors or building models able to account for 
the whole range shape configurations. These two characteristics also make difficult to 
find a set of geometrical constrains that can illustrate all the junction types found in 
overlapping situations Fig. 1. 

Under these conditions, thresholding techniques commonly used in images of 
isolated specimens fail to provide a reliable segmentation. Approaches based on 
differential geometry [11] can handle better the intensity variation, but a trade off 
between the image-content coverage and conciseness [12] is needed to set appropriate 
parameter values. Statistical tests on hypothetical center-line and background regions 
at every pixel locations as proposed in [23] rely on having enough local line evidence, 
which precisely disappear at junctions where saddle regions form. The inherent 
disadvantages of the aforementioned techniques allow in practice to obtain only a set 
of unconnected points hopefully the majority located on the traversal axis of some of 
the nematodes present in the image.  

Line grouping based on graph search  and optimisation techniques enforcing line 
continuity and smoothness were applied to integrate line evidence [13,23], but 
segmentation of objects based on linear segments requires relevant local segments 
configurations that capture objects shape characteristics [22]. Shape modelling 
assuming evenly distributed landmark points along nematode body proved a complex 
issue, although non-linear systems had been devised [10] the complete range of 
nematode body configurations is still far from being model. Spatial arrangement of 
feature points at different scales were exploited in [15] to search for regions of high 
probability of containing a rigid wiry object in different cluttered environments, yet in 
populations clutter is mostly caused by nematode themselves. 
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Fig. 1. Left: Nematodes in a population image. Center: Structural noise produced by internal 
organs, and overlapping. Right: Non-homogenous background cause differences in appearance. 

In this paper we propose the utilization of active contours energies to capture 
relevant statistical shape information for recognition applied to nematode detection in 
population images. Active contours introduced by Kass with a model called snake 
[16] has drawn attention due to their performance in various problems. Segmentation 
and shape modeling in single images proved effective by integrating region-based 
information, stochastic approaches and appropriate shape constrains [17, 18].  

Active contours combine image data and shape modeling through the definition of 
a linear energy function consisting of two terms: a data-driven component (external 
energy), which depends on the image data, and a smoothness-driven component 
(internal energy) which enforces smoothness along the contour. 

ext21contour Eλ+Eλ=E ⋅⋅ int  (1) 

The internal energy can be decomposed further into tension and bending energies, 
they report higher values as the contour stretches or bends during the optimization 
process. The goal is to minimize the total energy iteratively using gradient descent 
techniques as energies components balance each other. 
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The proposed approach is based on the idea that given convergence of the active 
contours mostly data-driven, appearance and geometrical data can be recovered from 
the resulting energy component value distribution.  Contrary to other works that tried 
to embed partial shape information to guide the evolution of the contour [21], we 
consider the analysis of energy based derived features a natural way to explore the 
range of possible nematode shape configurations in a set of population images 
without having to build an specific model or making explicit constrains about objects 
interaction [19]. We leave to the active contour optimization process the task of 
locating salient linear structures and focus on exploiting the distribution of energy 
values for recognition of those contours corresponding to nematodes. 

For segmentation we used ziplock snake [20], this active contour model is 
designed to deal with open contours. Given a pair of fixed end points optimization is 
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carried out from them towards the center of the contour using in every step a 
increasing number of control points. This procedure is intended to raise the 
probability of accurate segmentation by progressively locating control points on the 
object surface. They can encode shape information explicitly [21] and provide faster 
convergence than geodesic snakes.   

It is important to point out that as in any deterministic active contour formulation 
there are situations in which convergence tends to fail. For instance in the presence of 
sharp turns, self-occlusion or in very low contrast regions. Nevertheless as long as the 
number of correct classified contours represent a valid sample of the population we 
can obtain meaningful data for bio-researchers. In the context of living specimens we 
should expect that eventually every individual will have the possibility of match with 
a nicely converged contour. 

