ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

Diseño de un sistema descentralizado de saneamiento para comunidades de la parroquia San Cristóbal, Cantón Paute, Provincia del Azuay.

PROYECTO DE GRADUACIÓN

Previo la obtención del Título de:

Máster en Ingeniería Civil con mención en construcción y saneamiento.

Presentado por:

Jorge Eduardo Sananay Auquilla

Marco Esteban Zeas Maza

GUAYAQUIL - ECUADOR Año: 2024

DEDICATORIA

A Janeth y Marco,

Por su amor incondicional, sus sacrificios y el ejemplo de esfuerzo que me han dado. Gracias por creer en mí incluso cuando dudé de mis propias capacidades y por enseñarme que con perseverancia todo es posible. Este logro es tan mío como suyo, pues sin ustedes no habría llegado hasta este punto.

A Emily,

Por ser mi compañera en este camino, por tu apoyo constante, tu paciencia infinita y el amor que siempre me has brindado. En los días difíciles fuiste mi fuerza, en los momentos de duda, mi certeza, y en cada pequeño triunfo, mi mayor alegría.

Marco Esteban Zeas M.

DEDICATORIA

A mis padres Carlos y Mariana, por el apoyo incondicional, aun en los momentos más difíciles siempre me han impulsado a seguir adelante y no rendirme.

A mis hermanos y sobrinos, me han dado la fortaleza para culminar con este proyecto.

Una dedicatoria especial a Carmita, quien me a acompañado desde el inicio de este objetivo, su comprensión y ayuda han sido mi soporte.

Jorge Eduardo Sananay A.

AGRADECIMIENTOS

A nuestro tutor, Ing. Cristian Salas, por su guía y apoyo durante todo este proceso, y a la querida Escuela Superior Politécnica del Litoral, por brindarnos las herramientas y el espacio para crecer académica y profesionalmente. Gracias a todos los que hicieron posible este logro.

Con gratitud,

Jorge Eduardo Sananay A. Marco Esteban Zeas M.

DECLARACIÓN EXPRESA

Nosotros Jorge Eduardo Sananay Auquilla y Marco Esteban Zeas Maza acordamos y reconocemos que: La titularidad de los derechos patrimoniales de autor (derechos de autor) del proyecto de graduación corresponderá al autor o autores, sin perjuicio de lo cual la ESPOL recibe en este acto una licencia gratuita de plazo indefinido para el uso no comercial y comercial de la obra con facultad de sublicenciar, incluyendo la autorización para su divulgación, así como para la creación y uso de obras derivadas. En el caso de usos comerciales se respetará el porcentaje de participación en beneficios que corresponda a favor del autor o autores. El o los estudiantes deberán procurar en cualquier caso de cesión de sus derechos patrimoniales incluir una cláusula en la cesión que proteja la vigencia de la licencia aquí concedida a la ESPOL.

La titularidad total y exclusiva sobre los derechos patrimoniales de patente de invención, modelo de utilidad, diseño industrial, secreto industrial, secreto empresarial, derechos patrimoniales de autor sobre software o información no divulgada que corresponda o pueda corresponder respecto de cualquier investigación, desarrollo tecnológico o invención realizada por nosotros durante el desarrollo del proyecto de graduación, pertenecerán de forma total, exclusiva e indivisible a la ESPOL, sin perjuicio del porcentaje que nos corresponda de los beneficios económicos que la ESPOL reciba por la explotación de nuestra innovación, de ser el caso.

En los casos donde la Oficina de Transferencia de Resultados de Investigación (OTRI) de la ESPOL comunique a los autores que existe una innovación potencialmente patentable sobre los resultados del proyecto de graduación, no se realizará publicación o divulgación alguna, sin la autorización expresa y previa de la ESPOL.

Guayaquil, 06 de diciembre del 2024.	
Jorge Eduardo Sananay Auquilla	Marco Esteban Zeas Maza

EVALUADORES

Ing. Nadia Rosaura Quijano Arteaga
PROFESOR DE LA MATERIA

Ing. Cristian Alfonso Salas Vázquez
PROFESOR TUTOR

RESUMEN

El proyecto aborda el diseño de un sistema descentralizado de saneamiento para las

comunidades de Pueblo Nuevo, Pampa Negra, La Dolorosa y Bellavista, en la

parroquia San Cristóbal, cantón Paute, provincia del Azuay. Su objetivo es

implementar una solución sostenible y adecuada para el tratamiento de aguas

residuales, mejorando la calidad de vida de los habitantes y reduciendo la

contaminación ambiental y contribuir al cumplimiento de los Objetivos de Desarrollo

Sostenible (ODS), especialmente los relacionados con el acceso a agua limpia y

saneamiento (ODS 6), la salud y el bienestar (ODS 3) y la protección de los

ecosistemas terrestres y acuáticos (ODS 15).

El desarrollo del proyecto incluyó el diagnóstico del sistema actual mediante

encuestas, visitas de campo y análisis normativos, además de la caracterización físico-

química y biológica de las aguas residuales. Se diseñaron tres alternativas de

tratamiento: lagunas de estabilización, filtros anaeróbicos de flujo ascendente (FAFA)

con humedales construidos, y reactores anaeróbicos de flujo ascendente (RAFA) con

desinfección. El diseño técnico de cada alternativa se basó en normativas nacionales

e internacionales, evaluando su viabilidad técnica, operativa y económica.

Los resultados indicaron que la alternativa de FAFA con humedales subsuperficiales

ofrece un balance óptimo entre eficiencia de remoción, sostenibilidad operativa y

menor impacto ambiental, alcanzando niveles de tratamiento que cumplen con las

normativas vigentes.

Se concluye que los sistemas descentralizados, como el propuesto, son soluciones

viables para comunidades rurales con recursos limitados, contribuyendo a la salud

pública y la sostenibilidad ambiental.

Palabras Clave: Saneamiento descentralizado, aguas residuales, FAFA, Tratamiento

sostenible

Ī

ABSTRACT

This project focuses on designing a decentralized sanitation system for the

communities of Pueblo Nuevo, Pampa Negra, La Dolorosa, and Bellavista, located in

San Cristóbal, Paute, Azuay. Its objective is to implement a sustainable and suitable

solution for wastewater treatment, improving the inhabitants' quality of life and reducing

environmental pollution and contributing to the achievement of the Sustainable

Development Goals (SDGs), particularly those related to clean water and sanitation

(SDG 6), health and well-being (SDG 3), and the protection of terrestrial and aquatic

ecosystems (SDG 15).

The project development included diagnosing the current system through surveys, field

visits, and regulatory analyses, as well as characterizing the physical, chemical, and

biological properties of the wastewater. Three treatment alternatives were designed:

stabilization ponds, upflow anaerobic filters (UAF) with constructed wetlands, and

upflow anaerobic reactors (UAR) with disinfection. The technical design of each

alternative was based on national and international regulations, assessing their

technical, operational, and economic feasibility.

The results indicated that the UAF system with subsurface wetlands offers an optimal

balance between removal efficiency, operational sustainability, and minimal

environmental impact, achieving treatment levels that comply with current regulations.

It is concluded that decentralized systems, such as the one proposed, are viable

solutions for rural communities with limited resources, contributing to public health and

environmental sustainability.

Palabras Clave: Decentralized sanitation, wastewater, UAF, sustainable treatment.

Ш

ÍNDICE GENERAL

EVALU	JADORES	6
RESU	MEN	I
ABSTF	RACT	II
ÍNDICE	E GENERAL	III
ABRE\	VIATURAS	VI
ÍNDICE	E DE ilustraciones	VII
ÍNDICE	E DE TABLAS	IX
ÍNDICE	E DE PLANOS	XII
CAPÍT	ULO 1	13
Introdu	ıcción	13
1.1	Antecedentes	14
1.2	Localización	14
1.3	Definición del problema	15
1.4	Justificación	16
1.5	Objetivos	17
1.5.	1 Objetivo General	17
1.5.2	2 Objetivos Específicos	17
CAPÍT	ULO 2	18
Desarr	ollo del proyecto	18
2.1	Marco conceptual	18
2.1.	1 Sistema de alcantarillado	18
2.1.2	2 Parámetros de diseño	22
2.1.3	3 Diseño de las redes de alcantarillado	26
2.1.4	4 Diseño de la planta de tratamiento de aguas residuales (PTAR)	29

2.2 N	larco Metodológico	41
2.2.1	Determinación del área de estudio	41
2.2.2	Recopilación de información secundario	42
2.2.3	Diagnóstico del saneamiento actual	43
2.2.4	Configuración de los sistemas de alcantarillado	43
2.2.5	Caudal de diseño	46
2.2.6	Diseño de la planta de tratamiento de aguas residuales (PTAR)	51
CAPÍTUL	O 3	75
RESULTA	ADOS Y DISCUSIÓN	75
3.1 A	nálisis de la zona de estudio	75
3.1.1	Aspectos naturales	75
3.2 D	escripción de la situación actual	79
3.2.1	Población	79
3.2.2	Educación	79
3.2.3	Salud	80
3.2.4	Aspecto socio-económico	80
3.2.5	Organización de la población	80
3.2.6	Sistema de agua potable	80
3.2.7	Energía eléctrica	80
3.2.8	Recolección de basura	81
3.3 D	iagnóstico del sistema actual	81
3.3.1	Resultados de la encuesta levantada en campo	81
3.4 D	eterminación del caudal de diseño	86
3.4.1	Periodo de diseño	86
3.4.2	Población de diseño	86
343	Caudal de diseño	91

3.5 Dise	eño hidráulico de la red de alcantarillado	94
3.5.1	Áreas de aporte y caudales de diseño para las redes de alcantarillado	. 94
3.5.2	Dimensionamiento y diseño de las redes de alcantarillado	97
3.5.3	Modelación de la red hidráulica en el Software Storm Water Managem	nent
Model (S)	WMM)	98
	Verificación de diseño hidráulico en el Software Storm Water Managem	
3.5.5	Resultados del diseño de las redes de alcantarillado	106
3.6 Dise	eño planta de tratamiento de aguas residuales	109
3.6.1	Resultados análisis de laboratorio	109
3.6.2	Resultados de biodegradabilidad	112
3.6.3	Eficiencia requerida en el tratamiento de aguas residuales	113
3.6.4	Selección preliminar de tecnologías	113
3.6.5	Evaluación técnica preliminar	116
3.6.6	Selección final de la mejor alternativa	191
CAPÍTULO	4	194
Conclusione	s Y Recomendaciones	194
Conclusion	nes	194
Recomend	aciones	195
BIBLIOGRA	FÍA	197
ANEXOS		202
PLANOS		215

ABREVIATURAS

FAFA Filtros Anaeróbicos de Flujo Ascendente RAFA Reactores Anaeróbicos de Flujo Ascendente

ODS Objetivos de Desarrollo Sostenible

PTAR Planta de Tratamiento de Aguas Residuales

DBO Demanda Bioquímica de Oxígeno DQO Demanda Química de Oxígeno

COV Carga Orgánica Volumétrica / Compuestos

Orgánicos Volátiles

TRH Tiempo de Retención Hidráulica Qdom Caudal de agua residual doméstica

Qinf Caudal de infiltración

Qind Caudal de conexiones ilícitas Qesp Caudal de aportes especiales

Qd Caudal medio diario de aguas residuales
Qmax Caudal máximo horario de aguas residuales
TULSMA Texto Unificado de Legislación Secundaria del

Ministerio del Ambiente

ETAPA EP Empresa Pública de Telecomunicaciones, Agua

Potable y Alcantarillado

INEC Instituto Nacional de Estadística y Censos

CONAGUA Comisión Nacional del Agua

SENPLADES Secretaría Nacional de Planificación y Desarrollo

COT Carbono Orgánico Total
SST Sólidos Suspendidos Totales

pH Potencial de Hidrógeno

UNESCO Organización de las Naciones Unidas para la

OMS Educación, la Ciencia y la Cultura
OMS Organización Mundial de la Salud

GAD Gobiernos Autónomos Descentralizados

EMAAP-Q Empresa Pública Metropolitana de Agua Potable

y Saneamiento de Quito

ÍNDICE DE ILUSTRACIONES

Ilustración 1.1. Ubicación de la zona de estudio	15
Ilustración 2.2. Esquema de una red de alcantarillado convencional (OPS, 2005)	19
Ilustración 2.3. Esquema de una red de alcantarillado simplificado RAS (OPS, 20	05).
	21
Ilustración 2.4. Metodología aplicada para el desarrollo del proyecto	41
Ilustración 2.5. Ubicación de la zona de estudio (Fuente: GAD parroquial de	San
Cristóbal)	42
Ilustración 2.6. Esquema de sistemas redes de saneamiento	44
Ilustración 2.7. Figura. Esquema redes del sistema 1 comunidades Pueblo Nuev	vo y
Pampa Negra	45
Ilustración 2.8. Figura. Esquema redes del sistema 2 comunidades La Doloros	sa y
Bellavista.	45
Ilustración 2.9. Configuración de alcantarillado simplificado y convencional	46
Ilustración 2.10. Punto de obtención de muestra de un pozo de alcantarillado	51
Ilustración 2.11. Punto de obtención de muestra de descarga directa a una fue	ente
natural	52
Ilustración 3.12. Mapa hidrográfico de la parroquia San Cristóbal	77
Ilustración 3.13. Mapa de movimientos de masa de la parroquia San Cristóbal	78
Ilustración 3.14 Mapa de zonas de amenaza de inundaciones de la parroquia	San
Cristóbal. Fuente: GAD Parroquial de San Cristóbal, (2015)	79
Ilustración 3.15. Número de personas que viven en el hogar	81
Ilustración 3.16. Fuente del agua que se utiliza en las viviendas	82
Ilustración 3.17. Satisfacción del servicio de agua que recibe la población	83
Ilustración 3.18. Percepción de la calidad de agua que recibe la población	83
Ilustración 3.19. Disponibilidad de sistema de alcantarillado	84
llustración 3.20. Manejo de las aguas residuales de la población.	84
llustración 3.21. Problemas con el manejo de las aguas residuales en el hogar	85
Ilustración 3.22. Enfermedades que se ha experimentado por el mal manejo de	las
aguas residuales	86
Ilustración 3.23. Proyección de la población para la comunidad Pampa Negra	88

Ilustración 3.24. Proyección de la población para la comunidad Pueblo nuevo 89
Ilustración 3.25. Proyección de la población para la comunidad La Dolorosa 90
Ilustración 3.26. Proyección de la población para la comunidad Bellavista91
Ilustración 3.27. Áreas de porte sistema 1 Pueblo Nuevo y Pampa Negra94
Ilustración 3.28. Áreas de aporte sistema 2 La Dolorosa y Bellavista96
Ilustración 3.29. Configuración de proyecto en el software SWMM98
Ilustración 3.30. Inserción de elementos del sistema de alcantarillado en el software
SWMM
Ilustración 3.31. Ingreso de propiedades a los elementos en el software SWMM 99
Ilustración 3.32. Ajuste de caudales de diseño en el software SWMM100
Ilustración 3.33. Modelación del sistema 1 Pueblo Nuevo y Pampa Negra en el software
SWMM101
Ilustración 3.34. Modelación del sistema 2 La Dolorosa y Bellavista en el software
SWMM
Ilustración 3. 35. Reporte velocidad de diseño en el software SWMM 102
Ilustración 3.36. Reporte calado o tirante de diseño en el software SWMM103
Ilustración 3.37. Reporte caudal de diseño en el software SWMM104
Ilustración 3.38. Figura. Reporte pendiente de diseño en el software SWMM104
Ilustración 3.39. Perfil de alcantarillado tramo RAS 1 – PZ1, sistema 2 105
Ilustración 3.40. Perfil de alcantarillado tramo PZ5 - PZ7 - PZ8 - PZ9 - PZ11, sistema
2
Ilustración 3.41. Diámetro de las redes de alcantarillado del sistema 1 Pueblo Nuevo y
Pampa Negra106
Ilustración 3.42. Diámetro de las redes de alcantarillado del sistema 2 La Dolorosa y
Bellavista
Ilustración 3.43. Material y diámetro de tubería del sistema 1 Pueblo Nuevo y Pampa
Negra108

ÍNDICE DE TABLAS

Tabla 2.1. Aporte de caudal por complejidad del sistema de alcantarillado2	26
Tabla 2.2. Velocidades máximas a tubo lleno y coeficientes de rugosida	ad
recomendados	27
Tabla 2.3. Clasificación de los niveles de tratamiento de aguas residuales3	32
Tabla 2.4. Mecanismos para eliminación de contaminantes3	3
Tabla 2.5. Principales procesos, operaciones y sistemas de tratamiento de agua	เร
residuales domésticas3	37
Tabla 2.6. Principales sistemas biológicos de tratamiento de aguas residuales 3	38
Tabla 2.7. Dotaciones recomendadas. (Fuente: Etapa EP, s/f)	18
Tabla 2.8. Límites máximos permisibles para la descarga de aguas residuales tratada	as
a cuerpos de agua dulce (Fuente: Ministerio del ambiente, 2015)5	52
Tabla 2.9. Criterios de biodegradabilidad. (Fuente: Ardila Arias et al., 2012)5	55
Tabla 2.10. Parámetros de diseño para lagunas de estabilización. (Fuente: Comisió	'n
Nacional del Agua (CONAGUA), 2015)5	56
Tabla 2.11. Parámetros de diseño para sistema FAFA con humedales construidos	s.
(Fuente: Comisión Nacional del Agua (CONAGUA), 2015)5	58
Tabla 2.12. Parámetros de diseño para sistema RAFA y desinfección. (Fuente	e:
Comisión Nacional del Agua (CONAGUA), 2015)6	35
Tabla 3.13. Temperatura promedio de Paute	'5
Tabla 3.14. Población actual de la parroquia San Cristóbal	'9
Tabla 3.15. Población de las comunidades de la zona de estudio	37
Tabla 3.16. Tasa de crecimiento mediante el método aritmético	37
Tabla 3.17. Tasa de crecimiento mediante el método geométrico8	37
Tabla 3.18. Proyección de la población para la comunidad Pampa Negra8	38
Tabla 3.19. Proyección de la población para la comunidad Pueblo Nuevo	}9
Tabla 3.20. Proyección de la población para la comunidad La Dolorosa	}9
Tabla 3.21. Proyección de la población para la comunidad Bellavista9	90
Tabla 3.22. Población de diseño para cada sistema9) 1
Tabla 3.23. Caudal de diseño sistema 19)2
Tahla 3.24 Caudal de diseño sistema 2	าว

Tabla 3.25. Áreas de aporte y caudal de diseño para el95
Tabla 3.26. Áreas de aporte y caudal de diseño para el
Tabla 3.27. Diseño tipo de ramales de alcantarillado simplificado y convencional 97
Tabla 3.28. Verificación de velocidad de diseño en el software SWMM102
Tabla 3.29. Verificación de calado de diseño en el software SWMM103
Tabla 3.30. Verificación de Caudal y pendiente de diseño en el software SWMM 103
Tabla 3.31. Material y diámetro de tubería del sistema 1 Pueblo Nuevo y Pampa Negra
107
Tabla 3.32. Resultados del análisis de laboratorio de la muestra obtenida en un pozo
de alcantarillado109
Tabla 3.33. Resultados del análisis de laboratorio de la muestra obtenida en la
descarga directa de fuente110
Tabla 3.34. Parámetros que no cumplen con la normativa ambiental (TULSMA) para
descarga a cuerpos de agua dulce112
Tabla 3.35. Eficiencias de remoción en la PTAR113
Tabla 3.36. Eficiencia de remoción esperada para la alternativa 1114
Tabla 3.37. Eficiencia de remoción esperada para la alternativa 2114
Tabla 3.38. Eficiencia de remoción esperada para la alternativa 3115
Tabla 3.39. Diseño del canal de ingreso, rejillas, desarenador y repartidor de la PTAR
(Sistema 1)116
Tabla 3.40 Dimensiones finales de los elementos en el pretratamiento 119
Tabla 3.41. Diseño de la alternativa 1: Lagunas de estabilización (Sistema 1) 120
Tabla 3.42. Dimensiones finales de las lagunas de estabilización
Tabla 3.43. Eficiencias aproximadas obtenidas con la alternativa 1 128
Tabla 3.44. Diseño de la alternativa 2: FAFA con Humedal subsuperficial (Sistema 1).
129
Tabla 3.45. Dimensiones finales de la FAFA con Humedales subsuperficiales 139
Tabla 3.46. Eficiencias aproximadas obtenidas con la alternativa 2140
Tabla 3.47. Diseño de la alternativa 3: RAFA con desinfección (Sistema 1) 141
Tabla 3.48. Dimensiones finales de la RAFA con Desinfección
Tabla 3.49. Eficiencias aproximadas obtenidas con la alternativa 3152

Tabla 3.50 Dimensiones finales de los elementos en el pretratamiento para el sistema
2
Tabla 3.51. Diseño de la alternativa 1: Lagunas de estabilización (Sistema 2) 153
Tabla 3.52. Dimensiones finales de las lagunas de estabilización
Tabla 3.53. Eficiencias aproximadas obtenidas con la alternativa 1
Tabla 3.54. Diseño de la alternativa 2: FAFA con Humedales subsuperficiales (Sistema
2)160
Tabla 3.55. Dimensiones finales de la FAFA con Humedales subsuperficiales 170
Tabla 3.56. Eficiencias aproximadas obtenidas con la alternativa 2171
Tabla 3.57. Diseño de la alternativa 3: RAFA con desinfección (Sistema 2) 172
Tabla 4.58. Dimensiones finales de la RAFA con Desinfección
Tabla 3.59. Eficiencias aproximadas obtenidas con la alternativa 3182
Tabla 3.60. Presupuesto alternativa 1: Lagunas de estabilización
Tabla 3.61. Presupuesto alternativa 2: FAFA con Humedales subsuperficiales 183
Tabla 3.62. Presupuesto alternativa 3: RAFA con Unidad de desinfección
Tabla 3.63. Valoraciones de los parámetros operativos
Tabla 3.64. Resultados de la ponderación de cada alternativa
Tabla 3.65. Análisis ambiental y social de la alternativa 1, mediante matriz de Leopold.
Tabla 3.66. Análisis ambiental y social de la alternativa 2, mediante matriz de Leopold.
190
Tabla 3.67. Análisis ambiental y social de la alternativa 3, mediante matriz de Leopold.
190
Tabla 3.68 Puntaje final para selección de mejor alternativa de PTAR193

ÍNDICE DE PLANOS

- PLANO 1 Implantación de alcantarillado sistema 2 La Dolorosa y Bellavista.
- PLANO 2 Perfiles de alcantarillado sistema 2 La Dolorosa y Bellavista.
- PLANO 3 Perfiles de alcantarillado sistema 2 La Dolorosa y Bellavista.
- PLANO 4 Perfiles de alcantarillado sistema 2 La Dolorosa y Bellavista.
- PLANO 5 Implantación de alcantarillado sistema 1 Pueblo Nuevo y Pampa Negra.
- PLANO 6 Perfiles de alcantarillado sistema 1 Pueblo Nuevo y Pampa Negra.
- PLANO 7 Detalles constructivos del sistema de alcantarillado.

CAPÍTULO 1

INTRODUCCIÓN

El saneamiento, que abarca las prácticas y sistemas para gestionar adecuadamente las aguas residuales y los desechos sólidos, ha sido una preocupación constante a lo largo de la historia humana. Aunque desde 1990 aproximadamente 2.100 millones de personas han obtenido acceso a instalaciones de saneamiento mejoradas, todavía alrededor de 2.400 millones carecen de tales servicios, y 1.000 millones continúan practicando la defecación al aire libre (UNESCO, 2017). Además, cerca de 1.000 niños menores de 5 años mueren diariamente a causa de enfermedades diarreicas, principalmente debido a sistemas de saneamiento inadecuados (Organización Mundial de la Salud, 2015).

Los sistemas descentralizados de saneamiento emergen como una solución innovadora y adaptada a las necesidades específicas de comunidades que no disponen de la infraestructura o recursos necesarios para sistemas centralizados. A diferencia de estos últimos, que requieren grandes instalaciones y extensas redes para el tratamiento y manejo de aguas residuales y desechos sólidos, los sistemas descentralizados funcionan a nivel local, en áreas específicas o incluso en viviendas individuales (Valencia, Silva & Narváez, 2010).

Ecuador, siendo un país en desarrollo, enfrenta un reto significativo en el acceso a sistemas de saneamiento eficientes y sostenibles, especialmente en sus áreas rurales, donde los pequeños Gobiernos Autónomos Descentralizados (GAD) suelen contar con escasa inversión en proyectos de saneamiento básico. La parroquia San Cristóbal, en el cantón Paute, Provincia del Azuay, no es una excepción. El crecimiento poblacional ha incrementado la demanda de servicios básicos, pero actualmente, las aguas residuales de diversas actividades se vierten directamente en fuentes hídricas, generando problemas de contaminación y de salud. (secretaria nacional de Planificación y Desarrollo-SENPLADES, 2017)

El presente estudio se enfoca en el diseño de un sistema descentralizado de saneamiento para comunidades de la parroquia San Cristóbal, desde la red de alcantarillado hasta su tratamiento y disposición final. Un sistema de saneamiento descentralizado que sea adecuado para las características específicas de las comunidades a servir, considerando factores como la topografía, el clima, la densidad

poblacional y las prácticas culturales locales. A través de un análisis detallado y la implementación de tecnologías innovadoras y adaptadas, se pretende ofrecer una solución viable que pueda ser replicada en otras comunidades con similares características

1.1 Antecedentes

El acceso a un sistema de saneamiento básico es crucial para la salud de las personas; un manejo inadecuado de las aguas residuales puede exponer a la población a excretas, lo que conlleva riesgos para la salud y daños ambientales (UNICEF, 2022)

En Ecuador, el acceso a sistemas de saneamiento seguro, como el alcantarillado, es el servicio básico con menor cobertura, y esta carencia es aún más visible en las áreas rurales. En estas regiones, la alta dispersión de la población y la falta de interés por parte de los gobiernos han llevado a que muchos hogares carezcan de sistemas de alcantarillado, optando en su lugar por pozos sépticos, letrinas o la eliminación de residuos al aire libre (UNICEF, 2022)

La situación en la parroquia San Cristóbal refleja esta realidad. El VIII Censo de Población y VII de Vivienda del INEC, (2022) señala que, de las 854 viviendas en la parroquia, 190 tienen acceso a la red pública de alcantarillado, 499 utilizan pozos sépticos, 28 cuentan con biodigestores, 31 descargan en pozos ciegos, 6 vertientes de residuos en fuentes hídricas, 4 tienen letrinas, y 96 no disponen de ningún tipo de servicio de saneamiento.

Esta situación afecta directamente la salud de la población y el medio ambiente, con un alto índice de enfermedades relacionadas con el agua que impactan especialmente a los niños. Por ello, se propone diseñar un sistema descentralizado de saneamiento para las comunidades de la parroquia San Cristóbal, en el Cantón Paute, con el objetivo de mejorar la calidad de vida de sus habitantes.

1.2 Localización

La parroquia San Cristóbal se encuentra en el Cantón Paute, en la Provincia del Azuay, al sur del Ecuador. Está situada a una altitud aproximada de 2500 metros sobre el nivel del mar y su extensión es de 1699.37 Ha. Esta ubicación geográfica la sitúa en una región de transición entre zonas montañosas y valles interandinos, lo que influye en sus condiciones climáticas y geográficas (Ilustración 1.1).

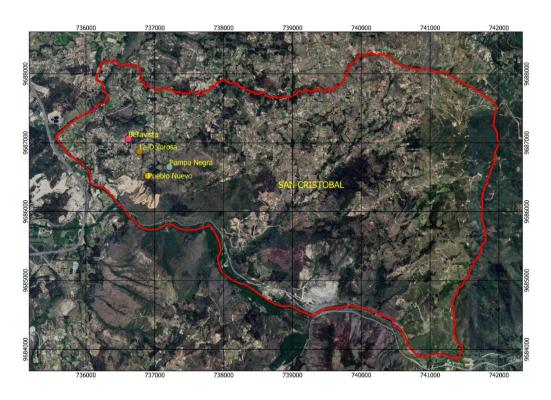


Ilustración 1.1. Ubicación de la zona de estudio.

1.3 Definición del problema

Las comunidades de la parroquia San Cristóbal enfrentan serios problemas de saneamiento debido a la ausencia de un sistema adecuado para la recolección y tratamiento de aguas residuales domésticas. Se ha estimado que la parroquia presenta un déficit del 96.11% en el acceso a la red pública de alcantarillado (GAD Municipal del Cantón Paute, 2020). El VIII Censo de Población, VII de Vivienda y I de Comunidades, (2022) indica que el 58.43% de las viviendas utilizan pozos sépticos, el 3.63% están conectadas a pozos ciegos, el 3.28% cuentan con biodigestores, el 0.47% tienen letrinas, el 11.94% no dispone de ningún tipo de servicio y realiza descargas directas, y solo el 22.25% están conectadas al sistema de alcantarillado público.

Esta falta de infraestructura adecuada ha llevado a la contaminación de fuentes de agua superficiales y subterráneas por la descarga directa de aguas residuales sin tratamiento, lo cual representa un riesgo significativo para la salud pública y tiene un impacto negativo en el medio ambiente y los ecosistemas locales.

A lo largo del tiempo, la carencia de infraestructura sanitaria adecuada y el acceso limitado a servicios básicos de saneamiento, combinados con la falta de conciencia y

educación ambiental sobre la importancia del saneamiento en la comunidad, han empeorado la situación.

Además, las dificultades económicas para implementar un sistema de saneamiento centralizado convencional, debido a los elevados costos de inversión y mantenimiento, junto con las limitaciones geográficas o topográficas que dificultan la instalación de un sistema de alcantarillado centralizado, han obstaculizado la búsqueda de soluciones.

Por lo tanto, es crucial encontrar soluciones sostenibles y adaptadas a las condiciones locales de la parroquia San Cristóbal. Estas soluciones deben ser accesibles para la comunidad, abordar la falta de planificación, la gestión adecuada de los recursos hídricos y el saneamiento, y la implementación de sistemas descentralizados para el tratamiento de aguas residuales podría ser una alternativa efectiva para mejorar la calidad de vida de la población y proteger el medio ambiente.

1.4 Justificación

En la parroquia San Cristóbal únicamente el 22.25% de la población tienen acceso a la red de alcantarillado público, evidenciándose el déficit de acceso a infraestructuras de saneamiento en las zonas rurales del Ecuador, problemática que en gran medida se debe a la dispersión alta de las poblaciones, así como, la falta de políticas y proyectos de saneamiento de los entes gubernamentales (GAD Municipal del Cantón Paute, 2020). Provocando que gran parte de las familias hayan tomado soluciones rudimentarias e improvisadas para la descarga de aguas residuales, situaciones que comprometen su salud y calidad de vida.

El saneamiento inadecuado está estrechamente relacionado con la propagación de enfermedades diarreicas, parasitarias y otras afecciones relacionadas con la falta de higiene y uso del agua, incrementando los índices de insalubridad y desnutrición de la población (Montero, 2021).

El diseño de un sistema descentralizado de saneamiento para las comunidades de San Cristóbal no solo atiende a una necesidad inmediata de infraestructura, sino que también representa una inversión en la salud, el medio ambiente, y el desarrollo sostenible de la comunidad. Es una oportunidad para transformar las condiciones de vida de los habitantes y promover un futuro más saludable y equitativo.

Con el proyecto se contribuye al cumplimiento de los Objetivos de Desarrollo Sostenible (ODS) relacionados con garantizar una vida saludable y bienestar (ODS 3), el acceso

servicios de agua potable y saneamiento (ODS 6), y la protección de los ecosistemas terrestres y acuáticos (ODS 15).

1.5 Objetivos

1.5.1 Objetivo General

Diseñar un sistema descentralizado de saneamiento, mediante el análisis de alternativas sostenibles de tratamiento de aguas residuales para comunidades de la parroquia San Cristóbal, buscando la mejora de la calidad de vida de la población.

1.5.2 Objetivos Específicos

- Realizar el diagnóstico de las condiciones actuales de saneamiento de las comunidades de la parroquia San Cristóbal, para la determinación de las necesidades y deficiencias a solventar en el ámbito de saneamiento.
- Analizar alternativas para un sistema de recolección y tratamiento de aguas residuales, mediante el uso de tecnologías sostenibles de acuerdo con las normativas sanitarias actuales.
- Diseñar la alternativa más viable para el sistema descentralizado de saneamiento, permitiendo mejorar las condiciones de vida de la población y preservar el medio ambiente.

CAPÍTULO 2

DESARROLLO DEL PROYECTO

2.1 Marco conceptual

2.1.1 Sistema de alcantarillado

Un sistema de alcantarillado es una infraestructura diseñada para la recolección, transporte y disposición de aguas residuales y pluviales. Su objetivo principal es garantizar la higiene pública y la protección del medio ambiente al prevenir inundaciones y la contaminación de fuentes de agua.

Este sistema suele estar compuesto por tuberías, pozos de inspección, estaciones de bombeo y plantas de tratamiento. Las aguas residuales, que provienen de hogares, industrias y otras fuentes, son conducidas a través de estas tuberías hacia plantas de tratamiento, donde se purifican antes de ser vertidas en cuerpos de agua o reutilizadas. Por otro lado, las aguas pluviales se recogen para evitar inundaciones en áreas urbanas. (Pérez Carmona, 2013)

2.1.1.1 Sistemas de saneamiento descentralizados

Los sistemas descentralizados incluyen tecnologías con las cuales el agua residual es manejada, recolectada, tratada y dispuesta o reusada en o cerca del punto de generación (Crites & Tchobanoglous, 1998), es decir, son sistemas de manejo in situ. En los sistemas descentralizados, se pueden tratar las aguas residuales mediante diferentes técnicas que se adaptan a la ubicación específica y al tipo de aguas residuales con las que se está tratando (Rachna).

Los sistemas centralizados se caracterizan por tener altos costos y complejidad en su construcción, operación y mantenimiento, también, requieren alta disponibilidad de energía, los sistemas centralizados no son apropiados para las áreas de bajos ingresos y rurales, con baja densidad de población. Las tecnologías descentralizadas son de un costo relativamente bajo, por lo que pueden ser construidas y operadas por las propias comunidades (Wilderer, 2001).

2.1.1.2 Alcantarillado convencional (OPS, 2005)

Los sistemas convencionales de alcantarillado son el método más popular para la recolección y conducción de las aguas residuales y pluviales. Está constituido por redes

colectoras que son construidas, generalmente, en la parte central de calles y avenidas e instaladas en pendiente, permitiendo que se establezca un flujo por gravedad desde las viviendas hasta la planta de tratamiento (ver Ilustración 2.2).

Otro componente de este sistema son las conexiones domiciliarias que se conecta con la red de desagüe de las viviendas, con la finalidad de transportar las aguas residuales desde ellas a las alcantarillas más cercanas.

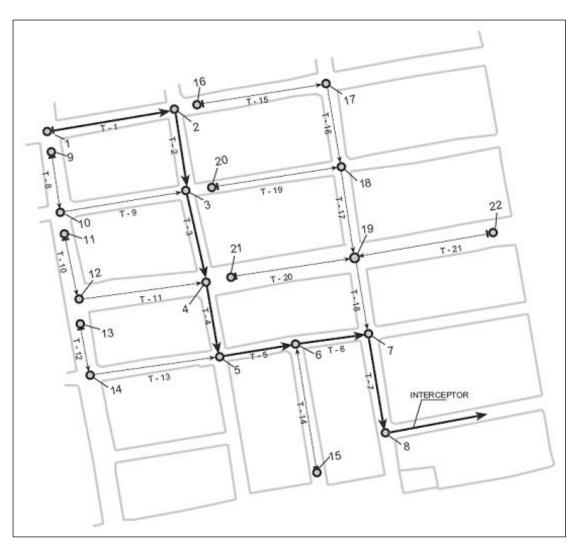


Ilustración 2.2. Esquema de una red de alcantarillado convencional (OPS, 2005).

El componente complementario más importante son los pozos de inspección, que se ubican principalmente en la intersección de colectores, en el comienzo de todo colector y en los tramos rectos de colectores. La principal función de estas cámaras es la limpieza de los colectores para evitar su obstrucción.

Las principales desventajas de la aplicación de este sistema en zonas rurales son:

- Los colectores son instalados a grandes profundidades, demandando excavaciones muy profundas que incrementa notablemente los costos de construcción.
- Es necesario utilizar cámaras de inspección profundas de costo de construcción elevado, que se incrementan por mayor excavación, mayor utilización de encofrados y/o empleo de bombeo para bajar el nivel freático.
- Las viviendas situadas a una cota inferior que la calle tendrán dificultades para descargar sus aguas residuales por gravedad.

2.1.1.3 Alcantarillado no convencional

Los sistemas de alcantarillado no convencionales surgen como una respuesta de saneamiento básico de poblaciones de bajos recursos económicos, estos sistemas requieren de mayor definición y control de los parámetros de diseño, en especial del caudal, mantenimiento continuo y, en gran medida, de la cultura en la comunidad que acepte y controle el sistema dentro de las limitaciones que éstos pueden tener. Los sistemas de alcantarillado no convencional se clasifican según la tecnología aplicada, algunos sistemas son: Alcantarillado simplificado RAS, alcantarillado condominiales, alcantarillado sin arrastre se solidos (CONAGUA, 2009).

2.1.1.4 Alcantarillado simplificado (OPS, 2005)

Este sistema se originó en Brasil a fines de la década de los años 70, como una alternativa frente al sistema de alcantarillado convencional. Su desarrollo comienza después del reconocimiento que la causa principal del costo elevado del alcantarillado convencional eran las exigentes normas de diseño, y que estas normas estaban impidiendo la expansión de la cobertura del servicio de alcantarillado a comunidades urbanas de bajos ingresos. Esto motivó la revisión de las normas de diseño y el posterior surgimiento de criterios técnicos más apropiados con los cuales se redujeron los costos de construcción.

Las redes de alcantarillado simplificado (RAS) están formadas por un conjunto de tuberías y accesorios que tienen la finalidad de colectar y transportar los desagües, bajo

condiciones técnicas y sanitarias adecuadas, y a un costo accesible a las poblaciones de bajos ingresos, que normalmente son las beneficiarias del sistema.

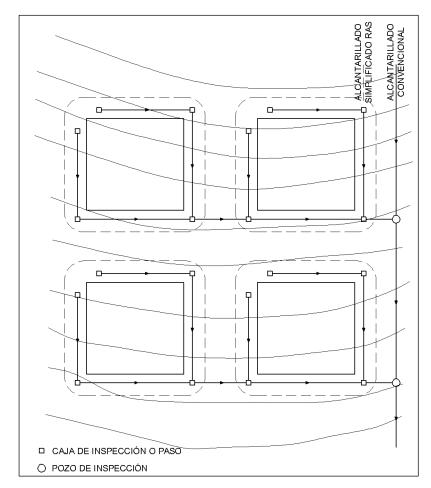


Ilustración 2.3. Esquema de una red de alcantarillado simplificado RAS (OPS, 2005).

Las RAS, se diseñan bajo los mismos criterios hidráulicos que las redes convencionales, sólo se diferencian de ellas en la simplificación y minimización del uso de materiales y de los criterios constructivos. Las principales ventajas del alcantarillado simplificado son:

- Reducción de los costos de construcción, principalmente, a través de la minimización de la profundidad de las excavaciones para los colectores y el empleo de dispositivos simplificados de inspección.
- Los colectores no necesariamente son colocados en la calzada de calles o avenidas. Son proyectados por veredas o jardines, alejados de la zona de tráfico vehicular para protegerlos contra choques mecánicos. De esta manera se logra

- minimizar las excavaciones tanto en profundidad como en anchura. En algunos casos se proyectan redes dobles, en ambos lados de la calle.
- Los pozos de inspección costosos empleados en el alcantarillado convencional son reemplazados por elementos de inspección más simples y económicos, tales como, los dispositivos de inspección, los terminales de limpieza y las cajas de paso.
- Se reducen los diámetros mínimos y el recubrimiento de los colectores. El diámetro mínimo especificado es 100mm. La excavación mínima aceptable es de 0,60m, si los colectores van tendidos sobre veredas y jardines.
- Las aguas residuales recolectadas y transportadas por redes simplificadas deberán ser conectadas a una red de alcantarillado convencional, para su conducción hasta el punto de disposición final.
- Los costos de construcción del alcantarillado de redes simplificadas son 20% a 30% inferiores a los costos de un alcantarillado convencional.

2.1.2 Parámetros de diseño

2.1.2.1 Generalidades

Los parámetros de diseño son cruciales para la planificación y ejecución de sistemas de saneamiento, ya que garantizan que el sistema sea funcional, seguro y eficiente mediante la aplicación de normas y estándares técnicos. Estos parámetros se basan en principios de ingeniería sanitaria, que buscan una adecuada gestión de las aguas residuales y la protección de la salud pública (Pérez Carmona, 2013). La revisión de normas locales e internacionales, como las de la Organización Mundial de la Salud (OMS) y las regulaciones nacionales, así como la consulta de literatura y guías técnicas, permitirá adaptar los parámetros a las condiciones específicas de San Cristóbal.

2.1.2.2 Caudal de aguas residuales

En un proyecto de alcantarillado sanitario, es esencial estimar con precisión el caudal de aguas residuales a evacuar, ya que está vinculado al volumen de agua potable suministrado y usado en la comunidad (Díaz Fernández, 2019).

Este caudal se desglosa en cuatro componentes principales:

- Agua Residual Doméstica (o sanitaria)
- Agua Residual de aportes especiales

- Aguas de Infiltración
- Conexiones Ilícitas

Cada uno de estos componentes debe ser considerado al calcular el caudal total para asegurar el correcto funcionamiento y capacidad de tratamiento del sistema de alcantarillado.

Para la evacuación de aguas residuales y pluviales se utilizan tres tipos de redes de alcantarillado: redes sanitarias, pluviales y unitarias. Cuando se recolectan por separado las aguas residuales (a través de la red sanitaria) y las aguas pluviales (mediante la red pluvial), los caudales de aguas residuales se componen de: (1) agua residual doméstica, (2) agua residual industrial y (3) infiltraciones y aportaciones no controladas (Metcalf & Eddy, 2003).

En áreas con red de alcantarillado, la determinación de caudales se realiza, generalmente, a partir de series históricas o datos obtenidos mediante mediciones directas. Para redes recién construidas, los caudales se estiman analizando datos de población y las dotaciones de agua previstas, así como mediante estimaciones del caudal de aguas residuales per cápita en poblaciones similares (Metcalf & Eddy, 2014).

2.1.2.3 Periodo de diseño

El periodo de diseño es el intervalo durante el cual se anticipa que el sistema operará con máxima eficiencia, ya sea en términos de su capacidad para manejar el flujo requerido o en cuanto a la durabilidad de las instalaciones (Arocha Ravelo, 1983).

