ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

Análisis Comparativo de Sistemas Estructurales en el Diseño de un Edificio de Recepción para Finca Turística: Evaluación De Estructuras Mixtas, Hormigón Armado y Acero estructural para Grandes Luces.

PROYECTO DE GRADUACIÓN

Previo la obtención del Título de:

Magister en Ingeniería Civil Sismorresistente

Presentado por: Erika Alexandra Criollo Toapanta

GUAYAQUIL - ECUADOR Año: 2024

DEDICATORIA

El presente proyecto lo dedico a mis padres Carmen y Miguel por su apoyo incondicional. A mi hermano Christian por ser motivación y causa de alegrías diarias.

AGRADECIMIENTOS

Mi más sincero agradecimiento a mis compañeros por hacer los días más llevaderos durante todo el año del estudio. A mi tutor por su constante apoyo e interés en el desarrollo de este proyecto y a mi familia por su amor y fuerza.

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, me corresponde conforme al reglamento de propiedad intelectual de la institución; Erika Alexandra Criollo Toapanta y doy mi consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Ing. Erika Alexandra Criollo Toapanta

EVALUADORES

M.Sc Nadia Quijano Arteaga PROFESOR DE LA MATERIA M.Sc Samantha Hidalgo Astudillo
PROFESOR DE LA MATERIA

M.Sc. Carlos Quishpe Otacoma

PROFESOR TUTOR

RESUMEN

El presente proyecto contempla la evaluación comparativa de tres tipos de sistemas estructurales, pórticos de acero, muros de hormigón armado y mixto para una edificación de finca turística de 2 pisos ubicada en el cantón Salitre con grandes luces. con el fin de determinar la estructura óptima. Esta edificación tiene un suelo con baja capacidad portante. Asimismo, presenta retos para cubrir grandes luces como son altos costos, escasa información, complejidad en el diseño y falta de estudios comparativos en zonas sísmicas. Para el desarrollo de este proyecto se implementó la metodología tipo cascada, porque se identificó, códigos y normas aplicables, se determinó cargas de diseño, se realizó el diseño de elementos estructurales, se verificó los resultados y se efectuó la evaluación comparativa. Como resultados, se obtuvo una flexibilidad alta para el sistema de pórticos de acero, un costo de 186 \$/m2, un peso de 50.31 kg/m2 y tiempos de construcción cortos. Para el sistema de muros de hormigón de una rigidez alta con un peso de 321.5 kg/m2, un costo de 202 \$/m2 y tiempos de construcción largos. Y siendo el más ligero el mixto, el más económico y con tiempos de construcción intermedios. Finalmente, se determina que el sistema estructural más beneficioso es el mixto, porque aprovecha la rigidez del hormigón y la ductilidad del acero, es ligero con un peso de 37.07 kg/m2, es económicamente viable va que tiene un precio de 149 \$/m2, posee buena disipación de energía y tiempos de construcción adecuados.

Palabras Clave: ductilidad, rigidez, óptimo, viable

ABSTRACT

The present project involves a comparative evaluation of three types of structural systems: steel frames, reinforced concrete walls, and mixed systems for a two-story tourism estate building located in the Salitre, featuring large spans, with the aim of determining the optimal structure. This building is situated on soil with low bearing capacity. Additionally, it faces challenges in covering large spans, such as high costs, limited information, complexity, and a lack of comparative studies in seismic zones. For the development of this project, the waterfall methodology was implemented. Applicable codes and standards were identified, design loads were determined, structural elements were designed, results were verified, and a comparative evaluation was carried out.

The results showed a high flexibility for the steel frame system, a cost of \$186/m², a weight of 50.31 kg/m², and short construction times. The reinforced concrete wall system exhibited high stiffness with a weight of 321.5 kg/m², a cost of \$202/m², and long construction times. The mixed system, being the lightest, most economical, and featuring intermediate construction times, was the most advantageous.

Finally, it was determined that the most beneficial structural system is the mixed system, as it leverages the stiffness of concrete and the ductility of steel. It is lightweight with a weight of 37.07 kg/m², economically viable at a price of \$149/m², offers good energy dissipation, and has suitable construction times.

Keywords: ductility, stiffness, optimal, viable

ÍNDICE GENERAL

RES	JMEN	V	
ABS	ΓRAC	Т	II
ÍNDI	CE GE	ENERAL	111
ABRI	EVIAT	URAS	VI
SIME	OLO	GÍA	VII
ÍNDI	CE DE	FIGURAS	VII
ÍNDI	CE DE	TABLAS	XII
ÍNDI	CE DE	PLANOS	XIV
CAPÍ	TULC) 1	15
1.	Intro	oducción	15
1.1	Ar	itecedentes	16
1.2	Lo	calización	17
1.3	Es	tudios previos	18
1.4	Pr	oblemática a resolver	19
1.5	Ju	stificación	20
1.6	Ob	ojetivos	20
1.6	5.1	Objetivo General	20
1.6	5.2	Objetivos Específicos	21
CAPÍ	TULC	2	22
2.	Des	arrollo del proyecto	22
2.1	Ma	arco conceptual	22
2.	1.1	Sistema Estructural	22
2.	1.2	Sistema estructural Mixto	22
2.	1.3	Muros estructurales de hormigón armado	24

2.1.4	Pórt	icos de acero	25
2.1.	4.1	Secciones Compactas	26
2.1.	4.2	Secciones No compactas	27
2.1.	4.3	Secciones Esbeltas	27
2.1.	4.4	Control de pandeo local en vigas y columnas	27
2.1.	4.5	Control de pandeo lateral torsional	28
2.2 Ma	arco m	netodológico	29
2.2.1	Trab	pajo de laboratorio o gabinete	31
2.2.2	Solu	ción a diseñar	32
2.2.	2.1	Determinar las cargas de diseño	32
2.2.	2.2	Diseño de elementos estructurales	39
CAPÍTULC	3		82
RESULTA	DOS Y	/ DISCUSIÓN	82
3.1 Re	esultad	dos	82
3.1.1	Veri	ficación de resultados	82
3.1.	1.1	Verificación de resultados para pórticos de acero	82
3.1.	1.2	Verificación de resultados para muros de hormigón armado	90
3.1.		Verificación de resultados para sistema estructural mixto	
3.1.2	Fue	zas de elementos críticos	106
3.1.3	Pes	o por metro cuadrado de cada sistema estructural	111
3.1.4	Pres	supuesto Referencial	112
3.2 Ar	nálisis	de resultados	113
CAPÍTULO	6		124
Conclusion	nes Y	Recomendaciones	124
Conclusio	ones		124
Recomen	ndacio	nes	127

BIBLIOGRAFÍA	128
PLANOS Y ANEXO	130

ABREVIATURAS

NEC Norma Ecuatoriana de la Construcción 2015

ACI American Concrete Institute

AISC American Institute of Steel Construction

SMF Pórticos especiales a momento IMF Pórticos Intermedios a momento OMF Pórticos de momentos ordinario

CAMICON Cámara de comercio de la construcción

SIMBOLOGÍA

kg kilogramo mm milímetro cm centímetro m metro

tonf tonelada fuerza

\$ dólar

m² metro cuadrado tonf.m tonelada por metro

INDICE DE FIGURAS

Ilustración 1.1 Cantón Salitre en el mapa de Ecuador	. 17
Ilustración 1.2 Delimitación del terreno (Mora & Cordova, 2024)	. 18
Ilustración 1.3 Modelo 3D de la edificación (Mora & Cordova, 2024)	. 18
Ilustración 2.1 Conexión viga-columna (Tapia,2020)	. 23
Ilustración 2.2 Tipos de perfiles en acero	. 26
Ilustración 2.4 Perfil estratigráfico del suelo para 3 calicatas (Mora & Cordova, 20	,
Ilustración 2.5. Cargas vivas de NEC-2015 por ocupación	. 33
Ilustración 2.6. Tipos de suelo (NEC,2015)	. 34
Ilustración 2.7. Zonas de Riesgo Sísmico para propósitos de diseño (NEC,2015)	. 35
Ilustración 2.8. Factor Z según zona sísmica (NEC,2015)	. 35
Ilustración 2.9. Coeficiente de amplificación Espectral	. 36
llustración 2.10. Espectro elástico horizontal de diseño en aceleraciones (NEC-SE-I	
Ilustración 2.11. Espectro elástico de diseño en aceleraciones (Criollo,2024)	. 38
llustración 2.12. Coeficientes para calcular el período aproximado de estructura.(NEC-SE-DS, 2015)	
Ilustración 2.13. Componentes de losa colaborante (KUBIEC, 2024)	. 40
Ilustración 2.14. Separación entre apoyos de losa colaborante (KUBIEC, 2024)	. 40
Ilustración 2.15. Dimensiones placa colaborante (KUBIEC, 2024)	. 41
Ilustración 2.16. Estructuración de los elementos de la edificación	. 42
Ilustración 2.17. Disposición de viguetas en planta AB -43	. 42

Ilustración 2.18 Carga distribuida en viga simplemente apoyada .(NEC-SE-DS,	
Ilustración 2.19. Disposición de viga principal	
Ilustración 2.20. Esquema de áreas colaborante de columnas	49
Ilustración 2.21. Materiales de la edificación.	53
Ilustración 2.22. Dimensiones viga secundaria	54
Ilustración 2.23. Dimensiones vigas	55
Ilustración 2.24. Dimensiones de la columna	56
Ilustración 2.25. Dimensiones de la losa deck	56
Ilustración 2.26. Definición de cargas para la estructura	57
Ilustración 2.27. Peso sísmico de la estructura	57
Ilustración 2.28. Combinaciones de carga	58
Ilustración 2.29. Carga sísmica estática en dirección X	58
Ilustración 2.30. Carga sísmica estática en dirección Y	59
Ilustración 2.31. Carga viva y muerta en balcón	59
Ilustración 2.32. Carga viva y muerta en habitaciones	60
Ilustración 2.33. Carga viva y muerta en cubierta	60
Ilustración 2.34. Vista en 3D del sistema estructural pórticos de acero	61
Ilustración 2.35. Vista en planta primer piso de la edificación	61
Ilustración 2.36. Vista en planta del piso alto de la edificación	62
Ilustración 2.38 Distribución en planta de la edificación	63
Ilustración 2.39. Panel de análisis	63
Ilustración 2.40. Sección de losa alivianada	64
Ilustración 2.41. Altura mínima de vigas no preesforzadas (ACI 318, 2019)	65
llustración 2.42. Área tributaria de la columna crítica	66

Ilustración 2.43. Espesor mínimo del muro	67
Ilustración 2.44. Materiales de la edificación	69
Ilustración 2.45. Dimensiones vigas	70
Ilustración 2.46. Dimensiones de la columna	71
Ilustración 2.47. Agrietamiento de columnas	71
Ilustración 2.48. Agrietamiento de vigas	71
Ilustración 2.49. Dimensiones de la losa nervada	72
Ilustración 2.50. Dimensiones del muro	72
Ilustración 2.51. Agrietamiento del muro	73
Ilustración 2.52. Definición de cargas para la estructura	73
Ilustración 2.53. Peso sísmico de la estructura	74
Ilustración 2.54. Combinaciones de carga	74
Ilustración 2.55. Carga sísmica estática en dirección X	75
Ilustración 2.56. Carga sísmica estática en dirección Y	75
Ilustración 2.57. Carga viva y muerta en balcón	75
Ilustración 2.58. Carga viva y muerta en habitaciones	76
Ilustración 2.59. Vista en 3D del sistema estructural de hormigón armado	76
Ilustración 2.60. Vista en planta primer piso de la edificación	77
Ilustración 2.61. Vista en planta del piso alto de la edificación	77
Ilustración 2.62. Dimensiones viga secundaria	78
Ilustración 2.63. Dimensiones vigas	79
Ilustración 2.64. Dimensiones de la columna	80
Ilustración 2.65. Dimensiones de la losa deck	81
Ilustración 2.66. Dimensiones del muro	81
Ilustración 3.1 Preferencia de diseño de vigas y columnas principales	82

Ilustración 3.2. Preferencia de diseño de vigas secundarias y cubierta	83
Ilustración 3.2. Diseño de vigas principales	83
Ilustración 3.3 Relación de capacidad de vigas principales	84
Ilustración 3.4 Relación de capacidad de columnas principales	84
Ilustración 3.5. Relación de capacidad de vigas secundarias	85
Ilustración 3.6. Relación de capacidad de cubierta	85
Ilustración 3.7. Relación de capacidad de cubierta	86
Ilustración 3.8 Deriva máxima en Y	88
Ilustración 3.9. Deriva máxima en X	88
Ilustración 3.10. Desplazamiento máximo en X	89
Ilustración 3.11. Desplazamiento máximo en Y	89
Ilustración 3.12 Preferencia de diseño de vigas y columnas principales	90
Ilustración 3.14. Diseño de vigas principales	91
Ilustración 3.15 Relación de capacidad de columnas principales	92
Ilustración 3.16. Diseño del muro	93
Ilustración 3.17 Deriva máxima en Y	95
Ilustración 3.18. Deriva máxima en X	95
Ilustración 3.19. Desplazamiento máximo en X	96
Ilustración 3.20. Desplazamiento máximo en Y	97
Ilustración 3.21 Preferencia de diseño de vigas y columnas principales	98
Ilustración 3.22. Preferencia de diseño de vigas secundarias y cubierta	98
Ilustración 3.23. Preferencia de diseño muro	99
Ilustración 3.24. Diseño de vigas principales	99
Ilustración 3.25 Relación de capacidad de vigas principales	100
Ilustración 3.26 Relación de capacidad de columnas principales	100

Ilustración 3.27. Relación de capacidad de vigas secundarias1	101
Ilustración 3.28. Relación de capacidad de cubierta1	101
Ilustración 3.29. Relación de capacidad de cubierta1	102
Ilustración 3.30. Relación de capacidad muro1	102
Ilustración 3.31 Deriva máxima en Y1	104
Ilustración 3.32. Deriva máxima en X1	104
Ilustración 3.33. Desplazamiento máximo en X1	105
Ilustración 3.34. Desplazamiento máximo en Y1	105
Ilustración 3.35. Fuerza axial columna crítica de pórticos de acero1	106
Ilustración 3.36. Cortante y momento de la columna crítica de pórticos de acero 1	107
Ilustración 3.38. Fuerza axial de la columna crítica de hormigón armado1	108
Ilustración 3.39. Cortante y momento de la columna crítica de hormigón armado 1	108
Ilustración 3.41. Fuerza axial de la columna crítica del sistema mixto1	109
Ilustración 3.42. cortante y momento de la columna crítica del sistema mixto1	110
Ilustración 3.42. cortante y momento de la viga crítica del sistema mixto1	111
Gráfico 3.1. Desplazamientos máximos1	115
Gráfico 3.2. Derivas máximas1	116
Gráfico 3.3. Periodos de vibración modo 11	116
Gráfico 3.4. Cortante basal1	117
Gráfico 3.5. Fuerza axial de columna crítica1	118
Gráfico 3.6. Fuerza cortante en viga y columna crítica1	119
Gráfico 3.7. Momentos en viga y columna crítica1	120
Gráfico 3.8. Deflexión en vigas1	120
Gráfico 3.9. Peso por m² de cada estructura1	121
Gráfico 3.10. Costo por m ² de cada estructura	122

INDICE DE TABLAS

Tabla 1.1 Relación ancho/espesor (AISC 341, 2016)	28
Tabla 2.1. Coeficiente de suelo (NEC,2015)	36
Tabla 2.2. Cálculo del coeficiente sísmico	37
Tabla 2.3. Propiedades geométricas vigueta	44
Tabla 2.4. Propiedades geométricas vigueta	47
Tabla 2.5. Tensión critica para los miembros de compresión	50
Tabla 2.6. Propiedades geométricas de la columna	51
Tabla 2.7. Pre-dimensionamiento de losa nervada en 2 direcciones	64
Tabla 2.8 Estimación de carga muerta y viva (Criollo, 2024)	65
Tabla 3.1. Análisis modal de la estructura	86
Tabla 3.2. Masa Participativa	87
Tabla 3.3 .Análisis modal de la estructura	94
Tabla 3.4. Masa Participativa	94
Tabla 3.5. Análisis modal de la estructura	.103
Tabla 3.6. Masa Participativa	.103
Tabla 3.7. Peso por metro cuadrado de pórticos de acero	.111
Tabla 3.8. Peso por metro cuadrado de hormigón armado	.111
Tabla 3.9. Peso por metro cuadrado del sistema estructural mixto	.112
Tabla 3.10. Presupuesto referencial de pórticos de acero	.112
Tabla 3.11. Presupuesto referencial del sistema estructural de hormigón armado	.113
Tabla 3.12. Presupuesto referencial del sistema estructural mixto	.113
Tabla 3.13. Resumen de resultados de cada sistema estructural	.114
Tabla 3.14. Resumen de resultados de cada sistema estructural	.114

ÍNDICE DE PLANOS

PLANO 1 PLANTA BAJA ARQUITECTÓNICO

PLANO 2 PLANTA ALTA ARQUITECTÓNICO

PLANO 3 DETALLE DE ACERO DE REFUERZO

PLANO 4 ACERO DE REFUERZO VIGAS, COLUMNAS Y MURO

PLANO 5 ACERO DE REFUERZO DE LOSA

CAPÍTULO 1

1. INTRODUCCIÓN

Para el diseño estructural de edificios con ocupaciones determinadas y luces grandes se va a analizar diferentes tipos de sistemas estructurales para determinar el sistema con el mejor desempeño estructural y viabilidad económica. Estas edificaciones deben cumplir con criterios de eficiencia, seguridad y resistencia frente a fuerzas laterales y verticales, como los terremotos y las cargas gravitaciones (Bernabeu, 2007). Por lo cual, es importante realizar un análisis sísmico en el cantón Salitre, provincia del Guayas, porque es una zona con alta actividad sísmica.

La elección de los sistemas estructurales para edificaciones que poseen luces grandes es importante para determinar un buen comportamiento del edificio y tener ambientes amplios, sin interrupción de columnas intermedias que dificulten la funcionalidad del diseño arquitectónico (Bernabeu, 2007). Por esta razón, los sistemas estructurales mixtos, muros de hormigón armado y estructuras de acero son tipos de sistemas estructurales que van a ser elegidos para que a la edificación con grandes luces sea eficiente y óptima. Teniendo presente las ventajas y desventajas en términos de costo, resistencia, durabilidad, respuesta a cargas sísmicas de cada sistema estructural y tiempos de construcción.

El objetivo de este proyecto de titulación es realizar un análisis comparativo de tres sistemas estructurales, considerando factores clave como el comportamiento sísmico, la eficiencia estructural y la viabilidad económica, con el fin de determinar cuál es el más adecuado para una edificación de recepción en una finca turística que necesita grandes luces. Este análisis es primordial no solo para optimizar el diseño estructural, sino también para asegurar que el edificio cumpla con la normativas pertinentes como la ecuatoriana (NEC, 2015) y demás, garantizando la seguridad, funcionalidad y confort de los usuarios finales, es decir a los residentes de la edificación.

1.1 Antecedentes

En el diseño de estructuras civiles, la selección del sistema estructural adecuado es primordial para garantizar la funcionalidad, seguridad y sostenibilidad de las edificaciones (Bernabeu, 2007), especialmente en contextos turísticos donde se necesitan grandes luces con el fin, de que la edificación posea espacios amplios, como salas de eventos y recepciones. Por esta razón, evaluar y determinar qué tipo de sistema estructural es el más adecuado para un edificio de recepción de una finca turística es necesario, ya que se puede identificar qué sistema tiene mejor adaptación a las condiciones locales. Además, es importante que al momento de la elección se analice cargas símicas porque el cantón Salitre está ubicado en una zona con actividad sísmica alta.

En la actualidad existen varios sistemas estructurales como los mixtos, de hormigón armado y pórticos de acero estructural. Este tipo de sistemas son los más comunes en el mercado ecuatoriano. Por lo cual, una ventaja de los sistemas mixtos son la combinación de elementos de acero y hormigón, porque han sido analizados y utilizados durante años debido a su rigidez, ductilidad y resistencia a cargas sísmicas (Nardin & Debs, 2009). De Nardin y Debs en el 2009 concluyeron que las estructuras mixtas ofrecen un mejor desempeño frente a cargas dinámicas especialmente en edificios con grandes luces donde es crucial contar con mayor flexibilidad y capacidad de deformación sin comprometer la estabilidad de la estructura (Nardin & Debs, 2009).

Los sistemas de hormigón armado por su alta resistencia a la compresión, durabilidad y flexibilidad se utilizan comúnmente en el diseño estructural puesto que este material es una opción económica y estructuralmente robusta para edificaciones pequeñas. Sin embargo, en el diseño de edificaciones con grandes luces, existen limitaciones relacionadas con la carga que soportan los elementos estructurales y la deflexión, por lo cual, se requiere de un análisis para garantizar la estabilidad y el confort estructural (Palacios, 2017). Memegottto en 1973 menciona que el hormigón armado tiene un excelente comportamiento frente a cargas estáticas, pero tiene problemas frente a cargas sísmicas. Además, para edificios con grandes luces, este sistema estructural está expuesto a deflexiones excesivas (Palacios, 2017).

Finalmente, el acero estructural es muy eficiente en edificaciones con grandes luces, ya que ofrece una alta resistencia a la tracción y permite construir estructuras más ligeras en tiempo cortos. Por lo tanto, este material es ideal para proyectos que requieren una construcción rápida con ambientes amplios (McCormac & Csernak, 2018).

En Ecuador, La región costera es muy vulnerable a sismos, por lo que es necesario diseñar de manera minuciosa la resistencia sísmica. Este proyecto se encuentra ubicado en el cantón Salitre, parte de la región costera del país, por esta razón, el diseño estructural debe realizarse de acuerdo con la normativa ecuatoriana de construcción sismo-resistente (NEC, 2015), que establece los estándares de diseño para estructuras ubicadas en zonas altamente sísmicas. Es por ello que es importante generar información para el diseño de edificaciones con grandes luces en zonas con actividad sísmicas y así poder determinar el tipo de estructura adecuada.

1.2 Localización

El proyecto para desarrollar se encuentra ubicado en el cantón Salitre, en la provincia del Guayas. Cerca del Río Vinces y la calle Salitré

Ilustración 1.1 Cantón Salitre en el mapa de Ecuador

A continuación, se presenta las coordenadas de ubicación exacta de del proyecto - 1.862645, -79.790667

Ilustración 1.2 Delimitación del terreno (Mora & Cordova, 2024)

1.3 Estudios previos

En este proyecto de titulación se va a evaluar 3 tipos de sistemas estructurales mixtos, muros de hormigón armado y pórticos de acero. Por otro lado, como estudios previos para esta evaluación se tiene que el cliente va a construir un edificio de finca turística de 2 pisos, en el cual la planta baja va a ser la recepción y la planta alta de habitaciones para huéspedes. La recepción debe ser lo más espaciosa posible, sin columnas intermedias, por lo cual se va a implementar grandes luces. Además, se dispone de planos arquitectónicos, render en 3D y el estudio de suelos.

Ilustración 1.3 Modelo 3D de la edificación (Mora & Cordova, 2024)

1.4 Problemática a resolver

El diseño estructural para edificios de recepción en fincas turísticas implica retos importantes por la necesidad de cubrir ambientes amplios que poseen luces grandes sin recurrir a soportes intermedios que afecten la funcionalidad y estética del lugar. Asimismo, en regiones con alta actividad sísmica como Salitre, es necesario que las edificaciones cumplan con la normativa nacional para asegurar su estabilidad y buen comportamiento frente a cargas sísmicas (Chopra, 2017). Por esta razón, surge la incógnita sobre cuál es el sistema estructural más apropiado para estas situaciones

En épocas pasadas, el hormigón armado ha sido el material más utilizado en las construcciones debido a su rigidez y capacidad para absorber cargas (Park & Paulay, 1975). Sin embargo, las estructuras de acero y los sistemas mixtos han adquirido importancia por su rapidez de construcción, mayor capacidad de resistencia a cargas sísmicas y viabilidad económica (Salvadori & Heller, 2002). Aunque estas ventajas existen, nace la problemática sobre cuál de estos sistemas ofrece un mejor desempeño en estructuras con amplias luces, en particular en zonas propensas a terremotos.

Las principales causas del problema identificado son la variabilidad en la calidad de los materiales, la falta de estudios comparativos específicos en zonas altamente sísmicas, y la escasa información sobre la combinación de funcionalidad y estética en estructuras con luces largas (Jones & Lee, 2020). Al mismo tiempo, es importante considerar que el usuario necesita soluciones que satisfagan un buen comportamiento de la edificación frente a grandes luces y condiciones del suelo, porque existen suelos con baja capacidad portante.

Debido a esto, la problemática destaca porque se va a mejorar practicas constructivas, se va a obtener información para que el usuario pueda determinar de manera adecuada el tipo de estructura que se necesita para edificaciones con grandes luces y se va poder garantizar funcionalidad y seguridad en las estructuras.

Por tal razón, el enfoque de este proyecto de titulación se basa en realizar un análisis comparativo de los sistemas estructurales mixtos, muros de hormigón armado y pórticos

acero estructural, abordando la incógnita: ¿Cuál de estos sistemas estructurales es el más adecuado según la eficiencia estructural, resistencia sísmica, costos generales y tiempos de construcción para una edificación de recepción de finca turística ubicada en el cantón de Salitre con grandes luces?

1.5 Justificación

El cantón Salitre, se encuentra ubicado en la provincia del Guayas, región costera. Esta zona es altamente sismica, por esta razón, las edificaciones que se van a construir necesitan soluciones estructurales que garanticen la seguridad del usuario y durabilidad de las edificaciones ante cargas sísmicas. Por lo tanto, diseñar un edificio de recepción para una finca turística con grandes luces plantea un desafío técnico, ya que la estructura debe proporcionar tanto la funcionalidad y la estética demandada por el usuario, como la resistencia necesaria para soportar cargas sísmicas y gravitacionales.

Esta evaluación comparativa es importante para seleccionar el sistema estructural que maximice la resistencia sísmica y optimice los recursos constructivos. Y así, obtener información fiable del diseño de estructuras con grandes luces, la cual será de gran aporte para los usuarios que vayan a construir edificaciones similares en la zona. Asimismo, este proyecto promueve los objetivos de desarrollo sostenible 9 industria, innovación e infraestructura y el 11 cuidades y comunidades sostenibles porque al desarrollar una infraestructura turística en zonas rurales, se promueve el desarrollo local, contribuyendo a la sostenibilidad de la comunidad y fortaleciendo la economía local para así, proporcionar lugares seguros para turistas y residentes.

1.6 Objetivos

1.6.1 Objetivo General

Evaluar el comportamiento de tres sistemas estructurales: Sistemas Mixtos, Muros de Hormigón Armado y Pórticos en Acero Estructural, mediante un estudio especializado con un software de análisis estructural, con el fin de seleccionar el sistema estructural adecuado para un edificio de recepción de grandes luces de finca turística ubicado en el cantón Salitre.

1.6.2 Objetivos Específicos

- Desarrollar modelos estructurales para cada uno de los sistemas propuestos utilizando un software de diseño estructural.
- Evaluar su comportamiento en términos de resistencia sísmica y capacidad para cubrir grandes luces por cada sistema estructural.
- Realizar un análisis comparativo del desempeño entre los 3 tipos de estructuras en función de la resistencia sísmica, capacidad y costos generales, con el fin de recomendar el sistema más adecuado para el diseño del edificio propuesto.
- Recomendar buenas prácticas de diseño para proyectos similares que posean grandes luces

CAPÍTULO 2

2. DESARROLLO DEL PROYECTO

2.1 Marco conceptual

La elección de un sistema estructural para la edificación propuesta es un aspecto crítico que abarca la funcionalidad, costo y sostenibilidad de las estructuras.

2.1.1 Sistema Estructural

Un sistema estructural es un conjunto de varios elementos que se unen para constituir un cuerpo único, el cual debe resistir su propio peso y cargas de uso con el fin de encontrar una solución a un problema del área de ingeniería civil especifico. En cualquier tipo de edificación, la configuración estructural es crucial porque tener ideas claras desde el inicio del proyecto, ayuda a crear edificaciones con un buen comportamiento de manera general (lecorbusierianos, 2002). Por lo cual, determinar el sistema estructural adecuado en un proyecto es fundamental ya que de esto depende el comportamiento del edificio, por tal razón, es importante como se va a ensamblar, distribuir y ubicar los elementos como las columnas, vigas, muros portantes, losas, etc.

Igualmente, es esencial, la disposición de los elementos no estructurales como: la mampostería, acabados, cargas actuantes, y demás. Tanto los sistemas estructurales como los no estructurales son primordiales al momento de enfrentar situaciones adversas como los desastres naturales. Además, de la configuración estructural que necesita cada proyecto, es importante considerar las características del suelo y el material a utilizarse (Vera et al., 2015).

2.1.2 Sistema estructural Mixto

Los sistemas estructurales mixtos generalmente combinan elementos de concreto y acero, esto permite aprovechar las ventajas de ambos materiales logrando optimizar el uso de materiales, reduciendo costos en la construcción y el peso de la estructura. Este tipo de sistema tiene un buen desempeño porque son eficientes en rigidez y resistencia,

lo cual permite el diseño de estructuras con espacios amplios y abiertos sin la necesidad de columnas intermedias. Una desventaja de este tipo de sistema es el costo inicial elevado y el mantenimiento pues la combinación de acero y concreto necesita un mantenimiento cuidadoso para evitar problemas de corrosión y agrietamiento (Rosales Collas, 2023).

Al combinar el acero y hormigón armado es importante asegurar el trabajo monolítico de la estructura, este sistema misto opera en flexión, a causa del esfuerzo de corte que se forma en el elemento y la acción de cargas, también genera un corte paralelo a esta zona, intentando deslizar los materiales uno con relación a otro. Por lo cual, para tener un comportamiento monolítico se debe impedir el deslizamiento horizontal y eso se logra implementando dispositivos de conexión para resistir la fuerza cortante. Solo de esta manera se consigue que la sección trabaje en conjunto porque existe transferencias de esfuerzos entre el hormigón y el acero. Por esta razón, la conexión mecánica que puede ser con pernos conectores y el vínculo por fricción que es la unión de la superficie acero con la de hormigón (Crisafulli, 2018).

En la actualidad, existen varios tipos de conexiones las cuales son: la soldadura, pernos de alta resistencia, pernos sin tornear y remaches. Para determinar la conexión más adecuada para la estructura se debe considerar que las conexiones soldadas ahorran un porcentaje de acero, los pernos necesitan de placas de sujeción y que los pernos reforzados y la soldadura tiene un buen comportamiento ante cargas de fatiga (Martínez, 2017).

A continuación, se muestra una conexión típica de viga tipo I con columna tipo cajón.

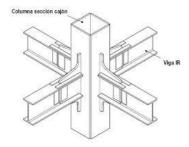


Ilustración 2.1 Conexión viga-columna (Tapia,2020)

2.1.3 Muros estructurales de hormigón armado

Los muros estructurales son elementos verticales pertenecientes una edificación, transmiten cargas verticales, soportan diafragmas horizontales y transmiten a los niveles inferiores las cargas horizontales que actúan en un mismo plano, estas generalmente son cargas de viento o sísmicas. Los muros son elementos rígidos y están constituidos de una mezcla de concreto reforzado y barras de acero, donde el hormigón otorga resistencia a la compresión mientras las barras de acero permiten al muro soportar esfuerzos de tracción. Según la ACI 318-19, el refuerzo de barras de acero debe distribuirse de manera adecuada en el muro para garantizar un comportamiento estructural eficiente.

Los muros estructurales de hormigón armado están conformados de manera vertical y continua. Y tienen como función principal soportar cargas verticales como muertas y vivas y cargas horizontales como sísmicas y de viento. Es importante mencionar que este tipo de sistema es resistente a compresión, posee buena durabilidad y capacidad de soportar condiciones climáticas adveras (ACI, 2019).

Además, en este sistema a mayor número de pisos, mayor será el espesor del muro. Estos sistemas estructurales están conformados por muros, vigas, columnas y losas de concreto armado donde losas deben poseer un comportamiento de diafragma rígido. Asimismo, estos sistemas requieren un planteamiento cuidadoso para evitar torsiones en planta porque los muros inducen gran rigidez en planta, generando una alta excentricidad entre el centro de rigidez y el centro de cortante. Por tal razón, la ubicación de los muros estructurales debe ser simétrica para evitar el desbalance del centro de rigidez con el centro de corte de cada entrepiso (Arteaga & Malavé, 2006).

A nivel constructivo es una opción competitiva por su rigidez y porque permite una construcción rápida y sencilla por lo cual se puede reducir costos de mano de obra. En la construcción se utiliza cuatro elementos principales los cuales son: el concreto hidráulico, con el cual se funde los muros y las placas; el acero reforzado; el encofrado y la mano de obra. Generalmente los muros portantes sostienen la estructura y se

caracterizan porque se colocan de manera consecutiva hasta conformar el edificio, aquí se rellena de concreto hidráulico y se compacta con equipos especializados (JDM, 2023).

Las desventajas principales de estos sistemas es su peso considerable ya que afecta al costo del proyecto, su limitación de diseño en cuando a luces grandes y el tiempo de construcción el cual es lento por el proceso de curado del concreto (JDM, 2023).

.

2.1.4 Pórticos de acero

El acero estructural es un material que resalta por su alta resistencia y ductilidad, pues es la combinación de carbono y hierro. Por un lado, su uso es habitual en edificaciones sismo resistentes debido a sus características anteriormente mencionadas, por otro lado, este material puede ser susceptible por la presencia de elementos no metálicos durante el proceso de laminación, a fallos de fatiga, pandeo y corrosión (Martínez, 2017).

Los sistemas estructurales de pórticos de acero están ensamblados por vigas y columnas conectadas mediante pernos, soladura o ambos, estos poseen una alta capacidad de disipación de energía y ductilidad. Por lo cual las deformaciones inelásticas se van a desarrollar principalmente en las vigas, mientras que las columnas van a permanecer en el rango elástico con el fin evitar el colapso de la edificación (Cagua et al., 2021). Además, son sistemas conocidos por su ligereza y flexibilidad de diseño porque ligeros comparados con los muros de hormigón (Cagua et al., 2021).

Para la conformación de los pórticos tanto de columnas y vigas se utilizan perfiles de acero, el cual se puede laminar en varias formas y tamaños conservando sus propiedades físicas. Los elementos estructurales que se utilizan comúnmente son los que poseen grandes momentos de inercia en relación con sus áreas. En general los perfiles se determinan por la forma de sus secciones transversales (McCormac & Csernak, 2018).

A continuación, En la ilustración 2.2 se observa las diferentes formas de los perfiles de acero.

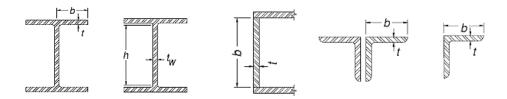


Ilustración 2.2 Tipos de perfiles en acero

Las secciones en acero se pueden clasificar según el pandeo local, el cual es una característica propia de las estructuras de acero. Las secciones se pueden clasificar en esbeltas o no esbeltas cuando están sometidas a compresión y compactas, no compactas y esbeltas cuando se trata de flexión. Esta evaluación y control de pandeo local se la realiza a partir de la relación ancho-espesor. Donde λ es igual a la división del ancho sobre el espesor de la sección (AISC 360, 2016).

Según el AISC360-16, las secciones de acero se clasifican de la siguiente manera:

Primeramente, se considera la relación ancho espesor λ de las secciones.

Donde b es el ancho del patín y t el espesor del patín.

h es altura o ancho del alma y tw espesor del alma.

$$\lambda = \frac{b}{t}$$

$$\lambda = \frac{h}{t}$$

Considerar lo siguiente para la clasificación de secciones:

 λ relación ancho- espesor

 λp límite superior para secciones compactas

 λr límite superior para secciones no compactas o esbeltas

2.1.4.1 Secciones Compactas

Para este tipo de secciones la relación ancho-espesor debe cumplir lo siguiente:

$$\lambda \leq \lambda p$$

2.1.4.2 Secciones No compactas

Para este tipo de secciones la relación ancho-espesor debe cumplir lo siguiente:

$$\lambda p < \lambda \leq \lambda r$$

2.1.4.3 Secciones Esbeltas

Para este tipo de secciones la relación ancho-espesor debe cumplir lo siguiente: $\lambda > \lambda p$

2.1.4.4 Control de pandeo local en vigas y columnas

Además, tanto vigas y columnas debe cumplir la relación ancho espesor para que se consideren como elementos con alta ductilidad. Asimismo, la relación ancho-espesor determina que el pandeo local no quebrante la ductilidad para que se mantenga en el rango elástico (AISC 360, 2016).

A continuación, en la Tabla se muestra la relación ancho-espesor para elementos sísmicamente compactos o altamente dúctiles.

Tabla 1.1 Relación ancho/espesor (AISC 341, 2016)

Altamente dúctil o compacto		Figura	
Viga	Patín	$\frac{\mathrm{bf}}{2\;\mathrm{tf}} \le 0.30 \sqrt{\frac{\mathrm{Es}}{\mathrm{Fy}}}$	$\frac{b}{t}t$
	Alma	$\frac{h}{tw} \le 2.45 \sqrt{\frac{Es}{Fy}}$	t _w h
	Patín	$\frac{bf}{tf} \le 0.60 \sqrt{\frac{Es}{Fy}}$	b
Columna	Alma	$\begin{split} \frac{Pu}{\overline{\emptyset}Py} &\leq 0.125 \\ \frac{h}{tw} &\leq 2.45 \sqrt{\frac{Es}{Fy}} \left[1 - 0.93 \frac{Pu}{\overline{\emptyset}Py}\right] \\ \frac{Pu}{\overline{\emptyset}Py} &> 0.125 \\ \frac{h}{tw} &\leq 0.77 \sqrt{\frac{Es}{Fy}} \left[2.23 - \frac{Pu}{\overline{\emptyset}Py}\right] \geq 1.49 \sqrt{\frac{Es}{Fy}} \end{split}$	-t h

2.1.4.5 Control de pandeo lateral torsional

La máxima longitud que se permite para controlar el pandeo lateral torsional en vigas para elementos sísmicamente compactos es la siguiente:

$$Lb \le 0.086 * ry * \frac{Es}{Fy}$$

Donde:

Lb es la distancio entre arrostramientos laterales

Fy esfuerzo de fluencia del acero

Es módulo de elasticidad del acero

Ry radio de giro menor del perfil seleccionado

2.2 Marco metodológico

Para el desarrollo de este proyecto se ha seleccionado la Metodología tipo cascada o aplicada. Esta metodología desarrolla proyectos de manera secuencial, es decir cada paso se complementa con el siguiente, por lo cual está metodología es común en proyectos de ingeniería por su solución sistemática. (Hadida & Triolo, 2020). Por tal razón, para el desarrollo de este proyecto se debe cumplir los siguientes pasos:

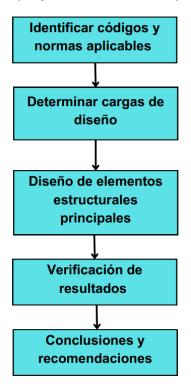


Ilustración 1.3 Esquema de Metodología Aplicada (Criollo,2024)

1. Identificar los códigos y normativas aplicables

Para el desarrollo de este proyecto se seleccionan las siguientes normas de acuerdo con los tres tipos de estructura:

- Como norma local general la Norma Ecuatoriana de la Construcción 2015 (NEC15)
- Como normativas internacionales: AISC 360 y AISC 341 para el diseño de estructuras metálicas y ACI 318 para el diseño de estructuras de concreto.

2. Determinar las cargas de diseño

Para determinar las cargas tanto verticales como horizontales se utilizará la NEC 15. En la cual, se determina lo siguiente:

- Cargas muertas, es el peso permanente total de la edificación esto incluye el peso propio de la estructura, los materiales de construcción, instalaciones y acabados.
- Cargas vivas, son aquellas cargas variables según la ocupación de la edificación.
 En la NEC 15 se especifica valores mínimos para las diferentes ocupaciones de cada edificación, es decir, varía de acuerdo con el peso de ocupantes muebles y otros elementos temporales.
- Carga sísmica: esta variable es importante porque el Ecuador es una zona altamente sísmica. La normativa, divide al país en zonas sísmicas y proporciona un espectro de respuesta de diseño sísmico, el cual, depende de la región y tipo de suelo de la edificación a diseñar.

3. Diseño de los elementos estructurales principales

Los principios para el diseño de estos elementos son las normativas mencionadas inicialmente. Se realizará el diseño de los elementos más críticos de vigas, viguetas columnas, muros y losas con normativas. Por tal razón, el predimensionamiento de vigas deberá resistir flexión y corte, para que resistan las cargas máximas previstas de la edificación. Las columnas se diseñarán para que resistan momentos flectores y cargas axiales. Finalmente, las losas se diseñarán para que soporten cargas muertas y vivas. En este proyecto se utilizará una losa tipo deck para los sistemas de pórticos de acero y sistemas mixtos y losa alivianada en dos direcciones para el sistema estructural con muros de hormigón armado. Además, el diseño integral de la edificación se desarrollará con un software de diseño estructural.

4. Verificación de los resultados

En este proyecto para verificar los resultados se utilizará el análisis por resistencia y análisis estático mediante el software de diseño estructural.

Por un lado, el análisis por resistencia se realizará para verificar que la edificación soporte las fuerzas aplicadas sin exceder su capacidad, para lo cual, se hará el análisis de los elementos estructurales bajo combinaciones de cargas desfavorables. Mismas que se encuentran estipuladas en la NEC 15 y para un mejor desarrollo se utilizará un software de diseño estructural, en el cual se verifica momentos, fuerzas

internas de cada elemento estructural y desplazamientos máximos permitidos según la NEC15.

Por otro lado, en el análisis estático, se revisará desplazamientos laterales máximos permitidos en la normativa, es decir se verificará las derivas máximas, el cortante basal, la distribución en cada piso, la masa modal participativa, el periodo de vibración del modo 1. En el software de diseño primero de verificará, los tres primeros modos de vibración y que desplazamientos laterales que no excedan el 2% según la normativa, el cortante basal y la capacidad de los elementos.

5. Conclusiones y recomendaciones

Este apartado se realizará según el análisis de evaluación comparativa de los 3 sistemas estructurales, para determinar el sistema más adecuado según periodos, cortante basal, derivas máximas, desplazamientos máximos, peso, costo y fuerzas de elementos críticos. Además, se da recomendaciones del tipo de sistema estructural óptimo para grandes luces y sobre la optimización de los mismos.

2.2.1 Trabajo de laboratorio o gabinete

Estudio de suelo: para este proyecto nos facilitan los resultados del suelo analizado, teniendo en cuenta que se analizan 3 muestras de suelo porque se extrajeron 3 calicatas con diferentes estratos. Cada calicata de 1,5 m de profundidad. A continuación, en la llustración 2.3 se muestra el perfil estratigráfico del suelo por calicatas, donde es C es calicata y M el número de estrato.

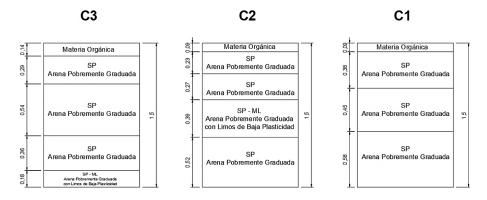


Ilustración 2.4 Perfil estratigráfico del suelo para 3 calicatas (Mora & Cordova, 2024)

A continuación, se presenta resultados obtenidos del estudio de suelos:

- Arena pobremente graduada según SUCS
- Porcentaje de humedad %W entre 10.58% y 57.86%.
- Número de golpes entre N 15 y 40
- Tipo de suelo D

El estudio de suelos completo a detalle se encuentra en el ANEXO A.

2.2.2 Solución a diseñar

Para llegar al objetivo general que es determinar que tipo de estructura es la más optima, se debe desarrollar lo siguiente:

2.2.2.1 Determinar las cargas de diseño

Las cargas de diseño que se determinarán en este proyecto serán las mismas para cada tipo de sistema estructural.

Cargas Muertas

Las cargas muertas se determinan de la siguiente manera:

- Carga de Pared

$$\text{WDpared} = \frac{\text{\#bloques} * \text{Peso bloque}}{\text{m}^2} = \frac{12.5 \text{ bloques} * 1.8 * 5 \text{kg}}{\text{m}^2} = \textbf{112.5} \frac{\textbf{kg}}{\textbf{m}^2}$$

- Carga Enlucido

WDenlucido = 2 * Espesor enlucido *
$$\gamma e = 2 * 2cm * 2100 \frac{kg}{m^2} = 84 \frac{kg}{m^2}$$

Carga Piso

WDpiso = Wpocelanato + Wpega =
$$20 + 10 = 30 \frac{\text{kg}}{\text{m}^2}$$

Carga Muerta Total

WDtotal =
$$112.5 + 84 + 30 = 227 \frac{\text{kg}}{\text{m}^2}$$

Cargas Vivas

Las cargas vivas se determinan según la NEC 15

Ocupación o Uso	Carga uniforme (kN/m²)	Carga concentrada (kN)
Cubiertas		
Cubiertas planas, inclinadas y curvas	0.70	
Cubiertas destinadas para áreas de paseo	3.00	
Cubiertas destinadas en jardinería o patios de reunión.	4.80	
Cubiertas destinadas para propósitos especiales		
Toldos y carpas	i	i
Construcción en lona apoyada sobre una estructura ligera	0.24 (no reduc.)	
Todas las demás	1.00	
Elementos principales expuestos a áreas de trabajo		8.90
Carga puntual en los nudos inferiores de la celosía de cubierta,		
miembros estructurales que soportan cubiertas sobre fábricas,		
bodegas y talleres de reparación vehicular		1.40
Todos los otros usos		1.40
Todas las superficies de cubiertas sujetas a mantenimiento de		
trabajadores		
Residencias		
Viviendas (unifamiliares y bifamiliares)	2.00	
Hoteles y residencias multifamiliares		
Habitaciones	2.00	
Salones de uso público y sus corredores	4.80	

Ilustración 2.5. Cargas vivas de NEC-2015 por ocupación.(NORMA ECUATORIANA DE LA CONSTRUCCIÓN, 2015)

Como se puede observar en la Ilustración 2.9 la carga viva que se va a utilizar para la cubierta es de 70 kg/m² porque la cubierta es inaccesible, una carga de 200 kg/m² para el entrepiso porque ser una recepción con habitaciones en el segundo piso.

Cargas Sísmicas

En la determinación de las cargas sísmicas, es esencial realizar un estudio de suelo para que el diseño sea adapte a las condiciones reales del terreno. Por lo cual, según el estudio de suelo se determina que el porcentaje de humedad esta entre el 10.58% y 57.86%, el numero de golpes entre 15 y 40 y es una arena pobremente graduada.

Tipo de perfil	Descripción	Definición								
	Perfiles de suelos muy densos o roca blanda, que cumplan con cualquiera de los dos criterios	N ≥ 50.0 S _u ≥ 100 KPa								
	Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o	360 m/s > V _s ≥ 180 m/s								
)	Perfiles de suelos rígidos que cumplan cualquiera de las dos condiciones	50 > N ≥ 15.0 100 kPa > S _u ≥ 50 kPa								
	Perfil que cumpla el criterio de velocidad de la onda de cortante, o	Vs < 180 m/s								
E	Perfil que contiene un espesor total H mayor de 3 m de arcillas blandas	$IP > 20$ $w \ge 40\%$ $S_u < 50 \text{ kPa}$								
	Los perfiles de suelo tipo F requieren una evaluación realizada explícitamente en el sitio por un ingeniero geotecnista. Se contemplan las siguientes subclases:									
	F1—Suelos susceptibles a la falla o colapso causado por la excitación sísmica, tales como; suelos licuables, arcillas sensitivas, suelos dispersivos o débilmente cementados, etc.									
	F2—Turba y arcillas orgánicas y muy orgánicas (H > 3m para turba o arcillas orgánicas y muy orgánicas).									
F	F3—Arcillas de muy alta plasticidad (H > 7.5 m con índice de Plasticidad IP > 75)									
	F4—Perfiles de gran espesor de arcillas de rigidez mediana a blanda	F4—Perfiles de gran espesor de arcillas de rigidez mediana a blanda (H > 30m)								
	F5—Suelos con contrastes de impedancia α ocurriendo dentro de los primeros 30 m superiores del perfil de subsuelo, incluyendo contactos entre suelos blandos y roca, con variaciones bruscas de velocidades de ondas de corte.									
	F6—Rellenos colocados sin control ingenieril.									

Ilustración 2.6. Tipos de suelo (NEC,2015)

En la ilustración 2.6 se observa que la selección del tipo de suelo es **D** porque es una arena pobremente graduada, se encuentra en el rango de número de golpes obtenido en el estudio de suelo.

Al conocer tipo de suelo se puede determinar el coeficiente sísmico Sa, el cual se necesita para definir la carga sísmica en el software de diseño estructural.

Se determina la zona sísmica y el factor Z con la ubicación del sitio de construcción, el cual es Salitre, provincia del Guayas.