For our experiments, the tension energy et was defined as the point distance 
distribution, the bending energy eb calculated by means of a discrete approximation of 
the local curvature and a normalized version of the intensity image was employed as 
energy field eext.  
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The main bottleneck in the automated use of ziplock snakes is the need for 
specifying matching end points for a contour. The absence of shape salient features in 
head and tail nematode sections prevents building a reliable matching table. The only 
option is to examine all possible combination of points, but this can lead to a 
combinatorial explosion of the search space. In this context we devised two criteria to 
constrain the number of contours to analyze: 

 

• Matching end points within a neighborhood of size proportional to the expected 
nematode length, 

• Matching end points connected by path showing consistent line evidence. 
 

Fig. 2 depicts initial contours generated after applying the both criteria. In the first 
case the nematode length was derived from a sample nematode, in the second case the 
raw response of a line detector [24] was used to look for line evidence between end 
points. Any path between a pair of end points consisting of non-zero values was 
considered valid and allows the initialization of a contour.  

Once the contours had converged, we observe different situations regarding their 
structure: 

 

• The contour can be located entirely on a single nematode. 
• The contour sections correspond to different nematodes. 
• Part of the contour lies on the image background. 

 

The first case requires both end points to be located on the same object, occurs 
when the specimen is isolated or the energy optimization is able to overcome 
overlapping regions. The second type of contour appears when a contour spreads 
among overlapping nematodes while fitting a smooth curve between its end points. If 
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the smoothness constrain can not be enforce some contour sections might rest on the 
image background. 

In the following we will refer to contours located on single nematode as nematode 
contours and the remaining cases as non-nematode contours. Our interest is to extract 
nematode contours reliably, but as can be seen in Fig. 2. there is no simple way to 
distinguish them without additional processing steps and the inconvenient problems 
mentioned previously.  Hence the suggested solution is presented in the following 
section. 

  

  

Fig. 2. Contours (white) from end points (blue) matching criteria. Left column: expected 
length. Right column: line evidence. First row: before convergence. Second row: after 
convergence. Right bottom: Examples of nematode (green) and non-nematode (orange) contour 
classes. 

3   Detection of Specimens Using Energy Features 

The goal of our experiments is to explore the feasibility of classifying a given contour 
in a corresponding nematode wn  or non-nematode wt classes. Let C be the set of 
contours {c1,...,cm} generated after the convergence process and define a contour c as a 
sequence of n control points (x1,...,xn ).  Two types of shape measurements based on 
the three relations (length, curvature and line evidence) encapsulated in the energy 
terms are defined.   

The expected point energy Me captures the average value of a given energy term e 
along the contour:   
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{ }extbtcec eeeee=M ,,,, ∈  (4) 

and the point sequence energy Se  integrates the  control point’s  energy in a vector 
providing evidence about the effect that different shape and appearance 
configurations have on the individual contour components:  
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The distributions of these energy based feature values allows us to study the 
similarity between contours belonging to objects of interest and their properties. It 
seems reasonable to expect that the energy configuration space should display clusters 
in regions linked to objects of consistent shape and appearance.  

The relevance of using active contours and their associated energies becomes 
manifest when comparing contours after convergence. In background regions, control 
points are collinear and equidistant, therefore Me  features should report rather fixed 
values. For nematode contours, control point spatial distribution is not homogeneous 
because their location is determined by the foreground image data and body 
geometrical configuration. Since at some degree they look alike and share similar 
movement behavior a suitable set of Se features values could capture such limited 
configuration space.  

Other patterns can be deduced, but it is unlikely that features derived from any  
individual energy term will provide by itself a reliable recognition outcome. The 
combination of energy based features in a statistical framework is proposed to 
measure their discriminative power. To that aim the Bayes rule was applied to classify 
contours as nematode or non-nematode. The ratio of the a posteriori probabilities of 
nematode to non-nematode classes given the values of an energy based feature set 
was defined as discriminant function.  