La duración de este periodo está influenciada por varios factores, como la relevancia del proyecto, la posibilidad de expansión futura, la capacidad económica de la comunidad, la tasa de crecimiento poblacional y el impacto ambiental asociado con la infraestructura (Arocha Ravelo, 1983).

2.1.2.4 Población de diseño

La población de diseño en una red de alcantarillado se refiere al número estimado de habitantes que se considera al momento de planificar y dimensionar el sistema de alcantarillado. Este concepto es fundamental para asegurar que la infraestructura tenga la capacidad adecuada para manejar el volumen de aguas residuales generadas en una zona específica.

La evaluación de la población es un elemento fundamental en la planificación de un sistema de alcantarillado. Esta población debe coincidir con la que se proyecta para el final del período de diseño, conocido como el año horizonte del proyecto. También es necesario estimar la población futura cada cinco años hasta alcanzar dicho año horizonte. Además, es importante considerar que el diseño de las redes necesita información sobre la distribución espacial de la población, incluyendo los distintos usos del suelo, los tipos de consumidores y cómo se distribuye la demanda de servicios de alcantarillado. (EMAAP-Q, 2009)

2.1.2.4.1 Población futura

La población que contribuye a la red de alcantarillado y planta de tratamiento se encuentra dentro del área de diseño del sistema de alcantarillado. El índice de cobertura se refiere a la proporción de la población conectada al sistema. Factores que influyen en este índice incluyen:

- Condiciones geográficas y topográficas
- Índice de adhesión, que compara la población conectada y la potencialmente servidas
- Etapas de implementación del sistema de alcantarillado

Para el diseño tanto de la red de alcantarillado como de la planta de tratamiento, es crucial conocer tanto la población final como la inicial, y su evolución en el tiempo. (Von Sperling, 2007)

2.1.2.5 Demanda y consumo de agua

Cuando no se pueden medir directamente los caudales de aguas residuales y no hay series históricas disponibles, los datos sobre el abastecimiento de agua a la comunidad son útiles para realizar estimaciones. Se ofrecen valores típicos de dotaciones según el tipo de usuario y los aparatos domésticos e industriales. También se proporciona información sobre la fracción del agua de abastecimiento que se convierte en agua residual, lo cual ayuda a estimar el caudal de aguas residuales de una comunidad (Metcalf & Eddy, 2014).

2.1.2.6 Caudal de diseño

El caudal de diseño de aguas residuales es el volumen estimado de aguas residuales que se espera que ingrese a un sistema de alcantarillado o a una planta de tratamiento en un período específico, generalmente expresado en litros por segundo (L/s) o metros cúbicos por día (m³/día). (Metcalf & Eddy, 2014)

2.1.2.6.1 Caudal de agua residual domestica (Q_{dom})

El caudal de agua residual doméstica se refiere al volumen de aguas residuales generadas por actividades cotidianas en los hogares, como el uso de inodoros, duchas, lavabos, fregaderos, lavadoras y otros aparatos que utilizan agua. (Metcalf & Eddy, 2014).

2.1.2.6.2 Caudal de aportes especiales (Qesp)

Se refiere al volumen de aguas residuales que provienen de fuentes específicas o actividades particulares, como industrias, hospitales o instalaciones comerciales. Estos aportes pueden tener características y contaminantes diferentes de las aguas residuales domésticas. (Henze et al., 2017).

2.1.2.6.3 Caudal de Infiltración (Q_{inf})

El caudal que inevitablemente entra en los conductos del sistema de alcantarillado es conocido como caudal de infiltración. Este caudal está influenciado por el nivel freático, la permeabilidad del suelo, la profundidad y el tipo de tubería. En el caso de las tuberías de alcantarillado, un problema específico es la infiltración a través de juntas defectuosas y daños en las paredes de las tuberías. (Lopez, 2010)

2.1.2.6.4 Caudal de conexiones ilícitas (Q_{ind})

López, (2010) señala que el aporte de aguas ilícitas proviene principalmente de conexiones erróneas de aguas pluviales domiciliarias y de conexiones no autorizadas, además, señala que el caudal de aportes máximos por conexiones erradas dependerá de la complejidad del sistema (Tabla 2.1).

Tabla 2.1. Aporte de caudal por complejidad del sistema de alcantarillado

Nivel de complejidad	Aporte (I/s-ha)	
Bajo y medio	0.2-2	
Medio alto y alto	0.1-1	

2.1.2.7 Caudal medio diario de aguas residuales (Q_d)

Es el promedio del volumen de aguas residuales generadas en un día específico, calculado sobre un período de tiempo. Este dato es fundamental para dimensionar adecuadamente los sistemas de alcantarillado y tratamiento. (Metcalf & Eddy,2003)

2.1.2.8 Caudal máximo horario de aguas residuales (Qmax)

Se refiere al mayor volumen de aguas residuales que se generan en una hora determinada. Este caudal es crucial para el diseño de infraestructuras, ya que asegura que el sistema pueda manejar picos de flujo durante momentos de alta demanda.

2.1.2.8.1 Coeficiente de mayoración y minoración de caudales (K)

Este valor incrementa el caudal de aguas residuales, ya que tiene en cuenta la simultaneidad en la generación de caudales durante la hora de máxima demanda (Arocha Ravelo, 1983).

2.1.3 Diseño de las redes de alcantarillado

El diseño de un sistema de alcantarillado por gravedad se realiza considerando que durante su funcionamiento, se debe cumplir la condición de autolimpieza para limitar la sedimentación de arena y otras sustancias sedimentables (heces y otros productos de desecho) en los colectores (OPS, 2005).

2.1.3.1 Fórmula para el diseño de alcantarillado (Ecuación de Manning)

Para el diseño de las redes de alcantarillado se utiliza la ecuación de Manning para flujo uniforme y permanente, se usa la expresión:

$$Q = \frac{1}{n} * A * Rh^{\frac{2}{3}} * S^{\frac{1}{2}}$$

Donde:

Q: Caudal en (m3/s)

n: Coeficiente de rugosidad de Manning.

A: área de la sección transversal del flujo (m²)

Rh: es el radio hidráulico del flujo (m)

S: pendiente (m/m)

2.1.3.2 Caudal mínimo de diseño

El diseño de alcantarillas convencionales y no convencionales asumen condiciones de estado constante. En la práctica el caudal en los tramos iniciales de las redes de alcantarillado es muy variable, dependiendo en cualquier momento, de la cantidad de ramales que descargan y los sanitarios que son evacuados. Es recomendable emplear un caudal mínimo en el diseño de alcantarillas, que resulta de la descarga de un inodoro sanitario, debe ser como mínimo 1.5 l/s (OPS, 2005).

2.1.3.3 Criterio de velocidad

Al momento de diseñar las redes de alcantarillado, se debe verificar la velocidad mínima y máxima en el diseño de las redes de alcantarillado, el Código de Practica Ecuatoriano CPE INEN 5: 1992 Parte 9.1 establece los siguientes criterios de velocidad para el diseño de tuberías y colectores de alcantarillado:

- La velocidad del líquido en los colectores, sean estos primarios, secundarios o terciarios, bajo condiciones de caudal máximo instantáneo, en cualquier año del período de diseño, no sea menor que 0,45 m/s y que preferiblemente sea mayor que 0,6 m/s, para impedir la acumulación de gas sulfhídrico en el líquido.
- Las velocidades máximas admisibles en tuberías o colectores dependen del material de fabricación, conforme los valores de la Tabla 2.2.

Tabla 2.2. Velocidades máximas a tubo lleno y coeficientes de rugosidad recomendados

(CPE INEN 5: 1992 Parte 9.1).

MATERIAL	VELOCIDAD MÁXIMA m/s	COEFICIENTE DE RUGOSIDAD
Hormigón simple:		
- Con uniones de mortero.	4	0,013
- Con uniones de neopreno para nivel freático alto.	3,5 - 4	0,013
Asbesto cemento	4,5 - 5	0,011
Plástico	4,5	0,011

2.1.3.4 Tirante de agua

Las redes de alcantarillado se diseñan para transportar el caudal a tubo parcialmente lleno, no permitiéndose en ningún momento que la alcantarilla trabaje a presión. El nivel máximo de agua en la alcantarilla debe ser el 80% del diámetro. Es fácilmente demostrable que con este nivel en un colector circular se alcanza la velocidad mas alta. La parte vacía de la sección por encima de 0,8 D se emplea para ventilación, movimiento de los gases, sirviendo además para los flujos excepcionales (OPS, 2005).

Por lo expuesto, para el diseño de redes de alcantarillado convencional y no convencional se debe comprobar que la capacidad de la tubería sea menor igual a 0,80.

$$\frac{d}{D} \le 0.80$$

Donde:

d: tirante o nivel de agua en la tubería

D: Diámetro de la tubería.

2.1.3.5 Criterio de la fuerza tractiva

La tensión tractiva ó fuerza de arrastre (Γ), es la fuerza tangencial por unidad de área mojada ejercida por el flujo de aguas residuales sobre un colector y en consecuencia sobre el material depositado. Para diámetros pequeños, la fuerza tractiva se puede determinar con la siguiente expresión:

$$\Gamma = \Upsilon * Rh * S$$

Γ: Fuerza tractiva N/m²

Υ: Peso específico del agua (N/m³)

Rh: Radio hidráulico del flujo (m)

S: pendiente (m/m)

La fuerza tractiva mínima para los sistemas de alcantarillado deberá tener como valor mínimo 1 Pa, cuando existen dudas sobre la calidad de la construcción, debido a la calidad de los materiales de construcción, podría ser apropiado un valor mínimo de tensión tractiva de 1,5 Pa (Mara, 2001).

2.1.3.6 Criterios generales de diseño de las redes de alcantarillado

El Código de Práctica Ecuatoriano CPE INEN 5: 1992 Parte 9.1, establece los siguientes criterios para el diseño de tuberías y colectores de alcantarillado:

- La red de alcantarillado sanitario se diseñará de manera que todas las tuberías pasen por debajo de las de agua potable debiendo dejarse una altura libre proyectada de 0,3 m cuando ellas sean paralelas y de 0,2 m cuando se crucen.
- Las tuberías se diseñarán a profundidades que sean suficientes para recoger las aguas servidas o aguas lluvias de las casas más bajas a uno u otro lado de la calzada. Cuando la tubería deba soportar tránsito vehicular, para su seguridad se considerará un relleno mínimo de 1,2m de alto sobre la clave del tubo.
- El diámetro mínimo que deberá usarse en sistemas de alcantarillado será 0,2m para alcantarillado sanitario (alcantarillado convencional).
- Las conexiones domiciliarias en alcantarillado tendrán un diámetro mínimo de 0,1m para sistemas sanitarios y una pendiente mínima del 1%.

2.1.4 Diseño de la planta de tratamiento de aguas residuales (PTAR)

Las comunidades generan tanto residuos sólidos como líquidos, siendo las aguas residuales el agua contaminada tras su uso. Estas provienen de residencias, instituciones y establecimientos comerciales e industriales, y pueden incluir aguas pluviales y subterráneas. Si se acumulan, pueden descomponerse, generando olores y liberando microorganismos patógenos y nutrientes que fomentan el crecimiento de plantas acuáticas. Por ello, es esencial evacuar y tratar estas aguas de manera eficiente. Además, es crucial determinar qué contaminantes deben eliminarse, lo que requiere un análisis específico de cada caso, así como el cumplimiento de las normativas de calidad del agua. (Metcalf & Eddy, 2014)

2.1.4.1 Características de las aguas residuales

Las aguas servidas se caracterizan por su composición física, química y biológica; y es necesario conocer cada una de ellas con el propósito de poder establecer un sistema de tratamiento adecuado.

2.1.4.1.1 Características físicas

Las propiedades físicas más relevantes del agua residual incluyen el total de sólidos, un término que abarca la materia en suspensión, sedimentable, coloidal y disuelta. Otras características físicas significativas son el olor, la temperatura, la densidad, el color y la turbidez. (Metcalf & Eddy,2003).

2.1.4.1.2 Características químicas

El análisis de las propiedades químicas de las aguas residuales se presenta en las siguientes cuatro secciones: (1) la materia orgánica y su medición, (2) la materia inorgánica, y (3) los gases presentes en el agua residual. La medición del contenido de materia orgánica se realiza de manera independiente debido a su relevancia en la gestión de la calidad del agua y en el diseño de las plantas de tratamiento de aguas.

Materia orgánica

Están formados normalmente por combinaciones de carbono, hidrógeno, oxígenos y en determinados casos de nitrógeno. Los principales grupos de sustancias orgánicas presentes en el agua residual son las proteínas, hidratos de carbono, grasas, grasas animales, aceites, agentes tensoactivos, contaminantes prioritarios, compuestos orgánicos volátiles (COV), pesticidas y productos químicos de uso agrícola. (Metcalf & Eddy, 2003).

La cantidad de materia orgánica en el agua se puede medir mediante los siguientes métodos:

- Demanda Bioquímica de Oxígeno (DBO5)
- Demanda Química de Oxígeno (DQO)
- Carbono Orgánico Total (COT)

Materia inorgánica

Las concentraciones de las sustancias inorgánicas en el agua aumentan por el contacto del agua con las diferentes formaciones geológicas como rocas y minerales; también por las aguas residuales sin tratar que a ella se descargan. Los principales constituyentes inorgánicos son el ion hidrógeno (pH), cloruros, alcalinidad, nitrógeno, formas de nitrogeno, fósforo, azufre, compuestos tóxicos inorgánicos y metales pesados. (Metcalf & Eddy, 2003).

Los gases más comunes en las aguas residuales brutas son el nitrógeno (N2), el oxígeno (O2), el dióxido de carbono (CO2), el sulfuro de hidrógeno (H2S), el amoníaco (NH3) y el metano (CH4). Los tres primeros son gases presentes en la atmósfera y se encuentran en aguas en contacto con ella, mientras que los últimos provienen de la descomposición de materia orgánica. Aunque no están en el agua residual sin tratar, hay otros gases importantes para los ingenieros sanitarios, como el cloro (Cl2) y el ozono (O3) para desinfección y control de olores, así como óxidos de azufre y nitrógeno provenientes de procesos de combustión. En las aguas residuales, el amoníaco se encuentra mayormente en forma de ion amonio. (Metcalf & Edddy, 2003)

2.1.4.1.3 Características biológicas

Las propiedades biológicas de las aguas residuales están asociadas a los organismos patógenos que se originan en desechos humanos infectados o portadores de enfermedades. Entre estos organismos se encuentran: coliformes totales, coliformes fecales y salmonellas. (Metcalf & Eddy, 2003)

2.1.4.2 Normativa legal

Los criterios generales para la descarga de efluentes en cuerpos de agua dulce están especificados en la sección 5.2.4 de la revisión y actualización del Anexo 1 del Texto Unificado de Legislación Secundaria del Ministerio del Ambiente (Ministerio del Ambiente, 2015).

2.1.4.3 Niveles de tratamiento de agua residual

En los estudios de planificación para la implementación del tratamiento de aguas residuales, se deben abordar claramente los siguientes puntos:

- Estudios de impacto ambiental en el cuerpo receptor.
- Objetivos de tratamiento.
- Nivel de tratamiento y eficiencias de eliminación.

Los estudios de impacto ambiental son necesarios para evaluar el cumplimiento de los estándares del cuerpo receptor, que dependen de la legislación específica sobre calidad del efluente. (Von Sperling, 2007)

En la Tabla 2.3 se presenta la clasificación de los niveles de tratamiento de aguas residuales:

Tabla 2.3. Clasificación de los niveles de tratamiento de aguas residuales.

Nivel	Eliminación	Eficiencias de	Mecanismo
IAIACI	Lillillacion	eliminación	de
		eminiacion	tratamiento
Ductuatamianta	Cálidas amusasa an		predominante
Pretratamiento	Sólidos gruesos en		Físico
	suspensión (material más		
	grande y arena)	22	
Primario	Sólidos en suspensión	SS: 60-70%	Físico
	sedimentables	DBO: 25-40%	
	DBO particulada (en	Coliformes: 30-40%	
	suspensión) (asociada a la		
	materia orgánica de los		
	sólidos en suspensión		
	sedimentables)		
Secundario	DBO particulada (en	SS: 65-95%	Biológico
	suspensión) (asociada a la	DBO:60-99%	
	materia orgánica particulada	Coliformes: 60-99%	
	presente en las aguas		
	residuales crudas o a la		
	materia orgánica particulada		
	no sedimentable que no fue		
	eliminada en el tratamiento		
	primario, si existió)		
	DBO soluble (asociada a la		
	materia orgánica en forma de		
	sólidos disueltos		
Terciario	Nutrientes		
	Organismos patógenos		
	Compuestos no		
	biodegradables		
	Metales		
	Sólidos disueltos inorgánicos		
	Sólidos en suspensión		
	restantes		

Nota: Dependiendo del proceso de tratamiento, los nutrientes y patógenos pueden ser eliminados en la etapa secundaria.

2.1.4.4 Eficiencia de remoción

Según Von Sperling, (2007) la eficiencia de remoción de un contaminante en el tratamiento o en una etapa de tratamiento se da mediante la fórmula:

$$E = \frac{Co}{Ce} * 100$$

Donde:

E: Eficiencia de remoción (%)

Co: Concentración del contaminante en el afluente (mg/L)

Ce: Concentración del contaminante en el efluente (mg/L)

2.1.4.5 Operaciones, procesos y sistemas de tratamiento de aguas residuales

Von Sperling, (2007), menciona que los métodos de tratamiento se componen de operaciones unitarias y procesos, cuya integración forma los sistemas de tratamiento. Los términos "operaciones unitarias" y "procesos unitarios" se utilizan a menudo de manera intercambiable, ya que pueden ocurrir simultáneamente en una misma unidad de tratamiento. Las operaciones o procesos son los siguientes:

- Operaciones unitarias físicas: Métodos de tratamiento donde predominan fuerzas físicas (ej. tamizado, mezcla, sedimentación).
- **Procesos unitarios químicos:** Métodos donde se eliminan o convierten contaminantes mediante productos químicos (ej. precipitación, desinfección).
- **Procesos unitarios biológicos:** Métodos donde la eliminación de contaminantes se realiza mediante actividad biológica (ej. eliminación de materia orgánica).

A continuación, se presenta los diferentes mecanismos que pueden actuar en la eliminación de contaminantes (Tabla 2.4):

Tabla 2.4. Mecanismos para eliminación de contaminantes.

CONTAMINANTE	SUBDIVISIÓN	PRINCIPALES MECANISMOS DE ELIMINACIÓN
Solidos	Solidos gruesos (> ~1 cm)	Tamizado: retención de sólidos mayores que el espacio entre las barras.

	Solidos en suspensión (>	Sedimentación: separación de partículas
	~1 µm)	con densidad mayor que
	, ,	las aguas residuales.
	Cálidas disvoltas (4	Adsorción: retención en la
	Sólidos disueltos (< ~1	superficie de flóculos de
	μm)	biomasa o biofilmes.
		Sedimentación:
		separación de partículas
		con densidad mayor que
		las aguas residuales.
		Adsorción: retención en la
		superficie de flóculos de
		biomasa o biofilmes
	DBO en suspensión	Hidrolisis: conversión de
	(particulada) (> ~1 μm)	DBO en suspensión a
		DBO soluble mediante
		enzimas.
Materia orgánica		Estabilización: utilización
iviateria organica		por la biomasa como
		alimento, convirtiéndola
		en gases, agua y otros
		compuestos inertes.
		Adsorción: retención en la
		superficie de flóculos de
		biomasa o biofilmes.
	DBO soluble (< ~1 µm)	Estabilización: utilización
	220 Soluble (C 1 pill)	por la biomasa como
		alimento, convirtiéndola
		en gases, agua y otros
		compuestos inertes.

	Dimensiones mayores y/o con capa protectora (quistes de protozoos y huevos de helmintos)	Sedimentación: separación de patógenos con dimensiones mayores y densidad mayor que las aguas residuales. Filtración: retención de patógenos en un medio filtrante con tamaño de poro adecuado.
Patógenos	Dimensiones menores (bacterias y virus)	Condiciones ambientales adversas: temperatura, pH, falta de alimento, competencia y depredación. Radiación ultravioleta: radiación del sol o artificial. Desinfección: adición de un agente desinfectante, como el cloro.
	Nitrógeno orgánico	Amonificación: conversión de nitrógeno orgánico en amoníaco.
Nitrógeno	Amoníaco	Nitrificación: conversión de amoníaco en nitrito y luego en nitrato por bacterias nitrificantes. Asimilación bacteriana: incorporación de amoníaco en la composición de las células bacterianas.

		Stripping: liberación de
		amoníaco libre (NH3) a la
		atmósfera en condiciones
		de pH alto.
		Cloración de ruptura:
		conversión de amoníaco
		en cloraminas mediante la
		adición de cloro.
		Desnitrificación:
		conversión de nitrato en
	Nitrato	nitrógeno molecular (N2),
	Milialo	que escapa a la
		atmósfera en condiciones
		anóxicas.
		Asimilación bacteriana:
		asimilación del fosfato en
		exceso por organismos
		acumuladores de fosfato
		al alternar condiciones
		aerobias y anaerobias.
		Precipitación:
Fósforo	Fosfato	precipitación de fósforo
Posioio	Fosialo	bajo condiciones de pH
		alto o mediante la adición
		de sales metálicas.
		Filtración: retención de
		biomasa rica en fósforo
		después de la etapa de
		asimilación biológica
		excesiva de P.

Además, en la Tabla 2.5, se presenta los principales procesos, operaciones y sistemas de tratamiento utilizados para el tratamiento de aguas residuales domésticas, según el contaminante a eliminar:

Tabla 2.5.Principales procesos, operaciones y sistemas de tratamiento de aguas residuales domésticas.

CONTAMINANTE	OPERACIÓN, PROCESO O SISTEMA
CONTAMINANTE	DE TRATAMIENTO
	Tamizado
Sólidos en	Eliminación de arena
suspensión	Sedimentación
	Disposición en tierra
	Lagunas de estabilización y variantes
Materia orgánica	Disposición en tierra
biodegradable	Reactores anaerobios
J	Lodos activados y variantes
	Reactores de biofilm aerobio
	Lagunas de maduración
	Disposición en tierra
Organismos patógenos	Desinfección con productos químicos
paragamas	Desinfección con radiación ultravioleta
	Membranas
	Nitrificación y desnitrificación
Nitrógeno	Lagunas de maduración y de alta tasa
Ü	Disposición en tierra
	Procesos físico-químicos
	Eliminación biológica
Fósforo	Lagunas de maduración y de alta tasa
	Procesos físico-químicos

En la Tabla 2.6 se presentan los principales sistemas biológicos de tratamiento de aguas residuales:

Tabla 2.6. Principales sistemas biológicos de tratamiento de aguas residuales.

LAGUNAS DE ESTABILIZACIÓN		
	Las aguas residuales se tratan en un estanque donde	
Lawrence	permanecen varios días. Bacterias aeróbicas estabilizan la	
Laguna Facultativa	DBO soluble y en suspensión, mientras que la DBO	
Facultativa	sedimentada se descompone de manera anaeróbica en el	
	fondo. El oxígeno proviene de las algas.	
Laguna	Un estanque anaeróbico elimina entre el 50% y el 65% de	
Laguna Anaeróbico -	la DBO, y el resto se trata en un estanque facultativo. Este	
Facultativo	sistema requiere menos área que un estanque facultativo	
1 acuitativo	individual.	
Laguna	Funciona de manera similar a un estanque facultativo, pero	
Facultativa	el oxígeno es suministrado por aeradores mecánicos. La	
Aireada	biomasa sedimentada se descompone de forma	
Alleada	anaeróbica en el fondo.	
	La alta energía de mezcla mantiene la biomasa dispersa, lo	
Laguna Aireada	que aumenta la eficiencia de eliminación de DBO. Se	
de Mezcla	requiere un estanque de sedimentación posterior para	
Completa	eliminar sólidos, y los lodos deben retirarse	
	periódicamente.	
	Estos estanques optimizan la producción de algas y	
Laguna de Alta	mantienen un ambiente aeróbico. Se utilizan profundidades	
Tasa	bajas para permitir una mayor penetración de luz, lo que	
Tasa	incrementa la actividad fotosintética y la eliminación de	
	patógenos y nutrientes.	
	Su función principal es la eliminación de patógenos.	
Lagunas de	Utilizan condiciones adversas como radiación UV, pH alto,	
Maduración	oxígeno disuelto y depredación para eliminar organismos	
dañinos.		
DISPOSICIÓN EN TERRENOS		

Sistema de Baja Tasa reutilización en cultivos. Las aguas residuales se aplican al suelo, donde se evaporan, infiltran o son absorbidas por las plantas. Se aplica en cuencas poco profundas y permite la infiltración rápida del líquido. Requiere pausas para que el suelo descanse. Infiltración Subterránea Aguas residuales predecantadas se filtran bajo la superficie a través de trincheras o cámaras llenas de material poroso. Las aguas fluyen por laderas vegetadas donde son tratadas por el sistema raíz-suelo antes de ser recogidas en zanjas. Utilizan cuencas poco profundas con plantas acuáticas. Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico gos de fluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de eliminarlo.		Diseñado para el tratamiento de aguas residuales o		
Infiltración Rápida Infiltración Rápida Infiltración Rápida Infiltración Subterránea Infiltración Aguas residuales predecantadas se filtran bajo la superficie a través de trincheras o cámaras llenas de material poroso. Infiltración Las aguas fluyen por laderas vegetadas donde son tratadas por el sistema raíz-suelo antes de ser recogidas en zanjas. Utilizan cuencas poco profundas con plantas acuáticas. Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. Infiltración SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico - Post- tratamiento Infiltración rápida del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Sistema de	reutilización en cultivos. Las aguas residuales se aplican al		
Infiltración Rápida Se aplica en cuencas poco profundas y permite la infiltración rápida del líquido. Requiere pausas para que el suelo descanse. Infiltración Subterránea Aguas residuales predecantadas se filtran bajo la superficie a través de trincheras o cámaras llenas de material poroso. Las aguas fluyen por laderas vegetadas donde son tratadas por el sistema raíz-suelo antes de ser recogidas en zanjas. Utilizan cuencas poco profundas con plantas acuáticas. Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico - Post- tratamiento mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Baja Tasa	suelo, donde se evaporan, infiltran o son absorbidas por las		
Infiltración Rápida infiltración rápida del líquido. Requiere pausas para que el suelo descanse. Infiltración Subterránea Aguas residuales predecantadas se filtran bajo la superficie a través de trincheras o cámaras llenas de material poroso. Las aguas fluyen por laderas vegetadas donde son tratadas por el sistema raíz-suelo antes de ser recogidas en zanjas. Humedales Construidos Utilizan cuencas poco profundas con plantas acuáticas. Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Reactor UASB Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de		plantas.		
Infiltración rápida del líquido. Requiere pausas para que el suelo descanse. Infiltración Subterránea Aguas residuales predecantadas se filtran bajo la superficie a través de trincheras o cámaras llenas de material poroso. Las aguas fluyen por laderas vegetadas donde son tratadas por el sistema raíz-suelo antes de ser recogidas en zanjas. Utilizan cuencas poco profundas con plantas acuáticas. Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterías. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico - Post- tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Infiltración	Se aplica en cuencas poco profundas y permite la		
Infiltración Subterránea Aguas residuales predecantadas se filtran bajo la superficie a través de trincheras o cámaras llenas de material poroso. Las aguas fluyen por laderas vegetadas donde son tratadas por el sistema raíz-suelo antes de ser recogidas en zanjas. Utilizan cuencas poco profundas con plantas acuáticas. Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico Post- tratamiento Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de		infiltración rápida del líquido. Requiere pausas para que el		
Subterránea a través de trincheras o cámaras llenas de material poroso. Las aguas fluyen por laderas vegetadas donde son tratadas por el sistema raíz-suelo antes de ser recogidas en zanjas. Humedales Construidos Humedales Construidos Utilizan cuencas poco profundas con plantas acuáticas. Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Каріца	suelo descanse.		
Las aguas fluyen por laderas vegetadas donde son tratadas por el sistema raíz-suelo antes de ser recogidas en zanjas. Humedales Construidos	Infiltración	Aguas residuales predecantadas se filtran bajo la superficie		
Flujo Superficial Humedales Construidos Convencionales Construidos Cutilizan cuencas poco profundas con plantas acuáticas. Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Subterránea	a través de trincheras o cámaras llenas de material poroso.		
Humedales Construidos Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico - Post- mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de		Las aguas fluyen por laderas vegetadas donde son		
Humedales Construidos Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico - Post- tratamiento Post- tratamiento LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Flujo Superficial	tratadas por el sistema raíz-suelo antes de ser recogidas		
Humedales Construidos Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico - Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de		en zanjas.		
Pueden ser de superficie libre o subsuperficial. Tratan las aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico - Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Humodoloo	Utilizan cuencas poco profundas con plantas acuáticas.		
aguas mediante mecanismos biológicos, químicos y físicos. SISTEMAS ANAEROBICOS Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico - Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Pueden ser de superficie libre o subsuperficial.			
Reactor UASB Un reactor anaeróbico donde la DBO es convertida por bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico - Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Construidos	aguas mediante mecanismos biológicos, químicos y físicos.		
Reactor UASB bacterias. Produce metano y tiene baja generación de lodos. El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico - Post- tratamiento LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de		SISTEMAS ANAEROBICOS		
Filtro Anaeróbico Reactor Anaeróbico - Post- tratamiento Lodos Activados Convencionales Filtro Filtro El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de		Un reactor anaeróbico donde la DBO es convertida por		
Filtro Anaeróbico Anaeróbico Sedimentación primaria y el lodo producido está estabilizado. Reactor Anaeróbico - Post- tratamiento Lodos Activados Convencionales El proceso anaeróbico se lleva a cabo en un medio de soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Reactor UASB	bacterias. Produce metano y tiene baja generación de		
Filtro soporte donde crecen las bacterias. Se requiere sedimentación primaria y el lodo producido está estabilizado. Reactor Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de		lodos.		
Anaeróbico Reactor Anaeróbico - Post- tratamiento LODOS ACTIVADOS Lodos Activados Convencionales Sedimentación primaria y el lodo producido está estabilizado. Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de		El proceso anaeróbico se lleva a cabo en un medio de		
Reactor Anaeróbico - Post- tratamiento LODOS ACTIVADOS Lodos Activados Convencionales Reactor Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Filtro	soporte donde crecen las bacterias. Se requiere		
Reactor Anaeróbico - Post- tratamiento LODOS ACTIVADOS Lodos Activados Convencionales Combina tratamiento biológico o físico-químico para mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Anaeróbico	sedimentación primaria y el lodo producido está		
Anaeróbico - Post- tratamiento Convencionales Mejorar la calidad del efluente después de un reactor anaeróbico, reduciendo la necesidad de terreno, energía y volumen. LODOS ACTIVADOS Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de		estabilizado.		
Post- tratamiento LODOS ACTIVADOS Lodos Activados Convencionales Activados Convencionales Anaeróbico, reduciendo la necesidad de terreno, energía y volumen. Volumen. Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Reactor	Combina tratamiento biológico o físico-químico para		
tratamiento LODOS ACTIVADOS Lodos Activados Convencionales Volumen. Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Anaeróbico -	mejorar la calidad del efluente después de un reactor		
Lodos Activados Convencionales Lodos Activados Convencionales Lodos Activados Convencionales Lodos Activados Se requiere estabilizar el exceso de lodo antes de	Post-	anaeróbico, reduciendo la necesidad de terreno, energía y		
Lodos Activados Convencionales Utilizan un tanque de aireación y un tanque de sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	tratamiento	volumen.		
Lodos Activados Convencionales Activados Convencionales Activados Se requiere estabilizar el exceso de lodo antes de	LODOS ACTIVADOS			
Activados Convencionales sedimentación secundaria, con recirculación de biomasa. Se requiere estabilizar el exceso de lodo antes de	Lodos	Utilizan un tanque de aireación y un tanque de		
Se requiere estabilizar el exceso de lodo antes de Convencionales		sedimentación secundaria, con recirculación de biomasa.		
		Se requiere estabilizar el exceso de lodo antes de		
	Conventionales	eliminarlo.		

Lodos Activados (Aeración Extendida) Lodos	Similar a los lodos activados convencionales, pero con mayor tiempo de retención, lo que estabiliza el lodo en exceso. No se requiere sedimentación primaria.
Activados (Reactores Secuenciales)	El sistema opera en fases intermitentes de aireación y sedimentación dentro del mismo tanque, eliminando la necesidad de tanques secundarios.
Lodos Activados con Eliminación de Nitrógeno	Incorpora una zona anóxica donde los microorganismos reducen los nitratos a nitrógeno gaseoso, que es liberado a la atmósfera.
Eliminación de	Añade una zona anaeróbica al reactor biológico para
Nitrógeno y	facilitar la absorción de fósforo por microorganismos, lo que
Fósforo	permite su eliminación a través del lodo en exceso.
R	REACTORES DE BIOPELICULA AEROBICA
Filtro	Las bacterias crecen en un medio de soporte y estabilizan
Percolador de	la DBO de manera aeróbica. Los lodos desprendidos son
Baja Tasa	eliminados en un tanque de sedimentación secundaria.
Filtro	Se aplica una mayor carga de DBO. El exceso de bacterias
Percolador de	es estabilizado en la etapa de tratamiento de lodos y el
Alta Tasa	efluente se recircula para diluir el influente.
	Un tanque lleno de material poroso permite el flujo continuo
Biofiltro Aireado	de aguas residuales y aire. Actúa tanto como filtro como
Sumergido	medio de soporte para la biomasa. Se requiere limpieza
	periódica del material poroso.
Contacto	Utiliza discos rotativos parcialmente sumergidos en el agua
Biológico	donde crecen las bacterias. Estos discos alternan su
Rotativo	
(Biodisco)	exposición al agua y al aire para facilitar el tratamiento.

2.2 Marco Metodológico

El desarrollo de la metodología se realizará mediante el método en "Cascada". En este enfoque, las fases del proyecto se realizan en un orden específico y no se pasa a la siguiente etapa hasta que la anterior se haya completado y aprobado. En tal sentido, en la llustración 2.4 se presenta la metodología aplicada para el desarrollo del proyecto:

Ilustración 2.4. Metodología aplicada para el desarrollo del proyecto

2.2.1 Determinación del área de estudio

La implementación de este proyecto beneficiará exclusivamente a las comunidades Pueblo Nuevo, Pampa Negra, La Dolorosa y Bellavista (Ilustración 2.5), beneficiando a 655 personas de la parroquia San Cristóbal (GAD parroquial de San Cristóbal, 2015)

El área de influencia abarcará 167.26 hectáreas y la red de alcantarillado se trazarán por las calles que atraviesan la comunidad. Las tuberías transportarán las aguas residuales hacia un sistema de saneamiento, desde donde serán finalmente descargadas en las fuentes naturales posterior a su tratamiento.

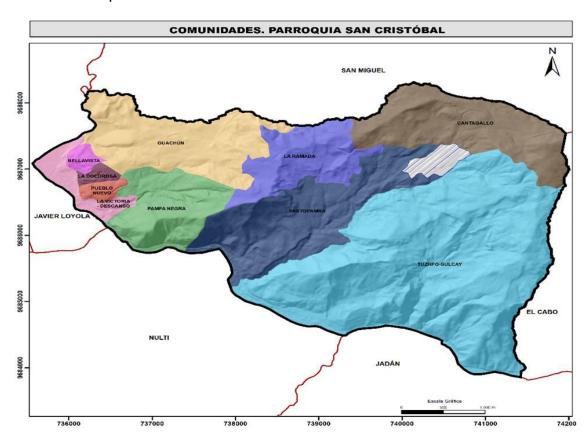


Ilustración 2.5. Ubicación de la zona de estudio (Fuente: GAD parroquial de San Cristóbal)

2.2.2 Recopilación de información secundario

En el año 2020, el GAD municipal del cantón Paute realizo una consultoría denominada "ESTUDIO SOCIO ECONÓMICO DEL SISTEMA DE AGUA POTABLE DEL SISTEMA DEL GAD MUNICIPAL EN SAN CRISTOBAL", donde se realizó un diagnóstico de las condiciones tanto del sistema de agua potable de la parroquia San Cristóbal.

Además, el GAD municipal de Paute aporto con información necesaria con la finalidad de realizar la caracterización socioeconómica de la población beneficiada y también con la topografía de la zona de estudio.

Por otra parte, del plan de desarrollo y ordenamiento territorial del cantón Paute y de la parroquia San Cristóbal se ha obtenido información y recursos informativos, tales como: cartas topográficas, mapas geográficos y datos climatológicos.

2.2.3 Diagnóstico del saneamiento actual

En el contexto de los objetivos establecidos en el proyecto, se llevó a cabo un diagnóstico del sistema de alcantarillado y saneamiento actual en la parroquia. Para ello, se realizaron encuestas Anexo 1 y entrevistas con los usuarios, enfocándose en la eficiencia del sistema y en las principales problemáticas. Asimismo, se realizaron múltiples visitas de campo para identificar las deficiencias del sistema. Los resultados obtenidos se consideraron para realizar el diseño de la red de alcantarillado y la planta de tratamiento de aguas residuales (PTAR), con el objetivo de que se adapte a las condiciones del lugar.

2.2.4 Configuración de los sistemas de alcantarillado

El diseño de las redes de alcantarillado se realiza considerando los criterios de sistemas descentralizados, se contempla el uso de sistemas de alcantarillado simplificado y alcantarillado convencional, aprovechando la configuración de calles de las comunidades.

2.2.4.1 Trazado de la red de alcantarillado

El trazado de las redes de alcantarillado se realiza de manera técnica y económica, de acuerdo con la configuración topográfica, para que las aguas residuales de la comunidad sigan el recorrido más rápido hacia la planta de tratamiento, implicando la menor profundización de las tuberías en el terreno. De esta manera se establecen 2 sistemas de saneamiento descentralizado (Ilustración 2.6):

- Sistema 1: recoge las aguas residuales de las comunidades de Pueblo Nuevo y Pampa Negra, Ilustración 2.7.
- Sistema 2: servirá a las comunidades de La Dolorosa y Bellavista, Ilustración 2.8.

Esta estrategia de división en dos sistemas permite una gestión más eficiente y sostenible del alcantarillado, adaptándose a las características particulares de cada sector.

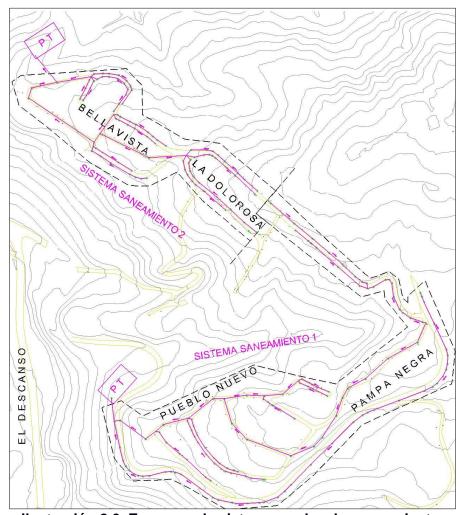


Ilustración 2.6. Esquema de sistemas redes de saneamiento.

Se dispone de redes de alcantarillado simplificado RAS en los tramos iniciales del sistema, que descargan a pozos de revisión, el transporte de aguas residuales continua por redes de alcantarillado convencional, hasta llegar a la planta de tratamiento, llustración 2.9. El uso de sistemas de alcantarillado simplificado se adaptó a la configuración irregular del trazado de calles de las comunidades servidas, con la ventaja que permite reducir el diámetro de colectores y reducir el número de pozos de revisión o sustituirlos por estructuras más económicas como cajas de registro.

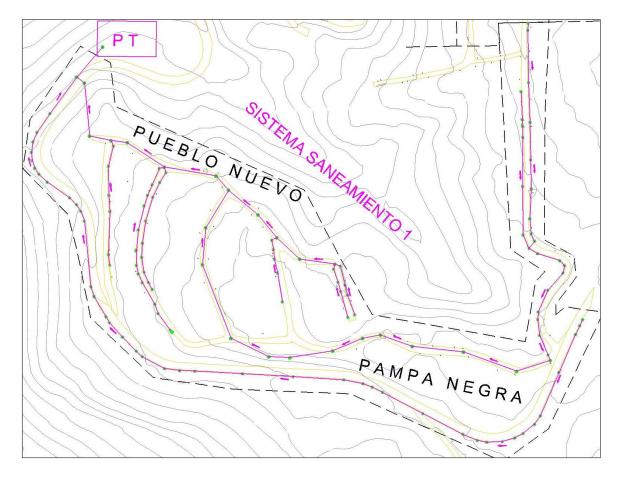


Ilustración 2.7. Figura. Esquema redes del sistema 1 comunidades Pueblo Nuevo y Pampa Negra.

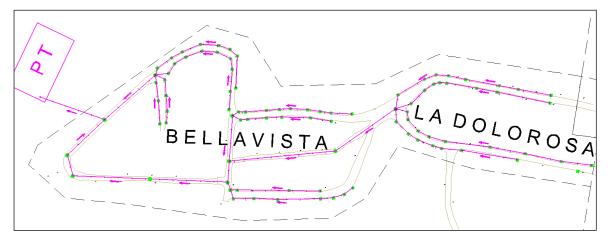


Ilustración 2.8. Figura. Esquema redes del sistema 2 comunidades La Dolorosa y Bellavista.

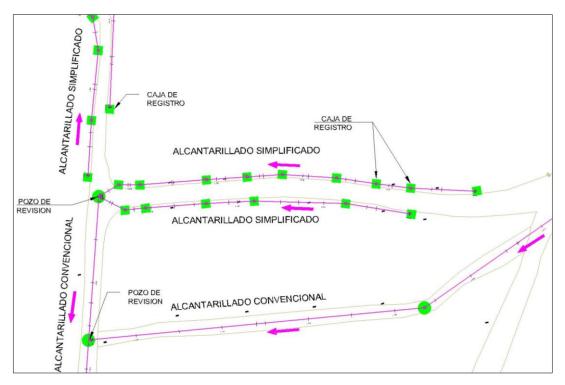


Ilustración 2.9. Configuración de alcantarillado simplificado y convencional.

2.2.5 Caudal de diseño

2.2.5.1 Determinación del periodo de diseño

El periodo de diseño de la red de alcantarillado se determinó considerando varios factores clave, como la proyección del crecimiento poblacional, la durabilidad de los materiales, posibles cambios en normativas y tecnologías, condiciones ambientales, requerimientos de mantenimiento, costos y presupuesto, así como el análisis de riesgos. Se evaluaron estos aspectos para asegurar que el sistema pueda satisfacer la demanda presente y futura, garantizando su eficacia y sostenibilidad a lo largo de su vida útil.

2.2.5.2 Determinación de la población de diseño

La proyección de la población al final del periodo de diseño se llevará a cabo mediante modelos matemáticos que estiman el crecimiento poblacional a lo largo del tiempo. La selección del modelo matemático a utilizar dependerá de los datos disponibles de los censos más recientes y de otros estudios demográficos realizados en la comunidad.