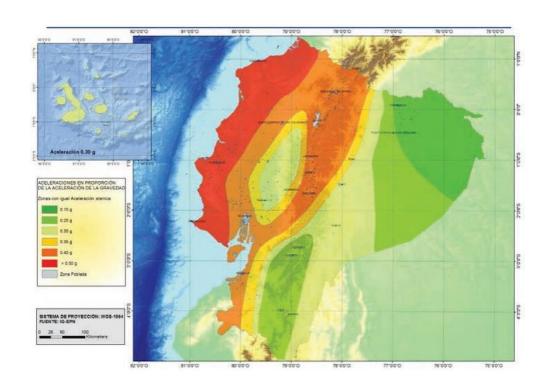


Ilustración 2.7. Zonas de Riesgo Sísmico para propósitos de diseño (NEC,2015)

Zona sísmica	I	II	III	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Ilustración 2.8. Factor Z según zona sísmica (NEC,2015)

En la Ilustración 2.11 y 2.12 se determina un factor Z de 0,4 g correspondiente a una zona de alta sismicidad. Con Z de 0,4 y el Tipo de suelo D se establece los coeficientes de suelo Fa, Fd y Fs donde Fa es el coeficiente de amplificación de suelo, Fd Coeficiente de amplificación de las ordenadas del espectro elástico de respuesta de deslizamientos para diseño en roca y Fs coeficiente de comportamiento no lineal del suelo. Esos factores se los encuentre en las tablas de la NEC 15 y se obtiene los siguientes resultados:

Tabla 2.1. Coeficiente de suelo (NEC,2015)

Z	0.4
Tipo de suelo	D
Fa	1.2
Fd	1.19
Fs	1.28

Además, se determina la relación de amplificación espectral propuesto en la NEC 15, el cual es de 1.8 por estar en la región Costa

- η= 1.80 : Provincias de la Costa (excepto Esmeraldas),
- η= 2.48: Provincias de la Sierra, Esmeraldas y Galápagos
- η= 2.60 : Provincias del Oriente

Ilustración 2.9. Coeficiente de amplificación Espectral. (NEC-SE-DS, 2015)

Con el fin de determinar el espectro de diseño, se calculan los periodos de vibración limites, coeficiente sísmico según las ecuaciones que se estipulan en la NEC15.

$$To = 0.10 * Fs * \frac{Fd}{Fa}$$

$$Tc = 0.55 * Fs * \frac{Fd}{Fa}$$

$$Cs = \frac{I * Sa}{R * \Phi p * \Phi e}$$

Donde To y Tc es el periodo límite de vibración en el espectro sísmico elástico de aceleraciones en el sismo de diseño y Cs coeficiente sísmico.

Aplicando las ecuaciones anteriores se obtiene los siguientes resultados, es importante aclarar que para la configuración en planta y elevación se utiliza 1 porque la edificación es regular en ambos sentidos.

Tabla 2.2. Cálculo del coeficiente sísmico

COEFICENTE SÍSMICO							
Z	0.4						
Tipo de suelo	D						
Fa	1.2						
Fd	1.19						
Fs	1.28						
Tc (seg)	0.69813						
To (seg)	0.12693						
Región	Costa						
n	1.8						
Sa (g)	0.864						

Además, se determina el coeficiente de Importancia I, el cual para este proyecto se determina que está en la categoría Otras Estructuras I=1 y el factor r dependiendo del tipo de suelo, para suelo tipo D, el factor r=1.

Finalmente, para calcular el espectro de respuesta se necesita obtener las aceleraciones espectrales, cuales se van a calcular con las ecuaciones estipuladas en la NEC15

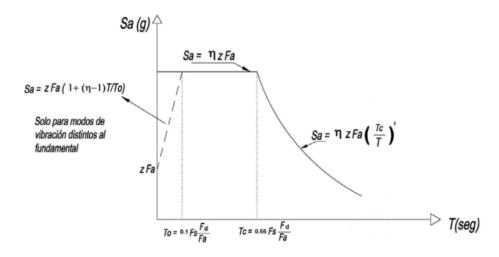


Ilustración 2.10. Espectro elástico horizontal de diseño en aceleraciones (NEC-SE-DS, 2015)

Luego de los cálculos de factores necesarios se obtiene el espectro elástico de diseño en aceleraciones:

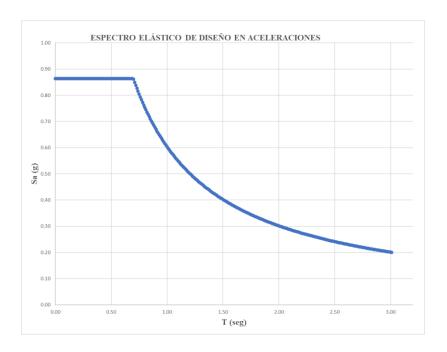


Ilustración 2.11. Espectro elástico de diseño en aceleraciones (Criollo,2024)

Luego de obtener el espectro de diseño se obtiene el periodo fundamental de la estructura, el cortante basal y la distribución vertical de fuerza sísmica. Para esto, se utilizan las ecuaciones de la NEC 15.

Periodo fundamental de la estructura

Para Pórticos de acero

$$T = Ct * hn^{\alpha}$$

$$T = 0.072 * 8^{(0.8)} = 0.38 \text{ seg}$$

Para Muros de hormigón

$$T = Ct * hn^{\alpha}$$

$$T = 0.055 * 8^{(0.75)} = 0.26 \text{ seg}$$

Para Sistema estructural mixto

$$T = Ct * hn^{\alpha}$$

$$T = 0.073 * 8^{(0.75)} = 0.35 \text{ seg}$$

Tipo de estructura	Ct	α
Estructuras de acero		
Sin arriostramientos	0.072	0.8
Con arriostramientos	0.073	0.75
Pórticos especiales de hormigón armado		
Sin muros estructurales ni diagonales rigidizadoras	0.055	0.9
Con muros estructurales o diagonales rigidizadoras y para otras estructuras basadas en muros estructurales y mampostería estructural	0.055	0.75

Ilustración 2.12. Coeficientes para calcular el período aproximado de la estructura.(NEC-SE-DS, 2015)

Cortante basal

$$V = \frac{I * Sa}{R * \phi p * \phi e} * W$$

Fuerza sísmica lateral por piso

$$Fx = \frac{Wx * hx^{K}}{\sum_{i=1}^{n} Wi * hi^{K}} * V$$

2.2.2.2 Diseño de elementos estructurales

2.2.2.2.1 Pórticos de acero

• Predimensionamiento losa

Para el sistema estructural de pórticos de acero se utiliza losa de placa colaborante con el fin de distribuir las cargas hacia los elementos estructurales. A continuación, se muestra una ilustración de la losa colaborante y sus componentes:

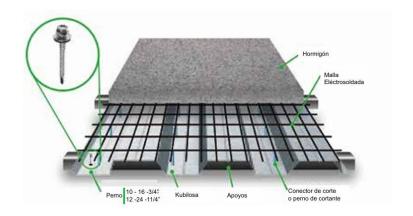


Ilustración 2.13. Componentes de losa colaborante (KUBIEC, 2024).

Carga sobreimpuesta:

Carga Sobreimpuesta = (WDtotal + Whormigóndec) + Wviva

Carga Sobreimpuesta =
$$\left(227 \frac{\text{kg}}{\text{m}^2} + 167 \frac{\text{kg}}{\text{m}^2} + 5\right) + \left(200 \frac{\text{kg}}{\text{m}^2}\right) = 600 \frac{\text{kg}}{\text{m}^2}$$

El pre-dimensionamiento de este tipo de losa se basa en la separación de los elementos, en los cuales se va a apoyar el panel. Para este proyecto se selecciona una losa colaborante según el catálogo del proveedor. A continuación de muestras las características de la losa colaborante:

	CARGA SOBREIMPUESTA (KG/M²)									XIMA LUZ							
ESPESOR KUBILOSA										ESPESOR KUBILOSA	CONDICIÓN DE APOYO	ESPES	SOR DE	LA LOS	A (cm)		
(mm)	(cm)	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	(mm)		5	6	7	8
0,65	5 6 7 8	2.200 2.200 2.200 2.200	1.727 1.979 2.229 2.478	1.365 1.565 1.763 1.960	1.098 1.258 1.418 1.557	894 1.025 1.156 1.285	736 844 951 1.058	610 700 789 878	509 584 659 733	426 489 552 614	357 410 463 516	0,65	una luz dos luces tres luces	2,06	1,52 1,98 1,83	1,47 1,90 1,76	-,
0,76	5 6 7 8	2.200 2.200 2.200 2.200	2.046 2.345 2.641 2.936	1.624 1.861 2.097 2.331	1.311 1.503 1.694 1.884	1.074 1.231 1.388 1.543	889 1.019 1.149 1.278	742 851 960 1.068	624 716 807 898	527 605 682 759	446 513 579 644	0,76	una luz dos luces tres luces	2,17	2,08	1,54 2.01 1,85	1,94
0,90	5 6 7 8	2.200 2.200 2.200 2.200	2.450 2.808 2.200 2.200	1.951 2.236 2.519 2.801	1.582 1.813 2.043 2.272	1.301 1.492 1.681 1.869	1.082 1.241 1.399 1.556	909 1.043 1.175 1.307	744 883 995 1.107	582 751 847 943	456 643 725 807	0,90	una luz dos luces tres luces	2,30	2,20	1,63 2.12 1,96	2,05

Ilustración 2.14. Separación entre apoyos de losa colaborante (KUBIEC, 2024).

Se tiene una carga sobreimpuesta de 600 kg/m², por lo cual se elige un espesor de losa de 6 cm con un espesor del deck de 0,65 mm. Además, la separación entre apoyos será

de 1.83 m como máximo. También, se elige una separación entre apoyos que soporta 1025 kg/m² y nosotros necesitamos que soporte 600 kg/m², por lo cual la placa colaborante selecciona cumple con los requisitos de carga de la edificación.

Para una mejor compresión se muestra las dimensiones de la placa colaborante:

Ilustración 2.15. Dimensiones placa colaborante (KUBIEC, 2024).

Con la selección de la losa colaborante se calcula la carga muerta

$$Peso\ hormig\'on = 0.06950 \frac{m^3}{m^2} * 24 \frac{kN}{m^3} = 1.91 \frac{kN}{m^2} = 166,8 \frac{kg}{m^2}$$

Peso placa colaborante (e = 0.65 mm) =
$$0.00065m * 7850 \frac{kg}{m^3}$$

Peso placa colaborante (
$$e = 0.65 \text{ mm}$$
) = 5,10 $\frac{kg}{m^2}$

Separación entre apoyo máx = 1.83 m

Peso total de la losa colaborante: 171,9 kg/m²

Carga muerta total: 400 kg/m²

Carga viva total: **200** kg/m²

A continuación, se muestra la estructuración que se va a realizar para los elementos estructurales.

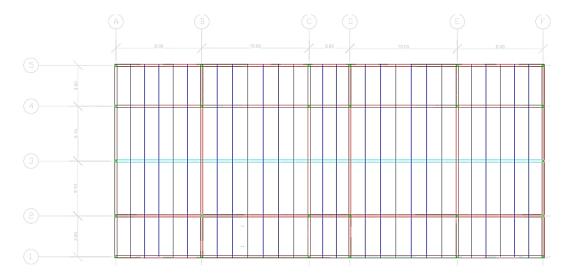


Ilustración 2.16. Estructuración de los elementos de la edificación.

Predimensionamiento viguetas

Para el pre-dimensionamiento de viguetas se ha tomado la luz más crítica la cual se observa en la siguiente imagen:

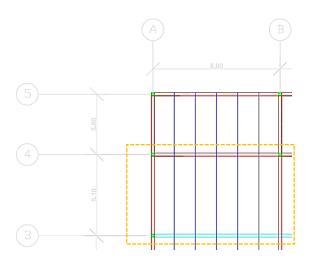


Ilustración 2.17. Disposición de viguetas en planta AB -43.

$$q = 1.2 * CM + 1.6 \ CV = 1.2 * 400 \frac{kg}{m^2} + 1.6 * 200 \frac{kg}{m^2} = 800 \frac{kg}{m^2}$$

Para obtener la carga uniforme distribuida en la longitud de 5.10 m de la se multiplica por el ancho colaborante, el cual es 1.3333 m

$$qu = 800 \frac{kg}{m^2} * 1.3333 m = 1066.64 \frac{kg}{m}$$

Con el valor de qu se determina el momento positivo y sus reacciones, para este análisis de considera la vigueta con una viga simplemente apoyada:

Ilustración 2.18 Carga distribuida en viga simplemente apoyada .(NEC-SE-DS, 2015)

Cálculo de reacciones:

Ra = Rb =
$$\frac{\text{qu} * \text{L}}{2}$$
 = $\frac{1066.64 \frac{\text{kg}}{\text{m}} * 5.10 \text{m}}{2}$ = 2719.9 kg

Cálculo de Momentos:

$$Mu = \frac{qu * L^{2}}{8} = \frac{1066.64 \frac{kg}{m} * (5.10m)^{2}}{8} = 3467.91 \text{ kg * m}$$

$$Zxreq = \frac{Mu}{\phi * fy} = 152.31 \text{ cm}^{3}$$

Una vez obtenido el módulo plástico Zxreq , por medio de tablas del proveedor local se selecciona el siguiente perfil tipo I.

Pre-dimensionamiento empírico del peralte de la vigueta:

$$h > \frac{L}{20}$$

$$h > \frac{5.10}{20} = 0.255 m$$

$$h = 25 mm$$

Pre- dimensionamiento empírico del ancho de la vigueta:

$$b = 0.4 * h = 0.4 * 30 = 12 cm$$

Se escoge la sección mayor entre el valor obtenido del módulo plástico y el predimensionamiento empírico. Según el catálogo de proveedor local se selecciona la siguiente sección: Con las siguientes propiedades geométricas:

Dimensiones Vigueta Sección I bf 10 cm tf 0.6 cm h 20 cm 8.0 tw cm **Propiedades Geométricas** 21.2264 Peso kg/m Α 27.04 cm^2 lχ 1572.4 cm^4 ly 100.8 cm^4 Sx 157.2 cm^3 Sy 20.2 cm^3 Zx187.1 cm ^3 Zy 33.0 cm^3 rx 7.6 cm 1.9 ry cm

Tabla 2.3. Propiedades geométricas vigueta

Según el AISC 360-22, para utilizar la formula del cálculo del momento a capacidad, el ala y alma del perfil I deben ser compactos, por lo cual para verificar esto se utiliza las siguientes fórmulas que se encuentran en la AISC 360-22.

Cálculo del Momento a capacidad:

Mp = Zx *
$$\phi$$
 * fy = 187.1 cm³ * 0.9 * $\frac{3515,15}{100} \frac{\text{kg}}{\text{cm}^2}$ = 5919.12 kg * m

Control de la deflexión

$$\Delta < \Delta max$$

$$\Delta = \frac{5 * W * L^4}{384E * Ix} < \Delta max = \frac{L}{360}$$

$$\frac{5 * \frac{1066.64}{100} kg * cm * 510^4}{384 * 2.1x10^6 * 7999} < \frac{510}{360}$$

 $0.55 \ cm < 1.42 \ cm$ ok

Control de compacidad:

Ala

$$\frac{bf}{tf} < 0.38 * \sqrt[2]{\frac{E}{Fy}}$$

$$\frac{10/2 \text{ cm}}{0.6 \text{ cm}} < 0.38 * \sqrt[2]{\frac{2038901.9 \frac{kg}{cm^2}}{3515.35 \frac{kg}{cm^2}}}$$

$$8.33 < 9.15 \text{ ok}$$

Alma

$$\frac{hw}{tw} < 3.76 * \sqrt[2]{\frac{E}{Fy}}$$

$$\frac{20 - 0.6 * 2}{0.8} < 3.76 * \sqrt[2]{\frac{2038901.9 \frac{kg}{cm^2}}{3515.35 \frac{kg}{cm^2}}}$$

$$23.5 < 90.55 \text{ ok}$$

Cálculo de la longitud de arriostramiento

$$Lp = 1.76 * ry * \sqrt[2]{\frac{E}{Fy}}$$

$$Lp = 1.76 * 1.9 * \sqrt[2]{\frac{2038901.9 \frac{kg}{cm^2}}{3515.35 \frac{kg}{cm^2}}}$$

$$Lp = 80.53 cm$$

Predimensionamiento vigas

Para el predimensionamiento de vigas principales se ha tomado la luz más crítica la cual se observa en la siguiente imagen:

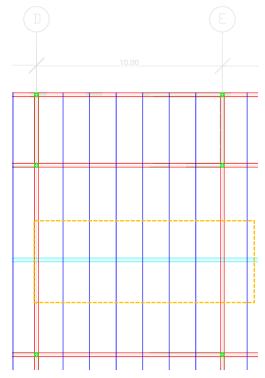


Ilustración 2.19. Disposición de viga principal.

Las vigas principales soportan las cargas puntuales que se transmiten de las viguetas, en este caso el valor de la carga puntual es de 2719.9 kg, la cual se calculó anteriormente. Para el pre-dimensionamiento se supone una viga simplemente apoyada

$$Ra = 2719.9 \text{ kg}$$

$$Ra = \frac{n-1}{2} * P$$

Donde L longitud la viga de estudio, a separación de viguetas y P es valor de la carga puntual

$$P = Ra * \frac{2}{n-1}$$

$$P = 2719.9 \text{ kg} * \frac{2}{6-1} = 1087.96 \text{ kg}$$

Cálculo del Momento Mu

$$Mu = \frac{P * L * (n^2 - 1)}{8 * n}$$

$$Mu = \frac{1087.96 \text{ kg} * 10m * (6^2 - 1)}{8 * 6} = 7933,042 \text{ kg} * m$$

Pre- dimensionamiento empírico del peralte de la viga:

$$h > \frac{L}{20}$$

$$h > \frac{10}{20} = 0.5 \text{ m}$$

$$h = 500 \text{ mm}$$

Pre- dimensionamiento empírico del ancho de la viga:

$$b = 0.4 * h = 0.4 * 50 = 20 cm$$

Según el catálogo del proveedor local se tiene las siguientes dimensiones:

Tabla 2.4. Propiedades geométricas vigueta

	Dimens	iones Viga	Perfil I
bf	20	cm	
tf	1.6	cm	
h	50	cm	_ _
tw	1.2	cm	
	Propiedade	s Geométricas	# #
Α	120.16	cm^2	
lx	47744.9	cm^4	h tw
ly	2140.1	cm^4	
Sx	1909.8	cm^4	
Sy	214.0	cm^3	
Zx	2205.9	cm^3	
Zy	336.8	cm ^3	
rx	19.9	cm^3	
ry	4.2	cm	

Es importante mencionar que para que la viga sea sísmicamente compacta debe cumplir el control de compacidad según el AISC341-16 de la Tabla D1.1. Además, Ry es un factor adimensional que depende del material, es este caso de acero A572Gr50 En la Tabla A3.1 se encuentra que Ry=1.1

Ala

$$\frac{bf}{tf} < 0.32 * \sqrt[2]{\frac{E}{Ry * Fy}}$$

$$\frac{20/2 \text{ cm}}{1.6 \text{ cm}} < 0.32 * \sqrt[2]{\frac{2038901.92}{1.1 * 3515.35 \frac{kg}{cm^2}}}$$

$$6.25 < 7.35 \text{ ok}$$

Alma

$$Ca = \frac{Pu}{0.9 * Ry * Fy * Ag}$$

$$Ca = \frac{1087.96}{0.9 * 1.1 * 3515.35 * 120.16} = 2.60 \times 10^{-3}$$

$$\frac{\text{hw}}{\text{tw}} < 2.57 * \sqrt[2]{\frac{\text{E}}{\text{Ry} * \text{Fy}}} * (1 - 1.04 * \text{Ca})$$

$$\frac{50 - 1.6 * 2}{1.2} < 2.57 * \sqrt[2]{\frac{2038901.92}{1.1 * 3515.35}} * (1 - 1.04 * 2.6x10^{-3})$$

$$39 < 58.85 ok$$

Cálculo de la longitud de arriostramiento

$$Lb/ry \ge 0.095 * \frac{E}{Ry * Fy}$$
$$238,095 \ge 0.095 * \frac{2038901.92}{1.1 * 3515.35 \frac{kg}{cm^2}}$$

$$238,095 \ge 50.09 \text{ ok}$$

Cálculo del momento a capacidad:

$$Mp = Zx * \phi * fy = 2205.9cm^3 * 0.9 * \frac{3515.35}{100} \frac{kg}{cm^2} = 69790.59 kg * m$$

Control de la deflexión

$$\Delta < \Delta max$$

$$\Delta = \frac{5 * W * L^4}{384E * Ix} < \Delta max = \frac{L}{360}$$

$$\frac{5 * \frac{1087.96}{100} \text{ kg} * \text{cm} * 1000^4}{384 * 2.1 \text{x} 10^6 * 47744.9} < \frac{1000}{360}$$

$$1.41 \text{ cm} < 2.778 \text{ cm}$$
 ok

• Pre-dimensionamiento columnas

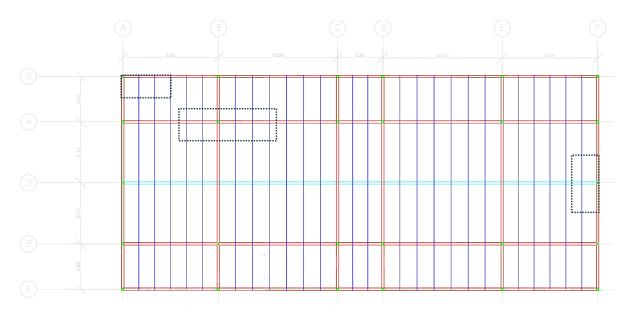


Ilustración 2.20. Esquema de áreas colaborante de columnas-.

Para el cálculo de las dimensiones de las columnas se asume un peso de 35 Kg/m². (Guerra, 2010). Además, se menciona que para este proyecto se utiliza la combinación de cargas LRFD por lo cual no se utiliza el peso de las viguetas. Ya que al utilizar la combinación de cargas mencionada se es conservador.

Columna principal

Cálculo de carga:

$$q = 1.2 * CM + 1.6 CV = 1.2 * (600 \frac{kg}{m^2} + 35 \frac{kg}{m^2}) + 1.6 * 200 \frac{kg}{m^2} = 1082 \frac{kg}{m^2}$$

Cálculo de carga axial:

$$Pu = 1082 \frac{kg}{m^2} * 63 \text{ m}^2 * 2pisos = 136332 \text{ kg}$$

Según Guerra en el 2010 la relación de esbeltez de una columna de 3.00 m a 4.57 m está entre 40 y 60. Por tal razón, se elige un valor intermedio de 50 para el predimensionamiento,

$$\frac{Kl}{r} = 50$$

Tabla 2.5. Tensión critica para los miembros de compresión

	<i>F_y</i> = 35 ksi			<i>F</i> _y = 36 ksi			$F_y = 42 \text{ ksi}$ $F_y = 46 \text{ ksi}$		csi		<i>F_y</i> = 50 I	csi		
	F_{cr}/Ω_c	φ _c F _{cr}	VI.	F_{cr}/Ω_c	φ _c F _{cr}	ν,	F_{cr}/Ω_c	φ _c F _{cr}	VI.	F_{cr}/Ω_c	φ _c F _{cr}	VI.	F_{cr}/Ω_c	φ _c F _{cr}
$\frac{KL}{r}$	ksi	ksi	$\frac{KL}{r}$	ksi	ksi	$\frac{KL}{r}$	ksi	ksi	$\frac{KL}{r}$	ksi	ksi	$\frac{KL}{r}$	ksi	ksi
'	ASD	LRFD	ı .	ASD	LRFD	, i	ASD	LRFD	ı .	ASD	LRFD	'	ASD	LRFD
41	19.2	28.9	41	19.7	29.7	41	22.7	34.1	41	24.6	37.0	41	26.5	39.8
42	19.2	28.8	42	19.6	29.5	42	22.6	33.9	42	24.5	36.8	42	26.3	39.5
43	19.1	28.7	43	19.6	29.4	43	22.5	33.7	43	24.3	36.6	43	26.2	39.3
44	19.0	28.5	44	19.5	29.3	44	22.3	33.6	44	24.2	36.3	44	26.0	39.1
45	18.9	28.4	45	19.4	29.1	45	22.2	33.4	45	24.0	36.1	45	25.8	38.8
46	18.8	28.3	46	19.3	29.0	46	22.1	33.2	46	23.9	35.9	46	25.6	38.5
47	18.7	28.1	47	19.2	28.9	47	22.0	33.0	47	23.8	35.7	47	25.5	38.3
48	18.6	28.0	48	19.1	28.7	48	21.8	32.8	48	23.6	35.4	48	25.3	38.0
49	18.5	27.9	49	19.0	28.5	49	21.7	32.6	49	23.4	35.2	49	25.1	37.7
50	18.4	27.7	50	18.9	28.4	50	21.6	32.4	50	23.3	35.0	50	24.9	37.5
51	18.3	27.6	51	18.8	28.3	51	21.4	32.2	51	23.1	34.8	51	24.8	37.2
52	18.3	27.4	52	18.7	28.1	52	21.3	32.0	52	23.0	34.5	52	24.6	36.9

Según la tabla mostrada anteriormente se determina que para el acero A572Gr50 el esfuerzo critico es de 37.5 ksi , este valor es 2636.511 kg/cm²

$$Areq = \frac{Pu}{\sigma}$$

$$Areq = \frac{136332 \, kg}{2636.511 \frac{kg}{cm^2}} = 52 \, cm^2$$

Considerando que es un prediseño, según el área que se requiere y las secciones de proveedor local se selecciona el siguiente perfil, teniendo presente que esta estructura también va a soportar carga sísmica y considerando que debe cumplir que la sección es sísmicamente compacta según el AISC 341-16

Dimensiones columna Perfil b 30 cm 30 h cm е 2.50 cm K Propiedades geométricas 275 cm2 lx 34947.9 cm4 34947.9 ly cm4 Sx 2329.9 cm3 2329.9 Sy cm3 Zx 2843.8 cm4 2843.8 Zy cm4 11.3 rx cm 11.3 ry cm

Tabla 2.6. Propiedades geométricas de la columna

Control de compacidad AISC341-16 de la Tabla D1.1

Ala y Alma

$$\frac{bf}{tf} < 0.65 * \sqrt[2]{\frac{E}{Ry * Fy}}$$

$$\frac{30cm}{2.5cm} < 0.65 * \sqrt[2]{\frac{2.1 \times 10^6 \frac{kg}{cm^2}}{1.5 * 2530 \frac{kg}{cm^2}}}$$

$$12 < 15.29 \text{ ok}$$

Control de la deflexión

$$\Delta < \Delta max$$

$$\Delta = \frac{5 * W * L^4}{384E * Ix} < \Delta max = \frac{L}{360}$$

$$\frac{5 * \frac{1087.96}{100} \text{ kg} * \text{cm} * 1000^4}{384 * 2.1 \text{x} 10^6 * 46207.4} < \frac{100}{360}$$

$$1.45 \ cm < 2.778 \ cm$$
 ok

En el pre-dimensionamiento de viguetas, vigas y columnas de la edificación se analiza zonas críticas. Por lo cual para optimizar el diseño se utilizan columna y vigas con menor área para las zonas perimetrales y esquineras. Cada elemento principal como viga y columna se verifica que sean sísmicamente compactas como se lo realizó anteriormente. Además, el software de diseño realiza estas verificaciones internamente. Sin embargo, es importante mencionar que el chequeo del diseño para vigas y columnas se lo realiza por IMF, es decir son elementos especiales a momento y los elemento de la cubierta y viguetas por MOF (elementos de momento ordinario).

A continuación, se presenta el diseño de la edificación en pórticos de acero con el software de diseño.

Modelamiento usando el software de diseño estructural

Con las dimensiones del prediseño de losa deck, viguetas, vigas y columnas se realiza el modelo en el software de diseño. Para lo cual, se define lo siguiente:

Definición de Materiales

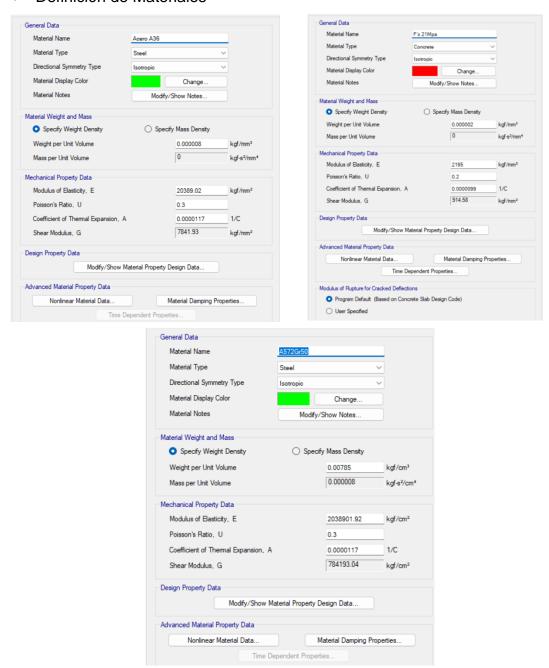
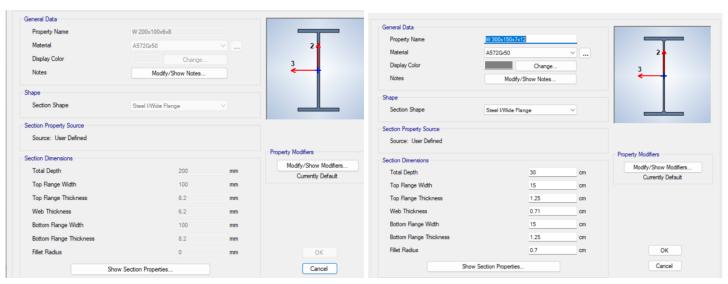



Ilustración 2.21. Materiales de la edificación.

Definición de Secciones

Vigas secundarias

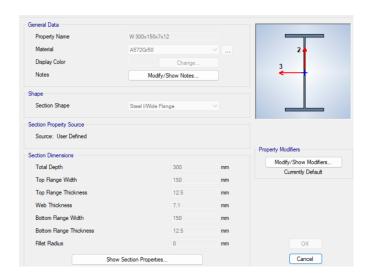


Ilustración 2.22. Dimensiones viga secundaria .

Vigas

Ilustración 2.23. Dimensiones vigas .

Columna

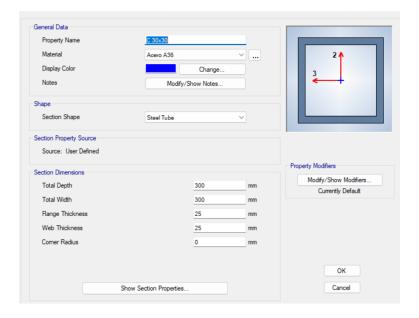


Ilustración 2.24. Dimensiones de la columna.

Losa Deck

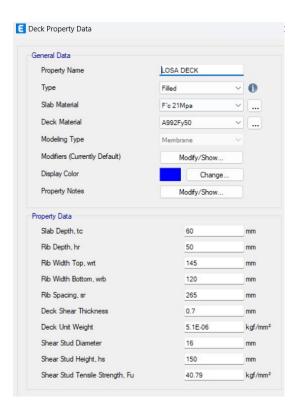


Ilustración 2.25. Dimensiones de la losa deck.

Definición de cargas

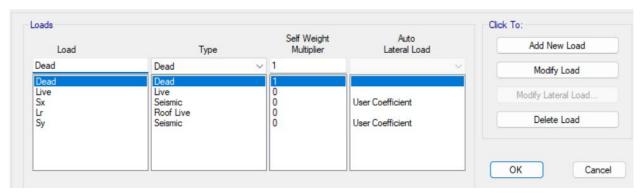


Ilustración 2.26. Definición de cargas para la estructura.

Definición del Peso sísmico

Según la NEC 15 el peso símico para un caso general se aplica solo a la carga muerta

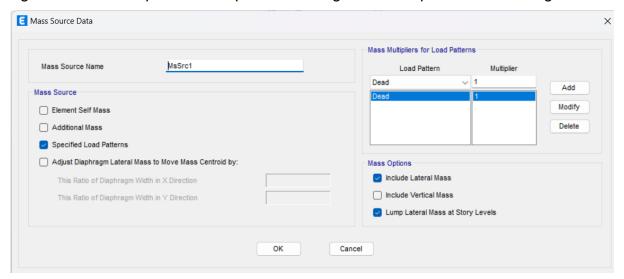


Ilustración 2.27. Peso sísmico de la estructura.

• Definición de combinaciones de carga

Se utiliza las combinaciones de cargas estipulas en la NEC-SE-15

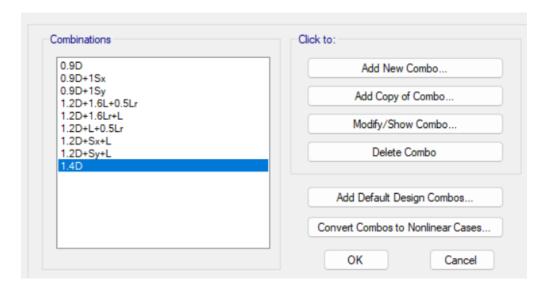


Ilustración 2.28. Combinaciones de carga.

Se coloca la carga sísmica según los coeficientes de la Tabla 2.3. con Sa de 0.108 considerando un R de 5 para pórticos intermedios a momento para el análisis IMF vigas y columnas principales. Además, para el análisis de la cubierta y vigas secundarias se realiza un análisis OMF y el ASCE 7-16 para este tipo de análisis se puede utilizar un R de 3.

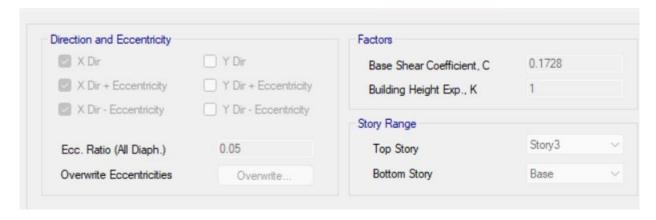


Ilustración 2.29. Carga sísmica estática en dirección X .

Ilustración 2.30. Carga sísmica estática en dirección Y .

• Asignación de cargas

Se asigna cargas del balcón calculadas anteriormente:

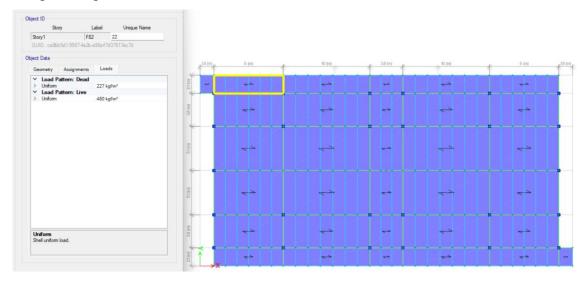


Ilustración 2.31. Carga viva y muerta en balcón .

Se asigna cargas a los paneles de habitaciones calculadas anteriormente:

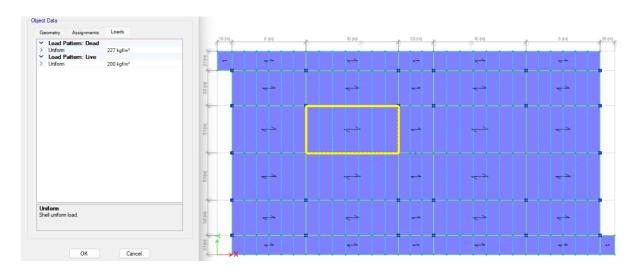


Ilustración 2.32. Carga viva y muerta en habitaciones .

Se asigna carga a la cubierta

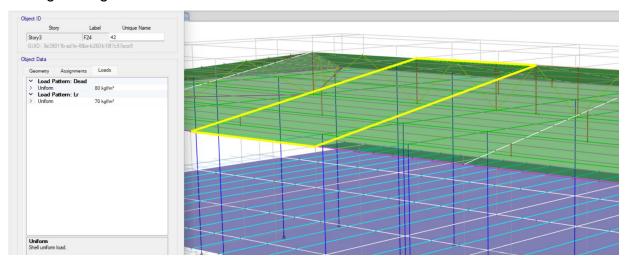


Ilustración 2.33. Carga viva y muerta en cubierta.

A continuación, se presenta una vista 3D del modelo de Pórticos en Acero y sus vistas en planta.



Ilustración 2.34. Vista en 3D del sistema estructural pórticos de acero .

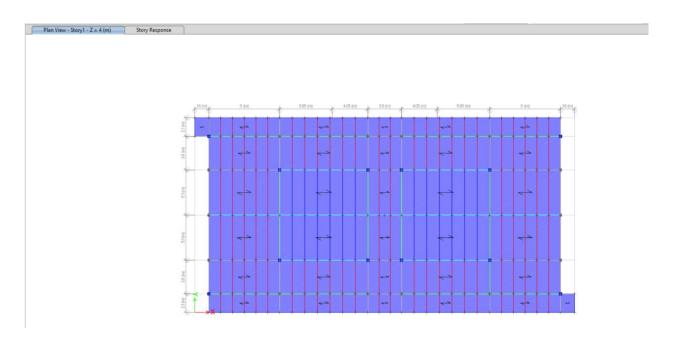


Ilustración 2.35. Vista en planta primer piso de la edificación.

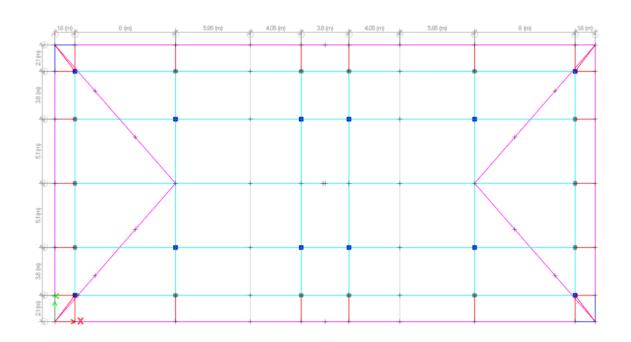


Ilustración 2.36. Vista en planta del piso alto de la edificación.

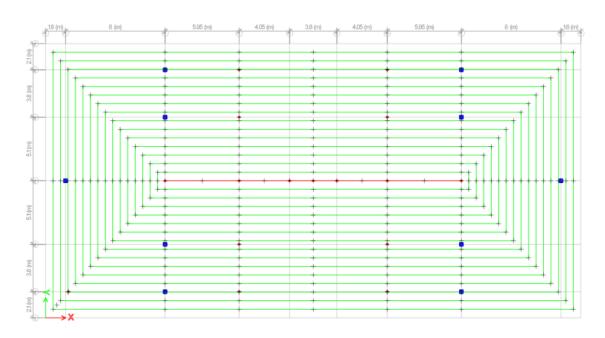


Ilustración 2.37. Vista en planta cubierta a 4 aguas de la edificación.

2.2.2.2 Muros de Hormigón Armado

A continuación, se muestra la distribución en planta de la edificación

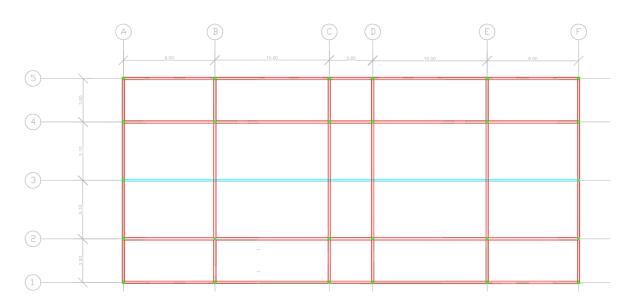


Ilustración 2.38 Distribución en planta de la edificación

• Pre-dimensionamiento de losa

Para realizar el pre-dimensionamiento de la losa nervada en 2 direcciones, se analiza el panel con la luz más grande de la edificación, para este caso es de 10 m. Para el pre-dimensionamiento se utiliza la Tabla 8.3.1.2 de la norma ACI 318-19. A continuación, se muestra el panel de análisis.

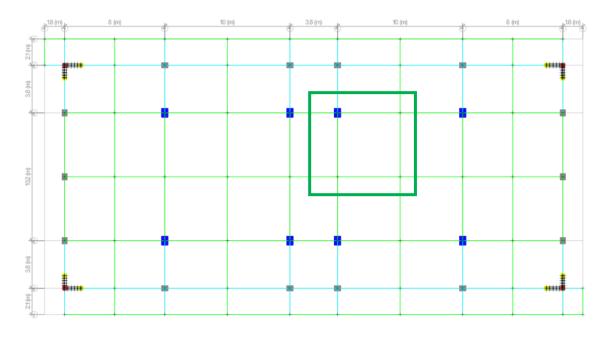


Ilustración 2.39. Panel de análisis.

Se muestra el pre-dimensionamiento que se obtuvo con la ayuda de una hoja electrónica.

Tabla 2.7. Pre-dimensionamiento de losa nervada en 2 direcciones

DATOS	DE LOSA	nonprestres	sed two	um thickness of -way slabs with beams upports on all sides	3		
S=	50	$a_{fm}^{[1]}$		Minimum h, mm			
h=	25	$\alpha_{fin} \leq 0.2$		8.3.1.1 applies	(a)		
h'=	5			$\ell_n \left(0.8 + \frac{f_y}{1400} \right)$			
b=	10	$0.2 < \alpha_{fin} \le 2.0$	≤ 2.0 Greater of:	$\frac{1400}{36+5\beta(\alpha_{fm}-0.2)}$	(b) ^{[1],[2]}		
Yc=	16.94		01.	-			
ls=	49097.22			125	(c)		
h.equiv=	18.1		Greater	$\ell_n \left(0.8 + \frac{f_y}{1400} \right)$	(d)		
fy=	420	$\alpha_{fin} > 2.0$	of:	36+9β			
L=	5.2			90	(e)		
B=	5.1	$^{[1]}q_{fm}$ is the average value of a_f for all beams on edges of a panel. $^{[2]}\ell_n$ is the clear span in the long direction, measured face-to-face of beams (mm).					
β=	1.01960784	$^{[3]}\beta$ is the ratio of clear spans in long to short directions of slab.					

VIGA	B[cm]	H[cm]	I[cm4]	Ls1[m]	Alphaf
1	40	60	720000.0	4.5	3.26
2	40	60	720000.0	4.5	3.26
3	25	35	89322.9	4.4	0.41
4	25	35	89322.9	5	0.36
				Alphafm=	1.82

a)	No aplica			
b)	APLICA	0.025	Ln/ 40.3	12.9
c)	APLICA			12,5
d)	No aplica			
e)	No aplica			

En la Ilustración 2.39 se observa la losa de 25 cm de altura, con espesor de carpeta 5 cm y nervios de 10 cm.

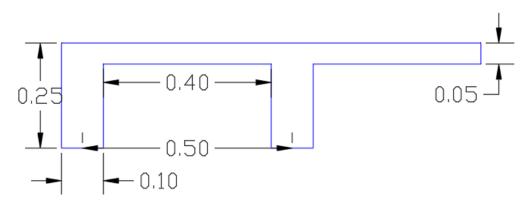


Ilustración 2.40. Sección de losa alivianada

A continuación, en la Tabla 2.3 se muestra la carga muerta y viva para la edificación.

Tabla 2.8 Estimación de carga muerta y viva (Criollo, 2024)

Carga Muerta				
Carga muerta	227	Kg/m²		
sobreimpuesta				
Carga Muerta de				
losa nervada 2D e=	350	Kg/m²		
25 cm				
Total	577	Kg/m²		
Carga Viva				
Carga viva	480	Kg/m ²		

Se considera la carga viva de 480 kg/m2 de los accesos a las habitaciones, pues en la NEC 15 esta carga es para pasillos y carga de 200 kg/cm2 para las habitaciones-

• Pre- dimensionamiento de vigas

El elmento estructural que se pre-dimensiona es la viga , para lo cual, se utiliza la Tabla 9.31.1. de la ACI 318-19, en donde se especifica alturas mínimas para vigas no preesforzadas.

Tabla 9.3.1.1 — Altura mínima de vigas no preesforzadas

Condición de apoyo	Altura mínima, h [1]	
Simplemente apoyada	ℓ/16	
Con un extremo continuo	ℓ/18.5	
Ambos extremos continuos	ℓ/21	
En voladizo	ℓ/8	

Ilustración 3.41. Altura mínima de vigas no preesforzadas (ACI 318, 2019)

Según el panel de análisis de la Ilustración 2.38, para el pre-dimensionamiento inicial de la viga se toma la luz de 10 m.

$$h \ min = \frac{L}{21} = \frac{10 \ m}{21} = 0.47 \ m \approx 50 \ cm$$

Para este proyecto la norma ACI 318-19 recomienda una altura mínima de 50 cm y un ancho de 40 cm.

• Pre- dimensionamiento de columnas

Para el pre- dimensionamiento de las columnas se calcula la carga y se escoge la columna más critica la cual se puede observar en la ilustración 2.42.

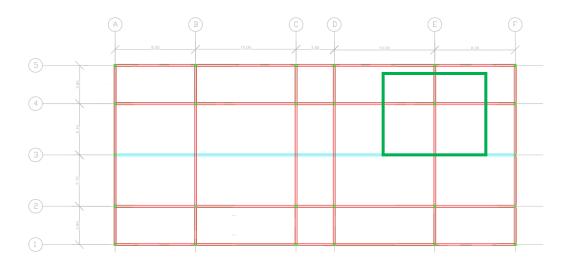


Ilustración 2.42. Área tributaria de la columna crítica.

Cálculo de carga:

$$q = 1.2 * CM + 1.6 CV = 1.2 * (600 \frac{kg}{m^2}) + 1.6 * 480 \frac{kg}{m^2} = 1486.8 \frac{kg}{m^2}$$
$$q \approx 1490 \frac{kg}{m^2}$$

La carga actuante en la columna es la siguiente:

$$Pu = \text{\'Area} * \frac{\text{Carga}}{\text{m2}} * \text{\# de Pisos}$$

$$Pu = 7m * 9m * 1490 \frac{\text{kg}}{\text{m}^2} * 2 = \textbf{187740kg}$$

Con la ecuación de esfuerzo se obtiene:

$$f'c = \frac{Pu}{\eta * \text{Área}}$$

Donde:

Pu: Carga actuante de de columna de análisis

f'c: Resistencia del hormigón a la compresión (210 $\frac{\text{kg}}{\text{cm2}}$ vigas y 240 $\frac{\text{kg}}{\text{cm2}}$ para columnas)

η: Factor de ubicación de columna en planta.

η lateral: 0.4

η esquinera: 0.35

η central: 0.5

Área =
$$\frac{Pu}{\eta * f'c}$$
 = $\frac{187740 \text{ kg}}{0.5 * 210}$ = 1788 cm²

Para una columna cuadrada:

$$L = \sqrt{\text{área}} = \sqrt{1780} = 42.3 \text{ cm} \approx 50 \text{ cm}$$

Para ser conservadores se utiliza columnas cuadradas de 50 cm x 50 cm

• Pre- dimensionamiento de muro

Para el cálculo del pre- dimensionamiento del muro de utiliza la tabla 11.3.1.1 de la normativa ACI318-19.

Tabla 11.3.1.1 — Espesor mínimo del muro, h

Tipo de muro	Espes	Espesor mínimo del muro, h		
		100 mm	(a)	
De carga ^[1]	El mayor de:	1/25 de la menor entre la longitud y la altura no soportadas	(b)	
No portante		100 mm	(c)	
	El mayor de:	1/30 de la menor entre la longitud y la altura no soportadas	(d)	
Exteriores de sótanos y cimentaciones ^[1]		190 mm	(e)	

Ilustración 2.43. Espesor mínimo del muro.

Como el muro del proyecto va a ser portante, es decir es un muro de carga de utiliza la siguiente ecuación:

hmin Muro
$$=\frac{4m}{25} = 0.16 \text{ cm} \approx 20 \text{ cm}$$

Al ser conservadores de utiliza un muro con espesor de 20 cm

Cálculo de la resistencia a compresión axial nominal Pn y resistencia de diseño φPn

$$Pn = 0.85 * f'c * Ag$$

Donde f´c es la resistencia del hormigón 210 kg/cm2, Ag área bruta del muro.

Pn =
$$0.85 * 210 \frac{\text{kg}}{\text{cm2}} * 20 \text{ cm} * 1020 \text{ cm} = 3641.4 \text{ x} 10^3 \text{ kg}$$

 Φ Pn = $0.65 * 3641.4 \text{ x} 10^3 \text{ kg} = 2366,920 \text{ x} 10^3 \text{ kg}$

$$\phi Pn \ge Pu$$
 2366,920 x 10³ kg \ge 187740 kg **OK**

Verificación de pandeo y estabilidad lateral

Según el ACI 318-19, el índice de esbeltez para un muro de carga no exceder ciertos límites, para este caso va ser un muro empotrado en ambos extremos, por lo cual es límite es de:

$$\frac{h}{t} \le 25$$

Donde h es la altura de entrepiso y t el espesor del muro

$$\frac{4m}{0.2 m} \le 25$$
$$20 \le 25 \text{ OK}$$

El muro de carga cumple con las condiciones de esbeltez de la normativa por lo cual, no debería presentar problemas de pandeo.

A continuación, se presenta el diseño de la edificación de hormigón armado con el software de diseño.

Cuantía para columnas

En el ACI 318-19, se estipula que la cuantía mínima de columnas debe ser el 1%. Por cual con esta filosofía de diseño se calcula el acero de refuerzo de columnas.