 The prior probabilities were regarded homogeneous to test the effectiveness of the 
proposed features, however they can be modeled for instance by the distribution of 
control point distances to the nearest end point or by the distribution of line evidence. 
This reduces the discriminant function to the ratio of the probabilities of feature 
values given that a contour is assigned to a particular class. Assuming independence 
between energy terms and control point locations theses distributions can be readily 
defined as the product of the probabilities of  the feature set  elements given a class 

},{ tn www ∈ : 

{ }extbt
e

cec eeeew)|eP(=w)|P(M ,,,, ⊆∏  (6) 

{ }extbt
x

c
x

e
ec eeeew)|P(e=w)|P(S ,,,, ⊆∏∏  (7) 

Finally, the computational cost for contour classification in a population image 
depends on the size of C, the feature type selected and the number of energy terms 
included. In the case of Se there is no extra cost because their components are the 
terms of Econtour, Me calculations requires an additional step to calculate the associated 
average.  
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4   Experimental Evaluation 

The proposed methodology was evaluated on a set of high resolution time-lapse 
images depicting populations of adult nematodes with approximately 200 specimens. 
The end point set was extracted from ground truth images and straight initial contours 
placed between pairs of matching points according to the criteria presented in section 2. 
Both contour sets with 903 and 1684 elements, each having 16 control points, were 
optimized until convergence. To estimate the conditional probability distributions we 
built a training set of 50 randomly selected nematodes and non-nematode contours. 
Given the non-gaussian nature of P(Me|w) and P(Se|w) data we fitted them using 
weibull and gamma probability density functions respectively to extract the 
distribution parameters.  

The features derived from the expected point energy and the point sequence energy 
definitions, comprised all the possible combinations of energy terms. Every feature 
type was evaluated separately and combined totaling 21 energy based features. For 
completeness we included also the total contour energy Econtour. We additionally 
performed energy based feature classification considering different number of control 
points. To do that an increasing number of control points on both ends of every 
contour was gradually discarded. 

To assert the performance of the proposed energy based features we compared 
them to geometrical features used in previous work on nematode classification [3]. 
They include: the contour length  Len, the summation of signed distance from the end 
points to the contour’s centroid that provides a measure of symmetry Sym, a 
compactness Cmp metric calculated as the ratio between the contour length and its 
eccentricity, and the angle change rate Acr computed from the summation of the 
difference in angles between contour segments normalized by the length and number 
of control points. We tested them separately and combined using the same 
probabilistic framework described in section 3.  

Table 1. summarizes the classification results, it shows the true positive Tp rate, the 
false positive Fp rate, and the distance D to perfect detection corresponding to best 
performance for every feature type. In the case of energy based features the first 
 

Table 1. Best classification results for energy and non-energy based feature combinations 

 Line Evidence Expected length 
 D Tp Fp D Tp Fp 

16
)extebet(e ,,S  0.263 0.884 0.236 0.137 0.911 0.104 

10
)extet(e ,M  0.406 0.614 0.125 0.227 0.800 0.108 

12
)extet(e ,S+M  0.543 0.467 0.106 0.398 0.604 0.044 

Len + Sym +Acr 0.479 0.924 0.473 0.352 0.901 0.338 

Econtour 0.747 0.924 0.743 0.736 0.923 0.732 
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column also specifies the energy terms included and the amount of control points.  
The proposed energy based features consistently show a better trade off between true 
and false detection rates compared to other features. Though in combination the true 
positive detection drops it is still comparable with non-energy based features that 
despite of detecting most nematode contours have a high rate of false detections. The 
total contour energy Econtour performed poorly.  

Point sequence features discriminative power increases as more control points are 
added while for expected point energy features results improves when this number 
decreases. This is indicative that nematode and non-nematode contour classes have 
similar average energy value distributions and only when the contour’s central part is 
analyzed the difference is large enough to allow reliable classification. A possible 
explanation relies on the fact that nematodes central area is the less flexible part of 
their body so  contour variations become prominent if we use only the central control 
points.  Regarding the two search spaces we noticed that results improve as we 
include more initial contours since we have more possibilities of segmenting all the 
nematodes contained in the sample. 