2.2.5.2.1 Índice de crecimiento

Para la estimación de la población futura de las comunidades en estudio se utiliza el índice de crecimiento poblacional de la parroquia San Cristóbal, debido a que son los

únicos datos que se pueden obtener del INEC. Una vez obtenido el índice de crecimiento poblacional se puede obtener la población futura para las comunidades Pampa Negra, Pueblo Nuevo, La Dolorosa y Bellavista.

2.2.5.2.2 Cálculo de la población futura

El cálculo de la población futura para el diseño de un sistema de alcantarillado en el sector para el que se realizan los estudios se realiza mediante los métodos matemático y geométrico.

Método aritmético

Banguero, (2005) indica que el método aritmético es completamente teórico, lo cual significa que, si el crecimiento de la población es constante e independiente del tamaño, su ecuación determina una gráfica lineal.

$$r = \frac{P_2 - P_1}{P_1 * t} \qquad \dots (2)$$

Donde:

r: Tasa de crecimiento.

Pd: Población al final del periodo de diseño.

Pa: Población inicial.

t: Periodo de análisis

Método geométrico

Banguero, (2005) indica que el crecimiento poblacional es geométrico, si el aumento de la población es proporcional al tamaño, manteniéndose su tasa de crecimiento constante en el tiempo. Este método conduce a estimaciones más elevadas que el método aritmético o lineal.

$$r = (P_2 - P_1)^{\left(\frac{1}{n}\right)} - 1$$
 ... (4)

Donde:

r: Tasa de crecimiento geométrico.

Pd: Población al final del periodo de diseño.

Pa: Población inicial.

n: Período de análisis (años)

2.2.5.3 Determinación del caudal de diseño

2.2.5.3.1 Caudal domiciliar (Q_{dom})

Según la Comisión Nacional del Agua (CONAGUA, 2015), el caudal domiciliario se calcula utilizando la siguiente ecuación:

$$Q_{dom} = \frac{Dot * R * Hab}{86400} \qquad \dots (5)$$

Donde:

Qdom: Caudal doméstico (L/s).

Dot: Dotación neta de agua por habitantes (L/hab/día).

Hab: Población futura (hab)

R: Coeficiente de retorno

• Determinación de dotaciones por consumo de agua

La dotación de agua potable para una determinada población es función principalmente de: nivel de vida, clima, condiciones socioeconómicas, productividad, facilidad de drenaje, calidad de agua, fuentes cercanas, entre otros (Alvarado, 2015).

A partir del año 2005, para la ciudad de Cuenca, la empresa pública de telecomunicaciones, agua potable y alcantarillado (ETAPA EP, s/f) definió las dotaciones mínimas para los diferentes tipos de población, mismas que se muestran en la siguiente Tabla 2.7:

Tabla 2.7. Dotaciones recomendadas. (Fuente: Etapa EP, s/f)

DOTACIONES RECOMENDADAS			
POBLACIÓN CLIMA		DOTACIÓN MEDIA FUTURA	
HABITANTES		l/hab/día	
	Frío	120-150	
Hasta 5000	Templado	130-160	
	Cálido	170-200	
	Frío	180-200	
5000 a 50000	Templado	190-220	

	Cálido	200-230
	Frío	Mayor a 200
Más de 50000	Templado	Mayor a 220
	Cálido	Mayor a 230

Variaciones de la demanda o factor de retorno

En las viviendas, el agua potable se utiliza para varios propósitos, como la preparación de alimentos, el lavado de utensilios y ropa, la limpieza del hogar, el aseo personal y la eliminación de excretas, entre otros. Se estima que no toda el agua potable consumida se dirige al sistema de alcantarillado. Arocha Ravelo, (1983), establece un coeficiente de 0.80, sin embargo, ETAPA EP, (s/f) menciona que se debe emplear 0.80 para áreas urbanas, debido a que una parte significativa del agua se utiliza para fines no domésticos, mientras que para las zonas dispersas y centros parroquiales se establece un coeficiente de 0.90. En este caso se escoge un coeficiente de 0.90 por ser en zona rural.

2.2.5.3.2 Caudal de infiltración

Dado el tipo de suelo, López (2010) indica un valor de 0.5 l/s/km para áreas con baja infiltración. Además, propone una infiltración de 0.05 l/s/ha por área drenada, un valor que se considera más representativo para cada tramo y es consistente con los valores de infiltración por longitud de tubería.

El caudal de infiltración se calcula utilizando la siguiente ecuación:

$$Q_{inf} = 0.05 * A$$
 ... (6)

Donde:

Qinf: Caudal de infiltración (L/s).

A: área (ha).

2.2.5.3.3 Caudal de aguas ilícitas

San Cristóbal se considera una zona con baja complejidad, por lo tanto, se adopta un valor de 0.02 l/s-ha obtenido de la Tabla 2.1.

El caudal de conexiones ilícitas se calcula mediante la siguiente ecuación:

Donde:

Qind: Caudal de aguas ilicitas (L/s).

Ap: Aporte (l/s-ha).

A: área (ha).

2.2.5.3.4 Caudal de aportes especiales

En el sitio de estudio, no existen estos aportes, además, según el GAD parroquial de San

Cristóbal, (2015) no se tienen planificados espacios para la implementación de los

mismos; por lo que no se consideran aportes especiales dentro de la red de

alcantarillado.

2.2.5.4 Caudal medio diario de aguas residuales (Q_d)

Según Comisión Nacional del Agua (CONAGUA, 2015), el caudal medio de aguas

residuales es la resultante de sumar los caudales: domiciliar, de infiltración, aguas ilícitas,

y aportes especiales.

 $Q_d = Q_{dom} + Q_{inf} + Q_{ind} + Q_{esp}$... (8)

Donde:

Qd: Caudal de diseño

Qdom: Caudal domiciliar

Qinf: Caudal de infiltración

Qind: Caudal de aguas ilícitas

Qesp: Caudal debido a aportes especiales

2.2.5.5 Caudal máximo horario de aguas residuales (Q_{max})

Según Comisión Nacional del Agua (CONAGUA, 2015) este caudal se lo determina a

partir del factor de mayoración del caudal medio diario de aguas residuales, el mismo

que se selecciona de acuerdo a las características de la población.

 $Q_{max} = Q_d * k$... (9)

Donde:

Qmax: Caudal máximo horario de aguas residuales

Qd: Caudal medio diario de aguas residuales

k: Factor de mayoración

2.2.5.5.1 Factor de mayoración

Harmon, (1948) indica lo siguiente:

50

- Para poblaciones pequeñas (hasta 5,000 habitantes): El factor de mayoración es más alto, generalmente entre 2.5 y 3.5, debido a una mayor variabilidad en los consumos.
- Para poblaciones medianas (de 5,000 a 50,000 habitantes): El factor comienza a estabilizarse y varía entre 1.8 y 2.5.
- Para poblaciones grandes (más de 50,000 habitantes): El factor disminuye considerablemente, situándose entre 1.2 y 1.8, ya que el consumo es más uniforme en comunidades más grandes.

2.2.6 Diseño de la planta de tratamiento de aguas residuales (PTAR)

2.2.6.1 Determinación de las características del agua residual

Se realizaron pruebas de laboratorio de las aguas residuales crudas de dos puntos: 1) pozo de alcantarillado de la cabecera parroquial de San Cristóbal (Ilustración 2.10) y 2) descarga directa a una fuente natural (Ilustración 2.11), con los resultados se determinó las concentraciones de contaminantes como DBO, DQO, Solidos suspendidos totales, Nitratos, Nitritos, pH, Turbiedad, fosforo total y coliformes totales.

Ilustración 2.10. Punto de obtención de muestra de un pozo de alcantarillado

Ilustración 2.11. Punto de obtención de muestra de descarga directa a una fuente natural

Esto permitió identificar los tipos de contaminantes predominantes, lo que ayudo a seleccionar las tecnologías de tratamiento más adecuadas.

2.2.6.2 Análisis normativo

Se revisó el Texto unificado de legislación secundaria de medio ambiente (TULSMA) en su capítulo donde se encuentra los límites máximos permisibles para la descarga de aguas residuales tratadas a cuerpos de agua dulce, según los diferentes parámetros de calidad (Tabla 2.8):

Tabla 2.8. Límites máximos permisibles para la descarga de aguas residuales tratadas a cuerpos de agua dulce (Fuente: Ministerio del ambiente, 2015)

Límite de descarga a un cuerpo de agua dulce			
Parámetro	Unidad	Límite máximo permisible	
Aceites y Grasas (sustancias solubles en hexano)	mg/L	0,3	
Alkil mercurio	mg/L	No detectable	

Aldehídos	mg/L	2,0
Aluminio (Al)	mg/L	5,0
Arsénico total (As)	mg/L	0,1
Bario (Ba)	mg/L	2,0
Boro total (B)	mg/L	2,0
Cadmio (Cd)	mg/L	0,02
Cianuro total (CN ⁻)	mg/L	0,1
Cloro activo (CI)	mg/L	0,5
Cloroformo (Extracto carbón cloroformo)	mg/L	0,1
Cloruros (Cl ⁻)	mg/L	1,000
Cobre (Cu)	mg/L	1,0
Cobalto (Co)	mg/L	0,5
Coliformes Fecales	NMP/100 mL	Remoción > al 99,9%
Color real	Unidades de	Inapreciable en
Color real	color	dilución 1/20
Compuestos fenólicos (Fenol)	mg/L	0,2
Cromo hexavalente (Cr ⁶⁺)	mg/L	0,5
Demanda Bioquímica de Oxígeno (DBO ₅)	mg/L	100
Demanda Química de Oxígeno (DQO)	mg/L	250
Dicloroetileno	mg/L	1,0
Estaño (Sn)	mg/L	5,0
Fluoruros (F)	mg/L	5,0
Fósforo Total (P)	mg/L	10
Hierro total (Fe)	mg/L	10,0
Hidrocarburos Totales de Petróleo (TPH)	mg/L	20,0
Manganeso total (Mn)	mg/L	2,0
Materia flotante visibles	-	Ausencia
Mercurio total (Hg)	mg/L	0,005
Níquel (Ni)	mg/L	2,0

Nitratos + Nitritos (Nitrógeno)	mg/L	10,0
Nitrógeno Total Kjeldahl (N)	mg/L	15,00
Organoclorados totales	mg/L	0,05
Organofosforados totales	mg/L	0,1
Plata (Ag)	mg/L	0,1
Plomo (Pb)	mg/L	0,2
Potencial de hidrógeno (pH)	-	Entre 4-5
Selenio (Se)	mg/L	0,1
Sólidos Sedimentables	ml/L	1,0
Sólidos Suspendidos Totales (SST)	mg/L	100
Sólidos Totales	mg/L	1,600
Sulfats (SO ₄ ²⁻)	mg/L	1000
Sulfitos (SO ₃ ²⁻)	mg/L	2,0
Sulfuros (S)	mg/L	0,5
Temperatura	°C	< 35
Tensoactivos (sustancias activas al azul de metileno)	mg/L	0,5
Tetracloruro de carbono	mg/L	1,0
Tricloroetileno	mg/L	1,0
Vanadio	mg/L	5,0
Zinc (Zn)	mg/L	5,0

Finalmente, se estableció si el efluente se puede verter en cuerpos de agua, o si se necesita un tratamiento para cumplir con la normativa.

2.2.6.3 Determinación de biodegradabilidad

Se obtuvo la cantidad de materia orgánica e inorgánica contenida en las muestras es susceptible de ser depurada por los microorganismos en cinco días y así se determinó si es necesario un tratamiento mediante sistemas biológicos. Según Ardila Arias et al. (2012), la determinación de biodegradabilidad se obtiene a partir de la relación DBO₅/DQO, los criterios se muestran en la siguiente Tabla 2.9:

Tabla 2.9. Criterios de biodegradabilidad. (Fuente: Ardila Arias et al., 2012)

DBO₅/DQO	Carácter
> 0.8	Muy biodegradable
0.7 – 0.8 Biodegradable	Biodegradable
0.3 – 0.7 Poco biodegradable	Poco biodegradable
< 0.3 No biodegradable	No biodegradable

2.2.6.4 Determinación de eficiencia de tratamiento de aguas residuales

Se determinó la eficiencia de remoción de los contaminantes en cada etapa de tratamiento mediante la fórmula que presenta Von Sperling, (2007) la cual se presenta a continuación:

$$E = \frac{Co - Ce}{Co} * 100 \qquad \dots (10)$$

Donde:

E: Eficiencia de remoción (%)

Co: Concentración del contaminante en el afluente (mg/L)

Ce: Concentración del contaminante en el efluente (mg/L)

2.2.6.5 Selección preliminar de tecnologías

Siguiendo la metodología que presenta Metcalf & Eddy, (2014) una vez caracterizada el agua residual y definidos los objetivos del tratamiento, se realizó una preselección de tecnologías para cada etapa que se detalla a continuación:

2.2.6.5.1 Evaluación técnica preliminar

Se realizó una selección de tres alternativas de trenes de tratamiento, donde se evaluó la capacidad de las tecnologías para cumplir con las metas de calidad del efluente según normativas ambientales, además, se consideró las características topográficas y climáticas del sitio.

2.2.6.5.2 Evaluación técnica detallada

Con base en la preselección, se realizó un análisis técnico detallado para dimensionar y evaluar la viabilidad de cada alternativa seleccionada.

Criterios de diseño y dimensionamiento

o Sistema de lagunas de estabilización

Según la Comisión Nacional del Agua (CONAGUA), (2015) los parámetros de diseño para el dimensionamiento de lagunas de estabilización se presentan a continuación (Tabla 2.10):

Tabla 2.10. Parámetros de diseño para lagunas de estabilización. (Fuente: Comisión Nacional del Agua (CONAGUA), 2015)

LAGUNA ANAERÓBICA			
PARÁMETRO	ECUACIÓN		SIMBOLOGÍA
Carga volumétrica	$\lambda_V = 20 T_{min} - 100$	(11)	T _{min} =Temperatura
$(\lambda_{\scriptscriptstyle ee})$			mínima (°C)
Remoción del	$R_{contaminante} = 2T + 20$	(12)	T _{min} =Temperatura
contaminante			mínima (°C)
(R _{contaminante})			
Volumen de laguna	$V_a = \frac{C_0 \ Q_m}{\lambda_{tt}}$	(13)	C ₀ = Concentración del
para remoción de	λ_V	(10)	contaminante (mg/l)
contaminante (V _a)			Q _m =Caudal medio (l/s)
			λ _v = Carga volumétrica
			(g/m³ d)
Área de laguna	$A_a = \frac{V_a}{D_a}$	(14)	V _a = Volumen de laguna
(A _a)	D_a	(11)	(m³)
			D _a = Altura (m)
Tiempo de	$TRH_a = \frac{S_O}{2\pi}$	(15)	C ₀ = Concentración del
retención	λv	(20)	contaminante (mg/l)
hidráulica (TRH)			λ_{v} = Carga volumetrica
			(g/m ³ d)
Concentración del	$C_{ef} = C_0(1 - R_{contaminante})$	(16)	C ₀ = Concentración del
contaminante en el			contaminante (mg/l)
efluente (C_{ef})			R _{contaminante} = Remoción
			del contaminante
	LAGUNA FACULTATIV	/A	
PARAMETRO	ECUACIÓN		SIMBOLOGÍA

Carga de	$\lambda s = 350 (1.107 - 0.002T)^{T-25}$	(17)	T _{min} =Temperatura
contaminante			mínima (°C)
superficial (λ _s)			
Área de laguna (A _f)	$A_f = 10 \; \frac{C_0 \; Q_m}{\lambda s}$	(18)	C ₀ = Concentración del
	$\lambda r_f = 10 \lambda s$	(10)	contaminante (mg/l)
			Q _m =Caudal medio (l/s)
			λ _s = Carga volumétrica
			(g/m ³ d)
Tiempo de	$TRH_f = \frac{A_f D_f}{O_{\cdots}}$	(19)	A _f =Área de laguna (m²)
retención	Q_m	(1)	D _f =Altura de la laguna(m)
hidráulica (TRH)			Q _m =Caudal medio (l/s)
Concentración de	$K_{1t} = k_{1_{20}} \Theta^{(Tmin-20)}$	(20)	T _{min} =Temperatura
contaminante en la			mínima (°C)
salida (C _{ef})	C_0	(04)	K _{1_20} =Constante para
	$C_{ef} = \frac{C_0}{1 + K_{1t}TRH_f}$	(21)	corrección por
			temperatura (0.1 d ⁻¹)
	$C_{efsinfiltrar} = C_{ef}$	(22)	C ₀ = Concentración del
	, ,		contaminante (mg/l)
	$C_{effiltrado} = 0.3 C_{efsinfiltrar}$	(23)	Θ=Coeficiente de
	Gef j iiiraao Gio Gef sinj iiirar	(=0)	Arrhenius
	LAGUNA MADURACI	ÓN	
PARÁMETRO	ECUACIÓN		SIMBOLOGÍA
Constante cinética	$k = k_{20} \Theta^{T-20}$	(24)	K _{1_20} =Constante para
(k)			corrección por
			temperatura (2.6 d ⁻¹)
			Θ=Coeficiente de
			Arrhenius
Tiempo de	$TRH = \frac{1}{k} \ln \frac{C_0}{C_{ef}}$	(25)	K=Constante cinética (d¹)
retención	$k^{m} = k^{m} C_{ef}$	(23)	C ₀ = Concentración del
hidráulica (TRH)			contaminante (mg/l)
			C _{ef} = Concentración
			requerido del
			contaminante a la salida
			(mg/l)

Volumen total (V)	$V = Q_m TRH \qquad \dots (26)$	TRH=Tiempo de
		retención hidráulica
		(días)
		Q _m =Caudal medio (l/s)
Área Total de la	$A = \frac{V}{I} \qquad \dots (27)$	V=volumen total (m ³)
laguna (A)	h = h (27)	h=Altura total de la
		laguna (m)

 Filtros anaeróbicos de flujo ascendente (FAFA) con Humedales subsuperficiales

Para el diseño de sistemas FAFA y los Humedales construidos se siguió la metodología presentada en la Comisión Nacional del Agua (CONAGUA), (2015), tal como se muestra en la Tabla 2.11:

Tabla 2.11. Parámetros de diseño para sistema FAFA con humedales construidos. (Fuente: Comisión Nacional del Agua (CONAGUA), 2015)

FILTROS ANAERÓBICOS DE FLUJO ASCENDENTE (FAFA)		
PARÁMETRO	ECUACIÓN	SIMBOLOGÍA
Cálculo del volumen	$V = \frac{Q_m C_0}{COV} \qquad \dots (28)$	Q _m =Caudal medio
del lecho filtrante (V)	COV	(l/s)
		C ₀ = Concentración
		del contaminante
		(mg/l)
		COV=Carga orgánica
		volumétrica (DBO/m³)
Cálculo del área	$A = \frac{V}{h_m} \qquad \dots (29)$	V= volumen del lecho
superficial del filtro (A)	h_m	filtrante(m ³)
		h _m =Altura del lecho
		filtrante (m)
Cálculo de la carga	$CHS = \frac{Q}{A} \qquad \dots (30)$	Q _m =Caudal medio
hidráulica superficial	CHS = A (30)	(l/s)
(CHS)		

			A= área superficial
			del filtro (m²)
Cálculo de la altura	$H = h_m + b + d$	(31)	h _m =Altura del lecho
total del filtro (H)			filtrante (m)
			b=Borde libre (m)
			d= Altura bajo el dren
			(m)
Cálculo del volumen	$V_t = A H$	(32)	A= área superficial
total del filtro (V _t)			del filtro (m²)
			H=Altura total del
			filtro (m)
Revisión de la carga	$COV = \frac{(Q_m \ C_0)}{V_t}$	(33)	Q _m =Caudal medio
orgánica volumétrica al	V_t	(00)	(l/s)
volumen total del filtro			C ₀ = Concentración
			del contaminante
			(mg/l)
			V _t =Volumen total del
			filtro (m³)
Cálculo del tiempo de	$TRH = \frac{V_t}{Q}$	(34)	Q _m =Caudal medio
retención hidráulica	Q_m	()	(l/s)
(TRH)			V _t =Volumen total del
			filtro (m³)
Cálculo de la eficiencia	$E = 100(1 - 0.87 TRH^{-0.5})$	(35)	TRH= Tiempo de
de remoción (E)			retención hidráulica
			(días)
Cálculo de la	$C_{ef} = C_o - \frac{E C_o}{100}$	(36)	E=Eficiencia de
concentración del	100	(5.5)	remoción (%)
contaminante en el			C ₀ = Concentración
efluente (Cef)			del contaminante
			(mg/l)
HUMEDALES SUBSUPERFICIALES			
PARÁMETRO	ECUACIÓN		SIMBOLOGÍA

Características de	$K_s = 12600 D_g^{1.9}$	(37)	D _g =Tamaña del
medio empaque (ks)			material granular
			(mm)
Ajuste por temperatura	$K_{VT} = K_{T_{20}} \theta^{T-20}$	(38)	K _{T_20} =Constante para
(Kt)			corrección por
			temperatura (d ⁻¹)
			T=Temperatura (°C)
			Θ=Coeficiente de
			Arrhenius
Determinación del área	$A_{s} = \frac{Q_{m}(\ln C_{0} - \ln C_{ef})}{K_{VT}D_{M}n}$	(39)	Q _m =Caudal medio
superficial para	$K_{VT}D_{M}n$	(0)	(l/s)
remoción de			C ₀ = Concentración del
contaminante (As)			contaminante (mg/l)
			C _{ef} = Concentración
			requerido del
			contaminante a la
			salida (mg/l)
			K _{∨T} =Constante
			cinética de primer
			orden (d ⁻¹)
			D _м =Propuesta de
			profundidad del lecho
			(m)
			n=Porosidad
Área para zona inicial	$A_1 = 0.3(A_s)$	(40)	A _s =área superficial
de tratamiento (A ₁)			para remoción de
			contaminante (m²)
Área para zona final de	$A_2 = 0.7(A_s)$	(41)	A _s =área superficial
tratamiento (A ₂)			para remoción de
			contaminante (m²)

Determinación del	$W = (\frac{Q_m A_1}{K_{5.1\%} dh_i D_{W0}})^{0.5}$	(42)	Q _m =Caudal medio
ancho mínimo	$K_{s,1\%}dh_iD_{W0}$	(1=)	(l/s)
necesario (W)			A₁= Área para zona
			inicial de tratamiento
			(m ²)
			K _{s,1%} =Características
			de medio empaque al
			1%
			dhi=Pérdida de carga
			en la zona inicial (m)
			D _{w0} = Propuesta de
			profundidad del agua
			en zona inicial de
			tratamiento (m)
Determinación de la	$L_1 = \frac{A_1}{W}$	(43)	A ₁ = Área para zona
pérdida de carga en la	† W		inicial de tratamiento
zona inicial de			(m²)
tratamiento (L ₁)			W=Ancho mínimo (m)
Verificación de la	$dh_i = \frac{Q_m L_1}{K_{s,1\%} W D_{W0}}$	(44)	Q _m =Caudal medio
pérdida de carga (dhi)	$K_{s,1\%}WD_{W0}$		(l/s)
			L₁=Pérdida de carga
			en la zona inicial de
			tratamiento (m)
			K _{s,1%} =Características
			de medio empaque al
			1%
			W=Ancho mínimo (m)
			D _{w0} = Propuesta de
			profundidad del agua
			en zona inicial de
			tratamiento (m)

Determinación de la	$L_F = \frac{A_2}{W} \qquad \dots (45)$	A ₂ =Área para zona
longitud en la	2 _F W (13)	final de tratamiento
zona final de		(m²)
tratamiento (L _F)		W=Ancho mínimo (m)
Determinación de la	$dh_F = \frac{Q_m L_F}{K_{5.10\%} W D_{WF}} \qquad (45)$	Q _m =Caudal medio
pérdida de	$K_{s,10\%}WD_{WF}$ (13)	(l/s)
carga en la zona final		L _F =Pérdida de carga
de tratamiento (dh _F)		en la zona final de
		tratamiento (m)
		K _{s,10%} =Características
		de medio empaque al
		10%
		W=Ancho mínimo (m)
		D _{wF} = Propuesta de
		profundidad del agua
		en zona final de
		tratamiento (m)
Longitud total del	$L = L_i + L_F \qquad \dots (46)$	L ₁ =Pérdida de carga
humedal (L)		en la zona inicial de
		tratamiento (m)
		L _F =Pérdida de carga
		en la zona final de
		tratamiento (m)
Ancho de celda (W _{celda})	$W_{celda} = \frac{W}{N} \qquad \dots (47)$	W=Ancho mínimo (m)
	N cetaa N (17)	N= número de celdas
Elevación de las	Elevación a la salida del efluente:	L _F =Pérdida de carga
elevaciones de fondo	$E_{be} = 0 \qquad \dots (48)$	en la zona final de
		tratamiento (m)
	Elevación a la entrada de la zona	S _F =Pendiente del
	final de tratamiento:	fondo del humedal
	$E_{bF} = L_F S_F \qquad \dots (49)$	

		L=Longitud total del
	Elevación a la entrada de la zona	humedal (m)
	inicial de tratamiento:	
	$E_{b0} = LS_F \qquad \dots (50)$	
Determinación de las	Elevación del agua al inicio de la	E _{bF} = Elevación a la
elevaciones d la	zona final de tratamiento:	entrada de la zona
superficie del agua	$E_{WF} = E_{bF} + D_{WF}$ (51)	final de tratamiento
		(m)
	Elevación de la superficie del agua	Dwf= Propuesta de
	a la salida:	profundidad del agua
	$E_{WE} = E_{WF} - dh_F \qquad \dots (52)$	en zona final de
		tratamiento (m)
	Elevación de la superficie del agua	dh⊧=Pérdida de carga
	a la entrada:	en la zona final de
	$E_{W0} = E_{WF} + dh_i$ (53)	tratamiento (m)
		dh⊨Pérdida de carga
		en la zona inicial de
		tratamiento (m)
Determinación de la	Profundidad del agua a la entrada:	Ewo=Elevación de la
profundidad del agua	$D_{W0} = E_{W0} + E_{b0} \qquad \dots (54)$	superficie del agua
		(m)
	Profundidad al inicio de la zona	E _{b0} =Elevación a la
	final de tratamiento	salida del efluente
	$D_{WF} = E_{WF} + E_{bF} \qquad (55)$	(m)
		Ewr= Elevación del
	Profundidad del agua a la salida del	agua al inicio de la
	humedal	zona final de
	$D_{WE} = E_{WE} + E_{be} (56)$	tratamiento (m)
		Ewr=Elevación a la
		entrada de la zona
		final de tratamiento
		(m)

		-
		E _{bF} = Elevación a la
		entrada de la zona
		final de tratamiento
		(m)
		Ewe= Elevación de la
		superficie del agua
		(m)
		E _{be} = Elevación a la
		salida del efluente
		(m)
Determinación de la	Elevación de la superficie del	E _{W0} =Elevación de la
profundidad del medio	medio a la entrada	superficie del agua
	$E_{M0} = E_{W0} + D_{W0}$ (57)	(m)
		Dwo= Propuesta de
	Elevación de la superficie del	profundidad del agua
	medio a la entrada de la zona final	en zona inicial de
	de tratamiento	tratamiento (m)
	$E_{MF} = E_{WF} + D_{WM}$ (58)	Ewr=Elevación a la
		entrada de la zona
	Elevación de la superficie del	final de tratamiento
	medio a la entrada de la zona final	(m)
	de tratamiento	Dwм= Distancia
	$E_{ME} = E_{WE} + D_{WM}$ (59)	propuesta entre la
		superficie del medio
	Profundidad del medio a la entrada	y la del agua (m)
	$D_{M0} = E_{M0} - E_{b0} \qquad \dots (60)$	Ewe= Elevación de la
		superficie del agua
	Profundidad del medio a la entrada	(m)
	de la zona final de tratamiento	E _{bF} = Elevación a la
	$D_{MF} = E_{MF} + E_{bF}$ (61)	entrada de la zona
		final de tratamiento
	Profundidad del medio a la salida	(m)

	$D_{ME}=E_{ME}$	(62)	
Determinación del	$TRH_{nominal} = \frac{n D_{WF}}{n}$	(63)	Q _m =Caudal medio
tiempo de residencia	$TRH_{nominal} = \frac{n D_{WF}}{\left(\frac{Q_m}{A_s}\right)}$	(00)	(l/s)
hidráulica nominal	×3,		D _{WF} = Propuesta de
(TRH)			profundidad del agua
			en zona final de
			tratamiento (m)
			A _s =área superficial
			para remoción de
			contaminante (m²)
Número de macrófitas	$N_v = \left(\frac{L}{d_{M-M}} - 1\right) \left(\frac{W}{d_{M-M}} - 1\right)$	1) (64)	L=Longitud total del
requeridas para		1) (01)	humedal (m)
instalación (N _v)			W=Ancho mínimo (m)
			d _{м-м} =Distancia entre
			macrofita y macrofita
			(m)
Volumen estimado de	$V = A_S D_{ME}$	(65)	A _s =área superficial
material de lecho (V)			para remoción de
			contaminante (m²)
			D _{ME} = Profundidad del
			medio a la salida (m)

o Reactor anaeróbico de flujo ascendente y desinfección

Para el diseño de sistemas RAFA y proceso de desinfección se siguió la metodología presentada en la Comisión Nacional del Agua (CONAGUA), (2015), tal como se muestra en la Tabla 2.12:

Tabla 2.12. Parámetros de diseño para sistema RAFA y desinfección. (Fuente: Comisión Nacional del Agua (CONAGUA), 2015)

REACTOR ANAERÓBICO DE FLUJO ASCENDENTE (RAFA)			
PARÁMETRO	ECUACIÓN	SIMBOLOGÍA	

Cálculo de la	$L_0 = C_0 Q_m \qquad \dots (66)$	Q _m =Caudal
carga de DQO		medio (l/s)
afluente		C ₀ =
promedio (L ₀)		Concentración
		del
		contaminante
		(mg/l)
Volumen total	$V = Q_{ip}TRH \qquad \dots (67)$	Q _m =Caudal
del reactor (V)		medio (l/s)
		TRH=Tiempo
		de retención
		hidráulica
		(días)
Volumen de	$V_u = \frac{V}{N} \qquad \dots (68)$	V=Volumen
cada módulo	$v_u - \frac{1}{N}$ (66)	total del
(Vu)		reactor (m ³)
		N=Número de
		modulos de los
		reactores
Área de cada	$A = \frac{V_u}{H} \qquad \dots (69)$	V _u =Volumen
módulo (A)	H	de cada
		módulo (m²)
		H=Altura del
		reactor (m)
Área total del	$A_t = NA \qquad \dots (70)$	N=Número de
reactor (A _t)		modulos de de
		los reactores
		A=Área de
		cada módulo
		(m ²)

Volumen total	$V_t = A_t H \qquad \dots (71)$	A _t =Área total
corregido (V _t)		del reactor (m²)
		H=Altura del
		reactor (m)
Carga hidráulica	$CHV = \frac{Q_m}{V} \qquad \dots (72)$	Q _m =Caudal
volumétrica	V(12)	medio (l/s)
(CHV)		V=Volumen
		total del
		reactor (m ³)
Carga orgánica	$COV = \frac{Q_{ip}S_0}{V} \qquad \dots (73)$	Q _m =Caudal
volumétrica	V	medio (l/s)
(COV)		C ₀ =
		Concentración
		del
		contaminante
		(mg/l)
		V=Volumen
		total del
		reactor (m ³)
Velocidad de	$V = \frac{Q_{ip}}{A_t} \qquad \dots (74)$	Q _m =Caudal
flujo ascendente	A_t	medio (l/s)
para Q _{ip}		A _t =Área total
		del reactor (m²)
Velocidad de	$V = \frac{Q_{max}}{A_t} \qquad \dots (75)$	Q _{max} =Caudal
flujo ascendente	A_t	máximo
para Q _{max}		horario (l/s)
		A _t =Área total
		del reactor (m²)
Numero de	$N_d = \frac{A_t}{A_d} \qquad \dots (76)$	A _t =Área total
tubos de	A_d	del reactor (m²)
distribución (N _d)		A _d =Área de
		influencia de

			los tubos de alimentación
Estimación de las eficiencias de remoción de la DQO del	$E_{DQO} = 100 (1 - (0.68(TRH^{-0.35}))$	(77)	(m²) TRH=Tiempo de retención hidráulica (h)
sistema Estimación de las eficiencias de remoción de la DBO del sistema	$E_{DBO} = 100 (1 - (0.70(TRH^{-0.35}))$	(78)	TRH=Tiempo de retención hidráulica (h)
Estimación de las concentraciones de DQO en el efluente final	$C_{efl,DQO} = C_0 - \frac{\left(E_{DQO} C_0\right)}{100}$	(79)	C ₀ = Concentración del contaminante (mg/l) E _{DQO} =Eficienci a de remoción de DQO del sistema (%)
Estimación de las concentraciones de DBO en el efluente final	$C_{efl,DBO} = C_0 - \frac{(E_{DBO} C_0)}{100}$	(80)	C ₀ = Concentración del contaminante (mg/l) E _{DBO} =Eficienci a de remoción de DBO del sistema (%)

Producción	$DQO_{CH4} = Q_{ip} \left(C_0 - C_{efl,DQO} - (Y_{obs}C_0) \right)$	(81)	Q _m =Caudal
teórica del	,		medio (l/s)
metano (Q _{CH4})			C ₀ =
			Concentración
			del
			contaminante
			(mg/l)
			C _{efl,DQO} =Conce
			ntración de
			DQO en el
			efluente final
			Kg/m ³
			Y _{obs} =
			Coeficiente de
			rendimiento de
			sólidos en
			términos de
			DQO (kg DQO
			lodo/kg DQO
			aplicado)
	$K(t) = \frac{P K_{DQO}}{R(273 + T)}$	(82)	T _{min} =Temperatu
	$R(t) = \frac{1}{R(273 + T)}$	(02)	ra mínima (°C)
			P=1 atm
			K _{DQO} = 64
			gDQO/mol
			R = 0.08206
			atm L/mol K
	$Q_{CH4} = \frac{DQO_{CH4}}{K(t)}$	(02)	
	$Q_{CH4} - {K(t)}$	(83)	
Producción del	$Q_g = \frac{Q_{CH4}}{0.75}$	(84)	Q _{CH4} =Producci
biogás (Q _g)	^{vg} 0.75	` ,	ón teorica del

		metano
		(m³/día)
Dimensionamie	$A_{tg} = L_g A_g N \qquad \dots (85)$	N=Número de
nto del colector		colectores de
del		gas
gas		L _g =Longitud de
		cada colector
		A _g =Ancho de
		la parte
		superior del
		colector del
		gas
Verificación de	$K_g = \frac{Q_g}{A_{tg}} \qquad \dots (86)$	Q _g =Producción
la tasa de	A_{tg}	del biogas
liberación de		(m ³ /d)
biogas en el		A _{tg} =Dimension
colector del gas		amiento del
		colector del
		gas (m²)
Dimensionamie	$A_{ta} = L_t A_a \qquad \dots (87)$	Número de
nto de las		compartimento
aberturas del		s del
compartimento		sedimentador
del		N=4 (2 en cada
sedimentador		módulo)
		Longitud de
		cada abertura
		L _a =9m
		Longitud
		equivalente de
		operaciones
		simples

				Lt=4*9=36m
				Ancho de cada
				abertura
				Aa=0.5m
				(adoptado)
Verificación de	Para Q _{ip}			Q _m =Caudal
velocidades		$V_{ab} = rac{Q_{ip}}{A_{ta}}$	(88)	medio (l/s)
		A_{ta}	(00)	Q _{max} =Caudal
				máximo
	Para Q _{max}	_		horario (l/s)
		$V_{max} = \frac{Q_{max}}{A_{ta}}$	(89)	A _{ta} =Área total
		A_{ta}		de las
				aberturas (m²)
Dimensionamie		$A_{ts} = L_{ts}A_{es}$	(90)	Lts=Longitud
nto del				total del
compartimento				sedimentador
del				Aes= Ancho
sedimentador				efectivo de
				cada
				sedimentador
				(m ²)
Verificación de	Para Q _{ip}			Q _m =Caudal
las tasas de		$v_s = \frac{Q_{ip}}{A_{ta}}$	(91)	medio (l/s)
carga superficial		A_{ta}	(71)	Q _{max} =Caudal
del				máximo
sedimentador	Para Q _{max}	_		horario (l/s)
		$v_{max} = \frac{Q_{max}}{A_{ta}}$	(92)	A _{ts} =Área total
		A_{ta}		del
				sedimentador
				(m ²)
Producción de		$Pl = YL_0$	(93)	Y=Coeficiente
lodo (PI)				de rendimiento

		de solidos (kg
		SST/kg DQO)
		L _g =Longitud de
		cada colector
		(kg DQO/d)
Volumen de lodo	$V_l = \frac{Pl}{\langle C_l \rangle} \qquad \dots (94)$	Pl=Producción
(VI)	$V_l = \frac{Pl}{\gamma\left(\frac{C}{100}\right)} \qquad \dots (94)$	de lodo (kg
		SST/d)
		γ=Densidad
		del lodo
		C=
		Concentración
		de la descarga
		del lodo
	UNIDAD DE DESINFECCIÓN	
PARÁMETRO	ECUACIÓN	SIMBOLOGÍA
Dosis de Cloro	$D = K \ln \frac{C_0}{C_{ef}} \qquad \dots (95)$	K= Constante
(D)	1 -	, 1
(D)	Gef	de
(D)	Gef	
(U)	Gef	de
(U)	Gef	de desinfección
(U)	Gef	de desinfección (depende del
(U)	Gef	de desinfección (depende del tipo de agua,
(D)	Gef	de desinfección (depende del tipo de agua, temperatura y
(D)	Gef	de desinfección (depende del tipo de agua, temperatura y cloro usado)
(D)	Gef	de desinfección (depende del tipo de agua, temperatura y cloro usado) (mg/l)
(D)	Gef	de desinfección (depende del tipo de agua, temperatura y cloro usado) (mg/l) Cafl=4900000
(D)	Gef	de desinfección (depende del tipo de agua, temperatura y cloro usado) (mg/l) Cafl=4900000 NMP/100ml
Tiempo de	TPH - 10 (06	de desinfección (depende del tipo de agua, temperatura y cloro usado) (mg/l) Cafl=4900000 NMP/100ml Cefl=4900 NMP/100ml
	10	de desinfección (depende del tipo de agua, temperatura y cloro usado) (mg/l) Cafl=4900000 NMP/100ml Cefl=4900 NMP/100ml

Volumen del	$V = Q_{max} \operatorname{TRH}$	(97)	TRH= Tiempo
tanque (V)			de retención
			hidráulica
			(días)
			Q _{max} =Caudal
			máximo
			horario (l/s)
Área del Tanque	$A = \frac{V}{H}$	(98)	V=Volumen del
(A)	H	(50)	tanque (m³)
			H=Altura (m)
Demanda de	$D_{diario} = \frac{D Q}{1000}$	(99)	D=Dosis de
cloro diaria	² atario 1000	())	cloro (mg/l)
			Q _{max} =Caudal
			máximo
			horario (I/s)

2.2.6.5.3 Evaluación operativa

Se garantizo que la tecnología seleccionada sea adecuada para las condiciones operativas locales y que pueda mantenerse a lo largo del tiempo. Se consideraron los siguientes parámetros:

- Requerimientos de mantenimiento: Se evaluó la frecuencia y complejidad del mantenimiento de cada unidad.
- **Disponibilidad de mano de obra calificada:** Se analizó la capacidad del personal disponible para operar y mantener el sistema.

Se asignaron pesos a cada criterio en función de su importancia relativa de la siguiente manera:

- Requerimientos de Mantenimiento: Peso de 40% (0.4), debido a que la simplicidad y la reducción del mantenimiento son esenciales para la operación sostenible.
- **Disponibilidad de Mano de Obra Calificada:** Peso de 30% (0.3), dado que minimizar la necesidad de personal especializado es un objetivo importante.

• **Fiabilidad operativa:** Peso de 30% (0.3), debido a que es importante que el sistema no tenga fallos inesperados.

Cada alternativa fue evaluada en una escala de 1 (peor desempeño) a 10 (mejor desempeño) para cada criterio, basándose en experiencias y recomendaciones de Metcalf & Eddy, (2014) sobre los sistemas de tratamiento de aguas residuales. Además, se consideraron características técnicas y operativas típicas de los sistemas de tratamiento.

2.2.6.5.4 Evaluación económica

Se realizó un análisis económico detallado que incluye:

- Costos de Inversión: Costos de construcción, instalación de equipos y obras civiles.
- Costos Operativos y de Mantenimiento: Consumo energético, insumos y requerimientos de personal.
- Análisis de Costo-Beneficio: Evaluar los costos a largo plazo y los beneficios derivados del cumplimiento normativo, mejora ambiental y potencial de reutilización del agua tratada (Crites & Tchobanoglous, 1998).

2.2.6.5.5 Evaluación ambiental y social

Se realizó un análisis del impacto ambiental mediante la Matriz de Leopold la cual es una herramienta para evaluar los impactos ambientales de proyectos. Consiste en identificar las actividades del proyecto (como construcción, operación y mantenimiento) y los factores ambientales afectados (aire, agua, flora, fauna, paisaje, salud humana, etc.). Se construye una matriz donde se cruza cada actividad con los factores ambientales, asignando valores según la magnitud del impacto (1 a 5) y su importancia (1 a 5). El impacto total se calcula multiplicando ambas dimensiones, siendo positivo para beneficios y negativo para efectos adversos (Leopold, 1971)

El análisis final permite identificar los impactos más significativos, clasificarlos por actividad o componente ambiental, y proponer medidas de mitigación, compensación o mejora. Es útil por su estructura visual y cuantitativa, adaptable a diferentes proyectos y entornos.

CAPÍTULO 3

RESULTADOS Y DISCUSIÓN

3.1 Análisis de la zona de estudio

3.1.1 Aspectos naturales

3.1.1.1 Climatología

Se obtuvo información de los registros históricos de temperatura máxima y mínima promedio anual del INAMHI de la estación Paute M0138 debido a que es la estación más cercana a la zona de estudio, en la Tabla 3.13, se encuentra la información obtenida:

Tabla 3.13. Temperatura promedio de Paute.