Modelamiento usando el software de diseño estructural

Con las dimensiones del prediseño de losa deck, viguetas, vigas y columnas se realiza el modelo en el software de diseño. Para lo cual, se define lo siguiente:

Definición de Materiales

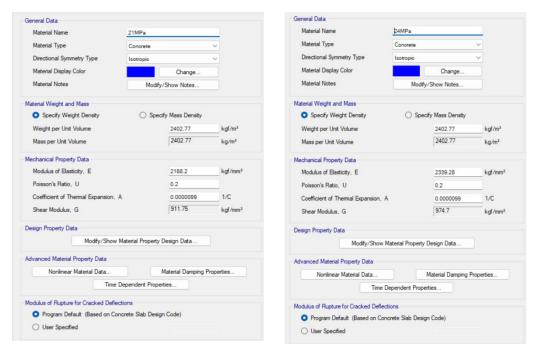
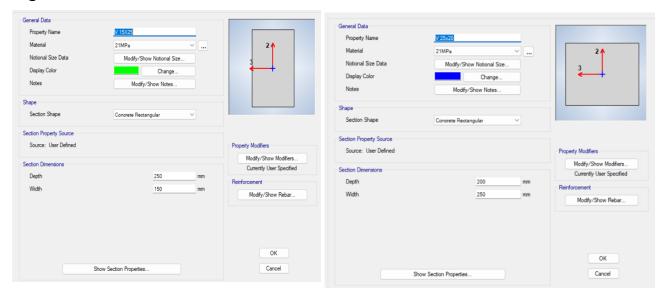



Ilustración 2.44. Materiales de la edificación

Definición de Secciones

Vigas

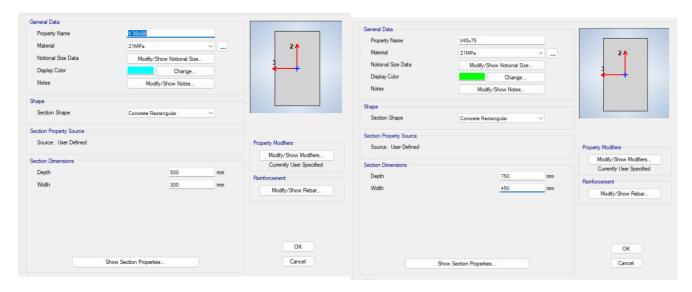


Ilustración 2.45. Dimensiones vigas .

Columna

Ilustración 2.46. Dimensiones de la columna.

Agrietamiento de vigas y columnas según NEC 15 Columna:

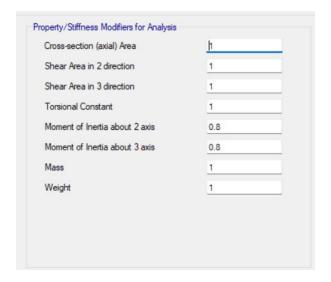


Ilustración 2.47. Agrietamiento de columnas

Viga:

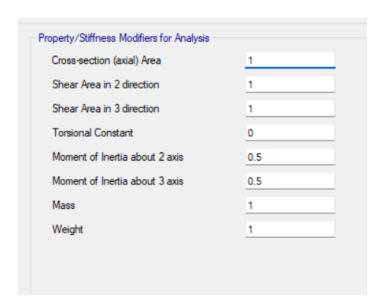


Ilustración 2.48. Agrietamiento de vigas

Losa Nervada

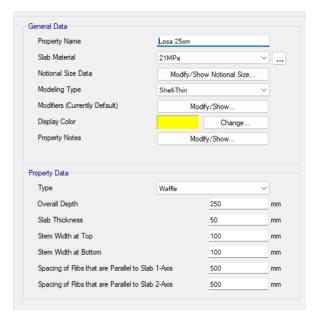


Ilustración 2.49. Dimensiones de la losa nervada.

Muro

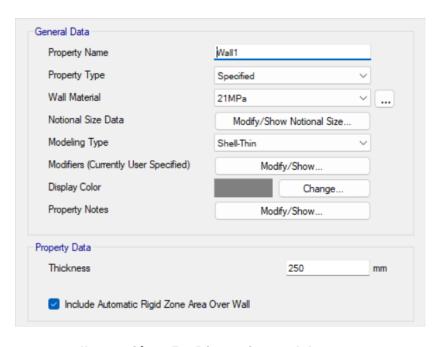


Ilustración 2.50. Dimensiones del muro .

Agrietamiento muro

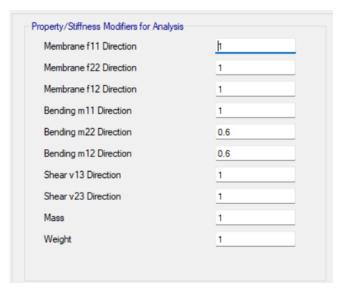


Ilustración 2.51. Agrietamiento del muro

• Definición de cargas

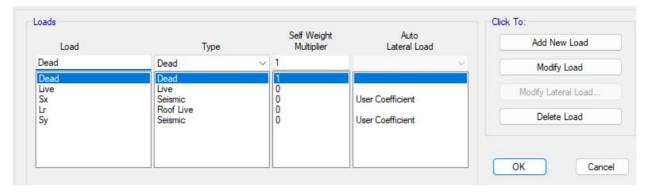


Ilustración 2.52. Definición de cargas para la estructura .

• Definición del Peso sísmico

Según la NEC 15 el peso símico para un caso general se aplica solo a la carga muerta

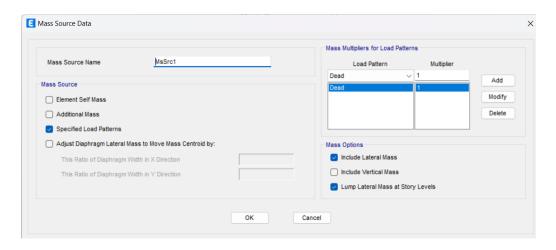


Ilustración 2.53. Peso sísmico de la estructura

• Definición de combinaciones de carga

Se utiliza las combinaciones de cargas estipulas en la NEC-SE-15

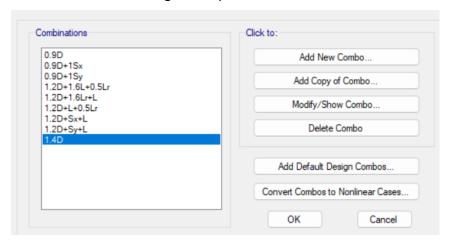


Ilustración 2.54. Combinaciones de carga.

Se coloca la carga sísmica según los coeficientes de la Tabla 2.3. con Sa de 0.108 considerando un R de 8

Ilustración 2.55. Carga sísmica estática en dirección X.

Ilustración 2.56. Carga sísmica estática en dirección Y

Asignación de cargas

Se asigna cargas del balcón calculadas anteriormente:

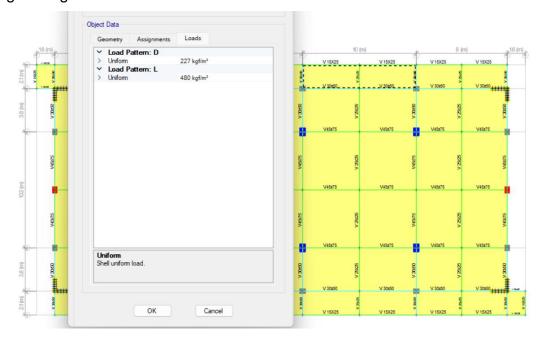


Ilustración 2.57. Carga viva y muerta en balcón .

Se asigna cargas a los paneles de habitaciones calculadas anteriormente:

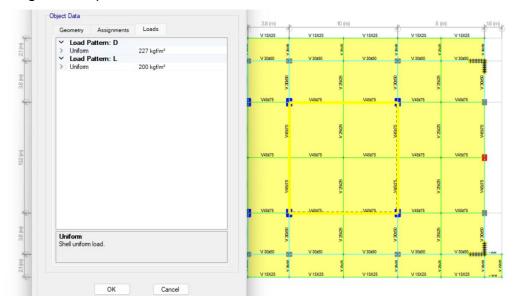


Ilustración 2.58. Carga viva y muerta en habitaciones .

A continuación, se presenta una vista 3D del modelo de hormigón armado con muro y sus vistas en planta. La cubierta de esta edificación se la realiza plana porque la cubierta es solo un diseño arquitectónico.

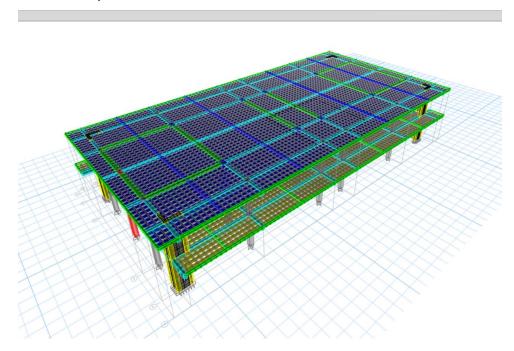


Ilustración 2.59. Vista en 3D del sistema estructural de hormigón armado

Ilustración 2.60. Vista en planta primer piso de la edificación Haga clic o pulse aquí para escribir texto..

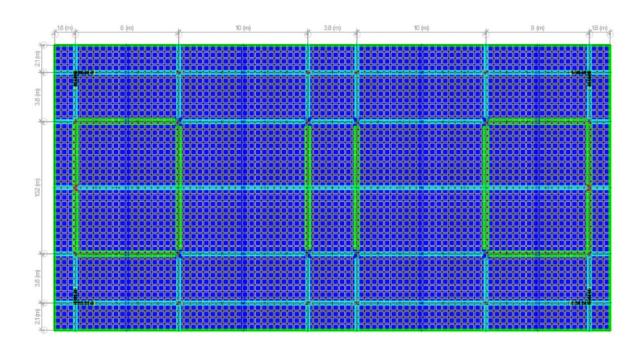


Ilustración 2.61. Vista en planta del piso alto de la edificación.

2.2.2.3 Sistema Estructural Mixto

Para el pre-dimensionamiento de columnas, viguetas y vigas principales se realiza el mismo proceso que para el sistema estructural pórticos de acero, el cual se evidencia en el apartado 2.2.2.2.1. y para el pre-dimensionamiento del muro se utiliza el muro pre-dimensionado en el sistema estructural de muros de hormigón armado, el cual se encuentra en el apartado 2.2.2.2.2. El predimensionamiento se utiliza para el diseño inicial, el cual se ha ido modificando con el fin de optimizar el diseño y que cumplan los requisitos de la normativa ACI 318-19 y NEC 15. Por tal razón, el diseño se lo realiza con la ayuda de un software de diseño. El proceso de modelamiento de este software de mostro en los apartados mencionados anteriormente. A continuación, se presenta las dimensiones de vigas, columnas, losa deck y muro:

Vigas secundarias

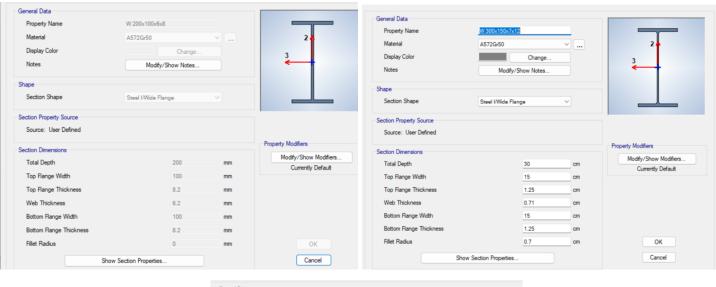


Ilustración 2.62. Dimensiones viga secundaria

Vigas

Ilustración 2.63. Dimensiones vigas .

Columna

Ilustración 2.64. Dimensiones de la columna

Losa Deck

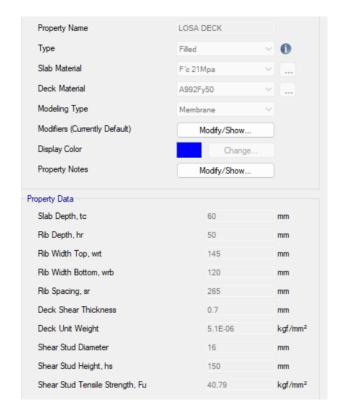


Ilustración 2.65. Dimensiones de la losa deck.

Muro

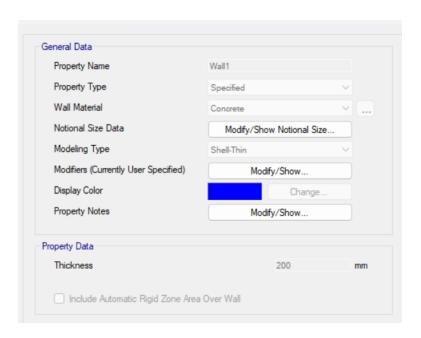


Ilustración 2.66. Dimensiones del muro.

CAPÍTULO 3

RESULTADOS Y DISCUSIÓN

3.1 Resultados

A continuación, se presenta los resultados obtenidos para los 3 tipos de sistemas estructurales, pórticos de acero, muro de hormigón armado y mixto. Los resultados que se presentan son periodos del modo 1 de vibración, desplazamientos máximos, derivas, cortante por piso, fuerzas del elemento más crítico, presupuesto referencial de los elementos estructurales y peso por metro cuadro. Además, se realiza las verificaciones según la normativa para cada sistema estructural.

3.1.1 Verificación de resultados

3.1.1.1 Verificación de resultados para pórticos de acero

Preferencias de Diseño

Para el análisis de vigas y columnas se diseña por IMF pórticos intermedios a momento

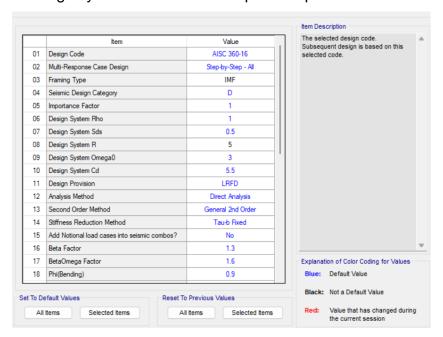


Ilustración 3.1 Preferencia de diseño de vigas y columnas principales

Para el análisis de vigas secundarios y cubierta se diseña por OMF pórticos de momento ordinario.

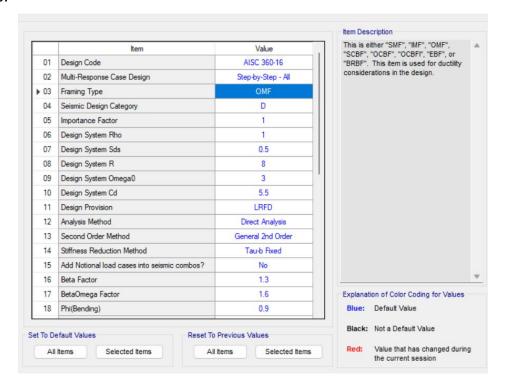


Ilustración 3.2. Preferencia de diseño de vigas secundarias y cubierta

Diseño de Elementos estructurales principales

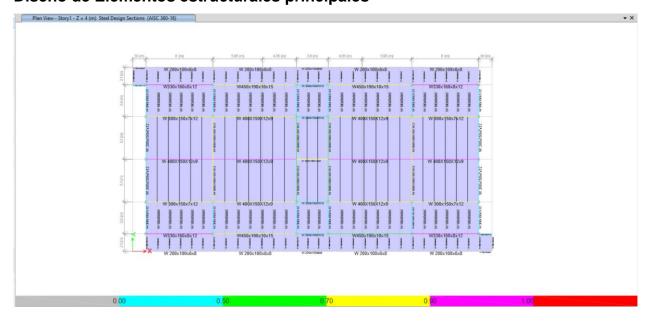


Ilustración 3.2. Diseño de vigas principales

Ilustración 3.3 Relación de capacidad de vigas principales

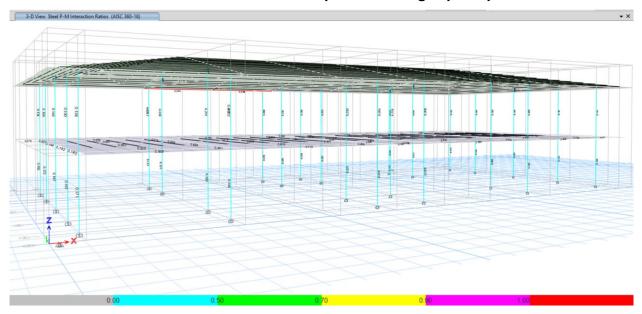


Ilustración 3.4 Relación de capacidad de columnas principales

84

Diseño de vigas secundarias y cubierta

Ilustración 3.5. Relación de capacidad de vigas secundarias

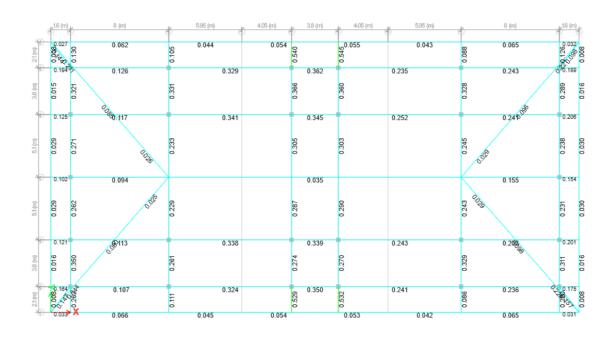


Ilustración 3.6. Relación de capacidad de cubierta

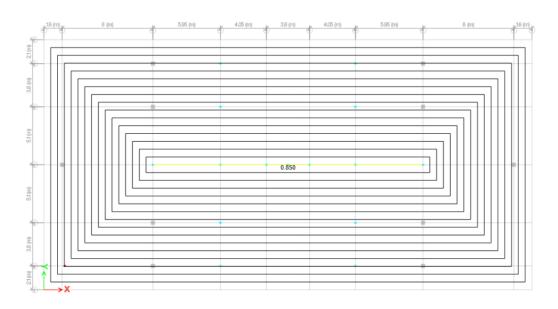


Ilustración 3.7. Relación de capacidad de cubierta

Periodos

Según la NEC-15 el periodo calculado por el software de diseño no debe ser mayor al 30% del periodo cálculo por el método 1, el cual es T1= 0.38 seg y T2=0.47 seg (software de diseño)

T2 < 1.3 * T1

0.475 seg < 1.3 * 0.38 seg

 $0.475 \, \text{seg} < 0.494 \, \text{seg ok}$

Análisis modal

Se realizó un análisis modal de la estructura donde se obtuvo un comportamiento traslacional en los 2 primeros modos de vibración con una componente rotacional máxima del 10%.

Tabla 3.1. Análisis modal de la estructura

Case	Mode	Period sec	UX	UY	UZ	RZ
Modal	1	0.475	1	0	0	0
Modal	2	0.453	0	0.971	0	0.029
Modal	3	0.422	0	0.03	0	0.97

En la Tabla 3.1 se muestra que los 2 primeros modos de vibración son traslacionales y el tercero rotacional.

Masa Participativa

Según la NEC-15, al masa participativa acumulada debe ser más del 90%, considerando todos los modos de análisis.

Edit Format-Filter-Sort Select Options Units: As Noted Hidden Columns: No Sort: None Modal Participating Mass Ratios Filter: None Case Mode Period UX UY SumUX SumUY sec Modal 0.473 0.8977 1.743E-05 0.8977 1.743E-05 1.222E-05 0 0.8977 2 0.45 0.8626 0.8626 Modal 4.307E-05 0.0251 0.8977 0.8877 Modal 0.172 0.0001 0.1114 0 0.8978 0.9991 Modal 5 0.163 0.1022 0.0001 0 0.9999 0.9992 Modal Modal 6 0.152 0.0001 8000.0 0 1 Modal 0.052 0 0 0 1 0.052 0 5.37E-07 0 1 Modal 0 1 Modal 9 0.052 0 0 1 10 0.043 0 0 0 Modal Modal 0.014 0 5.363E-06 1 Modal 0 0 1 12 0.012 0

Tabla 3.2. Masa Participativa

Deriva de piso

La deriva de inelástica de piso debe cumplir con la siguiente expresión:

$$\Delta = 0.75 * R * Deriva m\'{a}x < 0.02$$

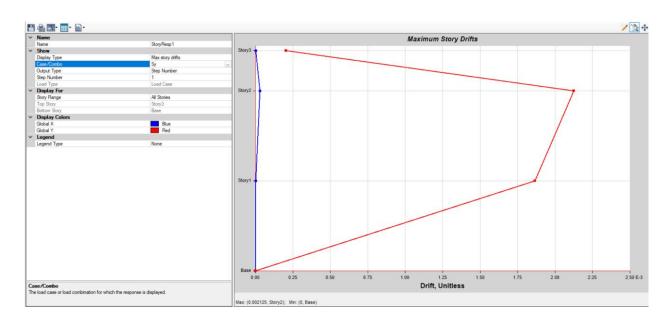


Ilustración 3.8 Deriva máxima en Y

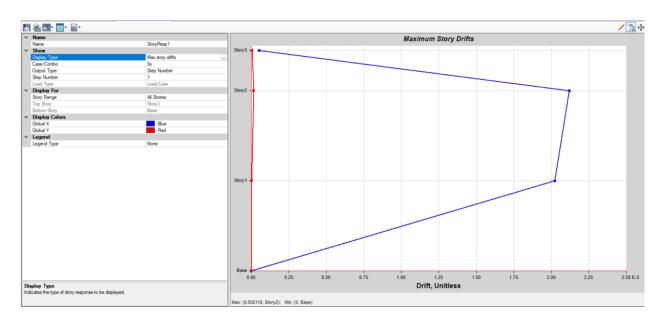


Ilustración 3.9. Deriva máxima en X

En las ilustraciones $3.8\ y\ 3.9\ se$ puede observar las derivas máximas de la edificación en el eje $x\ y$ eje y.

Deriva inelástica en Y

$$0.75 * R * Deriva máx < 0.02$$

 $0.75 * 5 * 0.002125 < 2\%$
 $0.797 \% < 2\%$ **ok**

Deriva inelástica en X

$$0.75 * 5 * 0.002118 < 0.02$$

 $0.794 \% < 2\%$ ok

• Desplazamientos máximos de la estructura

Ilustración 3.10. Desplazamiento máximo en X

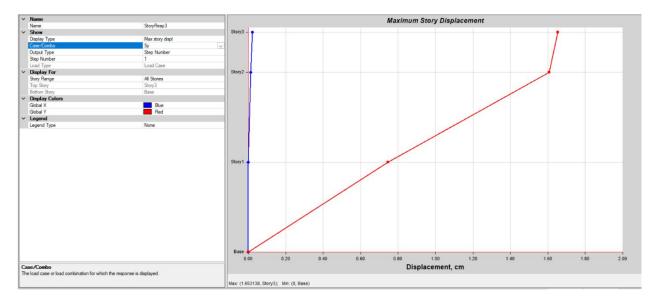


Ilustración 3.11. Desplazamiento máximo en Y

En la ilustración 3.10 y 3.11 se observa los desplazamientos máximos de la edificación. En el eje x de 1.72 cm mm y en el eje y de 1.65 cm

3.1.1.2 Verificación de resultados para muros de hormigón armado

• Preferencias de Diseño

Para el análisis de modelo de hormigón armado se considera la siguiente preferencia de diseño:

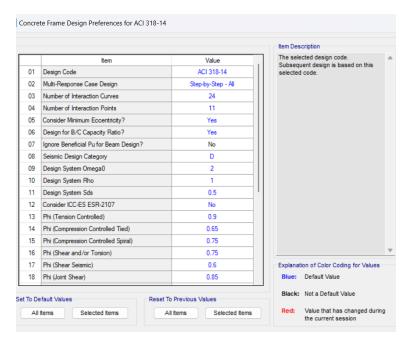


Ilustración 3.12 Preferencia de diseño de vigas y columnas principales

Para el análisis del muro:

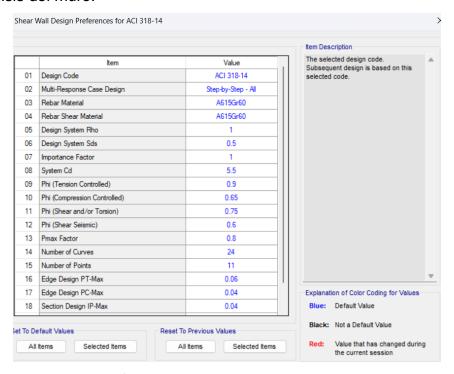
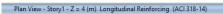
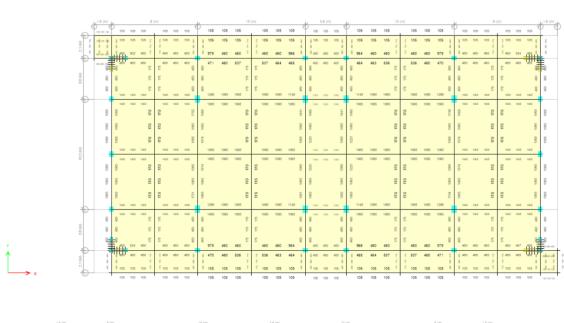




Ilustración 3.13 Preferencia de diseño del muro

Diseño de Elementos estructurales principales

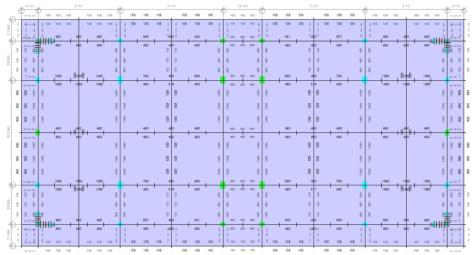


Ilustración 3.14. Diseño de vigas principales

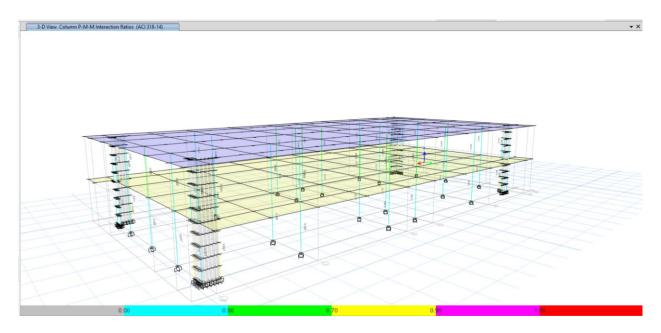


Ilustración 3.15 Relación de capacidad de columnas principales

Diseño del muro

A continuación, se presenta el diseño de muros, el detalle de cada uno se encuentra en el Anexo B.

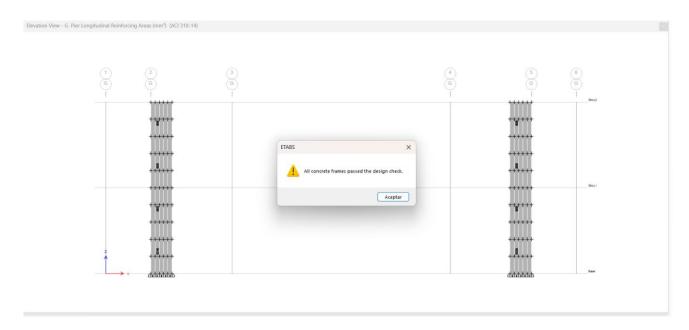


Ilustración 3.16. Diseño del muro

Periodos

Según la NEC-15 el periodo calculado por el software de diseño no debe ser mayor al 30% del periodo cálculo por el método 1, el cual es T1= 0.26 seg y T2=.0.32 seg (software de diseño)

3-D View Mode Shape (Modal) - Mode 1 - Period
$$0.321635207010264$$

$$T2 < 1.3 * T1$$

$$0.32 \text{ seg} < 1.3 * 0.26 \text{ seg}$$

$$0.32 \text{ seg} < 0.0.338 \text{ seg } \mathbf{ok}$$

Análisis modal

Se realizó un análisis modal de la estructura donde se obtuvo un comportamiento traslacional en los 2 primeros modos de vibración con una componente rotacional máxima del 10%.

Tabla 3.3 . Análisis modal de la estructura

Case	Mode	Period sec	UX	UY	UZ	RZ
Modal	1	0.322	0	1	0	0
Modal	2	0.307	1	0	0	0
Modal	3	0.227	0	0	0	1

En la Tabla 3.1 se muestra que los 2 primeros modos de vibración son traslacionales y el tercero rotacional.

Masa Participativa

Según la NEC-15, al masa participativa acumulada debe ser más del 90%, considerando todos los modos de análisis.

Tabla 3.4. Masa Participativa

Case	Mode	Period sec	UX	UY	UZ	SumUX	SumUY
Modal	1	0.322	0	0.848	0	0	0.848
Modal	2	0.307	0.8249	0	0	0.8249	0.848
Modal	3	0.227	0	0	0	0.8249	0.848
Modal	4	0.105	3.281E-06	0.1381	0	0.8249	0.9861
Modal	5	0.091	0.1717	2.293E-06	0	0.9966	0.9861
Modal	6	0.068	0	0	0	0.9966	0.9861
Modal	7	0.062	0	0.0015	0	0.9966	0.9876
Modal	8	0.048	0	0	0	0.9966	0.9876
Modal	9	0.045	9.98E-07	0.0103	0	0.9966	0.9979
Modal	10	0.041	0	0	0	0.9966	0.9979
Modal	11	0.035	0	0	0	0.9966	0.9979
Modal	12	0.033	0	0	0	0.9966	0.9979

• Deriva de piso

La deriva de inelástica de piso debe cumplir con la siguiente expresión:

$$\Delta = 0.75 * R * Deriva máx < 0.02$$

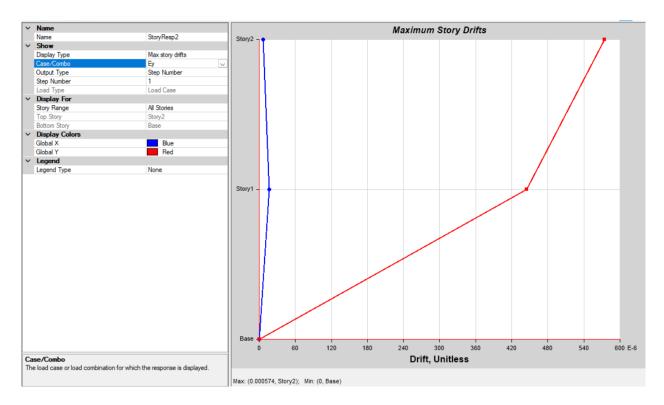


Ilustración 3.17 Deriva máxima en Y

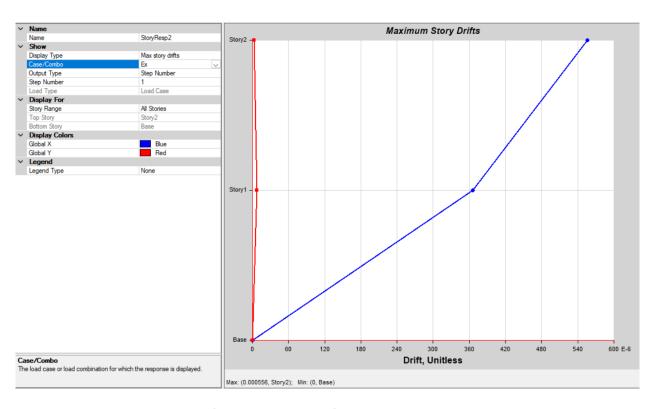


Ilustración 3.18. Deriva máxima en X

En las ilustraciones 3.16 y 3.17 se puede observar las derivas máximas de la edificación en el eje x y eje y.

Deriva inelástica en Y

$$0.75 * R * Deriva máx < 0.02$$

 $0.75 * 8 * 0.000574 < 2\%$
 $0.35 \% < 2\%$ **ok**

Deriva inelástica en X

$$0.75 * 8 * 0.000556 < 0.02$$

 $0.33 \% < 2\%$ **ok**

• Desplazamientos máximos de la estructura

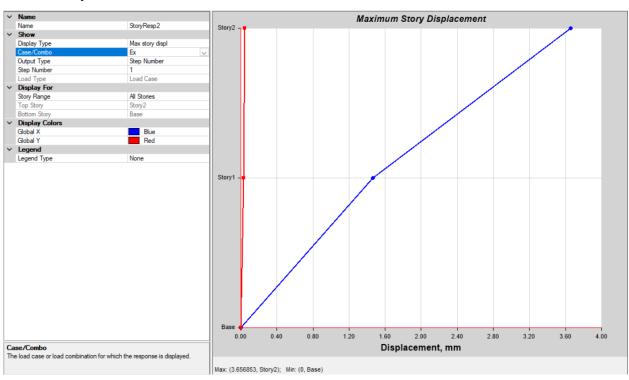


Ilustración 3.19. Desplazamiento máximo en X

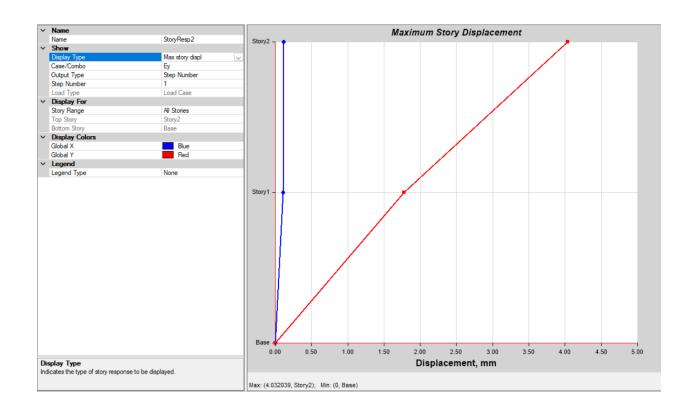


Ilustración 3.20. Desplazamiento máximo en Y

En la ilustración 3.18 y 3.19 se observa los desplazamientos máximos de la edificación. En el eje x de 3.7 mm y en el eje y de 4.03 mm

3.1.1.3 Verificación de resultados para sistema estructural mixto

Preferencias de Diseño

Para el análisis de vigas y columnas se diseña por IMF pórticos intermedios a momento

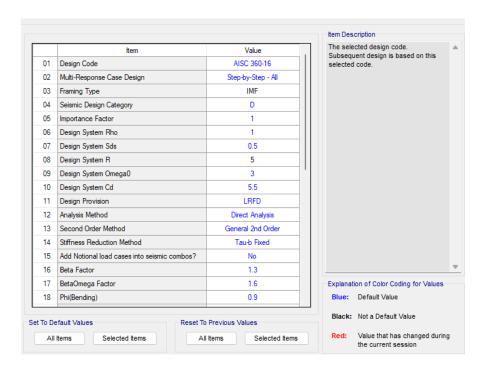


Ilustración 3.21 Preferencia de diseño de vigas y columnas principales

Para el análisis de vigas secundarios y cubierta se diseña por OMF pórticos de momento ordinario.

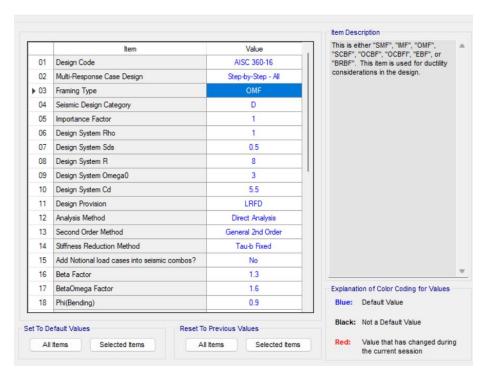


Ilustración 3.22. Preferencia de diseño de vigas secundarias y cubierta

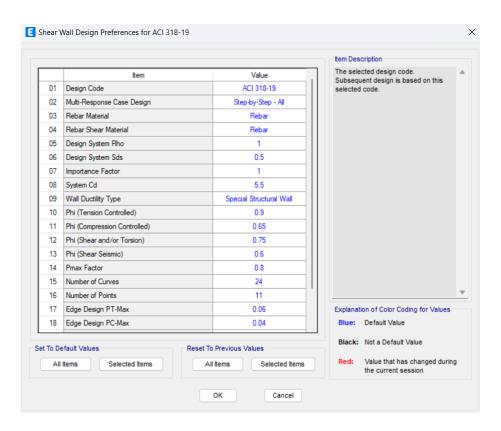


Ilustración 3.23. Preferencia de diseño muro

Diseño de Elementos estructurales principales

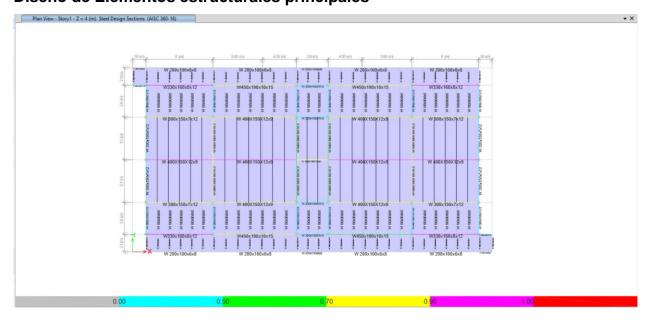


Ilustración 3.24. Diseño de vigas principales

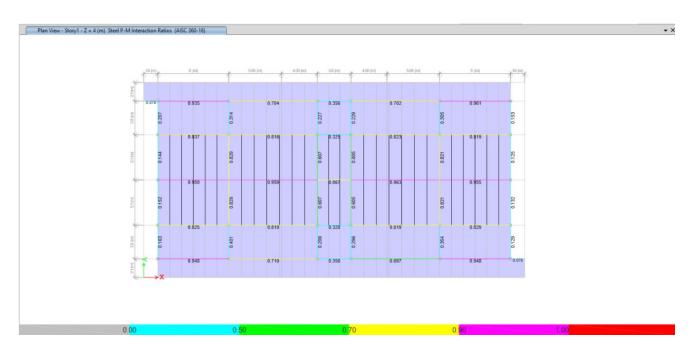


Ilustración 3.25 Relación de capacidad de vigas principales

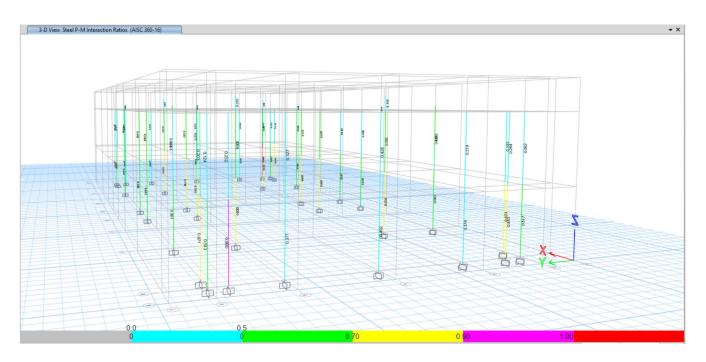


Ilustración 3.26 Relación de capacidad de columnas principales

Diseño de vigas secundarias y cubierta

Ilustración 3.27. Relación de capacidad de vigas secundarias

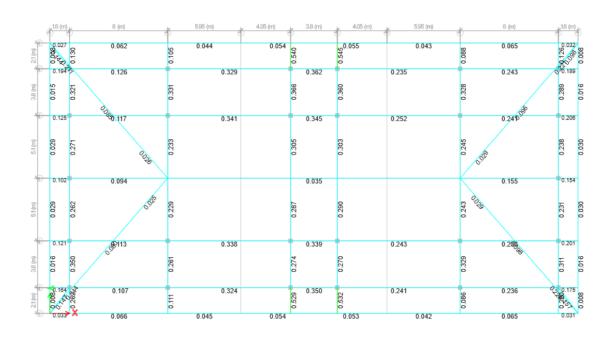


Ilustración 3.28. Relación de capacidad de cubierta

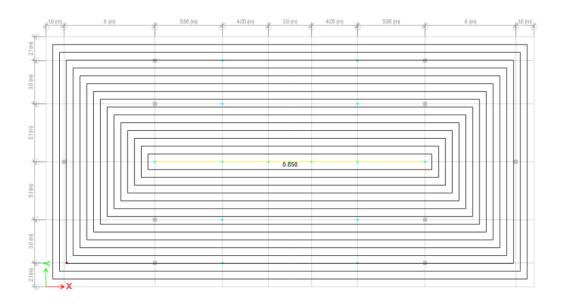


Ilustración 3.29. Relación de capacidad de cubierta

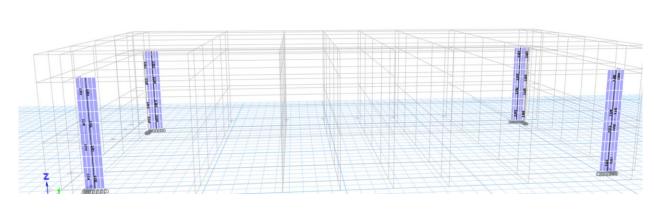


Ilustración 3.30. Relación de capacidad muro

Periodos

3-D View Pier D/C Ratios (ACI 318-19)

Según la NEC-15 el periodo calculado por el software de diseño no debe ser mayor al 30% del periodo cálculo por el método 1, el cual es T1= 0.38 seg y T2=0.42 seg (software de diseño)

3-D View Mode Shape (Modal) - Mode 1 - Period 0.423725756806399

T2 < 1.3 * T1

0.42 seg < 1.3 * 0.35 seg

0.42 seg < 0.45 seg ok

• Análisis modal

Se realizó un análisis modal de la estructura donde se obtuvo un comportamiento traslacional en los 2 primeros modos de vibración con una componente rotacional máxima del 10%.

Tabla 3.5. Análisis modal de la estructura

	Case	Mode	Period sec	UX	UY	UZ	RZ
•	Modal	1	0.424	0.012	0.983	0	0.005
	Modal	2	0.343	0.978	0.014	0	0.007
	Modal	3	0.276	0.033	0.012	0	0.956

En la Tabla 3.3 se muestra que los 2 primeros modos de vibración son traslacionales y el tercero rotacional.

• Masa Participativa

Según la NEC-15, al masa participativa acumulada debe ser más del 90%, considerando todos los modos de análisis.

Tabla 3.6. Masa Participativa

	Case	Mode	Period sec	UX	UY	UZ	SumUX	SumUY
>	Modal	1	0.424	0.0095	0.7942	0	0.0095	0.7942
	Modal	2	0.343	0.7908	0.0119	0	0.8003	0.8061
	Modal	3	0.276	0.0136	0.0049	0	0.8139	0.8109
	Modal	4	0.142	0.0009	0.1864	0	0.8148	0.9974
	Modal	5	0.11	0.1843	0.0008	0	0.9991	0.9982
	Modal	6	0.088	0.0008	0.0015	0	0.9998	0.9997
	Modal	7	0.077	9.371E-06	0	0	0.9998	0.9997
	Modal	8	0.074	5.732E-07	0.0002	0	0.9998	0.9999
	Modal	9	0.071	1.106E-05	0	0	0.9998	0.9999
	Modal	10	0.06	5.481E-06	4.743E-05	0	0.9999	1
	Modal	11	0.057	0	0	0	0.9999	1
	Modal	12	0.057	0	7.71E-06	0	0.9999	1

Deriva de piso

La deriva de inelástica de piso debe cumplir con la siguiente expresión:

$$\Delta = 0.75 * R * Deriva máx < 0.02$$

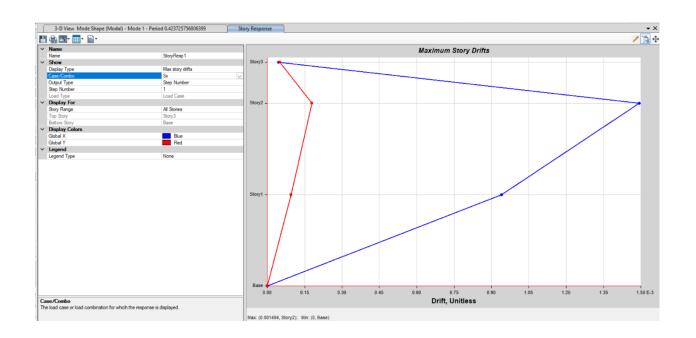


Ilustración 3.31 Deriva máxima en Y

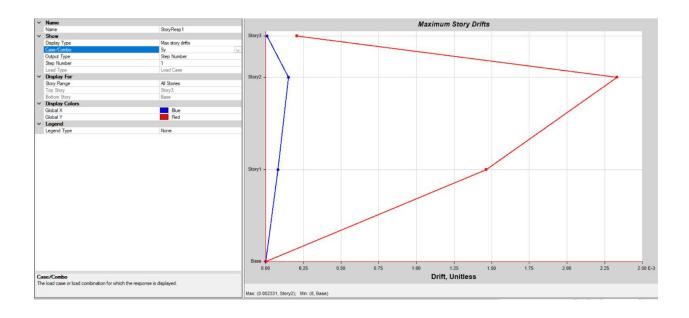


Ilustración 3.32. Deriva máxima en X

En las ilustraciones 3.30 y 3.31 se puede observar las derivas máximas de la edificación en el eje x y eje y.

Deriva inelástica en Y

0.75 * R * Deriva máx < 0.02

$$0.75 * 5 * 0.0023 < 2\%$$

 $0.86\% < 2\%$ **ok**

Deriva inelástica en X

$$0.75 * 5 * 0.001494 < 0.02$$

 $0.56 \% < 2\%$ ok

• Desplazamientos máximos de la estructura

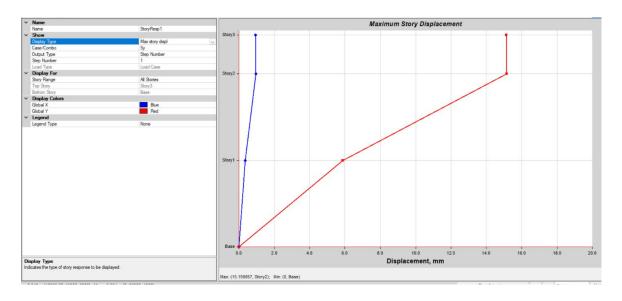


Ilustración 3.33. Desplazamiento máximo en X

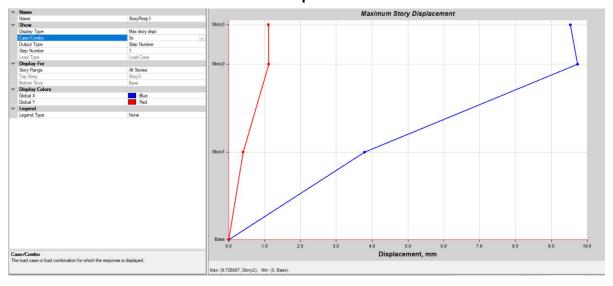


Ilustración 3.34. Desplazamiento máximo en Y

En la ilustración 3.32 y 3.33 se observa los desplazamientos máximos de la edificación. En el eje x de 9.73 mm y en el eje y de 15.16 mm

3.1.2 Fuerzas de elementos críticos

Se analiza las fuerzas de elementos críticos en la zona donde está la luz de 10 m, por lo cual en este apartado se muestra las fuerzas axiales y momentos de elementos críticos. Las fuerzas de todos los elementos se pueden observar en el ANEXO D.

Sistema Estructural Pórticos de Acero Columna 30x30 mm

Fuerza Axial de la columna crítica 57.17 tonf

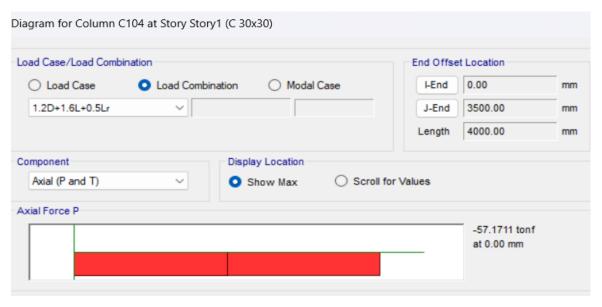


Ilustración 3.35. Fuerza axial columna crítica de pórticos de acero

Cortante y Momento para la columna crítica

Se tiene un cortante de 7.5 tonf y un momento de 16.61 tonf-m

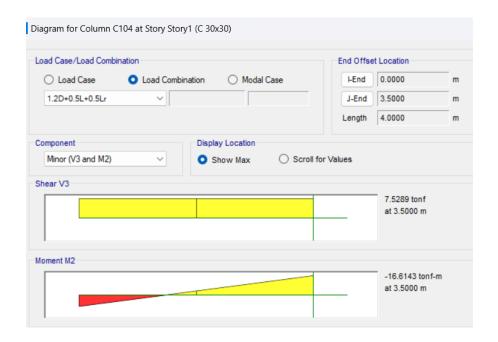


Ilustración 3.36. Cortante y momento de la columna crítica de pórticos de acero

Viga W400X150X12X9 mm

Se tiene un cortante de 4.52 tonf , un momento para la viga crítica de 10.18 tonf.m y una deflexión de 2.7 cm

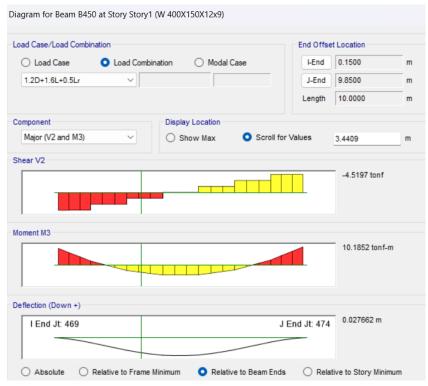


Ilustración 3.37. Cortante y momento de la viga crítica de pórticos de acero

Sistema Estructural de Muros de Hormigón Armado

Columna 70x50 mm

Fuerza Axial de la columna crítica de 117,67 tonf

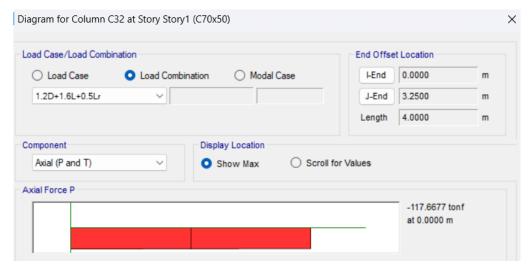


Ilustración 3.38. Fuerza axial de la columna crítica de hormigón armado

Se tiene un cortante de 8.05 tonf, un momento para la columna crítica de 15.8 tonf.m.