   

Fig. 3. Classification results for nematode (green) and non-nematode contours (red) some non-
nematode contours were remove to improve visibility 

The results showed that the single most discriminating energy term for  Me , Se and  
Me + Se features is the tension energy term et, the spatial distribution of control points 
appears to capture nematode evidence accurately. This observation is explained in 
terms of the relations between energy terms during optimization. Since in our image 
set nematodes show  lower external energy eext values near the center, control points 
tend to gather in that area however as they move et increases in the vicinity of contour  
ends and pulls them in the opposite direction. Therefore, the distance between  control 
points varies depending on the regions they are located, in our specimens these 
regions correspond to nematode appearance features. It must be noted that only by 
combining several energy terms the false positive rate can be consistently reduced. As 
expected bending energy eb allow us to filter out contours with sharp turns and the 
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external energy eext, those with spatial intensity distribution too different from those 
found  in the population Fig. 3. 

Nematode contour misclassification occurs when appearance information is lost or 
in the presence of an unusual shape configuration. The first case includes nematodes 
close to the petri dish border where lightning conditions reduce the contrast between 
foreground and background. The other case is frequently the result of optical 
distortion produced by the microscope lens. Non-nematode contours can be 
mistakenly classified when most of their control points converge towards a real 
nematode, for instance in the presence of parallel nematodes very close to each other, 
or when in heavy overlapping regions a contour manages to run over parts of several 
objects and still resemble a real nematode Fig. 4. 

   

Fig. 4. Misclassification examples (yellow). Right: nematode contour affected by blur. Left: 
non-nematode contour partially running over different nematodes in overlapping region. 

The change of relative optical density at junction constitutes the main source of 
structural noise. The resulting darker areas affect negatively the spatial distribution of 
control points during the optimization process and hence the recovered energy values. 
The more occluded is a nematode the less its discriminant function value, nevertheless 
correct detection of a number of nematodes in overlapping regions is feasible when 
enough shape information is retained. We also noticed that nematode contours sharing 
a end point with wrongly detected contours have a consistently higher discriminant 
function value, this relation could be used to improve detection results further but has 
not explored yet in these experiments. 

5   Conclusions 

A set of features for detection of individual nematodes in population has been 
proposed. The resultant patterns from a set of optimized contours proved a valid 
source of shape evidence for recognition of specimens in difficult scenarios. 
Detection rates allowed us to reject most non-nematode contour while keeping a 
significant number of correct detected nematodes.  
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The proposed approach differ from existing shape modeling approaches where 
feature points are manually located on salient regions on individual object to build 
linear and non-linear shape model. We use the evolution of active contour models to 
capture object statistics therefore constraining the range of possible appearance and 
geometrical configurations to those present in the current sample set. 

Features based on average and local contour energy component distributions were 
tested on manually segmented images in the framework of Bayesian inference.    
Experimental results with two different contour initialization strategies show that 
energies based features  provide better detection rates that geometrical based features 
commonly applied in image processing of biological samples. In particular energy 
term combination displayed a consistent performance for true nematode detection. 
When nematode and non-nematode contours have similar average feature values the 
results can be improved if only the central region of the contour is evaluated which is 
consequent with the morphological characteristic of these specimens captured during 
the optimization process.  

Despite the limitations of active contours to converge correctly in low contrast 
regions or in the vicinity of sharp corners we found out that recognition is still 
feasible if a sufficient amount of shape information is retained even in overlapping 
regions. Further improvement in detection rates could be achieved if interactions 
between classified contours and  prior knowledge about line evidence are included 
however this work is out of the scope of this paper. We let for future work extending 
our findings to video sequences for tracking moving nematodes in occlusion 
situations. 
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