Fuente: INAMHI

AÑO	PROMEDIO ANUAL		
ANO	Tmin	Tmax	
1971	8.6	25.9	
1972	8.1	27.3	
1973	6.9	27	
1974		28.8	
1975	7	26.27	
1976	7.2	26.3	
1977	7.1	26.4	
1978	6.6	27.4	
1979	5.05	27.5	
1980	6.5	26.7	
1981	6.1	27.4	
1982	10.6	20.3	
1983	10.5	24.1	
1984	10	23.5	
1985	10.3	23.7	
1986	10.5	24.2	
1987			
	•		

1988	10.9	23.9
1989	9.9	23.4
1990	10.7	23.9
1991	10.7	23.8
1992	10.6	21.8
1993	10.4	17.3
1994	10.5	23.4
1995	10.8	24.7
1996	10.7	23.9
1997	11.2	24.1
1998	11.4	25
1999	10.9	23.7
2000	10.7	23.6
2001	11.2	24.4
2002	11.5	24.8
2003	10.9	24.7
2004	10.9	25.3
2005	10.5	25.4
2006	11.4	25.1
2007	11.7	24.7
2008	11.5	24.5
2009	11.7	25.5
2010	11.6	25.2
2011	11.4	23.9
2012	11.2	24
2013	11.6	24.4
PROMEDIO	10	24.7

Como se observa en la Tabla 3.13, la temperatura mínima promedio es de 10°C y la temperatura máxima promedio es de 24.7°C.

3.1.1.2 Hidrografía

La parroquia se encuentra en la cuenca del río Paute y subcuenca de los ríos Burgay, Cuenca, Magdalena y Paute en donde desembocan varias fuentes de agua de la parroquia (Ilustración 3.12). La disponibilidad y calidad de estas fuentes hídricas son esenciales para el diseño del sistema de saneamiento, ya que deben integrarse con el manejo de aguas residuales para evitar la contaminación de fuentes de agua potable.

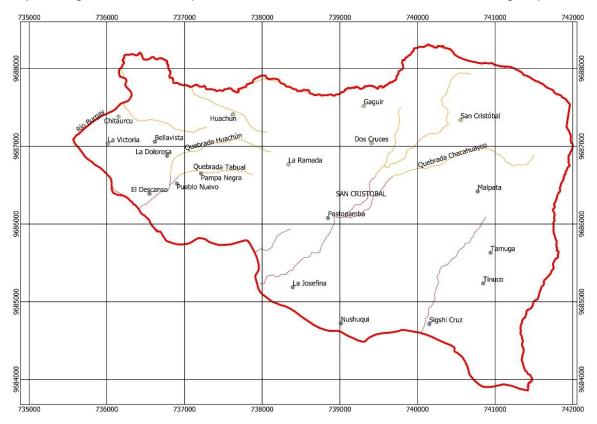


Ilustración 3.12. Mapa hidrográfico de la parroquia San Cristóbal.

Fuente: GAD Parroquial de San Cristóbal, (2015)

3.1.1.3 Riesgos geológicos

3.1.1.3.1 Movimientos de masa

Los movimientos en masa comprenden fenómenos como flujos de rocas, deslizamientos, hundimientos y avalanchas, influenciados por la gravedad y factores como las propiedades del terreno, el tipo de suelo o roca, la pendiente, el contenido de agua y las vibraciones. En la parroquia San Cristóbal as fallas se encuentra la falla de Paute, que es una falla normal activa desde el Cuaternario. La intervención humana, como la construcción de carreteras, el terraceo, la deforestación y la minería, aumenta la frecuencia y severidad de estos movimientos, con los deslizamientos y flujos de detritos

siendo los más perjudiciales. Los riesgos están clasificados en cinco niveles, siendo las localidades de San Pablo, La Josefina y Sigsicruz las de mayor amenaza, mientras que la mayor parte de la parroquia enfrenta riesgos bajos o medios.

En la zona de estudio como se observa en el mapa que se presenta a continuación, las comunidades tienen baja amenaza de riesgo que se presenten movimientos de masa (Ilustración 3.13)

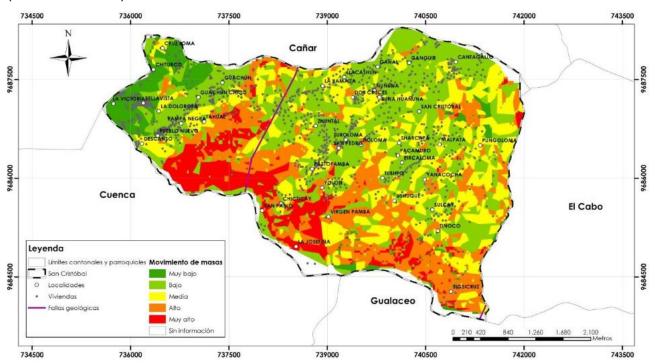


Ilustración 3.13. Mapa de movimientos de masa de la parroquia San Cristóbal.

Fuente: GAD Parroquial de San Cristóbal, (2015)

Las inundaciones ocurren cuando el agua invade áreas que normalmente están secas, generalmente debido a desbordamientos de ríos o lluvias intensas. En la parroquia, se identifican cinco niveles de riesgo de inundación: bajo, medio, alto, muy alto y sin riesgo. Pocas localidades enfrentan un alto riesgo de inundaciones, destacando San Pablo, La Josefina, El Descanso, Sulcay, Sharcapa y Chiturco. Las comunidades donde se va a intervenir con el proyecto no presentan riesgos significativos (Ilustración 3.14).

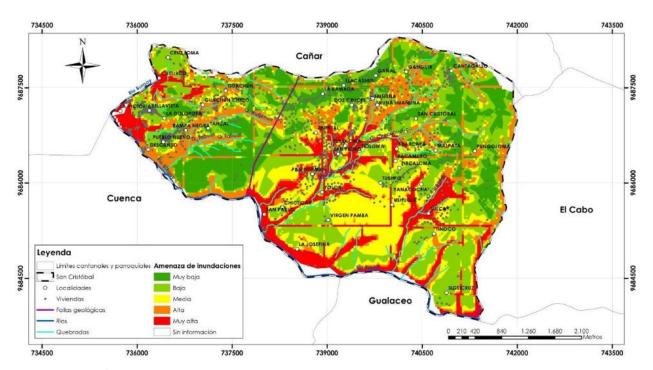


Ilustración 3.14 Mapa de zonas de amenaza de inundaciones de la parroquia San Cristóbal. Fuente: GAD Parroquial de San Cristóbal, (2015)

3.2 Descripción de la situación actual

3.2.1 Población

La información obtenida de la parroquia San Cristóbal se obtuvo del Instituto Nacional de Estadísticas y Censos (INEC), la población para el año 2022 se encuentra en la Tabla 3.14:

Tabla 3.14. Población actual de la parroquia San Cristóbal.

Fuente: INEC, (2022)

AÑO	POBLACIÓN
2022	2819

3.2.2 Educación

Las comunidades que se encuentran dentro de la zona de estudio no cuenta con un establecimiento de educación, los únicos establecimientos dentro de la parroquia a donde se dirigen los estudiantes que perteneces a las comunidades en estudio se encuentran en la cabecera parroquial, Guachun y Pastopamba.

3.2.3 Salud

Bellavista, Pampa Negra y Pueblo Nuevo no cuentan con equipamiento de salud por lo que las personas deben migrar hacia la cabecera parroquial de San Cristóbal que cuenta con un subcentro de salud rural, o al centro de salud del seguro campesino que se encuentra en la comunidad La Dolorosa, además, se movilizan con mayor frecuencia a la cabecera cantonal donde se encuentra el Hospital Básico Paute.

3.2.4 Aspecto socio-económico

Según el "Estudio socio económico y viabilidades económicas financieras del sistema de agua potable del sistema del GAD municipal en San Cristóbal", los habitantes de la parroquia se dedican predominantemente a la agricultura y ganadería en un 25.38%, son empleados privados un 20%, comerciantes 14% y el 10.65% obreros de la construcción.

3.2.5 Organización de la población

La estructura organizativa de la comunidad incluye juntas parroquiales, asociaciones y comunidades. La principal entidad es la Junta parroquial de San Cristóbal. La capacidad de estas organizaciones para gestionar proyectos de saneamiento es buena debido a que tiene conexión con el GAD de Paute, la cual tiene las competencias de saneamiento de todo el cantón, lo que impacta en la implementación y sostenibilidad del sistema.

3.2.6 Sistema de agua potable

Según el "Estudio socio económico y viabilidades económicas financieras del sistema de agua potable del sistema del GAD municipal en San Cristóbal", en la parroquia el 93.27% cuentan con agua y el 6.73% no tienen acceso al servicio, sin embargo, del 93.27% de personas que tienen acceso al agua el 87.25% no se encuentran satisfechos con el servicio y el 12.75% si están satisfechos. Las personas que cuentan con el servicio de agua potable se abastecen mediante tanqueros en su mayoría, con agua lluvia, agua filtrada de rio y de las vertientes.

3.2.7 Energía eléctrica

La Empresa Eléctrica Centro Sur proporciona el servicio eléctrico a la parroquia San Cristóbal. La red eléctrica cubre el 94.40% del área urbana y rural de la parroquia, acercándose al objetivo del Plan Nacional del Buen Vivir, que busca alcanzar una cobertura del 96% en las áreas rurales. Todas las comunidades de San Cristóbal tienen

acceso a energía eléctrica, siendo Cantagallo, Pastopamba, Tushpo, La Victoria, Pampa Negra y La Ramada las que cuentan con el servicio más extendido. (Actualización PDyOT de la parroquia San Cristóbal, 2015)

3.2.8 Recolección de basura

En la parroquia San Cristóbal, el camión de recolección de basura pasa por las calles de la cabecera parroquial dos veces a la semana. Sin embargo, en las áreas rurales, el camión solo llega hasta el centro de las comunidades situadas a lo largo de la vía principal, dejando fuera de este servicio a las comunidades más alejadas. La comunidad de Pastopamba tiene la mayor cobertura, seguida de La Victoria, Cantagallo, San Cristóbal, La Ramada, Pampa Negra, Pueblo Nuevo, Guachún, La Dolorosa y Bellavista. La comunidad de Tushpo no cuenta con este servicio.

3.3 Diagnóstico del sistema actual

3.3.1 Resultados de la encuesta levantada en campo

La encuesta fue realizada en cuatro comunidades: Pampanegra, Bellavista, Pueblo Nuevo y La Dolorosa, con un total de 67 personas encuestadas. A continuación, se detallan los resultados obtenidos en cada sección del cuestionario:

Cantidad de personas en el hogar

La mayoría de los hogares (49%) tienen entre 3 a 5 personas, seguidos de hogares con más de 5 personas (34%) y hogares con 1 a 2 personas (16%) (Ilustración 3.15).

Ilustración 3.15. Número de personas que viven en el hogar.

Estos datos reflejan que la mayoría de los hogares tienen un número considerable de ocupantes, para un análisis posterior se considerara un promedio de 5 habitantes por hogar.

Fuentes de abastecimiento de agua

La llustración 3.16 muestra que el 36% de los hogares obtiene agua de tanqueros, el 23% de la red pública, un 5% de agua de lluvia, y un 3% de fuentes naturales.

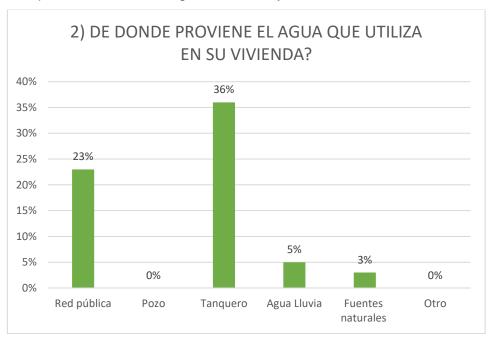


Ilustración 3.16. Fuente del agua que se utiliza en las viviendas.

La dependencia de tanqueros y la baja cobertura de la red pública de agua reflejan una infraestructura limitada, especialmente en zonas donde la red pública no es accesible para todos.

Satisfacción con el servicio de agua

El 91% de los encuestados manifestó que no está satisfecho con el servicio de agua, mientras solo el 9% considera adecuado el servicio recibido (Ilustración 3.17). Esto evidencia problemas significativos en términos de cantidad, calidad, o ambos, lo cual afecta directamente la percepción de los usuarios sobre el acceso al agua.

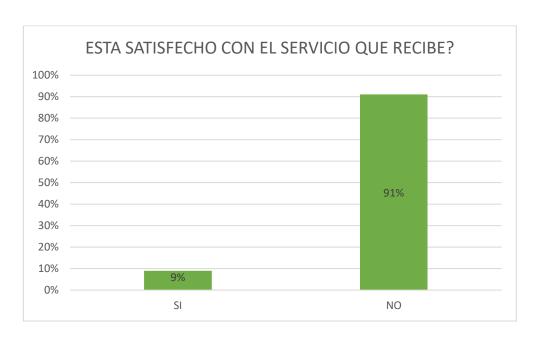


Ilustración 3.17. Satisfacción del servicio de agua que recibe la población.

Calidad de agua para consumo

La Ilustración 3.18 muestra que, el 93% de los encuestados indicó que el agua que recibe no es adecuada para el consumo humano, mientras solo el 7% considera que el agua es apta. Esto sugiere problemas serios en el tratamiento o distribución del agua, poniendo en riesgo la salud de la población.



Ilustración 3.18. Percepción de la calidad de agua que recibe la población.

Disponibilidad de Sistema de Alcantarillado

Solo el 28% de las viviendas cuenta con un sistema de alcantarillado, mientras que el 72% carece de este servicio (Ilustración 3.19), lo que obliga a la mayoría de los hogares a recurrir a alternativas individuales de manejo de aguas residuales.



Ilustración 3.19. Disponibilidad de sistema de alcantarillado

Manejo de Aguas Residuales en Hogares sin Alcantarillado

Según la encuesta realizada el 60% de los hogares sin alcantarillado utiliza fosas sépticas para manejar las aguas residuales, el 7% emplea pozos ciegos, y un 4% descarga las aguas en ríos o canales (Ilustración 3.20).

Ilustración 3.20. Manejo de las aguas residuales de la población.

La falta de infraestructura de alcantarillado obliga a la mayoría de los hogares a implementar sistemas de tratamiento caseros, que no siempre cumplen con las normativas sanitarias o ambientales.

• Problemas con el manejo de aguas residuales

De las 67 personas encuestadas 34 personas respondieron que si tienen problemas con el manejo de aguas residuales en su hogar o comunidad. De los 34 el 65% respondieron que han tenido su principal problema son los malos olores, el 29% menciono que cuenta con aguas residuales estancadas y el 6% ha sufrido de inundaciones. En la Ilustración 3.21 se presentan los resultados obtenidos en la encuesta:

Ilustración 3.21. Problemas con el manejo de las aguas residuales en el hogar.

Estos problemas evidencian la necesidad de mejorar los sistemas de tratamiento y disposición de aguas residuales para mitigar los impactos negativos en la salud y el ambiente.

• Enfermedades relacionadas con el agua y saneamiento deficiente

El 61% de los hogares ha reportado enfermedades relacionadas con la calidad del agua y el saneamiento deficiente en los últimos seis meses. Las enfermedades más comunes fueron diarrea (32 casos), infecciones estomacales (12 casos), e infecciones en la piel (10 casos) (Ilustración 3.22).

Ilustración 3.22. Enfermedades que se ha experimentado por el mal manejo de las aguas residuales.

Los datos indican una relación directa entre la calidad del agua, el manejo de aguas residuales y la incidencia de enfermedades en estas comunidades.

3.4 Determinación del caudal de diseño

3.4.1 Periodo de diseño

Para el presente proyecto se ha adoptado un periodo de diseño de **20 años** para la red de alcantarillado de aguas residuales y para la planta de tratamiento de aguas residuales, ese factor ha sido escogido en base a las características de crecimiento poblacional, la disponibilidad de recursos financieros, y las condiciones ambientales de la zona. Se garantiza que la red de tuberías y la planta cumpla con los requisitos de tratamiento durante su vida útil proyectada, minimizando la necesidad de ampliaciones o modificaciones tempranas.

3.4.2 Población de diseño

3.4.2.1 Población actual

La población actual de la parroquia San Cristóbal según los registros del INEC en su último Censo de población y vivienda del año 2022 es de 2819 habitantes, sin embargo, para la zona de estudio que comprende las comunidades de Pampa Negra, Pueblo Nuevo, La Dolorosa y Bellavista, según el PDOT de la parroquia San Cristóbal del año 2015, menciona que en el año 2010 estas comunidades cuentan con la siguiente población (Tabla 3.15):

Tabla 3.15. Población de las comunidades de la zona de estudio.

Fuente: GAD Parroquial de San Cristóbal, (2015).

COMUNIDAD	POBLACIÓN
Pampa Negra	285
Pueblo Nuevo	169
La Dolorosa	142
Bellavista	59

En resumen, la zona del proyecto cuenta con una población para el año 2010 de 655 habitantes.

3.4.2.2 Tasa de crecimiento anual

Para el índice de crecimiento se utilizó el promedio de la tasa anual de crecimiento de los tres censos efectuados en el periodo 1990-2001, 2001-2010 y 2010-2022 de la parroquia San Cristóbal, los resultados se presentan en la Tabla 3.16 (método aritmético) y Tabla 3.17 (método geométrico):

3.4.2.2.1 Método aritmético

Tabla 3.16. Tasa de crecimiento mediante el método aritmético.

Periodos	n	r	r (%)
1990-2001	11	0.003	0.31%
2001-2010	9	0.020	2.04%
2010-2022	12	0.015	1.55%
PROMEDIO		0.018	1.80%

3.4.2.2.2 Método geométrico

Tabla 3.17. Tasa de crecimiento mediante el método geométrico.

Periodos	n	r	r (%)
1990-2001	11	0.003	0.30%
2001-2010	9	0.019	1.89%
2010-2022	12	0.014	1.43%
PROMEDIC)	0.017	1.66%

Tanto para el método geométrico como para el método aritmético, no se consideró el periodo de 1990-2001 debido a que genera una dispersión considerable que afecta al resultado final de la tasa de crecimiento.

3.4.2.2.3 Población futura

Como se mencionó en el apartado 3.1, se realizaron dos sistemas de alcantarillado y PTAR, por lo tanto, se obtuvo las proyecciones de la población para cada comunidad para el año 2045. Los resultados se presentan a continuación:

Sistema 1: pampa negra y pueblo nuevo

Tabla 3.18. Proyección de la población para la comunidad Pampa Negra.

POBLACIÓN PAMPA NEGRA								
AÑO	ARITMETICO	GEOMETRICO						
2010	285	285						
2020	336	336						
2030	396	396						
2040	467	466						
2045	508	506						

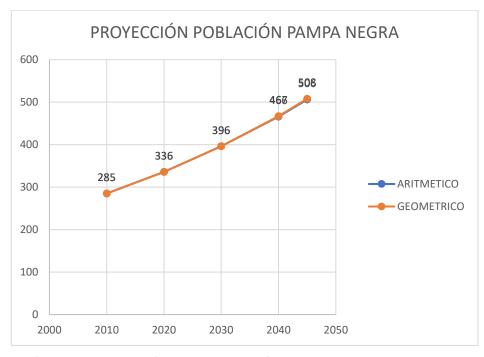


Ilustración 3.23. Proyección de la población para la comunidad Pampa Negra.

Tabla 3.19. Proyección de la población para la comunidad Pueblo Nuevo.

POBLACIÓN PUEBLO NUEVO							
AÑO	ARITMETICO	GEOMETRICO					
2010	169	169					
2020	199	199					
2030	234	234					
2040	276	275					
2045	300	298					

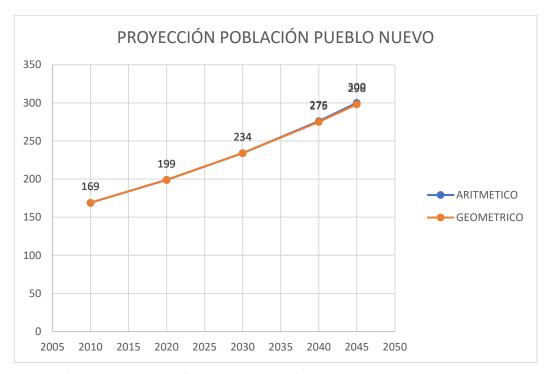


Ilustración 3.24. Proyección de la población para la comunidad Pueblo nuevo.

• Sistema 2: la dolorosa y bellavista

Tabla 3.20. Proyección de la población para la comunidad La Dolorosa.

POBLACIÓN LA DOLOROSA								
AÑO	ARITMETICO	GEOMETRICO						
2010	142	142						
2020	167	167						
2030	196	196						
2040	231	231						
2045	251	250						

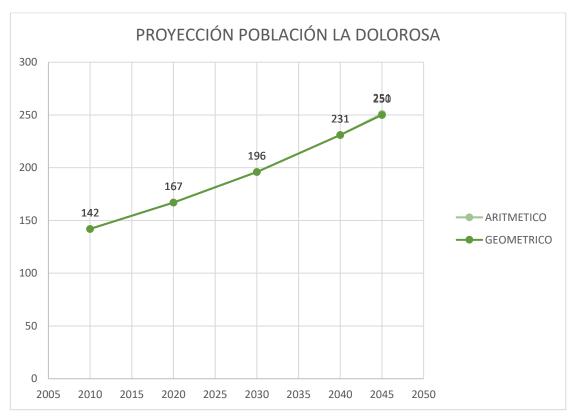


Ilustración 3.25. Proyección de la población para la comunidad La Dolorosa.

Tabla 3.21. Proyección de la población para la comunidad Bellavista.

POBLACIÓN BELLAVISTA								
AÑO	ARITMETICO GEOMETRICO							
2010	59	59						
2020	69	69						
2030	81	81						
2040	95	95						
2045	103	103						



Ilustración 3.26. Proyección de la población para la comunidad Bellavista.

Se ha escogido los resultados del método aritmético, debido a que refleja mejor un crecimiento constante y moderado, típico de zonas rurales con migración positiva. Esto proporcionara una estimación más realista para la planificación de infraestructura en el largo plazo. Por lo tanto, la población para el sistema 1 (Tabla 3.19 y Tabla 3.19) y sistema 2 (Tabla 3.20 y Tabla 3.21) se presenta en la Tabla 3.22:

Tabla 3.22. Población de diseño para cada sistema.

HABITANTES						
SISTEMA 1	808					
SISTEMA 2	354					

3.4.3 Caudal de diseño

El caudal de diseño según Metcalf & Eddy es el caudal máximo horario (Qmax) para la red de alcantarillado y algunos elementos de la planta de tratamiento y el caudal medio diario (Qd) se utiliza para la planta de tratamiento de aguas residuales, los resultados tanto para el sistema 1 (Tabla 3.23) como para el sistema 2 (Tabla 3.24) se presenta a continuación:

Tabla 3.23. Caudal de diseño sistema 1.

RESULTADOS CAUDAL DE DISEÑO SISTEMA 1								
PARAMETRO	RESU	LTADO	OBSERVACIÓN					
Período de diseño	20	años						
Área de servicio (A)	7.09	ha						
Población actual	535	hab						
Tasa de crecimiento	1.80%		Método aritmético					
Población de diseño (Hab)	808	hab	wetodo antinetico					
Dotación de agua potable (Dot)	150	l/hab/día	Recomendada de acuerdo a la norma EX – IEOS					
Coeficiente de retorno de aguas residuales (R)	0.9		Valor adoptado que se ajusta a la zona de estudio					
Caudal domiciliar (Qdom)	1.263	l/s	$Q_{dom} = \frac{Dot * R * Hab}{86400}$					
Caudal de agua de infiltración (Qinf)	0.1	l/s-ha	Valor adoptado de acuerdo a la EMAAP-Q					
	0.3545	l/s	$Q_{inf} = 0.05 * A$					
Caudal de aguas ilicitas (Qind)	0.2	l/s-ha	Valor adoptado de acuerdo a la EMAAP-Q					
	1.418	l/s	$Q_{ind} = Ap * A$					
Factor de mayoración (k)	2.5		Método de Harman					
Caudal medio diario (Qd)	3.035	I/s	$Q_d = Q_{dom} + Q_{inf} + Q_{ind} + Q_{esp}$					
Caudal maximo horario (Qmax)	7.588	l/s	$Q_{max} = Q_d * k$					

Tabla 3.24. Caudal de diseño sistema 2.

RESULTADOS CAUDAL DE DISEÑO SISTEMA 2									
PARAMETRO	RESU	JLTADO	OBSERVACIÓN						
Período de diseño	20	años							
Área de servicio (A)	3.44	ha							
Población actual	236	hab							
Tasa de crecimiento	1.80%								
Población de diseño (Hab)	354	hab	Método aritmético						
Dotación de agua potable (Dot)	150	l/hab/día	Recomendada de acuerdo a la norma EX – IEOS						
Coeficiente de retorno de aguas residuales (R)	0.9		Valor adoptado que se ajusta a la zona de estudio						
Caudal domiciliar (Qdom)	0.553	l/s	$Q_{dom} = \frac{Dot * R * Hab}{86400}$						
Caudal de agua de infiltración (Qinf)	0.05	l/s-ha	Valor adoptado de acuerdo a la EMAAP- Q						
	0.172	l/s	$Q_{inf} = 0.05 * A$						
Caudal de aguas ilícitas (Qind)	0.2	l/s-ha	Valor adoptado de acuerdo a la EMAAP- Q						
	0.688	l/s	$Q_{ind} = Ap * A$						
Factor de mayoración (k)	4.047		Método de Harman						
Caudal medio diario (Qd)	1.413	l/s	$Q_d = Q_{dom} + Q_{inf} + Q_{ind} + Q_{esp}$						
Caudal máximo horario (Qmax)	3.533	l/s	$Q_{max} = Q_d * k$						

3.5 Diseño hidráulico de la red de alcantarillado

El diseño de las redes de alcantarillado de los 2 sistemas se realiza en hojas de cálculo en Excel y en el Software Storm Water Management Model SWMM.

3.5.1 Áreas de aporte y caudales de diseño para las redes de alcantarillado

Para determinar las áreas de aporte, se establece como referencia los colectores convencionales y los ramales de alcantarillado simplificado, debido a que el trazado de calles de las comunidades no son ortogonales, las áreas de aporte no están delimitadas con trazos a 45 grados desde los pozos, las áreas de aporte se adecua a la implantación de las calles.

Para los ramales de alcantarillado simplificado, se contempla una sola área de aporte desde la caja de cabecera, hasta la descarga del pozo de revisión convencional, una discriminación menor de áreas resultaría caudales pequeños que no cumplen con el criterio de caudal mínimo de diseño.

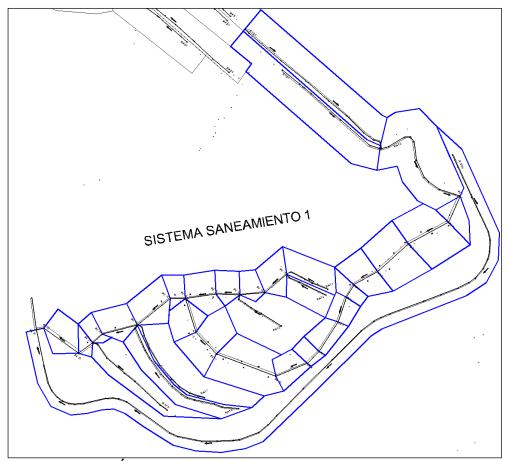


Ilustración 3.27. Áreas de porte sistema 1 Pueblo Nuevo y Pampa Negra.

Los caudales de diseño de los tramos de alcantarillado se determinan con el caudal máximo horario de cada sistema, el caudal de diseño por tramo es una relación directa del área de aporte por tramo. Los caudales de diseño son:

- Caudal máximo horario Sistema 1 Pueblo Nuevo y Pampa Negra: 3,533 l/s.
- Caudal máximo horario Sistema 2 La Dolorosa y Bellavista: 7,588 l/s.

Tabla 3.25. Áreas de aporte y caudal de diseño para el sistema 1 Pueblo Nuevo y Pampa Negra.

	sistema 1 Pueblo Nuevo y Pampa Negra.											
TRAMO/ RAMAL	AREA DE APORTE m2	% APORTE	CAUDAL TRAMO I/s	CAUDAL ACUMULADO I/s	CAUDAL DISEÑO ADOPTADO I/s							
RAS 1 - RAS 3	5537,29	7,04%	0,53	0,53	1,50							
RAS 2 - RAS 3	5571,95	7,09%	0,54	0,54	1,50							
RAS 3 - PZ1	5856,24	7,45%	0,57	1,64	1,64							
PZ1 - PZ2	828,82	1,05%	0,08	1,72	1,72							
PZ2 - PZ3	2938,49	3,74%	0,28	2,00	2,00							
PZ3 - PZ4	2723,23	3,46%	0,26	2,26	2,26							
PZ4 - PZ5	1462,79	1,86%	0,14	2,41	2,41							
PZ5 - PZ6	609,03	0,77%	0,06	2,46	2,46							
PZ6 - PZ7	753,74	0,96%	0,07	2,54	2,54							
PZ7 - PZ8	958,14	1,22%	0,09	2,63	2,63							
PZ8 - PZ9	523,8	0,67%	0,05	2,68	2,68							
PZ9 - PZ10	978,08	1,24%	0,09	2,77	2,77							
PZ10 - PZ11	3316,3	4,22%	0,32	3,09	3,09							
PZ11 - PZ12	2184,06	2,78%	0,21	3,31	3,31							
PZ12 - PZ13	1140,56	1,45%	0,11	3,42	3,42							
RAS 4 - PZ14	1526,29	1,94%	0,15	0,15	1,50							
RAS 5 - PZ14	1201,99	1,53%	0,12	0,12	1,50							
PZ14 - PZ15	1120,05	1,42%	0,11	0,37	1,50							
PZ15 - PZ16	655,96	0,83%	0,06	0,43	1,50							
PZ16 - PZ17	793,18	1,01%	0,08	0,51	1,50							
PZ17 - PZ13	1339,06	1,70%	0,13	0,64	1,50							
PZ13 - PZ18	593,21	0,75%	0,06	4,11	4,11							
PZ18 - PZ19	1584,54	2,02%	0,15	4,27	4,27							
RAS 7 - PZ19	3690,89	4,69%	0,36	0,36	1,50							
RAS 8 - PZ19	2354,56	3,00%	0,23	0,23	1,50							
PZ19 - PZ20	1203,43	1,53%	0,12	4,97	4,97							
PZ20 - PZ21	492,99	0,63%	0,05	5,01	5,01							
RAS 9 - PZ21	3061,74	3,89%	0,30	0,30	1,50							
PZ21 - PZ22	335,32	0,43%	0,03	5,34	5,34							
PZ22 - PZ23	1267,54	1,61%	0,12	5,46	5,46							
PZ23 - PZ24		0,00%	0,00	5,46	5,46							
RAS 10 - PZ 24	22010,53	28,00%	2,12	2,12	2,12							
PZ24 - TRAT	,	0,00%	0,00	7,588	7,59							
TOTAL:	78613,8	m2	7,588									

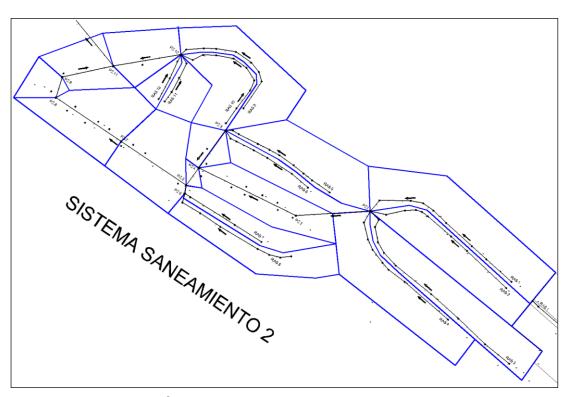


Ilustración 3.28. Áreas de aporte sistema 2 La Dolorosa y Bellavista.

Tabla 3.26. Áreas de aporte y caudal de diseño para el sistema 2 La Dolorosa y Bellavista.

TRAMO/ RAMAL	AREA DE APORTE m2	% APORTE	CAUDAL TRAMO I/s	CAUDAL ACUMULADO I/s	CAUDAL DISEÑO ADOPTADO I/s
RAS 1 - PZ1	4280.44	10.37%	0.37	0.37	1.50
RAS 2 – PZ1	2865.5	6.94%	0.25	0.25	1.50
RAS 3 – PZ1	3418.41	8.28%	0.29	0.29	1.50
RAS 4 – PZ1	3657.21	8.86%	0.31	0.31	1.50
PZ1 - PZ2		0.00%	0.00	1.22	1.50
PZ2 - PZ4	2580.91	6.25%	0.22	1.44	1.50
RAS 5 - PZ3	2822.63	6.84%	0.24	0.24	1.50
RAS 6 - PZ3	1449.21	3.51%	0.12	0.12	1.50
PZ3 - PZ4	806.27	1.95%	0.07	0.43	1.50
PZ4 - PZ5	170.7	0.41%	0.01	1.89	1.89
RAS 7 - PZ6	1448.7	3.51%	0.12	0.12	1.50
RAS 8 - PZ6	2359.3	5.72%	0.20	0.20	1.50
PZ6 - PZ5		0.00%	0.00	0.33	1.50
PZ5 - PZ7	2804.95	6.80%	0.24	2.45	2.45
PZ7 - PZ8	2901.9	7.03%	0.25	2.70	2.70
PZ8 - PZ9	670.4	1.62%	0.06	2.76	2.76
PZ9 - PZ11	1528.49	3.70%	0.13	2.89	2.89
RAS 9 - PZ10	2662.3	6.45%	0.23	0.23	1.50
RAS 10 - PZ10	1776.86	4.30%	0.15	0.15	1.50

96

RAS 11 - PZ10	982.99	2.38%	0.08	0.08	1.50
RAS 12 - PZ10	512.1	1.24%	0.04	0.04	1.50
PZ10 - PZ11	1579.55	3.83%	0.14	0.64	1.50
PZ11 - TRAT.		0.00%	0.00	3.533	3.53
TOTAL:	41278.82	m2	3.533	I/s	

3.5.2 Dimensionamiento y diseño de las redes de alcantarillado

El diseño de las redes de alcantarillado se realiza con la fórmula de Manning, la pendiente se determina con los perfiles topográficos, se calcula las capacidades hidráulicas para sección a tubo lleno y para sección a tubo parcialmente lleno, para el diseño se utiliza una hoja de cálculo en Excel. Se realiza la verificación de caudal de diseño mínimo, velocidad mínima y máxima, capacidad de la tubería y fuerza tractiva.

Tabla 3.27. Diseño tipo de ramales de alcantarillado simplificado y convencional.

	II	DENTIFICA	CIÓN				CAUD	AL			DIÁMETRO			
		COTAS	(msnm)								DIAW	LIKO	Sección a	tubo lleno
TRAMO	POZO No	TERREN O	PROY.	Altura Pozo (m)	Longitud (m)	Caudal tramo Qt (lt/s)	Caud acumu o Qac (If	lad di ado	audal seño optado i (lt/s)	Pendient e J(%) mín=0,5%	Ø Diámetro cálculado (mm)			Caudal Qo (lt/s)
DISEÑO DE R	AMAL							Q mín	=1,5 lt	t/s				
	RAS1	2451,57	2450,97	0,60										
RAS1 - CR					23,95	0,37	0,37	1	,500	16,78%	34,82	110	3,39	32,25
	CR	2447,55	2446,95	0,60										
	PZ1	2433,39	2431,89	1,50										
PZ1 - PZ2					53,64	0,00	1,22	1	,500	5,37%	43,12	200	2,86	89,82
	PZ2	2430,51	2429,01	1,50										
	PZ8	2416,67	2415,17	1,50										
PZ8 - PZ10					37,69	0,13	2,89	2	,890	7,03%	52,42	200	3,27	102,78
	PZ10	2414,02	2412,52	1,50										
IDENTIFICA	CIÓN	DIÁMETR				DATOS H	DATOS HIDRÁULICOS DE LA TUBEF			JBERÍA				
		0	Sección	a tubo lle	eno		Sección a tubo parcialmente llen			lleno				
TRAMO	POZO No	Ø Diámetro adoptado (mm)	Velocidad Vo (m/s)	Caud Qo (l				ontrol <=80%	Radi hidrá Rh (r	u. Velocio	lad velo Vmín=	ntrol cidad 0,45m/s : 4,5m/s	Fuerza ractiva T (N/m2)	Control T Tmín= 1N/m2
	RAS1													
RAS1 - CRa		110	3.39	32.2	25 16	14.6	3% CL	IMPLE	0.010	00 1.73	CUN	ИPLE	16.44	CUMPLE
	CRa													
	PZ1													
PZ1 - PZ2		200	2.86	89.8	32 18	9.02	2% CL	IMPLE	0.01	15 1.07	CUN	//PLE	6.06	CUMPLE
	PZ2													
	PZ9													
PZ9 - PZ11		200	3.27	102.	78 23	.2 11.6	0% CL	IMPLE	0.014	46 1.44	CUN	ИPLE	10.08	CUMPLE
	PZ11													

En la Tabla 3.27 un cálculo tipo un ramal de alcantarillado simplificado RAS 1 – CR y dos ramales de alcantarillado convencional PZ1 – PZ2, PZ9 – PZ 11, correspondientes al sistema 2 de las comunidades La Dolorosa y Bellavista. Se verifica el cumplimiento de los criterios de velocidad mínima, velocidad máxima, capacidad de la tubería y fuerza tractiva.

3.5.3 Modelación de la red hidráulica en el Software Storm Water Management Model (SWMM)

Con la finalidad de corroborar el diseño hidráulico de las redes de alcantarillado, y acceder a herramientas que disminuyan tiempo al momento de diseñar, se modela las redes de alcantarillado de los 2 sistemas en el software libre STORM WATER MANAGEMENT MODEL SWMM, que pertenece a la Agencia de Protección Ambiental de los Estados Unidos de América.

De esta forma se logra corroborar los diseños realizados en las hojas de cálculo de Excel, para iniciar la modelación se descarga el instalador del software desde la página web de Agencia de Protección Ambiental de los Estados Unidos De América EPA.

Se inicia la modelación con la configuración del proyecto, donde se establece la longitud tipo de colectores, el tipo de colector, las unidades para la evaluación, el coeficiente de rugosidad, el método de análisis y demás parámetros, llustración 3.29.

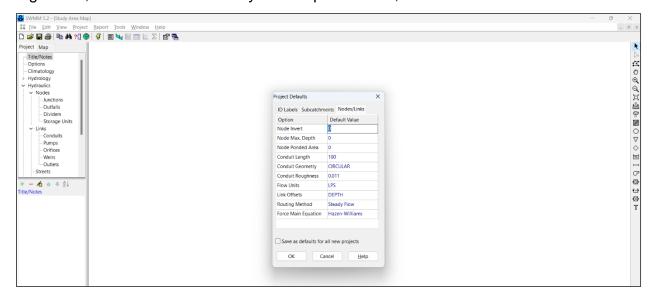


Ilustración 3.29. Configuración de proyecto en el software SWMM.

Luego se procede a cargar una imagen georreferenciada desde un archivo dwg, que permita ubicar las redes de alcantarillado, los pozos y cajas de inspección, utilizando la barra de herramientas se procede a ingresar los nudos (pozos y cajas) y posterior los colectores de alcantarillado, llustración 3.30.

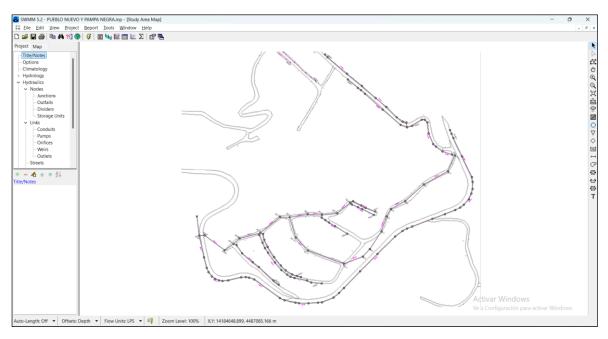


Ilustración 3.30. Inserción de elementos del sistema de alcantarillado en el software SWMM.

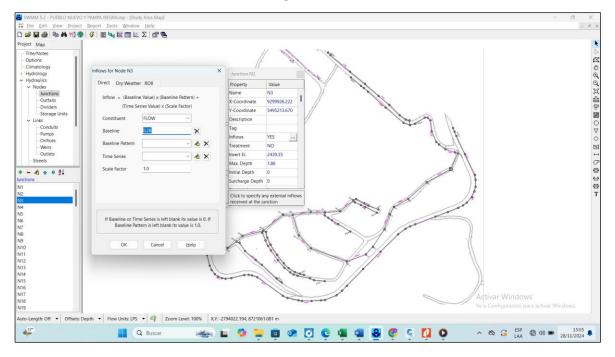


Ilustración 3.31. Ingreso de propiedades a los elementos en el software SWMM.

El siguiente paso es dar las propiedades a los elementos del sistema, como las cotas de los pozos, diámetros de colectores, y se realiza la asignación de caudales en los nudos, Ilustración 3.31.

Un parámetro importante es ajustar el caudal mínimo de diseño de 1,5 l/s en los ramales de alcantarillado iniciales, donde los caudales calculados suelen ser inferiores al caudal mínimo, sin embargo, al momento de ingresar en los ramales iniciales el caudal de 1,5 l/s, se acumula este caudal al tramo siguiente, ocasionando que el caudal acumulado sea superior al caudal calculado para el tramo, para realizar el ajuste se utiliza un artificio, en el nudo de inicio del tramo que se va a ajustar el caudal, se resta el valor del caudal en exceso, de esta manera se realiza el ajuste de caudales en el software, Ilustración 3.32.

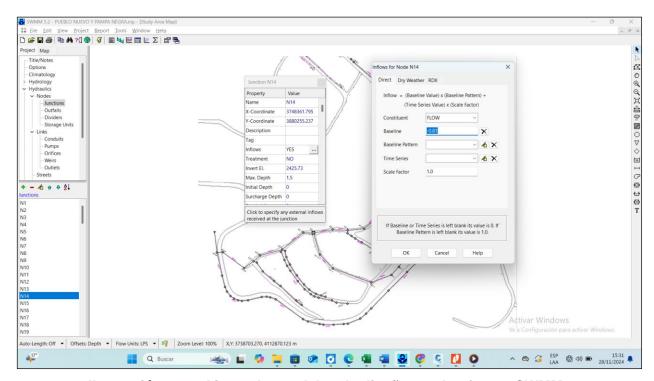


Ilustración 3.32. Ajuste de caudales de diseño en el software SWMM.

En la Ilustración 3.33 e Ilustración 3.34 muestra la modelación de los dos sistemas de saneamiento descentralizados, se evidencia los caudales de diseño, el caudal mínimo de diseño en los ramales es de 1,5 l/s.

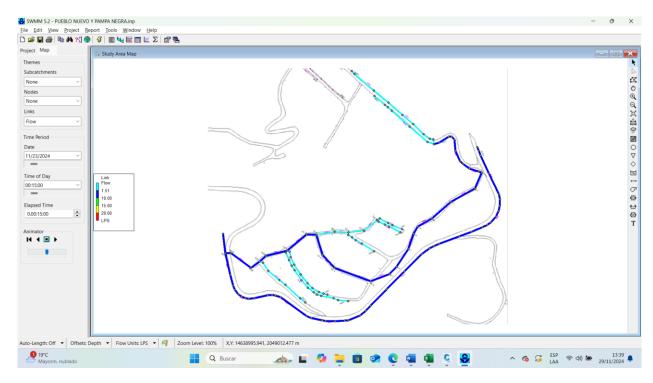


Ilustración 3.33. Modelación del sistema 1 Pueblo Nuevo y Pampa Negra en el software SWMM.