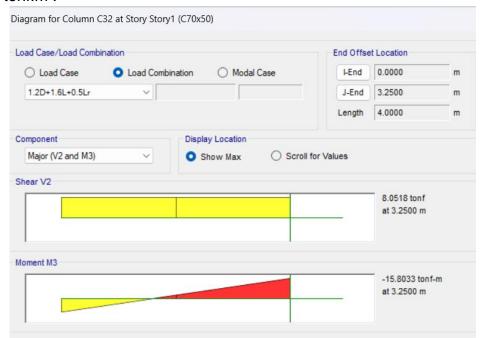


Ilustración 3.39. Cortante y momento de la columna crítica de hormigón armado

Viga 45X75 mm

Se tiene un cortante de 20.78 tonf , un momento para la viga crítica de 32.94 tonf.m y una deflexión de 0.89 cm

Ilustración 3.40. Cortante y momento de la viga crítica de hormigón armado

Sistema Estructural Mixto

Columna 20 x 20 mm

Se tiene una fuerza Axial de la columna crítica de 58.85 tonf Diagram for Column C104 at Story Story1 (C 20x20) Load Case/Load Combination End Offset Location Load Case Load Combination ○ Modal Case I-End 0.0000 1.2D+1.6L+0.5Lr J-End 3.5000 Length 4.0000 Display Location Component Axial (P and T) O Show Max Scroll for Values Axial Force P -58.8550 tonf at 0.0000 m

Ilustración 3.41. Fuerza axial de la columna crítica del sistema mixto

Se tiene un cortante de 4.97 tonf y un momento para la columna crítica de 10.91 tonf.m



Ilustración 3.42. cortante y momento de la columna crítica del sistema mixto

Viga W400X150X12X9 mm

Se tiene un cortante de 14.99 tonf , un momento para la viga crítica de 26.5 tonf.m y una deflexión de 4 cm

Ilustración 3.42. cortante y momento de la viga crítica del sistema mixto

3.1.3 Peso por metro cuadrado de cada sistema estructural

A continuación, se muestra el peso por metro cuadrado de cada sistema estructural, es importante mencionar que el área de construcción es de 1173.26 m². Además, para la comparación de los 3 tipos de sistemas es importante mencionar que se toma en cuenta solo la superestructura.

Tabla 3.7. Peso por metro cuadrado de pórticos de acero

PÓRTICOS DE ACERO					
PESO TOTAL	89216.46	kg			
PESO X M2	50.31	kg/m²			

El peso de la tabla 3.8 considera el peso de todos los elementos estructurales

Tabla 3.8. Peso por metro cuadrado de hormigón armado

HORMIGÓN ARMADO				
PESO TOTAL	570189.26	kg		
PESO X M2	321.55	kg/m²		

El peso por metro cuadrado del sistema mixto de la Tabla 3.9. considera solo perfiles de acero.

Tabla 3.9. Peso por metro cuadrado del sistema estructural mixto

MIXTO				
PESO TOTAL	65727	kg		
PESO X M2	37.07	kg/m²		

3.1.4 Presupuesto Referencial

En este apartado se presenta el resultado del análisis de precios unitarios de cada sistema estructural, solo de elementos estructurales principales, es decir, de vigas, columnas, losas, y muros.

Asimismo, se menciona que para el desarrollo del APUS (análisis de precios unitarios) de cada rubro se utilizó el jornal diario de trabajadores según los salarios mínimos por ley de la CAMICON 2024 y la tarifa para maquinaria y equipos de la revista de la CAMICON 2022. A continuación, en la Tabla 3.10, Tabla 3.11 y Tabla 3.12 se presenta el APUS general de cada sistema estructural, el detalle de cada rubro se encuentra en el ANEXO C.

Tabla 3.10. Presupuesto referencial de pórticos de acero

DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	TOTAL \$
ACTIVIDADES PRELIMINARES				
LIMPIEZA DEL TERRENO	m2	913.23	2.06	\$1,882.49
REPLANTEO Y NIVELACIÓN CON EQUIPO TOPOGRÁFICO	m2	913.23	1.93	\$1,763.44
ESTRUCTURA PRINCIPAL				
COLUMNA PERFIL TUBULAR ACERO 572GR50	kg	43913.18	3.11	\$136,567.53
VIGAS PERFIL I ACERO 572GR50	kg	17967.26	3.11	\$55,877.17
VIGUETAS PERFIL I ACERO 572GR50	kg	12828.32	3.11	\$39,895.36
LOSA DECK INCLUYE HORMIGÓN F'C 210 KG/CM2	m2	886.63	38.10	\$33,779.44
CUBIERTA				
PERFIL TUBULAR RECTANGULAR ACERO A36	kg	10391.6	4.18	\$43,442.15
PERFIL TIPO G ACERO A36	kg	4116.1	4.18	\$17,207.38
TOTAL				\$330,414.96
PRECIO POR \$/ m2				186

Tabla 3.11. Presupuesto referencial del sistema estructural de hormigón armado

DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	TOTAL
ACTIVIDADES PRELIMINARES				
LIMPIEZA MANUAL DEL TERRENO	m2	913.23	2.06	\$1,882.49
REPLANTEO Y NIVELACIÓN CON EQUIPO TOPOGRÁFICO	m2	913.23	1.93	\$1,763.44
ELEMENTOS ESTRUCTURALES				
HORMIGÓN EN VIGAS F'C 210 KG/CM2	m3	174.2675	136.95	\$23,866.47
ENCOFRADO Y DESENCOFRADO PARA VIGAS	m2	507.3	18.50	\$9,384.74
ACERO DE REFUERZO PARA VIGAS FY GRADO 60	kg	18773.2	2.01	\$37,706.79
HORMIGÓN EN COLUMNAS F´C 240 KG/CM2	m3	56.64	139.73	\$7,914.12
ENCOFRADO Y DESENCOFRADO PARA COLUMNAS	unidad	68	38.89	\$2,644.57
ACERO DE REFUERZO PARA COLUMNAS FY GRADO 60	kg	11646.52	2.01	\$23,392.55
HORMIGÓN PARA LOSA F´C 210 KG/CM2	m3	532.2	147.91	\$78,715.67
ACERO DE REFUERZO GRADO FY 60 LOSA	kg	35418.33	2.01	\$71,139.27
ENCONFRADO Y DESENCOFRADO LOSA	m2	1774	44.37	\$78,705.01
ENCOFRADO Y DESENCOFRADO PARA MURO ESTRUCTURAL	m2	32	7.99	\$255.73
HORMIGÓN F'C 210 KG/CM2 PARA MURO ESTRUCTURAL	m3	8	178.52	\$1,428.17
ACERO DE REFUERZO GRADO 60 MURO	kg	2287.52	2.25	\$5,140.69
TOTAL				\$343,939.72
PRECIO POR \$/ m2				202

Tabla 3.12. Presupuesto referencial del sistema estructural mixto

DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNITARIO	TOTAL
ACTIVIDADES PRELIMINARES				
LIMPIEZA MANUAL DEL TERRENO	m2	913.23	2.06	\$1,882.49
REPLANTEO Y NIVELACIÓN CON EQUIPO TOPOGRÁFICO	m2	913.23	1.93	\$1,763.44
ELEMENTOS ESTRUCTURALES				
COLUMNA PERFIL TUBULAR ACERO 572GR50	kg	20115.78	3.11	\$62,558.95
VIGAS PERFIL I ACERO 572GR50	kg	18205.90	3.11	\$56,619.33
VIGUETAS PERFIL I ACERO 572GR50	kg	12829.96	3.11	\$39,900.46
LOSA DECK INCLUYE HORMIGÓN F'C 210 KG/CM2	m2	886.63	38.10	\$33,779.44
HORMIGÓN F'C 210 KG/CM2 PARA MURO ESTRUCTURAL	m3	6.4	178.52	\$1,142.54
ACERO DE REFUERZO GRADO 60 PARA MURO ESTRUCTURAL	kg	2287.52	2.25	\$5,140.69
ENCOFRADO Y DESENCOFRADO PARA MURO ESTRUCTURAL	m2	32	7.99	\$255.73
CUBIERTA				
PERFIL TUBULAR RECTANGULAR ACERO A36	kg	10454.77	4.18	\$43,706.23
PERFIL TIPO G ACERO A36	kg	4120.59	4.18	\$17,226.15
TOTAL				\$263,975.45
PRECIO POR \$/ m2				149

3.2 Análisis de resultados

En este proyecto se ha analizado el comportamiento del sistema estructural pórticos de acero, muro de hormigón armado y mixto (muros de hormigón armado y pórticos de acero). Para apreciar de mejor manera estos resultados se presentan en la Tabla 3.13 y Tabla 3.14.

Tabla 3.13. Resumen de resultados de cada sistema estructural

Sistema Estructural		zamientos ios (mm)	_	ivas as (%)	Periodo (seg) Modo 1	Cortante Basal (kg)	Peso por m2 (kg/m2)	Costo por m2 (\$/m2)
	Х	Υ	Χ	Υ				
Pórticos de								
acero	17.2	16.5	0.79	0.8	0.47	94117.61	50.31	186
Muros de								
Hormigón								
Armado	3.7	4.03	0.33	0.35	0.32	109774.80	321.55	202
Mixto	9.73	15.16	0.56	0.86	0.42	108175.31	37.07	149

Tabla 3.14. Resumen de resultados de cada sistema estructural

Sistema Estructural	Fuerzas del elemento crítico						
	Columnas			Vigas			
	Fuerza axial (tonf)	Cortante (tonf)	Momentos (tonf*m)	Cortante (tonf)	Momentos (tonf*m)	Deflexión (cm)	
Pórticos de acero	57.17	7.53	16.61	4.52	10.19	2.8	
Muros de Hormigón Armado	117.67	8.05	15.8	20.8	32.9	0.89	
Mixto	58.86	4.97	10.91	14.99	26.49	4.29	

De la Tabla 3.13 y 3.14 se analizan los desplazamientos máximos, derivas máximas, periodos, cortante basal, peso por m², costos por metro cuadrado, fuerzas del elemento crítico (fuerza axial, cortante y momentos) de vigas y columnas en gráficos para poder observar de manera adecuada el comportamiento de cada sistema estructural. Por tal razón, a continuación, se presentan los siguientes gráficos de barras.

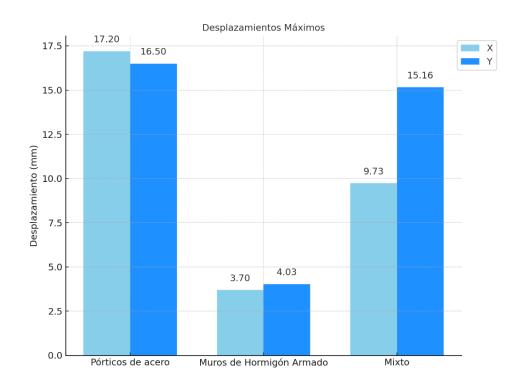


Gráfico 3.1. Desplazamientos máximos

En el Gráfico 3.1, se observa que el sistema estructural de muros de hormigón armado presenta desplazamientos menores de 3.7 mm en X y 4.03 mm, es decir este sistema estructural posee una alta rigidez debido a su alta masa. También se evidencia que el sistema de pórticos de acero posee desplazamientos mayores de 17.20 mm en X y 16.50 mm Y comparando con los otros dos sistemas estructurales, esto evidencia que posee mayor flexibilidad por ser elementos más ligeros, mientras que el sistema mixto posee desplazamientos intermedios de 9.73 mm en X y 15.16 mm en Y, esto significa que la edificación es más flexible que la de hormigón armado, pero tiene menos flexibilidad que la de pórticos de acero. Además, es importante mencionar que para este proyecto una estructura flexible es una buena opción porque el suelo es de baja capacidad portante.

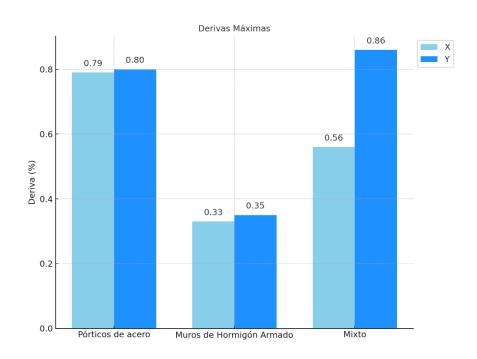


Gráfico 3.2. Derivas máximas

En el gráfico 3.2 se evidencia que el sistema estructural de hormigón armado posee derivas menores de 0.33% en X y 0.35% en Y, el sistema mixto presenta derivas intermedias de 0.56% en X y 0.86% en Y, finalmente el sistema de pórticos de acero evidencia derivas altas de 0.79% en X y 0.8 % en Y. Esto significa que a mayores derivas la edificación es más flexibilidad y a derivas menores, menos flexibilidad o más rigidez.

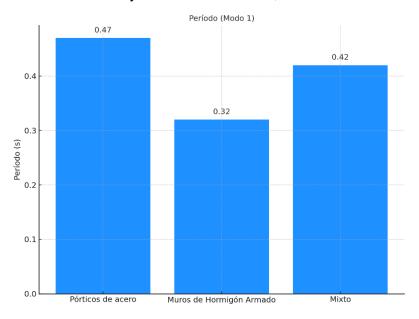


Gráfico 3.3. Periodos de vibración modo 1

En el gráfico 3.3 se muestra que el sistema estructural de pórticos de acero tiene un mayor periodo de 0.47 s, el sistema mixto un periodo de 0.42 s, esto refleja que estos dos sistemas estructurales poseen más flexibilidad que el sistemas de muros de hormigón, el cual posee un periodo de 0.32 s. Esto significa que, a mayor periodo, mayor flexibilidad y a menor periodo más rigidez. Finalmente, las estructuras de hormigón armado al poseer periodos cortos incrementan la atracción de fuerzas sísmicas y las estructuras de acero al poseer periodos largos tienen más capacidad de disipar energía.

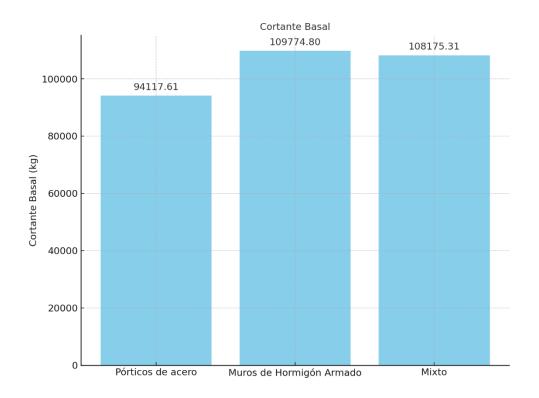


Gráfico 3.4. Cortante basal

En el gráfico 3.4 se observa el sistema de hormigón armado posee un mayor cortante basal de 109,774.8 kg, un cortante basal intermedio de 108,175.1 kg para el sistema mixto y finalmente 94,117.61 kg para pórticos de acero. El cortante basal es directamente proporcional al peso de la estructura, es decir, el sistema de muros de hormigón armado es el más peso y el ligero el de pórticos de acero. Además, los pórticos de acero tienen mejor desempeño en zonas altamente sísmicas, ya que disipan energía sísmica y esto se debe a su cortante basal menor.

Elementos críticos de los sistemas estructurales

Los elementos críticos que se analizan son la viga y columna que soportan la luz grande de 10 m de la edificación. Por lo cual, este análisis se centra en las fuerzas de los elementos críticos con grandes luces.

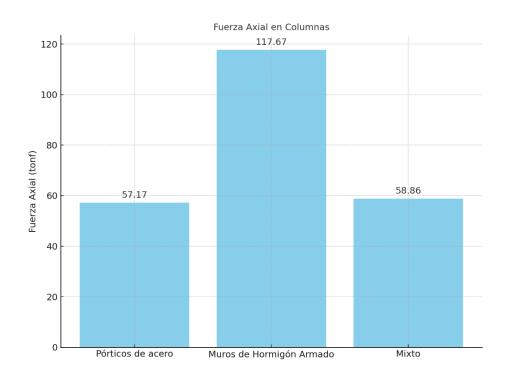


Gráfico 3.5. Fuerza axial de columna crítica

En el gráfico 3.5 se analiza la columna del eje H6, es la más crítica porque soporta la viga con luz de 10m, se observa que el sistema estructural de hormigón armado posee una alta fuerza axial de 117.67 tonf, esto es verdadero porque es el sistema más pesado y porque indica una alta demanda de compresión, el sistema mixto tiene una fuerza axial intermedia de 58.89 tonf, y una fuerza axial menor de 57.17 tonf para los pórticos de acero, porque al reducir el peso de la edificación, se reduce la transmisión de fuerzas verticales a las columnas. Finalmente, los muros de hormigón armado resisten fuerzas axiales por su alta capacidad de compresión, los pórticos de acero al ser ligeros disipan más energía y el sistema mixto es una solución óptima y neutral porque combina la rigidez del hormigón armado con la ductilidad del acero, esto mejora la capacidad de las columnas para resistir cargas axiales y momentos flectores reduciendo una falla precoz.

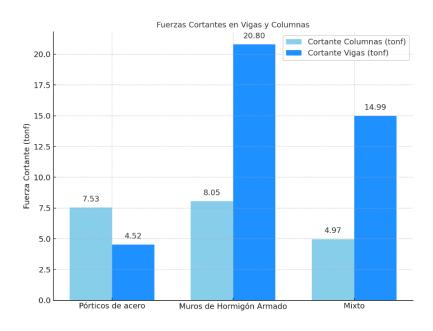
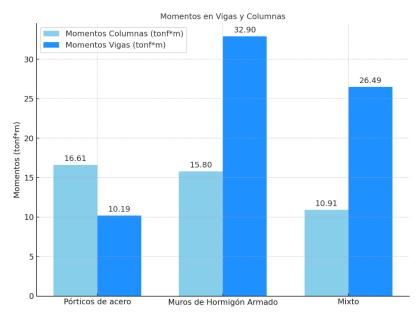



Gráfico 3.6. Fuerza cortante en viga y columna crítica

En el gráfico 3.6 se observa la fuerza cortante de las vigas y columnas críticas. Los pórticos de aceros tienen un cortante en columnas y vigas menor de 7.53 tonf y 4.52 tonf respectivamente, cortantes intermedios para el sistema mixto de 4.97 tonf y 14.99 tonf en columnas y vigas y finalmente cortantes mayores para el sistema de hormigón armado de 8.05 tonf y 20.8 tonf en columnas y vigas. En general las columnas tienen cortantes menores que las vigas porque estas están diseñadas principalmente para soportar cargas axiales pero debido a cargas sísmicas soportan cargas axiales, mientras que las vigas poseen un mayor cortante porque disipan energía durante un terremoto.

Gráfico 3.7. Momentos en viga y columna crítica

En el gráfico 3.7 se muestra los momentos de vigas y columnas críticas para los tres tipos de sistemas estructurales. En general para las vigas los muros de hormigón armado con un momento de 32.9 tonf.m y el sistema mixto con 26.49 tonf.m superan de manera significativa al de pórticos de acero con 10.19 tonf.m. Mientras que en columnas los pórticos de acero poseen mayor momento de 16.61 tonf.m, seguido por el muro de hormigón armado con 15.8 tonf.m y el sistema mixto con un momento de 10.91 tonf.m.

En general, en las columnas el sistema de pórticos posee mayor momento, esto se debe a la flexibilidad porque las columnas absorben una parte de fuerzas laterales. Los muros de hormigón armado tienen un momento ligeramente menor al de pórtico de acero en columnas, lo que evidencia que la distribución de fuerzas es mejor y finalmente el sistema mixto posee el momento más bajo en columnas, es decir que las cargas laterales se distribuyen de manera más eficiente entre los elementos de hormigón y acero.

En las vigas se observa que el sistema de muros de hormigón armado posee el mayor momento, esto se debe a la rigidez alta debido a la transferencia directa de fuerzas laterales y verticales a las vigas. En los pórticos de acero la viga crítica posee el momento bajo y en el sistema mixto un momento intermedio, es decir las fuerzas se distribuyen de manera equilibrada en la rigidez del hormigón y la flexibilidad del acero.

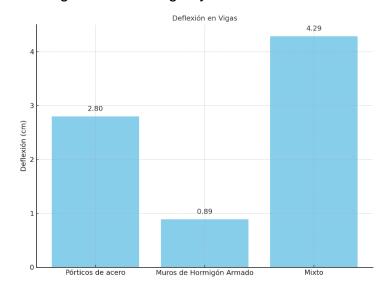


Gráfico 3.8. Deflexión en vigas

En el grafico 3.8 se muestra que el sistema de muro de hormigón armado posee la menor deflexión en la viga crítica de 0.89 cm, una deflexión intermedia de 2.8 cm en el sistema de pórtico de acero y una deflexión mayor, de 4 cm en el sistema mixto. Las deflexiones menores como en el muro de hormigón armado evitan daños en elementos no estructurales y las deflexiones mayores como en el sistema mixto permiten mayores deformaciones en la edificación antes de llegar al fallo, pero en situaciones críticas pueden afectar a elementos no estructurales.

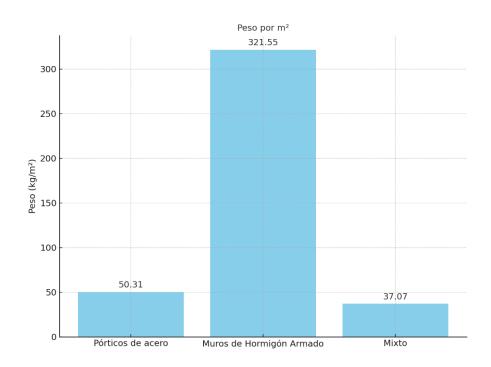


Gráfico 3.9. Peso por m² de cada estructura

En el gráfico 3.9 se evidencia que el sistema mixto posee el menor peso por m² de 37.07 kg/m², el de pórticos de acero un peso intermedio de 50.31 kg/m² y siendo el más pesado el sistema de muro de hormigón armado con un peso de 321.5 kg/m². Es crucial mencionar que el sistema de hormigón armado es el más pesado debido a su rigidez y los más ligeros los sistemas con acero. Además, el sistema mixto y de pórticos de acero están en el rango competitivo del mercado ecuatoriano de 35 kg/m²-50 kg/m² (Generador de precios ecuador, 2024).

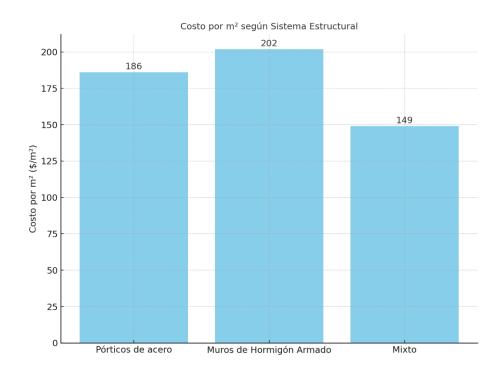


Gráfico 3.10. Costo por m² de cada estructura

En el Gráfico 3.10 se evidencia que el sistema de hormigón armado es el más costoso con 202 \$/m², seguido por sistema de pórticos de acero con 189 \$/m² y siendo es más económico el mixto con149 \$/m².

Tiempo de construcción

Finalmente, se analiza el tiempo de construcción de los sistemas de los sistemas estructurales. El sistema estructural de hormigón armado necesita más tiempo al momento de construir porque el curado de hormigón alcanza su resistencia máxima a los 28 días, además su construcción es secuencial, es decir cada piso debe alcanzar la resistencia requerida antes de continuar con el siguiente piso (ACI308-01, 2008). Las edificaciones de hormigón armado se demoran en construir de 6-12 meses estructuras pequeñas y más de 12 meses estructuras grandes (Chen & Liu, 2005).

El tiempo de construcción para los sistemas estructurales de pórticos de acero es más corto que los de hormigón armado, por la prefabricación de elementos estructurales ya que llegan a obra a ensamblarse mediante grúas y conexiones soldadas, no requiere tiempo de curado, esto reduce el tiempo de construcción de manera significativa (Mazzolani, 2018). Por lo cual, se estima que la construcción es de 3-6 meses para edificaciones pequeñas y de 6-12 meses para edificaciones grandes (Mazzolani, 2018).

Para sistemas mixtos el tiempo de construcción es intermedio comparando con los sistemas de hormigón armado y los pórticos de acero, pues el muro estructural de hormigón necesita su tiempo de 28 días de curado (ACI308-01, 2008). Mientras que los elementos de acero como vigas y columnas son más rápidos de ensamblar ya que llegan están elementos a obra prefabricados y por esta razón se acelera la primera etapa de la construcción (Mazzolani, 2018). Se estima un tiempo de construcción de 6-9 meses para edificaciones pequeñas y de 9-15 meses para edificaciones grandes (Chung, 2010).

CAPÍTULO 6

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

- Según el análisis de resultados del gráfico 3.1 se puede concluir que a menores desplazamientos hay mayor rigidez, a mayor desplazamientos menor rigidez. Es decir, a mayores desplazamientos la estructura es más flexible en este caso el sistema más flexible es el de pórticos de acero, mientras que los sistemas mixtos poseen una buena flexibilidad comparado con el sistema de hormigón armado.
- El cortante basal está relacionado con el periodo natural de la estructura porque a periodos cortos, mayor cortante basal, es decir más peso por ende más rigidez y a periodos largos, menor rigidez, menor peso de la estructura. Por lo cual, el sistema con un periodo corto de 0.32 s es el de muros de hormigón armado y con periodos intermedios el mixto y con periodo largo el de pórticos de acero, evidenciando flexibilidad en el sistema mixto y en el de pórticos de acero al poseer periodos relativamente parecidos de 0.42 s y 0.47 s respectivamente.
- Las fuerzas axiales en columnas están relacionadas directamente con el peso y rigidez de la estructura por lo cual, al tener mayor carga axial la estructura es más pesada y al poseer una menor carga axial la estructura es más ligera. Esto quiere decir que, a menor carga axial, se reduce la transmisión de fuerzas verticales a las columnas. En este caso para tener un equilibro el sistema estructural óptimo es el mixto porque combina la rigidez del hormigón y la ductilidad del acero, pues esto mejora la capacidad de las columnas para resistir cargas axiales reduciendo el riesgo de una falla prematura.
- Los sistemas de muro hormigón armado soportan altas fuerzas sísmicas, pero concentran tanto en vigas y columnas altas fuerzas cortantes. Los pórticos de acero debido a su flexibilidad reducen la fuerza cortante en vigas y columnas. y los sistemas mixtos al ser la combinación de acero y hormigón distribuyen las

fuerzas cortantes de manera uniforme en vigas y columnas. Además, es importante mencionar la estructura mixta al poseer el menor peso por metro cuadrado, es la mejor opción porque el suelo del proyecto es de baja capacidad portante.

- Analizando los momentos en vigas y columnas en sistemas rígidos como en los muros de hormigón armado, las vigas tiene mayores momentos, mientras que las columnas poseen momentos moderados por la rigidez de la edificación, mientras el sistema de pórticos de acero o flexible concentra más momento en la columna porque la viga tiene la capacidad de redistribuir cargas. Sin embargo, en el sistema mixto, los momentos de vigas y columnas están más moderados y balaceados, esto indica eficiencia en la edificación.
- Las deflexiones menores como en el muro de hormigón armado evitan daños en elementos no estructurales y las deflexiones mayores como en el sistema mixto permiten mayores deformaciones en la edificación antes de llegar al fallo, pero en situaciones críticas pueden afectar a elementos no estructurales.
- El sistema estructural más pesado es el de muro de hormigón armado con 321kg/m², el más ligero es el sistema mixto con 37.07 kg/m² y el de pórticos de acero con un peso intermedio de 50.31 kg/m². Con estos datos se concluye que el sistema más eficiente según el peso es el mixto por tener el menor peso por m², es decir es más flexible y con buena capacidad de disipar energía. Es importante aclarar que los pesos por m² en este proyecto son solo de elementos estructurales como vigas, columnas, nervios, losas y muros.
- Además, el sistema estructural más económico es el mixto con 149 \$/m², el más caro el de muros de hormigón armado con un costo de 202 \$/m² y con un costo intermedio de 186\$/m² el sistema de pórticos de acero.
- Según el tiempo de construcción el sistema óptimo es el de pórticos de acero porque se construyen más rápido ya que utilizan elementos de acero

prefabricados que se ensamblan en obra, el sistema con tiempo de construcción media es el mixto y el más demorado el de muros de hormigón armado por su tiempo de curado y su construcción consecutiva.

- Finalmente, según las conclusiones que se obtuvieron del análisis de resultados, se determina que el sistema estructural óptimo para este caso de estudio es el mixto porque posee, un precio por metro competitivo de 149 \$/m², un peso por metro cuadrado menor de 37,07 kg/m², esto es importante porque el suelo de la edificación posee baja capacidad portante, por lo cual se necesita una estructura ligera. Asimismo, el sistema mixto posee una buena flexibilidad, esto se evidencia en las derivas y desplazamientos máximos ya que estos valores son cercanos a los de pórticos de acero. Por un lado, el periodo fundamental de la estructura también fue determinante para la elección ya que la estructura mixta al poseer un periodo largo de 0.42 s, tiene una alta capacidad de disipar energía. Por otro lado, el sistema mixto al combinar la rigidez del hormigón con la ductilidad del acero mejora la capacidad de las columnas para resistir cargas axiales reduciendo el riesgo de una falla prematura pues debido a esta combinación de materiales este tipo de sistema distribuye las fuerzas cortantes de manera uniforme en vigas y columnas.
- Por otro lado, el sistema mixto al poseer vigas y columnas de acero es beneficioso para la luz grande de 10 m que tiene la edificación porque este material tiene una alta resistencia a tracción y a flexión, y esto es importante puesto que una luz grande, posee vigas con longitudes largas que deben soportar momentos flectores altos y el acero es eficiente por su alta capacidad de deformación y ductilidad sin llegar a la fractura. Además, el sistema mixto al ser el más ligero, disminuye las cargas verticales que deben soportan vigas y columnas, lo cual, es útil para las luces grandes. Asimismo, el acero al ser ventajoso para la construcción de luces grandes ayuda a optimizar los ambientes de la arquitectura, proporcionando ambientes amplios y recreacionales como es una sala de eventos.

Recomendaciones

- En general, se recomienda que para edificaciones con grandes luces se opte por el sistema estructural mixto (vigas y columnas de acero con muros de hormigón armado) porque este sistema estructural posee un precio competitivo, es el más ligero y combina la flexibilidad, rigidez y capacidad de disipación de energía. Asimismo, tiene un desempeño seguro y eficiente frente a cargas sísmicas y verticales porque distribuye de manera uniforme las fuerzas y momentos que actúan en la edificación.
- Para optimizar el modelo con la ayuda del software de diseño, se recomienda utilizar varios juegos de vigas y columnas, pero colocarlas de manera simétrica para facilitar la construcción. Pues para este caso de estudio con luces grandes, se utiliza cuatro tipos de vigas y 2 tipos de columnas, las cuales están distribuidas simétricamente, es decir si en el eje B se colocan vigas de un tipo, en su eje espejo el eje H se debe colocar el mismo tipo de vigas. Asimismo, para una mejor optimización, se debe diseñar los nervios y cubierta como pórticos de momento ordinario porque los nervios solo transmiten cargan a los elementos estructurales principales y la cubierta no es parte del sistema estructural principal. También considerando que esta edificación es de 2 pisos y está en una zona sísmica se recomienda diseñar el sistema estructural principal como IMF pórticos intermedios a momento, esto además de ayudar a la optimización de los elementos es beneficioso al momento de la construcción de la estructura porque la fiscalización no es tan exigente como con una edificación diseñada a SMF pórticos especiales a momento.

. . .

BIBLIOGRAFÍA

- American Concrete Institute. (2019). *Building code requirements for structural concrete* (ACI 318-19) and commentary. American Concrete Institute.
- American Institute of Steel Construction. (2016). *Specification for structural steel buildings* (ANSI/AISC 360-16). American Institute of Steel Construction.
- American Institute of Steel Construction. (2016). Seismic provisions for structural steel buildings (ANSI/AISC 341-16). American Institute of Steel Construction
- Arteaga, S., & Malavé, J. (2006). Comparación del diseño de muros estructurales de concreto armado según FONDONORMA 1753: 2006 y ACI 318–14. *redalyc.org*, 24(1), 125–137. https://www.redalyc.org/pdf/707/70750544013.pdf
- Bernabeu, A. (2007). Estrategias de diseño estructural en la arquitectura contemporánea
- Cagua, B., Aguiar, R., & Pilatasig, J. (2021). Nuevas funciones de CEINCI-LAB para el análisis y diseño de pórticos de acero con arriostramientos concéntricos. *Revista Internacional de Ingeniería de Estructuras*, 26(2), 199–284. https://doi.org/10.24133/riie.v26i2.2044
- Chung, K. F. (2010). Steel and Composite Structures: Behaviour and Design for Fire Safety. CRC Press.
- Crisafulli, J. (2018). Diseño sismorresistente de construcciones de acero (5ª ed.).
- Guerra, M., & Chacón, D. (2010). *Manual para el diseño sismorresistente de edificios utilizando el programa ETABS* (1ra ed.). Quito, Ecuador.
- JDM. (2023, enero 30). *Sistemas estructurales de muro cortante* [Video]. YouTube. https://www.youtube.com/watch?v=ngTgP28--VE
- Lecorbusierianos, E. C.-M. (2002). *El sistema estructural. Anuario de Estudios*. https://upcommons.upc.edu/bitstream/handle/2099/2602/M2002%20(Cap%C3%ADtol%201).pdf
- Martínez, A. (2017). Análisis estructural y económico comparativo entre sistemas constructivos de hormigón armado, acero y mixto (hormigón armado y acero) para edificaciones de 3 y 5 pisos con luces de 4 y 6 metros.
- Mazzolani, F. M. (2018). Structural steel design. CRC Press.
- McCormac, J., & Csernak, S. (2018). Diseño de Estructuras de Acero, 143–158.
- Nardin, & Debs. (2009). Influence of concrete strength and length/diameter on the axial capacity of CFT columns. *Journal of Constructional Steel Research*, 65(12), 2103–2110. https://doi.org/10.1016/j.jcsr.2009.07.004

- Norma Ecuatoriana de la Construcción. (2015). *Capítulos de la NEC (Norma Ecuatoriana de la Construcción)* MIDUVI. https://www.habitatyvivienda.gob.ec/documentos-normativos-nec-norma-ecuatoriana-de-la-construccion/
- Palacios, X. (2017). Cuadrangulares de hormigón armado debido a su comportamiento biaxial usando el diagrama momento-curvatura
- Rosales Collas, C. L. (2023). *Modelamiento estructural de un edificio de 10 pisos usando el método pushover en un sistema mixto, Urbanización Santa Beatriz, Huaraz Ancash.* Repositorio Institucional UCV. https://repositorio.ucv.edu.pe/handle/20.500.12692/110495
- Vera, M., Plazarte, P., Ricardo, I. J., & Jaramillo, V. (2015). Análisis comparativo económico-estructural entre un sistema aporticado, un sistema aporticado con muros estructurales y un sistema de paredes portantes en un edificio de pisos.

PLANOS Y ANEXO

ANEXO A. ESTUDIO DE SUELOS

Etiqueta del estrato	ID del recipiente	Peso del recipiente	Peso de la muestra + recipiente	Peso seco + recipiente	masa de agua (g)	masa seca (g)	W% natural
C1M1	17	98.94	495.56	457.7	37.86	358.76	10.553
C1M2	9	99.43	546.21	526.95	19.26	427.52	4.505
C1M3	7	92.79	453.95	363.95	90	271.16	33.191
C1M4	11	98.65	425.46	305.04	120.42	206.39	58.346
C2M1	P11F	88.22	391.91	339.56	52.35	251.34	20.828
C2M2	P7F	95.07	446.68	413.33	33.35	318.26	10.479
C2M3	30	97.41	500.36	470.68	29.68	373.27	7.951
C2M4	33-P5S2	91	284.11	229.47	54.64	138.47	39.460
C2M5	16	96.99	377.14	274.89	102.25	177.9	57.476
C3M1	P12F	95.38	445.55	391.23	54.32	295.85	18.361
C3M2	1	105	450.37	424.7	25.67	319.7	8.029
СЗМЗ	22-P7F1	91.4	392.62	305.94	86.68	214.54	40.403
C3M4	21	98.83	428.1	315.55	112.55	216.72	51.933
C3M5	8	96.49	350.35	257.4	92.95	160.91	57.765

Porcentaje de Humedad del suelo por calicatas (Mora & Cordova, 2024)

A continuación, se muestra el tipo de suelo de cada calicata por estrato:

[C1M2					
Tamiz	Abertura	Masa ret	%Ret	%ret acum	%Pasa Acum	
4	4.75	0	0.00	0.00	100.00	
10	2	0.08	0.02	0.02	99.98	
16	1.18	0.09	0.02	0.04	99.96	
40	0.425	2.5	0.59	0.63	99.37	
50	0.3	23.11	5.42	6.05	93.95	
100	0.15	331.51	77.74	83.79	16.21	
200	0.075	67.58	15.85	99.63	0.37	
Fondo		1.56	0.37	100.00	0.00	
Total		426.43	100.00			
Total +	F	457.53		-		

D60	D30	D10
0.2344852	0.1766006	
		0.1205937
0.23	0.18	0.12
Cc	1.1029196	
Cu	1.9444229	

% Pasa Tamiz 200	Grueso	
% Pasa Tamiz 4	Arena	1
Finos>12%	5% <finos<13< th=""><th>Finos<5%</th></finos<13<>	Finos<5%
Sucio	Intermedio	Limpio
No	No	Si
Clasific	cación SUCS	
	SP	
Poorly	graded sand	
A D. b	mente Gradua	ada

Masa Final	457.53
Masa Inicial	457.03
%Error	0.109402009

	C1M3						
Tamiz	Abertura	Masa ret	%Ret	%ret acum	%Pasa Acum		
4	4.75	0	0.00	0.00	100.00		
10	2	2.5	6.09	6.09	93.91		
16	1.18	3.14	7.64	13.73	86.27		
40	0.425	4.26	10.37	24.10	75.90		
50	0.3	2.86	6.96	31.06	68.94		
100	0.15	9.88	24.05	55.11	44.89		
200	0.075	17.18	41.82	96.93	3.07		
Fondo		1.26	3.07	100.00	0.00		
Total		41.08	100.00				
Total +	F	329.05		-			

D60	D30	D10
0.244251		
	0.1233003	0.0874331
0.24	0.12	0.09
Cc Cu	0.711896	
Cu	2.7935773	

% Pasa Tamiz 200	Grueso			
% Pasa Tamiz 4	Arena			
Finos>12%	5% <finos<1< th=""><th>Finos<5%</th></finos<1<>	Finos<5%		
Sucio	Intermedio	Limpio		
No	No	Si		
Clasificación SUCS				
	SP			
Poorly	graded sand			
Arena Pobremente Graduada				

Masa Final	329.05
Masa Inicial	329.14
%Error	0.027343987

	C1M4						
Tamiz	Abertura	Masa ret	%Ret	%ret acum	%Pasa Acum		
4	4.75	0.47	0.780	0.780	99.220		
10	2	11.36	18.858	19.638	80.362		
16	1.18	11.6	19.256	38.894	61.106		
40	0.425	19.87	32.985	71.879	28.121		
50	0.3	5.75	9.545	81.424	18.576		
100	0.15	7.56	12.550	93.974	6.026		
200	0.075	3.42	5.677	99.651	0.349		
Fond	do	0.21	0.349	100.000	0.000		
Tota	al	60.24	100.000				
Total	. F	/119.37		•			

D60	D30	D10
1.154694	0.4680126	
		0.1975
1.15	0.47	0.20
Cc Cu	0.9604639	
Cu	5.846552	

% Pasa Tamiz 200	Grueso			
% Pasa Tamiz 4	Arena			
Finos>12%	5% <finos<12%< th=""><th>Finos<5%</th></finos<12%<>	Finos<5%		
Sucio	Intermedio	Limpio		
No	No	Si		
Clasificación SUCS				
SP				
Poorly graded sand				
Arena Pobremente Graduada				

Masa Final	419.37
Masa Inicial	419.69
%Frror	0.076246754

		C2M2			
Tamiz	Abertura (mm)	Masa ret	%Ret	%ret acum	%Pasa Acum
4	4.75	0.18	0.19	0.19	99.81
10	2	1.33	1.43	1.62	98.38
16	1.18	1.23	1.32	2.94	97.06
40	0.425	3.86	4.14	7.07	92.93
50	0.3	6.25	6.70	13.77	86.23
100	0.15	38.99	41.78	55.54	44.46
200	0.075	39.03	41.82	97.36	2.64
Fo	ndo	2.46	2.64	100.00	0.00
Te	otal	93.33	100.00		
m .	1 - P	220 12		_	

Total + F		220.43	
		•	
Masa Final	220.43		
Masa Inicial	219.6		
%From	0.377050027		

		C2M3			
Tamiz	Abertura (mm)	Masa ret	%Ret	%ret acum	%Pasa Acum
4	4.75	0	0.00	0.00	100.00
10	2	0	0.00	0.00	100.00
16	1.18	0.08	0.05	0.05	99.95
40	0.425	1.05	0.70	0.75	99.25
50	0.3	11.5	7.65	8.40	91.60
100	0.15	94	62.53	70.93	29.07
200	0.075	42.61	28.34	99.27	0.73
Fo	ndo	1.09	0.73	100.00	0.00
To	otal	150.33	100.00		
Total	d + F	173 14		-	

Masa Final	173.14
Masa Inicial	172
%Error	0.662790698

		C2M4			
Tamiz	Abertura	Masa ret	%Ret	%ret acum	%Pasa Acum
4	4.75	0	0.00	0.00	100.00
10	2	1.4	1.32	1.32	98.68
16	1.18	1.9	1.80	3.12	96.88
40	0.425	4.8	4.54	7.66	92.34
50	0.3	3.9	3.69	11.35	88.65
100	0.15	21	19.87	31.22	68.78
200	0.075	67.2	63.58	94.80	5.20
Fond	lo	5.5	5.20	100.00	0.00
Tota	al	105.7	100.00		•
Total	+ F	148.9		_	

Masa Final	148.9
Masa Inicial	147.25
%Error	1.120543294

		C2M5			
Tamiz	Abertura	Masa ret	%Ret	%ret acum	%Pasa Acum
4	4.75	0.26	1.04	1.04	98.96
10	2	3.03	12.10	13.14	86.86
16	1.18	3.34	13.34	26.48	73.52
40	0.425	8.5	33.95	60.42	39.58
50	0.3	2.88	11.50	71.92	28.08
100	0.15	4.31	17.21	89.14	10.86
200	0.075	2.45	9.78	98.92	1.08
Fondo		0.27	1.08	100.00	0.00
Total		25.04	100.00		
Total +	F	300.95		•	

Masa Final	300.95
Masa Inicial	300.3
%Error	0.216450216

D60	D30	D10
0.20581431		
0.20301431	0.12407571	0.08820715
	0.12-407-07-1	0.00020710
0.21	0.12	0.09
Cc	0.84799676	

Cc	0.84799676
Cu	2.33330649

D60	D30	D10
0.22419894	0.15223245	
		0.09954177
0.22	0.15	0.10
Cc	1.03842595	

Cc	1.03842595
Cu	2.25231003

D30	D10
0.15223245	
	0.09954177
0.15	0.10
1.03842595	
	0.15223245 0.15 1.03842595

Cc	1.03842595
Cu	2.25231003

D60	D30	D10
0.13964286	0.10425223	0.08065848
0.14	0.10	0.08

Cc	0.96494365
Cu	1.73128546
	•

D60	D30	D10
0.87924353		
	0.32092014	
		,
		0.14338776
		/
0.88	0.32	0.14
Cc	0.81690715	

0.81690715
6.13192897

% Pasa Tamiz 200	Grueso
% Pasa Tamiz 4	Arena

Finos>12%	5% <finos<12%< th=""><th>Finos<5%</th></finos<12%<>	Finos<5%
Sucio	Intermedio	Limpio
No	No	Si

Clasificación SUCS
SP
Poorly graded sand
Arena Pobremente Graduada

% Pasa Tamiz 200	Grueso
% Paga Tamiz 4	Arena

Finos>12%	5% <finos<12%< td=""><td>Finos<5%</td></finos<12%<>	Finos<5%
Sucio	Intermedio	Limpio
No	No	C:

Clasificación SUCS
SP
Poorly graded sand
Arena Pobremente Graduada

% Pasa	Tamiz 200	Grueso
% Pass	a Tamiz 4	Arena

Finos>12%	5% <finos<12%< th=""><th>Finos<5%</th></finos<12%<>	Finos<5%
Sucio	Intermedio	Limpio

Clasificación SUCS
SP-ML
Poorly graded sand with Silt
Arena Pobremente Graduada con Limos de Baja Plasticidad

% Pasa Tamiz 200	Grueso
% Paca Tamiz 4	Arena

Finos>12%	5% <finos<12%< th=""><th colspan="2">Finos<5%</th></finos<12%<>	Finos<5%	
Sucio	Intermedio	Limpio	
No	No	Si	

Clasificación SUCS
SP
Poorly graded sand
Arena Pobremente Graduada

Tipo de suelo SUCS de calicata 2 por estratos (Mora & Cordova, 2024)

C3M2						
Tamiz	Abertura	Masa ret	%Ret	%ret acum	%Pasa Acum	
4	4.75	0	0.00	0.00	100.00	
10	2	0	0.00	0.00	100.00	
16	1.18	0.07	0.03	0.03	99.97	
40	0.425	3.27	1.43	1.46	98.54	
50	0.3	0.16	0.07	1.53	98.47	
100	0.15	97.07	42.50	44.03	55.97	
200	0.075	125.33	54.88	98.91	1.09	
Fondo		2.49	1.09	100.00	0.00	
Total		228.39	100.00			
Total + F		200.42		-		

D60	D30	D10
0.16423818		
	0.11451189	0.08717725
0.16	0.11	0.09
Cc	0.91584897	
Cu	1.88395682	

% Pasa Tamiz 200	Grueso	1		
% Pasa Tamiz 4	Arena			
		-		
Finos>12%	5% <finos<12%< td=""><td>Finos<5%</td></finos<12%<>	Finos<5%		
Sucio	Intermedio	Limpio		
No	No	Si		
	•			
	Clasificación SU	CS		
60				

Masa Final	290.42
Masa Inicial	290.31
%Error	0.037890531

	C3M3					
Tamiz	Abertura	Masa ret	%Ret	%ret acum	%Pasa Acum	
4	4.75	0.06	0.28	0.28	99.72	
10	2	0.25	1.18	1.47	98.53	
16	1.18	1.03	4.88	6.34	93.66	
40	0.425	4.54	21.50	27.84	72.16	
50	0.3	0.01	0.05	27.89	72.11	
100	0.15	3.78	17.90	45.79	54.21	
200	0.075	10.86	51.42	97.21	2.79	
I	ondo	0.59	2.79	100.00	0.00	
	Total		100.00			
Total + F		295.84		-		

D60	D30	D10	
		·	
0.19849206			
	0.11468232	0.08551105	
0.20	0.11	0.09	
Сс	0.7748677		
Cu	2 3212//61		

% Pasa Tamiz 200	Grueso	1			
% Pasa Tamiz 4	Arena				
		_			
Finos>12%	5% <finos<12%< td=""><td>Finos<5%</td></finos<12%<>	Finos<5%			
Sucio	Intermedio	Limpio			
No	No	Si			
	•	•			
	Clasificación SU	CS			
SP					
Poorly graded sand					
Arena Pohremente Graduada					

Masa Final	295.84
Masa Inicial	294.95
0/ Europ	0.201746050

	C3M4					
Tamiz	Abertura	Masa ret	%Ret	%ret acum	%Pasa Acum	
4	4.75	0.02	0.12	0.12	99.88	
10	2	1.02	5.87	5.98	94.02	
16	1.18	2.6	14.96	20.94	79.06	
40	0.425	8.16	46.95	67.89	32.11	
50	0.3	0.04	0.23	68.12	31.88	
100	0.15	3.08	17.72	85.85	14.15	
200	0.075	2.27	13.06	98.91	1.09	
F	Fondo		1.09	100.00	0.00	
1	Total		100.00		-	
Total + F 313		313		-		

D60	D30	D10
0.87355882		
<u> </u>		·
	0.28412338	
		0.12614537
0.87	0.28	0.13
	-	-
Cc	0.73257223	
Cu	6.92501669	

% Pasa Tamiz 4	Arena	
Finos>12%	5% <finos<12%< td=""><td>Finos<5%</td></finos<12%<>	Finos<5%
Sucio	Intermedio	Limpio
No	No	Si
	Clasificación SU	ICS
	SP	
	Poorly graded sa	ind
Are	na Pobremente G	raduada

Masa Final	313
Masa Inicial	312.28
%Error	0.230562316

	C3M5								
Tamiz	Abertura	Masa ret	%Ret	%ret acum	%Pasa Acum				
4	4.75	0.01	0.04	0.04	99.96				
10	2	0.45	1.88	1.92	98.08				
16	1.18	0.85	3.55	5.48	94.52				
40	0.425	3.18	13.29	18.77	81.23				
50	0.3	0	0.00	18.77	81.23				
100	0.15	2.81	11.75	30.52	69.48				
200	0.075	14.61	61.08	91.60	8.40				
F	ondo	2.01	8.40	100.00	0.00				
1	Total	23.92	100.00						
To	tal + F	285.11		-					

D60	D30	D10
D00	D30	D10
	,	
r i		
		_
0.13835729	0.10151951	0.07696099
0.14	0.10	0.08
Cc Cu	0.96789074	
Cu	1.7977588	

% Pasa Tamiz 200	Grueso	
% Pasa Tamiz 4	Arena	
Finos>12%	5% <finos<12%< td=""><td>Finos<5%</td></finos<12%<>	Finos<5%
Sucio	Intermedio	Limpio
No	Si	No
	01	100
	Clasificación SU	103
	SP-ML	
Po	orly graded sand v	vith Silt
Arona Dohromonto	Graduada con Lin	nos do Raia Diasticidad

1	Aasa Final	285.11
N	Iasa Inicial	284.62
	%Error	0.17215937

Tipo de suelo SUCS de calicata 3 por estratos (Mora & Cordova, 2024)

Según el estudio de suelo el número de golpes está entre N 15 y 40

C1M3							
ID Recipiente	A	Numero de Golpes	В	С	D	E	G
27	6.02	13	17.23	13.56	3.67	7.54	48.67
20	6.29	23	19.16	15.12	4.04	8.83	45.75
63	5.98	35	16.67	13.39	3.28	7.41	44.26
103	6.33	18	17.16	13.85	3.31	7.52	44.02
		Ecuacio	ón				
		y=-0.1979x+	50.914				
		LL				45.966	5

C1M3								
ID Muestra	ID Recipiente	A	В	С	D	E	G	
C1M3	7	6.02	16	13.71	2.29	7.69	29.78	
C1M3	50	5.79	13.07	11.41	1.66	5.62	29.54	
LP						29.66	5	
IP						16.31	l	

C1M3							
LL	45.9665						
LP	29.66						
IP	16.31						

C1M4							
ID Recipiente	A	Numero de Golpes	В	С	D	E	G
12	6.18	40	16.26	12.37	3.89	6.19	62.84
23	5.9	32	13.84	10.75	3.09	4.85	63.71
24	6.1	28	16.11	12.06	4.05	5.96	67.95
69	6.31	23	13.13	10.3	2.83	3.99	70.93
80	6.06	16	15.81	11.64	4.17	5.58	74.73
		Ecuacio	ón				
		y=-0.4946x+	82.345				
		LL				69.98	

C1M4								
ID Muestra	ID Recipiente	A	В	C	D	E	G	
C1M4	119	6.13	11.26	9.78	1.48	3.65	40.55	
C1M4	13	6.47	13.37	11.3	2.07	4.83	42.86	
LP						41.70)	
IP					28.28	3		

C1M4						
LL	69.98					
LP	41.70					
IP	28.28					

Número de golpes de calicata 1 por estratos (Mora & Cordova, 2024)

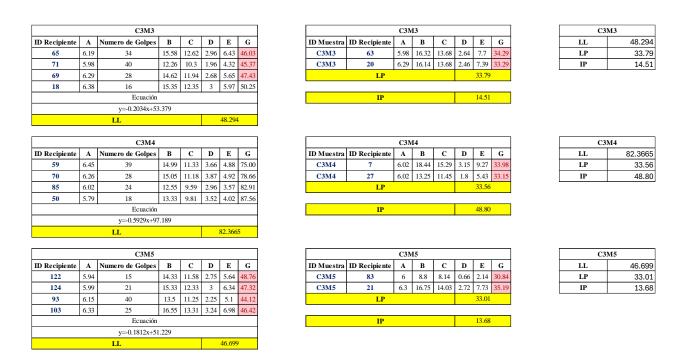
C2M2								
ID Recipiente	ecipiente A Numero de Golpes B C					E	G	
93	6.15	26	19.57	13.33	6.24	7.18	86.91	
27	6.02	39	16.24	14.01	2.23	7.99	27.91	
59	6.45	34	17.25	14.87	2.38	8.42	28.27	
124	5.99 16		21.12	17.72	3.4	11.73	28.99	
Ecuación								
y=-0.045x+29.721								
		LL				28.596		

C2M2							
ID Muestra	ID Recipiente	A	В	С	D	E	G
C2M2	69	6.15	13	11.64	1.36	5.49	24.77
C2M2	18	6.02	15.49	13.73	1.76	7.71	22.83
	LP						
	IP					4.80	

C2	M2
LL	28.596
LP	23.80
IP	4.80

C2M4							
ID Recipiente	A	Numero de Golpes	В	C	D	E	G
50	5.79	22	15.1	12.53	2.57	6.74	38.13
70	6.26	16	12.61	10.79	1.82	4.53	40.18
12	6.17	25	14.74	12.32	2.42	6.15	39.35
83	6	38	12.2	10.48	1.72	4.48	38.39
Ecuación							
y=-0.0805x+41.427							
		LL				39.4145	i

C2M4							
ID Muestra	ID Recipiente	A	В	С	D	E	G
C2M4	7	6.02	14.91	12.78	2.13	6.76	31.51
C2M4	85	6.02	14.65	12.61	2.04	6.59	30.96
	LP					31.23	
IP						8.18	


C	2M4
LL	39.4145
LP	31.23
IP	8.18

C2M5							
ID Recipiente	A	Numero de Golpes	Numero de Golpes B C		C D		G
21	6.3	15	12.68	9.78	2.9	3.48	83.33
122	5.94	27	12.7	9.75	2.95	3.81	77.43
103	6.33	37	13.8	10.61	3.19	4.28	74.53
71	71 5.98 34			10.04	2.96	4.06	72.91
Ecuación							
y=-0.4031x+89.045							
		LL				78.9675	5

19	В	C	D	E	G		
19	40.00						
	10.03	9.28	0.75	3.09	24.27		
,	15.97	12.74	3.23	6.74	47.92		
LP							
IP							
,		15.97	15.97 12.74	15.97 12.74 3.23	15.97 12.74 3.23 6.74 36.10 42.87		

C2	M5
LL	78.9675
LP	36.10
IP	42.87

Número de golpes de calicata 2 por estratos (Mora & Cordova, 2024)

Número de golpes de calicata 3 por estratos (Mora & Cordova, 2024)

ANEXO B DISEÑO DEL MURO

ETABS Shear Wall Design

ACI 318-19 Pier Design

Pier Details

Story ID	Pier ID	Centroid X (mm)	Centroid Y (mm)	Length (mm)	Thickness (mm)	LLRF
Story2	P1x	2266.7	2100	1333.3	200	0.649

Material Properties

E (kgf/mm²) f' (kgf/mm²)		f' a (kgf/mm²)	Lt.Wt Factor (Unitless)	f y (kgf/mm²)	f ys (kgf/mm²)	
	965.26	2.81	1	6.12	6.12	

Design Code Parameters

Фт	Фс	Ф	φ _v (Seismic)	IP MAX	IP _{MIN}	P _{MAX}
0.9	0.65	0.75	0.6	0.04	0.0025	0.8

Pier Leg Location, Length and Thickness

Station Location	ID	Left X₁ mm	Left Y₁ mm	Right X 2 mm	Right Y ₂ mm	Length mm	Thickness mm
Тор	Leg 1	1600	2100	2933.3	2100	1333.3	200
Bottom	Leg 1	1600	2100	2933.3	2100	1333.3	200

Flexural Design for P $_{\rm u_{\rm c}}$ M $_{\rm u2}~$ and M $_{\rm u3}$

Station Location	Required Rebar Area (mm²)	Required Reinf Ratio		Flexural Combo	P " kgf	M _{u2} kgf-mm	M _{u3} kgf-mm	Pier A _g mm²
Тор	667	0.0025	0.0023	0.9D	6768.96	-60016.61	-2365699.24	266667
Bottom	1139	0.0043	0.0023	0.9D+1Sy	-3.8	-8954.09	-3023716.43	266667

Shear Design

Station Location	ID	Rebar mm²/mm	Shear Combo	P " kgf	M _u kgf-mm	V kgf	φV _a kgf	φV _n kgf
Тор	Leg 1	0.5	0.9D+1Sx	5315.43	-4063363.91	6500.15	14229.13	16676.44
Bottom	Leg 1	0.5	1.2D+Sx+L	24372.76	6526729.12	8479.61	14229.13	16676.44

Boundary Element Check (ACI 18.10.6.3, 18.10.6.4)

Station Location	ID	Edge Length (mm)	Governing Combo	P u kgf	M . kgf-mm	Stress Comp kgf/mm²	Stress Limit kgf/mm²	C Depth mm	C Limit mm
Top-Left	Leg 1	Not Required	1.2D+Sx+L	7318.75	-4605203.92	0.11	0.56		
Top-Right	Leg 1	Not Required	1.2D+Sx+L	7318.75	-4605203.92	-0.05	0.56		
Bottom-Left	Leg 1	Not Required	1.2D+Sx+L	24372.76	6526729.12	-0.02	0.56		
Botttom-Right	Leg 1	Not Required	1.2D+Sx+L	24372.76	6526729.12	0.2	0.56		

ETABS Shear Wall Design

ACI 318-19 Pier Design

Pier Details

Story ID	Pier ID	Centroid X (mm)	Centroid Y (mm)	Length (mm)	Thickness (mm)	LLRF
Story1	P1y	1600	2600	1000	200	0.735

Material Properties

E a (kgf/mm²)	f' a (kgf/mm²)	Lt.Wt Factor (Unitless)	f y (kgf/mm²)	f ys (kgf/mm²)
965.26	2.81	1	6.12	6.12

Design Code Parameters

Фт	Фс	Фи	φ _v (Seismic)	IP MAX	IP _{MIN}	P _{MAX}
0.9	0.65	0.75	0.6	0.04	0.0025	0.8

Pier Leg Location, Length and Thickness

Station Location	ID	Left X₁ mm	Left Y₁ mm	Right X 2 mm	Right Y ₂ mm	Length mm	Thickness mm
Тор	Leg 1	1600	2100	1600	3100	1000	200
Bottom	Leg 1	1600	2100	1600	3100	1000	200

Flexural Design for P $_{\rm u_{\rm c}}$ M $_{\rm u2}~$ and M $_{\rm u3}$

Station Location	Required Rebar Area (mm²)	Required Reinf Ratio	Current Reinf Ratio	Flexural Combo	P " kgf	M _{u2} kgf-mm	M _{⊔3} kgf-mm	Pier A _g mm²
Тор	2004	0.01	0.0025	0.9D+1Sx	-5222.46	43545.8	2147797.48	200000
Bottom	4862	0.0243	0.0025	0.9D+1Sx	-20167.49	-398087.18	-1723636.06	200000

Shear Design

Station Location	ID	Rebar mm²/mm	Shear Combo	P " kgf	M . kgf-mm	V " kgf	φV _a kgf	φV _n kgf
Тор	Leg 1	2.6	1.2D+Sy+L	19340.79	-4724535.96	20234.3	10671.85	20234.3
Bottom	Leg 1	2.82	1.2D+Sy+L	38129.32	19398296.76	21009.25	10671.85	21009.25

Boundary Element Check (ACI 18.10.6.3, 18.10.6.4)

Station Location	ID	Edge Length (mm)	Governing Combo	P u kgf	M ့ kgf-mm	Stress Comp kgf/mm²	Stress Limit kgf/mm²	C Depth mm	C Limit mm
Top-Left	Leg 1	Not Required	1.2D+Sy+L	19340.79	-4724535.96	0.24	0.56		
Top-Right	Leg 1	Not Required	1.2D+Sy+L	19340.79	-4724535.96	-0.05	0.56		
Bottom-Left	Leg 1	Not Required	1.2D+Sy+L	38129.32	19398296.76	-0.39	0.56		
Botttom-Right	Leg 1	55.1	1.2D+Sy+L	38129.32	19398296.76	0.77	0.56	110.3	154.6

ETABS Shear Wall Design

ACI 318-19 Pier Design

Pier Details

Story ID	Pier ID	Centroid X (mm)	Centroid Y (mm)	Length (mm)	Thickness (mm)	LLRF
Story2	P2v	1600	19400	1000	200	0.734

Material Properties

E c (kgf/mm²)	f' c (kgf/mm²)	Lt.Wt Factor (Unitless)	f y (kgf/mm²)	f ys (kgf/mm²)
965.26	2.81	1	6.12	6.12

Design Code Parameters

Фт	Фс	Фи	φ _v (Seismic)	IP _{MAX}	IP _{MN}	P _{MAX}
0.9	0.65	0.75	0.6	0.04	0.0025	0.8

Pier Leg Location, Length and Thickness

Station Location	ID	Left X ₁	Left Y ₁	Right X 2 mm	Right Y ₂ mm	Length mm	Thickness mm
Тор	Leg 1	1600	18900	1600	19900	1000	200
Bottom	Leg 1	1600	18900	1600	19900	1000	200

Flexural Design for P $_{\rm u,}~M_{\rm u2}~$ and $M_{\rm u3}$

Station Location	Required Rebar Area (mm²)	Required Reinf Ratio	Current Reinf Ratio	Flexural Combo	P " kgf	M u2 kgf-mm	M _{u3} kgf-mm	Pier A _p mm²
Тор	500	0.0025	0.0025	0.9D	3643.13	27880.53	1637736.85	200000
Bottom	500	0.0025	0.0025	0.9D	8760.11	-21714.7	-801044.98	200000

Shear Design

Station Location	ID	Rebar mm²/mm	Shear Combo	P kgf			φV _c kgf	φV ո kgf
Тор	Leg 1	0.5	1.2D+1.6Lr+L	9944.09	4222278.44	3951.24	13339.81	15634.17
Bottom	Leg 1	0.5	1.2D+1.6Lr+L	17864.57	-1906471.23	3749.88	13339.81	15634.17

Boundary Element Check (ACI 18.10.6.3, 18.10.6.4)

Station Location	ID	Edge Length (mm)	Governing Combo	P., kgf	M kgf-mm	Stress Comp kgf/mm²	Stress Limit kgf/mm²	C Depth mm	C Limit mm
Top-Left	Leg 1	Not Required	1.2D+Sy+L	4703.27	1086064.59	-0.01	0.56		
Top-Right	Leg 1	Not Required	1.2D+Sy+L	4703.27	1086064.59	0.06	0.56		
Bottom-Left	Leg 1	Not Required	1.2D+Sy+L	10237.88	2270962.4	-0.02	0.56		
Botttom-Right	Leg 1	Not Required	1.2D+Sy+L	10237.88	2270962.4	0.12	0.56		

ACI 318-19 Pier Design

Pier Details

Story ID	Pier ID	Centroid X (mm)	Centroid Y (mm)	Length (mm)	Thickness (mm)	LLRF
Story2	P2x	2266.7	19900	1333.3	200	0.659

Material Properties

E (kgf/mm²)	f' c (kgf/mm²)	Lt.Wt Factor (Unitless)	f , (kgf/mm²)	f ys (kgf/mm²)
965.26	2.81	1	6.12	6.12

Design Code Parameters

ф⊤	Фс	фν	φ _v (Seismic)	IP MAX	IP _{MIN}	P _{MAX}
0.9	0.65	0.75	0.6	0.04	0.0025	0.8

Pier Leg Location, Length and Thickness

Station Location	ID	Left X ₁	Left Y₁ mm	Right X 2 mm	Right Y ₂ mm	Length mm	Thickness mm
Тор	Leg 1	1600	19900	2933.3	19900	1333.3	200
Bottom	Leg 1	1600	19900	2933.3	19900	1333.3	200

Flexural Design for P $_{\rm u_{\rm c}}$ M $_{\rm u2}$ and M $_{\rm u3}$

Station Location	Required Rebar Area (mm²)	Required Reinf Ratio	Current Reinf Ratio	Flexural Combo	P " kgf	M u2 kgf-mm	M ⊿ kgf-mm	Pier A _g mm²
Тор	667	0.0025	0.0023	0.9D	3728.91	9790.4	-2179782.88	266667
Bottom	667	0.0025	0.0023	0.9D	12084.23	-23056.5	1129995.73	266667

Shear Design

Station Location	ID	Rebar mm²/mm	Shear Combo	P " kgf	M kgf-mm	V " kgf	φV _e kgf	φV n kgf
Тор	Leg 1	0.5	0.9D+1Sx	4598.05	-4309895.1	7610.68	14229.13	16676.44
Bottom	Leg 1	0.5	1.2D+Sx+L	24613.79	8110340.99	9756.67	14229.13	16676.44

Station Location	ID	Edge Length (mm)	Governing Combo	P " kgf	M " kgf-mm	Stress Comp kgf/mm²	Stress Limit kgf/mm²	C Depth mm	C Limit mm
Top-Left	Leg 1	Not Required	1.2D+Sy+L	6809.21	-4355445.94	0.1	0.56		
Top-Right	Leg 1	Not Required	1.2D+Sy+L	6809.21	-4355445.94	-0.05	0.56		
Bottom-Left	Leg 1	Not Required	1.2D+Sy+L	27913.74	3953730.71	0.04	0.56		
Botttom-Right	Leg 1	Not Required	1.2D+Sy+L	27913.74	3953730.71	0.17	0.56		

ACI 318-19 Pier Design

Pier Details

Story ID	Pier ID	Centroid X (mm)	Centroid Y (mm)	Length (mm)	Thickness (mm)	LLRF
Story2	P3x	40733.3	19900	1333.3	200	0.65

Material Properties

E c (kgf/mm²)	f' c (kgf/mm²)	Lt.Wt Factor (Unitless)	f , (kgf/mm²)	f ys (kgf/mm²)
965.26	2.81	1	6.12	6.12

Design Code Parameters

Фт	Фс Фи		φ _v (Seismic)	IP _{MAX}	IP _{MN}	P _{MAX}	
0.9	0.65	0.75	0.6	0.04	0.0025	0.8	

Pier Leg Location, Length and Thickness

Station Location	ID	Left X ₁	Left Y ₁	Right X 2 mm	Right Y ₂ mm	Length mm	Thickness mm
Тор	Leg 1	40066.7	19900	41400	19900	1333.3	200
Bottom	Leg 1	40066.7	19900	41400	19900	1333.3	200

Flexural Design for P $_{\rm u}$ M $_{\rm u2}$ and M $_{\rm u3}$

Station Location	Required Rebar Area (mm²)	Required Reinf Ratio	Current Reinf Ratio	Flexural Combo	P., kgf	M u2 kgf-mm	M ಚ kgf-mm	Pier A _g mm²
Тор	667	0.0025	0.0023	0.9D	4081.94	15812.85	2107434.45	266666
Bottom	902	0.0034	0.0023	0.9D+1Sx	6579.49	-34901.79	6183443.75	266666

Shear Design

Station Location	ID	Rebar mm²/mm	Shear Combo	P., kgf	M " kgf-mm	V., kgf	φV _c kgf	фV " kgf
Top	Leg 1	0.5	1.2D+Sx+L	4656.34	588386.13	6594.43	14229.09	16676.41
Bottom	Leg 1	0.5	1.2D+Sx+L	11992.01	6667060.04	5464.72	14229.09	16676.41

Station Location	ID	Edge Length (mm)	Governing Combo	P., kgf	M . kgf-mm	Stress Comp kgf/mm²	Stress Limit kgf/mm²	C Depth mm	C Limit mm
Top-Left	Leg 1	Not Required	1.2D+Sy+L	6620.93	3890862.25	-0.04	0.56		
Top-Right	Leg 1	Not Required	1.2D+Sy+L	6620.93	3890862.25	0.09	0.56		
Bottom-Left	Leg 1	Not Required	1.2D+Sy+L	26015.7	-2259559.12	0.14	0.56		
Botttom-Right	Leg 1	Not Required	1.2D+Sy+L	26015.7	-2259559.12	0.06	0.56		

ACI 318-19 Pier Design

Pier Details

Story ID	Pier ID	Centroid X (mm)	Centroid Y (mm)	Length (mm)	Thickness (mm)	LLRF
Story2	P3y	41393.3	19384.4	1031.3	200	0.609

Material Properties

E c (kgf/mm²)	f' a (kgf/mm²)	Lt.Wt Factor (Unitless)	f y (kgf/mm²)	f ys (kgf/mm²)
965.26	2.81	1	6.12	6.12

Design Code Parameters

Фт	Фс	Фу	φ _ν (Seismic)	IP _{MAX}	IP _{MIN}	P _{MAX}
0.9	0.65	0.75	0.6	0.04	0.0025	0.8

Pier Leg Location, Length and Thickness

Station Location	ID	Left X₁ mm	Left Y ₁ mm	Right X 2 mm	Right Y ₂ mm	Length mm	Thickness mm
Тор	Leg 1	41386.6	18868.8	41400	19900	1031.3	200
Bottom	Leg 1	41386.6	18868.8	41400	19900	1031.3	200

Flexural Design for P $_{\rm u_{\rm i}}$ M $_{\rm u2}$ $\,$ and M $_{\rm u3}$

Station Location	Required Rebar Area (mm²)	Required Reinf Ratio	Current Reinf Ratio	Flexural Combo	P kgf	M _{u2} kgf-mm	M u3 kgf-mm	Pier A _g mm²
Тор	578	0.0028	0.0024	1.2D+Sx+L	3174.36	7800.82	2663135.92	206264
Bottom	671	0.0033	0.0024	0.9D+1Sy	492.05	49901.49	1654698.66	206264

Shear Design

Station Location	ID	Rebar mm²/mm	Shear Combo P u kgf		M _u V _u kgf-mm kgf		φV _a kgf	φV , kgf
Тор	Leg 1	0.5	1.2D+Sx+L	3174.36	2663135.92	3246.18	11006.09	12899.07
Bottom	Leg 1	0.5	1.2D+Sx+L	33630.39	-2553872.79	3575.25	11006.09	12899.07

Station Location	ID	Edge Length (mm)	Governing Combo	P " kgf	M u kgf-mm	Stress Comp kgf/mm²	Stress Limit kgf/mm²	C Depth mm	C Limit mm
Top-Left	Leg 1	Not Required	1.2D+Sy+L	7156.76	1903303.83	-0.02	0.56		
Top-Right	Leg 1	Not Required	1.2D+Sy+L	7156.76	1903303.83	0.09	0.56		
Bottom-Left	Leg 1	Not Required	1.2D+Sx+L	33630.39	-2553872.79	0.24	0.56		
Botttom-Right	Leg 1	Not Required	1.2D+Sx+L	33630.39	-2553872.79	0.09	0.56		

ACI 318-19 Pier Design

Pier Details

Story ID	Pier ID	Centroid X (mm)	Centroid Y (mm)	Length (mm)	Thickness (mm)	LLRF
Story2	P4x	40733.3	2100	1333.3	200	0.661

Material Properties

E c (kgf/mm²)	f' c (kgf/mm²)	Lt.Wt Factor (Unitless)	f y (kgf/mm²)	f ys (kgf/mm²)
965.26	2.81	1	6.12	6.12

Design Code Parameters

Фт	Фс	Фи	φ _ν (Seismic)	IP MAX	IP _{MIN}	P _{MAX}
0.9	0.65	0.75	0.6	0.04	0.0025	0.8

Pier Leg Location, Length and Thickness

Station Location	ID	Left X₁ mm	Left Y ₁ mm	Right X 2 mm	Right Y ₂ mm	Length mm	Thickness mm
Тор	Leg 1	40066.7	2100	41400	2100	1333.3	200
Bottom	Leg 1	40066.7	2100	41400	2100	1333.3	200

Flexural Design for P $_{\text{u}},~\text{M}_{~\text{u}2}~\text{and}~\text{M}_{~\text{u}3}$

Station Location	Required Rebar Area (mm²)	Required Reinf Ratio		Flexural Combo	P kgf	M _{u2} kgf-mm	M _{u3} kgf-mm	Pier A _g mm²
Тор	667	0.0025	0.0023	0.9D	3781.69	1861.02	2037717.33	266666
Bottom	1696	0.0064	0.0023	0.9D+1Sy	-2595.6	-4890.19	3279671.51	266666

Shear Design

Station Location	ID	Rebar mm²/mm	Shear Combo	P kgf	M u kgf-mm	V u kgf	φV _c kgf	φV ո kgf
Тор	Leg 1	0.5	1.2D+Sy+L	2055.91	65432.92	5992.09	14229.09	16676.41
Bottom	Leg 1	0.5	0.9D+1Sy	-2595.6	3279671.51	4990.13	17293.89	20353.03

Station Location	ID	Edge Length (mm)	Governing Combo	P kgf	M " kgf-mm	Stress Comp kgf/mm²	Stress Limit kgf/mm²	C Depth mm	C Limit mm
Top-Left	Leg 1	Not Required	1.2D+Sx+L	4283.95	713330.87	4.027E-03	0.56		
Top-Right	Leg 1	Not Required	1.2D+Sx+L	4283.95	713330.87	0.03	0.56		
Bottom-Left	Leg 1	Not Required	1.2D+Sx+L	12177.17	5166239.81	-0.04	0.56		
Botttom-Right	Leg 1	Not Required	1.2D+Sx+L	12177.17	5166239.81	0.13	0.56		

ANEXO C ANÁLISIS DE PRECIOS UNITARIOS POR RUBROS

		ACT	TIVIDADES PI	RELIMINAR	<u>ES</u>			
	Código:	<u>AC1</u>						
	RUBRO:	LIMPIEZA [DEL TERREN	0				
	DETALLE						UNIDAD	: M2
			EQUIP	os				
CÓDIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo	
			Α	В	AxB	R	D=C*R	
	HERRAMIENTA MANUAL (5% MO)						0.07	
	RETROEXCAVADORA 75HP	hora	0.01	35.00	0.35	0.7500	0.26	
	SUBTOTAL M	•			•			0.33
			MANO DE	OBRA				
	Descripcion	Unidad	Unidad Cantidad Jornal/hr (Rendimiento	Costo	
			Α	В	AxB	R	D=C*R	
	PEON	hora	1.00	4.14	4.14	0.2000		0.83
	OPERADOR DE MAQUINARIA	hora	0.40	4.65	1.86	0.3000		0.56
					SUBTOTAL N		1.39	
	1	TOTAL COS	TOS DIRECT			1.72		
			S Y UTILIDAD	,	20.00%		0.34	
		OTROS ESF	PECIFICOS				0.00	
		соѕто тот	AL DEL RUBI	RO			2.06	

		ACTIVIDADES PRELIMINAR	ES						
	Código: AC2								
	RUBRO:	REPLANTE	O Y NIVELAC	CIÓN CON E	QUIPO TOPO	GRÁFICO			
	DETALLE						UNIDAD : M2		
		EQUIPOS							
CÓDIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo		
			Α	В	AxB	R	D=C*R		
	HERRAMIENTA MANUAL (5% MO)						0.05		
	EQUIPO TOPOGRÁFICO	HORA	1.00	5.00	5.00	0.0800	0.40		
	SUBTOTAL M	·			SUBTOTAL M	i	0.45		
	MANO DE OBRA								
	Descripcion	Unidad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo		
			(A)	(B)	C=A*B	R	D=C*R		
	CADENERO	HORA	1.00	4.19	4.19	0.0800	0.34		
	MAESTRO DE OBRA	HORA	1.00	4.65	4.65	0.0800	0.37		
	TOPOGRAFO	HORA	1.00	4.65	4.65	0.0800	0.37		
	SUBTOTAL M						1.08		
		MATERIALES							
	Descripcion			Unidad	Cantidad	Precio Unitario	Costo		
					(A)	(B)	C=A*B		
	TIRAS			Unidad	0.200	0.38	0.08		
				•	SUBTOTAL P		0.08		
		TOTAL COS	TOS DIRECT	OS X=(M+N	I+O+P)		1.61		
		INDIRECTO	S Y UTILIDAI	DES	20.00%		0.32		
		OTROS ESF	OTROS ESPECIFICOS						
		COSTO TOT	COSTO TOTAL DEL RUBRO						
		VALOR PRO	PUESTO				1.93		

		ELEMENTOS ESTRUCTURA	LES				
	Código: AC3						
	RUBRO:	ACERO ES' ESTRUCTU		. INCLUYE I	MONTAJE PAF	RA VIGAS PARA I	ELMENTOS
	DETALLE						UNIDAD :
		EQUIPOS		,			
ÓDIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
			Α	В	AxB	R	D=C*R
	HERRAMIENTA MANUAL (5% MO)						0.0356
	AMOLADORA ELÉCTRICA	HORA	2.00	0.75	1.50	0.02	0.0300
	SOLDADORA ELÉCTRICA	HORA	4.00	1.25	5.00	0.02	0.1000
	GRUA MÓVIL	HORA	0.10	31.25	3.13	0.02	0.0625
	SUBTOTAL M				SUBTOTAL M		0.228
		MANO DE OBRA					
	Descripcion	Unidad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
			(A)	(B)	C=A*B	R	D=C*R
	PEÓN	HORA	2.00	4.14	8.28	0.020	0.17
	ARMADOR	HORA	2.00	4.42	8.84	0.020	0.18
	MAESTRO DE OBRA	HORA	0.10	5.00	0.50	0.020	0.01
	SOLDADOR CERTIFICADO	HORA	2.00	9.00	18.00	0.020	0.36
	SUBTOTAL M						0.71
	CODICIAL III	MATERIALES					0.71
	Descripcion			Unidad	Cantidad	Precio Unitario	Costo
					(A)	(B)	C=A*B
	ACERO DE PERFIL			kg	1.050	1.18	1.24
	ANTICORROSIVO			4000 cc	0.010	15.560	0.16
	THINNER COMERCIAL			4000 cc	0.010	13.950	0.14
	DISCO DE CORTE			kg	0.050	2.34	0.12
	ELECTRODO						
		•		+	SUBTOTAL P		1.65
		TOTAL COS	TOS DIRECT	OS X=(M+N	N+O+P)		2.59
		INDIRECTO	S Y UTILIDAI	DES	20.00%		0.52
		OTROS ESF	OTROS ESPECIFICOS				
		совто тот	COSTO TOTAL DEL RUBRO				
		VALOR PRO	VALOR PROPUESTO				

	ELEMENTO	S ESTRUCTURA	LES								
	Código: AC4										
	RUBRO:	LOSA DEC	K e=0.65 m								
	DETALLE						UNIDAD : m2				
		EQUIPOS									
CÓDIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo				
			Α	В	AxB	R	D=C*R				
	HERRAMIENTA MANUAL (5% MO)						0.08				
	SUBTOTAL M				SUBTOTAL M		0.08				
	MAN	MANO DE OBRA									
	Descripcion	Unidad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo				
			(A)	(B)	C=A*B	R	D=C*R				
	PEÓN	HORA	1.00	4.14	4.14	0.1000	0.41				
	MAESTRO DE OBRA	HORA	0.10	4.42	0.44	0.1000	0.04				
	ALBAÑIL	HORA	2.00	4.19	8.38	0.1000	0.84				
	SOLDADOR CERTIFICADO	HORA	1.00	4.00	4.00	0.1000	0.40				
	SUBTOTAL M						1.70				
		ATERIALES									
	Descripcion	ı	,	Unidad	Cantidad	Precio Unitario					
					(A)	(B)	C=A*B				
	DECK GALVANIZADO E 0.65 CM			M2	1.050	12.11	12.72				
	HORMIGÓN PREMEZCALDO 210 KG/CM2			M3	0.070	119.520	8.37				
	SEPARADOR TIPO TORRE 25 MM			Unidad	4.000	0.150	0.60				
	MALLA ELECTROSOLDADA			Unidad	0.083	42.00	3.49				
	CONECTORES DE CORTE			Unidad	4.000	1.200	4.80				
					SUBTOTAL P		29.97				
			TOS DIRECT				31.75				
			S Y UTILIDAD	DES	20.00%		6.35				
		OTROS ESF					0.00				
			TAL DEL RUB	RO			38.10				
		VALOR PRO	PUESTO				38.10				

		CUBIERTA						
	Código: AC5							
	RUBRO:	PERFIL ES	TRUCTURAL	A36 INCLU	JYE MONTAJI	E (CUBIERTA)		
	DETALLE						UNIDAD : kg	
		EQUIPOS						
CÓDIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo	
			Α	В	AxB	R	D=C*R	
	HERRAMIENTA MANUAL (5% MO)						0.06	
	AMOLADORA ELÉCTRICA	HORA	1.00	2.00	2.00	0.0500	0.10	
	SOLDADORA ELÉCTRICA	HORA	1.00	4.00	4.00	0.0500	0.20	
	GRUA MÓVIL	HORA	0.09	35.00	3.15	0.0500	0.16	
	COMPRESOR	HORA	1.00	0.63	0.63	0.0500	0.03	
	SUBTOTAL M				SUBTOTAL M		0.55	
		MANO DE OBRA					0.00	
	Descripcion	Unidad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo	
			(A)	(B)	C=A*B	R	D=C*R	
	PEÓN	HORA	1.00	4.14	4.14	0.0500	0.21	
	MAESTRO DE OBRA	HORA	0.10	4.42	0.44	0.0500	0.02	
	ARMADOR	HORA	2.00	4.42	8.84	0.0500	0.44	
	SOLDADOR CALIFICADO	HORA	1.00	9.00	9.00	0.0500	0.45	
	SUBTOTAL M						1.12	
		MATERIALES						
	Descripcion			Unidad	Cantidad	Precio Unitario	Costo	
					(A)	(B)	C=A*B	
	ACERO DE PERFIL			kg	1.050	1.40	1.47	
	ANTICORROSIVO			gal	0.010	20.000	0.20	
	THINNER COMERCIAL			gal	0.010	9.910	0.10	
	DISCO DE CORTE			Unidad	0.010	1.60	0.02	
	SOLDADURA			kg	0.010	3.250	0.03	
					SUBTOTAL P		1.82	
	1	TOTAL COS	TOS DIRECT	OS X=(M+N			3.48	
			S Y UTILIDAI		20.00%		0.70	
		OTROS ESF		-			0.00	
	COSTO TOTAL DEL RUBRO 4.							
		VALOR PRO	PLIESTO				4.18	

		ELEMENTOS ESTRUCTURA	LES					
	Código: AC11							
	RUBRO:	ACERO DE	REFUERZO	GRADO 60	FIGURADO Y	COLOCADO M	URO	
	DETAILE						LINIDAD . KO	
	DETALLE	EQUIPOS					UNIDAD : KG	
CÓDICO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo	
CODIGO	Descripcion	Unidad	A	В	AxB	R	D=C*R	
	HERRAMIENTA MANUAL (5% MO)				AAD	TX.	0.04	
	I IERTAWIENTA WANDAE (3/6 WO)						0.04	
	SUBTOTAL M		1		SUBTOTAL M		0.04	
		MANO DE OBRA						
	Descripcion	Unidad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo	
			(A)	(B)	C=A*B	R	D=C*R	
	FIERRERO	HORA	1.00	4.19	4.19	0.0400	0.17	
	PEÓN	HORA	2.00	4.14	8.28	0.0400	0.33	
	MAESTRO DE OBRA	HORA	0.10	4.65	0.47	0.0400	0.02	
	ALBAÑIL	HORA	2.00	4.19	8.38	0.0400	0.34	
	SUBTOTAL M						0.85	
		MATERIALES						
	Descripcion		ı	Unidad	Cantidad	Precio Unitario		
	ALAMBRE GALVANIZADO			Lon	(A) 0.050	(B) 2.54	C=A*B	
	ACERO DE REFUERZO FY 4200 KG/CM2			kg		-	0.13	
	ACERO DE REFUERZO FY 4200 KG/CM2			kg	1.050	0.810	0.85	
					SUBTOTAL P		0.98	
	l	TOTAL COS	TOS DIRECT				1.87	
			S Y UTILIDAD	,	20.00%		0.37	
		OTROS ESI		-	. , , , ,		0.00	
	COSTO TOTAL DEL RUBRO 2.25							
		VALOR PRO	PUESTO				2.25	
		-						

	Código: AC10							
	RUBRO:	HORMI	GÓN	ARMADO P	ARA MURC)		
	DETALLE							UNIDAD : M
		EQUIPOS						
CÓDIGO	Descripcion	Unida	ad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
				Α	В	AxB	R	D=C*R
	HERRAMIENTA MANUAL (5% MO)							2.08
	SUBTOTAL M					SUBTOTAL M	1	2.08
		MANO DE OBRA						
	Descripcion	Unida	ad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
				(A)	(B)	C=A*B	R	D=C*R
	PEÓN	HOR	A	10.00	4.14	41.40	0.8000	33.12
	MAESTRO DE OBRA	HOR	A	0.50	4.65	2.33	0.8000	1.86
	ALBAÑIL	HOR	A	2.00	4.19	8.38	0.8000	6.70
	L SUBTOTAL M							41.68
		MATERIALES						
	Descripcion				Unidad	Cantidad	Precio Unitario	Costo
						(A)	(B)	C=A*B
	HORMIGÓN PREMEZCLADO CON BOMBA				M3	1.000	105.00	105.00
						SUBTOTAL P		105.00
				OS DIRECT	\			148.77
				Y UTILIDAE	DES	20.00%		29.75
				ECIFICOS	200			0.00
			-	AL DEL RUBI	KO			178.52
		VALOR	PROF	PUESTO				178.52

		ELEMENTOS ESTRUCTURA	LES				
	Código: AC11						
		001119914	DE HODINO	ÓN ADMAD	0 DDEME 3 01	ADO F'C 240 KG	(ON)
	RUBRO:	COLUMNA	DE HORIVIIG	JN AKWAD	O PREMEZCL	ADO F C 240 KG	/CIVI2
	DETALLE						UNIDAD : M
		EQUIPOS					
CÓDIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
			Α	В	AxB	R	D=C*R
	HERRAMIENTA MANUAL (5% MO)						0.43
	VIBRADOR DE MANGUERA	HORA	1.00	3.75	3.75	0.6600	2.48
	SUBTOTAL M				SUBTOTAL M	<u> </u>	2.90
		MANO DE OBRA					
	Descripcion	Unidad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
			(A)	(B)	C=A*B	R	D=C*R
	PEÓN	HORA	2.00	4.14	8.28	0.6600	5.46
	MAESTRO DE OBRA	HORA	0.10	4.65	0.47	0.6600	0.31
	ALBAÑIL	HORA	1.00	4.19	4.19	0.6600	2.77
	SUBTOTAL M	•			•	•	8.54
		MATERIALES					
	Descripcion			Unidad	Cantidad	Precio Unitario	
					(A)	(B)	C=A*B
	HORMIGÓN PREMEZCLADO			M3	1.000	105.00	105.00
			L		SUBTOTAL P		105.00
			TOS DIRECT				116.44
			S Y UTILIDAI	DES	20.00%		23.29
		OTROS ESF					0.00
			AL DEL RUB	RO			139.73
		VALOR PRO	PUESTO				139.73

	ELEMENTOS ES	TRUCTURA	LES								
	Código: AC11	IIIOOTOILA	LLO								
	Statigot. Not 1										
	RUBRO:	ENCOFRA	DO Y DESEN	COFRADO	DE COLUMN	AS					
	DETALLE	IPOS				UNI	DAD : unidad				
CÓDIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo				
CODIGO	Descripcion	Officac	A	В	AxB	R	D=C*R				
	HERRAMIENTA MANUAL (5% MO)				700	1	0.18				
	1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						0.10				
	SUBTOTAL M				SUBTOTAL M		0.18				
	MANO D	E OBRA									
	Descripcion Unidad Cantidad Jornal/hr Costo hora Rendimiento										
			(A)	(B)	C=A*B	R	D=C*R				
	PEÓN	HORA	1.00	4.14	4.14	0.4000	1.66				
	MAESTRO DE OBRA	HORA	0.10	4.65	0.47	0.4000	0.19				
	ALBAÑIL	HORA	1.00	4.19	4.19	0.4000	1.68				
	SUBTOTAL M						3.52				
		RIALES									
	Descripcion	I		Unidad	Cantidad	Precio Unitario	Costo				
	ENCOSEDADO METÁLICO				(A)	(B)	C=A*B				
	ENCOFRADO METÁLICO			Unidad	6.000	3.00	18.00				
	TIRAS			Unidad	4.000	1.450	5.80				
	CLAVOS			kg	0.500	1.030	0.52				
	PINGOS			m	4.000	1.10	4.40				
					OLIDTOTA: D		00.70				
		TOTAL COS	TOS DIRECT	OC V_(NA+N	SUBTOTAL P		28.72 32.41				
			S Y UTILIDAI	,	1+O+P) 20.00%		6.48				
		OTROS ESF		JES	∠∪.∪∪%		0.00				
			AL DEL RUB	R∩			38.89				
		VALOR PRO		110			38.89				
		VALOR FRO	JF ULS IU				30.09				

	ELEMENTOS ES	TDUCTURA	I EC				
	Código: AC12	SIKUCIUKA	LES				
	Coulgo: AC12						
	RUBRO:	HORMIGÓ	N ARMADO F	PARA VIGA	PREMEZCLAD	OO F'C 210 KG/C	M2
	DETALLE						UNIDAD : M3
		IPOS					
CÓDIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
			Α	В	AxB	R	D=C*R
	HERRAMIENTA MANUAL (5% MO)						0.38
	VIBRADOR DE MANGUERA	HORA	1.00	3.75	3.75	0.3000	1.13
	SUBTOTAL M		1		SUBTOTAL M		1.51
		E OBRA					
	Descripcion	Unidad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
			(A)	(B)	C=A*B	R	D=C*R
	PEÓN	HORA	4.00	4.14	16.56	0.3000	4.97
	MAESTRO DE OBRA	HORA	0.10	4.65	0.47	0.3000	0.14
	ALBAÑIL	HORA	2.00	4.19	8.38	0.3000	2.51
	SUBTOTAL M			•			7.62
	MATER	RIALES					
	Descripcion			Unidad	Cantidad	Precio Unitario	Costo
					(A)	(B)	C=A*B
	HORMIGÓN PREMEZCLADO			M3	1.000	105.00	105.00
						,	
					SUBTOTAL P		105.00
		TOTAL COS	TOS DIRECT	OS X=(M+N	I+O+P)		114.13
			S Y UTILIDAI		20.00%		22.83
		OTROS ESF					0.00
			AL DEL RUB	RO			136.95
		VALOR PRO					136.95

	EL	EMENTOS ESTRUCTURA	LES .				
	Código: AC11						
	RUBRO:	ENCOFRA	DO Y DESEN	COFRADO	DE VIGAS		
	DETALLE						UNIDAD : M2
		EQUIPOS					
CÓDIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
			Α	В	AxB	R	D=C*R
	HERRAMIENTA MANUAL (5% MO)						0.33
	SUBTOTAL M				SUBTOTAL M		0.33
	SOBTOTAL IN	MANO DE OBRA			SUBTUTAL IV		0.33
	Descripcion	Unidad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
			(A)	(B)	C=A*B	R	D=C*R
	PEÓN	HORA	4.00	4.14	16.56	0.2600	4.31
	MAESTRO DE OBRA	HORA	0.10	4.65	0.47	0.2600	0.12
	ALBAÑIL	HORA	2.00	4.19	8.38	0.2600	2.18
	SUBTOTAL M	***********					6.61
		MATERIALES					
	Descripcion			Unidad	Cantidad (A)	Precio Unitario (B)	Costo C=A*B
	TABLA DURA DE ENCOFRADO		+	Unidad	1.000	5.50	5.50
	ALAMBRE GALVANIZADO			kg	0.210	2.540	0.53
	CLAVOS			kg	0.240	1.030	0.25
	CUARTONES			unidad	2.000	1.100	2.20
				l.	-	-	
					SUBTOTAL P		8.48
		TOTAL COS	TOS DIRECT	OS X=(M+N	I+O+P)		15.42
			S Y UTILIDAI	DES	20.00%		3.08
		OTROS ESI					0.00
			TAL DEL RUB	RO			18.50
		VALOR PRO	OPUESTO				18.50

	O fallows AOAO	ELEMENTOS ESTRUCTURA	LES				
	Código: AC13						
	RUBRO:	HORMIGÓN	PREMEZCL	ADO LOSA	F'C 210 KG/0	CM2	
	DETALLE						UNIDAD :
4		EQUIPOS					_
ODIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	UEDDANIENEA MANUAL (ESCANO)		Α	В	AxB	R	D=C*R
	HERRAMIENTA MANUAL (5% MO)						0.76
	VIBRADOR DE MANGUERA	HORA	1.00	3.75	3.75	0.6000	2.25
	SUBTOTAL M				SUBTOTAL M		3.01
		MANO DE OBRA					
	Descripcion	Unidad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
			(A)	(B)	C=A*B	R	D=C*R
	PEÓN	HORA	4.00	4.14	16.56	0.6000	9.94
	MAESTRO DE OBRA	HORA	0.10	4.65	0.47	0.6000	0.28
	ALBAÑIL	HORA	2.00	4.19	8.38	0.6000	5.03
	SUBTOTAL M						15.24
		MATERIALES					
	Descripcion			Unidad	Cantidad	Precio Unitario	Costo
					(A)	(B)	C=A*B
	HORMIGÓN PREMEZCLADO			M3	1.000	105.00	105.00
					SUBTOTAL P		105.00
		TOTAL COS	TOS DIRECT	OS X-(M+N			123.26
			S Y UTILIDAI		20.00%		24.65
		OTROS ESI			20.0070		0.00
			TAL DEL RUB	RO			147.91
		0001010	OPUESTO				

		ELEMENTOS ESTRUCTURA	LES				
	Código: AC11						
		ACERO DE	REFLIERZO	GRADO 60	FIGURADO	COLOCADO LO	SA VIGAS Y
	RUBRO:	COLUMNAS		0.0.20	TIOOTTABO	OOLOOADO L	or, viorio i
	DETAILE						UNIDAD : KG
	DETALLE	EQUIPOS					UNIDAD : KG
CÓDIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
CODICO	Descripcion	Omdad	A	В	AxB	R	D=C*R
	HERRAMIENTA MANUAL (5% MO)		- ^ -		700	- 10	0.03
	I IETONIIETTA MATOAE (370 MO)						0.00
	SUBTOTAL M				SUBTOTAL N		0.03
		MANO DE OBRA					0.00
	Descripcion	Unidad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	-		(A)	(B)	C=A*B	R	D=C*R
	FIERRERO	HORA	2.00	4.19	8.38	0.0260	0.22
	PEÓN	HORA	2.00	4.14	8.28	0.0260	0.22
	MAESTRO DE OBRA	HORA	0.10	4.65	0.47	0.0260	0.01
	ALBAÑIL	HORA	2.00	4.19	8.38	0.0260	0.22
	SUBTOTAL M						0.66
		MATERIALES					
	Descripcion			Unidad	Cantidad	Precio Unitario	
					(A)	(B)	C=A*B
	ALAMBRE GALVANIZADO			kg	0.050	2.54	0.13
	ACERO DE REFUERZO FY 4200 KG/CM2			kg	1.050	0.810	0.85
		TOT:: 5.55	T00 DIDE:-	200 1/ /1: :	SUBTOTAL P		0.98
			TOS DIRECT				1.67
			S Y UTILIDAI	JES	20.00%		0.33
		OTROS ESP		DO.			0.00
			TAL DEL RUB	KU			2.01
		VALOR PRO	DPUESTO				2.01

	ELEMENTOS	ESTRUCTUE	RALES				
	Código: AC11	LOTROGICI	(ALLO				
	RUBRO:	ENCOFRA	DO Y DESEN	COFRADO ME	TÁLICO DE LO	SA	
	DETALLE						UNIDAD : M2
	E	QUIPOS					
CÓDIGO	Descripcion	Unidad	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
			Α	В	AxB	R	D=C*R
	HERRAMIENTA MANUAL (5% MO)						0.39
	SUBTOTAL M				SUBTOTAL M		0.39
		DE OBRA			SUBTUTAL IV		0.39
	Descripcion	Unidad	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
			(A)	(B)	C=A*B	R	D=C*R
	PEÓN	HORA	0.44	4.14	1.82	0.1500	0.27
	MAESTRO DE OBRA	HORA	0.10	4.65	0.47	0.1500	0.07
	CARPINTERO	HORA	12.00	4.19	50.28	0.1500	7.54
	SUBTOTAL M						7.88
		TERIALES				I=	
	Descripcion	_		Unidad	Cantidad	Precio Unitario	
	TARLA BURA FAROFRADO			LINIDAD	(A)	(B)	C=A*B
	TABLA DURA ENCOFRADO ALAMBRE GALVANIZADO			UNIDAD	5.150 0.100	5.50 2.540	28.33 0.25
	CLAVOS			KG KG	0.100	1.030	0.25
	CLAVOS			NG	0.110	1.030	0.11
					+		
					1		
					1	1	
					SUBTOTAL P		28.69
		TOTAL COS	TOS DIRECT	OS X=(M+N+O-	+P)		36.97
		INDIRECTO	S Y UTILIDAD	DES	20.00%	_	7.39
		OTROS ESF					0.00
		_	TAL DEL RUBI	RO			44.37
		VALOR PRO	PUESTO				44.37