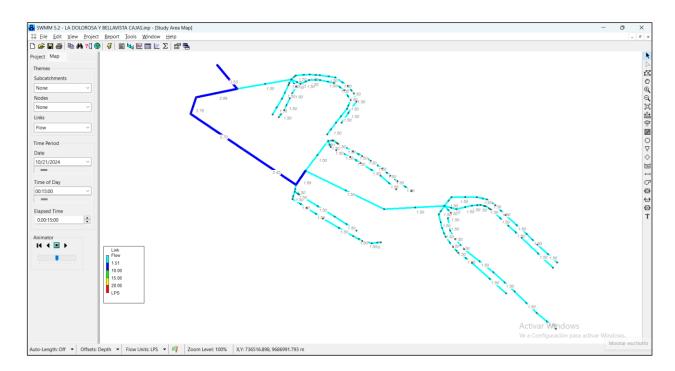


Ilustración 3.34. Modelación del sistema 2 La Dolorosa y Bellavista en el software SWMM.

3.5.4 Verificación de diseño hidráulico en el Software Storm Water Management Model SWMM

Con la finalidad de corroborar los resultados del diseño de las redes de alcantarillado realizadas en el Software Storm Water Management Model SWMM, se realiza una comparativa de los valores obtenidos con las hojas de cálculo en Excel y el software, el análisis se realiza del ramal de alcantarillado simplificado RAS 1 – CR y dos ramales de alcantarillado convencional PZ1 – PZ2, PZ9 – PZ 11, correspondientes al sistema 2 de las comunidades La Dolorosa y Bellavista. Se verifica el parámetro de velocidad de diseño, como podemos evidenciar la diferencia de valores es mínima, Tabla 3.28.

Tabla 3.28. Verificación de velocidad de diseño en el software SWMM.

TRAMO	Caudal tramo Qt (lt/s)	Caudal acumulado Qac (lt/s)	Caudal diseño adoptado Qd (lt/s)	Pendiente J(%)	Diámetro adoptado (mm)	Velocidad Hoja de Cálculo (m/s)	Velocidad SWMM (m/s)
RAS1 - CR	0,37	0,37	1,500	16,78%	110	1,73	1.75
PZ1 - PZ2	0,00	1,22	1,500	5,37%	200	1,07	1.08
PZ9 - PZ11	0,13	2,89	2,890	7,03%	200	1,44	1.44

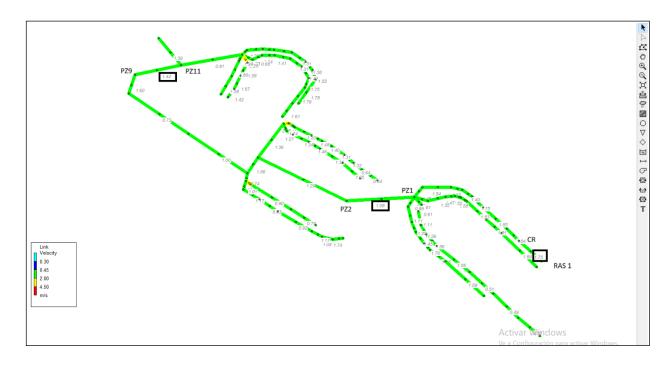


Ilustración 3. 35. Reporte velocidad de diseño en el software SWMM.

Ahora procedemos a verificar el tirante o calado de diseño, en la hoja de cálculo se realizó el diseño en milímetros, mientras que el reporte en el software SWMM está en metros, llustración 3.36, como podemos evidenciar en la Tabla 3.29 existe una mínima diferencia por los redondeos en el software, dado que en SWMM no se puede establecer como unidad de reporte en milímetros.

Tabla 3.29. Verificación de calado de diseño en el software SWMM.

TRAMO	Caudal tramo Qt (lt/s)	Caudal acumulado Qac (lt/s)	Caudal diseño adoptado Qd (lt/s)	Pendiente J(%)	Diámetro adoptado (mm)	Calado d Hoja de cálculo (mm)	Calado SWMM (m)
RAS1 - CR	0,37	0,37	1,500	16,78%	110	16,1	0,02
PZ1 - PZ2	0,00	1,22	1,500	5,37%	200	18,0	0,02
PZ9 - PZ11	0,13	2,89	2,890	7,03%	200	23,2	0,02

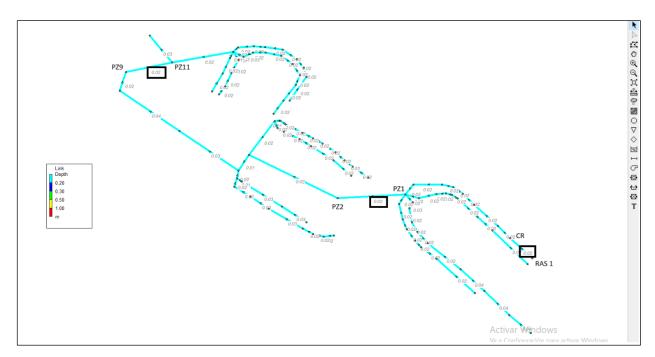


Ilustración 3.36. Reporte calado o tirante de diseño en el software SWMM.

Tabla 3.30. Verificación de Caudal y pendiente de diseño en el software SWMM.

TRAMO	Caudal tramo Qt (lt/s)	Caudal acumulado Qac (lt/s)	Diámetro adoptado (mm)	Caudal diseño adoptado Qd (lt/s)	Caudal SWMM	Pendiente Hoja de cálculo J(%)	Pendiente SWMM (m/m)
RAS1 - CR	0,37	0,37	110	1,50	1,50	16,78%	17.03%
PZ1 - PZ2	0,00	1,22	200	1,50	1,50	5,37%	5,38%
PZ9 - PZ11	0,13	2,89	200	2,89	2,89	7,03%	7,05%

En la Tabla 3.30 se verifica el reporte de caudal y pendiente de diseño en el software SWMM, los valores de caudal son iguales a los determinados, mientras que los valores de pendiente presentan una mínima diferencia en decimales.

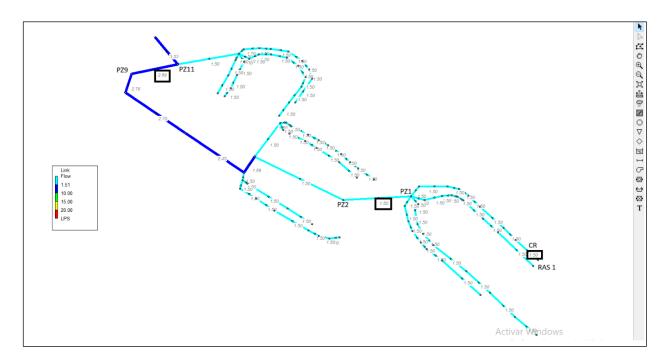


Ilustración 3.37. Reporte caudal de diseño en el software SWMM.

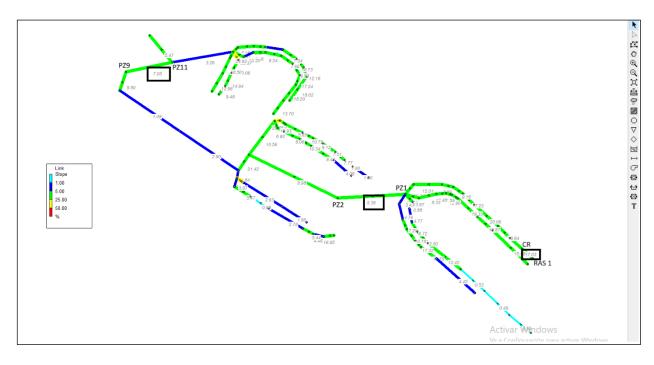


Ilustración 3.38. Figura. Reporte pendiente de diseño en el software SWMM.

Como se puede evidenciar el software SWMM realiza la modelación de los sistemas de alcantarillado con datos iguales a los obtenidos en las hojas de cálculo, de manera que se convierte en una herramienta eficaz para el diseño y modelación de sistemas de alcantarillado sanitario y pluvial, con la facilidad que presenta herramientas para la facilidad del diseño e interpretación, a continuación, se muestra perfiles de los ramales de alcantarillado.

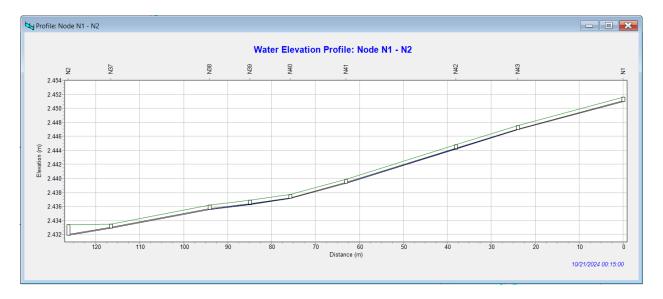


Ilustración 3.39. Perfil de alcantarillado tramo RAS 1 – PZ1, sistema 2.

Ilustración 3.40. Perfil de alcantarillado tramo PZ5 - PZ7 - PZ8 - PZ9 - PZ11, sistema 2.

3.5.5 Resultados del diseño de las redes de alcantarillado

Debido a que los caudales de diseño son pequeños, se obtiene como resultado que los diámetros de las redes de alcantarillado son los mínimos recomendados, para los 2 sistemas de saneamiento, las redes de alcantarillado simplificado tendrán un diámetro interno de 110mm, mientras que, las redes de alcantarillado convencional tendrán un diámetro interno de 200mm.

Para el sistema 1 de las comunidades Pueblo Nuevo y Pampa Negra, se obtiene un total de 1699.22 metros de redes de alcantarillado simplificado con diámetro interno de 110 milímetros, para las redes de alcantarillado convencional se obtiene una longitud de 751.37 metros, el diámetro interno es de 200 milímetros, ver Ilustración 3.41 y Tabla 3.31.

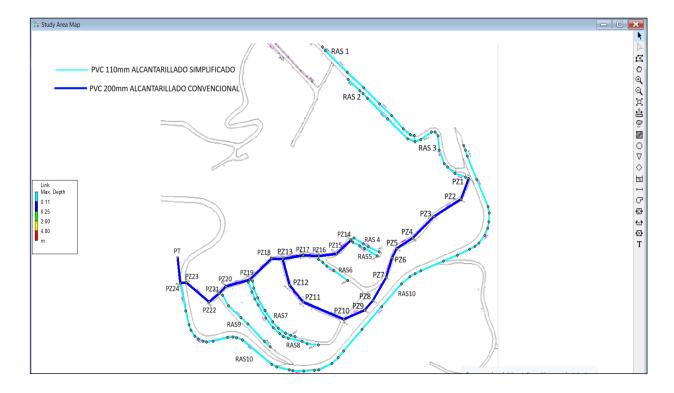


Ilustración 3.41. Diámetro de las redes de alcantarillado del sistema 1 Pueblo Nuevo y Pampa Negra.

Tabla 3.31. Material y diámetro de tubería del sistema 1 Pueblo Nuevo y Pampa Negra.

TRAMO/ RAMAL	LONGITUD m	MATERIAL Y DIAMETRO TUBO	TIPO ALCANTARILLADO
RAS 1 - RAS 3	193.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
RAS 2 - RAS 3	133.90	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
RAS 3 - PZ1	123.32	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
PZ1 - PZ2	30.12	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ2 - PZ3	47.95	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ3 - PZ4	43.74	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ4 - PZ5	28.57	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ5 - PZ6	15.39	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ6 - PZ7	27.53	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ7 - PZ8	36.79	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ8 - PZ9	17.86	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ9 - PZ10	35.76	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ10 - PZ11	67.07	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ11 - PZ12	31.61	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ12 - PZ13	37.22	PVC 200mm	ALCANTARILLADO CONVENCIONAL
RAS 4 - PZ14	47.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
RAS 5 - PZ14	46.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
PZ14 - PZ15	29.44	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ15 - PZ16	26.46	PVC 200mm	ALCANTARILLADO CONVENCIONAL
RAS 6 - PZ16	57.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
PZ16 - PZ17	25.12	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ17 - PZ13	32.67	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ13 - PZ18	16.08	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ18 - PZ19	44.54	PVC 200mm	ALCANTARILLADO CONVENCIONAL
RAS 7 - PZ19	109.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
RAS 8 - PZ19	152.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
PZ19 - PZ20	37.65	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ20 - PZ21	14.05	PVC 200mm	ALCANTARILLADO CONVENCIONAL
RAS 9 - PZ21	106.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
PZ21 - PZ22	18.54	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ22 - PZ23	45.19	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ23 - PZ24	8.38	PVC 200mm	ALCANTARILLADO CONVENCIONAL
RAS 10 - PZ 24	732.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
PZ24 - TRAT	33.64	PVC 200mm	ALCANTARILLADO CONVENCIONAL
Subtotal:	1699.22		ALCANTARILLADO SIMPLIFICADO
Subtotal:	751.37	m PVC 200mm	ALCANTARILLADO CONVENCIONAL
Total:	2450.59	m	

Para el sistema 2 de las comunidades La Dolorosa y Bellavista, se obtiene un total de 1901.00 metros de redes de alcantarillado simplificado con diámetro interno de 110 milímetros, para las redes de alcantarillado convencional se obtiene una longitud de 450.62 metros, el diámetro interno es de 200 milímetros, ver Ilustración 3.41 y Tabla 3.31.

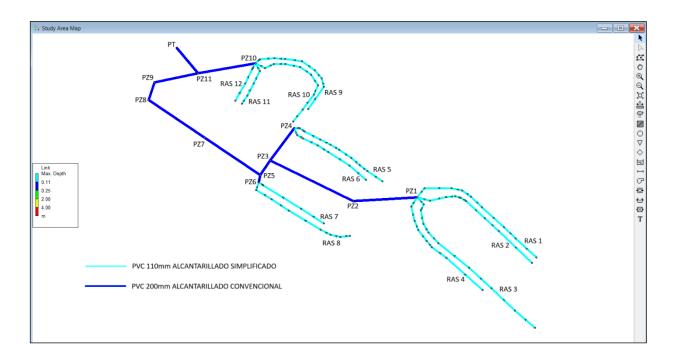


Ilustración 3.42. Diámetro de las redes de alcantarillado del sistema 2 La Dolorosa y Bellavista.

Ilustración 3.43. Material y diámetro de tubería del sistema 1 Pueblo Nuevo y Pampa Negra.

TRAMO/ RAMAL	LONGITUD m	MATERIAL Y DIAMETRO TUBO	TIPO ALCANTARILLADO
RAS 1 - PZ1	126.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
RAS 2 - PZ1	119.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
RAS 3 - PZ1	154.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
RAS 4 - PZ1	104.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
PZ1 - PZ2	53.64	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ2 - PZ4	76.36	PVC 200mm	ALCANTARILLADO CONVENCIONAL
RAS 5 - PZ3	87.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
RAS 6 - PZ3	72.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS
PZ3 - PZ4	33.34	PVC 200mm	ALCANTARILLADO CONVENCIONAL
PZ4 - PZ5	15.47	PVC 200mm	ALCANTARILLADO CONVENCIONAL
RAS 7 - PZ6	65.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS

RAS 8 - PZ6	96.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS		
PZ6 - PZ5	5.99	PVC 200mm	ALCANTARILLADO CONVENCIONAL		
PZ5 - PZ7	56.58	PVC 200mm	ALCANTARILLADO CONVENCIONAL		
PZ7 - PZ8	56.58	PVC 200mm	ALCANTARILLADO CONVENCIONAL		
PZ8 - PZ9	15.59	PVC 200mm	ALCANTARILLADO CONVENCIONAL		
PZ9 - PZ11	37.69	PVC 200mm	ALCANTARILLADO CONVENCIONAL		
RAS 9 - PZ10	94.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS		
RAS 10 - PZ10	99.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS		
RAS 11 - PZ10	39.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS		
RAS 12 - PZ10	36.00	PVC 110mm	ALCANTARILLADO SIMPLIFICADO RAS		
PZ10 - PZ11	49.38	PVC 200mm	ALCANTARILLADO CONVENCIONAL		
PZ11 - TRAT.	50.00	PVC 200mm	ALCANTARILLADO CONVENCIONAL		
Subtotal:	1091.00	m PVC 110mm ALCANTARILLADO SIMPLIFICADO			
Subtotal:	450.62	m PVC 200mm ALCANTARILLADO CONVENCIONAL			
Total:	1541.62	m	·		

3.6 Diseño planta de tratamiento de aguas residuales

3.6.1 Resultados análisis de laboratorio

Se realizo el análisis de aguas residuales en el laboratorio de saneamiento de ETAPA EP, el cual es un laboratorio acreditado por el SAE, se obtuvieron dos muestras: 1) Pozo de alcantarillado, 2) Descarga directa a fuente natural, los resultados se presentan en la Tabla 3.32 y Tabla 3.33. Además, en el Anexo 0 se presenta los resultados entregados por el laboratorio:

Tabla 3.32. Resultados del análisis de laboratorio de la muestra obtenida en un pozo de alcantarillado.

Parámetro	Unidad	Método	Resultado Pozo Alcantarilla do	TULSMA	CUMPLE/N O CUMPLE
Demanda Bioquímica de Oxígeno (DBO)	mg/L	PEE/LS/FQ/ 01	155	100	NO CUMPLE
Demanda Química de	mg/L	PEE/LS/FQ/ 06	495	250	NO CUMPLE

Oxígeno					
(DQO)					
Fósforo	mg/L	ma/l PEE/LS/FQ/		10	CUMPLE
Total	,	03	4.21		
Nitratos*	mgN/L	PEE/LS/FQ/	0.08	Nitratos+Nitrit	
	3	08		os (Nitrogeno)	CUMPLE
Nitritos*	mgN/L	SM 4500	0.05	10	
	g	NO2-			
Nitrógeno					
Kjeldahl	mg/L	SM 4500	70.52	15	NO
Total	1119/2	NORG B	70.02	.0	CUMPLE
(NKT)*					
рН	-	PEE/LS/FQ/	7.38	Entre 4-5	CUMPLE
0.48.1		07			
Sólidos	,,	PEE/LS/FQ/	404	400	NO
Suspendid	mg/L	04	104	100	CUMPLE
os Totales	—				
Turbiedad*	NTU	SM 2130 B	97.6	_	_
Coliformes	NMP/100	SM 9221 E	3.30E+06		
Totales*	ml			Remoción >	NO
Coliformes	NMP/100	_		al 99,9%	CUMPLE
Termo	ml	SM 9221 E	1.30E+06	·	
tolerantes*					

Tabla 3.33. Resultados del análisis de laboratorio de la muestra obtenida en la descarga directa de fuente.

			Resultad		
Parámetro	Unidad	Método	o Descarga Fuente	TULSMA	CUMPLE/N O CUMPLE

Demanda Bioquímica de Oxígeno (DBO)	mg/L	PEE/LS/FQ/0 1	45	100	CUMPLE	
Demanda Química de Oxígeno (DQO)	mg/L	PEE/LS/FQ/0 6	139	250	NO CUMPLE	
Fósforo Total	mg/L	PEE/LS/FQ/0	1.35	10	CUMPLE	
Nitratos*	mgN/L	PEE/LS/FQ/0 8	0.13	Nitratos+Nitrito s (Nitrogeno)	CUMPLE	
Nitritos*	mgN/L	SM 4500 NO2-	0.15	10	OOMI LE	
Nitrógeno Kjeldahl Total (NKT)*	mg/L	SM 4500 NORG B	18.2	15	NO CUMPLE	
рН	-	PEE/LS/FQ/0 7	7	Entre 4-5	CUMPLE	
Sólidos Suspendido s Totales	mg/L	PEE/LS/FQ/0	29	100	CUMPLE	
Turbiedad*	NTU	SM 2130 B	4.49	_	_	
Coliformes Totales*	NMP/100 ml	SM 9221 E	4.90E+06	Remoción > al	NO	
Coliformes Termo tolerantes*	NMP/100 ml	SM 9221 E	1.30E+06	99,9%	CUMPLE	

Nota: Los ensayos marcados con (*) NO están incluidos en el alcance de acreditación del SAE

Al ser muestras obtenidas en la misma zona de estudio, se consideraron para el diseño de la planta de tratamiento de aguas residuales (PTAR), los resultados que se encuentren más alejados del límite que permite el TULSMA, los cuales se presentan en la Tabla 3.34:

Tabla 3.34. Parámetros que no cumplen con la normativa ambiental (TULSMA) para descarga a cuerpos de agua dulce.

Parámetro	Unidad	Resultado	TULSMA	CUMPLE/NO CUMPLE	
Demanda Bioquímica de Oxígeno (DBO ₅)	mg/L	155	100	NO CUMPLE	
Demanda Química de Oxígeno (DQO)	mg/L	495	250	NO CUMPLE	
Nitrógeno Kjeldahl Total (NKT)*	mg/L	70.52	15	NO CUMPLE	
Sólidos Suspendidos Totales	mg/L	104	100	NO CUMPLE	
Coliformes Totales*	NMP/100ml	4.90E+06	Remoción > al		
Coliformes Termo tolerantes*	NMP/100ml	1.30E+06	99,9%	NO CUMPLE	

3.6.2 Resultados de biodegradabilidad

Agua residual de pozo de alcantarillado

$$\frac{DBO_5}{DOO} = \frac{155}{495} = 0.31$$

Agua residual descarga de fuente

$$\frac{DBO_5}{DQO} = \frac{45}{139} = 0.32$$

Por lo tanto, según Ardila et al. 2012 las dos muestras obtenidas en la zona de estudio son poco biodegradables, por lo tanto, son susceptibles a ser depuradas por los microorganismos en 5 días y se puede realizar un tratamiento mediante sistemas biológicos.

3.6.3 Eficiencia requerida en el tratamiento de aguas residuales

Los resultados obtenidos se presentan en la Tabla 3.35:

Tabla 3.35. Eficiencias de remoción en la PTAR

Parámetro	Unidad	Resultado	TULSMA	EFICIENCIA DE REMOCIÓN (%)
Demanda Bioquímica de Oxígeno (DBO₅)	mg/L	155	100	35.48
Demanda Química de Oxígeno (DQO)	mg/L	495	250	49.49
Nitrógeno Kjeldahl Total (NKT)	mg/L	70.52	15	78.73
Sólidos Suspendidos Totales	mg/L	104	100	3.85
Coliformes Totales	NMP/100ml	4.90E+06	Remoción > al	
Coliformes Termo tolerantes	NMP/100ml	1.30E+06	99,9%	>99.9

Con estos resultados se seleccionó las mejores alternativas para la remoción de los contaminantes para su descarga a la fuente de agua dulce cumpliendo con los requerimiento ambientales, legales y funcionales.

3.6.4 Selección preliminar de tecnologías

En base a los resultados de la caracterización de agua residual y los objetivos de tratamiento definidos, se seleccionaron las siguientes alternativas de remoción para el tratamiento de aguas residuales:

3.6.4.1 Alternativa 1: Sistema de lagunas de estabilización.

o Pretratamiento: Rejillas y sedimentador

o Tratamiento secundario: Laguna anaeróbica, Laguna facultativa

o Tratamiento terciario: Laguna de maduración.

Según Von Sperling, (2007) la eficiencia esperada para esta alternativa es la siguiente (Tabla 3.36):

Tabla 3.36. Eficiencia de remoción esperada para la alternativa 1.

FASE	DBO	DQO	NKT	SST	COLIFORMES
	(%)	(%)	(%)	(%)	TOTALES (%)
Preliminar	-	-	-	10-15	-
Lagunas	40-50	30-40	20-40	50-60	-
anaeróbicas					
Lagunas	60-80	50-65	40-80	70-85	-
Facultativas					
Lagunas de	-	-	-	-	80-99
Maduración					
TOTALES	60-80	50-65	40-80	70-85	80-99

3.6.4.2 Alternativa 2: Filtros anaeróbicos de flujo ascendente (FAFA) con Humedales subsuperficiales.

o Pretratamiento: Rejillas y sedimentador

Tratamiento primario: Filtro anaeróbico de flujo ascendente (FAFA)

Tratamiento secundario: Humedales subsuperficiales

Con esta alternativa Von Sperling, (2007) menciona que la eficiencia esperada es la que se presenta en la Tabla 3.37:

Tabla 3.37. Eficiencia de remoción esperada para la alternativa 2.

FASE	DBO	DQO	NKT	SST	COLIFORMES
	(%)	(%)	(%)	(%)	TOTALES (%)
Preliminar	-	-	-	10-15	-
FAFA	50-65	40-55	25-40	50-70	-
Humedales	70-90	60-85	40-80	80-90	95-99.9
construidos					
TOTAL	70-90	60-85	40-80	80-90	95-99.9

3.6.4.3 Alternativa 3: Reactor anaeróbico de flujo ascendente (RAFA) y desinfección.

- o Pretratamiento y primario: Rejillas y desarenador
- o Tratamiento secundario: Reactor anaeróbico de flujo ascendente (RAFA)
- o Tratamiento terciario: Desinfección

Von Sperling, (2007) menciona que la eficiencia esperada para esta alternativa es la siguiente (Tabla 3.38):

Tabla 3.38. Eficiencia de remoción esperada para la alternativa 3

FASE	DBO	DQO	NKT	SST	COLIFORMES TOTALES
	(%)	(%)	(%)	(%)	(%)
Preliminar	-	-	-	10-15	-
RAFA	60-75	50-65	40-80	60-75	-
Desinfección	-	-	-	-	99.9
TOTAL	60-75	50-65	40-80	60-75	99.9

3.6.5 Evaluación técnica preliminar

3.6.5.1 Diseño de las alternativas

• Sistema 1: pampa negra y pueblo nuevo

Para todas las alternativas se diseñó un canal de ingreso, rejilla y sedimentador para evitar la entrada de solidos que pueden obstruir un sistema, el dimensionamiento se presenta a continuación (Tabla 3.39):

Tabla 3.39. Diseño del canal de ingreso, rejillas, desarenador y repartidor de la PTAR (Sistema 1).

CANAL DE INGRESO					
Parámetro	Formula	Datos de entrada	Resultado	Criterios de diseño/	
				Observaciones	
Canal de	$A = \frac{Q_m}{}$	Q _m =7.587 l/s	A=0.002m2		
ingreso	v	v= 3.67 m/s			
Altura del canal	$h = \frac{A}{B}$	A=0.002m2	h=0.00413	Debido a que nos dan	
	В	Altura del canal		valores muy pequeños, se	
		B=0.50m		asume las siguientes	
		(impuesto)		dimensiones para el canal de	
				ingreso:	
				h= 0.50m	
				B=0.70m	
				L=1.00m	
		REJILLAS			

Parámetro	Formula	Datos de entrada	Resultado	Criterios de diseño/
				Observaciones
Ancho del	$b = \left(\frac{c}{s} - 1\right) * (s + a) + s$	Ancho de los	b=690mm	
canal en la	$\langle s \rangle$	barrotes a=10mm		
zona de la		Ancho del canal		
rejilla		de entrada		
		c=500mm		
		Separación de		
		barrotes s= 25mm		
Longitud	$L = \frac{h}{}$	h= 0.50m	L=0.587m	
	$L = \frac{h}{sen \ \theta}$	$\theta = 45^{\circ}$ para		
		limpieza manual		
Numero de	$n = \frac{b-s}{a-s}$	a=10mm	n=19	
barras	a-s	b=690mm		
		s=25mm		
Volumen de	$v_{ad} = Q_d t$	t= 86400	vad=655.52m ³	
agua diario		segundos		
Volumen del	$v_{mt} = \propto v_{ad}$	∝= 0.023 <i>l/m</i> 3	V _{mt} =18.131 lt= 0.018	
material			m³	
retenido				

DESARENADOR Y REPARTIDOR						
Parámetro	Formula	Datos de entrada	Resultado	Criterios de diseño/		
				Observaciones		
Área hidráulica	$A = \frac{Q_d}{v}$	Q _d =7.587 l/s	A=0.076 m ²	Velocidad de lavado Para		
del	n = v	v=0.1 m/s		sedimentos de hasta 3cm de		
desarenador				diámetro, se requiere		
				velocidades de 0.10 a 0.20		
				m/s aproximadamente.		
Ancho del	$B = \frac{A}{H}$	H=0.9m	B=0.084m	Se asume un valor de		
desarenador	H	(impuesto)		B=1.30 m para labores de		
				mantenimiento y limpieza		
Longitud del	$L_{desarenador} = K H \frac{V}{W}$	K=1.20	L _{desarenador} =1.38m	Coeficiente de seguridad. K		
desarenador	-aesarenaaor W	W=0.85m/seg		Se asume un valor entre 1,20		
		V=0.1 m/s		y 1,50.		
				La velocidad de		
				sedimentación es de 8,50		
				cm/seg, para sedimentos de		
				hasta 3cm		
				de diámetro.		

En resumen, las dimensiones adoptadas constructivas son las siguientes (Tabla 3.40):

Tabla 3.40 Dimensiones finales de los elementos en el pretratamiento.

Elemento	Parámetro	Dimensión
Canal de ingreso	Ancho (B)	0.70m
	Altura (h)	0.50m
	Longitud (L)	1.00m
Rejillas	Ancho del canal (b)	0.70m
	Longitud (L)	0.60m
	Número de barrotes (n)	19 unidades
Desarenador	Ancho (B)	1.30m
	Altura (H)	0.90m
	Longitud (L)	1.40m

Según Von Sperling, (2007) la eficiencia de remoción en esta etapa es de entre el 10% al 15% para solidos suspendidos totales, por lo tanto, cumple con la normativa ya que solamente se requería remover el 3.85%.

o Alternativa 1: Sistema de lagunas de estabilización

En la Tabla 3.41, se presenta el diseño de la alternativa 1:

Tabla 3.41. Diseño de la alternativa 1: Lagunas de estabilización (Sistema 1).

	LAGUNA ANAEROBICA					
Parámetro	Formula	Datos de entrada	Resultado	Criterios de diseño/ Observaciones		
Carga BDO volumétrica	$\lambda v = 20 T_{min} - 100$	T=10°C	λ_{v} = 100 g/m ³ d			
Remoción	$R_{DBO} = 2T + 20$	T=10°C	R _{DBO} =0.4			
DBO			40%			
Remoción	$R_{DQO} = 2T + 20$	T=10°C	R _{DQO} =0.4			
DQO			40%			
Volumen de	$V_a = \frac{C_0 \ Q_m}{\lambda_V}$	C _o =155 mg/l	Va=1016.118			
laguna para	λ_V	Q _m =7.587 l/s				
remoción de		λ_{v} = 100 g/m ³ d				
DBO						
Volumen de	$V_a = \frac{C_0 \ Q_m}{\lambda_V}$	C _o =495 mg/l	Va=3245.02	Se dimensiona		
laguna para	λ_V	Qm=7.587 l/s		con este		

remoción de		λ_{V} = 100 g/m ³ d		volumen para
DQO				garantizar la
				remoción de
				DBO y DQO
Área de	$A_a = \frac{V_a}{D_a}$	D _a = 3m (impuesto)	A _a =1081.674 m ²	
laguna	D_a	V _a =3245.02		
Tiempo de	$TRH_a = \frac{C_O}{\lambda_{12}}$	C₀=495 mg/l	TRH _a = 4.95 Días	
retención	λv	$\lambda_V = 100 \text{ g/m}^3 \text{ d}$		
hidráulica				
Concentración	$C_{ef_DBO} = C_O(1 - R_{DBO})$	C₀=155 mg/l	C _{ef_DBO} =93 mg/l	
del DBO en el		R _{DBO} =0.4		
efluente				
Concentración	$C_{ef_DQO} = S_O(1 - R_{DQO})$	C₀=495 mg/l	C _{ef_DQO} =297 mg/l	
del DQO en el		R _{DBO} =0.4		
efluente				
Dimensiones	$A_a = L^2$ Despejando L:	Aa=1081.674 m ²	L=32.88m	Se considera
de la laguna	$L = \sqrt[2]{A_a}$	W=L		una laguna
anaeróbica				cuadrada
	LAGUNA FA	ACULTATIVA		,

Parámetro	Formula	Datos de entrada	Resultado	Criterios de
				diseño/
				Observaciones
Carga de	$\lambda s = 350 \ (1.107 - 0.002T)^{T-25}$	T=10°C	λs= 100.14 kg/ha d	
DBO				
superficial				
Área de	$A_f = 10 \; \frac{C_o \; Q_m}{\lambda_c}$	C0=Cef_DBO=297	Af=19442.14 m ²	El caudal es
laguna	λ_s	mg/l		constante en la
		Qm=7.587 l/s		laguna
		λs= 100.14 kg/ha d		anaeróbica y
				facultativa
Tiempo de	$TRH_f = \frac{A_f D_f}{O_m}$	D _f = 1.5m	TRH _f =44.49 días	
retención	Q_m	(profundidad		
hidráulica		impuesta)		
		Q _m =7.587 l/s		
		A _f =6087.94 m2		
Concentración	$K_{1t} = k_{1_{20}} \Theta^{(Tmin-20)}$	K _{1_20} =0.1 d ⁻¹	K _{1t} =0.06139 d ⁻¹	
de DBO en la	$C_{ef_DBO} = \frac{C_0}{1 + K_{1t}TRH_f}$	C ₀ =C _{ef_DBO} =93 mg/l	C _{ef_DBO} =79.60 mg/l	
salida	$\frac{C_{ef_DBO}}{1 + K_{1t}TRH_f}$	T _{min} =10°C	CefFiltrado= 23.88 mg/l	
	$C_{efsinfiltrar} = C_{ef,DBO}$			

	$C_{effiltrado} = 0.3 C_{efsinfiltrar}$			
Remoción de	$K_{bt} = 2.6 * 1.19^{(Tmin-20)}$	T _{min} =10°C	K _{bt} =0.456 d ⁻¹	
coliformes	$C_{ef_coliformes} = \frac{C_{0,Coliformes}}{(1 + K_{bt}TRH_a)(1 + K_{bt}\theta_f)}$	C _{0,Coliformes} =4900000	Cef_coliformes= 70530.80	
	$Cef_{colliformes} - (1 + K_{bt}TRH_a)(1 + K_{bt}\theta_f)$	NMP/100ml	NMP/100ml	
		TRH _a = 4.95 Días		
		TRH _f =13.93 días		
Dimensiones	$A_f = WL$	L=2W	W _f =98.60m	Es un diseño
de la laguna	$Af = 2W_f^2$ despejando Wf:		L _f =197.19	rectangular 2/1
facultativa	· .			con pendiente
	$W_f = \sqrt[2]{\frac{A_f}{2}}$			al 33%
	$W_f = \sqrt[2]{rac{A_f}{2}}$ $L_f = rac{A_f}{W_f}$			
	LAGUNA DE	MADURACIÓN		
Parámetro	Formula	Datos de entrada	Resultado	Criterios de
				diseño/
				Observaciones
Constante	$k = k_{20}(1.06)^{T-20}$	K ₂₀ =2.6 d ⁻¹ para	k= 1.45 d ⁻¹	Ajuste por
cinética (k)		coliformes		temperatura
		T=10°C		mediante la

				ecuación de
				Arrhenius
TRH-	$TRH_{coliformes} = \frac{1}{k} \ln \frac{C_{0_Coliformes}}{C_{ef_coliformes}}$	k= 1.45 d ⁻¹	TRH _{coliformes} =1.84 días	Determina el
Coliformes	$k^{m}C_{ef_coliformes}$	C _{0_coliformes} =		tiempo
fecales		Cef_coliformes = 70530		necesario para
		NMP/100ml		remoción de
		Cef_coliformes=4900		coliformes
		NMP/100ml		
TRH- NKT	$TRH_{NKT} = \frac{1}{k} \ln \frac{C_{0_NKT}}{C_{ef_NKT}}$	C _{0_NKT} =70.52 mg/L	TRH _{NKT} =11.08 días	La remoción de
	$k^{m_{NKT}}=k^{m_{}}\mathcal{C}_{ef_NKT}$	C _{ef_NKT} =4900		NKT requiere
		NMP/100ml		más tiempo, por
				lo que este
				TRH define el
				diseño.
Volumen total	$V = Q_m TRH_{NKT}$	Q _m =655.56m3/d	V=7263.60 m ³	Volumen
(V)		TRH _{NKT} =11.08días		necesario para
				cumplir el
				tiempo de
				retención

				hidráulico
				requerido.
Área Total (A)	$A = \frac{V}{L}$	V=7263.60m ³	A= 6053.00 m ²	Profundidad
	$A = \frac{V}{h}$	h=1.2m		sugerida de
				1.2m para
				optimizar el
				área.
Laguna 1-	$TRH_1 = 0.7 TRH_{NKT}$	TRH _{NKT} =11.08 días	TRH₁=7.76 días	La primera
TRH₁				laguna cubre el
				70% del tiempo
				total para
				remoción de
				NKT y
				coliformes.
Laguna –	$V_1 = Q_m TRH_1$	Q _m =655.56 m ³ /d	V ₁ =5087.11m ³	Volumen
Volumen (V₁)		TRH₁=7.76 días		necesario para
				la primera
				laguna.

Laguna 1-	$A_1 = \frac{V_1}{h}$	V ₁ =5087.11m ³	A ₁ =4239.26m ²	Área superficial
Area (A ₁)	h = h	h=1.2m		de la primera
				laguna.
Laguna 2-	$TRH_2 = 0.3 TRH_{NKT}$	TRH _{NKT} =11.08 días	TRH ₂ =3.32 días	La segunda
TRH ₂				laguna cubre el
				30% del tiempo
				total para
				remoción de
				NKT y
				coliformes.
Laguna –	$V_2 = Q_m TRH_2$	Q _m =655.56 m ³ /d	V ₂ =2179.08m ³	Volumen
Volumen (V ₂)		TRH₁=3.32 días		necesario para
				la segunda
				laguna.
Laguna 2-	$A_2 = \frac{V_2}{h}$	V ₂ =2179.08m ³	A ₂ =1815.90m ²	Área superficial
Area (A ₂)	h	h=1.2m		de la segunda
				laguna.
Laguna 1-	Relación larga/ancho (4:1)	A ₁ =4239.26m ²	Largo=130.22m	Garantiza flujo
Dimensiones			Ancho=32.56m	uniforme en la
				laguna.

Laguna 2-	Relación larga/ancho (4:1)	A ₂ =1815.90m ²	Largo=85.23m	Menor
Dimensiones			Ancho=21.30m	dimensión para
				manejar flujo
				reducido en la
				segunda
				laguna.

Las dimensiones finales de las lagunas de estabilización, se presentan en la Tabla 3.42:

Tabla 3.42. Dimensiones finales de las lagunas de estabilización.

Laguna	Largo (L)	Ancho (W)	Profundidad (D/h)
Anaeróbica	32.88m	32.88m	3.00m
Facultativa	197.19m	98.60m	1.50m
Maduración- Laguna 1	130.22m	32.56m	1.20m
Maduración- Laguna 2	85.23m	21.30m	1.20m

La eficiencia lograda aproximadamente con esta alternativa, se presenta en la Tabla 3.43:

Tabla 3.43. Eficiencias aproximadas obtenidas con la alternativa 1

Parámetro	Laguna	Laguna	Laguna de	Remoción	Remoción	CUMPLE/NO
	Anaeróbica	Facultativa	Maduración	Total	requerida	CUMPLE
DBO	40%	46.10%		≥86.10%	35.48%	CUMPLE
DQO	40%	46.10%		86.10%	49.49%	CUMPLE
NKT			≥78.73%	≥78.73%	78.73%	CUMPLE
Coliformes Totales		95.83%	4.15%	99.99%	99.99%	CUMPLE

o Alternativa 2: Filtros anaeróbicos de flujo ascendente (FAFA) con Humedal subsuperficial

El diseño de la alternativa 2 se presenta a continuación (Tabla 3.44):

Tabla 3.44. Diseño de la alternativa 2: FAFA con Humedal subsuperficial (Sistema 1).

	FILTRO ANAEROBIO DE FLUJO ASCENDENTE				
Parámetro	Formula	Datos de Entrada	Resultado	Criterios de	
				Diseño/	
				Observaciones	
Cálculo del	$V = \frac{Q_m C_o}{COV}$	$Q_m = 655.95 \text{ m}^3/\text{d}$ ía	V=203.34 m ³	En estudios	
volumen del	COV	$C_0 = 155 \text{ mg/L}$		realizados en filtros	
lecho filtrante		COV= 0.50 kg de DBO/		anaerobios se han	
		m³d		obtenido buenos	
				resultados	
				aplicando una COV	
				de 0.15 a 0.50 kg	
				de DBO/m3d,	
				Chernicharo de	
				Lemos, 2007	
Cálculo del	$A = \frac{V}{}$	V = 203.34 m ³	A = 67.78 m ²	$h_{\rm m} = 0.8 - 3 \text{ m}$	
área	$A = \frac{v}{h_m}$		$h_{\rm m} = 3.00 \text{ m}$		
superficial del			(adoptado)		
filtro (A)					

Cálculo de la	$CHS = \frac{Q_m}{A}$	Q _m = 655.95 m ³ /día	CHS = 9.68 m ³ /m ² día	CHS = $6 - 15 \text{ m}^3/\text{m}^2$
carga	A	A = 67.78 m ²		día (Cumple)
hidráulica				
superficial				
(CHS)				
Cálculo de la	$H = h_m + b + d$	$h_{\rm m} = 3 \text{ m}$	H = 4.75 m	
altura total del		b = 0.75 m (Borde libre)		
filtro (H)		d = 1 m (Altura bajo		
		dren)		
Cálculo del	$V_t = A H$	A = 67.78 m ²	$V_t = 322.01 \text{ m}^3$	
volumen total		H = 4.75 m		
del filtro (V _t)				
Revisión de la	$COV = \frac{(Q_m C_o)}{V_t}$	$Q_m = 655.95 \text{ m}^3/\text{dia}$	COV=0.315	
carga orgánica	V_t	$C_0 = 0.155 \text{ Kg/ m}^3$		
volumétrica al		$V_t = 322.01 \text{ m}^3$		
volumen total				
del filtro				
Cálculo del	$TRH = \frac{V}{}$	$V = 203.34 \text{ m}^3$	TRH =0.31 dia= 7.45	TRH = 4 - 10 horas
tiempo de	$TRH = \frac{v}{Q_m}$	$Q_m = 655.95 \text{ m}^3/\text{dia}$	h	(Cumple)
residencia				

hidráulica				
(TRH)				
Cálculo de la	$E = 100(1 - 0.87 TRH^{-0.5})$	TRH = 7.45 h	E = 68.14%	
eficiencia de				
remoción (E)				
Cálculo de la	$C_{ef_DBO} = C_o - \frac{E C_o}{100}$	$C_0 = 155 \text{ mg/L}$	$C_{ef_DBO} = 49.41 \text{ mg/L}$	Cumple con la
concentración	<i>def_DBO do</i> 100	E = 68.14%		TULSMA que
de DBO en el				solicita DBO _e f = 100
efluente				mg/L
(DBO _e f)				
	HUMED	OAL SUBSUPERFICIAL	l	
Parámetro	Formula	Datos de Entrada	Resultado	Criterios de
				Diseño/
				Observaciones
Características	$K_s = 12600 D_g^{1.9}$	Dg=25mm se escoge	K _s =71855 m ³ /m ² d	Capacidad del
de medio		grava como material		medio granular para
empaque		granular		transportar agua sin
				generar
				colmataciones.