	- 40		oán Abrabo v	
ANEXO D PLANILLA D	E ACERO PARA I	MURO DE HORM	IGON ARMADO Y	МІХТО

	Diámetro de	Longitud de	Longitud total de	Número de																		Volumen de	
Tipo	barra	barra	barra	armadura	Cantidad	Espaciado	Α	Α	В	В	С	С	D	D	E	E	G	Н	Н	H1	H2	refuerzo	Peso Kg
		•			•		•		COLUMNA	\ 50X70			-	•	•	•	-				-		
Estribo	10 mm	2320 mm	25520 mm	154	11	100 mm	90 mm		450 mm		650 mm		450 mm		650 mm		90 mm	60 n	nn			0.002004 m ³	15.74
Longitudinal	22 mm	8780 mm	17560 mm	159	2		8220 m	n	0 mm		0 mm		0 mm		0 mm			0 mr	m	320 m	m 320 mm	0.006675 m ³	52.41
Longitudinal	22 mm	8790 mm	17580 mm	155	2		8230 m	n	0 mm		0 mm		0 mm		0 mm			0 mr	m	320 m	m 320 mm	0.006683 m ³	52.47
Longitudinal	20 mm	8770 mm	17540 mm	165	2		8220 m	n	0 mm		0 mm		0 mm		0 mm			0 mr	m	330 m	m 330 mm	0.005510 m ³	43.26
Longitudinal	20 mm	8790 mm	17580 mm	162	2		8240 m	n	0 mm		0 mm		0 mm		0 mm			0 mr	m	330 m	m 330 mm	0.005523 m ³	43.36
Longitudinal	20 mm	8790 mm	17580 mm	162	2		8240 m		0 mm		0 mm		0 mm		0 mm			0 mr	m	330 m	m 330 mm	0.005523 m ³	43.36
Longitudinal	20 mm	8760 mm	17520 mm	164	2		8210 m	n	0 mm		0 mm		0 mm		0 mm			0 mr	m	330 m	m 330 mm	0.005504 m ³	43.21
Longitudinal	20 mm	8770 mm	17540 mm	165	2		8220 m	n	0 mm		0 mm		0 mm		0 mm			0 mr	m	330 m	m 330 mm	0.005510 m ³	43.26
Estribo	10 mm	1810 mm	19910 mm	157	11	100 mm	90 mm		650 mm		200 mm		650 mm		200 mm		90 mm	60 n	nn			0.001564 m ³	12.28
Estribo	10 mm	1570 mm	17270 mm	158	11	100 mm	90 mm		280 mm		450 mm		270 mm		450 mm			60 n				0.001356 m ³	10.65
Estribo	10 mm	2320 mm	25520 mm	154	11	100 mm	90 mm		450 mm		650 mm		450 mm		650 mm			60 n	nn			0.002004 m ³	15.74
Estribo	10 mm	1810 mm	19910 mm	157	11	100 mm	90 mm		650 mm	:	200 mm		650 mm		200 mm			60 n	nn			0.001564 m ³	12.28
Estribo	10 mm	1570 mm	17270 mm	158	11	100 mm	90 mm		280 mm		450 mm		270 mm	+	450 mm			60 n				0.001356 m ³	10.65
Estribo	10 mm	2320 mm	25520 mm	154	11	150 mm	90 mm		450 mm		650 mm		450 mm	-	650 mm			60 n	nn			0.002004 m ³	15.74
Estribo	10 mm	1810 mm	19910 mm	157	11	150 mm	90 mm		650 mm		200 mm	_	650 mm	_	200 mm	_		60 n	nn			0.001564 m ³	12.28
Estribo	10 mm	1570 mm	17270 mm	158	11	150 mm	90 mm		280 mm		450 mm		270 mm	+	450 mm			60 n				0.001356 m ³	10.65
Estribo	10 mm	2320 mm	25520 mm	154	11	100 mm	90 mm		450 mm		650 mm		450 mm	+	650 mm			60 n				0.002004 m ³	15.74
Estribo	10 mm	1810 mm	19910 mm	157	11	100 mm	90 mm		650 mm		200 mm		650 mm		200 mm			60 n	nn			0.001564 m ³	12.28
Estribo	10 mm	1570 mm	17270 mm	158	11	100 mm	90 mm		280 mm		450 mm		270 mm		450 mm			60 n				0.001356 m ³	10.65
Estribo	10 mm	2320 mm	25520 mm	154	11	100 mm	90 mm		450 mm		650 mm		450 mm	+	650 mm			60 n	nn			0.002004 m ³	15.74
Estribo	10 mm	1810 mm	19910 mm	157	11	100 mm	90 mm		650 mm		200 mm		650 mm	+	200 mm		_	60 n	nn			0.001564 m ³	12.28
Estribo	10 mm	1570 mm	17270 mm	158	11	100 mm	90 mm		280 mm		450 mm		270 mm		450 mm			60 n	_			0.001356 m ³	10.65
Estribo	10 mm	2320 mm	25520 mm	154	11	150 mm	90 mm		450 mm		650 mm		450 mm		650 mm			60 n				0.002004 m ³	15.74
Estribo	10 mm	1810 mm	19910 mm	157	11	150 mm	90 mm		650 mm		200 mm		650 mm		200 mm		_	60 n	nn			0.001564 m ³	12.28
Estribo	10 mm	1570 mm	17270 mm	158	11	150 mm	90 mm		280 mm		450 mm		270 mm		450 mm		90 mm	60 n	nn			0.001356 m ³	10.65
																				TOTA	L		553.35
																			No.	Colmna	s 50x70		8
																			TO	TAL GE	NERAL		4426.8

	Diámetro de	Longitud de	Longitud total	de Número de																		Volumen de	
Marca	barra	barra	barra	armadura	Cantidad	Espaciado	Α	Α	В	В	С	С	D	D	E	E	G	Н	Н	H1	H2	refuerzo	Peso Kg
								C	OLUMNA	40X55									<u>'</u>				
Estribo	10 mm	1790 mm	14320 mm	147	8	100 mm	80 mm		500 mm	3	350 mm		500 mm		350 mm		80 mm	60 mr	ĭ			0.001125 m ³	8.83
Longitudinal	18 mm	8780 mm	35120 mm	148	4		8240 mr	n	0 mm	(0 mm		0 mm		0 mm				0 mm	350 mm	270 mm	0.008937 m ³	70.16
Longitudinal	18 mm	8800 mm	35200 mm	149	4		8250 mr	n	0 mm) mm		0 mm		0 mm				0 mm	350 mm	270 mm	0.008957 m ³	70.32
Longitudinal	18 mm	8690 mm	17380 mm	150	2		8220 mr	n	0 mm		0 mm		0 mm		0 mm				0 mm	270 mm	270 mm	0.004423 m ³	34.72
Longitudinal	18 mm	8680 mm	17360 mm	151	2		8220 mr	n	0 mm	(0 mm		0 mm		0 mm				0 mm	270 mm	270 mm	0.004418 m ³	34.68
Estribo	10 mm	1380 mm	11040 mm	152	8	100 mm	80 mm		500 mm	1	140 mm		500 mm		140 mm		80 mm	60 mr	1			0.000867 m ³	6.81
Estribo	10 mm	1360 mm	10880 mm	153	8	100 mm	80 mm		350 mm	2	290 mm		350 mm		290 mm		80 mm	60 mr	1			0.000855 m ³	6.71
Estribo	10 mm	1790 mm	12530 mm	147	7	100 mm	80 mm		500 mm	3	350 mm		500 mm		350 mm		80 mm	60 mr	1			0.000984 m ³	7.73
Estribo	10 mm	1380 mm	9660 mm	152	7	100 mm	80 mm		500 mm	1	140 mm		500 mm		140 mm		80 mm	60 mr	ĭ			0.000759 m ³	5.96
Estribo	10 mm	1360 mm	9520 mm	153	7	100 mm	80 mm		350 mm	2	290 mm		350 mm		290 mm		80 mm	60 mr	ĭ			0.000748 m ³	5.87
Estribo	10 mm	1790 mm	19690 mm	147	11	150 mm	80 mm		500 mm	3	350 mm		500 mm		350 mm		80 mm	60 mr	1			0.001546 m ³	12.14
Estribo	10 mm	1380 mm	15180 mm	152	11	150 mm	80 mm		500 mm	1	140 mm		500 mm		140 mm		80 mm	60 mr	1			0.001192 m ³	9.36
Estribo	10 mm	1360 mm	14960 mm	153	11	150 mm	80 mm		350 mm		290 mm		350 mm		290 mm		80 mm	60 mr	ĭ			0.001175 m ³	9.22
Estribo	10 mm	1790 mm	14320 mm	147	8	100 mm	80 mm		500 mm	3	350 mm		500 mm		350 mm		80 mm	60 mr	ĭ			0.001125 m ³	8.83
Estribo	10 mm	1380 mm	11040 mm	152	8	100 mm	80 mm		500 mm		140 mm		500 mm		140 mm			60 mr	ĭ			0.000867 m ³	6.81
Estribo	10 mm	1360 mm	10880 mm	153	8	100 mm	80 mm		350 mm	2	290 mm		350 mm		290 mm		80 mm	60 mr	ĭ			0.000855 m ³	6.71
Estribo	10 mm	1790 mm	14320 mm	147	8	100 mm	80 mm		500 mm		350 mm		500 mm		350 mm			60 mr	1			0.001125 m ³	8.83
Estribo	10 mm	1380 mm	11040 mm	152	8	100 mm	80 mm		500 mm	1	140 mm		500 mm		140 mm		80 mm	60 mr	ĭ			0.000867 m ³	6.81
Estribo	10 mm	1360 mm	10880 mm	153	8	100 mm	80 mm		350 mm	2	290 mm		350 mm		290 mm		80 mm	60 mr	ĭ			0.000855 m ³	6.71
Estribo	10 mm	1790 mm	14320 mm	147	8	100 mm	80 mm		500 mm	3	350 mm		500 mm		350 mm		80 mm	60 mr	ĭ			0.001125 m ³	8.83
Estribo	10 mm	1380 mm	11040 mm	152	8	100 mm	80 mm		500 mm		140 mm		500 mm		140 mm			60 mr				0.000867 m ³	6.81
Estribo	10 mm	1360 mm	10880 mm	153	8	100 mm	80 mm		350 mm	2	290 mm		350 mm		290 mm		80 mm	60 mr	ĭ			0.000855 m ³	6.71
Estribo	10 mm	1790 mm	26850 mm	147	15	150 mm	80 mm		500 mm		350 mm		500 mm		350 mm			60 mr				0.002109 m ³	16.56
Estribo	10 mm	1380 mm	20700 mm	152	15	150 mm	80 mm		500 mm	1	140 mm		500 mm		140 mm		80 mm	60 mr	ĭ			0.001626 m ³	12.76
Estribo	10 mm	1360 mm	20400 mm	153	15	150 mm	80 mm		350 mm	2	290 mm		350 mm		290 mm		80 mm	60 mr	1			0.001602 m ³	12.58
Total general:	2																			TOTAL			391.46
																			No. 0	Colmnas	40x55		2
																			TOT	AL GENE	FΑI		782.92

																			тот	AL GEN	ERAL		782.92
	Diámetro de	Longitud de	Longitud total de	Número de																		Volumen de	
Marca	barra	barra	barra	armadura	Cantidad	Espaciado	Α	Α	В	В	С	С	D	D	E	E	G	Н	Н	H1	H2	refuerzo	Peso Kg
								COL	UMNA D	E MURO													
Estribo	10 mm	1320 mm	14520 mm	166	11	100 mm	90 mm		250 mm		350 mm		250 mm		350 mm		90 mm	60 mn				0.001140 m ³	8.95
	14 mm	8610 mm	17220 mm	178	2			8260 mr		0 mm		0 mm		0 mm		0 mm			0 mm	250 mm	150 mm	0.002651 m ³	20.81
	14 mm	8610 mm	17220 mm	178	2			8260 mr		0 mm		0 mm		0 mm		0 mm			0 mm	250 mm	150 mm	0.002651 m ³	20.81

								COL	.UMNA DE MU	RO												
Estribo	10 mm	1320 mm	14520 mm	166	11	100 mm	90 mm		250 mm	350 mr	า	250 mm		350 mm	9) mm	60 mn	1			0.001140 m ³	8.95
	14 mm	8610 mm	17220 mm	178	2			8260 mn	0 mr	ı	0 mm		0 mm		0 mm			0 mm	250 mm	150 mm	0.002651 m ³	20.81
	14 mm	8610 mm	17220 mm	178	2			8260 mn	0 mr	1	0 mm		0 mm		0 mm			0 mm	250 mm	150 mm	0.002651 m ³	20.81
	12 mm	8630 mm	17260 mm	174	2			8280 mn	0 mr	ı	0 mm		0 mm		0 mm			0 mm	250 mm	150 mm	0.001952 m ³	15.33
	12 mm	8610 mm	17220 mm	171	2			8260 mn	0 mr	ı	0 mm		0 mm		0 mm			0 mm	250 mm	150 mm	0.001948 m ³	15.29
	12 mm	8620 mm	17240 mm	177	2			8270 mn	0 mr	n	0 mm		0 mm		0 mm			0 mm	250 mm	150 mm	0.001950 m ³	15.31
	12 mm	8620 mm	17240 mm	177	2			8270 mn	0 mr	า	0 mm		0 mm		0 mm			0 mm	250 mm	150 mm	0.001950 m ³	15.31
Estribo	10 mm	1320 mm	10560 mm	166	8	150 mm	90 mm		250 mm	350 mr	n	250 mm		350 mm	9	0 mm	60 mn				0.000829 m ³	6.51
Estribo	10 mm	1320 mm	14520 mm	166	11	100 mm	90 mm		250 mm	350 mr	า	250 mm		350 mm	9	0 mm	60 mn	ı			0.001140 m ³	8.95
Estribo	10 mm	1320 mm	14520 mm	166	11	100 mm	90 mm		250 mm	350 mr	า	250 mm		350 mm	9	0 mm	60 mn				0.001140 m ³	8.95
Estribo	10 mm	1320 mm	10560 mm	166	8	150 mm	90 mm		250 mm	350 mr	n	250 mm		350 mm	9	0 mm	60 mn				0.000829 m ³	6.51
Estribo	10 mm	1320 mm	14520 mm	166	11	100 mm	90 mm		250 mm	350 mr	n	250 mm		350 mm	9	0 mm	60 mn	1			0.001140 m ³	8.95
Estribo	10 mm	1320 mm	5280 mm	166	4	100 mm	90 mm		250 mm	350 mr	n	250 mm		350 mm	9	0 mm	60 mn	1			0.000415 m ³	3.26
		-		-	-	-			•	-												

TOTAL 154.94 12 No. Colmnas de muro 1859.28 TOTAL GENERAL

Marca	Diámetro de ba	Longitud de	b Longitud total de	Número de arma	Cantidad	Espaciado	Α	Α	В В	С		C D	D	E	E	G	Н	H H1	H2	Volumen de ref	u Peso Kg
	•			•		•	_	С	OLUMNA 40	0X50			,		•			•			
Estribo	10 mm	1690 mm	13520 mm	139	8	100 mm	80 mm		450 mm	35	0 mm	450 mm	ı	350 mm		80 mm	60 mn			0.001062 m ³	8.34
Estribo	10 mm	1280 mm	10240 mm	141	8	100 mm	80 mm		450 mm	14	0 mm	450 mm	ı	140 mm		80 mm	60 mn			0.000804 m ³	6.31
Estribo	10 mm	1260 mm	10080 mm	142	8	100 mm	80 mm		350 mm	24	0 mm	350 mm	ı	240 mm		80 mm	60 mn			0.000792 m ³	6.22
Estribo	10 mm	1690 mm	13520 mm	139	8	100 mm	80 mm		450 mm	35	0 mm	450 mm	ì	350 mm		80 mm	60 mn			0.001062 m ³	8.34
Estribo	10 mm	1280 mm	10240 mm	141	8	100 mm	80 mm		450 mm	14	0 mm	450 mm	1	140 mm		80 mm	60 mn			0.000804 m ³	6.31
Estribo	10 mm	1260 mm	10080 mm	142	8	100 mm	80 mm		350 mm	24	0 mm	350 mm	1	240 mm		80 mm	60 mn			0.000792 m ³	6.22
Estribo	10 mm	1690 mm	25350 mm	139	15	150 mm	80 mm		450 mm	35	0 mm	450 mm	ı	350 mm		80 mm	60 mn			0.001991 m ³	15.63
Estribo	10 mm	1280 mm	19200 mm	141	15	150 mm	80 mm		450 mm	14	0 mm	450 mm	1	140 mm		80 mm	60 mn			0.001508 m ³	11.84
Estribo	10 mm	1260 mm	18900 mm	142	15	150 mm	80 mm		350 mm	24	0 mm	350 mm	ı	240 mm		80 mm	60 mn			0.001484 m ³	11.65
Estribo	10 mm	1690 mm	13520 mm	139	8	100 mm	80 mm		450 mm	35	0 mm	450 mm	ı	350 mm		80 mm	60 mn			0.001062 m ³	8.34
Longitudinal	18 mm	8760 mm	35040 mm	144	4		8220 mn		0 mm	0 r	nm	0 mm		0 mm			0 mm		m 270 m		70
Longitudinal	18 mm	8770 mm	35080 mm	145	4		8230 mn	ı	0 mm	0 r	nm	0 mm		0 mm			0 mm	350 m	m 270 m	m 0.008927 m ³	70.08
Longitudinal	18 mm	8660 mm	17320 mm	143	2		8200 mn		0 mm	0 r	nm	0 mm		0 mm			0 mm	270 m	m 270 m	m 0.004407 m ³	34.6
Longitudinal	18 mm	8670 mm	17340 mm	146	2		8200 mn		0 mm	0 r	nm	0 mm		0 mm			0 mm	270 m	m 270 m	m 0.004412 m ³	34.64
Estribo	10 mm	1280 mm	10240 mm	141	8	100 mm	80 mm		450 mm	14	0 mm	450 mm	ı	140 mm		80 mm	60 mn			0.000804 m ³	6.31
Estribo	10 mm	1260 mm	10080 mm	142	8	100 mm	80 mm		350 mm	24	0 mm	350 mm	ı	240 mm		80 mm	60 mn			0.000792 m ³	6.22
Estribo	10 mm	1690 mm	11830 mm	139	7	100 mm	80 mm		450 mm	35	0 mm	450 mm	ı	350 mm		80 mm	60 mn			0.000929 m ³	7.29
Estribo	10 mm	1280 mm	8960 mm	141	7	100 mm	80 mm		450 mm		0 mm	450 mm	ı	140 mm		80 mm	60 mn			0.000704 m ³	5.52
Estribo	10 mm	1260 mm	8820 mm	142	7	100 mm	80 mm		350 mm	24	0 mm	350 mm	1	240 mm		80 mm	60 mn			0.000693 m ³	5.44
Estribo	10 mm	1690 mm	20280 mm	139	12	150 mm	80 mm		450 mm	35	0 mm	450 mm	ı	350 mm		80 mm	60 mn			0.001593 m ³	12.5
Estribo	10 mm	1280 mm	15360 mm	141	12	150 mm	80 mm		450 mm	14	0 mm	450 mm	1	140 mm		80 mm	60 mn			0.001206 m ³	9.47
Estribo	10 mm	1260 mm	15120 mm	142	12	150 mm	80 mm		350 mm	24	0 mm	350 mm	1	240 mm		80 mm	60 mn			0.001188 m ³	9.32
Estribo	10 mm	1690 mm	13520 mm	139	8	100 mm	80 mm		450 mm	35	0 mm	450 mm	ı	350 mm		80 mm	60 mn			0.001062 m ³	8.34
Estribo	10 mm	1280 mm	10240 mm	141	8	100 mm	80 mm		450 mm	14	0 mm	450 mm	ı	140 mm		80 mm	60 mn			0.000804 m ³	6.31
Estribo	10 mm	1260 mm	10080 mm	142	8	100 mm	80 mm		350 mm	24	0 mm	350 mm	1	240 mm		80 mm	60 mn			0.000792 m ³	6.22
																		TOTA	L		381.46
																		No. Colmna	s 40x50		12
																		TOTAL GE	NERAL		4577.52

	Diámetro de	Longitud de	Longitud total de	Número de																		Volumen de	
Marca	barra	barra	barra	armadura	Cantidad	Espaciado	Α	Α	В	В	С	С	D	D	E	E	G	Н	Н	H1	H2	refuerzo	Peso Kg
		•				•	<u>'</u>	•	MUR	os		<u>'</u>	•		'	•		•	<u> </u>	<u>'</u>	•	•	
	16 mm	8650 mm	43250 mm	182	5	150 mm		8260 mr		0 mm		0 mm		0 mm		0 mm			0 mm	300 mm	150 mm	0.008696 m ³	68.27
	16 mm	8650 mm	43250 mm	182	5	150 mm		8260 mr		0 mm		0 mm		0 mm		0 mm			0 mm	300 mm	150 mm	0.008696 m ³	68.27
	16 mm	8650 mm	51900 mm	182	6	150 mm		8260 mr		0 mm		0 mm		0 mm		0 mm			0 mm	300 mm	150 mm	0.010435 m ³	81.93
	16 mm	8650 mm	51900 mm	182	6	150 mm		8260 mr		0 mm		0 mm		0 mm		0 mm			0 mm	300 mm	150 mm	0.010435 m ³	81.93
	12 mm	3070 mm	70610 mm	183	23	150 mm	150 mm	1280 mr		1610 m	1	160 mm		0 mm								0.007986 m ³	62.7
	12 mm	3070 mm	82890 mm	183	27	150 mm	150 mm	1280 mr		1610 m	1	160 mm		0 mm								0.009375 m ³	73.6
	12 mm	1500 mm	34500 mm	184	23	150 mm		150 mm		1250 m	1	150 mm		0 mm		0 mm			0 mm	0 mm	0 mm	0.003902 m ³	30.63
	12 mm	1810 mm	41630 mm	185	23	150 mm		150 mm		1550 m	1	150 mm		0 mm		0 mm			0 mm	0 mm	0 mm	0.004708 m ³	36.96
	12 mm	1810 mm	41630 mm	185	23	150 mm		150 mm		1550 m	1	150 mm		0 mm		0 mm			0 mm	0 mm	0 mm	0.004708 m ³	36.96
	12 mm	1500 mm	34500 mm	184	23	150 mm		150 mm		1250 m	1	150 mm		0 mm		0 mm			0 mm	0 mm	0 mm	0.003902 m ³	30.63
	,				-	-	-		-				-		-			-		TOTAL			571.88

No muros TOTAL GENERAL

2287.52

Diámetro de barra	Longitud de barra	Longitud total de barra	Cantidad	Espaciado	Α	В	С	D	E	G	Н	Н	H1	H2	Volumen de refuerzo	UBICACIÓN	Peso Kg
						VIG	A EJE 1 N1 :	15x25									
10 mm	7500 mm	15000 mm	2		750 mm	40 mm	6720 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.001178 m ³	VIGA EJE 1 N1	9.25
12 mm	3960 mm	7920 mm	2		3880 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	100 mm	0.000896 m ³	VIGA EJE 1 N1	7.03
12 mm	2750 mm	5500 mm	2		2670 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	100 mm	0.000622 m ³	VIGA EJE 1 N1	4.88
12 mm	7520 mm	15040 mm	2		6730 mm	40 mm	750 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.001701 m ³	VIGA EJE 1 N1	13.35
10 mm	680 mm	4080 mm	6	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 1 N1	2.52
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N1	2.94
12 mm	4790 mm	9580 mm	2		750 mm	50 mm	4000 mm	20 mm	40 mm			0 mm	0 mm	0 mm	0.001083 m ³	VIGA EJE 1 N1	8.51
12 mm	8020 mm	16040 mm	2		7230 mm	40 mm	750 mm	20 mm	30 mm			0 mm	0 mm	0 mm	0.001814 m ³	VIGA EJE 1 N1	14.24
10 mm	680 mm	4080 mm	6	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 1 N1	2.52
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N1	2.94
12 mm	9980 mm	19960 mm	2		740 mm	40 mm	9200 mm	20 mm	30 mm			0 mm	0 mm	0 mm	0.002257 m ³	VIGA EJE 1 N1	17.72
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N1	2.94
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N1	2.94
12 mm	7630 mm	15260 mm	2		750 mm	40 mm	6850 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.001726 m ³	VIGA EJE 1 N1	13.55
12 mm	5470 mm	10940 mm	2		4680 mm	40 mm	750 mm	20 mm	40 mm			0 mm	0 mm	0 mm	0.001237 m ³	VIGA EJE 1 N1	9.71
10 mm	680 mm	4080 mm	6	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 1 N1	2.52
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N1	2.94
10 mm	680 mm	4080 mm	6	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 1 N1	2.52
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N1	2.94
12 mm	5540 mm	11080 mm	2		750 mm	40 mm	4680 mm	20 mm	30 mm			0 mm	100 mm	0 mm	0.001253 m ³	VIGA EJE 1 N1	9.84
12 mm	4090 mm	8180 mm	2		3230 mm	40 mm	750 mm	30 mm	30 mm			0 mm	0 mm	100 mm	0.000925 m ³	VIGA EJE 1 N1	7.26
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N1	2.94
10 mm	680 mm	5440 mm	8	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000427 m ³	VIGA EJE 1 N1	3.35
10 mm	680 mm	28560 mm	42	150 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.002243 m ³	VIGA EJE 1 N1	17.61
12 mm	7500 mm	15000 mm	2		750 mm	40 mm	6710 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.001696 m ³	VIGA EJE 1 N1	13.32
10 mm	680 mm	38080 mm	56	150 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.002991 m ³	VIGA EJE 1 N1	23.48
10 mm	680 mm	9520 mm	14	150 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000748 m ³	VIGA EJE 1 N1	5.87
10 mm	680 mm	38080 mm	56	150 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.002991 m ³	VIGA EJE 1 N1	23.48
10 mm	680 mm	28560 mm	42	150 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.002243 m ³	VIGA EJE 1 N1	17.61
12 mm	5460 mm	10920 mm	2		4680 mm	40 mm	750 mm	20 mm	40 mm			0 mm	0 mm	0 mm	0.001235 m ³	VIGA EJE 1 N1	9.7
12 mm	9070 mm	18140 mm	2		8290 mm	40 mm	750 mm	20 mm	40 mm			0 mm	0 mm	0 mm	0.002052 m ³	VIGA EJE 1 N1	16.11
12 mm	6790 mm	13580 mm	2		750 mm	40 mm	6010 mm	20 mm	30 mm			0 mm	0 mm	0 mm	0.001536 m ³	VIGA EJE 1 N1	12.06

						VIGA	EJE 1 N2	15x25									
						7.071								П			
10 mm	5520 mm	11040 mm	2		5440 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	100 mm	0.000867 m ³	VIGA EJE 1 N2	6.81
10 mm	4280 mm	8560 mm	2		4200 mm		0 mm	0 mm	0 mm			0 mm	-	100 mm	0.000672 m ³	VIGA EJE 1 N2	5.28
10 mm	680 mm	4080 mm	6	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 1 N2	2.52
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N2	2.94
10 mm	7520 mm	15040 mm	2		6740 mm	40 mm	750 mm	20 mm	30 mm			0 mm	0 mm	0 mm	0.001181 m ³	VIGA EJE 1 N2	9.27
10 mm	680 mm	4080 mm	6	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 1 N2	2.52
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N2	2.94
10 mm	4790 mm	9580 mm	2		750 mm	40 mm	4000 mm	20 mm	30 mm			0 mm	0 mm	0 mm	0.000752 m ³	VIGA EJE 1 N2	5.91
10 mm	8020 mm	16040 mm	2		7240 mm	30 mm	750 mm	20 mm	30 mm			0 mm	0 mm	0 mm	0.001260 m ³	VIGA EJE 1 N2	9.89
10 mm	680 mm	4080 mm	6	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 1 N2	2.52
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N2	2.94
10 mm	9980 mm	19960 mm	2		750 mm	20 mm	9210 mm	20 mm	20 mm			0 mm	0 mm	0 mm	0.001568 m ³	VIGA EJE 1 N2	12.31
10 mm	4580 mm	9160 mm	2		3780 mm	60 mm	750 mm	20 mm	50 mm			0 mm	0 mm	0 mm	0.000719 m ³	VIGA EJE 1 N2	5.65
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N2	2.94
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N2	2.94
10 mm	7630 mm	15260 mm	2		750 mm	40 mm	6850 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.001199 m ³	VIGA EJE 1 N2	9.41
10 mm	5470 mm	10940 mm	2		4680 mm	40 mm	760 mm	20 mm	30 mm			0 mm	0 mm	0 mm	0.000859 m ³	VIGA EJE 1 N2	6.75
10 mm	680 mm	4080 mm	6	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 1 N2	2.52
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N2	2.94
10 mm	680 mm	4080 mm	6	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 1 N2	2.52
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N2	2.94
10 mm	5540 mm	11080 mm	2		750 mm	40 mm	4680 mm	20 mm	30 mm			0 mm	100 mm	0 mm	0.000870 m ³	VIGA EJE 1 N2	6.83
10 mm	4090 mm	8180 mm	2		3230 mm	40 mm	750 mm	30 mm	30 mm			0 mm	0 mm	100 mm	0.000642 m ³	VIGA EJE 1 N2	5.04
10 mm	680 mm	4760 mm	7	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 1 N2	2.94
10 mm	680 mm	5440 mm	8	100 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000427 m ³	VIGA EJE 1 N2	3.35
10 mm	680 mm	28560 mm	42	150 mm					100 mm	70 mm	60 mm				0.002243 m ³	VIGA EJE 1 N2	17.61
10 mm	7500 mm	15000 mm	2		750 mm	40 mm	6720 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.001178 m ³	VIGA EJE 1 N2	9.25
10 mm	680 mm	38080 mm	56	150 mm	70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.002991 m ³	VIGA EJE 1 N2	23.48
10 mm	680 mm	9520 mm	14				100 mm			70 mm	60 mm				0.000748 m ³	VIGA EJE 1 N2	5.87
10 mm	680 mm	38080 mm	56	150 mm	_		100 mm			70 mm	60 mm				0.002991 m ³	VIGA EJE 1 N2	23.48
10 mm	680 mm	28560 mm	42				100 mm			70 mm	60 mm				0.002243 m ³	VIGA EJE 1 N2	17.61
10 mm	5460 mm	10920 mm	2		4680 mm	40 mm	750 mm	20 mm	30 mm			0 mm	0 mm	0 mm	0.000858 m ³	VIGA EJE 1 N2	6.73
10 mm	9070 mm	18140 mm	2		8290 mm	40 mm	750 mm	20 mm	30 mm			0 mm	0 mm	0 mm	0.001425 m ³	VIGA EJE 1 N2	11.19
10 mm	6790 mm	13580 mm	2		750 mm	40 mm	6010 mm	20 mm	30 mm			0 mm	0 mm	0 mm	0.001067 m ³	VIGA EJE 1 N2	8.37

						VIGA I	EJE 2 N1	30x50						-			
16 mm	2000 mm	2000 mm	1		2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000402 m ³	VIGA EJE 2 N1	3.16
16 mm	4790 mm	14370 mm	3		4620 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	210 mm	0.002889 m ³	VIGA EJE 2 N1	22.68
14 mm	2850 mm	11400 mm	4		2670 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	210 mm	0.001755 m ³	VIGA EJE 2 N1	13.78
14 mm	9770 mm	39080 mm	4		8960 mm	70 mm	750 mm	30 mm	60 mm			0 mm	0 mm	0 mm	0.006016 m ³	VIGA EJE 2 N1	47.23
10 mm	1480 mm	16280 mm	11	100 mm	70 mm 4	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 2 N1	10.04
10 mm	1480 mm	11840 mm	8	100 mm	70 mm 4	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000930 m ³	VIGA EJE 2 N1	7.3
10 mm	1480 mm	39960 mm	27	150 mm	70 mm 4	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.003138 m ³	VIGA EJE 2 N1	24.64
16 mm	9790 mm	29370 mm	3		750 mm	50 mm	9000 mm	40 mm	40 mm			0 mm	0 mm	0 mm	0.005905 m ³	VIGA EJE 2 N1	46.36
16 mm	6790 mm	20370 mm	3		750 mm	50 mm	6000 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.004096 m ³	VIGA EJE 2 N1	32.15
14 mm	9980 mm	39920 mm	4		9190 mm (60 mm	750 mm	30 mm	50 mm			0 mm	0 mm	0 mm	0.006145 m ³	VIGA EJE 2 N1	48.25
10 mm	1480 mm	16280 mm	11	100 mm	70 mm 4	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 2 N1	10.04
10 mm	1480 mm	16280 mm	11	100 mm	70 mm 4	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 2 N1	10.04
10 mm	1480 mm	71040 mm	48	150 mm	70 mm 4	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.005579 m ³	VIGA EJE 2 N1	43.8
16 mm	6870 mm	20610 mm	3		750 mm	50 mm	6070 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.004144 m ³	VIGA EJE 2 N1	32.53
10 mm	1480 mm	16280 mm	11	100 mm	70 mm 4	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 2 N1	10.04
10 mm	1480 mm	16280 mm	11	100 mm	70 mm 4	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 2 N1	10.04
14 mm	8930 mm	35720 mm	4		8140 mm	50 mm	750 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.005499 m ³	VIGA EJE 2 N1	43.17
10 mm	1480 mm	10360 mm	7	150 mm	70 mm 4	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000814 m ³	VIGA EJE 2 N1	6.39
10 mm	1480 mm	16280 mm	11	100 mm	70 mm 4	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 2 N1	10.04
16 mm	2000 mm	6000 mm	3		2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.001206 m ³	VIGA EJE 2 N1	9.47
14 mm	2000 mm	2000 mm	1		2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE 2 N1	2.42
16 mm	2000 mm	6000 mm	3		2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.001206 m ³	VIGA EJE 2 N1	9.47
16 mm	2000 mm	6000 mm	3			0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.001206 m ³	VIGA EJE 2 N1	9.47
16 mm	2000 mm	6000 mm	3		2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.001206 m ³	VIGA EJE 2 N1	9.47
16 mm	2000 mm	2000 mm	1		2000 mm	-	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000402 m ³	VIGA EJE 2 N1	3.16
14 mm	2000 mm	2000 mm	1			0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE 2 N1	2.42
16 mm	9300 mm	27900 mm	3		750 mm				40 mm			0 mm	0 mm	0 mm	0.005610 m ³	VIGA EJE 2 N1	44.04
10 mm	1480 mm	16280 mm	11		70 mm 4										0.001279 m ³	VIGA EJE 2 N1	10.04
10 mm	1480 mm	16280 mm	11		70 mm 4										0.001279 m ³	VIGA EJE 2 N1	10.04
10 mm	1480 mm	71040 mm	48		70 mm 4					70 mm	60 mm				0.005579 m ³	VIGA EJE 2 N1	43.8
14 mm	8070 mm	32280 mm	4		7290 mm !							0 mm	0 mm	0 mm	0.004969 m ³	VIGA EJE 2 N1	39.01
16 mm	8110 mm	24330 mm	3		750 mm							0 mm	240 mm	0 mm	0.004892 m ³	VIGA EJE 2 N1	38.41
14 mm	6020 mm	24080 mm	4		5050 mm							0 mm	0 mm	210 mm	0.003707 m ³	VIGA EJE 2 N1	29.1
10 mm	1480 mm	16280 mm	11		70 mm 4										0.001279 m ³	VIGA EJE 2 N1	10.04
10 mm	1480 mm	38480 mm	26		70 mm 4										0.003022 m ³	VIGA EJE 2 N1	23.73
10 mm	1480 mm	16280 mm	11		70 mm 4										0.001279 m ³	VIGA EJE 2 N1	10.04
10 mm	1480 mm	13320 mm	9		70 mm 4										0.001046 m ³	VIGA EJE 2 N1	8.21
10 mm	1480 mm	20720 mm	14	100 mm	70 mm 4	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001627 m ³	VIGA EJE 2 N1	12.78

						VIGA E	JE 2 N2	30x50									
14 mm	6190 mm	18570 mm	3		6010 mm(0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	210 mm	0.002859 m ³	VIGA EJE 2 N2	22.44
14 mm	7460 mm	29840 mm	4		7280 mm (0 mm	0 mm	0 mm	0 mm			0 mm		210 mm	0.004594 m ³	VIGA EJE 2 N2	36.06
10 mm	1480 mm	8880 mm	6	100 mm	70 mm 45	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000697 m ³	VIGA EJE 2 N2	5.48
10 mm	1480 mm	11840 mm	8	100 mm	70 mm 45	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000930 m ³	VIGA EJE 2 N2	7.3
14 mm	7070 mm	28280 mm	4		6280 mm 5	0 mm	740 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.004353 m ³	VIGA EJE 2 N2	34.18
10 mm	1480 mm	8880 mm	6	100 mm	70 mm 45	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000697 m ³	VIGA EJE 2 N2	5.48
10 mm	1480 mm	11840 mm	8	100 mm	70 mm 45	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000930 m ³	VIGA EJE 2 N2	7.3
10 mm	1480 mm	44400 mm	30	150 mm	70 mm 45	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.003487 m ³	VIGA EJE 2 N2	27.38
14 mm	9290 mm	27870 mm	3		750 mm 5	50 mm 8	8500 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.004290 m ³	VIGA EJE 2 N2	33.68
14 mm	8290 mm	33160 mm	4		7500 mm 5	50 mm	750 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.005105 m ³	VIGA EJE 2 N2	40.08
10 mm	1480 mm	16280 mm	11	100 mm	70 mm 45	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 2 N2	10.04
10 mm	1480 mm	16280 mm	11	100 mm	70 mm 45	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 2 N2	10.04
10 mm	1480 mm	71040 mm	48	150 mm	70 mm 45	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.005579 m ³	VIGA EJE 2 N2	43.8
14 mm	9030 mm	27090 mm	3		750 mm 7	70 mm 8	8220 mm	30 mm	60 mm			0 mm	0 mm	0 mm	0.004170 m ³	VIGA EJE 2 N2	32.74
10 mm	1480 mm	16280 mm	11	100 mm	70 mm 45	50 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 2 N2	10.04
10 mm	1480 mm	16280 mm	11		70 mm 45										0.001279 m ³	VIGA EJE 2 N2	10.04
10 mm	1480 mm	10360 mm	7		70 mm 45					70 mm	60 mm				0.000814 m ³	VIGA EJE 2 N2	6.39
14 mm	7530 mm	22590 mm	3		750 mm 4				30 mm			0 mm	0 mm	0 mm	0.003477 m ³	VIGA EJE 2 N2	27.3
14 mm	7490 mm	29960 mm	4		6700 mm 4							0 mm	0 mm	0 mm	0.004612 m ³	VIGA EJE 2 N2	36.21
10 mm	1480 mm	8880 mm	6		70 mm 45						60 mm				0.000697 m ³	VIGA EJE 2 N2	5.48
10 mm	1480 mm	10360 mm	7		70 mm 45										0.000814 m ³	VIGA EJE 2 N2	6.39
10 mm	1480 mm	82880 mm	56		70 mm 45					70 mm	60 mm				0.006509 m ³	VIGA EJE 2 N2	51.11
14 mm	4640 mm	18560 mm	4		3850 mm 5				40 mm			0 mm	0 mm	0 mm	0.002857 m ³	VIGA EJE 2 N2	22.43
14 mm	5740 mm	22960 mm	4		4230 mm 5				40 mm			0 mm	0 mm	0 mm	0.003534 m³	VIGA EJE 2 N2	27.75
14 mm	6840 mm	20520 mm	3		840 mm 5							0 mm	0 mm	0 mm	0.003159 m ³	VIGA EJE 2 N2	24.8
10 mm	1480 mm	8880 mm	6		70 mm 45					_					0.000697 m ³	VIGA EJE 2 N2	5.48
10 mm	1480 mm	10360 mm	7		70 mm 45										0.000814 m ³	VIGA EJE 2 N2	6.39
10 mm	1480 mm	62160 mm	42		70 mm 45					70 mm	60 mm				0.004882 m ³	VIGA EJE 2 N2	38.33
14 mm	5650 mm	16950 mm	3		750 mm 4	_			_			0 mm	210 mm	0 mm	0.002609 m ³	VIGA EJE 2 N2	20.49
10 mm	1480 mm	10360 mm	7		70 mm 45						60 mm				0.000814 m ³	VIGA EJE 2 N2	6.39
10 mm	1480 mm	11840 mm	8		70 mm 45					70 mm	60 mm				0.000930 m ³	VIGA EJE 2 N2	7.3
14 mm	2000 mm	2000 mm	1		2000 mm (_	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE 2 N2	2.42
10 mm	1480 mm	16280 mm	11	100 mm					250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 2 N2	10.04
14 mm	2000 mm	4000 mm	2		2000 mm (0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000616 m ³	VIGA EJE 2 N2	4.83
14 mm	7790 mm	23370 mm	3		770 mm 4	10 mm (6980 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.003598 m ³	VIGA EJE 2 N2	28.24
14 mm	2000 mm	4000 mm	2			0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000616 m ³	VIGA EJE 2 N2	4.83
14 mm	2000 mm	4000 mm	2			0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000616 m ³	VIGA EJE 2 N2	4.83
14 mm	2000 mm	2000 mm	1			0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE 2 N2	2.42
14 mm	2000 mm	4000 mm	2			0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000616 m ³	VIGA EJE 2 N2	4.83
14 mm	7530 mm	30120 mm	4		6550 mm 5	0 mm	750 mm	30 mm	30 mm			0 mm	0 mm	210 mm	0.004637 m ³	VIGA EJE 2 N2	36.4
12 mm	2000 mm	2000 mm	1			0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000226 m ³	VIGA EJE 2 N2	1.78
12 mm	2000 mm	2000 mm	1		2000 mm (0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000226 m ³	VIGA EJE 2 N2	1.78

						VI	GA EJE	3 N2 30	x50								
16 mn	10850 mm	65100 mm	6		0420 mr	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.013089 m ³	VIGA EJE 3 N2 30X50	102.76
16 mn	10850 mm	65100 mm	6		0420 mr	0 mm	0 mm	0 mm	0 mm			0 mm		250 mm	0.013089 m ³	VIGA EJE 3 N2 30X50	102.76
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 3 N2 30X50	10.31
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 3 N2 30X50	10.31
10 mm	1520 mm	72960 mm	48	150 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.005730 m ³	VIGA EJE 3 N2 30X50	44.99
16 mm	10850 mm	65100 mm	6		0420 mr	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.013089 m ³	VIGA EJE 3 N2 30X50	102.76
16 mm	10850 mm	65100 mm	6		0420 mr	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.013089 m ³	VIGA EJE 3 N2 30X50	102.76
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 3 N2 30X50	10.31
10 mm	1520 mm	16720 mm	11	100 mm					250 mm		60 mm				0.001313 m ³	VIGA EJE 3 N2 30X50	10.31
10 mm	1520 mm	72960 mm	48	150 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.005730 m ³	VIGA EJE 3 N2 30X50	44.99
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 3 N2 30X50	10.31
16 mm	4640 mm	27840 mm	6		4210 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.005598 m ³	VIGA EJE 3 N2 30X50	43.95
16 mm	4640 mm	27840 mm	6		4210 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.005598 m ³	VIGA EJE 3 N2 30X50	43.95
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 3 N2 30X50	10.31
10 mm	1520 mm	10640 mm	7	150 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.000836 m ³	VIGA EJE 3 N2 30X50	6.56
16 mm	2240 mm	13440 mm	6		1830 mm	_	0 mm	0 mm	0 mm			0 mm	240 mm	240 mm	0.002702 m ³	VIGA EJE 3 N2 30X50	21.22
10 mm	1520 mm	21280 mm	14	100 mm	90 mm				250 mm		60 mm				0.001671 m ³	VIGA EJE 3 N2 30X50	13.12
10 mm		21280 mm	14	100 mm	90 mm		250 mm	450 mm	250 mm	90 mm	60 mm				0.001671 m ³	VIGA EJE 3 N2 30X50	13.12
16 mm	2220 mm	13320 mm	6		1790 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.002678 m ³	VIGA EJE 3 N2 30X50	21.03
16 mm	2230 mm	13380 mm	6		1800 mm	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	250 mm	0.002690 m ³	VIGA EJE 3 N2 30X50	21.12
16 mm	2200 mm	13200 mm	6		1780 mm	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	240 mm	0.002654 m ³	VIGA EJE 3 N2 30X50	20.84
						VI	GA EJE	3 N2 45	x75								
16 mm	8870 mm	53220 mm	6		8400 mm	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.010701 m ³	VIGA EJE 3 N2 45X75	84.01
16 mm	8870 mm	53220 mm	6		8400 mm		0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.010701 m ³	VIGA EJE 3 N2 45X75	84.01
10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE 3 N2 45X75	22.89
10 mm	2320 mm	37120 mm	16	100 mm		700 mm					60 mm				0.002915 m ³	VIGA EJE 3 N2 45X75	22.89
10 mm	2320 mm	67280 mm	29	150 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.005284 m ³	VIGA EJE 3 N2 45X75	41.49
16 mn		53280 mm	6		8400 mm	-	0 mm	0 mm	0 mm			0 mm		300 mm	0.010713 m ³	VIGA EJE 3 N2 45X75	84.1
16 mm	8870 mm	53220 mm	6		8400 mm		0 mm	0 mm	0 mm			0 mm	240 mm	300 mm		VIGA EJE 3 N2 45X75	84.01
10 mn		37920 mm	16	100 mm		700 mm					60 mm				0.002978 m ³	VIGA EJE 3 N2 45X75	23.38
10 mn		37920 mm	16	100 mm		700 mm					60 mm				0.002978 m ³	VIGA EJE 3 N2 45X75	23.38
10 mm	2370 mm	68730 mm	29	150 mm	90 mm	700 mm	430 mm	700 mm	430 mm	90 mm	60 mm				0.005398 m ³	VIGA EJE 3 N2 45X75	42.38

						VIG	A EJE 3	3 N1 45	.75								
16 mm	8830 mm	52980 mm	6		3410 mm		0 mm	0 mm				0 mm	240 mm	250 mm	0.010652 m ³	VIGA EJE 3 N3	83.63
16 mm	8870 mm	53220 mm	6		3400 mm	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.010701 m ³	VIGA EJE 3 N3	84.01
10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE 3 N3	22.89
10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE 3 N3	22.89
10 mm	2320 mm	67280 mm	29	150 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.005284 m ³	VIGA EJE 3 N3	41.49
16 mm	10850 mm	65100 mm	6		0420 mr	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.013089 m ³	VIGA EJE 3 N3	102.76
16 mm	10850 mm	65100 mm	6		0420 mr	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.013089 m ³	VIGA EJE 3 N3	102.76
10 mm	2320 mm	25520 mm	11	100 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.002004 m ³	VIGA EJE 3 N3	15.74
10 mm	2320 mm	25520 mm	11	100 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.002004 m ³	VIGA EJE 3 N3	15.74
10 mm	2320 mm	111360 mm	48	150 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.008746 m ³	VIGA EJE 3 N3	68.67
10 mm	2320 mm	25520 mm	11	100 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.002004 m ³	VIGA EJE 3 N3	15.74
16 mm	4640 mm	27840 mm	6		4210 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.005598 m ³	VIGA EJE 3 N3	43.95
16 mm	4640 mm	27840 mm	6		4210 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.005598 m ³	VIGA EJE 3 N3	43.95
10 mm	2320 mm	25520 mm	11	100 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.002004 m ³	VIGA EJE 3 N3	15.74
10 mm	2320 mm	16240 mm	7	150 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.001275 m ³	VIGA EJE 3 N3	10.01
16 mm	10850 mm	65100 mm	6		0420 mr	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.013089 m ³	VIGA EJE 3 N3	102.76
16 mm	10850 mm	65100 mm	6		0420 mr	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.013089 m ³	VIGA EJE 3 N3	102.76
10 mm	2320 mm	25520 mm	11	100 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.002004 m ³	VIGA EJE 3 N3	15.74
10 mm	2320 mm	25520 mm	11	100 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.002004 m ³	VIGA EJE 3 N3	15.74
10 mm	2320 mm	111360 mm	48	150 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.008746 m ³	VIGA EJE 3 N3	68.67
16 mm	8900 mm	53400 mm	6		3410 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	300 mm	0.010737 m ³	VIGA EJE 3 N3	84.29
16 mm	8870 mm	53220 mm	6		3400 mm	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.010701 m ³	VIGA EJE 3 N3	84.01
10 mm	2370 mm	37920 mm	16	100 mm	90 mm	700 mm 4	30 mm	700 mm	430 mm	90 mm	60 mm				0.002978 m ³	VIGA EJE 3 N3	23.38
10 mm	2370 mm	37920 mm	16	100 mm	90 mm	700 mm 4	30 mm	700 mm	430 mm	90 mm	60 mm				0.002978 m ³	VIGA EJE 3 N3	23.38
10 mm	2370 mm	68730 mm	29	150 mm	90 mm	700 mm 4	30 mm	700 mm	430 mm	90 mm	60 mm				0.005398 m ³	VIGA EJE 3 N3	42.38
						IGA EJE 4											
16 mm	8910 mm	53460 mm	6		3380 mm		0 mm	0 mm	0 mm					300 mm	0.010749 m ³	VIGA EJE 4 N1 45X75	84.39
16 mm	8910 mm	53460 mm	6		3380 mm	_	0 mm	0 mm	0 mm			0 mm	300 mm	300 mm	0.010749 m ³	VIGA EJE 4 N1 45X75	84.39
10 mm	2320 mm	37120 mm	16	100 mm											0.002915 m ³	VIGA EJE 4 N1 45X75	22.89
10 mm	2320 mm	37120 mm	16			700 mm 4									0.002915 m ³	VIGA EJE 4 N1 45X75	22.89
10 mm	2320 mm	67280 mm	29	150 mm		700 mm 4				90 mm	60 mm				0.005284 m ³	VIGA EJE 4 N1 45X75	41.49
16 mm	10910 mm	65460 mm	6		0380 mr		0 mm	0 mm	0 mm			0 mm	300 mm		0.013162 m ³	VIGA EJE 4 N1 45X75	103.33
16 mm	10930 mm	65580 mm	6		0400 mr		0 mm	0 mm	0 mm			0 mm	300 mm	300 mm	0.013186 m ³	VIGA EJE 4 N1 45X75	103.52
10 mm	2320 mm	37120 mm	16	100 mm		700 mm 4			400 mm						0.002915 m ³	VIGA EJE 4 N1 45X75	22.89
10 mm	2320 mm	37120 mm	16	100 mm		700 mm 4				90 mm	60 mm				0.002915 m ³	VIGA EJE 4 N1 45X75	22.89
10 mm	2320 mm	97440 mm	42	150 mm					400 mm	90 mm	60 mm				0.007653 m ³	VIGA EJE 4 N1 45X75	60.08
16 mm	10910 mm	65460 mm	6		0380 mr		0 mm	0 mm	0 mm			0 mm		300 mm	0.013162 m ³	VIGA EJE 4 N1 45X75	103.33
16 mm	10930 mm	65580 mm	6		0400 mr		0 mm	0 mm	0 mm			0 mm	300 mm	300 mm	0.013186 m ³	VIGA EJE 4 N1 45X75	103.52
10 mm	2320 mm	37120 mm	16			700 mm 4									0.002915 m ³	VIGA EJE 4 N1 45X75	22.89
10 mm	2320 mm	37120 mm	16			700 mm 4									0.002915 m ³	VIGA EJE 4 N1 45X75	22.89
10 mm	2320 mm	97440 mm	42	150 mm						90 mm	60 mm				0.007653 m ³	VIGA EJE 4 N1 45X75	60.08
16 mm	8910 mm	53460 mm	6		3380 mm		0 mm	0 mm	0 mm			0 mm		300 mm	0.010749 m ³	VIGA EJE 4 N1 45X75	84.39
16 mm	8920 mm	53520 mm	6		3390 mm		0 mm	0 mm	0 mm			0 mm	300 mm	300 mm	0.010761 m ³	VIGA EJE 4 N1 45X75	84.48
10 mm	2320 mm	37120 mm	16			700 mm 4									0.002915 m ³	VIGA EJE 4 N1 45X75	22.89
10 mm	2320 mm	37120 mm	16	100 mm		700 mm 4				90 mm	60 mm				0.002915 m ³	VIGA EJE 4 N1 45X75	22.89
10 mm	2320 mm	67280 mm	29			700 mm 4									0.005284 m ³	VIGA EJE 4 N1 45X75	41.49
10 mm	2320 mm	25520 mm	11	100 mm		700 mm 4				90 mm	60 mm				0.002004 m ³	VIGA EJE 4 N1 45X75	15.74
16 mm	4590 mm	27540 mm	6		4160 mm		0 mm	0 mm	0 mm			0 mm		250 mm	0.005537 m ³	VIGA EJE 4 N1 45X75	43.47
16 mm	4590 mm	27540 mm	6		4160 mm	_	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.005537 m ³	VIGA EJE 4 N1 45X75	43.47
10 mm	2320 mm	25520 mm	11			700 mm 4									0.002004 m ³	VIGA EJE 4 N1 45X75	15.74
10 mm	2320 mm	16240 mm	7	150 mm	90 mm	700 mm 4	00 mm	700 mm	400 mm	90 mm	60 mm				0.001275 m ³	VIGA EJE 4 N1 45X75	10.01

						VIGA EJE	4 N2 30	x50								
16 n	m 10800 r	nm 64800 mm	6	037	0 mn 0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.013029 m ³	VIGA EJE 4 N2 30X50	102.29
16 n	m 10800 r	nm 64800 mm	6	037	0 mn 0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.013029 m ³	VIGA EJE 4 N2 30X50	102.29
10 m	m 1520 m	m 16720 mm	11	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 4 N2 30X50	10.31
10 n	m 1520 m	m 16720 mm	11	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 4 N2 30X50	10.31
10 n	m 1520 m	m 72960 mm	48	150 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.005730 m ³	VIGA EJE 4 N2 30X50	44.99
10 n	m 1520 m	m 16720 mm	11	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 4 N2 30X50	10.31
16 m	m 4590 m	m 27540 mm	6	416	mm 0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.005537 m ³	VIGA EJE 4 N2 30X50	43.47
16 m	m 4590 m	m 27540 mm	6	416	mm 0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.005537 m ³	VIGA EJE 4 N2 30X50	43.47
10 m	m 1520 m	m 16720 mm	11	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 4 N2 30X50	10.31
10 m	m 1520 m	m 10640 mm	7	150 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.000836 m ³	VIGA EJE 4 N2 30X50	6.56
16 n	m 10800 r	nm 64800 mm	6	037	0 mn 0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.013029 m ³	VIGA EJE 4 N2 30X50	102.29
16 m	m 10800 r	nm 64800 mm	6	037	0 mn 0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.013029 m ³	VIGA EJE 4 N2 30X50	102.29
10 m	m 1520 m	m 16720 mm	11	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 4 N2 30X50	10.31
10 m	m 1520 m	m 16720 mm	11	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 4 N2 30X50	10.31
10 m	m 1520 m	m 72960 mm	48	150 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.005730 m ³	VIGA EJE 4 N2 30X50	44.99
10 m	m 1520 m	m 21280 mm	14	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001671 m ³	VIGA EJE 4 N2 30X50	13.12
16 m	m 2300 m	m 13800 mm	6	187	mm 0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.002775 m ³	VIGA EJE 4 N2 30X50	21.78
16 m	m 2230 m	m 13380 mm	6	180	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	250 mm	0.002690 m ³	VIGA EJE 4 N2 30X50	21.12
16 m	m 2240 m	m 13440 mm	6	183	mm 0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	240 mm	0.002702 m ³	VIGA EJE 4 N2 30X50	21.22
10 m	m 1520 m	m 21280 mm	14	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001671 m ³	VIGA EJE 4 N2 30X50	13.12
16 n	m 2200 m	m 13200 mm	6	178	mm 0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	240 mm	0.002654 m ³	VIGA EJE 4 N2 30X50	20.84
16 m	m 820 m	m 4920 mm	6	350	mm 0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.000989 m ³	VIGA EJE 4 N2 30X50	7.77
16 m	m 820 m	m 4920 mm	6	350	mm 0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.000989 m ³	VIGA EJE 4 N2 30X50	7.77
16 m	m 10250 r	nm 61500 mm	6	982	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.012365 m ³	VIGA EJE 4 N2 30X50	97.08
16 m	m 10250 r	nm 61500 mm	6	982	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.012365 m ³	VIGA EJE 4 N2 30X50	97.08
10 m	m 1520 m	m 16720 mm	11	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 4 N2 30X50	10.31
10 m	m 1520 m	m 16720 mm	11	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 4 N2 30X50	10.31
10 m	m 1520 m	m 53200 mm	35	150 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.004178 m ³	VIGA EJE 4 N2 30X50	32.8
16 m	m 820 m	m 4920 mm	6	350	mm 0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.000989 m ³	VIGA EJE 4 N2 30X50	7.77
16 m	m 820 m	m 4920 mm	6	350	mm 0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.000989 m ³	VIGA EJE 4 N2 30X50	7.77
16 m	m 8800 m	m 52800 mm	6	837	mm 0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.010616 m ³	VIGA EJE 4 N2 30X50	83.35
16 n	m 8800 m	m 52800 mm	6	837	mm 0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.010616 m ³	VIGA EJE 4 N2 30X50	83.35
10 m	m 1520 m	m 16720 mm	11	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 4 N2 30X50	10.31
10 m	m 1520 m	m 16720 mm	11	100 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE 4 N2 30X50	10.31
10 m	m 1520 m	m 53200 mm	35	150 mm 90	mm 450 m	m 250 mm	450 mm	250 mm	90 mm	60 mm				0.004178 m ³	VIGA EJE 4 N2 30X50	32.8

						V	IGA EJE	5 N1 45X	(75								
	16 mm	8900 mm	53400 mm	6	8410 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm 3	300 mm	0.010737 m ³	VIGA EJE 5 N1 45X75	84.29
	16 mm	8870 mm	53220 mm	6	8400 mm	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm 3	300 mm	0.010701 m ³	VIGA EJE 5 N1 45X75	84.01
	10 mm	2370 mm	37920 mm	16	100 mm 90 mm	700 mm	430 mm	700 mm	430 mm	90 mm	60 mm				0.002978 m ³	VIGA EJE 5 N1 45X75	23.38
	10 mm	2370 mm	37920 mm	16	100 mm 90 mm	700 mm	430 mm	700 mm	430 mm	90 mm	60 mm				0.002978 m ³	VIGA EJE 5 N1 45X75	23.38
	10 mm	2370 mm	68730 mm	29	150 mm 90 mm	700 mm	430 mm	700 mm	430 mm	90 mm	60 mm				0.005398 m ³	VIGA EJE 5 N1 45X75	42.38
	16 mm	10850 mm	65100 mm	6	0420 mn	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm 2	250 mm	0.013089 m ³	VIGA EJE 5 N1 45X75	102.76
	16 mm	10850 mm	65100 mm	6	0420 mn	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm 2	250 mm	0.013089 m ³	VIGA EJE 5 N1 45X75	102.76
	10 mm	2320 mm	25520 mm	11				700 mm			60 mm				0.002004 m ³	VIGA EJE 5 N1 45X75	15.74
	10 mm	2320 mm	25520 mm	11	100 mm 90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002004 m ³	VIGA EJE 5 N1 45X75	15.74
	10 mm	2320 mm	111360 mm	48	150 mm 90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.008746 m ³	VIGA EJE 5 N1 45X75	68.67
	16 mm	8830 mm	52980 mm	6	8410 mm	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm 2	250 mm	0.010652 m ³	VIGA EJE 5 N1 45X75	83.63
	16 mm	8870 mm	53220 mm	6	8400 mm	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm 3	300 mm	0.010701 m ³	VIGA EJE 5 N1 45X75	84.01
	10 mm	2320 mm	37120 mm	16	100 mm 90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE 5 N1 45X75	22.89
	10 mm	2320 mm	37120 mm	16	100 mm 90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE 5 N1 45X75	22.89
	10 mm	2320 mm	67280 mm	29	150 mm 90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.005284 m ³	VIGA EJE 5 N1 45X75	41.49
	16 mm	10850 mm	65100 mm	6	0420 mn	0 mm	0 mm	0 mm	0 mm				250 mm 2		0.013089 m ³	VIGA EJE 5 N1 45X75	102.76
	16 mm	10850 mm	65100 mm	6	0420 mn	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm 2	250 mm	0.013089 m ³	VIGA EJE 5 N1 45X75	102.76
	10 mm	2320 mm	25520 mm	11	100 mm 90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002004 m ³	VIGA EJE 5 N1 45X75	15.74
	10 mm	2320 mm	25520 mm	11	100 mm 90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002004 m ³	VIGA EJE 5 N1 45X75	15.74
	10 mm	2320 mm	111360 mm	48	150 mm 90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.008746 m ³	VIGA EJE 5 N1 45X75	68.67
	10 mm	2320 mm	25520 mm	11	100 mm 90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002004 m ³	VIGA EJE 5 N1 45X75	15.74
	16 mm	4640 mm	27840 mm	6	4210 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm 2	250 mm	0.005598 m ³	VIGA EJE 5 N1 45X75	43.95
	16 mm	4640 mm	27840 mm	6	4210 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm 2	250 mm	0.005598 m ³	VIGA EJE 5 N1 45X75	43.95
	10 mm	2320 mm	25520 mm	11	100 mm 90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002004 m ³	VIGA EJE 5 N1 45X75	15.74
	10 mm	2320 mm	16240 mm	7	150 mm 90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.001275 m ³	VIGA EJE 5 N1 45X75	10.01
						V	IGA E IE	5 N2 30X	50								
	16 mm	2240 mm	13440 mm	6	1830 mm	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm 2	240 mm	0.002702 m ³	VIGA EJE 5 N2 30X50	21.22
	10 mm	1520 mm	21280 mm	14				450 mm		90 mm	60 mm	0 111111	2 10 111111 2	_ 10 111111	0.001671 m ³	VIGA EJE 5 N2 30X50	13.12
	16 mm	2200 mm	13200 mm	6	1780 mm	0 mm	0 mm	0 mm	0 mm	30 111111	00 111111	0 mm	240 mm 2	240 mm	0.002654 m ³	VIGA EJE 5 N2 30X50	20.84
	16 mm	10850 mm	65100 mm	6	0420 mn	0 mm	0 mm	0 mm	0 mm				250 mm 2		0.013089 m ³	VIGA EJE 5 N2 30X50	102.76
	16 mm	10850 mm	65100 mm	6	0420 mn	0 mm	0 mm	0 mm	0 mm				250 mm 2		0.013089 m ³	VIGA EJE 5 N2 30X50	102.76
	10 mm	1520 mm	16720 mm	11			_	450 mm	_	90 mm	60 mm	0	200		0.001313 m ³	VIGA EJE 5 N2 30X50	10.31
	10 mm	1520 mm	16720 mm	11				450 mm			60 mm				0.001313 m ³	VIGA EJE 5 N2 30X50	10.31
	10 mm	1520 mm	72960 mm	48				450 mm			60 mm				0.005730 m ³	VIGA EJE 5 N2 30X50	44.99
	10 mm	1520 mm	16720 mm	11				450 mm			60 mm				0.001313 m ³	VIGA EJE 5 N2 30X50	10.31
	16 mm	4640 mm	27840 mm	6	4210 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm 2	250 mm	0.005598 m ³	VIGA EJE 5 N2 30X50	43.95
	16 mm	4640 mm	27840 mm	6	4210 mm	0 mm	0 mm	0 mm	0 mm				250 mm 2		0.005598 m ³	VIGA EJE 5 N2 30X50	43.95
	10 mm	1520 mm	16720 mm	11				450 mm		90 mm	60 mm				0.001313 m ³	VIGA EJE 5 N2 30X50	10.31
	10 mm	1520 mm	10640 mm	7				450 mm			60 mm				0.000836 m ³	VIGA EJE 5 N2 30X50	6.56
	16 mm	10850 mm	65100 mm	6	0420 mn	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm 2	250 mm	0.013089 m ³	VIGA EJE 5 N2 30X50	102.76
	16 mm	10850 mm	65100 mm	6	0420 mn	0 mm	0 mm	0 mm	0 mm				250 mm 2		0.013089 m ³	VIGA EJE 5 N2 30X50	102.76
	10 mm	1520 mm	16720 mm	11		_		450 mm		90 mm	60 mm				0.001313 m ³	VIGA EJE 5 N2 30X50	10.31
	10 mm	1520 mm	16720 mm	11				450 mm			60 mm				0.001313 m ³	VIGA EJE 5 N2 30X50	10.31
	10 mm	1520 mm	72960 mm	48	150 mm 90 mm						60 mm				0.005730 m ³	VIGA EJE 5 N2 30X50	44.99
	10 mm	1520 mm	21280 mm	14				450 mm			60 mm				0.001671 m ³	VIGA EJE 5 N2 30X50	13.12
	16 mm	2300 mm	13800 mm	6	1870 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm 2	250 mm	0.002775 m ³	VIGA EJE 5 N2 30X50	21.78
	16 mm	2230 mm	13380 mm	6	1800 mm		0 mm	0 mm	0 mm				240 mm 2		0.002690 m ³	VIGA EJE 5 N2 30X50	21.12
-		•	-	•			•							-			

				1	IGA EJE	5 N2 45X	75								
16 mm 8	8870 mm	53220 mm	6	8400 mm 0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.010701 m ³	VIGA EJE 5 N2 45X75	84.01
16 mm 8	8870 mm	53220 mm	6	8400 mm 0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.010701 m ³	VIGA EJE 5 N2 45X75	84.01
10 mm 2	2320 mm	37120 mm	16	100 mm 90 mm 700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE 5 N2 45X75	22.89
10 mm 2	2320 mm	37120 mm	16	100 mm 90 mm 700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE 5 N2 45X75	22.89
10 mm 2	2320 mm	67280 mm	29	150 mm 90 mm 700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.005284 m ³	VIGA EJE 5 N2 45X75	41.49
16 mm 8	8880 mm	53280 mm	6	8400 mm 0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	300 mm	0.010713 m ³	VIGA EJE 5 N2 45X75	84.1
16 mm 8	8870 mm	53220 mm	6	8400 mm 0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.010701 m ³	VIGA EJE 5 N2 45X75	84.01
10 mm 2	2420 mm	38720 mm	16	100 mm 90 mm 700 mm	450 mm	700 mm	450 mm	90 mm	60 mm				0.003041 m ³	VIGA EJE 5 N2 45X75	23.88
10 mm 2	2420 mm	38720 mm	16	100 mm 90 mm 700 mm	450 mm	700 mm	450 mm	90 mm	60 mm				0.003041 m ³	VIGA EJE 5 N2 45X75	23.88
10 mm 2	2420 mm	70180 mm	29	150 mm 90 mm 700 mm	450 mm	700 mm	450 mm	90 mm	60 mm				0.005512 m ³	VIGA EJE 5 N2 45X75	43.27
				\	IGA EJE	6 N1 30X	50								
16 mm 2	2000 mm	2000 mm	1	2000 mm 0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000402 m ³	VIGA EJE 6 N1 30X50	3.16
	6360 mm	19080 mm	3	6190 mm 0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	210 mm	0.003836 m ³	VIGA EJE 6 N1 30X50	30.12
	4380 mm	17520 mm	4	4200 mm 0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	210 mm	0.002697 m ³	VIGA EJE 6 N1 30X50	21.17
14 mm 9	9770 mm	39080 mm	4	8960 mm 70 mm	750 mm	30 mm	60 mm			0 mm	0 mm	0 mm	0.006016 m ³	VIGA EJE 6 N1 30X50	47.23
10 mm	1480 mm	16280 mm	11	100 mm 70 mm 450 mm					60 mm				0.001279 m ³	VIGA EJE 6 N1 30X50	10.04
10 mm	1480 mm	11840 mm	8	100 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000930 m ³	VIGA EJE 6 N1 30X50	7.3
10 mm	1480 mm	39960 mm	27	150 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.003138 m ³	VIGA EJE 6 N1 30X50	24.64
16 mm 9	9790 mm	29370 mm	3	750 mm 50 mm	9000 mm	40 mm	40 mm			0 mm	0 mm	0 mm	0.005905 m ³	VIGA EJE 6 N1 30X50	46.36
16 mm	6790 mm	20370 mm	3	750 mm 50 mm	6000 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.004096 m ³	VIGA EJE 6 N1 30X50	32.15
14 mm 9	9980 mm	39920 mm	4	9190 mm 60 mm	750 mm	30 mm	50 mm			0 mm	0 mm	0 mm	0.006145 m ³	VIGA EJE 6 N1 30X50	48.25
10 mm	1480 mm	16280 mm	11	100 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N1 30X50	10.04
10 mm	1480 mm	16280 mm	11	100 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N1 30X50	10.04
10 mm	1480 mm	71040 mm	48	150 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.005579 m ³	VIGA EJE 6 N1 30X50	43.8
16 mm	6870 mm	20610 mm	3	750 mm 50 mm	6070 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.004144 m ³	VIGA EJE 6 N1 30X50	32.53
10 mm	1480 mm	16280 mm	11	100 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N1 30X50	10.04
10 mm	1480 mm	16280 mm	11	100 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N1 30X50	10.04
14 mm 8	8930 mm	35720 mm	4	8140 mm 50 mm	750 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.005499 m ³	VIGA EJE 6 N1 30X50	43.17
10 mm	1480 mm	10360 mm	7	150 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000814 m ³	VIGA EJE 6 N1 30X50	6.39
10 mm	1480 mm	16280 mm	11	100 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N1 30X50	10.04
16 mm 2	2000 mm	6000 mm	3	2000 mm 0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.001206 m ³	VIGA EJE 6 N1 30X50	9.47
14 mm 2	2000 mm	2000 mm	1	2000 mm 0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE 6 N1 30X50	2.42
16 mm 2	2000 mm	6000 mm	3	2000 mm 0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.001206 m ³	VIGA EJE 6 N1 30X50	9.47
16 mm 2	2000 mm	6000 mm	3	2000 mm 0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.001206 m ³	VIGA EJE 6 N1 30X50	9.47
16 mm 2	2000 mm	6000 mm	3	2000 mm 0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.001206 m ³	VIGA EJE 6 N1 30X50	9.47
16 mm 2	2000 mm	2000 mm	1	2000 mm 0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000402 m ³	VIGA EJE 6 N1 30X50	3.16
	2000 mm	2000 mm	1	2000 mm 0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE 6 N1 30X50	2.42
16 mm 9	9300 mm	27900 mm	3	750 mm 50 mm	8500 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.005610 m ³	VIGA EJE 6 N1 30X50	44.04
10 mm	1480 mm	16280 mm	11	100 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N1 30X50	10.04
10 mm	1480 mm	16280 mm	11	100 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N1 30X50	10.04
10 mm	1480 mm	71040 mm	48	150 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.005579 m ³	VIGA EJE 6 N1 30X50	43.8
14 mm 8	8070 mm	32280 mm	4	7290 mm 50 mm	750 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.004969 m ³	VIGA EJE 6 N1 30X50	39.01
16 mm 6	6610 mm	19830 mm	3	750 mm 50 mm	5620 mm	40 mm	40 mm			0 mm	240 mm	0 mm	0.003987 m ³	VIGA EJE 6 N1 30X50	31.3
14 mm 4	4510 mm	18040 mm	4	3530 mm 60 mm	750 mm	40 mm	40 mm			0 mm	0 mm	210 mm	0.002777 m ³	VIGA EJE 6 N1 30X50	21.8
	1480 mm	16280 mm	11	100 mm 70 mm 450 mm		450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N1 30X50	10.04
10 mm	1480 mm	38480 mm	26	150 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.003022 m ³	VIGA EJE 6 N1 30X50	23.73
10 mm	1480 mm	16280 mm	11	100 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N1 30X50	10.04
10 mm	1480 mm	13320 mm	9	100 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001046 m ³	VIGA EJE 6 N1 30X50	8.21
10 mm	1480 mm	20720 mm	14	100 mm 70 mm 450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001627 m ³	VIGA EJE 6 N1 30X50	12.78

					٧	IGA EJE 6	N2 30X	50								
14 mm	6190 mm	18570 mm	3	6010 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	210 mm	0.002859 m ³	VIGA EJE 6 N2 30X50	22.44
14 mm	7460 mm	29840 mm	4	7280 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	210 mm	0.004594 m ³	VIGA EJE 6 N2 30X50	36.06
10 mm	1480 mm	8880 mm	6	100 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000697 m ³	VIGA EJE 6 N2 30X50	5.48
10 mm	1480 mm	11840 mm	8	100 mm 70 mm	450 mm	250 mm 4	450 mm	250 mm	70 mm	60 mm				0.000930 m ³	VIGA EJE 6 N2 30X50	7.3
14 mm	2000 mm	2000 mm	1	2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE 6 N2 30X50	2.42
14 mm	7070 mm	28280 mm	4	6280 mm	50 mm	740 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.004353 m ³	VIGA EJE 6 N2 30X50	34.18
10 mm	1480 mm	8880 mm	6	100 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000697 m ³	VIGA EJE 6 N2 30X50	5.48
10 mm	1480 mm	11840 mm	8	100 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000930 m ³	VIGA EJE 6 N2 30X50	7.3
10 mm	1480 mm	44400 mm	30	150 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.003487 m ³	VIGA EJE 6 N2 30X50	27.38
10 mm	1480 mm	16280 mm	11	100 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N2 30X50	10.04
14 mm	2000 mm	4000 mm	2	2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000616 m ³	VIGA EJE 6 N2 30X50	4.83
14 mm	9290 mm	27870 mm	3	750 mm	50 mm	8500 mm	30 mm	40 mm			0 mm	0 mm	0 mm	0.004290 m ³	VIGA EJE 6 N2 30X50	33.68
14 mm	8290 mm	33160 mm	4	7500 mm	50 mm	750 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.005105 m ³	VIGA EJE 6 N2 30X50	40.08
10 mm	1480 mm	16280 mm	11	100 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N2 30X50	10.04
10 mm	1480 mm	16280 mm	11	100 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N2 30X50	10.04
10 mm	1480 mm	71040 mm	48	150 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.005579 m ³	VIGA EJE 6 N2 30X50	43.8
14 mm	7790 mm	23370 mm	3	770 mm	40 mm	6980 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.003598 m ³	VIGA EJE 6 N2 30X50	28.24
14 mm	2000 mm	4000 mm	2	2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000616 m ³	VIGA EJE 6 N2 30X50	4.83
12 mm	2000 mm	2000 mm	1	2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000226 m ³	VIGA EJE 6 N2 30X50	1.78
14 mm	9030 mm	27090 mm	3	750 mm	70 mm	8220 mm	30 mm	60 mm			0 mm	0 mm	0 mm	0.004170 m ³	VIGA EJE 6 N2 30X50	32.74
10 mm	1480 mm	16280 mm	11	100 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N2 30X50	10.04
10 mm	1480 mm	16280 mm	11	100 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.001279 m ³	VIGA EJE 6 N2 30X50	10.04
10 mm	1480 mm	10360 mm	7	150 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000814 m ³	VIGA EJE 6 N2 30X50	6.39
14 mm	2000 mm	4000 mm	2	2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000616 m ³	VIGA EJE 6 N2 30X50	4.83
14 mm	7530 mm	22590 mm	3			6750 mm		30 mm			0 mm	0 mm	0 mm	0.003477 m ³	VIGA EJE 6 N2 30X50	27.3
14 mm	7490 mm	29960 mm	4			750 mm		30 mm			0 mm	0 mm	0 mm	0.004612 m ³	VIGA EJE 6 N2 30X50	36.21
10 mm	1480 mm	8880 mm	6	100 mm 70 mm						60 mm				0.000697 m ³	VIGA EJE 6 N2 30X50	5.48
10 mm	1480 mm	10360 mm	7	100 mm 70 mm										0.000814 m ³	VIGA EJE 6 N2 30X50	6.39
10 mm	1480 mm	82880 mm	56	150 mm 70 mm	450 mm	250 mm 4	450 mm	250 mm	70 mm	60 mm				0.006509 m ³	VIGA EJE 6 N2 30X50	51.11
14 mm	4640 mm	18560 mm	4			750 mm		40 mm			0 mm	0 mm	0 mm	0.002857 m ³	VIGA EJE 6 N2 30X50	22.43
14 mm	5740 mm	22960 mm	4			1470 mm					0 mm	0 mm	0 mm	0.003534 m ³	VIGA EJE 6 N2 30X50	27.75
14 mm	6840 mm	20520 mm	3	840 mm	50 mm	5950 mm	30 mm	50 mm			0 mm	0 mm	0 mm	0.003159 m ³	VIGA EJE 6 N2 30X50	24.8
12 mm	2000 mm	2000 mm	1	2000 mm			0 mm	0 mm			0 mm	0 mm	0 mm	0.000226 m ³	VIGA EJE 6 N2 30X50	1.78
10 mm	1480 mm	8880 mm	6	100 mm 70 mm						60 mm				0.000697 m ³	VIGA EJE 6 N2 30X50	5.48
10 mm	1480 mm	10360 mm	7	100 mm 70 mm						60 mm				0.000814 m ³	VIGA EJE 6 N2 30X50	6.39
10 mm	1480 mm	62160 mm	42	150 mm 70 mm		250 mm 4	450 mm	250 mm	70 mm	60 mm				0.004882 m ³	VIGA EJE 6 N2 30X50	38.33
14 mm	2000 mm	4000 mm	2	2000 mm			0 mm	0 mm			0 mm	0 mm	0 mm	0.000616 m ³	VIGA EJE 6 N2 30X50	4.83
14 mm	2000 mm	2000 mm	1	2000 mm			0 mm	0 mm			0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE 6 N2 30X50	2.42
14 mm	7530 mm	30120 mm	4			750 mm		30 mm			0 mm		210 mm	0.004637 m ³	VIGA EJE 6 N2 30X50	36.4
14 mm	5650 mm	16950 mm	3			4680 mm	_	40 mm			0 mm	210 mm	0 mm	0.002609 m ³	VIGA EJE 6 N2 30X50	20.49
10 mm	1480 mm	10360 mm	7	100 mm 70 mm										0.000814 m ³	VIGA EJE 6 N2 30X50	6.39
10 mm	1480 mm	11840 mm	8	100 mm 70 mm	450 mm	250 mm	450 mm	250 mm	70 mm	60 mm				0.000930 m ³	VIGA EJE 6 N2 30X50	7.3

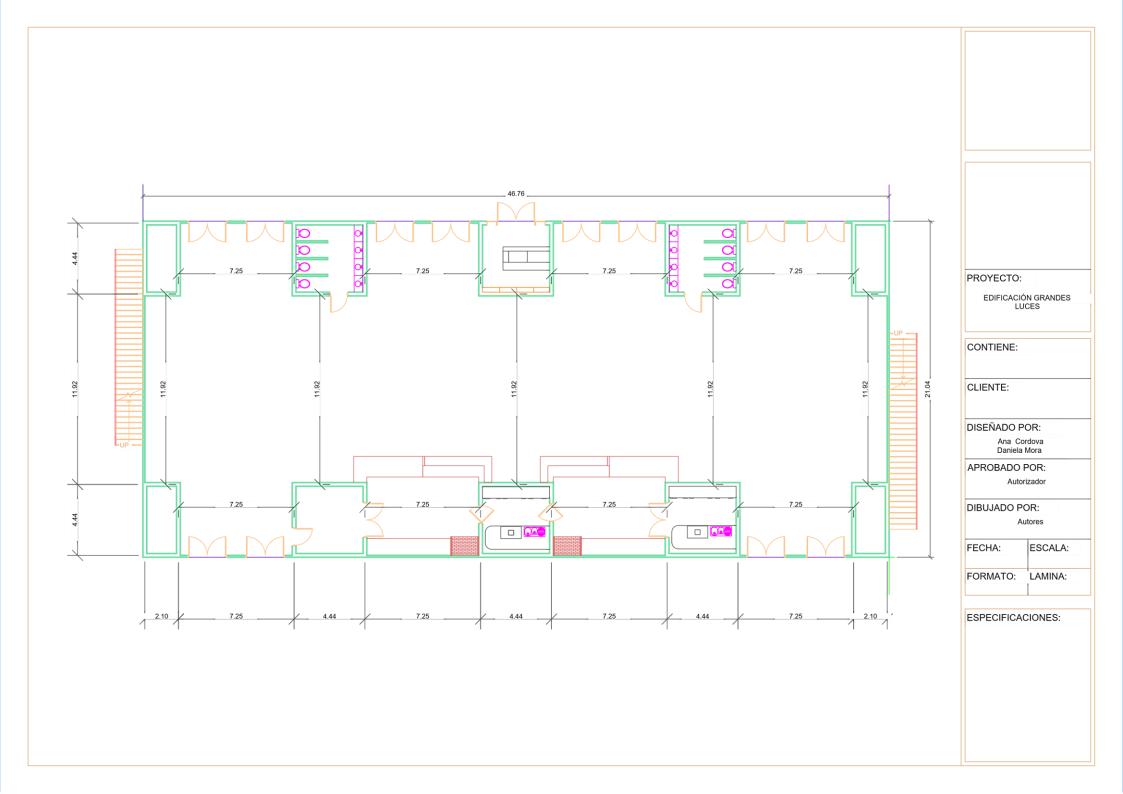
					V	IGA EJE 7	7 N1 15X	25								
12 mm	5120 mm	10240 mm	2	5040 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	100 mm	0.001158 m ³	VIGA EJE 7 N1 15X25	9.09
12 mm	4270 mm	8540 mm	2	4190 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	100 mm	0.000966 m ³	VIGA EJE 7 N1 15X25	7.58
12 mm	7520 mm	15040 mm	2	6730 mm	40 mm	750 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.001701 m ³	VIGA EJE 7 N1 15X25	13.35
10 mm	680 mm	4080 mm	6	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 7 N1 15X25	2.52
10 mm	680 mm	4760 mm	7	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 7 N1 15X25	2.94
12 mm	4800 mm	9600 mm	2	750 mm	60 mm	4000 mm	30 mm	50 mm			0 mm	0 mm	0 mm	0.001086 m ³	VIGA EJE 7 N1 15X25	8.52
12 mm	8020 mm	16040 mm	2	7230 mm	40 mm	750 mm	20 mm	30 mm			0 mm	0 mm	0 mm	0.001814 m ³	VIGA EJE 7 N1 15X25	14.24
10 mm	680 mm	4080 mm	6	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 7 N1 15X25	2.52
10 mm	680 mm	4760 mm	7	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 7 N1 15X25	2.94
12 mm	9990 mm	19980 mm	2	750 mm	50 mm	9190 mm	20 mm	40 mm			0 mm	0 mm	0 mm	0.002260 m ³	VIGA EJE 7 N1 15X25	17.74
12 mm	4580 mm	9160 mm	2			750 mm		40 mm			0 mm	0 mm	0 mm	0.001036 m ³	VIGA EJE 7 N1 15X25	8.13
10 mm	680 mm	4760 mm	7	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 7 N1 15X25	2.94
10 mm	680 mm	4760 mm	7	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 7 N1 15X25	2.94
12 mm	7630 mm	15260 mm	2	750 mm	40 mm	6850 mm	30 mm	30 mm			0 mm	0 mm	0 mm	0.001726 m ³	VIGA EJE 7 N1 15X25	13.55
12 mm	5470 mm	10940 mm	2	4680 mm	40 mm	750 mm	20 mm	40 mm			0 mm	0 mm	0 mm	0.001237 m ³	VIGA EJE 7 N1 15X25	9.71
10 mm	680 mm	4080 mm	6	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 7 N1 15X25	2.52
10 mm	680 mm	4760 mm	7	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 7 N1 15X25	2.94
10 mm	680 mm	4080 mm	6	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 7 N1 15X25	2.52
10 mm	680 mm	4760 mm	7	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 7 N1 15X25	2.94
12 mm	4010 mm	8020 mm	2	750 mm	40 mm	3140 mm	30 mm	40 mm			0 mm	100 mm	0 mm	0.000907 m ³	VIGA EJE 7 N1 15X25	7.12
12 mm	2550 mm	5100 mm	2	1690 mm	40 mm	750 mm	30 mm	30 mm			0 mm	0 mm	100 mm	0.000577 m ³	VIGA EJE 7 N1 15X25	4.53
10 mm	680 mm	28560 mm	42	150 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.002243 m ³	VIGA EJE 7 N1 15X25	17.61
12 mm	7880 mm	15760 mm	2			7090 mm		40 mm			0 mm	0 mm	0 mm	0.001782 m ³	VIGA EJE 7 N1 15X25	13.99
10 mm	680 mm	38080 mm	56	150 mm 70 mm						60 mm				0.002991 m ³	VIGA EJE 7 N1 15X25	23.48
10 mm	680 mm	9520 mm	14	150 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000748 m ³	VIGA EJE 7 N1 15X25	5.87
10 mm	680 mm	38080 mm	56	150 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.002991 m ³	VIGA EJE 7 N1 15X25	23.48
10 mm	680 mm	28560 mm	42	150 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.002243 m ³	VIGA EJE 7 N1 15X25	17.61
12 mm	5460 mm	10920 mm	2	4680 mm	40 mm	750 mm	20 mm	40 mm			0 mm	0 mm	0 mm	0.001235 m ³	VIGA EJE 7 N1 15X25	9.7
12 mm	9070 mm	18140 mm	2			750 mm	_	40 mm			0 mm	0 mm	0 mm	0.002052 m ³	VIGA EJE 7 N1 15X25	16.11
12 mm	6790 mm	13580 mm	2			6000 mm		40 mm			0 mm	0 mm	0 mm	0.001536 m ³	VIGA EJE 7 N1 15X25	12.06
10 mm	680 mm	4080 mm	6	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 7 N1 15X25	2.52
10 mm	680 mm	4760 mm	7	100 mm 70 mm	200 mm	100 mm	200 mm	100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 7 N1 15X25	2.94

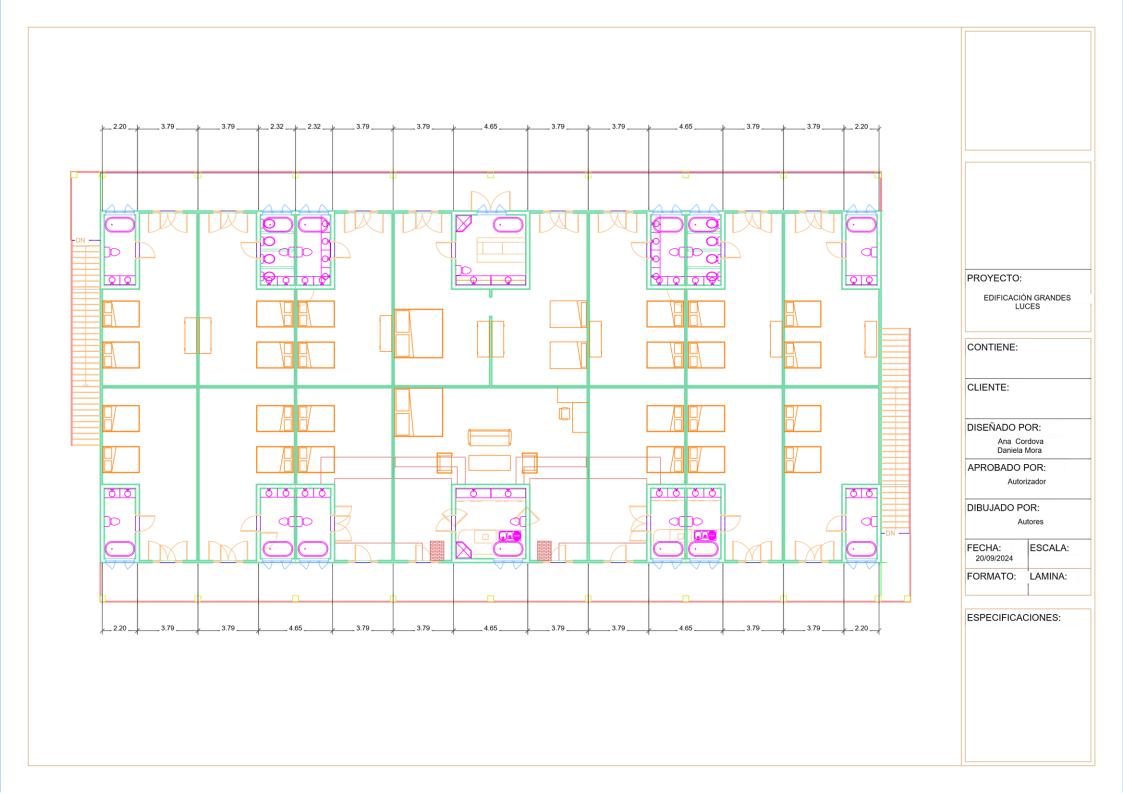
					V	IGA EJE 7 N2 1	5X25								
10 n	m 5520 mr	n 11040 mm	2	5440 mm	0 mm	0 mm 0 mr	n 0 mm			0 mm	0 mm	100 mm	0.000867 m ³	VIGA EJE 7 N2 15X25	6.81
10 n	m 4280 mr	n 8560 mm	2	4200 mm	0 mm	0 mm 0 mr	n 0 mm			0 mm	0 mm	100 mm	0.000672 m ³	VIGA EJE 7 N2 15X25	5.28
10 n	m 680 mm	4080 mm	6	100 mm 70 mm	200 mm	100 mm 200 m	m 100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 7 N2 15X25	2.52
10 n	m 680 mm	4760 mm	7	100 mm 70 mm	200 mm	100 mm 200 m	m 100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 7 N2 15X25	2.94
10 n	m 7520 mr	n 15040 mm	2	6740 mm	40 mm	750 mm 20 m	m 30 mm			0 mm	0 mm	0 mm	0.001181 m ³	VIGA EJE 7 N2 15X25	9.27
10 n	m 680 mm	4080 mm	6	100 mm 70 mm	200 mm	100 mm 200 m	m 100 mm	70 mm	60 mm				0.000320 m ³	VIGA EJE 7 N2 15X25	2.52
10 n	m 680 mm	4760 mm	7	100 mm 70 mm	200 mm	100 mm 200 m	m 100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 7 N2 15X25	2.94
10 n	m 4790 mr	n 9580 mm	2	750 mm	40 mm	4000 mm 20 m	m 30 mm			0 mm	0 mm	0 mm	0.000752 m ³	VIGA EJE 7 N2 15X25	5.91
10 n	m 8020 mr	n 16040 mm	2	7240 mm	30 mm	750 mm 20 m	m 30 mm			0 mm	0 mm	0 mm	0.001260 m ³	VIGA EJE 7 N2 15X25	9.89
10 n	m 680 mm	4080 mm	6			100 mm 200 m			60 mm				0.000320 m ³	VIGA EJE 7 N2 15X25	2.52
10 n	m 680 mm		7	100 mm 70 mm	200 mm	100 mm 200 m	m 100 mm	70 mm	60 mm				0.000374 m ³	VIGA EJE 7 N2 15X25	2.94
10 n			2	750 mm		9210 mm 20 m				0 mm	0 mm	0 mm	0.001568 m ³	VIGA EJE 7 N2 15X25	12.31
10 n			2			750 mm 20 m				0 mm	0 mm	0 mm	0.000719 m ³	VIGA EJE 7 N2 15X25	5.65
10 n			7			100 mm 200 m			60 mm				0.000374 m ³	VIGA EJE 7 N2 15X25	2.94
10 n			7			100 mm 200 m	_		60 mm				0.000374 m ³	VIGA EJE 7 N2 15X25	2.94
10 n			2	750 mm		6850 mm 30 m				0 mm	0 mm	0 mm	0.001199 m ³	VIGA EJE 7 N2 15X25	9.41
10 n			2	4680 mm		760 mm 20 m				0 mm	0 mm	0 mm	0.000859 m ³	VIGA EJE 7 N2 15X25	6.75
10 n			6			100 mm 200 m			60 mm				0.000320 m ³	VIGA EJE 7 N2 15X25	2.52
10 n			7	100 mm 70 mm				_	60 mm				0.000374 m ³	VIGA EJE 7 N2 15X25	2.94
10 n			6			100 mm 200 m			60 mm				0.000320 m ³	VIGA EJE 7 N2 15X25	2.52
10 n			7			100 mm 200 m			60 mm				0.000374 m ³	VIGA EJE 7 N2 15X25	2.94
10 n			2	750 mm		4680 mm 20 m				0 mm	100 mm	0 mm	0.000870 m ³	VIGA EJE 7 N2 15X25	6.83
10 n			2			750 mm 30 m				0 mm	0 mm	100 mm	0.000642 m ³	VIGA EJE 7 N2 15X25	5.04
10 n			7	100 mm 70 mm					60 mm				0.000374 m ³	VIGA EJE 7 N2 15X25	2.94
10 n			8	100 mm 70 mm				_	60 mm				0.000427 m ³	VIGA EJE 7 N2 15X25	3.35
10 n			42			100 mm 200 m			60 mm				0.002243 m ³	VIGA EJE 7 N2 15X25	17.61
10 n			2	750 mm		6720 mm 30 m				0 mm	0 mm	0 mm	0.001178 m ³	VIGA EJE 7 N2 15X25	9.25
10 n			56			100 mm 200 m			60 mm				0.002991 m ³	VIGA EJE 7 N2 15X25	23.48
10 n			14			100 mm 200 m			60 mm				0.000748 m ³	VIGA EJE 7 N2 15X25	5.87
10 n			56	150 mm 70 mm				_	60 mm				0.002991 m ³	VIGA EJE 7 N2 15X25	23.48
10 n			42	150 mm 70 mm					60 mm				0.002243 m ³	VIGA EJE 7 N2 15X25	17.61
10 n			2	4680 mm	_	750 mm 20 m		-		0 mm	0 mm	0 mm	0.000858 m ³	VIGA EJE 7 N2 15X25	6.73
10 n			2	8290 mm		750 mm 20 m				0 mm	0 mm	0 mm	0.001425 m ³	VIGA EJE 7 N2 15X25	11.19
10 n	m 6790 mr	n 13580 mm	2	750 mm	40 mm	6010 mm 20 m	n 30 mm			0 mm	0 mm	0 mm	0.001067 m ³	VIGA EJE 7 N2 15X25	8.37

						v	IGA FJE	B N1 30X50								
14 mm	6600 mm	26400 mm	4		6150 mm		TOX LOL	1 1			0 mm	250 mm	250 mm	0.004064 m ³	VIGA EJE B N1 30X50	31.91
14 mm	6590 mm	26360 mm	4		6150 mm								250 mm	0.004054 m ³	VIGA EJE B N1 30X50	31.86
10 mm	1520 mm	9120 mm	6				250 mm	450 mm 250 mm	90 mm	60 mm	0 111111	200 11111	200 11111	0.000716 m ³	VIGA EJE B N1 30X50	5.62
10 mm	1520 mm	16720 mm	11					450 mm 250 mm						0.0007 10 m ³	VIGA EJE B N1 30X50	10.31
10 mm	1520 mm	18240 mm	12					450 mm 250 mm		60 mm				0.001433 m ³	VIGA EJE B N1 30X50	11.25
10 mm	1520 mm	30400 mm	20					450 mm 250 mm		60 mm				0.002388 m ³	VIGA EJE B N1 30X50	18.75
14 mm	6510 mm	26040 mm	4		6080 mm		200	100 11111 200 11111		00	0 mm	250 mm	250 mm	0.004009 m ³	VIGA EJE B N1 30X50	31.47
14 mm	6530 mm	26120 mm	4		6100 mm								250 mm	0.004021 m ³	VIGA EJE B N1 30X50	31.57
10 mm	1520 mm	9120 mm	6				250 mm	450 mm 250 mm	90 mm	60 mm	0 111111	200 11111	200 11111	0.000716 m ³	VIGA EJE B N1 30X50	5.62
10 mm	1520 mm	9120 mm	6					450 mm 250 mm		60 mm				0.000716 m ³	VIGA EJE B N1 30X50	5.62
10 mm	1520 mm	12160 mm	8					450 mm 250 mm		60 mm				0.000955 m ³	VIGA EJE B N1 30X50	7.5
10 mm	1520 mm	30400 mm	20					450 mm 250 mm		60 mm				0.002388 m ³	VIGA EJE B N1 30X50	18.75
10 mm	1520 mm	9120 mm	6	100 mm				450 mm 250 mm		60 mm				0.0002000 m ³	VIGA EJE B N1 30X50	5.62
10 11111	1020 11111	012011111		100 111111	00 111111	100 111111	200 11111	100 11111 200 11111	1 00 111111	00 111111				0.0007 10 111	VIG/(202 B IVI 00/100	0.02
						V	IGA EJE	B N1 45X75			<u> </u>	<u> </u>				
16 mm	6050 mm	36300 mm	6		5580 mm						0 mm	240 mm	300 mm	0.007299 m ³	VIGA EJE B N1 45X75	57.3
16 mm	6050 mm	36300 mm	6		5580 mm						-	_	300 mm	0.007299 m ³	VIGA EJE B N1 45X75	57.3
10 mm	2320 mm	37120 mm	16				400 mm	700 mm 400 mm	90 mm	60 mm	0 111111	2 10 11111	000 111111	0.002915 m ³	VIGA EJE B N1 45X75	22.89
10 mm	2320 mm	37120 mm	16					700 mm 400 mm		60 mm				0.002915 m ³	VIGA EJE B N1 45X75	22.89
10 mm	2320 mm	20880 mm	9					700 mm 400 mm						0.001640 m ³	VIGA EJE B N1 45X75	12.87
16 mm	6050 mm	36300 mm	6		5580 mm						0 mm	240 mm	300 mm	0.007299 m ³	VIGA EJE B N1 45X75	57.3
16 mm	6050 mm	36300 mm	6		5580 mm								300 mm	0.007299 m ³	VIGA EJE B N1 45X75	57.3
10 mm	2320 mm	37120 mm	16				400 mm	700 mm 400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE B N1 45X75	22.89
10 mm	2320 mm	37120 mm	16					700 mm 400 mm		60 mm				0.002915 m ³	VIGA EJE B N1 45X75	22.89
10 mm	2320 mm	20880 mm	9	150 mm				700 mm 400 mm		60 mm				0.001640 m ³	VIGA EJE B N1 45X75	12.87
•						V	IGA EJE	B N2 30X50			.					
14 mm	6600 mm	26400 mm	4		6160 mm	•					0 mm	250 mm	250 mm	0.004064 m ³	VIGA EJE B N2 30X50	31.91
14 mm	6590 mm	26360 mm	4		6150 mm						0 mm	250 mm	250 mm	0.004058 m ³	VIGA EJE B N2 30X50	31.86
10 mm	1520 mm	9120 mm	6				250 mm	450 mm 250 mm	90 mm	60 mm				0.000716 m ³	VIGA EJE B N2 30X50	5.62
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm 250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE B N2 30X50	10.31
10 mm	1520 mm	18240 mm	12					450 mm 250 mm		60 mm				0.001433 m ³	VIGA EJE B N2 30X50	11.25
10 mm	1520 mm	30400 mm	20					450 mm 250 mm		60 mm				0.002388 m ³	VIGA EJE B N2 30X50	18.75
10 mm	1520 mm	30400 mm	20	100 mm	90 mm	450 mm	250 mm	450 mm 250 mm	90 mm	60 mm				0.002388 m ³	VIGA EJE B N2 30X50	18.75
14 mm	6540 mm	26160 mm	4		6110 mm						0 mm	250 mm	250 mm	0.004027 m ³	VIGA EJE B N2 30X50	31.62
14 mm	6540 mm	26160 mm	4		6110 mm								250 mm	0.004027 m ³	VIGA EJE B N2 30X50	31.62
10 mm	1520 mm	9120 mm	6	100 mm	90 mm	450 mm	250 mm	450 mm 250 mm	90 mm	60 mm				0.000716 m ³	VIGA EJE B N2 30X50	5.62
10 mm	1520 mm	9120 mm	6					450 mm 250 mm		60 mm				0.000716 m ³	VIGA EJE B N2 30X50	5.62
10 mm	1520 mm	12160 mm	8	150 mm	90 mm	450 mm	250 mm	450 mm 250 mm	90 mm	60 mm				0.000955 m ³	VIGA EJE B N2 30X50	7.5
10 mm	1520 mm	9120 mm	6	100 mm	90 mm	450 mm	250 mm	450 mm 250 mm	90 mm	60 mm				0.000716 m ³	VIGA EJE B N2 30X50	5.62