Ajuste por	$K_{Vt} = K_{T,20}\theta^{T-20}$	K _{T,20} =1.104 d ⁻¹	Cálido:	Ajusta la constante
temperatura		T _{calido} =24°C	Kv _T =1.45 d ⁻¹	cinética para reflejar
(Kt)		T _{calido} =10°C	Frío:	la influencia de la
		θ=1.06	Kv⊤=0.62 d ⁻¹	temperatura en la
				remoción de
				contaminantes.
Determinación	$A_{s} = \frac{Q_{m}(\ln C_{0_NKT} - \ln C_{ef_NKT})}{K_{VT} DM n}$	$Q_m = 655.95 \text{ m}^3/\text{dia}$	clima calido:	Dimensión
del área	$K_{VT} DM n$	C _{0_NKT} =70.52mg/l	$A_s = 2709.03 m^2$	requerida para
superficial		C _{ef_NKT} =15mg/I	clima frío:	garantizar la
para remoción		DM=0.6	$A_s = 6379.84 m^2$	remoción de NKT
de NKT		n= 0.43 (grava)		en condiciones
				climáticas
				extremas.
Determinación	A_{S}	$Q_m = 655.95 \text{ m}^3/\text{dia}$	clima calido:	Dimensión
del área	$= \frac{Q_m(\ln C_{0_coliformes} - \ln C_{ef_coliformes})}{2}$	C _{0_coliformes} =4900000mg/l	$A_s = 12089.91 m^2$	requerida para
superficial	$K_{V,T} DM n$	Cef_coliformes=4900mg/I	clima frío:	garantizar la
para remoción		DM=0.6	$A_s = 28472.08 m^2$	remoción de NKT
de Coliformes		n= 0.43 (grava)		en condiciones
totales				climáticas
				extremas.

				Nota: Al ser la mas
				desfavorable se
				escoge para
				dimensionamiento
Área para	$A_1 = 0.3(A_s)$	A _s =28472.08m ²	A ₁ =8541.63 m ²	
zona inicial de				
tratamiento				
Área para	$A_2 = 0.7(A_s)$	A _s =28472.08m ²	A ₂ =19930.45 m ²	
zona final de				
tratamiento				
Determinación	$W = \left(\frac{Q_m A_1}{K_{5.1\%} dh_i D_{W.0}}\right)^{0.5}$	Q _m = 655.95 m ³ /día	W=465.26m	Determinado para
del ancho	$K = (K_{s,1\%}dh_iD_{W,0})$	A ₁ =8541.63 m ²		garantizar que la
mínimo		$K_s = 718.55 \text{ m}^3/\text{m}^2\text{d}$		pérdida de carga se
necesario		dh⊨0.06m		mantenga en un
		Dwo=0.6m		valor aceptable.
				Perdida de carga
				máxima en zona
				inicial dh _i =0.06m.
				Propuesta de
				profundidad del

				agua en zona inicial
				de tratamiento
				Dw0=0.6m
Determinación	$L_i = \frac{A_i}{W}$	A ₁ =19930.45 m ²	L _i =18.36m	
de la pérdida	$L_{l} - W$	W=465.26m		
de carga en la				
zona inicial de				
tratamiento				
Verificación de	$dh_i = \frac{Q_m L_i}{Q_m L_i}$	$Q_m = 655.95 \text{ m}^3/\text{día}$	dh _i =0.06m	Pérdida de carga
la pérdida de	$dh_i = \frac{Q_m L_i}{K_{s,1\%} W D_{W,0}}$	L _i =18.36m		adecuada para
carga		$K_{s,1\%}$ =718.55 m 3 /m 2 d		garantizar un flujo
		Dw,0=0.6		eficiente al inicio del
				tratamiento.
Determinación	$L_F = \frac{A_2}{W}$	A ₂ =19930.45 m ²	L _F =42.84 m	
de la longitud	$Z_F = W$	W=465.26m		
en la				
zona final de				
tratamiento				

Determinación	$dh_F = \frac{Q_m L_F}{K_{S,10\%} W D_{W,F}}$	Q _m = 655.95 m ³ /día	dh _F =0.01m	
de la pérdida	$K_{S,10\%}WD_{W,F}$	L _F =42.84m		
de		$K_{s,10\%}$ =718.55 m ³ /m ² d		
carga en la		Dw,F=0.6		
zona final de				
tratamiento				
Longitud total	$L = L_i + L_F$	L _i =18.36m	L=61.20m	Se recomienda dos
del humedal		L _F =42.84m		celdas de
				tratamiento para
				facilitar las
				actividades de
				operación y
				mantenimiento. Se
				propone 6 celdas
				que pudieran estar
				separadas por
				geomembranas
				N=6
Ancho de	$W_{-1} = \frac{W}{-}$	W=465.26m	W _{celda} =77.54m	Con esto se obtiene
celda	$W_{celda} = \frac{N}{N}$	N=6		una relación largo

				ancho equivalente a
				2:1
Elevación de	Elevación a la salida del efluente:	L _F =42.84 m	$E_{be} = 0$	
las	$E_{be}=0$	L=61.20m	$E_{bF} = 0.21m$	
elevaciones	Elevación a la entrada de la zona final	S _F =0.005	$E_{b0}=0.31$	
de fondo	de tratamiento:			
	$E_{bF} = L_F S_F$			
	Elevación a la entrada de la zona			
	inicial de tratamiento:			
	$E_{b0} = LS_F$			
Determinación	Elevación del agua al inicio de la zona	$E_{bF} = 0.21m$	$E_{WF} = 0.814m$	
de las	final de tratamiento:	D _{WF} =0.6m	$E_{WE}=0.8m$	
elevaciones d	$E_{WF} = E_{bF} + D_{WF}$	dh _F =0.01m	$E_{W0}=0.87m$	
la superficie	Elevación de la superficie del agua a	dh _i =0.06m		
del agua	la salida:			
	$E_{WE} = E_{WF} - dh_F$			
	Elevación de la superficie del agua a			
	la entrada:			
	$E_{W0} = E_{WF} + dh_i$			

Determinación	Profundidad del agua a la entrada:	$E_{W0} = 0.87m$	$D_{W0} = 0.568m$	
de la	$D_{W0} = E_{W0} + E_{b0}$	$E_{b0}=0.31$	$D_{WF}=0.6m$	
profundidad	Profundidad al inicio de la zona final	$E_{WF}=0.814m$	$D_{WE}=0.80m$	
del agua	de tratamiento	$E_{bF}=0.21m$		
	$D_{WF} = E_{WF} + E_{bF}$	$E_{WE}=0.8m$		
	Profundidad del agua a la salida del	$E_{be}=0$		
	humedal			
	$D_{WE} = E_{WE} + E_{be}$			
Determinación	Elevación de la superficie del medio a	$E_{W0} = 0.87m$	$E_{M0}=0.97m$	La profundidad del
de la	la entrada	$D_{W0}=0.568m$	$E_{MF}=0.91m$	medio dependerá
profundidad	$E_{M0} = E_{W0} + D_{W0}$	$E_{WF}=0.814m$	$E_{ME}=0.90m$	de la profundidad
del medio	Elevación de la superficie del medio a	$D_{WM}=0.1m$	$D_{M0}=0.67m$	que alcance la raíz
	la entrada de la zona final de	$E_{WE}=0.8m$	$D_{MF}=0.7m$	de la macrófita
	tratamiento	$E_{b0} = 0.31$	$D_{ME}=0.90m$	propuesta
	$E_{MF} = E_{WF} + D_{WM}$			para el humedal.
	Elevación de la superficie del medio a			Distancia propuesta
	la entrada de la zona final de			entre la superficie
	tratamiento			del medio
	$E_{ME} = E_{WE} + D_{WM}$			y la del agua, <i>D_{WM}</i> =
	Profundidad del medio a la entrada			0.1 metros.

Determinación del tiempo de residencia hidráulica	$D_{M0} = E_{M0} - E_{b0}$ Profundidad del medio a la entrada de la zona final de tratamiento $D_{MF} = E_{MF} + E_{bF}$ Profundidad del medio a la salida $D_{ME} = E_{ME}$ $TRH_{nominal} = \frac{n \ D_{WF}}{(\frac{Q_m}{A_s})}$	$n=0.43$ $D_{WF}=0.6m$ $Q_{m}=655.95 \text{ m}^{3}/\text{d}\text{ia}$ $A_{s}=28472.08\text{m}^{2}$	TRH _{nominal} =11.20días; 268.92 horas	
nominal (TRH) Número de macrófitas requeridas para instalación (N _V) Volumen	$N_v = \left(\frac{L}{d_{M-M}} - 1\right) \left(\frac{W}{d_{M-M}} - 1\right)$ $V = A_S D_{ME}$	L=61.20m W=465.26m D _{M-M} =1m A _s =28472.08m ²	N _v =27946.63 macrófitas V=17941.11m ³	Distancia entre macrófita y macrófita D _{M-M} =1m
estimado de		$D_{ME}=0.90m$		

material de		
lecho (V)		

Las dimensiones finales del tren de tratamiento FAFA con Humedales subsuperficiales, se presentan en la Tabla 3.45:

Tabla 3.45. Dimensiones finales de la FAFA con Humedales subsuperficiales.

FAFA				
Parámetro	Dimensión			
Volumen del lecho filtrante	203.34m ³			
Área superficial	67.78m ²			
Altura total del filtro	4.75m			
Volumen total	322.01m ³			
HUMEDALES SUBSUPE	RFICIALES			
Parámetro	Dimensión			
Área superficial	28472.08m ²			
Área al inicio del humedal	8541.63m ²			
Área al final del humedal	19930.45m ²			
Longitud total del humedal	61.20m			
Ancho total	465.26m			
Ancho por celda	77.54m			

Volumen del material de lecho	17941.11m ³
Número de macrófitos	27947unidades

La eficiencia lograda aproximadamente con esta alternativa, se presenta en la Tabla 3.46:

Tabla 3.46. Eficiencias aproximadas obtenidas con la alternativa 2

Parámetro	FAFA	Humedales	Remoción Total	Remoción requerida	CUMPLE/NO CUMPLE
		subsuperficiales			
DBO	68.14%		≥68.14%	35.48%	CUMPLE
DQO	69.14%		≥68.14%	49.49%	CUMPLE
NKT		78.73%	≥78.73%	78.73%	CUMPLE
Coliformes Totales		99.99%	99.99%	99.99%	CUMPLE

o Alternativa 3: Reactor anaeróbico de flujo ascendente (RAFA) y desinfección

El diseño de esta alternativa se presenta en la Tabla 3.47:

Tabla 3.47. Diseño de la alternativa 3: RAFA con desinfección (Sistema 1).

	REACTOR ANAEROBICO DE FLUJO ASCENDENTE (RAFA)					
Parámetro	Formula	Datos de Entrada	Resultado	Criterios de		
				Diseño/		
				Observaciones		
Cálculo de la carga	$L_O = C_O Q_m$	C ₀ =495mg/l=0.495Kg/m ³	L ₀ =129.80kg DQO/d	Remoción de		
de DQO afluente		Q _m =262.22m ³ /día		DQO esperada		
promedio (L ₀)				del 60-70%.		
Volumen total del	$V = Q_m t$	Q _m =262.22m ³ /día	V=87.41m ³	Cumple con		
reactor (V)		t=8 horas		TRH de 8		
				horas.		
Volumen de cada	$V_u = \frac{V}{N}$	V=87.41m ³	V _u =29.136m ²	Volumen		
módulo (V _u)	$^{\prime}u$ N	N=3		dividido en 3		
				módulos.		
Área de cada	$A = \frac{V_u}{H}$	V _u =29.09m ²	A=6.07m ²			
módulo (A)	Н	H=4.8m				
Área total del	$A_t = NA$	N=3	A _t =18.21 m ²			
reactor (A _t)		A=6.07m ²				
Volumen total	$V_t = A_t H$	At=18.21 m ²	V _t =87.41m ³			
corregido (V _t)		H=4.8m				

Carga hidráulica	$CHV = \frac{Q_m}{V}$	Q _m =262.22m ³ /día	CHV=3m ³ /m ³ d	Aceptable para
volumétrica (CHV)	V = V	V=87.41m ³		condiciones de
				operación de
				RAFA.
Carga orgánica	$COV = \frac{Q_m C_0}{V}$	Q _m =262.22m ³ /día	COV=1.485 Kg	
volumétrica (COV)	00V = V	C_0 =495mg/l=0.495Kg/m ³	DQO/m³d	
		V=87.41m ³		
Velocidad de flujo	$V = \frac{Q_m}{A_t}$	Q _m =262.22m ³ /día	V=0.6m/h	
ascendente para	$V - A_t$	$A_t=18.21 \text{ m}^2$		
Q _{ip}				
Velocidad de flujo	$V = \frac{Q_{max}}{A_t}$	Q _{max} =655.56m ³ /día	V=1.5m/h	Dentro del
ascendente para	A_t	A_t =18.21 m^2		límite máximo
Q _{max}				permitido de
				1.5 m/h
Numero de tubos	$N_d = \frac{A_t}{A_d}$	A _t =18.21 m ²	N _d =9 tubos	Estableciendo
de distribución	$A_d = A_d$	A _d =2 m ²		un área de
(N _d)				afluencia de
				Ad= 2 m2 por
				tubo de
				distribución,

				para una
				concentración
				de lodo de
				20 a 40 kg de
				SST/m ³
Estimación de las	$E_{DQO} = 100(1 - (0.68(t^{-0.35}))$	t=8 horas	E _{DQO} =67.16%	
eficiencias de				
remoción de la				
DQO del sistema				
Estimación de las	$E_{DBO} = 100(1 - (0.70(t^{-0.35}))$	t=8 horas	E _{DBO} =75.25%	
eficiencias de				
remoción				
de la DBO del				
sistema				
Estimación de las	$C_{ef_DQO} = S_0 - \frac{(E_{DQO} S_0)}{100}$	C ₀ =495mg/l=0.495Kg/m ³	C _{efl,DQO} =0.16 Kg/m ³	Cumple con los
concentraciones	$G_{ef_DQ0} = S_0$ 100	E _{DQO} =67.16%		límites
de DQO en el				esperados para
efluente final				la descarga.
Estimación de las	$C_{ef_DBO} = S_0 - \frac{(E_{DBO} S_0)}{100}$	C ₀ =155mg/l=0.155Kg/m ³	C _{efl,DBO} =0.11 Kg/m ³	Cumple con los
concentraciones	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E _{DBO} =75.25%		límites

de DBO en el				esperados para
efluente final				la descarga.
Concentración	$C_{efl,NKT} = C_{afl,NKT}(1 - E_{NKT})$	C _{afl,NKT} =70.52mg/l	Cefl,NKT=14.10mg/l	Cumple con la
final NKT		Емкт=0.80		normativa
Producción teórica	$DQO_{CH4} = Q_m(C_0 - C_{ef_DQO})$	Q _m =262.22m ³ /día	DQO _{CH4} =59.91 kg	Generación de
del metano	$-(Y_{obs}C_0))$	C_0 =495mg/l=0.495Kg/m ³	DQO/d	metano en
		C_{efl_DQO} =0.16 Kg/m ³		condiciones
		Yobs=0.21 kg DQO lodo/kg		anaerobias.
		DQO aplicado		
	$K(t) = \frac{P K_{DQO}}{R(273 + T)}$	P=1 atm	K(t)=2.62 kg DQO/m ³	Biogás
	R(t) = R(273 + T)	K _{DQO} = 64 gDQO/mol		generado con
		R = 0.08206 atm L/mol K		75% de
				contenido de
				metano.
	$Q_{CH4} = \frac{DQO_{CH4}}{K(t)}$	DQO _{CH4} =59.91 kg DQO/d	Q _{CH4} =22.89 m ³ /d	
		$K(t)=2.62 \text{ kg DQO/m}^3$		
Producción del	$Q_g = \frac{Q_{CH4}}{0.75}$	Q _{CH4} =22.89 m ³ /d	Q _g =30.52 m ³ /d	Se adopta un
biogás (Q _g)	^{*g} 0.75			contenido de
				metano de 75
				por ciento.

Dimensionamiento	$A_{tg} = L_g A_g N$	Número de colectores de gas	A _{tg} =10.8m ²	
del colector del		N=3		
gas		Longitud de cada colector		
		Lg = 9 m		
		Ancho de la parte superior del		
		colector del gas		
		Ag=0.40m (adoptado)		
Verificación de la	$K_g = \frac{Q_g}{A_{tg}}$	Q _g =30.52 m ³ /d	K _g =2.83 m/d	Por lo tanto,
tasa de liberación	A_{tg}	A _{tg} =10.8m ²		cada colector
de biogas en el				de biogás
colector del gas				tendrá las
				siguientes
				dimensiones:
				Longitud: 9m
				Ancho: 0.4m
Dimensionamiento	$A_{ta} = L_t A_a$	Número de compartimentos	A _{ta} =18m	
de las aberturas		del sedimentador		
del		N=4 (2 en cada módulo)		
compartimento del		Longitud de cada abertura		
sedimentador		L _a =9m		

		Longitud equivalente de operaciones simples Lt=4*9=36m Ancho de cada abertura Aa=0.5m (adoptado)		
Verificación de velocidades	Para Q_m $V_{ab} = \frac{Q_m}{A_{ta}}$ Para Q_{max} $V_{max} = \frac{Q_{max}}{A_{ta}}$	Q _m =262.22m³/día Q _{max} =655.56m³/día A _{ta} =18m	Para Q _m V _{ab} =0.607m/h Para Q _{max} V _{ab} =1.52m/h	Se encuentra en el rango de velocidades recomendadas por Chernicharo de lemos, (2007) Por lo tanto, cada abertura del compartimento del sedimentador tendrá las

				siguientes
				dimensiones:
				Abertura
				simple:
				Longitud: 9m
				Ancho: 0.45m
Dimensionamiento	$A_{ts} = L_{ts}A_{es}$	Numero de compartimentos	A _{ts} =18.9m ²	
del compartimento		del sedimentador		
del sedimentador		N=2 (1 en cada reactor)		
		Longitud total del		
		sedimentador		
		Lts=18m		
		Ancho de cada colector de gas		
		(Ag)		
		Ag=0.45m		
		Ancho de cada compartimento		
		del sedimentador		
		As=1.5m		
		Ancho efectivo de cada		
		sedimentador		
ı		1	1	i

		Aes=1.5-0.45=1.05m		
Marificación de las	Dave O	0 200 00-3/4/5	Dave O	Community
Verificación de las	Para Q _m	Q _m =262.22m ³ /día	Para Q _m	Se encuentra
tasas de carga	$v_{\scriptscriptstyle S} = rac{Q_m}{A_{ta}}$	Q _{max} =655.56m ³ /día	v _s =0.578m/h	en el rango de
superficial del		Ats=18.9m ²	Para Q _{max}	tasas de carga
sedimentador	Para Q _{max}		v _s =1.44m/h	superficial del
	$v_{max} = \frac{Q_{max}}{\Delta}$			sedimentador
	A_{ta}			recomendadas
				por Chernicharo
				de lemos,
				(2007)
Producción de	$Pl = YDQO_{app}L_0$	Coeficiente de rendimiento de	Pl=23.36kg SST/d	Producción
lodo (PI)		solidos		estimada para
		Y=0.18 kg SST/Kg DQO		purgas
		L ₀ =129.80kg DQO/d		regulares.
Volumen de lodo	V. – <u>Pl</u>	Pl=23.36kg SST/d	V₁=0.57m³/d	
(VI)	$V_l = \frac{Pl}{\gamma(\frac{C}{100})}$	Densidad del lodo		
	100	γ=1021 kg/m ³		

		Concentración de la descarga		
		del lodo		
		C=4%		
		DESINFECCIÓN		
Parámetro	Formula	Datos de Entrada	Resultado	Criterios de
				Diseño/
				Observaciones
Dosis de Cloro (D)	$D = K \ln \frac{C_0}{C_{ef}}$	K=2mg/l	D=13.82 mg/l	Constante de
	$\mathcal{L} = \mathcal{K} \cap \mathcal{L}_{ef}$	C ₀ =4900000 NMP/100ml		inactivación
		C _{ef} =4900 NMP/100ml		depende del
				tipo de agua
				(usualmente
				1.5-2 para
				aguas
				residuales).
Tiempo de	$TRH = \frac{10}{D}$	D=13.82 mg/l	TRH=0.724h=43.44min	Tiempo
retención (tr)	$I \text{KII} = \frac{1}{D}$			recomendado
				entre 15-30
				minutos

				(Metcalf &
				Eddy, 2003).
Volumen del	$V = Q_{max} TRH$	Q _{max} =655.56m ³ /día=27.32	V=19.74 m ³	
tanque (V)		m³/h		
		TRH=0.724h=43.44min		
Área del Tanque	$A = \frac{V}{-}$	V=19.74 m ³	A=7.90 m ²	Garantiza el
(A)	$A = \frac{\cdot}{H}$	H=2.5m (adoptado)		tiempo de
				retención
				requerido
Longitud del		A=7.90 m ²	L=4.86m	
tanque (L)	$L = 3\sqrt{\frac{1}{3}}$			
Demanda de cloro	$D_{diario} = \frac{D \ Q_{max}}{1000}$	D=13.82 mg/l	D _{diario} =9.06 kg/día	
diaria	1000	Q _{max} =655.56m ³ /día		

Las dimensiones finales del tren de tratamiento RAFA con Desinfección, se presentan en la Tabla 3.48:

Tabla 3.48. Dimensiones finales de la RAFA con Desinfección.

RAFA				
Parámetro	Dimensión			
Volumen total	87.41 m ³			
Volumen de cada modulo	29.14 m ³			
Área de cada modulo	6.07 m ²			
Área total del reactor	18.21 m ²			
Altura Total	4.8m			
Número de tubos de distribución	9 tubos			
UNIDAD DE DESINFECO	CIÓN			
Parámetro	Dimensión			
Volumen total del Tanque	19.74 m ³			
Área del tanque	7.90m ²			
Longitud del tanque	4.86 m			
Ancho del tanque	2.63m			

La eficiencia lograda aproximadamente con esta alternativa, se presenta en la Tabla 3.49:

Tabla 3.49. Eficiencias aproximadas obtenidas con la alternativa 3

Parámetro	RAFA	Unidad de desinfección	Remoción Total	Remoción requerida	CUMPLE/NO CUMPLE
DBO	67.16%		≥67.16%	35.48%	CUMPLE
DQO	75.25%		≥75.25%	49.49%	CUMPLE
NKT	80%		≥80%%	78.73%	CUMPLE
Coliformes Totales		99.99%	99.99%	99.99%	CUMPLE

• Sistema 2: la dolorosa y bellavista

Debido a que el caudal de diseño (Q_{ip}=3.53l/s) es menor que el caudal de diseño del sistema 1 y por lo tanto al momento de dimensionar se obtendrá valores inferiores, se adoptará las mismas dimensiones constructivas que el sistema 2 (Tabla 3.50):

Tabla 3.50 Dimensiones finales de los elementos en el pretratamiento para el sistema 2.

Elemento	Parámetro	Dimensión
Canal de ingreso	Ancho (B)	0.70m
	Altura (h)	0.50m
	Longitud (L)	1.00m
Rejillas	Ancho del canal (b)	0.70m
	Longitud (L)	0.60m
	Número de barrotes (n)	19 unidades
Desarenador	Ancho (B)	1.30m

Altura (H)	0.90m
Longitud (L)	1.40m

o Alternativa 1: Sistema de lagunas de estabilización

En la Tabla 3.51, se presenta el diseño de la alternativa 1:

Tabla 3.51. Diseño de la alternativa 1: Lagunas de estabilización (Sistema 2).

LAGUNA ANAEROBICA				
Parámetro	Formula	Datos de entrada	Resultado	Criterios de diseño/
				Observaciones
Carga BDO	$\lambda v = 20 T_{min} - 100$	T _{min} =10°C	λ_{V} = 100 g/m ³ d	
volumétrica				
Remoción DBO	$R_{DBO} = 2T + 20$	T _{min} =10°C	R _{DBO} =0.4	
			40%	
Remoción DQO	$R_{DQO} = 2T + 20$	T _{min} =10°C	R _{DQO} =0.4	
			40%	
Volumen de	$V_a = \frac{C_0 \ Q_m}{\lambda_V}$	C ₀ =155 mg/l	V _a =473. m ³	
laguna para	λ_{V}	Qm=3.531/s		
remoción de		$\lambda_V = 100 \text{ g/m}^3 \text{ d}$		
DBO				

Volumen de	$V_a = \frac{C_0 \ Q_m}{\lambda_V}$	C _o =495 mg/l	V _a =1510.91 m ³	Se dimensiona con		
laguna para	λ_{V}	Q _m =3.53l/s		este volumen para		
remoción de		$\lambda_v = 100 \text{ g/m}^3 \text{ d}$		garantizar la		
DQO				remoción de DBO y		
				DQO		
Área de laguna	$A_a = \frac{V_a}{D_a}$	D _a = 3m (impuesto)	A _a =503.64 m ²			
	$D_a = D_a$	Va=1510.91 m ³				
Tiempo de	$TRH_a = \frac{C_O}{\lambda v}$	C ₀ =495 mg/l	TRH _a = 4.95 Días			
retención	$\lambda v = \lambda v$	λ_{v} = 100 g/m ³ d				
hidráulica						
Concentración	$C_{ef,DBO} = C_O(1 - R_{DBO})$	C ₀ =155 mg/l	C _{ef,DBO} =93 mg/l			
del DBO en el		R _{DBO} =0.4				
efluente						
Concentración	$C_{ef,DQO} = S_O(1 - R_{DQO})$	C₀=495 mg/l	C _{ef,DQO} =297 mg/l			
del DQO en el		R _{DQO} =0.4				
efluente						
Dimensiones de	$A_a = L^2$ Despejando L:	A _a =503.64 m ²	L=22.44m	Se considera una		
la laguna	$L = \sqrt[2]{A_a}$	W=L		laguna cuadrada		
anaeróbica						
	LAGUNA FACULTATIVA					

Parámetro	Formula	Datos de entrada	Resultado	Criterios de diseño/
				Observaciones
Carga de DBO	$\lambda s = 350 \ (1.107)$	T=10°C	λ _s = 100.14 kg/ha d	
superficial	$-0.002T)^{T-25}$			
Área de laguna	$A_f = 10 \; \frac{C_o \; Q_m}{\lambda_c}$	Co= Cef,DQO =297 mg/l	A _f =9052.45 m ²	El caudal es
	λ_s	Q _m =3.53 l/s		constante en la
		λ _s = 100.14 kg/ha d		laguna anaeróbica y
				facultativa
Tiempo de	$TRH_f = \frac{A_f D_f}{O_{res}}$	D _f = 1.5m (profundidad impuesta)	TRH _f =44.49 días	
retención	Q_m	Q _m =3.44 l/s		
hidráulica		A _f =276.30 m ²		
Concentración	$K_{1t} = k_{1,20} \Theta^{(Tmin-20)}$	K _{1_20} =0.1 d ⁻¹	K _{1t} =0.06138 d- ¹	
de DBO en la	$C_{ef,DBO} = \frac{C_0}{1 + K_{1t}TRH_f}$	C _o = C _{ef,DBO} =93 mg/l	C _{ef,DBO} =86.13mg/l	
salida	$\int \frac{def,DBO}{def} = 1 + K_{1t}TRH_f$	T _{min} =10°C	CefFiltrado= 25.84	
	$C_{efsinfiltrar} = C_{ef,DBO}$		mg/l	
	$C_{effiltrado} = 0.3 C_{efsinfiltrar}$			
Remoción de	$K_{bt} = 2.6 * 1.19^{(Tmin-20)}$	T _{min} =10°C	K _{bt} =0.456 d ⁻¹	
coliformes	$C_{ef,coliformes}$	C ₀ ,Coliformes=4900000 NMP/100ml	Cef,coliformes=	
	$= \frac{C_{0,Coliformes}}{(1 + K_{ht}TRH_a)(1 + K_{ht}\theta_f)}$	TRH _a = 4.95 Días	70530.80	
	$-\frac{1}{(1+K_{bt}TRH_a)(1+K_{bt}\theta_f)}$	TRH _f =1.39 días	NMP/100ml	

Dimensiones de	$A_f = WL$	L=2W	W _f =67.28m	Es un diseño
la laguna	$Af = 2W_f^2$ despejando Wf:		L _f =134.55m	rectangular 2/1 con
facultativa	,			pendiente al 33%
	$W_f = \sqrt[2]{\frac{A_f}{2}}$			
	$L_f = \frac{A_f}{W_f}$			
		LAGUNA DE MADURACIÓN		,
Constante	$k = k_{20}(1.06)^{T-20}$	K ₂₀ =2.6 d ⁻¹ para coliformes	k= 1.45 d ⁻¹	Ajuste por
cinética (k)		T=10°C		temperatura
				mediante la ecuación
				de Arrhenius
TRH-	$TRH_{coliformes}$	C _{0_colif} ormes=C _{ef_colif} ormes=204222.61	TRH _{coliformes} =2.51	Determina el tiempo
Coliformes	$_{-}$ 1 $_{-}$ $C_{0_Coliformes}$	NMP/100ml	días	necesario para
fecales	$= \frac{1}{k} \ln \frac{C_{0_Coliformes}}{C_{ef_coliformes}}$	C _{ef_coliformes} =4900 NMP/100mI		remoción de
				coliformes
TRH- NKT	$TRH_{NKT} = \frac{1}{k} \ln \frac{C_{0_NKT}}{C_{ef_NKT}}$	C _{0_NKT} =70.52 mg/L	TRH _{NKT} =11.08	La remoción de NKT
	$k^{m_{NKT}} = k^{m_{C_{ef_NKT}}}$	C _{ef_NKT} =4900 NMP/100ml	días	requiere más tiempo,

				por lo que este TRH
				define el diseño.
Volumen total	$V = Q_m TRH_{NKT}$	Q _m =305.24 m ³ /d	V=3382.06 m ³	Volumen necesario
(V)		TRH _{NKT} =11.08días		para cumplir el
				tiempo de retención
				hidráulico requerido.
Área Total (A)	$A = \frac{V}{h}$	V=3382.06 m ³	A=2818.38m ²	Profundidad
	h	h=1.2m		sugerida de 1.2m
				para optimizar el
				área.
Laguna 1-TRH ₁	$TRH_1 = 0.7 TRH_{NKT}$	TRH _{NKT} =11.08 días	TRH₁=7.76 días	La primera laguna
				cubre el 70% del
				tiempo total para
				remoción de NKT y
				coliformes.
Laguna –	$V_1 = Q_m TRH_1$	Q _m =305.24 m ³ /d	V ₁ =2368.66m ³	Volumen necesario
Volumen (V ₁)		TRH₁=7.76 días		para la primera
				laguna.
Laguna 1- Area	$A_1 = \frac{V_1}{h}$	V ₁ =2368.66m ³	A ₁ =1973.88m ²	Área superficial de la
(A ₁)	h	h=1.2m		primera laguna.

Laguna 1-	$TRH_2 = 0.3 TRH_{NKT}$	A ₁ =1973.88m ²	Largo=88.86m	Garantiza flujo
Dimensiones			Ancho=22.21m	uniforme en la
				laguna.
Laguna 2-TRH ₂	$V_2 = Q_m TRH_2$	TRH _{NKT} =11.08 días	TRH ₂ =3.324 días	La primera laguna
				cubre el 70% del
				tiempo total para
				remoción de NKT y
				coliformes.
Laguna –	$A_2 = \frac{V_2}{h}$	Q _m =305.24 m ³ /d	V ₁ =1014.62m ³	Volumen necesario
Volumen (V ₂)	h	TRH ₂ =3.324 días		para la primera
				laguna.
Laguna 2- Area	Relación larga/ancho (4:1)	V ₁ =1014.62m ³	A ₁ =845.51m ²	Área superficial de la
(A ₂)		h=1.2m		primera laguna.
Laguna 1-	Relación larga/ancho (4:1)	A ₁ =1973.88m ²	Largo=58.16m	Garantiza flujo
Dimensiones			Ancho=14.54m	uniforme en la
				laguna.

Las dimensiones finales de las lagunas de estabilización, se presentan en la Tabla 3.52:

Tabla 3.52. Dimensiones finales de las lagunas de estabilización.

Laguna	Largo (L)	Ancho (W)	Profundidad (D/h)
Anaeróbica	22.44m	22.44m	3.00m
Facultativa	134.55m	67.28m	1.50m
Maduración- Laguna 1	88.86m	22.21m	1.20m
Maduración- Laguna 2	58.16m	14.54m	1.20m

La eficiencia lograda aproximadamente con esta alternativa, se presenta en la Tabla 3.53:

Tabla 3.53. Eficiencias aproximadas obtenidas con la alternativa 1

Parámetro	Laguna	Laguna	Laguna de	Remoción	Remoción	CUMPLE/NO
	Anaeróbica	Facultativa	Maduración	Total	requerida	CUMPLE
DBO	40%	46.10%		≥86.10%	35.48%	CUMPLE
DQO	40%	46.10%		86.10%	49.49%	CUMPLE
NKT			≥78.73%	≥78.73%	78.73%	CUMPLE
Coliformes		95.83%	4.15%	99.99%	99.99%	CUMPLE
Totales						

o Alternativa 2: Filtros anaeróbicos de flujo ascendente (FAFA) con Humedal subsuperficial

El diseño de la alternativa 2 se presenta a continuación (Tabla 3.54):

Tabla 3.54. Diseño de la alternativa 2: FAFA con Humedales subsuperficiales (Sistema 2).

	FILTRO ANAEROBIO DE FLUJO ASCENDENTE				
Parámetro	Formula	Datos de Entrada	Resultado	Criterios de	
				Diseño/	
				Observaciones	
Cálculo del	$V = \frac{Q_m C_o}{COV}$	Q _m =305.24m³/día	V=94.62 m ³	En estudios	
volumen del	COV	$C_0 = 155 \text{ mg/L}$		realizados en	
lecho filtrante		COV= 0.50 kg de DBO/		filtros anaerobios	
		m³d		se han obtenido	
				buenos resultados	
				aplicando una	
				COV de 0.15 a	
				0.50 kg de	
				DBO/m3d,	
				Chernicharo de	
				Lemos, 2007	
Cálculo del	$A = \frac{V}{}$	V=94.62 m ³	A = 31.54 m ²	$h_{\rm m} = 0.8 - 3 \text{m}$	
área	$A = \frac{r}{h_m}$	$h_m = 3.00 \text{ m (adoptado)}$			
superficial del					
filtro (A)					

Cálculo de la	$CHS = \frac{Q_m}{A}$	Q _m =305.24m³/día	CHS = $9.68 \text{ m}^3/\text{m}^2$	CHS = 6 - 15
carga	A	A = 31.54 m ²	día	m³/m² día
hidráulica				(Cumple)
superficial				
(CHS)				
Cálculo de la	$H = h_m + b + d$	$h_{\rm m} = 3 \text{ m}$	H = 4.75 m	
altura total del		b = 0.75 m (Borde libre)		
filtro (H)		d = 1 m (Altura bajo dren)		
Cálculo del	$V_t = A H$	A = 31.54 m ²	$V_t = 149.82 \text{ m}^3$	
volumen total		H = 4.75 m		
del filtro (V _t)				
Revisión de la	$COV = \frac{(Q_m C_o)}{V_t}$	Q _m =305.24m³/día	COV=0.315	
carga orgánica	V_t	$C_0 = 0.155 \text{ Kg/ m}^3$		
volumétrica al		$V_t = 322.01 \text{ m}^3$		
volumen total				
del filtro				
Cálculo del	$TRH = \frac{V}{Q_m}$	V = 203.34 m ³	TRH =0.31 dia= 7.44	TRH = 4 - 10
tiempo de	Q_m	Q _m =305.24m³/día	h	horas (Cumple)
residencia				

hidráulica				
(TRH)				
Cálculo de la	$E = 100(1 - 0.87 TRH^{-0.5})$	TRH = 7.44 h	E = 68.10%	
eficiencia de				
remoción (E)				
Cálculo de la	$C_{ef_DBO} = C_o - \frac{E C_o}{100}$	$C_0 = 155 \text{ mg/L}$	C _{ef_DBO} = 49.44 mg/L	Cumple con la
concentración	$G_{ef_DBO} = G_o = 100$	E = 68.10%		TULSMA que
de DBO en el				solicita DBO _e f =
efluente				100 mg/L
(DBO _e f)				
	HUMED	OAL SUBSUPERFICIAL		
Parámetro	Formula	Datos de Entrada	Resultado	Criterios de
				Diseño/
				Observaciones
Características	$K_s = 12600 \ D_g^{1.9}$	Dg=25mm se escoge	$K_s = 71855 \text{ m}^3/\text{m}^2\text{d}$	Capacidad del
de medio		grava como material		medio granular
empaque		granular		para transportar
				agua sin generar
				colmataciones.

Ajuste por	$K_{Vt} = K_{T,20}\theta^{T-20}$	K _{T,20} =1.104 d ⁻¹	Cálido:	Ajusta la
temperatura		T _{calido} =24°C	Kv _T =1.45 d ⁻¹	constante cinética
(Kt)		T _{frío} =10°C	Frío:	para reflejar la
		θ=1.06	Kv⊤=0.62 d ⁻¹	influencia de la
				temperatura en la
				remoción de
				contaminantes.
Determinación	$A_{s} = \frac{Q_{m}(\ln C_{0_NKT} - \ln C_{ef_NKT})}{K_{VT} DM n}$	Q _m = 305.24 m ³ /día	clima calido:	Dimensión
del área	$K_{VT} DM n$	C _{0_NKT} =70.52mg/l	A _s =1261.35m ²	requerida para
superficial		C_{ef_NKT} =15mg/l	clima frío:	garantizar la
para remoción		DM=0.6	A _s =2970.52m ²	remoción de NKT
de NKT		n= 0.43 (grava)		en condiciones
				climáticas
				extremas.
Determinación	A_S	$Q_m = 305.24 \text{ m}^3/\text{dia}$	clima calido:	Dimensión
del área	$= \frac{Q_m(\ln C_{0_coliformes} - \ln C_{ef_coliformes})}{K_{V,T} DM n}$	$C_{0_coliformes}\!\!=\!\!4900000mg/I$	A _s =5629.18m ²	requerida para
superficial	$K_{V,T} DM n$	$C_{ef_coliformes}$ =4900mg/l	clima frío:	garantizar la
para remoción		DM=0.6	A _s =13256.87m ²	remoción de NKT
de Coliformes		n= 0.43 (grava)		en condiciones
totales				

				climáticas
				extremas.
				Nota: Al ser la
				más desfavorable
				se escoge para
				dimensionamiento
Área para	$A_1 = 0.3(A_s)$	A _s =13256.87m ²	A ₁ =3977.06 m ²	
zona inicial de				
tratamiento				
Área para	$A_2 = 0.7(A_s)$	A _s =13256.87m ²	A ₂ =9279.81 m ²	
zona final de				
tratamiento				
Determinación	$W = \left(\frac{Q_m A_1}{K_{s,1\%} dh_i D_{W,0}}\right)^{0.5}$	$Q_m = 305.24 \text{ m}^3/\text{dia}$	W=216.63m	Determinado para
del ancho	$K = (K_{s,1\%}dh_iD_{W,0})$	A ₁ =3977.06 m ²		garantizar que la
mínimo		$K_s=718.55 \text{ m}^3/\text{m}^2\text{d}$		pérdida de carga
necesario		dh _i =0.06m		se mantenga en
		D _{W0} =0.6m		un valor
				aceptable.

				Perdida de carga
				máxima en zona
				inicial dh _i =0.06m.
				Propuesta de
				profundidad del
				agua en zona
				inicial de
				tratamiento
				Dwo=0.6m
Determinación	$L_i = \frac{A_i}{W}$	A ₁ =3977.06 m ²	L _i =18.36m	
de la pérdida	$L_i = \overline{W}$	W=216.63m		
de carga en la				
zona inicial de				
tratamiento				
Verificación de	$dh_i = \frac{Q_m L_i}{Q_m L_i}$	Q _m = 305.24 m ³ /día	dh _i =0.06m	Pérdida de carga
la pérdida de	$dh_i = \frac{Q_m L_i}{K_{s,1\%} W D_{W,0}}$	L _i =18.36m		adecuada para
carga		K _{s,1%} =718.55 m ³ /m ² d		garantizar un flujo
		Dw,0=0.6		eficiente al inicio
				del tratamiento.