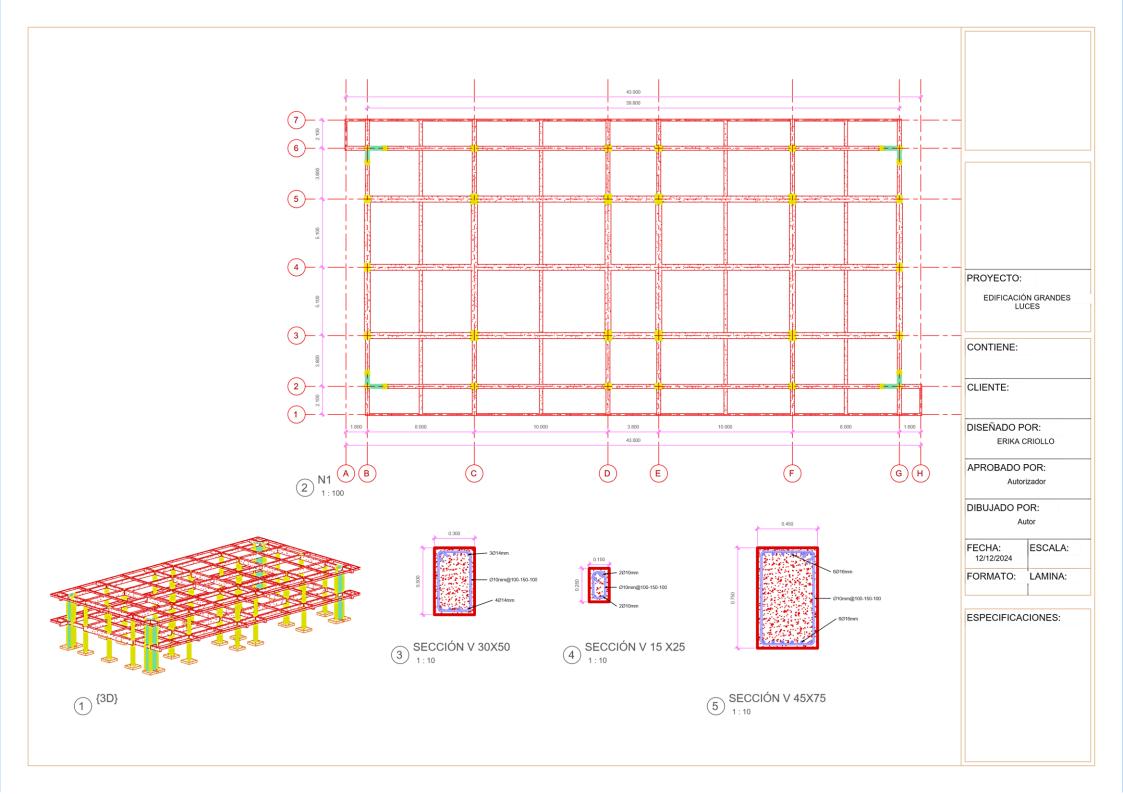
16 mm 6550 mm 56300 mm 6 5550 mm 5550 mm 6 5550 mm 700 mm 400 mm 50 mm 60 mm				-			V	IGA EJE	B N2 45X75				-				
16 mm	16 mm	6050 mm	36300 mm	6		5580 mm						0 mm	240 mm	300 mm	0.007299 m ³	VIGA EJE B N2 45X75	57.3
10 mm				6								0 mm					
10 mm	10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm 400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE B N2 45X75	22.89
16 mm	10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm 400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE B N2 45X75	22.89
16 mm	10 mm	2320 mm	20880 mm	9	150 mm	90 mm	700 mm	400 mm	700 mm 400 mm	90 mm	60 mm				0.001640 m ³	VIGA EJE B N2 45X75	12.87
10 mm 2320 mm 37120 mm 16 10 mm 20 mm 700 mm 400 mm 700 mm 400 mm 90 mm 160 mm 100 mm	16 mm	6050 mm	36300 mm	6		5580 mm						0 mm	240 mm	300 mm	0.007299 m ³	VIGA EJE B N2 45X75	57.3
10 mm 2320 mm 37120 mm 150 mm 90 mm 700 mm 400 mm 700 mm 400 mm 90 mm 90 mm 90 mm 700 mm 400 mm 90	16 mm	6050 mm	36300 mm	6		5580 mm						0 mm	240 mm	300 mm	0.007299 m ³	VIGA EJE B N2 45X75	57.3
10 mm 2320 mm 2880 mm 9 150 mm 00 mm 200 mm 400 mm 200 mm 400 mm 00 mm	10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm 400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE B N2 45X75	22.89
14 mm 6650 mm 26600 mm 4 8220 mm 5 mm	10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm 400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE B N2 45X75	22.89
14 mm	10 mm	2320 mm	20880 mm	9	150 mm	90 mm	700 mm	400 mm	700 mm 400 mm	90 mm	60 mm				0.001640 m ³	VIGA EJE B N2 45X75	12.87
14 mm																	
14 mm									0.14.00750								
14 mm	4.4	0050	2222	,		0000	V	IGA EJE	C N1 30X50		<u> </u>	_	loso	050	0.004005 0	\(\(\text{10.4 F IF 0.14 00\(\text{15.0}\)	00.45
10 mm				_													
10 mm							450	050	450 050		00	0 mm	250 mm	250 mm			
10 mm 1520 mm 28880 mm 19 100 mm 90 mm 450 mm 250 mm 90 mm 60 mm 0 0 mm 00 mm 450 mm 250 mm 90 mm 60 mm 0 0 mm 00 mm 450 mm 250 mm 90 mm 60 mm 0 0 mm 00 mm 450 mm 250 mm 90 mm 60 mm 0 0 mm 00 mm 00 mm 450 mm 250 mm 90 mm 00 mm 0				_												.	
10 mm				_													
10 mm				_													
14 mm				_													
14 mm							450 mm	250 mm	450 mm 250 mm	90 mm	60 mm	•	050	050			
10 mm				_		-											_
10 mm							450	050	450 050	00	00	0 mm	250 mm	250 mm			
10 mm																	
14 mm																	
14 mm				_			450 mm	250 mm	450 mm 250 mm	90 mm	60 mm	•				+	
VIGA EJE C N1 45X75 20.306 22 mm																	
22 mm	14 mm	2000 mm	4000 mm			2000 mm						0 mm	O mm	U mm	0.000010111	VIGA EJE C NI 30X50	4.83
22 mm																	
22 mm		<u> </u>					V	IGA EJE	C N1 45X75		l .					<u> </u>	
22 mm	22 mm	11340 mm	68040 mm	6		0810 mn						0 mm	300 mm	300 mm	0.025864 m ³	VIGA EJE C N1 45X75	203.06
10 mm	22 mm	11350 mm	45400 mm	4		0810 mn						0 mm				+	
10 mm	10 mm	2320 mm		16	100 mm	90 mm	700 mm	400 mm	700 mm 400 mm	90 mm	60 mm						
10 mm				_													
22 mm 2000 mm 4000 mm 2 2000 mm 2 2000 mm 2 2000 mm 3 3 3 3 3 3 3 3 3	10 mm	2320 mm	97440 mm	42	150 mm	90 mm	700 mm	400 mm	700 mm 400 mm	90 mm	60 mm				0.007653 m ³		60.08
Note	22 mm	2000 mm	4000 mm			2000 mm						0 mm	0 mm	0 mm			
10 mm																	
10 mm																	
14 mm 6710 mm 26840 mm 4 6270 mm 8270 mm 90 mm 250 mm 250 mm 0.004132 m³ VIGA EJE C N2 30X50 32.44 14 mm 6690 mm 26760 mm 4 6250 mm 4 6250 mm 0 mm 250 mm 0.004132 m³ VIGA EJE C N2 30X50 32.34 10 mm 1520 mm 16720 mm 11 100 mm 90 mm 450 mm 250 mm 90 mm 60 mm 0.001313 m³ VIGA EJE C N2 30X50 10.31 10 mm 1520 mm 16720 mm 11 100 mm 90 mm 450 mm 250 mm 90 mm 60 mm 0.001313 m³ VIGA EJE C N2 30X50 10.31 10 mm 1520 mm 10640 mm 7 150 mm 90 mm 450 mm 250 mm 90 mm 60 mm 0.000336 m³ VIGA EJE C N2 30X50 6.56 10 mm 1520 mm 28880 mm 19 100 mm 450 mm 250 mm 250 mm 90 mm 60 mm 0.0002268 m³ VIGA EJE C N2 30X50 17.81 14 mm							V	IGA EJE	C N2 30X50								
14 mm 6690 mm 26760 mm 4 6250 mm 5250 mm 50 mm 250 mm 250 mm 250 mm 250 mm 0.004119 m³ VIGA EJE C N2 30X50 32.34 10 mm 1520 mm 16720 mm 11 100 mm 90 mm 450 mm 250 mm 90 mm 60 mm 0.001313 m³ VIGA EJE C N2 30X50 10.31 10 mm 1520 mm 16720 mm 11 100 mm 90 mm 450 mm 250 mm 90 mm 60 mm 0.001313 m³ VIGA EJE C N2 30X50 10.31 10 mm 1520 mm 10640 mm 7 150 mm 90 mm 450 mm 250 mm 90 mm 60 mm 0.000336 m³ VIGA EJE C N2 30X50 10.31 14 mm 6630 mm 28880 mm 19 100 mm 450 mm 250 mm 250 mm 90 mm 60 mm 0.000268 m³ VIGA EJE C N2 30X50 17.81 14 mm 6630 mm 26600 mm 4 6220 mm 0 mm 0 mm 250 mm 90 mm 60 mm 0 mm 250 mm 0.0	10 mm	1520 mm		19			450 mm	250 mm	450 mm 250 mm	90 mm	60 mm						
10 mm 1520 mm 16720 mm 11 100 mm 90 mm 450 mm 250 mm 450 mm 250 mm 90 mm 450 mm 250 mm 90 mm 60 mm 0.001313 m³ VIGA EJE C N2 30X50 10.31 10 mm 1520 mm 10640 mm 7 150 mm 90 mm 450 mm 250 mm 450 mm 250 mm 90 mm 60 mm 0.000336 m³ VIGA EJE C N2 30X50 10.31 10 mm 1520 mm 10640 mm 7 150 mm 90 mm 450 mm 250 mm 450 mm 250 mm 90 mm 60 mm 0.000336 m³ VIGA EJE C N2 30X50 6.56 10 mm 1520 mm 1520 mm 26600 mm 4 6220 mm 0 mm 450 mm 250 mm 450 mm 250 mm 90 mm 450 mm 450 mm 250 mm 90 mm 450 mm 250 mm 90 mm 450 mm 250 mm 90 mm 450 mm 450 mm 250 mm 90 mm 450 mm 250 mm 90 mm 450 mm 450 mm 250 mm 90 mm 450 mm 450 mm 4	14 mm			_								0 mm					
10 mm 1520 mm 16720 mm 10 mm 1520 mm 10640 mm 7 150 mm 90 mm 450 mm 250 mm 450 mm 250 mm 450 mm 250 mm 90 mm 60 mm 0.001313 m³ VIGA EJE C N2 30X50 10.31 10 mm 1520 mm 1520 mm 28880 mm 19 100 mm 450 mm 250 mm 450 mm 250 mm 450 mm 250 mm 90 mm 450 mm 250	14 mm	6690 mm	26760 mm	4								0 mm	250 mm	250 mm	0.004119 m ³	VIGA EJE C N2 30X50	32.34
10 mm 1520 mm 10640 mm 7 150 mm 90 mm 450 mm 250 mm 450 mm 250 mm 450 mm 250 mm 90 mm 450 mm 250	10 mm	1520 mm	16720 mm	11							60 mm				0.001313 m ³	VIGA EJE C N2 30X50	10.31
10 mm 1520 mm 28880 mm 19 100 mm 90 mm 450 mm 250 mm 450 mm 250 mm 90 mm 60 mm 0 0.002268 m³ VIGA EJE C N2 30X50 17.81 14 mm 6650 mm 26600 mm 4 6220 mm 0	10 mm	1520 mm	16720 mm	11							60 mm				0.001313 m ³		10.31
14 mm 6650 mm 26600 mm 4 6220 mm 0 mm 0 mm 250 mm 0.004095 m³ VIGA EJE C N2 30X50 32.15 14 mm 6630 mm 26520 mm 4 6200 mm 0 mm 0 mm 250 mm 0.004095 m³ VIGA EJE C N2 30X50 32.05 10 mm 1520 mm 16720 mm 11 100 mm 90 mm 450 mm 250 mm 90 mm																	
14 mm 6630 mm 26520 mm 4 6200 mm 0 mm 0 mm 250 mm 0.004082 m³ VIGA EJE C N2 30X50 32.05 10 mm 1520 mm 16720 mm 11 100 mm 90 mm 450 mm 250 mm 90 mm 90 mm 60 mm 0.001313 m³ VIGA EJE C N2 30X50 10.31 10 mm 1520 mm 1520 mm 10640 mm 7 150 mm 90 mm 450 mm 250 mm 90 mm 90 mm 60 mm 0.000836 m³ VIGA EJE C N2 30X50 6.56	10 mm	1520 mm		_				250 mm	450 mm 250 mm	90 mm	60 mm						_
10 mm 1520 mm 16720 mm 1 11 100 mm 90 mm 450 mm 250 mm 450 mm 250 mm 90 mm 60 mm 0.001313 m³ VIGA EJE C N2 30X50 10.31 10 mm 1520 mm 1																	
10 mm 1520 mm 10640 mm 7 150 mm 90 mm 450 mm 250 mm 450 mm 90 mm 60 mm 0 0.000836 m³ VIGA EJE C N2 30X50 6.56												0 mm	250 mm	250 mm			_
10 mm 1520 mm 16720 mm 11 100 mm 90 mm 450 mm 450 mm 450 mm 450 mm 90 mm 60 mm 0.001313 m ³ VIGA EJE C N2 30X50 10.31				_												+	
100120000 1001	10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm 250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE C N2 30X50	10.31

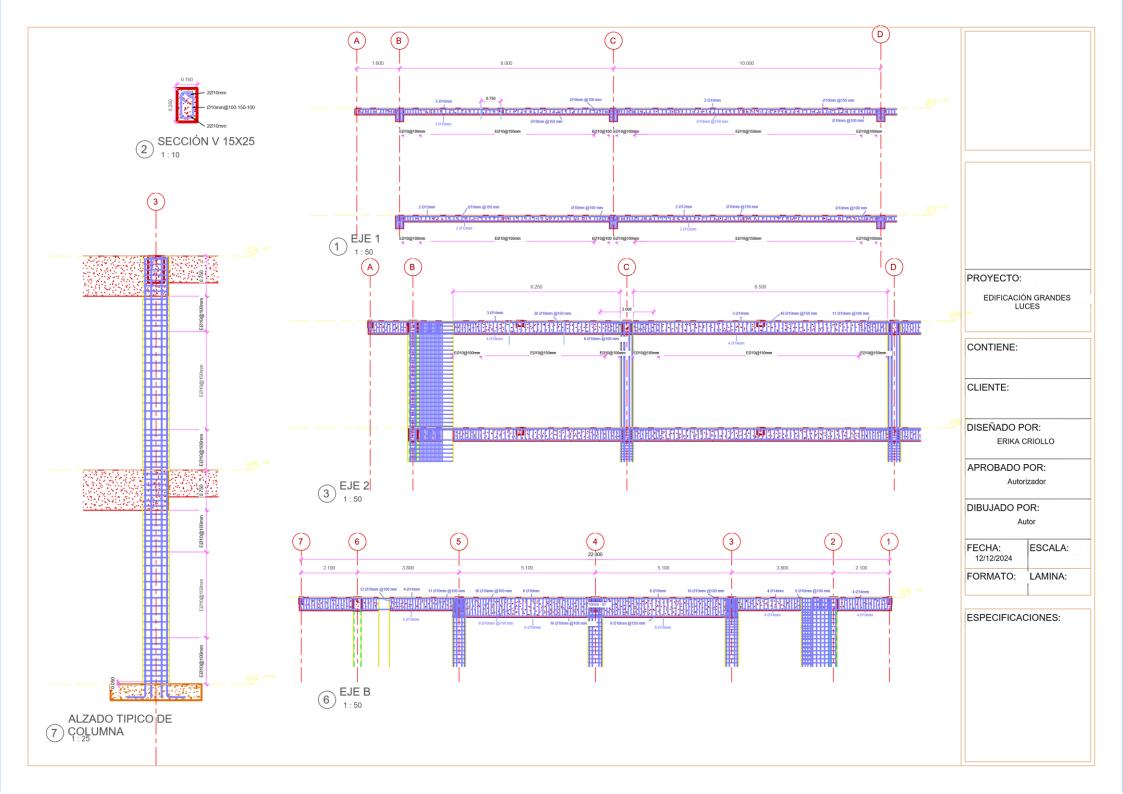
							GA E IE	C N2 45X75								
18 mm	11340 mm	68040 mm	6		0810 mr		GA EJE	C N2 43A73		1	0 mm	300 mm	200 mm	0.017314 m ³	VIGA EJE C N2 45X75	135.93
18 mm	11340 mm	68100 mm	6		0810 mr						•	300 mm		0.017314 IIP 0.017329 m ³	VIGA EJE C N2 45X75	136.05
10 mm	2320 mm	37120 mm	16				400	700 mm 400 m	00	60 mm	UIIIIII	300 11111	300 11111	0.017329 IIP 0.002915 m ³	VIGA EJE C N2 45X75	22.89
10 mm	2320 mm	37120 mm	16					700 mm 400 m		60 mm				0.002915 m ³	VIGA EJE C N2 45X75	22.89
		97440 mm						700 mm 400 m							VIGA EJE C N2 45X75	
10 mm	2320 mm	97440 mm	42	150 mm	90 mm	700 mm	400 mm	700 mm 400 m	m 90 mm	60 mm				0.007653 m ³	VIGA EJE C N2 45X/5	60.08
						V	GA EJE	D N1 30X50								
12 mm	4580 mm	9160 mm	2		3790 mm	50 mm	750 mm	30 mm 40 mi	n		0 mm	0 mm	0 mm	0.001036 m ³	VIGA EJE D N1 30X50	8.13
10 mm	1520 mm	28880 mm	19					450 mm 250 m		60 mm				0.002268 m ³	VIGA EJE D N1 30X50	17.81
14 mm	6710 mm	26840 mm	4		6270 mm						0 mm	250 mm	250 mm	0.004132 m ³	VIGA EJE D N1 30X50	32.44
14 mm	6690 mm	26760 mm	4		6250 mm						0 mm	250 mm	250 mm	0.004119 m ³	VIGA EJE D N1 30X50	32.34
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm 250 m	m 90 mm	60 mm				0.001313 m ³	VIGA EJE D N1 30X50	10.31
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm 250 m	m 90 mm	60 mm				0.001313 m ³	VIGA EJE D N1 30X50	10.31
10 mm	1520 mm	10640 mm	7	150 mm	90 mm	450 mm	250 mm	450 mm 250 m	m 90 mm	60 mm				0.000836 m ³	VIGA EJE D N1 30X50	6.56
14 mm	2000 mm	2000 mm	1		2000 mm						0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE D N1 30X50	2.42
14 mm	6650 mm	26600 mm	4		6220 mm						0 mm	250 mm	250 mm	0.004095 m ³	VIGA EJE D N1 30X50	32.15
14 mm	6630 mm	26520 mm	4		6200 mm	1					0 mm	250 mm	250 mm	0.004082 m ³	VIGA EJE D N1 30X50	32.05
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm 250 m	m 90 mm	60 mm				0.001313 m ³	VIGA EJE D N1 30X50	10.31
10 mm	1520 mm	10640 mm	7	150 mm	90 mm	450 mm	250 mm	450 mm 250 m	m 90 mm	60 mm				0.000836 m ³	VIGA EJE D N1 30X50	6.56
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm 250 m	m 90 mm	60 mm				0.001313 m ³	VIGA EJE D N1 30X50	10.31
14 mm	2000 mm	2000 mm	1		2000 mm						0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE D N1 30X50	2.42
10 mm	1520 mm	28880 mm	19	100 mm	90 mm	450 mm	250 mm	450 mm 250 m	m 90 mm	60 mm				0.002268 m ³	VIGA EJE D N1 30X50	17.81
			_				GA EJE	D N1 45X75								
20 mm	11380 mm	68280 mm	6		0810 mr						0 mm	300 mm		0.021451 m ³	VIGA EJE D N1 45X75	168.41
20 mm	11390 mm	45560 mm	4		0810 mr						0 mm	300 mm	300 mm	0.014313 m ³	VIGA EJE D N1 45X75	112.37
10 mm	2320 mm	37120 mm	16					700 mm 400 m		60 mm				0.002915 m ³	VIGA EJE D N1 45X75	22.89
10 mm	2320 mm	37120 mm	16					700 mm 400 m		60 mm				0.002915 m ³	VIGA EJE D N1 45X75	22.89
10 mm	2320 mm	97440 mm	42				400 mm	700 mm 400 m	m 90 mm	60 mm				0.007653 m ³	VIGA EJE D N1 45X75	60.08
20 mm	2000 mm	4000 mm	2		2000 mm						0 mm	0 mm	0 mm	0.001257 m ³	VIGA EJE D N1 45X75	9.87

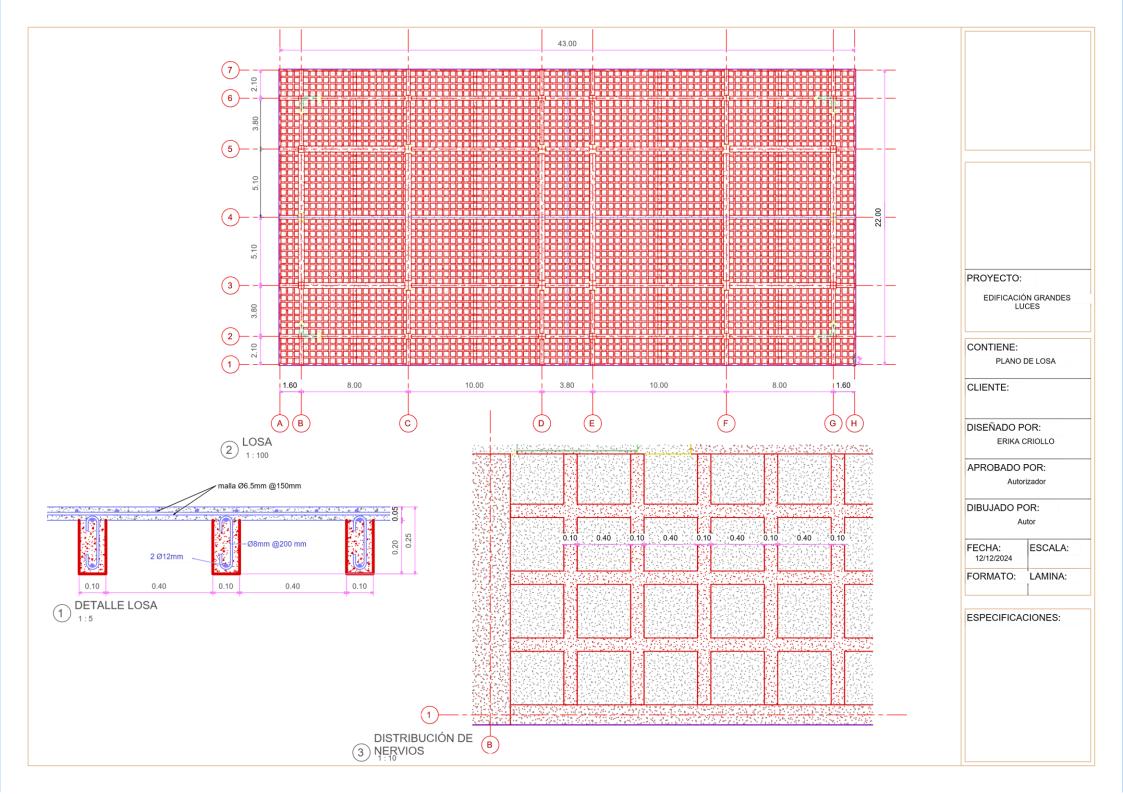

						V	IGA EJE	D N2 30X50								
10 mm	1520 mm	28880 mm	19	100 mm	90 mm	450 mm	250 mm	450 mm 250 r	m 90 mm	60 mm				0.002268 m ³	VIGA EJE D N2 30X50	17.81
14 mm	6710 mm	26840 mm	4		6270 mm		200	100 111111 200 1		00	0 mm	250 mm	250 mm	0.004132 m ³	VIGA EJE D N2 30X50	32.44
14 mm	6690 mm	26760 mm	4		6250 mm						0 mm		250 mm	0.004119 m ³	VIGA EJE D N2 30X50	32.34
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm 250 r	m 90 mm	60 mm	•			0.001313 m ³	VIGA EJE D N2 30X50	10.31
10 mm	1520 mm	16720 mm	11					450 mm 250 r		60 mm				0.001313 m ³	VIGA EJE D N2 30X50	10.31
10 mm	1520 mm	10640 mm	7					450 mm 250 r		60 mm				0.000836 m ³	VIGA EJE D N2 30X50	6.56
14 mm	6650 mm	26600 mm	4		6220 mm						0 mm	250 mm	250 mm	0.004095 m ³	VIGA EJE D N2 30X50	32.15
14 mm	6630 mm	26520 mm	4		6200 mm						0 mm		250 mm	0.004082 m ³	VIGA EJE D N2 30X50	32.05
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm 250 r	nm 90 mm	60 mm				0.001313 m ³	VIGA EJE D N2 30X50	10.31
10 mm	1520 mm	10640 mm	7	150 mm	90 mm	450 mm	250 mm	450 mm 250 r	m 90 mm	60 mm				0.000836 m ³	VIGA EJE D N2 30X50	6.56
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm 250 r	m 90 mm	60 mm				0.001313 m ³	VIGA EJE D N2 30X50	10.31
10 mm	1520 mm	28880 mm	19	100 mm	90 mm	450 mm	250 mm	450 mm 250 r	m 90 mm	60 mm				0.002268 m ³	VIGA EJE D N2 30X50	17.81
12 mm	2000 mm	8000 mm	4		2000 mm						0 mm	0 mm	0 mm	0.000905 m ³	VIGA EJE D N2 30X50	7.1
12 mm	2000 mm	8000 mm	4		2000 mm						0 mm	0 mm	0 mm	0.000905 m ³	VIGA EJE D N2 30X50	7.1
VIGA EJE D N2 45X75																
18 mm	11340 mm	56700 mm	5		0810 mr						0 mm	300 mm	300 mm	0.014428 m ³	VIGA EJE D N2 45X75	113.28
18 mm	11350 mm	56750 mm	5		0810 mr						0 mm	300 mm	300 mm	0.014441 m ³	VIGA EJE D N2 45X75	113.38
10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm 400 r	nm 90 mm	60 mm				0.002915 m ³	VIGA EJE D N2 45X75	22.89
10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm 400 r	nm 90 mm	60 mm				0.002915 m ³	VIGA EJE D N2 45X75	22.89
10 mm	2320 mm	97440 mm	42	150 mm	90 mm	700 mm	400 mm	700 mm 400 r	nm 90 mm	60 mm				0.007653 m ³	VIGA EJE D N2 45X75	60.08
							IGA EJE	E N1 30X50								
14 mm	6650 mm	26600 mm	4		6220 mm						0 mm		250 mm	0.004095 m ³	VIGA EJE E N1 30X50	32.15
14 mm	6630 mm	26520 mm	4		6200 mm						0 mm	250 mm	250 mm	0.004082 m ³	VIGA EJE E N1 30X50	32.05
10 mm	1520 mm	16720 mm	11					450 mm 250 r		60 mm				0.001313 m ³	VIGA EJE E N1 30X50	10.31
10 mm	1520 mm	10640 mm	7					450 mm 250 r		60 mm				0.000836 m ³	VIGA EJE E N1 30X50	6.56
10 mm	1520 mm	16720 mm	11				250 mm	450 mm 250 r	nm 90 mm	60 mm				0.001313 m ³	VIGA EJE E N1 30X50	10.31
14 mm	2000 mm	2000 mm	1		2000 mm						0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE E N1 30X50	2.42
10 mm	1520 mm	28880 mm	19				250 mm	450 mm 250 r	nm 90 mm	60 mm				0.002268 m ³	VIGA EJE E N1 30X50	17.81
14 mm	6710 mm	26840 mm	4		6270 mm						0 mm	250 mm		0.004132 m ³	VIGA EJE E N1 30X50	32.44
14 mm	6690 mm	26760 mm	4		6250 mm						0 mm	250 mm	250 mm	0.004119 m ³	VIGA EJE E N1 30X50	32.34
10 mm	1520 mm	16720 mm	11					450 mm 250 r						0.001313 m ³	VIGA EJE E N1 30X50	10.31
10 mm	1520 mm	16720 mm	11					450 mm 250 r		60 mm				0.001313 m ³	VIGA EJE E N1 30X50	10.31
10 mm	1520 mm	10640 mm	7	150 mm			250 mm	450 mm 250 r	nm 90 mm	60 mm		ļ		0.000836 m ³	VIGA EJE E N1 30X50	6.56
14 mm	2000 mm	2000 mm	1		2000 mm						0 mm	0 mm	0 mm	0.000308 m ³	VIGA EJE E N1 30X50	2.42
10 mm	1520 mm	28880 mm	19	100 mm	90 mm	450 mm	250 mm	450 mm 250 r	nm 90 mm	60 mm				0.002268 m ³	VIGA EJE E N1 30X50	17.81


							V	IGA EJE	E N1 45X	75					· · · · ·			
	10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE E N1 45X75	22.89
	10 mm	2320 mm	97440 mm	42	150 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.007653 m ³	VIGA EJE E N1 45X75	60.08
	20 mm	2000 mm	4000 mm	2		2000 mm							0 mm	0 mm	0 mm	0.001257 m ³	VIGA EJE E N1 45X75	9.87
	20 mm	11380 mm	68280 mm	6		0810 mr							0 mm	300 mm	300 mm	0.021451 m ³	VIGA EJE E N1 45X75	168.41
	20 mm	11390 mm	45560 mm	4		0810 mr							0 mm	300 mm	300 mm	0.014313 m ³	VIGA EJE E N1 45X75	112.37
	10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE E N1 45X75	22.89
									E N2 30X		1	,						
	10 mm	1520 mm	28880 mm	19				250 mm	450 mm	250 mm	90 mm	60 mm				0.002268 m ³	VIGA EJE E N2 30X50	17.81
	14 mm	6710 mm	26840 mm	4		6270 mm								250 mm		0.004132 m ³	VIGA EJE E N2 30X50	32.44
	14 mm	6690 mm	26760 mm	4		6250 mm							0 mm	250 mm	250 mm	0.004119 m ³	VIGA EJE E N2 30X50	32.34
	10 mm	1520 mm	16720 mm	11					450 mm			60 mm				0.001313 m ³	VIGA EJE E N2 30X50	10.31
	10 mm	1520 mm	16720 mm	11	100 mm				450 mm			60 mm				0.001313 m ³	VIGA EJE E N2 30X50	10.31
	10 mm	1520 mm	10640 mm	7	150 mm			250 mm	450 mm	250 mm	90 mm	60 mm				0.000836 m ³	VIGA EJE E N2 30X50	6.56
	12 mm	2000 mm	8000 mm	4		2000 mm							0 mm	0 mm	0 mm	0.000905 m ³	VIGA EJE E N2 30X50	7.1
	14 mm	6650 mm	26600 mm	4		6220 mm							0 mm	250 mm		0.004095 m ³	VIGA EJE E N2 30X50	32.15
	14 mm	6630 mm	26520 mm	4		6200 mm							0 mm	250 mm	250 mm	0.004082 m ³	VIGA EJE E N2 30X50	32.05
	10 mm	1520 mm	16720 mm	11					450 mm			60 mm				0.001313 m ³	VIGA EJE E N2 30X50	10.31
	10 mm	1520 mm	10640 mm	7					450 mm			60 mm				0.000836 m ³	VIGA EJE E N2 30X50	6.56
	10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm		450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE E N2 30X50	10.31
	12 mm	2000 mm	8000 mm	4		2000 mm	0 mm	0 mm	0 mm				0 mm	0 mm	0 mm	0.000905 m ³	VIGA EJE E N2 30X50	7.1
	10 mm	1520 mm	28880 mm	19	100 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.002268 m ³	VIGA EJE E N2 30X50	17.81
									E N2 45X		1	,						
	18 mm	11340 mm	56700 mm	5		0810 mr	_	0 mm	0 mm	0 mm			0 mm	300 mm		0.014428 m ³	VIGA EJE E N2 45X75	113.28
	18 mm	11350 mm	56750 mm	5		0810 mr		0 mm	0 mm	0 mm			0 mm	300 mm	300 mm	0.014441 m ³	VIGA EJE E N2 45X75	113.38
	10 mm	2320 mm	37120 mm	16					700 mm			60 mm				0.002915 m ³	VIGA EJE E N2 45X75	22.89
	10 mm	2320 mm	37120 mm	16					700 mm			60 mm				0.002915 m ³	VIGA EJE E N2 45X75	22.89
	10 mm	2320 mm	97440 mm	42	150 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.007653 m ³	VIGA EJE E N2 45X75	60.08
							L											
	10	4500	00000	10	100				F N1 30X					1		0.000000 0	\#04 E IE E N4 00\/50	47.04
	10 mm	1520 mm	28880 mm	19					450 mm		90 mm	60 mm	0	050	050	0.002268 m ³	VIGA EJE F N1 30X50	17.81
	14 mm	6710 mm	20130 mm	3		6270 mm		0 mm	0 mm	0 mm				250 mm		0.003099 m ³	VIGA EJE F N1 30X50	24.33
	14 mm	6690 mm	26760 mm	4	400	6250 mm		0 mm	0 mm	0 mm	00	00	0 mm	250 mm	250 mm	0.004119 m ³	VIGA EJE F N1 30X50	32.34
	10 mm	1520 mm	16720 mm	11				250 mm				60 mm				0.001313 m ³	VIGA EJE F N1 30X50	10.31
	10 mm	1520 mm	16720 mm	11	100 mm		450 mm					60 mm				0.001313 m ³	VIGA EJE F N1 30X50	10.31
	10 mm	1520 mm	10640 mm	7	150 mm		450 mm	250 mm	450 mm		90 mm	60 mm	_		•	0.000836 m ³	VIGA EJE F N1 30X50	6.56
	16 mm	2000 mm	4000 mm	2		2000 mm		0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000804 m ³	VIGA EJE F N1 30X50	6.31
	14 mm	6650 mm	19950 mm	3		6220 mm		0 mm	0 mm	0 mm			0 mm	250 mm		0.003071 m ³	VIGA EJE F N1 30X50	24.11
+	14 mm	6630 mm	26520 mm	4		6200 mm		0 mm	0 mm	0 mm	00	00	0 mm	250 mm	∠5U mm	0.004082 m ³	VIGA EJE F N1 30X50	32.05
	10 mm	1520 mm	16720 mm	11			450 mm		450 mm							0.001313 m ³	VIGA EJE F N1 30X50	10.31
	10 mm	1520 mm	10640 mm	7					450 mm			60 mm				0.000836 m ³	VIGA EJE F N1 30X50	6.56
	10 mm	1520 mm	16720 mm	11	100 mm		450 mm				90 mm	60 mm	0	0	0	0.001313 m ³	VIGA EJE F N1 30X50	10.31
	16 mm	2000 mm	4000 mm	2	400	2000 mm		0 mm	0 mm	0 mm	00	00	0 mm	0 mm	0 mm	0.000804 m ³	VIGA EJE F N1 30X50	6.31
	10 mm	1520 mm	28880 mm	19	100 mm	90 mm 2000 mm	450 mm 0 mm	250 mm 0 mm	450 mm 0 mm	250 mm 0 mm	90 mm	60 mm	0 mm	0 mm	0	0.002268 m ³	VIGA EJE F N1 30X50 VIGA EJE F N1 30X50	17.81
														1 (1 mm	0 mm	0.001521 m ³	1 VII = A F IF F N11 3(125()	11.94
	22 mm 22 mm	2000 mm 2000 mm	4000 mm 4000 mm	2		2000 mm		0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.001521 m ³	VIGA EJE F N1 30X50	11.94

	-					٧	IGA EJE	F N1 45X	(75								
22 mm	11340 mm	45360 mm	4		0810 mn	0 mm	0 mm	0 mm				0 mm	300 mm	300 mm	0.017243 m ³	VIGA EJE F N1 45X75	135.37
22 mm	11350 mm	45400 mm	4		0810 mn	0 mm	0 mm	0 mm				0 mm	300 mm	300 mm	0.017258 m ³	VIGA EJE F N1 45X75	135.49
10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE F N1 45X75	22.89
10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE F N1 45X75	22.89
10 mm	2320 mm	97440 mm	42	150 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.007653 m ³	VIGA EJE F N1 45X75	60.08
22 mm	2000 mm	4000 mm	2		2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.001521 m ³	VIGA EJE F N1 45X75	11.94
								F N2 30X									
10 mm	1520 mm	28880 mm	19	100 mm	90 mm					90 mm	60 mm				0.002268 m ³	VIGA EJE F N2 30X50	17.81
14 mm	6710 mm	20130 mm	3		6270 mm		0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.003099 m ³	VIGA EJE F N2 30X50	24.33
14 mm	6690 mm	26760 mm	4		6250 mm		0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.004119 m ³	VIGA EJE F N2 30X50	32.34
10 mm	1520 mm	16720 mm	11		90 mm										0.001313 m ³	VIGA EJE F N2 30X50	10.31
10 mm	1520 mm	16720 mm	11		90 mm										0.001313 m ³	VIGA EJE F N2 30X50	10.31
10 mm	1520 mm	10640 mm	7	150 mm	90 mm		250 mm	450 mm	250 mm	90 mm	60 mm				0.000836 m ³	VIGA EJE F N2 30X50	6.56
14 mm	6650 mm	19950 mm	3		6220 mm	0 mm	0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.003071 m ³	VIGA EJE F N2 30X50	24.11
14 mm	6630 mm	26520 mm	4		6200 mm		0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.004082 m ³	VIGA EJE F N2 30X50	32.05
10 mm	1520 mm	16720 mm	11	100 mm				450 mm							0.001313 m ³	VIGA EJE F N2 30X50	10.31
10 mm	1520 mm	10640 mm	7	150 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.000836 m ³	VIGA EJE F N2 30X50	6.56
10 mm	1520 mm	16720 mm	11	100 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.001313 m ³	VIGA EJE F N2 30X50	10.31
10 mm	1520 mm	28880 mm	19	100 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.002268 m ³	VIGA EJE F N2 30X50	17.81
14 mm	2000 mm	4000 mm	2		2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000616 m ³	VIGA EJE F N2 30X50	4.83
14 mm	2000 mm	4000 mm	2		2000 mm	0 mm	0 mm	0 mm	0 mm			0 mm	0 mm	0 mm	0.000616 m ³	VIGA EJE F N2 30X50	4.83
	1							F N2 45X			1	T -	T			T	
18 mm	11340 mm	68040 mm	6		0810 mn		0 mm	0 mm	0 mm			0 mm	300 mm		0.017314 m³	VIGA EJE F N2 45X75	135.93
18 mm	11350 mm	68100 mm	6		0810 mn		0 mm	0 mm	0 mm			0 mm	300 mm	300 mm	0.017329 m ³	VIGA EJE F N2 45X75	136.05
10 mm	2320 mm	37120 mm	16	100 mm				700 mm			60 mm				0.002915 m ³	VIGA EJE F N2 45X75	22.89
10 mm	2320 mm	37120 mm	16	100 mm				700 mm			60 mm				0.002915 m ³	VIGA EJE F N2 45X75	22.89
10 mm	2320 mm	97440 mm	42	150 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.007653 m ³	VIGA EJE F N2 45X75	60.08
						V	IGA E IE	G N1 30)	(50								
14 mm	6510 mm	26040 mm	4	1	6080 mm		0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.004009 m ³	VIGA EJE G N1 30X50	31.47
14 mm	6530 mm	26120 mm	4		6100 mm		0 mm	0 mm	0 mm				250 mm		0.004009 m ³	VIGA EJE G N1 30X50	31.57
10 mm	1520 mm	9120 mm	6	100 mm	90 mm					00 mm	60 mm	0 111111	230 11111	230 IIIII	0.004021 IIP 0.000716 m ³	VIGA EJE G N1 30X50	5.62
10 mm	1520 mm	9120 mm	6		90 mm								<u> </u>		0.000716 m ³	VIGA EJE G N1 30X50	5.62
10 mm	1520 mm	12160 mm	8		90 mm										0.000716 m ³	VIGA EJE G N1 30X50	7.5
10 mm	1520 mm	9120 mm	6		90 mm										0.000955 m ³	VIGA EJE G N1 30X50	5.62
10 mm	1520 mm 1520 mm	30400 mm	20		90 mm								-		0.000716 m ³ 0.002388 m ³	VIGA EJE G N1 30X50 VIGA EJE G N1 30X50	18.75
14 mm	6600 mm	26400 mm	4	TOO HIII	6150 mm		0 mm	0 mm	0 mm	ao min	00 11111	0 mm	250 mm	250 mm	0.002388 m ³	VIGA EJE G N1 30X50	31.91
14 mm	6590 mm	26400 mm	4		6150 mm		0 mm	0 mm	0 mm				250 mm		0.004064 m ³	VIGA EJE G N1 30X50	31.86
			_	100 mm	90 mm					00 mm	60 mm	UIIII	230 IIIII	230 11111		VIGA EJE G N1 30X50	
10 mm	1520 mm	9120 mm	6		90 mm								-		0.000716 m ³		5.62
10 mm	1520 mm	16720 mm 18240 mm	11		90 mm										0.001313 m ³	VIGA EJE G N1 30X50	10.31
10 mm	1520 mm	30400 mm	12 20	100 mm									-		0.001433 m ³ 0.002388 m ³	VIGA EJE G N1 30X50 VIGA EJE G N1 30X50	11.25 18.75
10 mm	1520 mm	30400 111111	20	TOO HIM	ao min	4 30 mm	250 IIIII	HOU IIIII	230 IIIII	ao min	OU IIIII				0.002300 118	VIGA EJE G INI 30X50	10.73


							V	IGA EJE	G N1 45)	(75								
	16 mm	6050 mm	36300 mm	6		5580 mm	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.007299 m ³	VIGA EJE G N1 45X75	57.3
	16 mm	6050 mm	36300 mm	6		5580 mm		0 mm	0 mm	0 mm					300 mm	0.007299 m³	VIGA EJE G N1 45X75	57.3
	10 mm	2320 mm	37120 mm	16	100 mm				700 mm		90 mm	60 mm				0.002915 m ³	VIGA EJE G N1 45X75	22.89
	10 mm	2320 mm	37120 mm	16		90 mm						60 mm				0.002915 m ³	VIGA EJE G N1 45X75	22.89
	10 mm	2320 mm	20880 mm	9	150 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.001640 m ³	VIGA EJE G N1 45X75	12.87
	16 mm	6050 mm	36300 mm	6		5580 mm		0 mm	0 mm	0 mm		-	0 mm	240 mm	300 mm	0.007299 m ³	VIGA EJE G N1 45X75	57.3
	16 mm	6050 mm	36300 mm	6		5580 mm	0 mm	0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.007299 m ³	VIGA EJE G N1 45X75	57.3
	10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE G N1 45X75	22.89
	10 mm	2320 mm	37120 mm	16	100 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.002915 m ³	VIGA EJE G N1 45X75	22.89
	10 mm	2320 mm	20880 mm	9	150 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.001640 m ³	VIGA EJE G N1 45X75	12.87
							V	IGA EJE	G N2 30)	(50		•		•				
	10 mm	1520 mm	30400 mm	20	100 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.002388 m ³	VIGA EJE G N2 30X50	18.75
	14 mm	6610 mm	26440 mm	4		6160 mm		0 mm	0 mm	0 mm			0 mm	250 mm		0.004070 m ³	VIGA EJE G N2 30X50	31.95
	14 mm	6600 mm	26400 mm	4		6160 mm		0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.004064 m ³	VIGA EJE G N2 30X50	31.91
	10 mm	1520 mm	9120 mm	6	100 mm				450 mm			60 mm				0.000716 m ³	VIGA EJE G N2 30X50	5.62
	10 mm	1520 mm	16720 mm	11	100 mm				450 mm			60 mm				0.001313 m ³	VIGA EJE G N2 30X50	10.31
	10 mm	1520 mm	18240 mm	12	100 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.001433 m ³	VIGA EJE G N2 30X50	11.25
	14 mm	6540 mm	26160 mm	4		6110 mm		0 mm	0 mm	0 mm				250 mm		0.004027 m ³	VIGA EJE G N2 30X50	31.62
	14 mm	6550 mm	26200 mm	4		6120 mm		0 mm	0 mm	0 mm			0 mm	250 mm	250 mm	0.004033 m ³	VIGA EJE G N2 30X50	31.66
	10 mm	1520 mm	9120 mm	6		90 mm						60 mm				0.000716 m ³	VIGA EJE G N2 30X50	5.62
	10 mm	1520 mm	9120 mm	6		90 mm						60 mm				0.000716 m ³	VIGA EJE G N2 30X50	5.62
	10 mm	1520 mm	12160 mm	8	150 mm				450 mm			60 mm				0.000955 m ³	VIGA EJE G N2 30X50	7.5
	10 mm	1520 mm	9120 mm	6	100 mm				450 mm			60 mm				0.000716 m ³	VIGA EJE G N2 30X50	5.62
	10 mm	1520 mm	30400 mm	20	100 mm	90 mm	450 mm	250 mm	450 mm	250 mm	90 mm	60 mm				0.002388 m ³	VIGA EJE G N2 30X50	18.75
									G N2 45)									
	16 mm	6050 mm	36300 mm	6		5580 mm		0 mm	0 mm	0 mm			0 mm		300 mm	0.007299 m ³	VIGA EJE G N2 45X75	57.3
	16 mm	6050 mm	36300 mm	6		5580 mm		0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.007299 m ³	VIGA EJE G N2 45X75	57.3
	10 mm	2320 mm	37120 mm	16		90 mm						60 mm				0.002915 m ³	VIGA EJE G N2 45X75	22.89
	10 mm	2320 mm	37120 mm	16	100 mm				700 mm			60 mm				0.002915 m ³	VIGA EJE G N2 45X75	22.89
	10 mm	2320 mm	20880 mm	9		90 mm					90 mm	60 mm				0.001640 m ³	VIGA EJE G N2 45X75	12.87
	16 mm	6050 mm	36300 mm	6		5580 mm		0 mm	0 mm	0 mm					300 mm	0.007299 m ³	VIGA EJE G N2 45X75	57.3
	16 mm	6050 mm	36300 mm	6		5580 mm		0 mm	0 mm	0 mm			0 mm	240 mm	300 mm	0.007299 m ³	VIGA EJE G N2 45X75	57.3
	10 mm	2320 mm	37120 mm	16		90 mm						60 mm				0.002915 m ³	VIGA EJE G N2 45X75	22.89
	10 mm	2320 mm	37120 mm	16	100 mm				700 mm			60 mm				0.002915 m ³	VIGA EJE G N2 45X75	22.89
	10 mm	2320 mm	20880 mm	9	150 mm	90 mm	700 mm	400 mm	700 mm	400 mm	90 mm	60 mm				0.001640 m ³	VIGA EJE G N2 45X75	12.87
Total general: 713																2.391144 m ³	PESO TOTAL	18773





ANEXO 2 PLANOS DE DETALLE DE ACERO PARA SISTEMA ESTRUCTURAL DE HORMIGÓN ARMADO