Determinación	$L_F = \frac{A_2}{W}$	A ₂ =9279.81 m ²	L _F =42.84 m	
de la longitud	$Z_F = W$	W=216.63m		
en la				
zona final de				
tratamiento				
Determinación	$dh_F = \frac{Q_m L_F}{K_{S,10\%} W D_{W,F}}$	$Q_m = 305.24 \text{ m}^3/\text{dia}$	dh _F =0.014m	
de la pérdida	$K_{S,10\%}WD_{W,F}$	L _F =42.84m		
de		$K_{s,10\%}$ =7185.5 m ³ /m ² d		
carga en la		Dw,F=0.6		
zona final de				
tratamiento				
Longitud total	$L = L_i + L_F$	L _i =18.36m	L=61.20m	Se recomienda
del humedal		L _F =42.84m		dos celdas de
				tratamiento para
				facilitar las
				actividades de
				operación y
				mantenimiento.
				Se propone 6
				celdas que

				pudieran estar
				separadas por
				geomembranas
				N=6
Ancho de	$W \dots - \frac{W}{}$	W=216.63m N=6	W _{celda} =77.54m	Con esto se
celda	$W_{celda} = \frac{W}{N}$			obtiene una
				relación largo
				ancho equivalente
				a 2:1
Elevación de	Elevación a la salida del efluente:	L _F =42.84 m	$E_{be}=0$	
las	$E_{be}=0$	L=61.20m	$E_{bF} = 0.21m$	
elevaciones	Elevación a la entrada de la zona final	S _F =0.005	$E_{b0} = 0.31$	
de fondo	de tratamiento:			
	$E_{bF} = L_F S_F$			
	Elevación a la entrada de la zona			
	inicial de tratamiento:			
	$E_{b0} = LS_F$			
Determinación	Elevación del agua al inicio de la zona	$E_{bF}=0.21m$	$E_{WF} = 0.814m$	
de las	final de tratamiento:	D _{WF} =0.6m	$E_{WE}=0.8m$	
elevaciones d	$E_{WF} = E_{bF} + D_{WF}$	dh _F =0.01m	$E_{W0}=0.87m$	

la superficie	Elevación de la superficie del agua a	dh _i =0.06m		
del agua	la salida:			
	$E_{WE} = E_{WF} - dh_F$			
	Elevación de la superficie del agua a			
	la entrada:			
	$E_{W0} = E_{WF} + dh_i$			
Determinación	Profundidad del agua a la entrada:	$E_{W0}=0.87m$	$D_{W0}=0.568m$	
de la	$D_{W0} = E_{W0} + E_{b0}$	$E_{b0} = 0.31$	$D_{WF}=0.6m$	
profundidad	Profundidad al inicio de la zona final	$E_{WF}=0.814m$	$D_{WE}=0.80m$	
del agua	de tratamiento	$E_{bF}=0.21m$		
	$D_{WF} = E_{WF} + E_{bF}$	$E_{WE}=0.8m$		
	Profundidad del agua a la salida del	$E_{be}=0$		
	humedal			
	$D_{WE} = E_{WE} + E_{be}$			
Determinación	Elevación de la superficie del medio a	$E_{W0}=0.87m$	$E_{M0}=0.97m$	La profundidad
de la	la entrada	$D_{W0}=0.568m$	$E_{MF}=0.91m$	del medio
profundidad	$E_{M0} = E_{W0} + D_{W0}$	$E_{WF}=0.814m$	$E_{ME}=0.90m$	dependerá de la
del medio	Elevación de la superficie del medio a	$D_{WM}=0.1m$	$D_{M0}=0.67m$	profundidad
	la entrada de la zona final de	$E_{WE}=0.8m$	$D_{MF}=0.7m$	que alcance la
	tratamiento	$E_{b0}=0.31$	$D_{ME}=0.90m$	raíz de la

	$E_{MF} = E_{WF} + D_{WM}$			macrófita
	Elevación de la superficie del medio a			propuesta
	la entrada de la zona final de			para el humedal.
	tratamiento			Distancia
	$E_{ME} = E_{WE} + D_{WM}$			propuesta entre la
	Profundidad del medio a la entrada			superficie del
	$D_{M0} = E_{M0} - E_{b0}$			medio
	Profundidad del medio a la entrada de			y la del agua,
	la zona final de tratamiento			D _{WM} = 0.1 metros.
	$D_{MF} = E_{MF} + E_{bF}$			
	Profundidad del medio a la salida			
	$D_{ME}=E_{ME}$			
Determinación	$TRH_{nominal} = \frac{n D_{WF}}{(\frac{Q_m}{A})}$	n= 0.43	TRH _{nominal} =11.20días;	
del tiempo de	$(\frac{Q_m}{A_c})$	$D_{WF}=0.6m$	268.92 horas	
residencia	5	$Q_m = 305.24 \text{ m}^3/\text{dia}$		
hidráulica		$A_s = 13256.87 m^2$		
nominal (TRH)				
Número de	$N_v = (\frac{L}{d_{M-M}} - 1)(\frac{W}{d_{M-M}} - 1)$	L=61.20m	N _v =12980.05	Distancia entre
macrófitas	$d_{M-M} \qquad d_{M-M}$	W=216.63m D _{M-M} =1m	macrófitas	macrófita y
requeridas				macrófita

para				D _{M-M} =1m
instalación				
(N _v)				
Volumen	$V = A_S D_{ME}$	A _s =9279.81m ²	V=8353.55m ³	
estimado de		$D_{ME}=0.90m$		
material de				
lecho (V)				

Las dimensiones finales del tren de tratamiento FAFA con Humedales subsuperficiales, se presentan en la Tabla 3.55:

Tabla 3.55. Dimensiones finales de la FAFA con Humedales subsuperficiales.

FAFA				
Parámetro	Dimensión			
Volumen del lecho filtrante	94.62m ³			
Área superficial	31.54m ²			
Altura total del filtro	4.75m			
Volumen total	145.82m ²			
HUMEDALES SUBSUPERFICIALES				
Parámetro	Dimensión			
Área superficial	13256.87m ²			

Área al inicio del humedal	3977.06m ²
Área al final del humedal	9279.81m ²
Longitud total del humedal	36.10m
Ancho total	216.63m
Ancho por celda	35.11m
Volumen del material de lecho	8353.55m ³
Número de macrófitos	12980.04unidades

La eficiencia lograda aproximadamente con esta alternativa, se presenta en la Tabla 3.56:

Tabla 3.56. Eficiencias aproximadas obtenidas con la alternativa 2

Parámetro	FAFA	Humedales	Remoción Total	Remoción requerida	CUMPLE/NO CUMPLE
		subsuperficiales			
DBO	68.14%		≥68.14%	35.48%	CUMPLE
DQO	69.14%		≥68.14%	49.49%	CUMPLE
NKT		78.73%	≥78.73%	78.73%	CUMPLE
Coliformes Totales		99.99%	99.99%	99.99%	CUMPLE

o Alternativa 3: Reactor anaeróbico de flujo ascendente (RAFA) y desinfección

El diseño de esta alternativa se presenta en la Tabla 3.57:

Tabla 3.57. Diseño de la alternativa 3: RAFA con desinfección (Sistema 2).

REACTOR ANAEROBICO DE FLUJO ASCENDENTE (RAFA)				
Parámetro	Formula	Datos de Entrada	Resultado	Criterios de
				Diseño/
				Observaciones
Cálculo de la carga	$L_O = C_O Q_m$	C ₀ =495mg/l=0.495Kg/m ³	L ₀ =60.43kg DQO/d	Remoción de
de DQO afluente		Q _m =122.094m ³ /día		DQO esperada
promedio (L ₀)				del 60-70%.
Volumen total del	$V = Q_m t$	Q _m =122.094m ³ /día	V=40.70m ³	Cumple con
reactor (V)		t=8 horas		TRH de 8
				horas.
Volumen de cada	$V = \frac{V}{}$	V=40.70m ³	Vu=13.57m ²	Volumen
módulo (V _u)	$V_u = \frac{r}{N}$	N=3		dividido en 3
				módulos.
Área de cada	$A = \frac{V_u}{H}$	V _u =13.57m ²	A=2.83m ²	
módulo (A)	Н	H=4.8m		
Área total del	$A_t = NA$	N=3	A _t =8.48 m ²	
reactor (A _t)		A=2.83m ²		

Volumen total	$V_t = A_t H$	A _t =8.48 m ²	V _t =40.70m ³	
corregido (V _t)		H=4.8m		
Carga hidráulica	$CHV = \frac{Q_m}{V}$	Q _m =122.094m ³ /día	CHV=3m ³ /m ³ d	Aceptable para
volumétrica (CHV)	V = V	V=40.70m ³		condiciones de
				operación de
				RAFA.
Carga orgánica	$COV = \frac{Q_m C_0}{V}$	Q _m =122.094m ³ /día	COV=1.485 Kg	
volumétrica (COV)	V = V	C ₀ =495mg/l=0.495Kg/m ³	DQO/m³d	
		V=40.70m ³		
Velocidad de flujo	$V = \frac{Q_m}{A_t}$	Q _m =122.094m ³ /día	V=0.6m/h	
ascendente para	A_t	A _t =8.48 m ²		
Q _{ip}				
Velocidad de flujo	$V = \frac{Q_{max}}{A_t}$	Q _{max} =305.24m ³ /día	V=1.5m/h	Dentro del
ascendente para	A_t	A _t =8.48 m ²		límite máximo
Q _{max}				permitido de
				1.5 m/h
Numero de tubos	$N_d = \frac{A_t}{A_d}$	A _t =8.48 m ²	N _d =4 tubos	Estableciendo
de distribución	A_d	A _d =2 m ²		un área de
(N _d)				afluencia de
				Ad= 2 m2 por

				tubo de
				distribución,
				para una
				concentración
				de lodo de
				20 a 40 kg de
				SST/m ³
Estimación de las	$E_{DQO} = 100(1 - (0.68(t^{-0.35}))$	t=8 horas	E _{DQO} =67.16%	
eficiencias de				
remoción de la				
DQO del sistema				
Estimación de las	$E_{DBO} = 100(1 - (0.70(t^{-0.35}))$	t=8 horas	E _{DBO} =75.25%	
eficiencias de				
remoción				
de la DBO del				
sistema				
Estimación de las	$C_{ef_DQO} = S_0 - \frac{(E_{DQO} S_0)}{100}$	C ₀ =495mg/l=0.495Kg/m ³	C _{efl,DQO} =0.16 Kg/m ³	Cumple con los
concentraciones	$\frac{c_{ef_DQ0} - s_0}{100}$	EDQO=67.16%		límites
de DQO en el				esperados para
efluente final				la descarga.

Estimación de las	$C_{ef_DBO} = S_0 - \frac{(E_{DBO} S_0)}{100}$	C ₀ =155mg/l=0.155Kg/m ³	C _{efl,DBO} =0.11 Kg/m ³	Cumple con los
concentraciones	$Sef_DBO = S_0$ 100	E _{DBO} =75.25%		límites
de DBO en el				esperados para
efluente final				la descarga.
Concentración	$C_{efl,NKT} = C_{afl,NKT}(1 - E_{NKT})$	C _{afl,NKT} =70.52mg/l	Cefl,NKT=14.10mg/l	Cumple con la
final NKT		E _{NKT} =0.80		normativa
Producción teórica	$DQO_{CH4} = Q_m(C_0 - C_{ef_DQO})$	Q _m =122.094m ³ /día	DQO _{CH4} =27.89 kg	Generación de
del metano	$-(Y_{obs}C_0)$	C_0 =495mg/l=0.495Kg/m ³	DQO/d	metano en
		$C_{efl,DQO}$ =0.16 Kg/m ³		condiciones
		Yobs=0.21 kg DQO lodo/kg		anaerobias.
		DQO aplicado		
	$K(t) = \frac{P K_{DQO}}{R(273 + T)}$	P=1 atm	K(t)=2.62 kg DQO/m ³	Biogás
	R(273+T)	K _{DQO} = 64 gDQO/mol		generado con
		R = 0.08206 atm L/mol K		75% de
				contenido de
				metano.
	$Q_{CH4} = \frac{DQO_{CH4}}{K(t)}$	DQO _{CH4} =27.89 kg DQO/d	Qсн ₄ =10.65 m ³ /d	
	K(t)	$K(t)=2.62 \text{ kg DQO/m}^3$		
Producción del	$Q_g = \frac{Q_{CH4}}{0.75}$	Q _{CH4} =10.65 m ³ /d	Q _g =14.21 m ³ /d	Se adopta un
biogás (Q _g)	^{vg} 0.75			contenido de

				metano de 75
				por ciento.
Dimensionamiento	$A_{tg} = L_g A_g N$	Número de colectores de gas	A _{tg} =10.8m ²	
del colector del		N=3		
gas		Longitud de cada colector		
		Lg = 9 m		
		Ancho de la parte superior del		
		colector del gas		
		Ag=0.40m (adoptado)		
Verificación de la	$K_g = \frac{Q_g}{A_{tg}}$	Q _g =14.21 m ³ /d A _{tg} =10.8m ²	K _g =1.32 m/d	Por lo tanto,
tasa de liberación	$A_{g} = A_{tg}$			cada colector
de biogas en el				de biogás
colector del gas				tendrá las
				siguientes
				dimensiones:
				Longitud: 9m
				Ancho: 0.4m
Dimensionamiento	$A_{ta} = L_t A_a$	Número de compartimentos	A _{ta} =18m	
de las aberturas		del sedimentador		
del		N=4 (2 en cada módulo)		

compartimento del		Longitud de cada abertura		
sedimentador		L _a =9m		
		Longitud equivalente de		
		operaciones simples		
		Lt=4*9=36m		
		Ancho de cada abertura		
		Aa=0.5m (adoptado)		
Verificación de	Para Q _m	Q _m =122.094m ³ /día	Para Q _m	Se encuentra
velocidades	$V_{ab} = \frac{Q_m}{A_{ta}}$	Q _{max} =305.24m ³ /día	V _{ab} =0.28m/h	en el rango de
		A _{ta} =18m	Para Q _{max}	velocidades
	Para Q _{max}		V _{ab} =0.71m/h	recomendadas
	$V_{max} = \frac{Q_{max}}{A_{ta}}$			por Chernicharo
	A_{ta}			de lemos,
				(2007)
				Por lo tanto,
				cada abertura
				del
				compartimento
				del
				sedimentador

				tendrá las
				siguientes
				dimensiones:
				Abertura
				simple:
				Longitud: 9m
				Ancho: 0.45m
Dimensionamiento	$A_{ts} = L_{ts}A_{es}$	Numero de compartimentos	A _{ts} =8.4m ²	
del compartimento		del sedimentador		
del sedimentador		N=2 (1 en cada reactor)		
		Longitud total del		
		sedimentador		
		Lts=8m		
		Ancho de cada colector de		
		gas (Ag)		
		Ag=0.45m		
		Ancho de cada compartimento		
		del sedimentador		
		As=1.5m		
	1		1	

Verificación de las tasas de carga superficial del sedimentador	Para Qm $v_{s}=rac{Q_{m}}{A_{ta}}$ Para Q $_{max}$ $v_{max}=rac{Q_{max}}{A_{ta}}$	Ancho efectivo de cada sedimentador Aes=1.5-0.45=1.05m Qm=122.094m³/día Qmax=305.24m³/día Ats=8.4m²	Para Q _m v _s =0.578m/h Para Q _{max} v _s =1.44m/h	Se encuentra en el rango de tasas de carga superficial del sedimentador recomendadas por Chernicharo de lemos, (2007)
Producción de lodo (PI)	$Pl = YDQO_{app}L_0$	Coeficiente de rendimiento de solidos Y=0.18 kg SST/Kg DQO L ₀ =60.44kg DQO/d	Pl=10.88kg SST/d	Producción estimada para purgas regulares.
Volumen de lodo (VI)	$V_l = \frac{Pl}{\gamma(\frac{C}{100})}$	Pl=10.88kg SST/d Densidad del lodo	V _I =0.27m ³ /d	

		γ=1021 kg/m³		
		Concentración de la descarga		
		del lodo		
		C=4%		
		DESINFECCIÓN	L	
Parámetro	Formula	Datos de Entrada	Resultado	Criterios de
				Diseño/
				Observaciones
Dosis de Cloro (D)	$D = K \ln \frac{C_0}{C_{ef}}$	K=2mg/l	D=13.82 mg/l	Constante de
	C_{ef}	C ₀ =4900000 NMP/100ml		inactivación
		C _{ef} =4900 NMP/100ml		depende del
				tipo de agua
				(usualmente
				1.5-2 para
				aguas
				residuales).
Tiempo de	$TRH = \frac{10}{D}$	D=13.82 mg/l	TRH=0.724h=43.44min	Tiempo
retención (tr)	D			recomendado
				entre 15-30
				minutos

				(Metcalf &
				Eddy, 2003).
Volumen del	$V = Q_{max} TRH$	D=13.82 mg/l	V=9.21 m ³	
tanque (V)		=12.72 m ³ /h		
		TRH=0.724h=43.44min		
Áron del Tangue	V	V=9.21 m ³	A=3.68 m ²	Garantiza el
Área del Tanque	$A = \frac{V}{H}$		A=3.00 III	
(A)	11	H=2.5m (adoptado)		tiempo de
				retención
				requerido
Longitud del	\overline{A}	A=3.68 m ²	L=3.32m	
tanque (L)	$L = 3\sqrt{\frac{1}{3}}$			
Demanda de cloro	$D_{diario} = \frac{D \ Q_{max}}{1000}$	D=13.82 mg/l	D _{diario} =4.21 kg/día	
diaria	$D_{diario} = \frac{1}{1000}$	Q _{max} =305.24m ³ /día		

Las dimensiones finales del tren de tratamiento RAFA con Desinfección, se presentan en la ¡Error! No se encuentra el origen de la referencia.:

Tabla 4.58. Dimensiones finales de la RAFA con Desinfección.

RAFA					
Parámetro	Dimensión				
Volumen total	40.70 m ³				
Volumen de cada modulo	13.57 m ³				
Área de cada modulo	2.83 m ²				
Área total del reactor	8.48 m ²				
Altura Total	4.8m				
Número de tubos de distribución	4 tubos				
UNIDAD DE DESINFECO	CIÓN				
Parámetro	Dimensión				
Volumen total del Tanque	9.20 m ³				
Área del tanque	3.68m ²				
Longitud del tanque	3.32 m				
Ancho del tanque	1.10m				

La eficiencia lograda aproximadamente con esta alternativa, se presenta en la Tabla 3.59:

Tabla 3.59. Eficiencias aproximadas obtenidas con la alternativa 3

Parámetro	RAFA	Unidad de	Remoción	Remoción	CUMPLE/NO
		desinfección	Total	requerida	CUMPLE
DBO	67.16%		≥67.16%	35.48%	CUMPLE
DQO	75.25%		≥75.25%	49.49%	CUMPLE
NKT	80%		≥80%%	78.73%	CUMPLE
Coliformes		99.99%	99.99%	99.99%	CUMPLE
Totales					

3.6.5.2 Evaluación económica

Se obtuvo el costo de construcción aproximado de cada alternativa de los rubros más significativos para finalmente realizar una comparativa:

• Alternativa 1: Lagunas de estabilización

Metcalf & Eddy, (1991) menciona que esta alternativa tiene bajos costos iniciales y operativos, pero se requiere grandes extensiones de terreno (Tabla 3.60).

Tabla 3.60. Presupuesto alternativa 1: Lagunas de estabilización

PRESUPUESTO ALTERNATIVA 1: LAGUNAS DE ESTABILIZACIÓN						
Rubro	Cantidad	Unidad	Precio Unitario (USD)	Costo Total (USD)		
Excavación	39,674.12	m³	3.89	154332.33		
Recubrimiento o Impermeabilización	30,435.94	m²	10.30	313490.18		
Estabilización de Taludes	3,856.55	m²	8.25	31816.54		
Hormigón f'c=210 kg/cm²	189.26	m³	120.95	22891.00		
Acero de Refuerzo	18,925.80	kg	1.50	28388.70		
	TOTAL			550,918.74		

Los costos operativos y de mantenimiento son económicos, esta alternativa es ideal para comunidades rurales de bajo presupuesto.

• Alternativa 2: FAFA con humedales subsuperficiales

Esta alternativa tiene costos iniciales moderados y bajo costo operativo, adecuados para espacios reducidos (Metcalf & Eddy, 1991) (Tabla 3.61).

Tabla 3.61. Presupuesto alternativa 2: FAFA con Humedales subsuperficiales

PRESUPUESTO ALTERNATIVA 2: FAFA CON HUMEDALES SUBSUPERFICIALES					
Rubro	Cantidad	Unidad	Precio Unitario (USD)	Costo Total (USD)	
	F/	\FA			
Excavación 0-2h	322.01	m³	3.89	1252.62	
Material del lecho filtrante	203.34	m³	50.23	10213.77	

Hormigón f'c=210 kg/cm²	322.01	m³	120.95	38947.11
Impermeabilización (base)	67.78	m²	10.30	698.13
HUME	DALES SU	BSUPERFI	CIALES	
Excavación 0-2h	17,941.11	m³	3.89	69790.92
Material del lecho (grava)	17,941.11	m³	25.30	453910.08
Impermeabilización (base)	28,472.08	m²	10.30	293262.42
Plantación de macrófitos	27,947	unidades	0.50	13973.50
	TOTAL			882,048.56

Los costos operativos y de mantenimiento son de nivel intermedio ya que no se requiere de insumos químicos ni reparaciones mecánicas frecuentes, sin embargo, si tiene los humedales si requieren de mantenimiento constante.

• Alternativa 3: RAFA con desinfección

El RAFA con desinfección maneja un alto costo inicial y operativo, y es recomendado para zonas urbanas con restricciones de espacio (Metcalf & Eddy, 1991), sin embargo, el RAFA presenta un sistema modular compacto con menor demanda de espacio y materiales, lo que justifica un presupuesto más bajo (Tabla 3.62).

Tabla 3.62. Presupuesto alternativa 3: RAFA con Unidad de desinfección

PRESUPUESTO ALTERNATIVA 3: RAFA CON UNIDAD DE DESINFECCIÓN									
RAFA Rubro Cantidad Unidad Unitario (USD) RUBRO CANTIDA UNIDA (USD)									
Excavación 0-2h	87.41	m³	3.89	340.02					
Hormigón f'c=210 kg/cm²	87.41	m³	120.95	10572.24					

Impermeabilización (base)	18.21 m²		10.30	187.56	
Tubos de distribución (RAFA)	9	unidades	396.43	3567.87	
UN	IDAD DE D	ESINFECC	IÓN		
Excavación 0-2h	19.74	m³	3.89	76.79	
Hormigón f'c=210 kg/cm²	19.74	m³	120.95	2387.55	
Impermeabilización (base)	7.9	m²	10.30	81.37	
Sistema de desinfección UV	1	unidad	10550.38	10550.38	
Acero de Refuerzo	10,715.00	kg	1.50	16072.50	
	43836.29				

El sistema requiere de mantenimiento intensivo debido a los siguientes factores:

- Operación mecánica constante de bombas y sistemas de distribución.
- Sustitución periódica de componentes como lámparas UV.
- Dependencia de insumos químicos para desinfección.

Esto lo coloca como el sistema con el costo operativo más elevado.

Finalmente, considerando el balance entre costos de construcción y operativos, para comunidades con limitaciones de terreno y requisitos estrictos de calidad de efluentes, FAFA con humedales subsuperficiales es la opción más equilibrada en términos técnico-económicos.

3.6.5.3 Evaluación operativa

Requerimientos de mantenimiento

Lagunas de estabilización

CONAGUA, (2015a) menciona que el mantenimiento consiste en la remoción de lodos acumulados, control de vegetación y reparación de taludes y cercas. Además, Tchobanoglous et al., (2014) señala que la frecuencia de limpieza es baja, con intervenciones necesarias cada 1-2 años dependiendo de la carga orgánica.

Puntaje: 9- Muy bajo requerimiento de mantenimiento

FAFA con Humedales

Según CONAGUA, (2015b) Los filtros anaeróbicos requieren inspecciones mensuales y

limpieza para evitar obstrucciones, además de manejo periódico de la biomasa en los

humedales. El mantenimiento es intensivo debido al uso de componentes mecánicos y

químicos.

Puntaje: 7- Requiere un nivel moderado de mantenimiento

RAFA con Desinfección

Se debe realizar una purga regular de lodos, limpieza de sistemas de desinfección y ajustes de parámetros críticos como PH y temperatura (CONAGUA, 2015b). Por otro

lado, Tchobanoglous et al., (2014) señala que el mantenimiento es intensivo debido al

uso de componentes mecánicos y químicos.

Puntaje: 6- Requiere un alto nivel de mantenimiento

• Disponibilidad de mano de obra calificada

Lagunas de estabilización

Las Lagunas de Estabilización son ideales para comunidades rurales, ya que su

operación básica permite que sean manejadas por personal con mínima capacitación.

Este tipo de sistema es adecuado para contextos donde el acceso a técnicos especializados es limitado, siendo una solución operativamente sencilla y autosuficiente

(CONAGUA, 2015a; Tchobanoglous et al., 2014)

Puntaje: 8- No requiere personal técnico avanzado, y las tareas pueden ser manejadas

con entrenamiento básico.

FAFA con Humedales

Se requiere personal técnico intermedio con conocimientos básicos sobre biología del

tratamiento, ya que estas habilidades son necesarias para manejar tanto el filtro como el

humedal. Aunque se necesita una capacitación adicional, el nivel requerido sigue siendo

accesible para operadores con experiencia media (CONAGUA, 2015b, p. 62).

Puntaje: 7- Aunque requiere un nivel de capacitación superior al de las lagunas,

siguesiendo accesible para personal técnico medio.

RAFA con Desinfección

186

Los Reactores Anaeróbicos con Desinfección dependen de operadores capacitados en sistemas avanzados, especialmente para el ajuste de parámetros operativos críticos. Este sistema tiene una alta dependencia de operadores especializados, lo que incrementa los costos asociados y hace que sea menos viable en contextos con recursos humanos limitados (CONAGUA, 2015b; Tchobanoglous et al., 2014).

Puntaje: 5- Alta dependencia de personal calificado y costoso

Fiabilidad operativa

Lagunas de estabilización

Las Lagunas de Estabilización presentan una fiabilidad operativa moderada, especialmente en climas cálidos donde son altamente funcionales. Sin embargo, su eficiencia puede disminuir en condiciones extremas, como temperaturas bajas o cambios abruptos de carga hidráulica, lo que limita su capacidad para manejar fluctuaciones significativas (CONAGUA, 2015a; Tchobanoglous et al., 2014).

Puntaje: 7- Aunque son confiables en climas cálidos, son sensibles a cambios extremos en condiciones ambientales.

FAFA con Humedales

Esta alternativa ofrece alta fiabilidad operativa debido a la integración de procesos anaeróbicos y naturales. Esta combinación les permite adaptarse mejor a las fluctuaciones de carga, garantizando un rendimiento estable bajo condiciones variables (CONAGUA, 2015b, p. 62).

Puntaje: 8- Su diseño integrado permite una operación más estable.

RAFA con Desinfección

Por último, los Reactores Anaeróbicos con Desinfección son los más confiables desde el punto de vista operativo, ya que están diseñados para funcionar bajo condiciones controladas. Estos sistemas son capaces de garantizar una remoción eficiente de contaminantes incluso con variaciones importantes en las condiciones de entrada, siempre y cuando sean manejados adecuadamente (CONAGUA, 2015b; Tchobanoglous et al., 2014).

Puntaje: 9- Es el sistema más confiable operativamente, pero depende de una correcta operación técnica.

A continuación, en la Tabla 3.63 se presenta el resumen de las valoraciones de los parámetros operativos:

Tabla 3.63. Valoraciones de los parámetros operativos

CRITERIO	LAGUNAS DE	FAFA CON	REACTOR
	ESTABILIZACIÓN	HUMEDALES	ANAEROBICO CON
			DESINFECCIÓN
Requerimientos de	9 (muy bajo)	7 (moderado)	6(alto)
mantenimiento			
Disponibilidad de	9 (muy favorable)	7 (favorable)	5 (menos favorable)
Mano de Obra			
Calificada			
Fiabilidad	7 (moderada)	8 (alta)	9 (muy alta)
Operativa			

Se calculo los puntajes ponderados para cada alternativa considerando los criterios y sus respectivas ponderaciones:

- Requerimientos de Mantenimiento (40%)
- Disponibilidad de Mano de Obra Calificada (30%)
- Fiabilidad Operativa (30%)

A continuación, en la Tabla 3.64 se presenta los resultados del análisis ponderado con la alternativa más adecuada destacada:

Tabla 3.64. Resultados de la ponderación de cada alternativa.

ALTERNATIVA	PUNTAJE TOTAL
Lagunas de Estabilización	8.0
FAFA con Humedales	7.3
Reactor Anaeróbico con Desinfección	6.9

Por lo tanto, las Lagunas de Estabilización representan la opción más adecuada para contextos con recursos técnicos y económicos limitados, destacándose por su simplicidad operativa y bajos requerimientos de mantenimiento. Por su parte, los Filtros Anaeróbicos con Humedales ofrecen una solución equilibrada, combinando una alta fiabilidad operativa con requerimientos técnicos moderados, lo que los convierte en una opción viable para escenarios intermedios. Finalmente, los Reactores Anaeróbicos con Desinfección son la alternativa más avanzada, ideales para contextos con alta capacidad

técnica y disponibilidad de recursos, gracias a su diseño sofisticado y alto rendimiento operativo.

3.6.5.4 Evaluación ambiental y social

Alternativa 1: Sistema de lagunas de estabilización

La Alternativa 1 (Lagunas de Estabilización) presenta un impacto ambiental total moderadamente negativo, con un valor ponderado de -10, derivado principalmente de la fase de construcción (-14), donde actividades como el movimiento de tierras y la ocupación extensiva de terrenos afectan significativamente factores como la flora (-3), fauna (-2) y biodiversidad (-3). Durante la operación, la aceptación comunitaria (+4) y la mejora del paisaje (+3) generan un balance positivo (+3), justificando la preferencia por tecnologías simples y bien integradas al entorno rural. La fase de mantenimiento también tiene un impacto positivo moderado (+3), gracias a la baja complejidad operativa y la percepción comunitaria favorable (+3). Sin embargo, persisten impactos negativos menores en agua superficial (-1) y subterránea (-1) debido a la posible infiltración y manejo de lodos. En general, esta alternativa es adecuada para comunidades rurales, pero debe implementarse con medidas de mitigación específicas para minimizar los efectos adversos en el entorno natural durante la construcción (Tabla 3.65).

Tabla 3.65. Análisis ambiental y social de la alternativa 1, mediante matriz de Leopold.

FASE	CALIDAD DEL	AGUA	AGUA	RUIDO	FLORA	FAUNA	BIODIVERSIDAD	SALUD HUMADA	PAISAJE	ACEPTACIÓN	TOTAL
Construcción	-2	-2	-3	-1	-3	-2	-3	-2	-2	4	-14
Operación	0	-1	-1	0	-1	-1	-1	1	3	4	3
Mantenimiento	-1	-1	-1	0	0	0	0	1	2	3	3
TOTALES	-3	-4	-5	-1	-4	-3	-4	0	3	11	-10

• Alternativa 2: FAFA con Humedales Construidos

La Alternativa 2 (FAFA con Humedales Construidos) presenta un balance ambiental positivo moderado, con un impacto total de +2, destacándose en las fases de operación y mantenimiento. Durante la construcción, los impactos negativos (-10) se deben principalmente a alteraciones en la flora (-2), fauna (-2) y biodiversidad (-2), así como a los efectos sobre las aguas superficiales y subterráneas (-2 cada una), producto del movimiento de tierras y habilitación del sistema. En la operación, el impacto positivo (+5) está impulsado por la integración paisajística (+4) y la alta aceptación comunitaria (+5),

reflejando la percepción favorable hacia tecnologías sostenibles y visualmente atractivas. La fase de mantenimiento también tiene un impacto positivo (+5), gracias a la mejora en la salud humana (+2) por la calidad del agua tratada y la conservación del paisaje (+3). Esta alternativa es especialmente adecuada para comunidades rurales con espacio limitado, donde la aceptación social y la sostenibilidad son factores clave, justificando su valoración positiva en comparación con otras tecnologías (Tabla 3.66).

Tabla 3.66. Análisis ambiental y social de la alternativa 2, mediante matriz de Leopold.

FASE	CALIDAD DEL AIRE	AGUA	AGUA	RUIDO	FLORA	FAUNA	BIODIVERSIDAD	SALUD HUMADA	PAISAJE	ACEPTACIÓN COMUNITARIA	TOTAL
Construcción	-2	-2	-2	-1	-2	-2	-2	-2	-1	4	-10
Operación	-1	-1	-1	0	-1	-1	-1	2	4	5	5
Mantenimiento	-1	-1	-1	0	-1	0	0	2	3	3	5
TOTALES	-4	-4	-4	-1	-4	-3	-3	2	6	13	2

Alternativa 3: RAFA con Desinfección

La Alternativa 3 (RAFA con Desinfección) presenta un impacto total negativo de -10, reflejando su alta afectación ambiental durante la fase de construcción (-23), donde el movimiento de tierras y la instalación de infraestructura generan impactos significativos en calidad del aire (-3), agua superficial (-3) y biodiversidad (-3). Sin embargo, durante la operación, el impacto positivo (+3) está impulsado por la mejora en la salud humana (+3) debido a la alta remoción de contaminantes microbiológicos y la integración paisajística (+4). La fase de mantenimiento también aporta un impacto positivo moderado (+4), destacándose por el mantenimiento controlado del sistema y la aceptación comunitaria (+3). Esta alternativa es adecuada para entornos urbanos o industriales con alta carga orgánica, pero sus impactos negativos en la construcción la hacen menos viable para comunidades rurales con sensibilidad ambiental (Tabla 3.67).

Tabla 3.67. Análisis ambiental y social de la alternativa 3, mediante matriz de Leopold.

FASE	CALIDAD DEL AIRE	AGUA	AGUA SUBTERRANEA	RUIDO	FLORA	FAUNA	BIODIVERSIDAD	SALUD HUMADA	PAISAJE	ACEPTACIÓN COMUNITARIA	TOTAL
Construcción	-3	-3	-3	-2	-3	-3	-3	-3	-2	2	-23
Operación	-2	-1	-1	0	-1	-1	-1	3	4	3	3
Mantenimiento	-2	-1	-1	0	0	0	0	2	3	3	4
TOTALES	-7	-5	-5	-2	-4	-4	-4	2	5	8	-10

En conclusión, la Alternativa 2 (FAFA con Humedales Construidos) es la opción más equilibrada, con un impacto ambiental total positivo (+2) gracias a su alta aceptación comunitaria y sostenibilidad durante la operación y mantenimiento, aunque presenta impactos moderados durante la construcción. La Alternativa 1 (Lagunas de Estabilización), aunque adecuada para comunidades rurales por su simplicidad y bajo mantenimiento, tiene un impacto total negativo (-10) debido a las afectaciones ambientales significativas en la fase de construcción. Por su parte, la Alternativa 3 (RAFA con Desinfección), con un impacto negativo total de -10, destaca en contextos urbanos o industriales por su fiabilidad y mejoras en la salud humana, pero su alta afectación ambiental durante la construcción la hace menos viable en entornos rurales.

3.6.6 Selección final de la mejor alternativa

Tras realizar la evaluación económica, operativa y ambiental-social para las tres alternativas de PTAR (Lagunas de Estabilización, FAFA con Humedales Subsuperficiales, y RAFA con Desinfección), y considerando las ponderaciones siguientes:

• Evaluación Económica: 40%

• Evaluación Operativa: 30%

• Evaluación Ambiental y Social: 30%

Se obtiene los siguientes criterios:

3.6.6.1 FAFA con Humedales Subsuperficiales

Ventajas:

- Equilibrio entre costos moderados y alta sostenibilidad ambiental.
- Adaptabilidad operativa gracias a la combinación de procesos anaeróbicos y naturales.
- Aceptación social elevada debido a la integración paisajística y percepción sostenible.

Limitaciones:

- Requiere mantenimiento constante en los humedales (control de macrófitos y limpieza del lecho).
- Demanda conocimientos técnicos intermedios para su operación.

• **Recomendado para**: Comunidades con espacio limitado y un enfoque en sostenibilidad y aceptación comunitaria.

3.6.6.2 Lagunas de Estabilización

Ventajas:

- o Alternativa económica en construcción y operación.
- Simplicidad operativa, ideal para comunidades rurales con personal poco capacitado.
- Bajo nivel de mantenimiento requerido.

Limitaciones:

- Necesidad de grandes extensiones de terreno.
- Impacto ambiental significativo en la fase de construcción (ocupación de espacio y biodiversidad).
- Recomendado para: Comunidades rurales con disponibilidad de terreno y presupuesto limitado.

3.6.6.3 RAFA con Desinfección

Ventajas:

- Alta eficiencia técnica, especialmente para la remoción de contaminantes microbiológicos.
- Diseño compacto y modular, ideal para espacios reducidos.
- Fiabilidad operativa alta bajo manejo adecuado.

Limitaciones:

- Requiere personal técnico especializado, incrementando los costos operativos.
- Impacto ambiental alto durante la construcción.
- Dependencia de insumos químicos y componentes mecánicos.
- Recomendado para: Contextos urbanos o industriales con alta densidad poblacional y restricciones espaciales.

En base a los criterios mencionados anteriormente, se obtuvo la siguiente ponderación (Tabla 3.68):

Tabla 3.68 Puntaje final para selección de mejor alternativa de PTAR

PUNTAJE FINAL									
Alternativa	Económico (40%)	Operativo (30%)	Ambiental (30%)	Puntaje Total					
Lagunas de Estabilización	4.5	2.4	1.2	8.1					
FAFA con Humedales	3.5	2.2	2.7	8.4					
RAFA con Desinfección	4	2.1	1.2	7.3					

Con base en el puntaje total ponderado, la FAFA con Humedales Subsuperficiales (8.4) es la opción más equilibrada y adecuada para proyectos que priorizan sostenibilidad ambiental y aceptación social, especialmente en contextos intermedios donde el espacio y los recursos están limitados, pero no ausentes.

CAPÍTULO 4

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

- La parroquia San Cristóbal enfrenta una severa carencia en infraestructura sanitaria, ya que el 77.75% de la población carece de acceso al alcantarillado, lo que obliga a gran parte de los habitantes a depender de pozos sépticos y descargas directas. Esta situación contribuye significativamente a la contaminación de los cuerpos de agua locales y al deterioro de los ecosistemas, además de exponer a la comunidad a enfermedades de origen hídrico, afectando negativamente tanto la salud pública como la calidad de vida de sus habitantes.
- Para el transporte y recolección de las aguas residuales de los 2 sistemas de saneamiento, se propone el uso de redes de alcantarillado simplificado en los tramos iniciales, sistema de alcantarillado que se adapta a la configuración y topografía de las comunidades, permitiendo reducir costos para la etapa de construcción de los proyectos.
- Dado los caudales de diseño pequeños para el dimensionamiento de las redes de alcantarillado, se obtuvo que el diámetro de las tuberías son los mínimos establecidos por normativa, el diámetro interno para las redes de alcantarillado simplificado es de 110mm, mientras que, para las redes de alcantarillado convencional tendrán un diámetro interno de 200mm.
- La modelación y verificación del diseño de las redes de alcantarillado se realizó con el software Storm Water Management Model SWMM, obteniéndose cálculos iguales a los realizados de forma convencional, de esta forma, el software ayuda a disminuir tiempo en el diseño de redes de alcantarillado.
- Las alternativas propuestas para el tratamiento de aguas residuales fueron evaluadas considerando criterios técnicos, económicos, sociales y ambientales.
 Aunque las lagunas de estabilización y los reactores anaerobios de flujo ascendente (RAFA) con desinfección ofrecen beneficios, presentan desventajas como un mayor requerimiento de espacio y una mayor complejidad en su operación y mantenimiento. En cambio, la opción de FAFA con humedales

subsuperficiales se destacó por su equilibrio entre costos de instalación, bajo mantenimiento y alta eficiencia en la remoción de contaminantes, consolidándose como la solución más viable y sostenible.

- El FAFA (Filtro Anaeróbico de Flujo Ascendente) es altamente eficaz en la reducción de materia orgánica, como la DBO y DQO, mientras que los humedales subsuperficiales complementan el tratamiento al eliminar nutrientes y sólidos suspendidos, logrando altos niveles de depuración que cumplen con los estándares ambientales. Además, los humedales minimizan olores y la proliferación de mosquitos, integran el sistema al entorno natural y se adaptan fácilmente a las condiciones locales, como el tipo de suelo y el clima, haciendo de este sistema una solución eficiente y sostenible.
- Los sistemas descentralizados requieren una menor inversión inicial en comparación con las plantas de tratamiento convencionales y se presentan como una solución ideal para áreas rurales con topografía variada y recursos limitados, su diseño modular permite realizar ampliaciones futuras de manera flexible, adaptándose a las necesidades crecientes de la población.
- El proyecto generará un impacto positivo en la salud pública al reducir la exposición a patógenos en las fuentes de agua, promoverá la conservación de los ecosistemas acuáticos mediante la disminución de la contaminación y contribuirá al cumplimiento de los Objetivos de Desarrollo Sostenible (ODS) 6, relacionado con agua limpia y saneamiento, y 14, sobre la vida submarina. Asimismo, fomenta la participación comunitaria en la gestión de los recursos hídricos, fortaleciendo la sostenibilidad social y ambiental.

Recomendaciones

- Existe poca bibliografía en el país referente a implementación y diseño de sistemas descentralizados de saneamiento, se debe seguir desarrollando e investigando estos sistemas, a fin de poder implementarlos y suplir el déficit de saneamiento.
- Para el diseño y dimensionamiento de sistemas descentralizados de saneamiento, se debe conocer las necesidades y situación actual del área a servir, de forma que sean proyectos viables y a la medida de los requerimientos.

- La implementación del sistema FAFA con humedales requiere estudios detallados para adaptar el diseño a las condiciones locales y priorizar su construcción en las áreas más afectadas, aplicando un enfoque escalonado para maximizar recursos.
 Es fundamental establecer programas de capacitación comunitaria que incluyan la operación, monitoreo y mantenimiento del sistema, involucrando a líderes locales para fomentar el sentido de responsabilidad. Además, es crucial gestionar financiamiento con organismos gubernamentales e internacionales y diseñar un modelo financiero sostenible para asegurar su viabilidad a largo plazo.
- En la etapa de operación de los sistemas es recomendable realizar un plan de monitoreo periódico debe evaluar parámetros clave como DBO, DQO y nutrientes, permitiendo ajustes operativos para cumplir los estándares ambientales. La experiencia de implementación debe ser documentada para replicar el modelo en otras comunidades, compartiendo resultados con autoridades locales. Por último, es esencial promover la educación ambiental mediante campañas de sensibilización sobre el impacto de las aguas residuales y fomentar prácticas responsables en el uso del agua y la disposición de residuos sólidos.

BIBLIOGRAFÍA

Alvarado, A. (2015). Sistemas de Alcantarillado - Caudales sanitarios

Arias, A. N. A., Calle, J. R., Villaseñor, E. A., & Hernández, J. A. (2012). Remoción fotocatalítica de dqo, dbo5 y cot de efluentes de la industria farmacéutica. *Revista Politécnica*, 8(15), 9–17. Recuperado a partir de https://revistas.elpoli.edu.co/index.php/pol/article/view/316

Arocha Ravelo, S. (1983). Cloaca y drenajes. Caracas - Venezuela: Ediciones Vega s.r.l.

Banguero, H. (2005). El Análisis de la Población. Conceptos, métodos y aplicaciones Editorial Universidad Autónoma de Occidente. https://editorial.uao.edu.co/gpd-el-analisis-de-la-poblacion-conceptos-metodos-y-aplicaciones.html

Comisión Nacional del Agua (CONAGUA). (2009). Manual de agua potable, alcantarillado y saneamiento: Alcantarillado Sanitario. Manual de Agua Potable, Alcantarillado y Saneamiento. Secretaría de Medio Ambiente y Recursos Naturales.

Comisión Nacional del Agua (CONAGUA). (2015). Diseño de plantas de tratamiento de aguas residuales municipales: Reactores anaerobios de flujo ascendente. Manual de Agua Potable, Alcantarillado y Saneamiento. Secretaría de Medio Ambiente y Recursos Naturales. ISBN: 978-607-8246-99-1. Recuperado de: www.conagua.gob.mx

Comisión Nacional del Agua (CONAGUA). (2015). *Diseño de plantas de tratamiento de aguas residuales municipales: Humedales artificiales*. Manual de Agua Potable, Alcantarillado y Saneamiento. Secretaría de Medio Ambiente y Recursos Naturales. ISBN: 978-607-626-010-4. Recuperado de: www.conagua.gob.mx

Comisión Nacional del Agua (CONAGUA). (2015). *Diseño de plantas de tratamiento de aguas residuales municipales: Lagunas de estabilización*. Manual de Agua Potable, Alcantarillado y Saneamiento. Secretaría de Medio Ambiente y Recursos Naturales. ISBN: 978-607-626-004-3. Recuperado de: www.conagua.gob.mx

Comisión Nacional del Agua (CONAGUA). (2015). Manual de diseño de plantas de tratamiento de aguas residuales municipales: Pretratamiento y tratamiento primario.

Secretaría de Medio Ambiente y Recursos Naturales. ISBN: 978-607-626-008-1. Recuperado de: www.conagua.gob.mx

Comisión Nacional del Agua (CONAGUA). (2015). Operación y mantenimiento de plantas de tratamiento de aguas residuales municipales: Lagunas de estabilización. Manual de Agua Potable, Alcantarillado y Saneamiento. Secretaría de Medio Ambiente y Recursos Naturales. ISBN: 978-607-626-005-0. Recuperado de: www.conagua.gob.mx

Comisión Nacional del Agua (CONAGUA). (2015). Operación y mantenimiento de plantas de tratamiento de aguas residuales municipales: Procesos anaerobios. Manual de Agua Potable, Alcantarillado y Saneamiento. Secretaría de Medio Ambiente y Recursos Naturales. ISBN: 978-607-8246-94-6. Recuperado de: www.conagua.gob.mx

Comisión Nacional del Agua. (2015). *Diseño de plantas de tratamiento de aguas residuales municipales: Filtros anaerobios de flujo ascendente*. Manual de Agua Potable, Alcantarillado y Saneamiento. Secretaría de Medio Ambiente y Recursos Naturales. ISBN: 978-607-626-017-3. Recuperado de: www.conagua.gob.mx

Crites, R., & Tchobanoglous, G. (1998). *Small and decentralized wastewater management systems*. McGraw-Hill.

Díaz Fernández, J. (2019). *Ecuaciones y cálculos para el tratamiento de aguas residuales*. Editorial Díaz de Santos.

Empresa Pública Metropolitana de Agua Potable y Saneamiento de Quito (EMAAP-Q). (2009). *Guía técnica para el diseño de sistemas de alcantarillado*. Quito, Ecuador.

ETAPA EP. (s/f). Parámetros de diseño de alcantarillado.

Gobierno Autónomo Descentralizado Municipal del Cantón Paute (GAD Paute). (2020). Actualización del Plan de Desarrollo y Ordenamiento Territorial del Cantón Paute.

Gobierno Autónomo Descentralizado parroquial de San Cristobal (GAD parroquial de San Cristobal). (2015). Actualización del Plan de Desarrollo y Ordenamiento Territorial de la parroquia San Cristobal

Harmon, R. S. (1948). *Principles of sanitary engineering design*. McGraw-Hill.

Henze, M., van Loosdrecht, M. C. M., Ekama, G. A., & Brdjanovic, D. (2017). *Tratamiento biológico de aguas residuales: Principios, modelación y diseño* (C. M. López Vázquez, G. Buitrón Méndez, H. A. García, & F. J. Cervantes Carrillo, Eds., versión en español). IWA Publishing. https://doi.org/10.2166/9781780409146

Instituto Ecuatoriano de Normalización. (1992). Código Ecuatoriano de la Construcción CPE INEN 5 Parte 9.1, Normas para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones mayores a 1000 habitantes.

Instituto Ecuatoriano de Normalización. (1997). Código Ecuatoriano de la Construcción CPE INEN 5 Parte 9.2, Código de practica para el diseño de sistemas de abastecimiento de agua potable, disposición de excretas y residuos líquidos en el área rural.

Leopold, L. B., Clarke, F. E., Hanshaw, B. B., & Balsley, J. R. (1971). *A Procedure for Evaluating Environmental Impact*. U.S. Geological Survey Circular 645.

López, R. (2010). Elementos de Diseño para Acueductos y Alcantarillados (Escuela Colombiana de Ingeniería). Colombia.

MAATE y UNICEF (2022). Costos asociados a servicios inadecuados de saneamiento e higiene en el área rural del Ecuador. Quito, Ecuador.

Mara, D. D., Sleigh, P. A. and Tayler, K. (2001): PC-based Simplified Sewer Design.

Mara, D. D. (2004). *Domestic wastewater treatment in developing countries*. Earthscan Publications Ltd.

Martínez, R. (2011). *Planificación y diseño de sistemas de saneamiento*. Editorial Universitario.

Metcalf, L., & Eddy, H. P. (2003). *Ingeniería de aguas residuales: Tratamiento, vertido y reutilización* (4ª ed.). McGraw-Hill

Metcalf, L., & Eddy, H. P. (2014). *Wastewater engineering: Treatment and resource recovery* (5th ed.). McGraw-Hill Education.

Ministerio del Ambiente. (2015). Texto Unificado de Legislación Secundaria del Ministerio del Ambiente (TULSMA): Anexo 1, normativa ambiental para el control y regulación de vertidos. Quito, Ecuador.

Montero Contreras, C. V. (2022). Impacto de los servicios de agua y saneamiento sobre las enfermedades diarreicas en los niños de la sierra del Perú. *Revista de Análisis Económico y Financiero*, *5*(1), 1-8. https://doi.org/10.24265/raef.2022.v5n1.45

OMS. (2015). Informe 2015 del PCM sobre el acceso a agua potable y saneamiento: datos esenciales. Recuperado de http://www.who.int/water_sanitation_health/monitoring/JMP-2015-keyfacts-es-rev.pdf?ua=1

Organización Panamericana de la Salud OPS. (2005). Guías para el diseño de tecnologías de alcantarillado. Lima.

Pérez Carmona, R. (2013). *Diseño y construcción de alcantarillados sanitario, pluvial y drenaje en carreteras*. Ecoe Ediciones.

Rachna. Sistemas descentralizados de tratamiento de aguas residuales. SIGMAEARTH. Accedido el 20 de noviembre, 2024, recuperado de https://sigmaearth.com/es/.

Secretaría Nacional de Planificación y Desarrollo (SENPLADES). (2017). *Plan Nacional para el Buen Vivir 2017-2021*. Quito, Ecuador. Recuperado de https://www.planificacion.gob.ec

UNESCO. (2017). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2017. Fontenoy, París. Recuperado de http://unesdoc.unesco.org/images/0024/002476/247647s.pdf

Valencia G., E., Silva G., I. J., & Narváez R., C. P. (2010). Sistemas descentralizados integrados y sostenibles para el tratamiento de aguas residuales domésticas. *Ingeniería Y Región*, 7, 65–72. https://doi.org/10.25054/22161325.801

Von Sperling, M. (2007). *Introducción a la calidad del agua y al tratamiento de aguas residuales*. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED).

Wilderer. (2001). Descentralized versus Centralized Wastewater Management. In Descentralised Sanitation and Reuse. Lens, P., Zeemann. IWA Publishing, London, UK.

ANEXOS

Anexo 1. Modelo encuesta aplicada.

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

MAESTRÍA EN INGENIERÍA CIVIL CON MENCIÓN EN CONSTRUCCIÓN Y SANEAMIENTO

ENCUESTA PARA LEVANTAMIENTO DE INFORMACIÓN PARA TESIS DE POSTGRADO DENOMINADA: "Diseño de un sistema descentralizado de saneamiento para comunidades de la parroquia San Cristóbal, Cantón Paute, Provincia del Azuay."

Objetivo:

Comunidad

1. Datos Generales

Recolectar información básica de la comunidad para el diseño del sistema de alcantarillado y planta de tratamiento de aguas residuales.

¿Cuántas personas viven en su hogar?
1-2
3-5
Más de 5
Edad:
Menos de 18
18-30
31-45
46-60
Más de 60
2. Situación Actual del Agua Potable
¿De dónde proviene el agua que utiliza en su vivienda?
Red pública
Pozo

Camiones cisterna
Otros:
¿Considera que el suministro de agua es suficiente y constante?
Sí
No
A veces
¿La calidad del agua que recibe es adecuada para el consumo?
Sí
No
No estoy seguro(a)
3. Situación Actual del Saneamiento
¿Su vivienda cuenta con sistema de alcantarillado?
Sí
No
Si no tiene alcantarillado, ¿cómo maneja las aguas residuales?
Fosa séptica
Pozo ciego
Descarga en ríos/canales
Otros:
¿Ha tenido problemas con el manejo de aguas residuales en su hogar o comunidad?
Sí
No
Si respondió "Sí", ¿cuáles han sido los principales problemas?
(Marque todas las que correspondan)
Malos olores
Aguas residuales estancadas
Inundaciones
Otros:

¿Alguien en su hogar ha sufrido enfermedades relacionadas con el agua o el saneamiento deficiente

4. Impacto en la Salud

Otros:

en los últimos 6 meses?
Sí
No
Si respondió "Sí", indique qué enfermedades ha experimentado su hogar:
(Marque todas las que correspondan)
Diarrea
Infecciones estomacales
Dengue u otras enfermedades transmitidas por mosquitos
Infecciones en la piel

Anexo 2. Análisis de calidad de agua en laboratorio.

LABORATORIO DE SANEAMIENTO
Panamericana Norte Km. 5 y 1/2. - Cuenca
Telf : 4175568

Laboratorio de Ensayo
Acreditado por el SAE con
Acreditación N° SAE LEN 06-004

DE RESULTADOS
Página 1 de 2

FECHA: 2024/09/30 INFORME N°: 273/02/24

DATOS PROPORCIONADOS POR EL CLIENTE

IOMBRE ZEAS MAZA MARCO ESTEBAN TELEFONO 0987917463

SOLICITADO POR: ING. ESTEBAN ZEAS E-MAIL: esteban.zeasm@gmail.com

DIRECCIÓN: MACAS

MUESTRA

CÓDIGO: 273/01-02/24
DESCRIPCIÓN (Fuente): AGUA RESIDUAL
PROCEDENCIA (Lugar): SAN CRISTOBAL-PAUTE-

FECHA DE RECEPCIÓN: 2024/09/23

ENTREGADAS EN EL LABORATORIO POR: ING. ESTEBAN ZEAS

RESULTADOS

PARÁMETRO	MÉTODO	FECHA	UNIDAD	POZO ALCANTARILLADO
1	1121000	REALIZACIÓN	01110710	273/01/24
DEMANDA BIOQUIMICA DE OXIGENO	PEE/LS/FQ/01	2024/09/23	mg/l	155
		2024/09/28		
DEMANDA QUIMICA DE OXIGENO	PEE/LS/FQ/06	2024/09/23	mg/l	495
FOSFORO TOTAL	PEE/LS/FQ/03	2024/09/23	mg/l	4,21
* NITRATOS	PEE/LS/FQ/08	2024/09/30	mgN/I	0,08
* NITRITOS	SM 4500 NO2-	2024/09/23	mgN/I	0,05
* NKT	SM 4500 NORG B	2024/09/23	mg/l	70,52
pH	PEE/LS/FQ/07	2024/09/23		7,38
				404
SOLIDOS SUSPENDIDOS TOTALES	PEE/LS/FQ/04	2024/09/23	mg/l	104
				97.6
* TURBIEDAD	SM 2130 B	2024/09/23	NTU	97,0
V COLIFORNIES TOTALES	014 0004 E	2024/09/23	NMP/100ml	3,3E+06
* COLIFORMES TOTALES	SM 9221 E	2024/09/25	141617100111	
V COLUEDDATO TEDATOLEDATES	014 0004 E	2024/09/24	NMP/100ml	1,3E+06
* COLIFORMES TERMOTOLERANTES	SM 9221 E	2024/09/26	THE PROPERTY	
				55551551515155

PARÁMETRO	MÉTODO	FECHA REALIZACIÓN	UNIDAD	DESCARGA FUENTE 273/02/24
DEMANDA BIOQUIMICA DE OXIGENO	PEE/LS/FQ/01	2024/09/23	mg/l	45
DEMANDA QUIMICA DE OXIGENO	PEE/LS/FQ/06	2024/09/28 2024/09/23	mg/l	139
FOSFORO TOTAL	PEE/LS/FQ/03	2024/09/23	mg/l	1,35
* NITRATOS	PEE/LS/FQ/08	2024/09/30	mgN/I	0,13
* NITRITOS	SM 4500 NO2-	2024/09/23	mgN/I	0,15
* NKT	SM 4500 NORG B	2024/09/23	mg/l	18,20
pH	PEE/LS/FQ/07	2024/09/23		7,0
SOLIDOS SUSPENDIDOS TOTALES	PEE/LS/FQ/04	2024/09/23	mg/l	29
* TURBIEDAD	SM 2130 B	2024/09/23	NTU	4,49

LABORATORIO DE SANEAMIENTO	Laboratorio de Ensayo	INFORME
Panamericana Norte Km. 5 y 1/2 Cuenca	Acreditado por el SAE con	DE RESULTADOS
Telf : 4175568	Acreditación N° SAE LEN 06-004	Página 2 de 2
	1	

COLIFORMES TOTALES	SM 9221 E	2024/09/23	NMP/100ml	4,9E+06
		2024/09/25		
COLIFORMES TERMOTOLERANTES	SM 9221 E	2024/09/24	NMP/100ml	1,3E+06
CODPONMESTERMOTOLEPANTES	3W 5221 E	2024/09/26		

Parámetros

DB0

DQO rango bajo

DQO rango alto

FOSFORO TOTAL

NITRATOS

20,50% 95% k=2

20,27% 95% k=2

14,53% 95% k=2 9,86% 95% k=2

18,10% 95% k=2

9,48% 95% K=2

Parámetros Incertidumbre

SOL, SUSPITOTALES 18,15% 95% k=2

Atentamente,

ETAPA EP Laboratorio de Saneamiento Panamericana Norte Km 5,5 Ucubamba Teletono: 4175568

BQF. María José Chérrez T. RESPONSABLE DEL LABORATORIO

- Los resultados contenidos en el presente informe solo afectan a los objetos sometidos al ensayo.
- Este informe no deberá reproducirse parcialmente sin la aprobación por escrito del laboratorio.
- "Los ensayos marcados con (*) NO están incluidos en el alcance de acreditación del SAE"
- El laboratorio se descarga de responsabilidad debido a que la información del objeto de ensayo es proporcionada integramente por el cliente.
- Los resultados son aplicados a la muestra tal y como se recibió.
- La Declaración de conformidad queda excluida del informe de resultados.
- El laboratorio es responsable de la gestión de toda la información obtenida por el cliente así como la generada por el laboratorio y será tratada como estrictamente confidencial, exceptuando la de dominio público.

Anexo 3. Diseño de colectores de alcantarillado.

Diseño colectores sistema 1 Pueblo Nuevo y Pampa Negra.

ALCANTAR	RILLA	DO S	ANITA	RIO																	
Material Tubo=	PVC																				
n=	0.011		Coeficient	te de rug	gosidad, ,	CPE INEN	1 5 Num. 5	.2.1.11													
Q mín=	1.5	lt/s	Caudal mi																		
V mín=	0.45				. CPE INE		5.2.1.10														
V máx=		m/s			, CPE INE																
Peso específico=			Peso espe																		
		ENTIFICA			J		CAUDAL							DAT	OS HIDR	ÁULICOS DE	LATUB	ERÍA			
		COTAS	(msnm)						1	DIAM	ETRO	Sección a	tubo lleno			S	ección a	tubo parcia	almente lleno		
TRAMO	POZO No	TERREN O	PROY.	Altura Pozo (m)	Longitud (m)	Caudal tramo Qt (lt/s)	Caudal acumulad o Qac (lt/s)		Pendient e J(%) mín=0,5%		Ø Diámetro adoptado (mm)	Velocidad Vo (m/s)	Caudal Qo (lt/s)	Calado d (mm)	d/D	Control d/D<=80%	Radio hidráu. Rh (m)	Velocidad V(m/s)	Control velocidad Vmín=0,45m/s Vmáx= 4,5m/s	Fuerza tractiva T (N/m2)	Control T Tmín= 1N/m2
DISEÑO RAMAL	-																				
	PZ1	2441.12	2439.55	1.57																	
PZ1 - PZ2					30.12	0.08	1.72	1.72	0.66%	67.16	200	1.01	31.59	31.4	15.71%	CUMPLE	0.0194	0.53	CUMPLE	1.26	CUMPLE
	PZ2	2441.21	2439.35	1.86																	
	PZ2	2441.21	2439.35	1.86																	
PZ2 - PZ3					47.95	0.28	2.00	2.00	0.71%	70.20	200	1.04	32.64	33.3	16.63%	CUMPLE	0.0204	0.57	CUMPLE	1.42	CUMPLE
	PZ3	2441.59	2439.01	2.58																	
	PZ3	2441.59	2439.01	2.58																	
PZ3- PZ4					43.74	0.26	2.26	2.26	0.71%	73.54	200	1.04	32.63	35.9	17.95%	CUMPLE	0.0219	0.60	CUMPLE	1.52	CUMPLE
	PZ4	2440.45	2438.70	1.75																	
	PZ4	2440.45	2438.70	1.75																	
PZ4- PZ5					28.57	0.14	2.41	2.41	1.68%	64.01	200	1.60	50.24	29.6	14.81%	CUMPLE	0.0184	0.82	CUMPLE	3.03	CUMPLE
	PZ5	2439.72	2438.22	1.50																	
	PZ5	2439.72	2438.22	1.50																	
PZ5- PZ6					15.39	0.06	2.46	2.46	7.80%	48.42	200	3.45	108.24	21.0	10.50%	CUMPLE	0.0133	1.43	CUMPLE	10.18	CUMPLE
	PZ6	2438.52	2437.02	1.50																	
	PZ6	2438.52	2437.02	1.50																	
PZ6- PZ7					27.53	0.07	2.54	2.54	5.88%	51.61	200	2.99	94.03	22.6	11.28%	CUMPLE	0.0142	1.30	CUMPLE	8.22	CUMPLE
	PZ7	2436.90	2435.40	1.50																	
	PZ7	2436.90	2435.40	1.50																	
PZ7- PZ8					36.79	0.09	2.63	2.63	11.39%	46.20	200	4.16	130.81	19.8	9.90%	CUMPLE	0.0126	1.66	CUMPLE	14.05	CUMPLE
	PZ8	2432.71	2431.21	1.50																	
	PZ8	2432.71	2431.21	1.50																	
PZ8- PZ9					17.86	0.05	2.68	2.68	0.56%	81.86	200	0.92	29.00	41.0	20.51%	CUMPLE	0.0247	0.58	CUMPLE	1.35	CUMPLE
	PZ9	2432.66	2431.11	1.55																	

ALCANTAR	RIIIA	DO S	ΔΝΙΤΔ	RIO																	
Material Tubo=	PVC		ANTIA																		
n=	0.011		Coeficient	te de ruc	osidad (CPE INEN	1 5 Num. 5	.2.1.11													
Q mín=		lt/s	Caudal mi																		
V mín=	0.45		Velocidad				5.2.1.10														
V máx=		m/s	Velocidad																		
Peso específico=	9810	N/m3	Peso espe		,																
·	IC	ENTIFICA					CAUDAL			DIÁNA	FTDO			DAT	OS HIDR	ÁULICOS DE	LATUB	ERÍA			
		COTAS	(msnm)							DIAM	ETRO	Sección a	tubo lleno			S	ección a	tubo parcia	almente lleno	•	
TRAMO	POZO No	TERREN O	PROY.	Altura Pozo (m)	Longitud (m)	Caudal tramo Qt (lt/s)	Caudal acumulad o Qac (lt/s)	Caudal diseño adoptado Qd (lt/s)	Pendient e J(%) mín=0,5%		Ø Diámetro adoptado (mm)	Velocidad Vo (m/s)	Caudal Qo (lt/s)	Calado d (mm)	d/D	Control d/D<=80%	Radio hidráu. Rh (m)	Velocidad V(m/s)	Control velocidad Vmín=0,45m/s Vmáx= 4,5m/s	Fuerza tractiva T (N/m2)	Control T Tmín= 1N/m2
DISEÑO RAMA	Ĺ																				
	PZ9	2432.66	2431.11	1.55																	
PZ9- PZ10					35.76	0.09	2.77	2.77	0.78%	77.83	200	1.09	34.30	38.6	19.31%	CUMPLE	0.0234	0.66	CUMPLE	1.80	CUMPLE
	PZ10	2432.96	2430.83	2.13																	
	PZ10	2432.96	2430.83	2.13																	
PZ10- PZ11					67.07	0.32	3.09	3.09	1.77%	69.59	200	1.64	51.63	33.3	16.63%	CUMPLE	0.0204	0.90	CUMPLE	3.55	CUMPLE
	PZ11	2431.14	2429.64	1.50																	
	PZ11	2431.14	2429.64	1.50																	
PZ11- PZ12					31.61	0.21	3.31	3.31	6.39%	56.12	200	3.12	97.99	25.2	12.58%	CUMPLE	0.0158	1.45	CUMPLE	9.89	CUMPLE
	PZ12	2429.12	2427.62	1.50																	
	PZ12	2429.12	2427.62	1.50																	
PZ12- PZ13					37.22	0.11	3.42	3.42	5.08%	59.32	200	2.78	87.35	26.8	13.42%	CUMPLE	0.0168	1.34	CUMPLE	8.34	CUMPLE
	PZ13	2427.23	2425.73	1.50																	
	PZ14	2429.46	2428.06	1.40																	
PZ14- PZ15					29.44	0.37	0.37	1.50	2.04%	51.70	200	1.76	55.34	22.9	11.44%	CUMPLE	0.0144	0.77	CUMPLE	2.88	CUMPLE
	PZ15	2430.52	2427.46	3.06																	
	PZ15	2430.52	2427.46	3.06																	
PZ15- PZ16					26.46	0.06	0.43	1.50	2.04%	51.69	200	1.76	55.37	22.9	11.44%	CUMPLE	0.0144	0.77	CUMPLE	2.89	CUMPLE
	PZ16	2429.93	2426.92	3.01																	
	PZ16	2429.93	2426.92	3.01																	
PZ16- PZ17					25.12	0.08	0.51	1.50	2.07%	51.55	200	1.78	55.77	22.9	11.44%	CUMPLE	0.0144	0.78	CUMPLE	2.93	CUMPLE
	PZ17	2428.56	2426.40	2.16																	
	PZ17	2428.56	2426.40	2.16																	
PZ17- PZ13					32.67	0.13	0.64	1.50	2.05%	51.64	200	1.77	55.51	22.9	11.44%	CUMPLE	0.0144	0.77	CUMPLE	2.90	CUMPLE
	PZ13	2427.2	2425.73	1.50																	
	PZ13	2427.23	2425.73	1.50																	
PZ13- PZ18					16.08	0.06	4.11	4.11	14.93%	51.96	200	4.77	149.75	22.9	11.44%	CUMPLE	0.0144	2.08	CUMPLE	21.12	CUMPLE
	PZ18	2424.83	2423.33	1.50																	

ALCANTAR	RILLA	DO S	ANITA	RIO																	
Material Tubo=	PVC																				
n=	0.011		Coeficien	te de rug	gosidad, ,	CPE INEN	1 5 Num. 5	.2.1.11													
Q mín=	1.5	lt/s	Caudal m	ínimo de	diseño po	or tramo.															
V mín=	0.45	m/s	Velocidad	l mínima	, CPE INE	N 5 Num.	5.2.1.10														
V máx=	4.5	m/s	Velocidad	l máxima	, CPE INE	N 5 Num.	5.2.1.11														
Peso específico:	9810	N/m3	Peso espe	ecífico d	lel agua.																
	IC	ENTIFICA	ACIÓN				CAUDAL			DIÁM	ETRO			DAT	OS HIDR	ÁULICOS DE	LATUB	ERÍA			
		COTAS	6 (msnm)		Sección a tubo lleno Sección a tubo parcialmente lle								almente lleno	•							
TRAMO	POZO No	TERREN O	PROY.	Altura Pozo (m)	Longitud (m)	Caudal tramo Qt (lt/s)	Caudal acumulad o Qac (lt/s)	adoptado	Pendient e J(%) mín=0,5%	Ø Diámetro cálculado (mm)	Ø Diámetro adoptado (mm)	Velocidad Vo (m/s)	Caudal Qo (lt/s)	Calado d (mm)	d/D	Control d/D<=80%	Radio hidráu. Rh (m)	Velocidad V(m/s)	Control velocidad Vmín=0,45m/s Vmáx= 4,5m/s		Control T Tmín= 1N/m2
DISEÑO RAMA																					
	PZ18	2424.83	2423.33	1.50																	
PZ13- PZ19					44.54	0.15	4.27	4.27	7.09%	60.57	200	3.29	103.25	27.9	13.93%	CUMPLE	0.0173	1.62	CUMPLE	12.07	CUMPLE
	PZ19	2421.67	2420.17	1.50																	
	PZ19	2421.67	2420.17	1.50																	
PZ19- PZ20					37.65	0.70	4.97	4.97	8.34%	62.20	200	3.56	111.94	28.7	14.37%	CUMPLE	0.0178	1.79	CUMPLE	14.60	CUMPLE
	PZ20		2417.03	1.50																	
	PZ20	2418.53	2417.03	1.50																	
PZ20- PZ21					14.05	0.05	5.01	5.01	1.21%	89.64	200	1.36	42.64	46.4	23.20%	CUMPLE	0.0275	0.91	CUMPLE	3.26	CUMPLE
	PZ21		2416.86	1.50																	
	PZ21	2418.36	2416.86	1.50																	
PZ21- PZ22					18.54	0.33	5.34	5.34	9.33%	62.57	200	3.77	118.41	28.9	14.45%	CUMPLE	0.0180	1.90	CUMPLE	16.43	CUMPLE
	PZ22		2415.13	1.50																	
	PZ22	2416.63	2415.13	1.50																	1
PZ22- PZ23					45.19	0.12	5.46	5.46	28.81%	51.07	200	6.62	208.06	22.2	11.12%	CUMPLE	0.0140	2.84	CUMPLE	39.71	CUMPLE
	PZ23	2403.61	1	1.50																	
	PZ23	2403.61	2402.11	1.50																	
PZ23- PZ24					45.19		5.46	5.46	7.81%	65.23	200	3.45	108.34	22.2	11.12%	CUMPLE	0.0140	1.48	CUMPLE	10.77	CUMPLE
	PZ24		2398.58	1.50																	1
	PZ24	2400.08	2398.58	1.50			<u> </u>				_										
PZ24 - TRAT					33.64		7.59	7.59	8.86%	72.09	200	3.67	115.37	34.8	17.38%	CUMPLE	0.0213	2.08	CUMPLE	18.47	CUMPLE
	TRAT	2397.10	2395.60	1.50																	

Diseño colectores sistema 2 La Dolorosa y Bellavista.

ALCANTAI	RILLA	DO S	ANITA	RIO																	
Material Tubo=	PVC																				
n=	0.011		Coeficien	te de rug	gosidad, , (CPE INEN	1 5 Num. 5	.2.1.11													
Q mín=	1.5	lt/s	Caudal m	ínimo de	diseño po	or tramo.															
V mín=	0.45	m/s	Velocidad	mínima	, CPE INE	N 5 Num.	5.2.1.10														
V máx=	4.5	m/s	Velocidad	máxima	, CPE INE	N 5 Num.	5.2.1.11														
Peso específico:	= 9810	N/m3	Peso espe	ecífico d	lel agua.																
	II	DENTIFICA	ACIÓN				CAUDAL			DIÁM	ETRO			DAT	OS HIDR	ÁULICOS DE	LATUB	ERÍA			
		COTAS	6 (msnm)							DIAN	LIKO	Sección a	tubo lleno			S	ección a	tubo parcia	almente lleno		
TRAMO	POZO No	TERREN O	PROY.	Altura Pozo (m)	Longitud (m)	Caudal tramo Qt (lt/s)	Caudal acumulad o Qac (lt/s)	adoptado	Pendient e J(%) mín=0,5%	Ø Diámetro cálculado (mm)	Ø Diámetro adoptado (mm)	Velocidad Vo (m/s)	Caudal Qo (lt/s)	Calado d (mm)	d/D	Control d/D<=80%	Radio hidráu. Rh (m)	Velocidad V(m/s)	Control velocidad Vmín=0,45m/s Vmáx= 4,5m/s	Fuerza tractiva T (N/m2)	Control T Tmín= 1N/m2
	PZ1	2433.39	2431.89	1.50																	
PZ1 - PZ2					53.64	0.00	1.22	1.50	5.37%	43.12	200	2.86	89.82	18.0	9.02%	CUMPLE	0.0115	1.07	CUMPLE	6.06	CUMPLE
	PZ2	2430.51	2429.01	1.50																	
	PZ2	2430.51	2429.01	1.50																	
PZ2 - PZ4					76.36	0.22	1.44	1.50	8.94%	39.18	200	3.69	115.93	16.1	8.04%	CUMPLE	0.0103	1.29	CUMPLE	9.05	CUMPLE
	PZ4	2423.68	2422.18	1.50																	
	PZ3	2427.18	2425.68	1.50																	
PZ3 - PZ4					33.34	0.07	0.43	1.50	10.50%	38.02	200	4.00	125.59	15.3	7.64%	CUMPLE	0.0098	1.35	CUMPLE	10.11	CUMPLE
	PZ4	2423.68	2422.18	1.50																	
	PZ4	2423.68	2422.18	1.50																	
PZ4 - PZ5					15.47	0.01	1.89	1.89	20.94%	36.43	200	5.65	177.39	14.5	7.24%	CUMPLE	0.0093	1.84	CUMPLE	19.17	CUMPLE
	PZ5	2421.55	2418.94	2.61																	
	PZ6	2420.55	2419.05	1.50																	
PZ6 - PZ5					5.99		0.33	1.50	1.84%	52.72	200	1.67	52.53	23.5	11.76%	CUMPLE	0.0148	0.74	CUMPLE	2.67	CUMPLE
	PZ5	2421.55	2418.94	2.61																	
	PZ5	2421.55	2418.94	2.61																	
PZ5 - PZ7					56.58	0.24	2.45	2.45	2.90%	58.19	200	2.10	65.99	26.2	13.08%	CUMPLE	0.0164	1.00	CUMPLE	4.65	CUMPLE
	PZ7	2418.80	2417.30	1.50																	
	PZ7	2418.80	2417.30	1.50																	
PZ7 - PZ8					56.58	0.25	2.70	2.70	1.08%	72.65	200	1.28	40.25	35.1	17.57%	CUMPLE	0.0215	0.73	CUMPLE	2.27	CUMPLE
	PZ8	2418.19	2416.69	1.50																	

ALCANTAR	111 4	DO 6	A N I T A	PIO																	
Material Tubo=	PVC	DO 3	ANTIA	KIU																	
n=	0.011		Coeficien	te de ruc	nosidad (CPE INF	I 5 Num 5	2 1 11													
Q mín=	1.5	lt/s	Caudal m				V O I Vaille O														
V mín=	0.45		Velocidad				5.2.1.10														
V máx=	4.5		Velocidad		,																
Peso específico=			Peso espe																		
·	ID	ENTIFICA	ACIÓN				CAUDAL			DIÁM	ETRO			DAT	OS HIDR	ÁULICOS DE	LATUB	ERÍA			
		COTAS	6 (msnm)							DIAW	EIRU	Sección a	tubo lleno			s	ección a	tubo parcia	almente lleno	•	·
TRAMO	POZO No	TERREN O	PROY.	Altura Pozo (m)	Longitud (m)	Caudal tramo Qt (lt/s)	Caudal acumulad o Qac (lt/s)	Caudal diseño adoptado Qd (lt/s)	Pendient e J(%) mín=0,5%	l l	Ø Diámetro adoptado (mm)		Caudal Qo (lt/s)	Calado d (mm)	d/D	Control d/D<=80%	Radio hidráu. Rh (m)	Velocidad V(m/s)	Control velocidad Vmín=0,45m/s Vmáx= 4,5m/s	Fuerza tractiva T (N/m2)	Control T Tmín= 1N/m2
	PZ8	2418.19	2416.69	1.50																	
PZ8 - PZ9					15.59	0.06	2.76	2.76	9.75%	48.47	200	3.85	121.03	20.7	10.35%	CUMPLE	0.0131	1.58	CUMPLE	12.55	CUMPLE
	PZ9	2416.67	2415.17	1.50																	
	PZ9	2416.67	2415.17	1.50																	
PZ9 - PZ11					37.69	0.13	2.89	2.89	7.03%	52.42	200	3.27	102.78	23.2	11.60%	CUMPLE	0.0146	1.44	CUMPLE	10.08	CUMPLE
			2412.52	1.50																	
	PZ10	2415.63	2414.13	1.50																	
PZ10 - PZ11	D744	0444.00	0.440.50	4.50	49.38	0.14	0.64	1.50	3.26%	47.34	200	2.23	69.99	20.4	10.20%	CUMPLE	0.0129	0.90	CUMPLE	4.14	CUMPLE
			2412.52	1.50																	
PZ11 - TRAT	PZ11	2414.02	2412.52	1.50	50		3.53	3.53	2.20%	70.25	200	1.83	57.49	22.6	16 010/	CUMPLE	0.0206	1.01	CUMPLE	4.45	CUMPLE
FZII - IKAI	TDAT	2/12 02	2411.42	1.50	50	-	3.53	3.33	2.20%	70.25	200	1.03	57.49	33.6	16.81%	CUIVIPLE	0.0206	1.01	COIVIPLE	4.40	CUIVIPLE
<u> </u>	IIVAI	2412.92	2411.42	1.50	<u> </u>	<u> </u>	ļ		ļ	ļ	Į		l	1		<u> </u>	<u> </u>	<u> </u>		ļ	

Diseño tipo ramal Alcantarillado Simplificado (RAS 1 – PZ1 Sistema 2 La Dolorosa y Bellavista).

ALCANTAI	RILLA	DO S	ANITA	RIO																	
Material Tubo=	PVC																				
n=	0.011		Coeficien	te de ruc	gosidad, , (CPE INEN	1 5 Num. 5	.2.1.11													
Q mín=		lt/s			diseño po																
V mín=	0.45	m/s			. CPE INE		5.2.1.10														
V máx=	4.5	m/s	Velocidad	máxima	, CPE INE	N 5 Num.	5.2.1.11														
Peso específico:	= 9810	N/m3	Peso espe		,																
	II	DENTIFICA	CIÓN				CAUDAL			2162				DAT	OS HIDR	ÁULICOS DE	LATUB	ERÍA			
		COTAS	(msnm)							DIAM	ETRO	Sección a	tubo lleno			S	ección a	tubo parcia	almente lleno		
TRAMO	POZO No	TERREN O	PROY.	Altura Pozo (m)	Longitud (m)	Caudal tramo Qt (lt/s)	Caudal acumulad o Qac (lt/s)	adoptado	Pendient e J(%) mín=0,5%		Ø Diámetro adoptado (mm)	Velocidad Vo (m/s)	Caudal Qo (lt/s)	Calado d (mm)	d/D	Control d/D<=80%	Radio hidráu. Rh (m)	Velocidad V(m/s)	Control velocidad Vmín=0,45m/s Vmáx= 4,5m/s	Fuerza tractiva T (N/m2)	Control T Tmín= 1N/m2
DISEÑO RAMA	L RAS1	- PZ1, SI	STEMA 2 L	A DOL	OROSA Y	BELLAVI	STA Q	mín=1,5 lt	t/s												
	RAS1	2451.57	2450.97	0.60																	
RAS1 - CRa					23.95	0.37	0.37	1.50	16.78%	34.82	110	3.39	32.25	16.1	14.63%	CUMPLE	0.0100	1.73	CUMPLE	16.44	CUMPLE
	CRa	2447.55	2446.95	0.60																	
	CRa	2447.55	2446.95	0.60																	
CRa - CRb					14.13	0.37	0.37	1.50	19.46%	33.87	110	3.65	34.72	15.7	14.28%	CUMPLE	0.0098	1.83	CUMPLE	18.64	CUMPLE
	CRb	2444.80	2444.20	0.60																	
	CRb	2444.80	2444.20	0.60																	
CRb - CRc					24.96	0.37	0.37	1.50	19.67%	33.80	110	3.67	34.91	15.7	14.28%	CUMPLE	0.0098	1.84	CUMPLE	18.84	CUMPLE
	CRc	2439.89	2439.29	0.60																	
	CRc	2439.89	2439.29	0.60																	
CRc - CRd					12.78	0.37	0.37	1.50	16.98%	34.74	110	3.41	32.43	16.1	14.63%	CUMPLE	0.0100	1.74	CUMPLE	16.63	CUMPLE
	CRd	2437.72		0.60																	
	CRd	2437.72	2437.12	0.60																	
CRd - CRe					9.10	0.37	0.37	1.50	9.12%	39.04	110	2.50	23.77	18.7	17.00%	CUMPLE	0.0115	1.40	CUMPLE	10.25	CUMPLE
	CRe	2436.89		0.60																	
	CRe	2436.89	2436.29	0.60																	
CRe - CRf					9.15	0.37	0.37	1.50	7.87%	40.13	110	2.32	22.08	19.1	17.38%	CUMPLE	0.0117	1.31	CUMPLE	9.02	CUMPLE
	CRf	2436.17	2435.57	0.60																	
	CRf	2436.17	2435.57	0.60																	
CRf - CRg					22.47	0.37	0.37	1.50	11.93%	37.12	110	2.86	27.18	17.3	15.71%	CUMPLE	0.0107	1.52	CUMPLE	12.47	CUMPLE
	CRg		2432.89	0.60																	<u> </u>
	CRg	2433.49	2432.89	0.60																	1
CRg - PZ1					9.72	0.37	0.37	1.50	10.29%	38.17	110	2.66	25.25	18.3	16.63%	CUMPLE	0.0112	1.46	CUMPLE	11.33	CUMPLE
	PZ1	2433.39	2431.89	1.50										L					ļ	ļ	

Anexo 4. Presupuesto referencial de los sistemas de alcantarillado.

TABLA DE DESCRIPCIÓN DE RUBROS, UNIDADES, CANTIDADES Y PRECIOS

No.	Rubro / Descripción	Unidad	Cantidad	Precio unitario	Precio global
	SISTEMA 1 PUEBLO NUEVO Y PAMPA NEGRA		SUBTOTAL 1:		65,520.91
01	REPLANTEO Y NIVELACION	KM	2.45	609.87	1,494.18
02	EXC. A MAQUINA EN SUELO SIN CLASIFICAR 0-2.0M	M3	1,403.29	3.13	4.392.30
03	EXC. A MAQUINA EN SUELO SIN CLASIFICAR 2.01-4.00M	M3	855.36	3.35	2,865.46
04	ENTIBADO DE PAREDES	M2	460.07	3.48	1,601.04
05	RASANTEO DE ZANJA	M2	1,715.41	0.61	1,046.40
06	CAMA DE ARENA	M3	171.54	11.21	1,922.96
07	RELLENO COMPACTADO, MATERIAL DE EXCAVACION	M3			
08	RELLENO COMPACTADO, MATERIAL DE EXCAVACION RELLENO COMPACTADO CON LASTRE (EN CAPAS DE 20 CM)	M3	1,665.96	3.14	5,231.11
00	RELLENO COMPACTADO CON LASTRE (EN CAPAS DE 20 CM)	IVIO	395.08	14.18	5,602.23
09	SUMINISTRO E INSTALACION TUBERIA PVC D=110 MM, SERIE 5	М	1,803.22	5.06	9,124.29
10	SUMINISTRO E INSTALACION TUBERIA PVC D=200 MM, SERIE 5	М	751.37	14.19	10,661.94
11	SILLA YEE 200MM X 110 MM	U	26.00	20.47	532.22
12	CONSTRUCCION DE POZOS EN HS H=0,80M A 2.00M FC= 180 KG/CM2, INCLUYE TAPA DE HF PARA POZOS (220 LB)	U	19.00	504.39	9,583.41
13	CONSTRUCCION DE POZOS EN HS H=2,01M A 3.00M FC= 180 KG/CM2, INCLUYE TAPA DE HF PARA POZOS (220 LB)	U	3.00	602.37	1,807.11
14	CONSTRUCCION DE POZOS EN HS H=3,01M A 4.00M FC= 180 KG/CM2, INCLUYE TAPA DE HF PARA POZOS (220 LB)	J	2.00	703.11	1,406.22
15	CARGADA Y DESALOJO DE MATERIAL HASTA 5.00 KM	М3	395.08	3.37	1,331.42
16	CAJA DE REVISION DE MAMPOSTERIA 0.40 X 0.40 (H= VARIABLE), INC TAPA DE H.A. E=7CM	U	107.00	64.66	6,918.62
	SISTEMA 2 LA DOLOROSA Y BELLAVISTA		SUBTOTAL 2:		37,497.64
01	REPLANTEO Y NIVELACION	KM		600.07	
02	EXC. A MAQUINA EN SUELO SIN CLASIFICAR 0-2.0M	M3	1.50 1,156.86	609.87	914.81 3,620.97
03	EXC. A MAQUINA EN SUELO SIN CLASIFICAR 2.01-4.00M	M3	52.92	3.13 3.35	177.28
03	ENTIBADO EN PAREDES	M2	44.10	3.48	153.47
05	RASANTEO DE ZANJA	M2	_	0.61	611.25
06	CAMA DE ARENA	M3	1,002.05 100.21		
07	RELLENO COMPACTADO, MATERIAL DE EXCAVACION	M3		11.21	1,123.35
08	RELLENO COMPACTADO, MATERIAL DE EXCAVACION RELLENO COMPACTADO CON LASTRE (EN CAPAS DE 20 CM)	M3	861.50	3.14	2,705.11
08	RELLENO COMPACTADO CON LASTRE (EN CAPAS DE 20 CM)	IVI3	232.14	14.18	3,291.75
09	SUMINISTRO E INSTALACION TUBERIA PVC D=110 MM, SERIE 5	М	1,179.00	5.06	5,965.74
10	SUMINISTRO E INSTALACION TUBERIA PVC D=200 MM, SERIE 5	М	452.88	14.19	6,426.37
11	SILLA YEE 200MM X 110 MM	U	22.00	20.47	450.34
12	CONSTRUCCION DE POZOS EN HS H=0,80M A 2.00M FC= 180 KG/CM2, INCLUYE TAPA DE HF PARA POZOS (220 LB)	U	10.00	504.39	5,043.90
13	CONSTRUCCION DE POZOS EN HS H=2,01M A 3.00M FC= 180 KG/CM2, INCLUYE TAPA DE HF PARA POZOS (220 LB)	U	1.00	602.37	602.37
14	CARGADA Y DESALOJO DE MATERIAL HASTA 5.00 KM	M3	348.21	3.37	1,173.47
15	CAJA DE REVISION DE MAMPOSTERIA 0.40 X 0.40 (H= VARIABLE), INC TAPA DE H.A. E=7CM	U	81.00	64.66	5,237.46
1	1		1	TOTAL:	103,018.55

SON: CIENTO TRES MIL DIECIOCHO, 55/100 DÓLARES

PLANOS